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INTERNATIONAL COLLOQUIUM ON GEOMETRY AND

ANALYSIS

BOMBAY, 6-14 JANUARY 1992

R E P O R T

AN INTERNATIONAL COLLOQUIUM on ‘Geometry and Anal-

ysis’ was held at the Tata Institute of Fundamental Research, Bombay

from January 6 to January 14, 1992. Professors M. S. Narasimhan and

C.S. Seshadri turned sixty at about this time. In view of the crucial

role both of them played in the evolutions of the School of Mathemat-

ics as a centre of excellence, it was considered appropriate to devote

the Colloquium to recent developments in areas of geometry and anal-

ysis close to their research interests, and to felicitate them on this oc-

casion. The range of topics dealt with included vector bundles, moduli

theory, complex geometry, algebraic and quantum groups, and differen-

tial equations. The Colloquium was co-sponsored by the International

Mathematical Union and the Tata Institute of Fundamental Research,

and was financially supported by them and the Sir Dorabji Tata Trust.

The Organizing Committee for the Colloquium consisted of Pro-

fessors Kashmibai, David Mumford, Gopal Prasad, R. Parthasarathy

(Chairman), M.S. Raghunathan, T. R. Ramadas, S. Ramanan and R.

R. Simha. The International Mathematical Union was represented by

Professor Mumford.

The following mathematicians gave one-hour addresses at the Collo-

quium: S.S. Abhyankar, A. Adimurthy, A. Beauville, F.A. Bogomolov,

C. de Concini, J.P. Demailly, W. J. Haboush, G. Harder, A. Hirschowitz,

N. J. Hitchin, S. P. Inamber, K. T. Joseph, G. R. Kempf, V. Lakshmibai,

H. Lange, M. Maruyama, D. Mumford, M. P. Murthy, N. Nitsure, M.

V. Nori, K. Okamoto, C. Procesi, N. Raghavendra, S. Ramanan, Y. T.

Siu, V. Srinivas, S. Subramanian, G. Trautmann. Besides the members

of the School of Mathematics of the Tata Institute, mathematicians from

universities and educational institutions in India and abroad were also

invited to attend the Colloquium.
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The social programme for the Colloquium included a Tea Party on

January 9, a documentary film on 6 January, a Carnatic Flute Recital on

January 8, a Hindustani Vocal Recital on January 11, a Kathakali Dance

on January 13, a Dinner at Gallops Restaurant, Mahalaxmi on January

12, an Excursion to Elephanta Caves on January 14, and a Farewell

Dinner Party on January 14, 1992.
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Fundamental Group of the Affine Line in Positive

Characteristic

Shreeram S. Abhyankar*

1 Introduction

I have known both Narasimhana and Seshadri since 1958 when I had 1

a nice meal with them at the Student Cafeteria in Cité Universitaire in

Paris. So I am very pleased to be here to wish them a Happy Sixtieth

Birthday. My association with the Tata Institute gore back even further

to 1949-1951 when, as a college student, I used to attend the lectures

of M. H. Stone and K. Chandraseksharan, first in Pedder Road and then

at the Yacht Club. Then in the last many years I have visited the Tata

Institute numerous times. So this Conference is a nostalgic homecoming

to me.

To enter into the subject of Fundamental Groups, let me, as usual,

make a.

2 High-School Beginning

So consider a polynomial

f “ f pYq “ Yn ` a1Yn´1 ` ¨ ¨ ¨ ` an

with coefficients a1, . . . , an in some field K; for example, K could be the

field of rational numbers. We want to solve the equation f “ 0, i.e.,

we want to find the roots of f . Assume that f is irreducible and has no

multiple roots. Suppose somehow we found a root y1 of f . Then to make

*Invited Lecture delivered on 8 January 1992 at the International Colloquium on

Geometry and Analysis in TIFR in Bombay. This work was partly supported by NSF

Grant DMS-91-01424
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2 Shreeram S. Abhyankar

the problem of finding the other roots easier, we achieve a decrease in

degree by “throwing away” the root y1 to get

f1 “ f1pYq “ f pYq
Y ´ y1

“ Yn´1 ` b1Yn´2 ` ¨ ¨ ¨ ` bn´1.

If f1pYq is also irreducible and if somehow we found a root y2 of f1,2

then “throwing away” y2 we get

f2 “ f2Y “ f1pYq
Y ´ y2

“ Yn´2 ` c1Yn´3 ` ¨ ¨ ¨ ` cn´2.

Note that the coefficients b1 . . . , bn´1 of f1 do involve y1 and hence they

are note in K, but they are in Kpy1q. So, although we assumed f to

be irreducible in KrYs, when we said “if f1 is irreducible,” we clearly

meant “if f1 is irreducible in Kpy1qrYs”. Likewise, irreducibility of f2
refers to its irreducibility in Kpy1, y2qrYs. And so on. In this way we get

a sequence of polynomials f1, f2, . . . , fm of degrees n´1, n´2, . . . , n´m

in Y with coefficients in Kpy1q,Kpy1, y2q, . . . ,Kpy1, . . . , ymq, where fi is

irreducible in Kpy1, . . . , yiqrYs for i “ 1, 2, . . . ,m ´ 1. If fm is reducible

in Kpyp1q, . . . , ymqrYs then we stop, otherwise we proceed to get fm`1,

and so on. Now we may ask the following.

Question: Given any positive integers m ă n, doers there exist an irre-

ducible polynomial f of degree n in Y with coeffcients in some field K

such that the above sequence terminates exactly after m steps, i.e., such

that f1, f2, . . . , fm´1 are irreducible but fm is reducible?

I presume that most of us, when asked to respond quickly, might say:

“Yes, but foe large m and n it would be time consuming to write down

concrete examples”. However, the SURPRISE OF THE CENTURY

is that the ANSWER is NO. More precisely, it turns out that

2.1 f1, f2, f3, f4, f5 irreducible ñ f6, f7, . . . , fn´3 irreducible.

In other words, if f1, . . . , f5 are irreducible then f1, . . . , fn´1 are all

irreducible except the fn´2, which is a quadratic, may or may not be

irreducible. This answers the case of m ě 6. Going down the line to

m ď 5 and assuming m ă n ´ 2, for the case of m “ 5 we have that

2



Fundamental Group of the Affine Line in Positive Characteristic 3

2.2 f1, f2, f3, f4 irreducible but f5 reducible ñ n “ 24 or 12 and for

the case of m “ 4 we have that

2.3 f1, f2, f3 irreducible but f4 reducible ñ n “ 23 or 11.

Going further down the line, for the case of m “ 3 we have that

2.4 f1, f2 irreducible but f3 reducible ñ Refined FT of Proj Geom 3

i.e., if f1, f2 are irreducible but f3 is reducible,then there are only a

few possibilities and they are suggested by the Fundamental Theorem

of Projective Geometry, which briefly says that “the underlying division

ring of a synthetically defined desarguestion projective plane is a field

in and only if any three point of a projective line can be mapped to any

other three points of that projective line by a unique projectivity.” Going

still further down the line for the case of m “ 2 we have that

2.5 f1 irreducible but f2 reducible ñ known but too long

i.e., if f1 is irreducible but f2 is reducible, the answer is known but

the list of possibilities is too long to write down here. Finally, for the

case of m “ 1 we have that

2.6 f1 has exactly two irreducible factors ñ Pathol proj Geom ` Stat

i.e., if f1 has exactly two irreducible factors, then again a complete

answer is known, which depends on Pathological Projective Geometry

and Block Designs from Statistics! Here I am reminded of the beautiful

course on Projective Geometry which I took from Zariski (in 1951 at

Harvard), and in which I learnt the Fundamental Theorem mentioned

in (2.4). At the end of that course, Zariski said to me that “Projective

geometry is a beautiful dead subject, so don’t try to do research in it”

by which he implied that the ongoing research in tha subject at that

time was rather pathological and dealt with non- desarguesian planes

and such. But in the intervening thirty or forty years, this “patholog-

ical” has made great strides in the hands of pioneers from R. C. Bose

[21] and S. S. Shrikhande [58] to P. Dembowski [29] and D. G. Higman

[34], and has led to a complete classification of Rank 3 groups, which

3



4 Shreeram S. Abhyankar

from our view-point of the theory of equations is synonymous to case

(2.6). So realizing how even a great man like Zariski could be wrong oc-

casinally, I have learnt to drop one of my numerous prejudices, namely

my prejudice against Statistics.

Note that a permutation group is said to be transitive if any point

(of the permuted set) can be sent to any other, via a permutation in

the group. Likewise, a permutation group is m-fold transitive (briefly:

m-fold transitive) if any m points can be sent to any other m points,

via a permutation in that group. DoublyTransitive “ 2 ´ transitive,

TriplyTransitive “ 3 ´ transitive, and so on. By the one point stabi-

lizer of a transitive permutation group we mean the subgroup consisting

of those permutations which keep a certain point fixed; the orbits of that4

subgroup are the minimal subsets of the permuted set which are mapped

to themselves by every permutation in that subgroup; of the nontrivial

orbits are called the sub degrees of the group, so that the numbers of sub

degress is one less than than rank. Thus a Rank 3 group is transitive per-

mutation group whose one point stabilizer has three orbits; the lengths

of the two nontrivial orbits are the sub degrees. Needless to say that

a Rank 2 group is nothing but a Doubly Transitive permutation group.

At any rate, in case (2.6), the degrees of the two irreducible factors of

f1 correspond to the sub degrees of the relevant Rank 3 group. Now

CR3(= the Classification Theorem of Rank 3 groups) implies that very

few pairs of integres can be the sub degrees of Rank 3 groups, very few

nonisomorphic Rank groups can have the same sub degrees; see Kantor-

Liebler [42] and Liebeck [44]. Hence (2.6) says that if f1 has exactly

two irreducible factors then their degrees (and hence also n) can have

only certain very selective values.

Here, by the relevant group we mean the Galois group of f over

K, which we donate by Galp f ,Kq and which, following Galois, we de-

fine as the group of those permutations of the roots y1 . . . , yn which re-

tain all the polynomial relations between them wiht coefficients in K.

This definition makes sense without f being irreducible but still assum-

ing f to have no multiple roots. Now our assumptio of f being irre-

ducible is equivalent to assuming that Galp f ,Kq is transitive. Likewise,

f1, . . . , fm´1 are irreducible iff Galp f ,Kq in m-transitive. Moreover, as

4



Fundamental Group of the Affine Line in Positive Characteristic 5

already indicated, f1 has exactly two irreducible factors iffGalp f ,Kq has

rank 3. To match this definition of Galois with the modern definition, let

L be the splitting field of f over K, i.e., L “ Kpy1 . . . , ynq. Then accord-

ing to the modern definition, the Galois group of L over k, denoted by

GalpL,Kq, is defined to be the group of all automorphisms of L which

keep K point wise fixed. Considering Galp f ,Kq as a permutations group

of the subscripts 1, . . . , n of y1, . . . , yn for every τ P GalpL,Kq we have

a unique σ P Galp f ,Kq such that τpyiq “ yσpiq for 1 ď i ď n. Mow we

get an isomorphism of GalpL,Kq onto Galp f ,Kq by sending each τ to

the corresponding σ.

Having sufficiently discussed case (2.6), let us note that (2.5) is

equivalent to CDT (=Classification Theorem of Doubly Transitive per-

mutation groups) fr which we manu refer to Cameron [22] and Kantor

[41]. At any rate, CDT implies that if f1 is irreducible but f2 is re-

ducible then we must have: either n “ q for some prime power q, or

n “ pql ´ 1q{pq ´ 1q for some integer l ą 1 and some prime power q,

or n “ 22l´1 ´ 2l´1 for some integer l ą 2, or n “ 15, or n “ 176,

or n “ 276. Likewise (2.4) is equivalent to CTT(= Classification of

Triply Transitive permutation groups) which is subsumed in CDT, and 5

as a consequence of it we can say that if f1, f2 are irreducible but f3 is

reducible then we must have: either n “ 2l for some positive integer l,

or n ´ q ` 1 for some prime powder q, or n “ 22.

Similarly, (2.3) is equivalent to CQT (= Classification of Quadru-

ply Transitive permutation groups) which is subsumed in CTT, and as

a consequence of it we can say that if f1, f2, f3 are irreducible but f4 is

reducible then we must have: eithee n “ 23 and Galp f ,Kq “ M23 or

n “ 11 and Galp f ,Kq “ M11, where M stands for Mathieu. Likewise,

(2.2) is equivalent to CFT(= Classification of Fivefold Transitive per-

mutation groups) which is subsumed in CQT, and as a consequence of it

we can say that if f1, f2, f3, f4 are irreducible but f5 is reducible then we

must have: either n “ 24 and Galp f ,Kq “ M24 and Galp f ,Kq “ M12.

Note that, M24 and M24 are the only 5-told but not 6-fold transitive

permutation groups other than the symmetric group S 5 (i.e., the group

of all permutations on 5 letters) and the alternating group A7 (i.e., the

sub-group of s7 consisting of all even permutations). Moreover, M23 and

5



6 Shreeram S. Abhyankar

M11 are the respective one point stabilizers of M24 and M12 and they are

the only 4-fold but not 5-fold transitive permutation groups other than

s4 and A6. Here the subscript denotes the degree, i.e., the number of

letters being permuted. The four groups M24, M23, M12, M11, were con-

structed by Mathieu [46] in 1861 as examples of highly transitive per-

mutation groups. But the fact that they are the only 4-transitive permuta-

tion groups others than the symmetric groups and the alternating groups,

was proved only in 1981 when CDT, and hence also CTT, CQT, CFT and

CST, were deduced from CT(= Classification Theorem of finite simple

groups); see Cameron [23] and Cameron-Cannon [24]. Recall that a

group is simple if it has no nonidentity normal subgroup other than it-

self; it turns out that the five Mathieu groups M24, M23, M22, M12, M11

and M22 is the point stabilizer of M23, are all simple. Now CST refers

to the Classification Theorem of Sixfold Transitive permutation groups,

according to which the symmetric groups and the alternating groups are

the only 6-transitive permutation groups; note that S m is m-transitive but

not pm ` 1q-transitive, whereas Am is pm ´ 2q-transitive but not pm ´ 1q-

transitive for m ě 3. In (2.2) to (2.6) we had assumed M ă n ´ 2

to avoid including the symmetric and alternating groups; dropping this

assumption, (2.1) is equivalent to CST with the clarification that, under

the assumption of (2.1), the quadratic fn´2 is irreducible or reducible

according as Galp f ,Kq “ sn or An.

We have already hinted that CR3 was also deduced as a consequence

of CT; Liebeck [44]. The proof of CT itself was completed in 1980 (see

Gorenstein [32]) with staggering statistics: 30 years; 100 authors; 5006

papers; 15,000 pages! Add some more pages for CDT and CR3 and so

on.

All we have done above is to translate this group theory into te lan-

guage of theory of equations where K is ANY field. So are still talking

High-School? Not really, unless we admint CT into High-School!

6



Fundamental Group of the Affine Line in Positive Characteristic 7

3 Galois

Summarizing, to compute the Galois group Galp f ,Kq, say when K is the

field kpXq of univariate rational functions over an algebraically closed

ground field k, by throwing away roots and using some algebraic geom-

etry we find some multi-transitivity and other properties of the Galois

groups and fedd there into the group theory machine. Out comes a list

of possible groups. Reverting to algebraic geometry, sometimes aug-

mented by High-School manipulations, we successively eliminate var-

ious members from that list until, hopefully, one is-left. That then is

the answer. I say hopefully because we would have a contradiction in

which the ultimate reality (Brahman) is described by Neti Neti, not this,

not that. If you practice pure Advaita, then nothing is left, which is too

austere. So we fall back on the kinder Dvaita according to which the

unique God remains.

4 Riemann and Dedekind

In case K “ CpXq and ai “ aipXq P CrXs for 1 ď i ď n, where C is the

field of comples numbers, following Riemann [53] we can consider the

monodromy group of f thus.

Fix a nondiscriminant point µ, i.e., value mu P C of X for which the

equation f “ 0 has n distinct roots. Then, say by the Implicit Function

Theorem, we can solve the equation the equation f “ 0 near µ, getting

n analytic solutions η1pXq, . . . , ηnpXq near µ. To find out how there so-

lutions are intertwined, mark a finite number of values α1, . . . , αw of X

which are different from µ but include all the discriminant points, and let

Cw be the complex X-plane minus these w points. Now by making ana-

lytic continuations along any closed path Γ in Cw starting and ending at

µ so that ηi continues into η j with Γ1piq “ j for 1 ď i ď n. As Γ varies

over all closed paths in Cw starting and ending at µ, the permutations

Γ1 span a subgroup of S n called the monodromy group of f which we

denote bye Mp f q.

7



8 Shreeram S. Abhyankar

By identifying the analytic solutions η1, . . . , ηn with the algebraic

roots y1, . . . , yn, the monodromy group Mp f q gets identified with the

Galois group Galp f ,CpXqq, and so these two groups are certainly iso-7

morphic as permutation groups.

To get generators for Mp f q, given any α P Cw, let Γα be the path in

Cw consisting of a line segment from µ to a point very near α followed

by a small circle around α and then back to µ along the said line segment.

Let us write the corresponding permutation Γ1
α as a product of disjoint

cycles, and let e1, . . . , eh be the lengths of these cycles. To get a tie-up

between these Riemannian considerations and the thought of Dedekind

[28], let v be the valuation of CpXq corresponding to α, i.e., vpgq is the

order of zero at alpha for every g P CrXs. Then, as remarked in my

1957 paper [3], the cycle lengths e1, . . . , en coincide with the ramifica-

tion exponents of the various extensions of v to the root field CpXqpy1q,

and their LCM equals the ramification exponent of any extension of v to

the splitting field CpXqpy1, . . . , ynq. In particular, Γ1
α is the identity per-

mutation iff α is not a branch point, i.e., if and only if the ramification

exponents of the various extensions of v to the root field CpXqpy1q (or

equivalently to the splitting field CpXqpy1, . . . , ynq) are all 1. At any rate,

a branch point is always a dicriminant point but not conversely. Indeed,

the difference between the two is succinctly expressed by Dedekind’s

Theorem according to which the ideal generated by the Y-derivative of

f equals the products of the different and the conductor. In this connec-

tion you may refer to pages 423 and 438 of any my Monthly Article[5]

which costitutes some of my Ramblings in the woods of algebraic ge-

ometry. You may also refer to pages 65 and 169 of my recent book [6]

for Scientists and Engineers inti which these Ramblings have now been

expanded.

Having given a tie-up between the ideas of Riemanna and Dedekind

(both of whom wre pupils of Gauss) concerning branch points, ramifi-

cation exponents, and so on, it is time to say that these things actually

go back to Newton [47]. For an excellent discussion of the seventeenth

century work of Newton on this matter, see pages 373-397 of Part II of

the 1886 Textbook of Algebra by Chrystal [27]. For years having rec-

ommended Chrystal as the best book to learn algebra from, from time to

8



Fundamental Group of the Affine Line in Positive Characteristic 9

time I decide to take my own advice a wealth of information it contains!

At any rate, àm la Newton, we can use fractional power series in X to

factor f into linear factors in Y , and then combine conjugacy classes to

get a factorization f “
śh

i“1 φi where φi is an irreducible ploynomail of

degree ei in Y whose coefficients are power series in X ´α. If the field C

were not algebraically closed then the degree of φi would be ei fi with fi
being certain “residuce degrees” and we would get the famous formula

σh
i“1

ei fi “ n of Dedekind- Domain Theory. See Lectures 12 and 21 of

Scientists [6].

Geometrically speaking, i.e., following the ideas of Max Noether

[48], if we consider the curve f “ 0 in the discriminant points cor- 8

respond to vertical lines which meet the curve in less than n point,

the branch points correspond to vertical tangents, and the “ conductor

points” are the singularities. See figure 9 on page 429 of Ramblings [5].

Getting back to finding generators for Mp f q, with the refinement of

discriminant points into branch points and conductor points in hand, it

suffices to stipulate that α1, . . . , αw inculdue all the branch points rathaer

than all the discrimant points. Now bye choosing the base point µ suit-

ably, we may asume that the line from mu to α1, . . . , αw do not meet each

other except at µ. Now it will turn out that the permutations Γ1
α1
, . . . ,Γ1

αw

generate Mp f q. This follows from the Monodromy Theorem together

with the fact that the (topological) fundamental group π1pCwq of Cw

(also called the Poincarè group of Cw) is the free group Fw on w gener-

ators. Briefly speaking, the monodromy Theorem says that two paths,

which can be continuously deformed into each other, give rise to the

same analytic continuations. The fundamental group itself may heuris-

tically be described as that incarnation of the monodromy group which

works for all functions whose branch points are amongest α1, . . . , αw.

More precisely, π1qpCwq consists of the equivalent means they can be

continuously deformed inti each other. Now the (equivalence classes

of the) paths Γα1
, . . . ,Γαw

are free generators of π1pCwq, and we have

an obvious epimorphism of π1pCwq “ Fw onto Mp f q and hence the

permutations Γα1
, . . . ,Γαw

generate Mp f q; for relevant picture etc., you

may see pages 442-443 of Ramblings [5] or pages 171-172 of Scien-

tists [6]. So the curve f “ 0, or equivalently the Galois extension

9



10 Shreeram S. Abhyankar

L “ CpXqpy1, . . . , ynq, is an ramified covering of Cw, and tha Galois

Group GalpL,CpXqq “ Gap f ,CpXqq is generated by w generators. Sur-

prisingly, to this day there is no algebraic proof of this algebraic fact.

The Riemann Existence Theorem says that conversely, every finite

homomorphic image of π1pCwq can be realized as Mp f q for some f .

Thus be defining the algebraic fundamental growp πApCwq as the set of

all finite groups which are the Galois groups of finite unramified cover-

ings of Cw, we can say that πApCwq coincides with the set of all finite

groups generated by w generators. Needless to say that, a fortiori, there

is no algebraic proof of the converse part of this algebraic fact either.

Now, in the complex pX,Yq-plane, f “ 0 is a curve Cg of some

genus g, i.e., if from Cg we delete a finite number of points including

all its singularities, then what we get is homeomorphic to a sphere with

g handles minus a finite number of points. For any nonnegative inte-

ger w, let Cg,w be obtained by adding to Cg its points at infinity, then

desingularizing it, and finally removing w ` 1 points from the desingu-

larized verison. Then Cg,w is homomorphic to a sphere with g handles9

minus w ` 1 points, and hence it can be seen that π1pCg,wq “ F2g`w; for

instance see the excellent topology book of Seifert and Threlfall [54].

The above monodromy and existence considerations generalize fromn

the genus zero case to the case of general g, and we get the result that

the algebraic fundamental group πApCg,wq coincides with the set of all

finite groups generated be 2g ` w generators, where πApCg,wq is defined

to be the set of all finite groups which are the Galois groups of finite

unramified coverings of Cg,w.

5 Chrystal and Forsyth

Just as Chrystal excels in explaining Newtonian (and Eulerian) ideas,

Forsyth’s 1918 book on Function Theory [31] is highly recommended

for getting a good insight into Riemannian ideas. Thus it was by ab-

sorvbing parts of Forsyth that, in my recent papers [8] and [10], I could

algebracize some of the monodromy considerations to formulate certain

“Cycle Lemmas” which say that under such and sucn conditions the Ga-

lois group contains permutations having such and such cycle structure.

10



Fundamental Group of the Affine Line in Positive Characteristic 11

Now the Rirmann Existence Theorem was only surmised be Rie-

mann [52] by appealing to the Principle of his teacher Dirichlet which,

after Weierstrass Criticism was put on firmee ground by Hilbert in 1904

[35]. In the meantime another classical treatment of the Riemann Exis-

tence Theorem was carried out culminating in the Klein-Poincaré-Koebe

theory of automorphic functions, for which again Forsyth’s book is a

good source. A modern treatment of the Riemann Existence Theorem

using coherent analytic sheaves was finally given by Serre in his famous

GAGA paper [55] of 1956.

6 Serre

Given any algebraically closed ground field k of any nonzero charac-

teristic p, in my 1957 paper [3], all this led me to define and algebraic

fundamental group πApCg,wq of Cg,w “ Cg minus w ` 1 points, where w

is a nonnegative integer and Cg is a nonsigular projetive curve of genus

g over k, to be the set of all finite groups which can be realized as Galois

groups of finite unramified coverings of Cg,w. In tha paper, I went on to

conjecture that πApCg,wq coincides with the set of all finite groups G for

which G{ppGq is generated by 2g`w generators, where ppGq is the sub-

group of G generated by all its p-Sylow subgroups. The g “ w “ 0 case

of this conjecture, which may be called the quasi p-group conjecuture,

says that for the affine line Lk over k we have πApLkq “ Qppq where

Qppq denotes the set of all quasi p-groups, i.e., finite groups which are 10

generated by their p-Sylow subgroups. It may be noted every finite sim-

ple group whose order is divisible bey p is obviously a quasi p-group.

Hence in particular the alternating group An is a quasi p-group when-

ever either n ě p ą 2 or n ´ 3 ě p “ 2. Likewise the symmetric group

S n is a quasi p-group provided n ě p “ 2.

In support of the quasi p-group conjecture,in the 1957 paper. I wrote

down several equations giving unramified coveing of the affine line Lk

and suggested that their Galois groups be computed. This included the

equation Fn,q,s,a “ 0 with

Fn,q,s,a “ Yn ´ aXsY t ` 1 and n “ q ` t

11



12 Shreeram S. Abhyankar

where 0 ‰ a P k and q is a positive power of p and s and t are posi-

tive integers with t ı 0ppq, and we want to compute its Galois group

Gn,q,s,q “ GalpFn,q,s,q, kpXqq.

By using a tiny amount of the information contained in the above

equation, I showed that πApLkq contains many unasolvable groups, and

indeed by taking homomorphic imagtes of subgroups of members of

πApLkq we get all finite groups; see Result 4 and Remark 6 on pages

841-842 of [3]. This was somewhat of a surpise because the comples

affine line is simply connected, and although πApLkq was known to con-

tain p-cyclic groups (so called Artin-Schreier equations), it was felt that

perhaps it does not contain much more. This feeling, which turned out

to be wrong, might have been based on the facts that Lk is a “commuta-

tive group variety” and the fundamental group of a topological group is

always abelian; see Proposition 7 on page 54 of Chevalley [26].

To algebracize the fact that the comples affine line is simply con-

nected, be the genus formula we deduce that the affine line over an al-

gebraically closed ground field of characteristic zero has no nontrivial

unramified coverings. In our case of characteristic p, the same formula

shows that every membed of πApLkq is a squasi p-group; see Result 4

on page 841 of [3].

Originally I found the above equation Fn,q,s,a “ 0 by taking a sec-

tion of a surface which I had constructed in my 1955 Ph.D. Thesis [1]

to show that jung’s classical method [40] of surface desigularization

doed not work for nonzero charactheristic because the local fundamental

group above a normal crossing of the branch locus need not be solvable,

while in the comples case it is always abelian. This failure of Jung’s

method led me ti devise more algoprithmic techniques fr desingulariz-

ing surfaces in nonzero characteristic, and this formed the positive part

of my Ph.D. Thesis [2].

Soon after the 1957 paper, I wrote a series of articles [4] on “tame

coverings” of higher dimensional algebraic varieties, and took note of

Grothendieck [33] proving the “tame part” of the above conjecture which

says that the members of πApCg,wq whose order is prime to p are exavtly11

all the finite gropus of order prime to p generated by 2g ` w generators.

12



Fundamental Group of the Affine Line in Positive Characteristic 13

But after these two things,for a long time I forgot all about covering

and fundamental groups.

Then suddenly, after a lapse of nearly thirty years, Serre pulled me

back into the game in October 1988 by writing to me a series of letters

in which be briefly said: “I can now show that if t “ 1 then Gn,q,s,a “
PS Lp2, qq. Can you compute Gn,q,s,a for f ě 2? Also, can you find

unramified An coverings of Lk?”

Strangely, the answers to both these questions turned out to be al-

most the same. Namely, with much prodding and prompting by Serre

(hundred e-mails and a dozen s-mails=snail-mails) augmented by groups

theory lessons first from Kantor and Feit and then Cameron and O’Nan,

and by using the method of throwing away roots, CT in the guise of

CDT, the Cycle Lemmas, the Jordan-Marggraff Theorems on limits of

transitivity (see Jordan [39] and Marggraff [45] or Wielandt [60]), and

finally some High-School type factorizations, in the papers [8] to [10] I

proved that:

t “ 1 ñ Gn,q,s,a “ PS Lp2, qq. (6.1)

q “ p ą 2 ď t and pp, tq ‰ p7, 2q ñ Gn,q,s,a “ An. (6.2)

q “ p ą 2 ď t and pp, tq “ p7, 2q ñ Gn,q,s,a “ PS Lp2, 8q. (6.3)

q “ p “ 2 ñ Gn,q,s,a “ S n. (6.4)

q “ p ą 2 ą and pp, tq ‰ p7, 2q ñ Gn,q,s,a “ An. (6.5)

p “ 2 ă q ă t ñ Gn,q,s,a “ An. (6.6)

p “ 2 ă q “ 4and t “ 3pandn “ 7q ñ Gn,q,s,a “ PS Lp3, 2q. (6.7)

p “ 3 ă q “ 9and t “ 2pandn “ 11q ñ Gn,q,s,a “ M11. (6.8)

Note that PS Lpm.qq “ S Lpm, qq{pscalarmatricesq where S Lpm, qq “
The group of all m by m matrices whose determinant is 1 and whose

entries are in the field GFpqq of q elements. Now my proof of (6.1)

uses the Zassenhaus-Feit-Suzuki Theorem which characterizes doubly

transitive permutation groups for which no 3 points are fixed by a non-

identity permutation; see Zassenhaus [62], Feit [30] and Suzuki [59].

As Serre has remarked, his proof of (6.1) may be called a “descending”

13



14 Shreeram S. Abhyankar

proof as opposed to my “ascending” proof. Serre’s proof may be found

in his November 1990 letter to me which appears as an Appendix to my

paper [8]. Actually, when [8] was already in press, Serre found that a

proof somewhat similar to his was already given by Carlitz [25] in 1956.

Throwing away one root of Fn,q,s,a and then applying Abhyankar’s

Lemma (see pages 181-186) of Part III of [4]) and deforming things

conveniently, we get the monic polynomial Fn,q,s,a,b,u of degree n ´ 1 in

Y with coefficient in kpxq given by12

F
1
n,q,s,a,b,u “ t´2

“
pY ` tqt ´ Y t

‰
pY ` bqq ´ aX´sYu

with 0 ‰ b P k and positive integer u, n ´ 1. Now upon letting

r “ pq ` tqLCM

ˆ
t,

q ´ 1

GCDpq ´ 1, q ` tq

˙

and G
1
n,q,s,a,b,u “ GalpF

1
n,q,s,a,b,u, kpXqq, in the papers [8] and [10] I also

proved that, in the following cases, F
1
n,q,s,a,b,u “ 0 gives an unramified

covering of Lk with the indicated Galois group:

(6.11) b “ u “ t ą 2 ‰ q “ p and s ” 0pp ´ 1q and s ” 0ptq ñ
Gn,q,s,a,b,u “ An´1.

(6.21) b “ u “ t “ 2 and q “ p ‰ 7 and s ” 0pp ´ 1q ñ G
1
n,q,s,a,b,u “

An´1.

(6.31) If t “ 2 and q “ p ą 5 then u can be chosen so that 1 ă u ă
pp ` 1q{2 and GCDpp ` 1, uq “ 1, and for any such u upon

assuming b “ u{pu ´ 1q and s ” 0pupp ` 1 ´ uqq, we have

G
1
n,q,s,a,b,u “ An´1.

(6.41) b “ u “ t and q “ p “ 2 and s ” 0ptq ñ G
1
n,q,s,a,b,u “ S n´1.

(6.51) b “ u “ t ą q and p ą 2 and s ” 0prq ñ G
1
n,q,s,a,b,u “ An´1.

(6.61) b “ u “ t ą q “ p “ 2 and s ” 0prq ñ G
1
n,q,s,a,b,u “ S n´1.

14



Fundamental Group of the Affine Line in Positive Characteristic 15

(6.71) b “ u “ t ą q ą p “ 2 and s ” 0prq ñ G
1
n,q,s,a,b,u “ An´1.

Another equation written down in the 1957 paper giving an unrami-

fied covering of Lk is rFn,t,s,a “ 0 where n, t, s are positive integers with

t ă n ” 0ppq and GCDpn, tq “ 1 and s ” 0ptq

and rFn,t,s,a in the polynomial given by

rFn,t,s,a “ Yn ´ aY t ` Xs with 0 ‰ a P k.

Again upon letting rFn,t,s,a “ GalprFn,t,s,a, kpXqq, in the papers [8] and

[10] I proved that:

(6.1*) 1 ă t ă 4 and p ‰ 2 ñ rGn,t,s,a “ An.

(6.2*) 1 ă t ă n ´ 3 and p ‰ 2 ñ rGn,t,s,a “ An.

(6.3*) 1 ă t “ n ´ 3 and p ‰ 2 and 11 ‰ p ‰ 23 ñ rGn,t,s,a “ An.

(6.4*) 1 ă t ă 4 ă n and p “ 2 ñ rGn,t,s,a “ An.

(6.5*) 1 ă t ă n ´ 3 and p “ 2 ñ rGn,t,s,a “ An.

In Proposition 1 of the 1957 paper I discussed the polynomial

Yhp`t ` aXYhp ` 1 `
h´1ř
i“1

aiY
ph´iqp with t ” 0ppq and 0 ‰ a P k and

ai P k giving an unramified covering of Lk. The polynomial F studied 13

in (6.1) to (6.6) is the hp “ q and a1 “ . . . “ ah´1 “ 0 ace of this

after “reciprocating” the roots and changing X to Xs. Considering the

p “ 2 “ h “ t ´ 1 and a “ a1 “ 1 case this we get the polynomial.

F˝ “ Y7 ` xY4 ` Y2 ` 1

and it can be shown that:

p6.1˝q For p “ 2 the equation F˝ “ 0 gives an unramified coveing

of Lk with GalpF˝, kpXqq “ A7.

15



16 Shreeram S. Abhyankar

By throwing away a root of f ˝ and then invoking Abhyankar’s Lemma

we obtain the polynomial

F1˝ “ Y6`X27Y5`x54Y4`pX18`X36qY3`X108Y2`pX90`X135qY`X162

and therefore by p6.1˝q we see that:

p6.2˝q for p “ 2 the equation F1˝ “ 0 gives an unramified covering

of Lk with GalpF1˝, kpXqq “ A6.

Now it was Serre who first propted me to use CT in calculating the

various Galois groups discsussed above. But after I had done this, agin

it was Serre who groups discussed above. Bit after I had done this, agin

it was Serre who prodded me to try to get around CT. So, as described

in the papers [8] and [10], by traversing as suitable path in items (6.1) to

(6.2˝) we get a complete equational proof of the following Facts without

CT:

Facts. (6.i) For all n ě p ą 2 we have An P πApLkq . (6.ii) For all

n ě p “ 2 we have S n P πApLkq. (6.iii) For n ě p “ 2 a with

3 ‰ n ‰ 4 we have An P πApLkq: (note that A3 and A4 are not quasi

2-groups).

While attempting to circumvent CT, once I got a very amusing e-

mail from Serre saying ‘About the essential removal of CT from your

An-determinations: what does essential mean? (Old story: a noble man

had a statue of himself made be a well-known sculptor. The sculptor

asked: do you want an equestrian statue or not? The noble man did not

understand the word. He said: oh, yes, equestrian if you want, but not

too much. . .). This is what I feel about non essential use of CT.”

In any case, learnings and adopting (or adapting) all this group the-

ory has certainly been very rejuvenating to me. To state CT very briefly:

Zp (= the cyclic group of prime order p), An (excluding n ď 4), PSLpn`
1, qq (excluding n “ 1 and q ď 3) together with 15 other related

and reincarnated infinite families, and the 26 sporadics including the

5 Mathieus is a complete list of finite simple groups; for details see Ab-

hyankar [8] and Gorenstein [32].

16



Fundamental Group of the Affine Line in Positive Characteristic 17

7 Jacobson and Berlekamp
14

Concerning items (6.6), (6.71), (6.4*) and (6.5*), when I said that I

proved them in [8] and [10], what I actually meant was that I proved

their weaker version asserting that the Galois group is the alternating

group of the symmetric group, and then thanks to Jacobson’s Crite-

rion,the symmetric group possibility was eliminated in my joint paper

Ou and Sathaye [14]. What I am saying is that the classical criterion,

according to which the Galois group of an equation is contained in the

alternating two. A version of such a criterion which is valid for all char-

acteristics including two was given by Jacobason in this Algebra books

published in 1964 [37] and 1974 [38]; an essentially equivalent version

may also be found in the 1976 paper [20] if Berlekamp with some pre-

liminary work in his 1968 book [19]; both these criteria have a bearing

on the Arf invariant of a quadratic form [18] which itself was inspired

by some work of Witt [61]. This takes care of An coverings for charac-

teristic two provided 6 ‰ n ‰ 7.

This leaves us with the A6 and A7 coverings for characteristic two

described in items (6.2˝) and (6.1˝). Again using the Jacobson’s Crite-

rion, these are dealt with in my joint paper with Yie [17].

Thus, although Facts (6.i) and (6.ii) are indeed completely proved

in my papers [8] and [10], but for Fact (6.iii) I was lucky to enjoy the

active collaboration of my former (Sathaye) and present (Ou and Yie)

students.

Likewise, item (6.7) is not proved in my papers [8] to [10], but was

communicated to me by Serre (e-mail of October 1991) and is included

in my joint paper [17] with Yie. Similarly, item (6.8) is not in my papers

[8] to [10], but is proved in my joint paper [15] with Popp and Seiler.

In [8] I used polynomial rF into the polynomial F and thereby get a

proof of a stronger version of (6.1*) to (6.5*) without CT. Let us start

by modifying the Third Irreducibility Lemma i Section 19 of [8] thus

[in the proof of that lemma,once ξλp1,Zq has been mistakenly printed as

ξλp1,Zq ]:

17



18 Shreeram S. Abhyankar

7.1 Let k be any field which need not be algebraically closed and

whose characteristic chc k need not be positive. Let n ą t ą 1 be

integers such that GCDpn, tq “ 1 and t ” 0pchc kq, and let ΩpZq be the

monic polynomial of degree n´1 in Z with coefficients in kpYq obtained

by putting

ΩpZq “ rz ` Yqn ´ Yns ´ rYn´t ` Y´ts rpZ ` Yqt ´ Y ts
Z

.

Then ΩpZq is irreducible in kpYqrZs.

Proof. Since ı 0pchc, kq, upon letting15

ξ1
λ1pY,Zq “ rpZ ` Yqn ´ Yns

Z
and ηµpY,Zq “ ´ rpZ ` Yqt ´ Y ts

Z

by the proof of the above cited lemma we see that: ξ1
λ1pY,Zq and ηµpY,Zq

are homogeneous polynomials of degree λ1 “ n ´ 1 and µ “ t ´ 1 re-

spectively, the polynomials ξ1
λ1p1,Zq and ηµpY,Zq have no nonconstant

common factor in krZs, and the polynomial ηµpY,Zq has a has a non-

constant irreducible factor in krZs which does not divide ξ1
λ1p1,Zq and

whose square does not divide ηµpY,Zq. Upon letting

ξλpY,Zq “ Y t rpZ ` Yqn ´ Yns ´ Yn rpZ ` Yqt ´ Y ts
Z

we see that ξλpY,Zq is a homogeneous polynomail of degree λ “ n `
t ´ 1 and λp1,Zq “ ξ1

λ1pY,Zq ` ηµp1,Zq and therefore: the polynomi-

als ξλpY,Zq and ηµp1,Zq have no nonconstant commot fator in KrZs,
and the polynomial ηµp1,Zq has na nonconstant irreducible factor in

krZs which does not divide ξλp1,Zq and whose square does not divide

ηµp1,Zq. The proof of the Second Irreducibilitiy Lemma, of Section

19 of [8] clearly remains valid if only one of the polynomials ξλpY,Zq
and ηµpY,Zq is assumed to be regular in Z, and in the present situa-

tion ηµpY,Zq is obviously regular in A. Therefore by the said lemma,

the polynomial ξλpY,Zq ` ηµpY,Zq is irreducible kpYqrZs. Obviously

ΩpZq “ Y´t
“
ξλpY,Zq ` ηµpY,Zq

‰
and hence ΩpZq is irreducible

in kpYqrZs. �

By using (7.1) we shall now prove:

18
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7.2 Let k be any field which need not be algebraically closed and

whose characteristifc chc k need not be positive. Let 0 ‰ a P k and

let n, t, s be positive integers such that 1 ă t ı 0pchc kq and 1 ă n ´ t ı
0pchc kq and GCDpn, tq “ 1. Then the polynomialΦpYq “ Yn´aXsY t`
1 is irreducible in kpXqrYs, its y-discriminant is nonzero, and for its Ga-

lois group we have: GalpΦpYq, kpXqq “ An or S n. Similarly, the polyno-

mial ΨpYq “ Yn ´aY t ` Xx is irreducible in kpXqrYs, its Y-discriminant

is nonzero, and for its Galois group we have: GalpΨpYq, kpXqq “ An or

S n.

Proof. In view of the Basic Extension Principle and Corollaries (3.2)

and (3.5) of the Substitutional Principle of Sections 19 of [8], with-

out loss of generality we may assume that k is algebraically closed and

a “ 1 “ s. Since Φ and Ψ are linear in X, they are irreducible. By

the discriminant calculation in Section 20 of [8] we see that their Y-

discriminants are nonzero. As in the beginning of section 21 of [8] we 16

see that the valuation X “ 8 of kpXq{k splits into two valuations in the

rood field of ΨpYq and their reduced ramification exponents are t and

n´t. Now t and n´t are both nondivisible by chc k and GCDpt, n´tq “
1, and hence by the Cycle Lemma of Section 19 of [8] we conclude that

GalpΦpYq, kpXqq contains a t-cycle and an pn ´ tq-cycle. By throw-

ing away a root of ΦpYq we get rΦpZ ` Yq ´ ΦpYqs {Z which equals

ΩpZq because by solving ΦpYq “ 0 we get X “ Yn´t ` Y´t. Conse-

quently by (7.1) we Conclude that GalpΦpYqmnkpXqq is double tran-

sitive. Clearly either 1 ă t ă pn{2q or 1 ă n ´ t ă pn{2q, and

hence by Marggraff’s Second Theorem as stated in Section 20 of [8]

we get GalpΦpYq, kpXqq “ An or S n. By Corollaries (3.2) and (3.5)

of the Substitutional Principle of section 19 of [8] it now follows that

GalpYn ´ Xt´nY t ` 1, kpXqq “ An or S n. By multiplying throughout

by xn, we obtain the polynomial Yn ´ Y t ` Xn whose Galois group

must be the same as the Galois group of Yn ´ Xt´nY t ` 1. Therefore

GalpYn ´ Y t ` Xn, kpXqq “ An or S n, and hence again by Corollaries

(3.2) and (3.5) of the Substitutional Principle of Section 19 of [8] we

conclude that GalpΨpYq, kpXqq “ An or S n. �
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20 Shreeram S. Abhyankar

To get back to the polynomial rFn,t,s,a, let us return to the assumption

of k being an algebraically closed field of nonzero characteristic p. Let

0 ‰ a P k and let n, t, s be positive integers with

t ă n ” 0ppq and GCDpn, tq “ 1 and s ” 0ptq

and recall that rFn,t,s,a “ 0 gives an unramified covering of Lk where

rFn,t,s,a “ Yn ´ aY t ` Xs

and we want to consider the Galois group rGn,t,s,a “ GalpwidetildeFn,t,s,a,

kpXqq. Since every member of π4pLkq is a quasi p-group and since S n in

not a quasi p-group for pgeq3, in view of (2.28) of [14], by the Ψ case

of (7.2) we get the following sharper version of (6.1*) to (6.5*):

(7.1*) l ă t ă n ´ 1 ñ rGn,t,s,a “ An.

Just as the samall border values of t play a special role for the bar

polynomial in (6.1) to (6.8), likewise the condition 1 ‰ t ‰ n ´ 1 in

(7.1*) in not accidental as shown by the following four assertions:

(7.2*) 1 “ t “ n ´ 5 and p “ 2 ñ rGn,t,s,a “ PS Lp2, 5q « A5.

(7.3*) 5 “ t “ n ´ 1 and p “ 2 ñ rGn,t,s,a “ PS Lp2, 5q « A5.

(7.4*) 1 “ t “ n ´ 11 and p “ 3 ñ rGn,t,s,a “ pM11 « M11.

(7.5*) 1 “ t and n “ pm ñ rGn,t,s,a “ pZpqm.

Out of these four assertions, (7.2*) and (7.3*) may be found in my17

joint paper [17] with Yie, and (7.4*) may be found in my joint paper

[15] with Popp and Seiler. If may be noted that PS Lp2, 5q and A5 are

isomorphic as abstract groups but not as permutation groups. Likewise
pM11 found by taking the image of the M11 found by taking the images

of the M11 under a noninner automorphism of M11 found by taking the

image of the M11 found by taking the image of the M11 under a noninner

automorphism of M12; see my paper [8] or volume III of the encyclope-

dic groups theory book [36] of Huppert and Blackburn.
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Concering assertion (7.5*), multiplying the roots by a suitable nonzero

element of k we can reduce to the case of t “ 1 “ a and n “ pm and

then, remembering that pZpqm “ the m-fold direct product of the cyclic

group Zp of order p “ the underlying additive group of GFppmq, our

claim follows from the following remark:

(7.1**) If Y pm ´ Y ` x is irreducible over a field k of characteristic

p, with x P K and GFppmq Ă K, then by taking a root y of Y pm ´ Y ` x

we have Y pm ´ Y ` x “
ś

iPGFppmqrY ´ py ` iqs and hence exactly as in

the p-cyclic case we get Gal
`
Y pm ´ Y ` x,K

˘
“ pzpqm.

By throwing away a root of rF1
n,t,s,a of degree n ´ 1 in Y with coeffi-

cients in kpXq given by

rF1
n,t,s,a “ Y´1 rpY ` 1qn ´ 1s ´ aX´sY´1

“
pY ` 1qt ´ 1

‰

and for its Galois group rG1
n,t,s,a “ Gal

´
rF1

n,t,s,a, kpXq
¯

, in my joint pa-

per [15] with Popp and Seiler it is shown that:

(7.11) 1 “ t “ n ´ 11 and p “ 3 and S ” 0pn ´ 1q ñ rG1
n,t,s,a “

PS Lp2, 11q, where, for the said values of the parameters, the equation
rG1

n,t,s,a “ 0 gives an unramified covering of Lk.

Finally let

F
pdq
n,q,s,a,b “ Ydn ´ aXxYdt ` b with positive integer d ı 0ppq

where once again a, b are nonzero elements of k and n, t, s are positive

integers with t ă n and GCDpn, tq “ 1 and n ´ t “ q “ a positive

power of p. For the Galois group G
pdq
n,q,s,a,b “ GalpF

pdq
n,q,s,a,b, kpXqq, in my

joint paper [15] with Popp and Seiler it is shown that:

(7.21) d “ t “ 2 “ n ´ 9 and q “ 9 and p “ 3 ñ G
pdq
n,q,s,a,b “

M˚
11

« M11, where, for the said values of the parameters, the equation

G
pdq
n,q,s,a,b “ 0 gives an unramified covering of Lk.

Again note that M˚
11

and M11 are isomorphic as abstract groups but 18

not asa permutations groups; here M˚
11

is the transitive but not 2-transi-

tive incarnation of M11 obtained by considering its cosets according to

the index 22 subgroup PS Lp2, 9q.
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8 Grothendieck

Having dropped my prejudice against Statistics, it is high time to show

my appreciation of Grothendieck.

For example by using the (very existential and highly nonequational)

work of Grothendieck [33] on tame coverings of curves, in [7] and [11]

I have shown that for any pairswise nonisomorphic nonabelian finite

simple groups D1, . . . ,Du with | Aut Du| ı 0ppq the wreath product

pD1 ˆ ¨ ¨ ¨ ˆ Duq Wr Zp belongs to πApLkq. For instance we may take

D1 “ Am1
, . . .Du “ Amu

with 4 ă M1 ă M2 ă . . . ă Mu ă p.

Actually, using Grothendieck [33] I first prove an Enlargement The-

orem and then from i deduce the above result about wreath products as

a group theoretic consequence. The Enlargements Theorem asserts that

if Θ is any πApLkq, then some enlargement of Θ by J belongs to πApLkq.

Now enlargement is a generalization of group extensions. Namely,

an enlargement of an group Θ by a group J is group G together with an

exact sequence 1 Ñ H Ñ J Ñ 1 and a normal subgroup ∆ of λpHq,

where λ is the given map of H into G, such that λpHq{∆ is isomorphic

to Θ and no nonidentity normal subgroup of G is contained in ∆. Note

that here G is an extension of H by J. The motivation behind enlarge-

ments is the fact that a Galois extensions of A Galois extension need not

be Galois and if we pass to the relevant least Galois extension then its

Galois group is an enlargement of the second Galois group by the first.

Talking of group extensions, as a striking consequence of CT it can

be seen that the direct product of two finite nonabelian simple groups is

the only extensions of one by the other. Here the relevant direct conse-

quence of CT is the Schreier Conjecture which which says that the outer

automorphism group of any finite nonabelian simple group is solvable;

see Abhyankar [11] and Gorenstein [32].

As another interesting result, in [12] I proved that πApLkq is closed

with respect to direct products. it should also be noted that Nori [49] has

shown that πApLkq contains SLpn, pmq and some other Lie type simple

groups of characteristic p.

Returning to Grotherndieckian techniques, Serre [56] proved that if

πApLkq contains a group H then it contains every quasi p-group which
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is an extension of H by a solvable group J. 19

Indeed it appears that the ongoing work of Harbarter and Raynaud

using Grothendieckian techniques is likely to produce existential proofs

of the quasi p-group conjecture.

But it seems worthwhile to march on with the equational concrete

approach at least because it gives results over the prime field GFppq and

also because we still have no idea what tha complete algebraic funda-

mental group πC
A

pLkq looks like where πC
A

pLkq is the Galois group over

kpXq of the compositum of all finite Galois extensions of kpXq which

are ramified only at infinity and which are contained in a fixed algebraic

closure of kpXq.

9 Ramanujan

In the equational approach . “modula” things seem destined to plays a

significant role. For instance the Carlitz-Serre construction PSLp2, qq
coverings and Serre’s alternative proof [57] that Gn,q,s,q “ PSLp2, 8q
for q “ p “ 7 and n “ 9, are both modular. Similarly my joint paper

[16] with Popp and Seiler which uses the Klein and Macbeath curves for

writing down PSLp2, 7q and PSLp2, 8q coverings for small characteristic

is also modular in nature.

Inspired by all this, I am undertaking the project of browsing in the

2 volume treatise of Klein and Fricke [43] on Elliptic Modular Func-

tions to prepare mysely for understanding Ramanujan himself who may

be called the king of Things Modular, where Things = Funcitons, equa-

tions, Mode of Thought or what have you; see Ramanujan’s Collected

Papers [50] and Ramanujan Revisited [15].

To explain what are moduli varieties and modular funtions in a very

naive but friendly manner: The discriminant b2 ´ 4ac of a quadratic

aY2 `bY `c is the oldest known invariant. Coming to cubics or quartics

aYa `bY3 `cY2 `e we can, as in books on theory of equations, consider

algebraic invariants, i.e., polynomial functional of a, b, c, d, e which do

not change (much) when we change Y by a fractional linear transforma-

tion (see my Invariant Theory Paper [13]), or we may consider transcen-
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denatal invariants and then essentially we ge ellipatic modular func-

tions. More generally we may consider several (homogeneous) polyno-

mials in several (set-of) variables; when thought of as funcitions of the

variables they give us algebraic varieties or multi-periodic functions or

abelian varieties and so on; but as functions of the coeficients we get

algebraic invariants or moduli varieties or modular functions. Modular

functions and their transforms are related by modular equations; thinks

of the expansion of sin nθ in terms in sin θ!

But postponing this to another lecture on another day, let me end

with a few equational questions suggested by the experimental data pre-

sented in this lecture.20

Question 9.1. Which quasi p-groups can be obtained by coverings of

a line by a line? In other words, which quasi p-groups are the Ga-

lois groups of f over kpXq for some monic polynomial f in Y with

coefficients in krXs such that f is linear in X, no valuation of kpXq{k

is ramified in the splitting field of f other than the valuations X “ 0

and X “ 8, and the may even allow the given quasi p-group to equal

ppGalpF, kpXqqq ; note that Galp f , kpXqq{ppGalp f , kpXqqq is necessarily

a cyclic group of order prime to p. In any case this prime to p cyclic

quotient as well as the tame branch point at X ´ 0 can be removed be

Abhyankar’s Lemma. [Hoped for Answer: many quasi p-groups if not

all].

Question 9.2. Do fewnomilas suffice for all simple quasi p-groups? Et-

ymology: binomial, trinomial, . . . , fewnomial. In other words,is there a

positive integer d (hopefully small) such that every simple quasi p-group

can be realized as the Galois group of a polynomial f containing at most

d terms in Y (more precisely, at most d monomials i Y) with coefficients

in krXs which gives an unramified covering of the X-axis Lk? Indeed,do

fewnomias suffice for most (if not all) quasi p-groups (without requiring

them to be simpel)? If not, then do sparanomials suffice for most (if not

all) quasi p-groups? Etymology: sparnomial = spare polynomial in Y

plus a polynomial in Y p.
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Question 9.3. Which quasi p-groups can be realized as Galois groups of

polynomials in Y whose coeffcients are polynomials in X over the prime

field GFppq such that no valuation of GFppqrXs is ramified in the rele-

vant splitting field and such tha GFppq is relatively algebraically closed

in the splitting field and such that GFppq is relatively. algebraiclally

closed in that splitting field? Same question where we drop the condi-

tion of GFppq begin relatively algebraically closed but where we repalce

quasi p-groups by finite groups G for which G{ppGq is cyclic. For in-

stance, given any positive power q1 of any prime p1 such that the order of

PSLp2, q1q is divisible by p, we may ask whether there exists an unram-

ified covering of the affine line over GFppq whose Galois group is the

semidirect product of PS Lp2, q1q with AutpGFpq1qq, i.e., equivalently,

whether there exists a polynomial in Y over GFppqrXs, with Galois

group the said semidirect product, such that no valuation of GFppqrXs
is ramified in the relevant splitting field (without requiring GFppq to be

relatively algebraically closed in that splitting field). Note that, in [9],

this last question has been answered affirmatively for p “ 7 and q1 “ 8.

Also note that for even q1 the said semidirect product is the projective 21

semilinear group PΓLp2, q1q, whereas for odd q1 it is an index 2 sub-

group of PΓLp2, q1q; for definitions see [8].

Question 9.4. Do we get fewer Galois groups if we replace branch locus

by discriminant locus? For instance, can every quasi p-group be real-

ized as the Galois group of a monic polynomial in Y over krXs whose

Y-discriminant is a nonzero element of k? Likewise which members

of πApLk,wq, where Lk,w “ Lk minus w points, can be realized as Ga-

lois groups of monic polynomials in Y over krXs whose Y-discriminants

have no roots other than the assigned w points. We may ask the same

thing also for ground fields of characteristic zero.

Question 9.5. Concerining the bar and tilde equations discussed in (6.1)

to (6.8) and (7.1*) to (7.5*) respectively, what further interesting groups

do we out of the border values of t?
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Question 9.6. Can we describe the complete algebraic fundamental

group πC
A

pLkq? More generally, for a nonsigular projective curve Cg

of genus g minus w ` 1 points, can we describe the complete algebraic

fundamental πC
A

pCg,wq?

Question 9.7. Descriptively speaking, can the “same” equation give un-

ramified coverings of the affine line for all quasi p-groups in the “same

family” of groups? For instance, Yq`1 ´ XY ` 1 “ 0 gives an un-

ramified covering of the affine line, over a field of characteristic p, with

Galois group PS Lp2, qq for every power q every prime p. Now thinking

of the larger family of groups PS Lpm, qq, can be find a ‘single” equa-

tion with integer coefficients, “depending” on the parameters m and q,

giving an unramified covering of the affine line, over a field of charac-

teristic p, whose Galois group is PS Lpm, qq for every integer m ą 1 and

every power q of every prime p? Can we also arrange that the “same”

equation gives an unramified covering of the affine line, over every field

whose characteristic divides the order of PSLpm, qq, whose Galois group

is PSLpm, qq? Even more, can we arrange that at the same time the Ga-

lois group of that equation over QpXq is PSLpm, qq (but no condition on

ramification) where Q is the algebraic closure of Q?

Note 9.8. Two or more of the above questions can be combined in an

obvious manner to formulate more questions.
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[35] D. Hilbert, Über das Dirichletesche Prinzip, Mathematische An-

nalen 59 (1904) 161–186.

[36] B. Huppert and N. Blackburn, Finite Groups I, II, III, Springer-

Verlag, New York, 1982.

[37] N. Jacobson, Lectures in Abstract Algebra, Vol III, Van Nostrand,

Princeton, 1964.

[38] N. Jacobson, Basic Algebra, Vol I, W. H. Freeman and Co. San

Francisco, 1974.

[39] C. Jordan, Sur la limite de transitivité des groupes non alternés,
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Impact of geometry of the boundary on the positive

solutions of a semilinear Neumann problem with

Critical nonlinearity

Adimurthi

Dedicated to M.S. Narasimhan and C.S. Seshadri on their 60th

Brithdays

Let n ě 3 and Pn be a bounded domain with smooth boundary. We27

are concerned with the problem of existence of a function u satisfying

the nonlinear equation

´∆u “ up ´ λu in Ω

u ą 0

Bu

Bv
“ 0 on BΩ (1)

where p “ n`2
n´2

, λ ą 0. Clearly u “ λ1{pp´1q is a solution (1) and we

call it a trivial solution. The exponent p “ n`2
n´2

is critical from the view

point of Soblev imbedding. Indeed the solution of (1) corresponds to

critical points of the functional

Qλpuq “
ş
Ω

|∇u|2dx ` λ
ş
Ω

u2dx
`ş
Ω

|u|p`1dx
˘2{p`1

(2)

on the manifold

M “
"

u P H1pΩq;

ż

Ω

|u|p`1dx “ 1

*
(3)

In fact, if v ď 0 is a critical point of (2) on M, then u ´ Qpvq1{pp´1qv

satisfies (1). Note that p ` 1 “ 2n
n´2

is the limiting exponent for the

imbedding H1pΩq ÞÑ L2n{pn´2qpΩq. Since this imbedding is not com-

pact, the manifold M is not weakly closed and hence Qλ need not satisfy
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Impact of geometry of the boundary on the positive solutions... 33

the Palais Smale condition at all levels. Therefore there are serious dif-

ficulties when trying to find critical points by the standard variational

methods. In fact there is a sharp contrast between the sub critical case 28

p ă n`2
n´2

and the critical case p “ n`2
n´2

.

Our motivation for investigation comes from a question of Brezis

[11]. If we replace the Neumann condition by Dirichlet condition u “ 0

on BΩ in (1), then the existence and non existence of solutions depends

in topology and geometry of the domain (see Brezis-Nirenbreg [14],

Bhari-Coron [9], Brezis [10]). In view of this, Brezis raised the follow-

ing problem

“Under what conditions on λ andΩ, (1) admits a solution?”

The interest in this problem not only comes from a purely mathemat-

ical question, but it has application in mathematical biology, population

dynamics (see [16]) and geometry.

In order to answer the above question let us first look at the subcrit-

ical case where the compactness in assured.

Subcritical case 1 ă p ă n`2
n´2

.

This had been studied extensively in the recent past by Ni [18], and

Lin-Ni-Takagi [16]. In [16], Lin-Li-Takagi have proved the following

Theorem 1. There exist two positive constants λ˚ and λ˚ such

a) If λ ă λ˚, then (1) admits only trivila solutions.

b) If λ ą λ˚, then (1) admits non constant solutions.

Further Ni [18] and Lin-Ni [15] studied the radial case for all 1 ă
p ă 8 and proved the following

Theorem 2. Let Ω “ x; |x| ă 1 is a ball. Then there exists two positive

constants λ˚ and λ˚ such that λ˚ ď λ˚ such that λ˚ ď λ˚ and

a) For 1 ă p ă 8, λ ą λ˚, (1) admits a radially increasing solution

b) if p ‰ n`2
n´2

, then for 0 ă λ ă λ˚, (1) does not admit a non

constant radial solution.
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c) Let Ω “ tx; 0 ă α ă |x| ă βu be an annuluar domain and

1 ă p ă 8. Then there exist two positive constants λ˚ ď λ˚ such

that for λ˚ ě λ˚, (1) admits a non constant radial solution and if

λ ď λ˚, then (1) does not admit a non constant radial solution.

In view of these results Lin and Ni [15] made the following

Conjecture. Let p ě n`2
n´2

then there exist two positive constants λ ď λ˚29

such that

(A) For 0 ă λ ă λ˚, (1) does not admit non constant solutions.

(B) For λ ă λ˚, (1) admits a non constant solution.

In this article we analyze this conjecture in the critical case p “
n`2
n´2

. Surprisingly enougn, the critical case is totally different from the

subcritical. In fact the part (A) fo the conjecture in general is false. The

following results of Adimurthi and Yadava [4] and Budd, Knaap and

Peletier [12] gives a counter example to the Part (A) of the conjecture.

Theorem 3. Let n “ 4, 5, 6 and Ω “ tX : |x| ă 1u. Then there exist

a λ˚ ą 0 such that for 0 ă λ ă λ˚, (1) admits a radially decreasing

solution.

Let us now turn our attention to part (B) of the conjecture. Let S de-

note the best Sobolev constant for the imbedding H1pRnq ÞÑ L2n{pn´2qpRnq
given by

S “ inf

"ż

Rn

|∇u|2dx :

ż

Rn

|u|2n{n´2dx “ 1

*
(4)

Then S is achieved and any minimizer in given by Uε,x0
for some ε ą 0,

x0 P Rn where

Upxq “
„

npn ´ 2q
npn ´ 2q ` |x|2

 n´2
2

(5)

Uε,x0
pxq “ 1

ε
n´2

2

U

ˆ
x ´ x0

ε

˙
(6)
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In order to answer part (B) of the conjecture, geometry of the bound-

ary play an important role. To see this, we look at a more general prob-

lem than (1), the mixed problem.

Let BΩ “ Γ0 Y Γ1,Γ0 X Γ1 “ φ,Γi are submanifolds of dimension

pn ´ 1q. The problem is to find function u satisfying

´∆u ` λu “ u
n`2
n´2 in Ω

u ą 0

u “ 0 on Γ0 (7)

Bu

Bv
“ 0 on Γ1

Let

H1pΓ0q “
 

u P H1pΩq : u “ 0 on Γ0

(
(8)

S pλ,Γ0q “ inf
 

Qλpuq ; u P H1 pΓ0q X M

(
(9)

30

Clearly, if S pλ,Γ0q is achieved by some v, then we can take v ď 0

and u “ S pλ,Γ0q n´2
4 v satisfies (7). u is called a minimal energy solu-

tion. Existence of a minimal energy solution is proved in Adimurthi and

Mancini [1] (See also X.J. Wang [22]) and have the following

Theorem 4. Assume that there exist an x0 belonging to the interior of

Γ1 such that the mean curvature Hpx0q at x0 with respect to unit outward

normal is positive. Then S pλ,Γ0q is achieved.

Sketch of the Proof. The proof consists of two steps.

Step 1. Suppose S pλ,Γ0q ă S {22{n, then S pλ,mΓ0q is achieved.

Let vk P H1pΓ0q X M be a minimizing sequence. Clearly tvku is

bounded in H1pΩq. Let for subsequence of tvku still denoted by

tvku, coverges weakly to v0 and almost everywhere in Ω. We first

claim that v0 ı 0. Suppose v0 ” 0, then by Cherrier imbedding

(See [8]) for every ε ą 0, there exists Cpεq ą 0 such that

1 “
ˆż

Ω

|vk|p`1dx

˙2{p`1
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ď 22{n

S
p1 ` εq

ż

Ω

|∆vk|2dx ` Cpεq
ż

v2
kdx.

By Rellich’s compactness, vk Ñ 0 in L2pΩq and hence in the

above inequality letting k Ñ 8 and ε Ñ 0 we obtain

1 ď lim
εÑ0

22{n

S
p1 ` εq lim

kÑ8
Qλpvkq

“ 22{n

S
S pλ,Γ0q

ă 1

which is a contradiction. Hence v0 ı 0. Let hk “ vk ´ V0, then

hk Ñ 0 weakly in H1pΩq and strongly in L2pΩq. Hence

S pλ,Γ0q “ Qλpvkq ` 0p1q

“ Qλpv0q
ˆż

Ω

|v0|p`1

˙s{p`1

`
ż

Ω

|∆hk|2dx ` 0p1q

Now by Brezis-Lieb Lemma, Cherrier imbedding, from the

above inequality, and by the hypothesis, we have for sufficiently

small ε ą 0,

S pλ,Γ0q “ S pλ,Γ0q
ˆż

Ω

|vk|p`1dx

˙2{p`1

ď S pλ,Γ0q
#ˆż

Ω

|v0|p`1dx

˙2{p`1

`
ˆż

Ω

|hk|p`1dx

˙2{p`1
+

` 0p1q

“ S pλ,Γ0q
#ˆż

Ω

|v0|p`1dx

˙2{p`1

` 22{n

S
p1 ` εqˆ

ż

Ω

|∇hk|2dx

*
` 0p1q

“ S pλ,Γ0q
ˆż

Ω

|v0|p`1dx

˙2{p`1

`
ż

Ω

|∇hk|2dx ` 0p1q

36



Impact of geometry of the boundary on the positive solutions... 37

“ S pλ,Γ0q
ˆż

Ω

|v0|p`1dx

˙2{p`1

` S pλ,Γ0q ´ Qλpv0qˆ
ˆż

Ω

|v0|p`1dx

˙2{p`1

this implies that Qλpv0q ď S pλ,Γ0q. Hence v0 is a minimizer. 31

Step 2. S pλ,Γ0q ă S {22{n

Let x0 belong to the interior of Γ1 at which Hpx0q ą 0 and r ą 0

that Bpx0, rq X Γ0 “ φ. Let ϕ P C8
0

pBpx0, rqq such that ϕ “ 1 for

|x ´ x0| ă r{2. Let ε ą 0 and vε “ ϕUε,x0
. Then vε P H1pΓ0q

and we can find positive constants An and an depending only on n

such that

Qλpvεq “ S

22{n
´ AnHpx0qβ1pεq ` anλβ2pεq ` 0pβ1pεq ` β2pεqq

(10)

where

β1pεq “
#
ε log1{ε if n “ 3

ε it n ě 4

β2pεq “

$
’&
’%

ε it n ě 4

ε2 log 1{ε if n “ 4

ε2 it n ě 4

Hence for ε small and since Hpx0q ą 0 we obtain Qλpvεq ă
S {22{n and this proves Step (31) and hence the theorem.

Now it is to be noted the the curvature condition on Γ1 is very essen-

tial. If the curvature conditions fails, then in general (7) may not admit

any solution.

Example. Let

B “ x : |x| ă 1 and

Ω “ x P B : xn ą 0
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Γ1 “ x P BΩ : xn “ 0

Γ0 “ x P BΩ : xn ą 0

Let u P H1pΓ0q be a solution of (7). Define w on B by

wpx1, xnq “
#

wpx1, xnq if xn ą 0

wpx1, xnq if ´xn ă 0

Since Bu
Bv

“ 0 on Γ1,w satisfies32

´∆w ` λw “ w
n`2
n´2 in B

w ą 0

w “ 0 on BB.

Hence by Pohozaev’s identity we obtain

´λ
ż

B

w2dx “
ż

BB

|∇w|2xx, vydξ

Hence by a contradiction. Notice that the mean curvature is zero on Γ1.

Proof of Part (B) of the Conjecture

Let Γ1 “ BΩ. Since BΩ is smooth, we can find an x0 P BΩ such that

Hpx0q ą 0. Hence from theorem (4), (1) admits a minimal energy

solution uλ. Let u0 “ λ1{p´1 and λ˚ “ S

p2|ω|q2{n . Then λ ą λ˚

Qλpuλq ă S

22{n
ă λ|Ω|2{n “ Qλpu0q

Hence uλ is a non constant solution of (1) and this proves part (B) of the

conjecture.

38



Impact of geometry of the boundary on the positive solutions... 39

Properties of the minimal energy solutions

1. By Theorem 3 part (A) of conjecture in general is flase. Now we can

ask whether this is true among minimal energy solution? In fact it is

true. The following is proved in Adimurthi-Yadava [6].

Theorem 5. There exist a λ˚ ą 0 such that for all 0 ă λ ă λ˚, the

minimal energy solution are constant.

Proof. By using the blow up techinque [13], we can prove that for

every ε ą 0 there exists a aλpεq ą 0 such that for 0 ă λ ă λpεq, if

uλ is a minimal energy solution, then

|uλ|8 ď ε (11)

where | ¨ |8 denotes the L8 norm. Let µ1 be the first non zero eigen-

value of

´∆ψ “ µψ in Ω

Bψ
Bv

“ 0 on BΩ.

Let uλ “ 1

|Ω|
ş
Ω

uλdx and ϕλ “ uλ ´ uλ. Then ϕλ satisfies 33

´∆ϕλ ` λϕλ “ u
p

λ
` p

ż 1

0

puλ ` tϕλqp´1
ϕ2
λdtdx

From (11) we have 0 ď uλ ` tϕλ ď uλ ď ε and
ş
Ω
ϕλdx “ 0.

Therefore we obtain

pµ1 ` λq
ż

Ω

ϕ2
λdx ď

ż

Ω

`
|∇ϕλ|2 ` λϕ2

λ

˘
dx ď pεp´1

ż

Ω

ϕ2
λdx

Now choose εp´1 “ µ1

2p
and λ˚ “ λpεq, then the above inequality

implies that ϕλ ” 0 and hence uλ is a constant. This proves the

theorem. �
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2. Concentration and multiplicity results. From the concentration

compactness results of P.L. Lions [17] if uλ is a minimal energy so-

lution of (1), then for anu sequence λk Ñ 8 with |∇uλk
|2dx Ñ dµ,

there exist a x0 P BΩ such that dµ “ sn{2

2
δx0

. Now the natural ques-

tion in “is it possible to characterize the concentration points x0”?

One expects from the asymptotic formula (10) that x0 must be a point

of maximum mean curvature. This has been proved in Adimurthi,

Pacella and Yadava [7] and we have the following

Theorem 6. Let uλ be a minimal energy solution of (1) and pλ P Ω be

such that

uλpPλq “ max
!

uλpxq; x P Ω
)

then there exist aλ0 ą 0 such that for all λ ą λ0

a) pλ P BΩ and is unique,

b) Let n ě 7. The limit points of tPλu are contained in the points of

maximum mean curvature.

Part (a) of this Theorem is also proved in [19].

In view of the concentration at the boundary, it follows that the min-

imal energy solutions are not radial for λ sufficiently large and Ω beging

tha ball. Hence in a ball, for large λ, we obtain at least two solutions

one radial and the other non radial (see [5]). If Ω is not a ball then in

Adimurthi and Mancini [2], they obtained that CatBΩpBΩ`q number of

solutions for (1) where BΩ` is the set of points in BΩ where the mean

curvature is positive (here for X Ă U,Y topological space, then CatYpxq
is category of X in Y). Further if BΩ has rich geometry in the sense

described below, then Adimurthi-Pacella and Yadava [7] have obtained

more solutions of (1). They have proved the following

Theorem 7. Let n ě 7. Assume that BΩ has k-peaks, that is there exist34

k-points x1, . . . xk Ă BΩ at which Hpxiq is strictly local maxima. Then

there exists aλ0 ą 0 such that for λ ą λ0, there are k distinct solutions

tuiλuk
i

“ 1 of (1) such that uiλ concentrates at xi as λ Ñ 8.
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Theorems 6 and 7 has been extended for the mixed boundary value

problems.

Theorem 7 is not applicable in the case when Ω is a ball. On the

other hand, given a positive integer k, there exists a λpkq such that for

λ ą λpkq, (1) admits at least k number of radial solutions (see [18]).

Part (B) of the conjecture gives infinitely many rotationally equivalent

solutions of minimal energy. In view of this it is not clear how to obtain

more non radial solutions which are not rotationally equivalent.

References

[1] Adimurthi and G. Mancini, The Neumann problem for elliptic

equations with critical non-linearity, A tribute is honour of G.

Prodi, Ed by Ambrosetti and Marino, Scuola Norm. Sup. Pisa

(1991) 9-25.

[2] Adimurthi and G, Mancini, Effect of geometry and topology of the

boundary in the critical Neumann problem, R. Jeine Angew. Math,

to appear.

[3] Adimurthi and S.L. Yadava, Critical Sobolev exponent problem in

Rnpn ě 4q with Neumann boundary condition, Proc. Ind. Acad.

Sci. 100 (1990) 275-284.

[4] Adimurthi and S.L. Yadava, Existence and nonexistence of posi-

tive radila solutions of Neumann problems with Critical Sobolev

exponents, Arch. Rat. Mech. Anal. frmros´´00 (1991) 275-296.

[5] Adimurthi and S.L. Yadava, Existence of nonradial positive solu-

tion for critical exponent problem withb Neumann boundary con-

dition, J. Diff. Equations, 104 298-306.

[6] Adimurthi and S. L. Yadava, On a conjecture of Lin-Ni for semi-

linear Neumanna problem, Trans. Amer. Math. Soc. 336 (1993)

631-637.

41



42 Adimurthi

[7] Adimurthi, F. Pacella and S. L. Yadava, Interaction between the

geometry of the boundary and positive solutions of a semilinear

Newmann problem with Critical non linearity, J. Funct. Anal. 113

(1993) 318-350.

[8] T. Aubin, Nonlinear analysis of manifold: Monge-Ampere equa-35

tions, New York, Springer-Verlag (1992).

[9] A. Bhari and J.M. Coron, On a nonlinear elliptic equation involv-

ing the critical Sobolev exponent: The effect of the topology of the

domain, Comm. Pure Appl. Math. 41 (1988) 253-290.

[10] H. Brezis, Elliptic equations with limiting Sobolev exponent. The

impact of topology, Comm. Pure appl. Math. 39 (1996) S17-S39.

[11] H . Brezis, Non linear elliptic equations involving the Critical

Sobolev exponent in survey and prespectives, Directions in Partical

differential equations, Ed, by Crandall etc. (1987), 17-36.

[12] C. Budd, M.C. Knapp and L.A. Peletier, Asymptotic behaviour of

solution of elliptic equations with critical exponent and Neumann

boundary conditions, Proc, Roy. Soc. Edinburg 117A (1991) 225-

250.

[13] B. Gidas and J. Spruck, A priori boundas for positivce solutions of

nonlinear elliptic equations, Comm. Part. Diff. Equations 6 (1981)

883-901.

[14] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic

equations involving Critical exponents, Comm. Pure Appl. Maths.

Vol.36 (1983) 437-477.

[15] C.S. Lin and W. M. Ni, On the diffusion coefficient of a semilinear

Neumann problem, Springer Lecture Notes 1340 (1986).

[16] C.S. Lin and W. M. Ni and I. Takagi, Large amplitude stationary

solutions to an chemotaxis system, J. Diff. Equations 72 (1988)

1-27.

42



Impact of geometry of the boundary on the positive solutions... 43

[17] P.L. Lions, The concentration compactness principles in the cal-

cular of variations: The limit case (Part 1 and part 2), Riv. Mat.

Iberoamericana 1 (1985) 145-201; 45-121.

[18] W. M. Ni, On the positive radial solutions of some semi-linear

elliptic equations on Rn, Appl. Math. Optim. 9 (1983) 373-380.

[19] W. M. Ni, S. B. Pan and I. Takagi. Singular behaviour of least en-

ergy solutions of a semi-linear Neumann problem involving critical

Sobolev exponents, Duke. Math. 67 (1992) 1-20.

[20] W.M. Ni and I . Takagi, On the existence and the shape of solutions

to an semi-linear Neumann problem, to appear in Proceedings of

the conference on Nonlinear diffusion equations and their equilib-

rium states; held at Gregynog, Wales, August 1989.

[21] W.M. Ni and I. Takagi, On the shape of least-energy solutions to a 36

semilinear Neumann problem, Comm. Pure Appl. Math. 45 (1991)

819-851.

[22] X. J. Wang, Neumann problem of semi-linear elliptic equations

involving critical Sobolev exponents, J. Diff. Equations, 93 (1991)

283-310.

T.I.F.R. Centre

P.O. Box No. 1234

Bangalore 560 012.

43



Sur la cohomologie de certains espaces de

modules de fibrés vectoriels

Arnanud Beauville*

Dédié à M.S. Narasimhan et C.S. Seshadri

pour leur 60ème anniversaire

Soit X une surface de Riemann compacte. Fixons des entiers r et d37

premiersm entre eux, avec r ě 1, et notons M 1’ espace des modules

Uxpr, dq des fibriés d. C’est une variété projective et lisse, et il existe

un fibré de Poincaé E sure X ˆM; cela signifie que pour tout point e

deM, correspondant à un fibré E sur X, la restriction de E à X ˆ e est

isomorphe à E.

Notons p, q les projections de X ˆM sur X etM respectivement.

Soit m un entier ď r; la classe de Chern cmpEq admet une décomposition

de Künneth

cmpEq “
ÿ

i

p˚ξi ¨ q˚µi,

avec ξi P H˚pX,Zq, µi P H˚pM,Zq, degpξiq ` degpµiq “ 2m.

Nous dirons que les classes µi sont les composantes de Künneth de

cmE. Un des reśultats essientiels de [A-B] est la détermination d’un

ensemble de générateurs de l’algébre de cohomologie H˚pM.Zq; il a la

consèquence suivante:

Théorème. L’algèbre de cohomologie H˚pM,Qq est engendrée par

les composantes de Künneth des classes de Chern de E.

Let but de cette note est de montrer comment la méthode de la di-

agonale utlilisée dans [E-S] fournit une démonstration trés simple de ce

théorème. Celcui-ci résulte de l’énoncé un peu plus général que voice:

*Avec le support partiel du projet europeéen Science “Gremetry of Algebraic Vari-

eties”, Contrat n˝ SCI-0398-C(A).
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Proposition. Soient X une variété complex projective et lisse, et M 38

un espace de modules espace de modules de faisceaux stables sur x

(par rapport á une polarisation fixée, cf. [M]). On fait les hypothèses

suivantes:

(i) La variétéM est projective et lisse.

(ii) Il existe un faiseceau de Poincaré E surM.

(iii) Pour E, F dansM, on a ExtipE, Fq “ 0 pour i ě 2.

Alors l’algèbre de cohomologie H˚pM,Qq est engendrée par les

composantes de Künneth des classes de Chern de E.

La démostration suit de près celle du th. 1 de [E-S]. Rappelons-enl’

idèe fondamentale: soit δ la classe de cohomologie de la diagonale dans

H˚pMˆM,Qq; notons p et q les deux projections de ˆM surM. Soit

δ “
ř
i

p˚µi ¨ q˚υi, la décompostion de Künneth de δ; alors l’espace

H˚pM,Qq est engendré par les vi. En effect, pour λ dans H˚pM,Qq, on

a

λ “ q˚pδ ¨ p˚λq “
ÿ

degpλ ¨ µiqvi

d’où notre assertion. Il s’agint donce d’ exprimer la classe δ en fonction

des classes de Chern du fibré universel.

Notons p1, p2 le deux projections de C ˆMˆM sur C ˆM, et π la

projections surM ˆM; désignons par H le faisceau Hompp˚
1
E, p˚

2
Eq.

Vul’,hypothèse (iii), l’hypercohomologie Rπ˚H est reprèsentée dans la

catégorie dérivée par un complexe de fibrés K‚, nul en degré différent

de O rt 1. Autrement dit, il existe un morphisme de fibrés u:K0 ÝÑ K1

tel qu, on ait, pour tout point x “ pE, Fq deM, une suite exacte

0 Ñ HompE, Fq Ñ K0pxq upxqÝÝÑ k1pxq Ñ Ext1pE, Fq Ñ 0.

Come l’espace HompE, Fq est non nul si et seulement si E et F est

non nul si et seulement si E F sont isomorphes, on voit que la diagonale

∆ deM ˆM col̈ncide ensemblistement avecle lieu de dégénérescence

D de u (défine par l’annulation des mineurs de rang maximal de u). On
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peut prouver comme dans [E-S] l’ égalité schématique, mais cela n’est

pas nécessaire pour démontrer la proposition.

Soit E un eélément deM. On a

rgpK0q ´ rgpK1q “ dim HompE, Fq ´ dim Ext1pE, Fq

quel que soit le point pE, Fq de M ˆ M. Puisque Ext2pE, Eq “ 0,39

la dimension m de M est eǵale à dim Ext1pE, Eq; ainsi la sous-variéé

déterminantale D deMˆM a la codimension attendue rgpK1q´rgpk0q`
1. Sa classe de cohomologie δ1 P HmpM ˆ M,Zq est alors donnée par

la formule de Proteous

δ1 “ cmpK1 ´ K0q “ cmp´π!Hq,

où π! désigne le foncteur image directe en K-théorie. Cette classe étant

multiple de la classe δ de la diagonale, on conclut avec le lemme suivant:

Lemme. Soit A la sous-bQ-algb̀re de H˚pM,Qq engendrée par les

composantes de Künneth des classes de Chern de E, et soient p et q les

deux projecutions deM ˆ M sur calM. Les classes de Chern de π!H

sont de la forme
ř

P˚µi ¨ q˚vi, avec µi, vi P A.

Notons r la projections de C ˆM ˆ M sur C. Tout polynôme en

les classes de Chern de p˚
1
calE et de P˚

2
E est une somme de produits de

la forme r˚γ ¨ π˚ p˚µ ¨ π˚q˚v, où µ et v appartiennent à A. Le lemme

rémme rśulte alors de la formule de Riemann-Roch

chpπ!Hq “ π˚pr˚ ToddpCq chpHqq.

Remarque . La condition (iii) de la proposition est évidenmment très

con-traignante. Donnons deux exemples:

a) X est une surface rationnelle ou réglée, et la polarisation H vérifie

H ¨Kx ă 0. L’argument de [M, cor. 6.7.3] montre que la condi-

tion (iii) est satisfaite. Si de plus les coefficients ai du polynô me

de Hilbert des éléments de M, écrit sous la forme XpEq b Hmq “
2ř

i“0

ai

ˆ
m ` i

i

˙
, sont premiers entereux, les conditions (i) à (iii) sont

satisfaites [M, §6].
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Dans le cas d’ une surface rationnelle, on obtient mieux. Pour toute

variété T , désignons par CH˚pT q l’anneau de Chow de T ; grâ ce à

l’isomorphisme CH˚pXtimesMq – CH˚pXq b CH˚pMq, on peut

remplacer dans la démonstration de la proposition l’anneau de co-

homologie par l’anneau de Chow. On en déduit quela cohomolo-

gie rationnelle de M est algébrique, c’est-à-dire que l’application

“classe de cycles” de cycles” CH˚pMq b Q ÝÑ H˚pM,Qq est u

isomphisme d’ anneaux. Dans le cas X “ P2, ellingsrud et Strømme

obtiennent le môme résultat sur Z, plus le fait que ces groupes sont

sans torsion, grâce à l’outil supplémentaire de la suite spectrale de

Beilinson.

b) X est une variéteé de Fano De dimension 3. Soit S une surface

lisse appartenant au système linéaire | ´ Kx| (de sorte que S est

une surface K3). Lorsqu’elle est satisfaite, la condition (iii) a des 40

conséquences remarquables [T]: elle entraı̂ne que ”application de re-

striction E ÞÝÑ E|S définit un isomorphisme deM une sous-variété

largrangienne d’un espace de modulesMS de fibrés sur S (muni de

sa structure symplectique canonique). Il me semble intéressant de

mettre en évidence des espace de modules de fibrés sur une variété

de Fano (et déjà sur P3) possédant la propriété (iii).
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Some quantum analogues of solvable Lie groups

C. De Concini, V.G. Kac and C. Procesi

Introduction
41

In the papers [DK1] [DK2], [DKP1] [DKP2]the quantized enveloping

algebras introduced by Drinfeld and Jimbo have been studied in the case

q “ ε, a primitive l-th root of 1 with l odd (cf. calx for basic definitions).

Let us only recall for the moment that such algebras are canonically con-

structed starting from a Cartan matrix of finite type and in praticular we

can talk of the associated classical objects (the root system, the simply

connected algebraic group G. etc.) For such a algebra tha generic (resp.

any) irreducible representation has dimesion equal to (resp. bounded

by) lN where N is the number of positive roots and the set of irreducible

representations has a canonical map to the big cell of the corresponding

group G.

In this paper we analyze the structure of some subalgebras of quan-

rized enveloping algebras corresponding to unipotent and solvable sub-

groups of G. These algebras have the non-commutative structure of iter-

ated algebras of twisted polynomials with a derivation, an object which

has often appeared in the general theory of non-commutative rings (see

e.g. [KP], [GL] and references there). In pariticular, we find maximal

demensions of their irreducible representations. Our results confirm the

validity of the general philosophy that the representation theory is inti-

mately connected to the Poisson geometry.

1 Twisted polynomial rings

1.1 In this section we will collect some well knownn definitions and

properties of twisted derivations.

Let A be an algebra and let σ be an automorphism of A. A twisted
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derivation of A realtive ot σ is a linear map D : A Ñ A such that:

Dpabq “ Dpaqb ` σpaqDpbq.

Example . An element a P A induces an inner twisted derivation adσa42

relative to σ defined by the formula:

pabσaqb “ ab ´ σpbqa.

The following well-known fact is very useful in calculations with

twisted derivations. (Hre and further we use “box” notation:

rns “ qn ´ q´n

q ´ q´1
, rns! “ r1sr2s . . . rns,

„
m

n


“ rmsrm ´ 1s . . . rm ´ n ` 1s

rns!

One also writes rnsd, etc. if q is replaced by qd.)

Proposition. Let a P A and let σ be an automorphism of A such that

σpaq “ q2a, where q is a scalar. Then

padσaqmpxq “
mÿ

j“0

p´1q jq jpm´1q
„

m

j


am´ jσ jpxqa j.

Proof. Let La and Ra denote the operators of left and right multiplica-

tions by a in A. Then

adσa “ La ´ Raσ.

Since La andRa commute, due to the assumption σpaq “ q2a we have

LapRaσq “ q´2pRaσqLa.

Now the proposition is immediate from the following well-known bino-

mial formula applied to the algebra End A. �

Lemma. suppose that x andy y are elements of an algebra such that

yx “ q2xy for some scalar q. Then

px ` yqm “
mÿ

j“0

„
m

j


q jpm´ jqx jym´ j.
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Proof. is by induction on m using43

„
m

j ´ 1


qm`1 `

„
m

j


“
„

m ` 1

j


q j,

which follows from

qbras ` a´arbs “ ra ` bs.

�

Let ℓ be a positive integer and let q be a primitive ℓ-th root of 1. Let

ℓ1 “ ℓ if ℓ is odd and = 1
2
ℓ if ℓ is even. Then, by definition, we have

„
ℓ1

j


“ 0 for all j such that 0 ă j ă ℓ1.

This together with Proposition 1.1 implies

Corollary. Under the hypothesis of Proposition 1.1 we have:

padσaqℓ1pxq “ aℓ
1
x ´ σℓ

1pxqaℓ
1

if q is a primitive ℓ ´ th root of 1.

Remark. Let D be a twisted derivation associated to an automorphism

σ such that σD “ q2Dσ. Then by induction on m one obtains the

following well-known q-analogue of the Leibniz formula:

Dmpxyq “
mÿ

j“0

„
m

j


q jpm´ jqDm´ jpσ jxqD jpyq.

It follows that if q is a primitive ℓ-th root of 1, then Dℓ1
is a twisted

derivation associated to σℓ
1

1.2 Given an automorphism σ of A and a twisted derivation D of A

relative to σ we define the twisted polynomial algebra Aσ,Drxs in the

indeterminate x to be the F-module A bF Frxs thought as formal poly-

nomials with multiplication defined by the rule:

xa “ σpaqx ` Dpaq.
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When D “ 0 we will also denote theis ring by Aσrxs. Notice that the

definition has been chosen in such a way that in the new ring the given

twisted derivation becomes the inner derivation adσx.

Let us notice that if a, b P A and a is invertible we can perform the

change of variables y :“ ax ` b and we see that Aσ,Drxs “ Aσ1,D1rys. It

is better to make the formulas explicit separately when b “ 0 and when44

a “ 1. In the fist case yc “ axc “ apσpcqx ` Dpcqq “ apσpcqqa´1y `
aDpcq and we see that the new automorphism σ1 is the composition

pAdaqσ, so that D1 :“ aD is a twisted derivation relative to σ1. Here

and further Ada stands for the inner automorphism:

pAdaqx “ axa´1.

In the case a “ 1 we have yc “ px ` bqc “ σpcqx ` Dpbq ` bc “
σpcqy ` Dpbq ` bc ´ σpcqb, so that D1 “ D ` adσb. Summarizing we

have

Proposition. Changing σ,D to pAdaqσ, aD (resp. to σ,D ` Db) does

not change the twisted polynomial ring up to isomorphism.

We may express the previous fact with a definition: For a ring A two

pairs pσ,Dq and pσ1,D1q are equivalent if they are obtained one from

the other by the above moves.

If D “ 0 we can also consider the twisted Laurent polynomial alge-

bra Aσrx, x´1s. It is clear that if A has no zero divisors, then the algebras

Aσ,Drxs and Aσrx, x´1s also have no zero divisors.

The importance for us of twisted polynomial algebras will be clear

in the section on quantum groups.

1.3 We want to study special cases of the previous construction.

Let us first consider a finite dimensional semisimple algebra. A over

and algebraically closed field F, let
À

i Fei be the fixed points of the

center of A under σ where the ei are central idempotents. We have

Dpeiq “ Dpe2
i
q “ 2Dpeiqei hence Dpeiq “ 0 and, if x “ xei, then

Dpxq “ Dpxqei. It follows that, decomposing A
À

i Aei, each compo-
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nent Aei is stable under σ and D and thus we have

Aσ,Drxs “
à

i

pAeiqσ,Drxs.

This allows us to restrict our analysis to the case in which 1 is the only

fixed central idempotent.

The second special case is described by the following:

Lemma. Consider the algebra A “ F‘k with σ the cyclic permuta-

tion of the summands, and let D be a twisted derivation of this algebra

relative to σ. Then D is an inner twisted derivation.

Proof. Compute D on the idempotents: Dpeiq “ Dpe2
i
q “ Dpeiqpei ` 45

ei`1q. Hence we must have Dpeiq “ aiei ´ biei`1 and from 0 “
Dpeiei`1q “ Dpeiqei`1Dpei`1q we deduce bi “ ai`1. Let now a “
pa1, a2, . . . , akq; an easy computation shows that D “ adσa. �

Proposition. Let σ be the cyclic permutation of teh summands of the

algebra F‘k. Then

(a) F‘k
σ

“
x, x´1

‰
is an Azumaya algebra of degree k over its center

F
“
xk, x´k

‰
.

(b) R :“ F‘k
σ

“
x, x´1

‰
bFrxk ,x´ks F

“
x, x´1

‰
is the algebra of k ˆ k matri-

ces over F
“
x, x´1

‰
.

Proof. It is enough to prove (b). Let u :“ x b x´1, ei :“ ei b 1; we

have uk “ xk b x´k “ 1 and uei “ ei`1u. From these formulas it

easily follows that the elements eiu
jpi, j “ 1, . . . , kq span a subalgebra

A and that there exists an isomorphism AĄÝÑpFq mapping F‘k to the

diagonal matrices and u to the matrix of the cyclic permutation. Then

R “ A bF F
“
x, x´1

‰
. �

1.4 Assuem now that A is semi-simple and that σ induces a cyclic

permutation of the central idempotents.
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Lemma. (a) A “ MdpFq‘k

(b) Let D be a twisted derivation of A realtive toσ. Then the pair pσ,Dq
is equivalent to the pair pσ1, 0q where

σ1pa1, a2, . . . , akq “ pak, a1, a2, . . . , ak´1q (1.4.1)

Proof. Since σ permutes transitively the simple blocks they must all

have the same degree d so that A “ MdpFq‘k. Furthermore we can

arrange the identifications of the simple blocks with matrices so that:

σ1pa1, a2, . . . , akq “ pτpakq, a1, a2, . . . , ak´1q,
where τ is an automorphism of MdpFq. Any such automorphism in

inner, hence after composing σ with an inner automorphism, we any

assume in the previous formula that τ “ 1, Then we think of A as

MdpFq b F‘k, the new automorphism being of the form 1 b σ1 where46

σ1 : F‘k Ñ F‘k is given by (1.4.1).

We also have that MdpFq “ Aσ and F‘k is the centralizer of Aσ. Nest

observe that D restricted to Aσ is a derivation of MdpFq with values in

‘k
i“1

MdpFq, i.e., Dpaq “ pD1paq,D2paq, . . . ,Dkpaqq where each Di is

a derivation of MdpFq. Since for MdpFq. all derivations are inner we

can find an element u P A such that Dpaq “ ru, as for all a P MdF. So

pD ´ adσuqpaq “ ru, as ´ pua ´σpaquq “ 0 for a P Aσ. Thus, changing

D by adding ´adσu we may assume that D “ 0 on MdpFq.

Now consider b P F‘k and ac P MdpFq; we have Dpbqa “ Dpbaq “
Dpabq “ aDpbq. Since F‘k is the centralizer of MdpFq we have Dpbq P
F‘k and D induces a twisted derivation of F‘k. By Lemma 1.3 this last

derivation is inner and the claim is proved. �

Summarizing we have

Proposition. Let A be a finite- dimensional semisimple algebra over

an algebraically closed field F. Let σ be an automorphism of A which

induces a cyclic permutation of order k of the central idempotents of A.

Let D be a twisted derivation of A relative to σ. Then:

Aσ,Drxs – MdpFq b F‘k
σ rxs,
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Aσ,Drx, x´1s – MdpFq b F‘k
σ rx, x´1s.

This last algebra is Azumaya of degree dk.

1.5 We can now globalize the previous constructions. Let A be a prime

algebra (i.e. aAb “ 0, a, b P A, implies that a “ 0 or b “ 0) over

a field F and let Z be the center of A. Then Z is a domain and A is

torsion free module over Z. Assume that A is a finite module over Z.

Then A embeds in a finite-dimensional central simple algebra QpAq “
AbZ QpZq, where QpZq is the ring of fractions of Z. If QpZq denotes the

algebraic closure of QpZq is the ring of fractions of Z. If QpZq denotes

the algebraic closure of QpZq in the ring of fractions of Z. If QpZq
denotes the algebraic closure of QpZq we have that A bz QpZq is the full

ring MdpQpZqq of d ˆ d matrices over QpZq. Then d is called the degree

of A.

Let σ be an automorphism of the algebra A and let D be a twisted

derivation of A relative to σ. Assume that

(a) There is subalgebra Z0 of Z, such that Z in finite over Z0.

(b) D vanishes on Z0 and σ restricted to Z0 is the identity.

These assumptions imply that σ restricted to Z is an automorphism

of finite order. Let d be the degree of A and let k be the order of σ on the

center Z. Assume that the field F has characteristic 0. The main result 47

of this section is:

Theorem. Under the above assumptions the twisted polynomial alge-

bra Aσ,Drxs is an order in a central simple algebra of degree kd.

Proof. Let Zσ be the fixed points in Z of σ. By the definition, it is cleat

that D restricted to Zσ is derivation. Since it vanishes on a subalgebra

over which it is finite hence algebraic and since we are in characteristic

zero it follows that D vanishes on Zσ. Let us embed Zσ in an alge-

braically closed field L and let us consider the algebra A bZσ L “ L‘k

and A ˆZ L “ MdpLq. Thus we get that A bZσ L “ ‘k
i“1

MdpLq. The
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pair σ,D extends to A bZσ L and using the same notations we have that

pA bZσ Lqσ,Drxs “ pAsigma,Drxsq bZσ L. We are now in the situation

of a semisimple algebra which we have already studied and the claim

follows. �

Corollary. Under the above assumptions, Aσ,Drxs and Aσrxs have the

same degree.

Remark. The previous analysis yields in fact a stronger result. Consider

the open set of Spec Z where A is an Azumaya algebra; it is clearly σ-

stable. In it we consider the open part where σ has order exactly k.

Every orbit of k elements of the group generated by σ gives a point

Fppq in Spec Zσ and A bZ Z bZσ Fppq “ ‘k
i“1

MdpFppqq. Thus we

can apply the previous theory which allows us to describe the fiber over

Fppq of the spectrum of Aσ,Drxs.

1.6 Let A be a prime algebra over a field F of characteristic 0, let

x1, . . . , xn be a set of generators of A and let Z0 be a central subalgebra

of A. For each i “ 1, . . . ,K, denote by Ai the subalgebra of A generated

by x1, . . . , xi and let Zi
0

“ Z0 X Ai. We assume that the following three

conditions hold for each i “ 1, . . . , k:

(a) xix j “ bi jx jxi ` Pi j if i ą j. where bi j P F, Pi j P Ai´1.

(b) Ai is a finite module over Zi
0
.

(c) Formulas σipx jq “ bi jx j for j ă i define a automorphism of Ai´1

which is the identity on Zi´1
0

.

Note that letting Dipx jq “ Pi j for J ă i, we obtain Ai “ Ai´1
σi,Di

rxis,
so that A is an iteratated twisted polynomial algebra, Note also that each

triple pAi´1, σi,Diq satisfies assumptions 1.5 (a) and (b).

We may consider the twisted polynomial algebras A
i
with zero deriva-48

tions, so that the relations are xix j “ bi jx jxi for j ă i. We call this the

associated quasipolynomial algebra (as in [DK1]).

We can prove now the main theorem of this section.
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Theorem. Under the above assumptions, the degree of A is equal to the

degree of the associated quasipolynomial algebra A.

Proof. We use the following remark. If there is an index h such that the

element Pi j “ 0 for all i ą h and all j, then monomials in the variables

different from xh form as subalgebra B and the algebra A is a twisted

polynomial ring Bσ,DrXhs. The associated ring BσrXhs is obtained by

setting ph j “ 0 for all j. Having made this remark we see that can

inductively modify the relations 1.6(a) so that at the h-th step we have

an algebra An
h

with the same type of relations but Pi j “ 0 for all i ą n´h

and all j. Since An
h

and An
h´1

are of type Bσ,Drxs and Bσrxs respectively

we see, by Corollary 1.5, that they have all the same degree. �

2 Quantum groups

2.1 Let pai jq be an indecomposable nˆn Cartan matrix and let d1, . . . ,

dn be relatively prime positive integers such tha diai j “ d ja ji. Recall

the associated notions of the weight, coroot and root lattices p,Q_ and

Q, of the root and coroot systems R and R_, of the Weyl group W, the

W-invariant bilinear form p.|.q, etc.:

Let P be a lattice over Z with basis ω1, . . . , ωn and let Q_ “ HomZ
pP,Zq be the dual lattice with the dual basis α1

_, . . . , αn
_, i.e. xωi, αn

_y “
δi j. Let P` “

řn
i“1 Z`ωi. Let

ρ “
nÿ

i“1

ωi, α j “
nÿ

i“1

ai jωi p j “ 1, . . . , nq,

and let Q “
řn

j“1 Zα j Ă P, and Q` “
řn

j“1 Z`α j.

Define automorphisms si of p by sipω jq “ ω j´δi jα j pi, j “ 1, . . . , nq.

Then sipα jq “ α j ´ ai jαi. Let W be the subgroup of GLppq generated

by s1, . . . , sn. Let

Π “ tα1, . . . , αnu, Π_ “
 
α_

1 , . . . , α
_
n

(
,

R “ WΠ, R` “ R X Q`, R_ “ WΠ_.
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The map αi ÞÝÑ α_
i

extends uniquely to a bijective W-equivariant map49

α ÞÝÑ α_
i

between R and R_. The reflection sα defined by sαpλq “
λ ´ xλ, α_yα lies in W for each α P R, so that sαi

“ si.

Define a bilinear pairing P ˆ Q Ñ Z by pωi|α jq “ δi jd j. Then

pαi|α jq “ diai j, giving a symmetric Z-valued W-invariant bilinear form

on Q such that pα|αq P 2Z. We may indentify Q_ with a sublattice of

the Q-span of P (containing Q) using this form. Then:

α_
i “ d´1

i
αi, α

_ “ 2α{pα|αq.

One defines the simply connected quantum group U associated to

the matrix pai jq as analgebra over the ringA :“
“
q, q´1, pqdi ´ q´diq´1

‰
.

with generators Ei, Fipi “ 1, . . . , nq, Kαpα P Pq subject to the follow-

ing relations (this is simple variation of the construction of Drinfeld and

Jimbo):

KαKβ “ kα`β, k0 “ 1,

σαpEiq “ qpα|αiqEi, σαpFiq “ q´pα|αiqFi,

rEi, F js “ δi j

kαi
´ K´αi

qdi ´ q´di
,

padσ´αi
Eiq1´ai j E j “ 0, padσαi

Fiq1´ai j F j “ 0 pi ‰ jq,

where σα “ Ad Kα. Recall that U has a Hopf algebra structure with

comultiplications ∆, antipode S and counit η defined by:

∆Ei “ Ei b 1 ` Kαi
b Ei, ∆Fi “ Fi b K´αi

` 1 b Fi, ∆kα “ Kα b Kα,

S Ei “ ´K´αi
Ei, S Fi “ ´FiKi, S kα “ K´α,

ηEi “ 0, ηFi “ 0, ηKα “ 1.

Recall that the braid group BW (associated to W), whose canonical

generators one denotes buy Ti, acts as a group of automorphisms of the

algebraU ([L]):

TiKα “ Ksipαq, TiEi “ ´FiKαi
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TiE j “ 1

r´ai jsdi

!padσαi
p´Eiqq´ai j E j,

Tik “ kTi,

where k is a conjugate-linear anti-automorphism of U, viewed as an

algebra over IC, defined by:

kEi “ Fi, kFi “ Ei, kKα “ Kα, kq “ q´1.

2.2 Fix a reduced expression ω0 “ S i1 . . . siN
of the longest element of

W, and let

β1 “ αi1 , β2 “ si1pαi2q, . . . , βN “ si1 . . . siN´1
pαiN

q

be the corresponding convex ordering of R`. Introduce the correspond- 50

ing root vectors pm “ 1, . . . ,Nq ([L]):

Eβm
“ Ti1 . . . ,Tim´1

Eim , Eβm
“ Ti1 . . .Tim´1

Fim “ kEβ

(they depend on the choice of the reduced expression).

For k “ pk1 . . . , kNq P ZN
` we let

Ek “ E
k1

β1
. . . EβN

kN , Fk “ kEk.

Lemma. (a) rLs The elements FkKαEr, where k, r P ZN
`, α P P, from

a basis ofU overA.

(b) rLS s For i ă j one has:

Eβi
Eβ j

´ qpβi|β jqEβ j
Eβi

“
ÿ

kPZN
`

ckEk, (2.2.1)

where ck P IC
“
q, q´1

‰
and ck ‰ 0 only when k “ pk1, . . . , kNq is such

that ks “ 0 for s ď i and s ě j.

An immediate corollary is the following:

Let w “ si1 . . . sik which we complete to a reduced expression ω0 “
si1 . . . siN

of the longest element of W. Consider the elements Eβ j
, j “

1, . . . , k. Then we have:
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Proposition. (a) The elements Eβ j
, j “ 1, . . . , k, generate a subalge-

braUw which is independent of the choice of the reduced expression

of w.

(b) If w1 “ ws with s a simple reflection and lpw1q “ lpwq ` 1 “
k`1, thenUw1

is a twisted polynomial algebra of typeUw
σ,D

rEβk`1
s,

where the formulas for σ and D are implicitly given in the formulas

(2.2.1).

Proof. (a) Using the face that once can pass from one reduced expres-51

sion of w to another by braid relations one reduces to the case of rank 2

where one repeats the analysis made by Luszting ([L]). (b) is clear by

Lemma 2.2. �

The elements Kα clearly normalize the algebras Uw and when we add

them to these algebras we are performing an iterated construction of

Laurent twisted polynomials. The resulting algebras will be called Bw.

Since the algebrasUw and Bw are iterated twisted polynomial rings

with relations of the type 1.6(a) we can consider the associated quasipoly-

nomial alagebras, and we will denote them by U
w

and B
w

. Notice that

the latter algebras depend on the reduced expression chosen for w. Of

course the defining relations for these algebras are obtained from (2.2.1)

by replacing the right-hand side by zero. We could of coures also per-

form the same construction with the negative roots but this is not strictly

necessary since we can simply apply the anti-automorphism k to define

the analogous negative objects.

3 Degrees of algebrasUw
E

and Bw
E

3.1 We specialize now the previous sections to the case q “ E, a prim-

itive ℓ-th root of 1. Assuming that ℓ1 ą max
i

di. we may consider the

specialized algebras:

UE “ U{pq ´ Eq, Uw
E “ Uw{pq ´ Eq, Bw

E “ Bw{pq ´ Eq, etc.

We have obvious subalgebra inclusionsUw
E

Ă Bw
E

Ă UE.
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First, let us recall and give a simple proof of the following crucial

fact [DK1]:

Proposition. Elements Eℓ
αpα P Rq and Kℓ

β
pβ P Pq lie in the centre zE of

UE if ℓ1 ą max
i, j

|ai j| (for any generalized Cartan matrix pai jqq.

Proof. The only non-trivial thing to check is that rEℓ
i
, E js “ 0 for i ‰ j.

From the “Serre relations” it is immediate that padσ´αi
Eiqℓ

1
E j “ 0. Due

to Corollary 1.1, this can be rewritten as

Eℓ1
i E j “ E´ℓ1pαi|α jqE jE

ℓ1
i ,

proving the claim. �

As has been alreadu remarked, the algebrasUw
E

and Bw
E

are iterated

twisted polynomial algebras with relations of the type 1.6(a) Proposition

3.1 shows that they satisfy conditions 1.6(b) and (c). Hence Theorem 1.6 52

implies

Corollary. Algebras Uw
E

and U
w

E (resp.Bw
E

and B
w

E) have the same

degree.

3.2 We proceed to calculate the degrees of algebras U
w

E and B
w

E . Re-

cal that these algebras are, up to inverting some variables, quasipolyno-

mial algebras whose generations satisfy relations of type xix j “ bi jx jxi,

i, j “ 1, . . . , s, where the elements bi j have tha special form bi j “ Eci j ,

the ci j being entries of a skew-symmetric integral s ˆ s matrix H. As

we have shown in [[DKP2], Proposition 2.2] considering H as the ma-

trix of a linear map Zs Ñ pZ{pℓqqs, the degree of the corresponding

twisted polynomial algebra is
?

h, where h is the number of element of

the image of this map.

Fix w P W and its reduced expression w “ si1 . . . sik . We shall

denote the matrix H for the algebrasU
w

E andB
w

E by A and S respectively.

First we describe explicitly these matrices.

Let d “ 2 unless pai jq is of type G2 in which case d “ 6, and

let Z1 “ Z
“
d´1

‰
. Consider the roots β1, . . . βk as in Section 2.2, and
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consider the free Z1-module V with basis u1, . . . , uk. Define on V a skew-

symmetric bilinear form by

xui|u jy “ pβi|β jq if i ă j.

Then A is the matrix of this bilinear form in the basis tuiu. Identifying

V with its dual V˚ using the give basis, we may think of A as a linear

operator from V to itself.

Furthermore,

S “
ˆ

A ´tC

C 0

˙

where C is the n ˆ k matrix ppωi|β jqq1ďiďn,1ď jďk. We may think of the

matrix C as a linear map from the module V with the basis u1, . . . ,Uk to

the module Q_ bZ Z1 with the basis α_
1
, . . . , α_

n . Then we have:

Cpuiq “ βi, i “ 1, . . . , k. (3.2.1)

To study the matrices A and S we need the following

Lemma. Given ω “
řn

i“1 δiωi with δi “ 0 or 1, set53

Iω “ tt P 1, . . . , k|sit pωq ‰ ωu.

Then

wpωq “ ω ´
ÿ

jPiw

β j.

Proof. by induction on the length of w . Write w “ w1sik . If k R Iω
then wpωq “ w1pωq and we are done by induction. Otherwise wpωq “
w1pω ´ αik q “ w1pωq ´ βk and again we are done by induction. �

Note that 1, 2, . . . , k “
nš

i“1

Iωi
.

3.3 Consider the operators: M “ pA ´ tCq and N “ pCOq so that

S “ M ‘ N.
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Lemma. (a) The operator M is surjective.

(b) The vectors vω :“
`ř

tPIw
ut

˘
´ ω ´ wpωq, as ω runs through the

fundamental weights, form a basis of the kernel of M.

(c) Npvωq “ ω ´ wpωq “
ř

tPIω
βt.

Proof. (a) We have by a straightforward computation:

S pui ` βiq “ ´pβi|βiqui ´ 2
ÿ

jąi

pβi|β jqu j ´ βi,

and

Mpui ` βiq “ ´pβi|βiqui ´ 2
ÿ

jąi

pβi|β jqu j

Since pβi|βiq is invertible in Z1 the claim follows.

(b) Since the vectors vω are part of a basis and, by (a), the kernle

of M is a direct summand, it is enough to show that these vectors lier

in the kernel. Now to check that Mpvωi
q “ 0 is equivalent to seeing

tha vωi
lies in the kernel of the corresponding skew-symmetric form, i.e.

xu j|vωi
y “ 0 for all j “ 1, . . . , k:

Using Lemma 3.2, we have

xu j|vωi
y “ ´2

ÿ

tą j

pβ j|βtq ` 2pβ j|wpωiqq ` a j, (3.3.1)

where a j “ 0 if j R Iωi
and a j “ pβ j|β jq otherwise. 54

We proceed by inductions on k “ lpwq. Let us write vωi
pwq to stress

the dependence on w. For k “ 0 there is nothing to prove. Let w “ w1sik

with lpw1q “ lpwq ´ 1. We distinguish two cases according to whether

i “ ik or not. If i “‰ ik, i.e. k R Iωi
, we have that vωi

“ vωi
pw1q hence

the claim follows by induction if j ă k. For j “ k we obtain from

(3.3.1):

xuk|vωi
y “ ´2pβk|wpωiqq “ ´2pw1pαik q|w1pωiqq “ ´2pαik |ωiq “ 0.

Assume now that ik “ i so that w “ w1si. Then vωi
pwq “ vωi

pw1q ` uk ´
βk. For j ă k by induction we get:

xu j|vωi
y “ xu j|uky ´ xu j|βky “ ´pβ j|βkq ` pβ j|βkq “ 0.
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Finally if j “ k we have:

2pβk|wpωiqq ` pβk|βkq “ 2pw1αi|w1pωi ´ αiqq ` pαi|αiq
“ 2pαi|ωiq ´ pαi|αiq “ 0.

Finally using (3.2.1), we have: Npvωi
q “

ř
tPIωi

βt, hence (c) follows

form Lemma 3.2. �

3.4 In order to compute the kernel of S we need to compute the kernel

of N on the submodule spanned by the vectors vωi
. Let us identify this

module with the weight lattice p by identifying vωi
with ωi. By Lemma

3.3(c), we see that N in identified with map 1 ´ w : P Ñ Q. At this

point we need the following fact:

Lemma. Consider the highest root θ “
řn

i“1 aiαi of the root system R.

Let Z1 “ Z2 “a´1
1
, . . . , a´1

n

‰
, and let M1 “ M bZ Z1, M2 “ M bZ Z2 for

M “ p or Q. Then for any w P W, the Z2-submodule p1 ´ wqP2 of Q2

is a direct summand.

Proof. Recall that one can represent w in the form w “ S γ1
. . . sγm

where γ1 . . . γm is a linearly independent set of roots (see e.g. [C]). Since

in the decomposition γ_ “
ř

i riα
_
i

one of the ri is 1 or 2, it follows that

p1 ´ sγqP1 “ Z1
γ. Since 1 ´ w “ p1 ´ sγ1

. . . sγm´1
qsγm

` p1 ´ sγm
q, we55

deduce by induction that

p1 ´ wqP1 “
mÿ

i“1

Z1γm (3.4.1)

Recall now that any sublattice of Q spanned over Z by some roots is

a Z-span of a set of roots obtained from Π by iterating the following

procedure: add a highest root to the set of simple roots, then remove

several other roots form this set. The index of the lattice M thus obtained

in M bZ Q X Q is equal to the product of coefficients of removed roots

in the added highest root. Hence it follows from (3.4.1) that

pp1 ´ wqP2q bZ Q X Q2 “ p1 ´ wqP”,

proving the claim. �
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We call ℓ ą 1 a good integer if it is relatively prime to d and to all

the ai.

Theorem. If ℓ is a good integer, then

degBw
E “ degB

w

E “ ell
1
2

pℓpwq`rankp1´wqq.

Proof. From the above descussion we see that degB
w

E “ ℓs, where s “
pℓpwq`nq´pn´rankp1´wqq, which together with Corollary 3.1 proves

the claim. �

3.5 We pass now to Uw
E

. For this we need to compute the image of

the matrix A. Computing first its kernel, we have that K er A is iden-

tified with the set of linear combinations
ř

i civωi
for which

ř
i cipωi `

wpωiqq “ 0 i.e.
ř

i ciωi P kerp1 ` wq. This requires a case by case anal-

ysis. A simple case is when w0 “ ´1, so that 1 ` w “ w0p´1 ` w0wq
and one reduces to the previous case. Thus we get

Proposition. If w0 “ ´1 (i.e. for types different from An, D2n`1 and

E6) and if ℓ is a good integer, we have:

degUw
E “ degU

w

E “ ℓ
1
2

pℓpwq`rankp1`wq´nq.

Let us note the special case w “ w0. Remark that defining tω :“
´w0pωq we have an involution ω Ñ tω on the set of fundamental

weights. let us denote by s the number of orbits of this involution.

Theorem. If E is a primitive ℓ-th root of 1, where ℓ is an integer greater 56

than 1 and relatively prime to d, then algebraU
w0

E
andB

w0

E
have degrees

ℓ f racN´s2 and ℓ
N`s

2 respectively.

Proof. In this case lpw0q “ N and the maps ω Ñ ω ` w0pωq and

ω Ñ ω ´ w0pωq are ω Ñ ω ´ tω and ω Ñ ω ` tω and so their ranks

are clearly n ´ s and s respectively. �
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4 Poisson structure

4.1 Before we revert to the discussion of our algebras we want to make

a general remark. Assume that we have a manifold M and a vector bun-

dle V of algebras with 1 (i.e. 1 and the multiplication map are smooth

sections). We identify the functions on M with the sections of V which

are multiples of 1. Let D be a derivation of V , i.e. a derivation of the

algebra of sections which maps the algebra of functions on M into itself

and let X be the corresponding vector field on M.

Proposition. For each point p P M there exists a neighborhood Up and

a map ϕt defined for |t| sufficiently small on V|Up which is a morphism

of vector bundles covering the germ of the 1-parameter group generated

by X and is also an isomorphism of algebras.

Proof. The hypotheses on D imply that it is a vector field on V linear on

the fibers, hence we have the existence of a local lift of the 1-parameter

group as a morphism of vector bundles. The condition of being a deriva-

tion implies that the lift preserves the multiplications section i.e. it is a

morphism of algebras. �

We will have to consider a variation of this: suppose M is a Poisson

manifold and assume furthermore that the Poisson structure lifts to V

i.e. for each (local) functions f and section s we have a Poisson bracket

which is a derivation. This means that we have a lift of the Hamiltonian

vector fields as in the previous proposition. We deduce:

Corollary. Under the previous hypotheses, the fibers of V over points

of a given symplectic leaf of M are all isomorphic as algebras.

Proof. The proposition implies that in a neighborhood of a point in a

leat the algebras are isomorphic but since the notion of isomorphism is

transitive this implies the claim. �

4.2 Let us recall some basic facts on Poisson groups (we refer to [D],57

[STS], [LW] for basic definitions and properties). Since a Poisson struc-

ture on a manifold M is a special type of a section of Λ2T pMq it can be
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viewed as a linear map from T ˚pMq to T pMq. The image of this map

is thus a distribution on the manifold M, It can be integrated so that we

have a decomposition of M into symplectic leaves which are connected

locally closed submanifolds whose tangent spaces are the spaced of the

distribution. In fact in our case the leaves will turn out to be Zarisko

open sets of algebraic of algebraic subvarieties.

For a group H the tangent space at each point can be identified to

the Lie algebra ~ by left translation and thus a Poisson structure on H

can be given as a family of maps γh : ~˚ Ñ ~ as h P H. Let G be an

algebraic group and H,K Ă G algebraic groups if their corresponding

Lie non-algebras pg, ~, kq form a Manin triple , i.e. (cf. [D], [LW]) if g

has a non-degenerate,symmetric invariant bilinear form with respect to

which the Lie subalgebras ~ an k are isotropic and g “ ~‘ k (as vector

spaces). Then it follows that we have a canonical isomorphism ~˚ “ k.

Having identified ~˚ with k, the Poisson structure on H is thus described

by giving for every h P H a linear map γh : k Ñ ~.
Let x P k, consider x as an element of g, set π : g Ñ ~ to be the

projection with kernel k. Set:

γhpxq “ pAdhqπpAdhq´1pxq.
Then one can verify (aw in [LW]) that the corresponding tensor satis-

fies the required properties of a Poisson structure. (In fact any Poisson

structure on H can be obtained in this way.)

Notice now that the (restriction of the) canonical map:

δ : H Ñ G{K

is an étale covering of some open set is G{K. Thus for every point

h P H we can identify the tangent space to H in h with the tangent space

of G{K at deltaphq. By using right translation we can then identify the

tangent space to G{K at δphq with g{pAdhqK, the tangent space at h P H

with ~ by right translation and the isomorphism between them with the

projection ~Ñ g{pAdhqk.

Using all these identifications once verifies that the map γh previ-

ously considered is the map induced by differentiating the left K-action

on G{K. From this it follows.
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Proposition. The symplectic leaves for the symplectic structure on H

coincide with the connected components of the preimages under δ of

K-orbits under the left multiplications of G{K.58

Consider now a quotient Poisson groups S and H, that is S is a

quotient group of H and the ring ICrS s Ă ICrHs is a Poisson subalgebra.

Let U be the kernel of the quotient homomorphism ϕ : H Ñ S , let

s “ Lie S , u “ Lie U and dϕ : ~ Ñ s the Lie algebra quotient map.

Then u is an ideal in ~ and we identify s˚ with a subspace of ~˚ “ k by

taking uK Ă g under the invariant form and intersecting it with k. Then

for p P S the linear mar: γp : s˚ Ñ s giving rise to the Poisson structure

is given by:

γp “ pdϕq ¨ pγp|s˚q
where tildep P H is any representative of p(γp is independent of the

choice of p̃).

The construction of the Manin triple corresponding to the Poisson

manifold S is obtained from the following simple fact:

Lemma. Let pg, ~, kq be a Manin triple of Lie algebras, and let u Ă ~
be an ideal such that uKpingq intersected with k is a subalgebra of the

Lie algebra k. Then

(a) uK is a subalgebra of g and u is an ideal of u K.

(b) puK{u, ~{u, k X uKq is Manin triple, where the bilinear form on uK

is induced by that of g.

Proof. Straightforward. �

4.3 In the remaining sections we will apply the above remarks to the

Poisson groups associated to the Hopf algebra UE and its Hopf subal-

gebra BE :“ Bw0

E
, and will derive some results on representations of the

algebra BE. From now on E is a primitive ℓ-th root of 1 where ℓ ą 1 is

relatively prime to d.

Let Z0 (resp. Z`
0

) be the subalgebra of UE (resp. BE) generated by

the elements Eℓ
α with α P R (resp. α P R`) and Kβ with β P P. (We
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assume fixed a reduced expression of w0; Z0 and Z`
0

are independent of

this choice [DK1].) Recall that they are central subalgebras (Proposition

3.1).

It was shown in [DK1] that Z0 and Z`
0

are Hopf subalgebras, hence

Spec Z0 and Spec Z`
0

have a canonical structure of an affine algebraic

group. Furthermore. since UE is a specialization of the algebra U at

q “ E, the center ZE ofUE possesses a canonical Poisson bracket given

by the formula:

ta, bu “
“
â, b̂

‰

2ℓ2pq ´ Eqmod pq ´ Eq, a, b P ZE,

where â denotes the preimage of a under the canoncila homomorphism 59

U Ñ UE. The algebras Z0 and Spec Z`
0

have a canonical structure of

Poisson algebraic groups, Spec Z`
0

begin a quotient Poisson group of

Spec Z0.

In [DKP1] an explicit isomorphism was constructed between the

Poisson grout Spec Z0 and a Poisson group H which is described below.

We shall identify these Poisson groups.

Let G be the connected simply connected algebraic group associated

to the Cartan Matrix pai jq and let g be its (complex) Lie algebra. We fix

the triangular decomposition g “ u´ ` t ` U`, let b˘ “ t ` u˘, and

denote by p.|.q the invariant bilinear form on g which on the set of roots

R Ă t˚ coincides with that defined in Section 2.1. Let U˘, B˘ and T be

the algebraic subgroups of G corresponding to Lie algebras u˘, B˘ and

t. Then as an algebraic group, H is the following subgroup of G ˆ G:

H “
 

ptu`, t
´1u´q|t P T, u˘ P U˘

(
.

The Poisson structure on H is given by the Manin triple pg ‘ g, ~, kq,

where

~ “ tpt ` u`,´t ` u´q|t P t, u˘ P u˘u,
k “ tpg, gq|g P gu ,

and the invariant bilinear form of g ‘ g is

ppx1, x2q|py1, y2qq “ ´px1|y1q ` px2|y2q.
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We identify the group B` “ H{tp1, u´|u´ P U´qu. The Manin

triple generating Poisson structure on B` is obtained from pa‘g, ~, kq by

taking the ideal u “ tp0, u´, u´ P u´qu and applying the construction

given by Lemma 4.2. We clearly obatina the triple pq‘t, b`, b´q, where

we used identifications

b˘ “ tpu˘ ´ t,˘tq|u˘ P u˘, t P tu.

According to the general recipe of Proposition 4.2, the symplectic

leaves of the Poisson group B` are obtained as follows. We identify the

groups B˘ with the following subgroups of G ˆ T :

B˘ “
 

pt´1u˘, t
˘1q|t P T, u˘ P U˘

(
.

The inclusion B` Ă G ˆ T induces an étale morphism

δ : B` Ñ pG ˆ T q{B´.

Then the symoplectic leaves of B` are the connected components of the60

preimages under the map under the map δ of B´-orbits on G ˆ T{B´
under the left multiplication .

In order to analyze the B´-orbits on g ˆ T{B´, let µ˘ : B˘ Ñ T

denote the canonical homomorphisms with kernels U˘ and consider the

equivariant isomorphism of B´-varieties γ : G{U´ Ñ pG ˆ T q{B´
given by γpgU´q “ pg, 1qB´, where B´ acts on G{U´ by

bpgU´q “ bgµ´pbqU´. (4.3.1)

Then the map δ gets identified with the map δ : B` Ñ G{U´ given by

δpbq “ bµ`pbqU´.

We want to study the orbits of the action (4.3.1) of B´ on G{U´.

Consider the action of B´ on G{B´ by left multiplication. Then the

canonical map pi : G{U´ Ñ G{B´ is B´-equivariant, hence π maps

every B´-orbit O in G{U´ to a B´-orbit in G{B´, i.e. a Schubert cell

Cw “ b´wB´{B´ for some e P W. We shall say that the orbit O is

associated to w.
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Remark. We have a sequence of maps:

B`
δÝÑ pG ˆ T q{B´

γ´1

ÝÝÑ G{U´
πÝÑ G{B`.

Let ψ “ π ˝ γ´1 ˝ δ and Xw “ B` X B´wB´. Then:

π´1pCwq “ b´wB´{U´ and ψ´1pCwq “ Xw.

We can prove now the following

Proposition. Let O be a B´-orbit in G{U´ under the action (4.3.1)

associated to w P W. Then the morphism:

π|O : OÑ Cw

is a principal torus bundle with structure groups:

T w :“
 

w´1ptqt´1, where t P T
(
.

In particular:

dimO “ dim Cw ` dim T w “ lpwq ` rankpI ´ wq.
Proof. For g P G we shall write rgs for the coset gU´. The morphism π 61

is clearly a principle T -bundle with T acting on the right by rgst :“ rgts.
The action (4.3.1) fo B´-orbits. Each of B´ commutes with the right

T -action so that T permutes the B´-orbits. Each B´-orbit is a principal

bundle whose structure group is the subtorus of T which stabilizes the

orbit. This subtorus is independent of the orbit since T is commutative.

In order to compute it we proceed as follows. Let rg1s, rg2s be two ele-

ments in O mapping to w P Cw. We may assume the g1 “ nh, g2 “ nk

with h, k P T uniquely determined, where n P NGpT q is representative

of w. Suppose that brnhs “ brnks, b P B´. We can first reduce to the

case b “ t P T ; indeed, writing b “ ut we see that u must fix w P Cw

hence un “ nu1 with u1 P U´ and hence u acts trivially on trnhs. Next

we have that, by definition of the T -action (4.3.1),

rnks “
“
tnht´1

‰
“
“
npn´1tnht´1q

‰

hence k “ n´1tnht´1 or k “ h
`
h´1n´1tnht´1

˘
“ h

`
n´1tnt´1

˘
as

required. �
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Lemma. Let O Ă B` be a symplectic leaf associated to w. Then

OT “ Xw.

Proof. From our proof we know that the map δ is a principal T -bundle

and T permutes transitively the leaves lying over Cw �

We thus have a canonical stratification of B`, indexes by the Weyl

group, by the subsets xw. Each such subset is a union of leaves permuted

transitively by the right multiplications of the group T .

We say that a point a P Spec Z`
0

“ B` lies over w if ψpaq P Cw.

4.4 Recall that T “ ZˆbZA_ and therefore any λ P P “ HomZpQ
_
,Zˆq

defines a homomorphism (again denoted by)λ : T Ñ Zˆ For each t P T

we define and automorphism βt of the algebra BE by:

βtpKαq “ αptqKα, βtpEαq “ αptqEα.

Note that the automorphisma Bt leave Z`
0

invariant and permute transi-

tively the leaves of each set ψ´1pCwq Ă B`.

Given a P B` “ Spec Z`
0

, denote by ma the corresponding maximal

ideal of Z`
0

and let

Aa “ BE{maBE.

These are finite-dimensional algebras and we may also consider these

algebras as algebras with trace in order to use the techniques of [DKP2].

Theorem. If a, b P Spec Z`
0

lie over the same element w P W, then the62

algebras Aa and Ab are isomorphic (as algebras with trace).

Proof. We just apply Proposition 4.1 to the vector bundle of algebras Aa

over a symplectic leat and the group T of algebra automorphisms which

permutes the leaves in ψ´1pCwq transitively. �

4.5 Let Bw :“ B` X wB´w´1 and Uw :“ U` X wU´w´1 so that

Bw “ UwT . Set also Uw :“ U` X wU`w´1. One knows that dim Bw “
n ` lpwq and that the multiplication map:

σ : Uw ˆ Bw Ñ B`
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is an isomorphism of algebraic varieties. We define the map

pw : B` Ñ Bw

to be the inverse of σ followed by the projection on the second factor.

Proposition. The map

pw|xw : Xw Ñ Bw

is birational.

Proof. We need to exhibit a Zarisko open set Ω Ă Bw such that for any

b P Ω there is a unique u P Uw with ub P xw.

Let n P NGpT q be as above a representative for w so that:

Xw “ tb P B`|b “ b1nb2, where b1, b2 P B´u.

Consider the Bruhat cell B´n´1B´ Ă G. Every element in B´n´1B´
can be written uniquely in the form:

bn´1u, where b P n´1Bwn, u P U´.

The set B`U´ “ B`B´ is open dense and so it intersects B´n´1B´ “
n´1bwU´ in a non-empty open set which is clearly B´-stable for the

right multiplication, hence B`B´ X B´n´1B´ “ n´1ΩU´ for some

non empty open set Ω Ă Bw. In particular Ω Ă nB`B´ “ nUwBwU´.

Take b P Ω and write it as b “ nxcv with x P Uw, c P Bw, v P U´.

By the remarks made above this decomposition is unique; furthermore,

nxn´1 P Uw, ncn´1 P B´. For the element n´1b “ xcv we have 63

by construction that xcv P B´n´1B´ and nx´1n´1b “
`
ncn´1

˘
nv P

B´nB´ and nx´1n´1 P Uw. Thus setting u :“ nx´1n´1we have found

u P Uw such that ub P Xw. This u is unique since the element x is

unique. �

We are ready now for the concluding theorem which is in the spirit

of the conjecture formulated in [DKP1].
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Theorem. Let p P Xw be a point over w P W and let Ap be the corre-

sponding algebra. Assume that l is good integer. Then the dimension of

each irreducible representation of Ap is divisible by =l
1
2

plpwq`rankp1´wqq.

Proof. Consider the algebra Bw
E

for which we know by Theorem 3.5 that

deg Bw “ l
1
2

plpwq`rankp1´wqq.

The subalgebra Z0,w of Z0 generated by the elements Kl
λ

and El
α, where

λ P P and α P R` is such that ´w´1α P R`, is isomorphic to the

coordinate ring of Bw, and Bw
E

is a finite free module over Z0,w. Thus by

[DKP2] there is a non empty open setA of Bw such that for p P A any

irreducible representation of Bw lying over p is of maximal dimension,

equal to the degree ofBw
E

. Now the ideal I defining Xw has intersection 0

with Z0,w and so when we restrict a generic representation of BE laying

over points of Xw to the algebra Bw
E

we have, as a central character of

Z0,w, a point in A Thus the irreducible representation restricted to Bw

has all its composition factors irreducible of dimension equal to degBw.

This proves the claim. �

It is possible that the dimension of any irreducible representation

of BE whose central character restricted to Z`
0

is a point of xw is ex-

actly ℓ
1
2

pℓpwq`rankp1´wqq. This fact if true would require a more detailed

analysis in the spirit of Section 1.3.

We would like, in conclusion, to propose a more general conjec-

ture, similar to one of the results of [WK] on solvable Lie algebras of

characteristic p.

Let A be an algebra over IC
“
q, q´1

‰
on generators x1, . . . , xn satis-

fying the following relations:

xix j “ qhi j x jxi ` Pi j if i ą j,

where phi jq is a skew-symmetric matrix over Z and Pi j P IC
“
q, q´1

‰

rx1, . . . , xns. Let ℓ ą 1 be an integer relatively prime to all elementary

divisors of the matrix phi jq and let Aε “ A{pq ´ εq and assume that all

elements xℓ
i

are central. Let Z0 “ IC
“
xℓ

1
, . . . , xℓn

‰
; this algebra has a

canonical Poisson structure.
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Conjecture. Let π be an irreducible representation of the algebra Aε and 64

let Oπ Ă Spec Z0 be the symplectic leaf containing the restriction of the

central character of π to Z0. Then the dimension of this representation

is equal to ℓ
1
2

dimOπ .

This conjecture of course holds if all Pi j are 0, and it is in complete

agreement with Theorems 1.6, 3.5 and 4.6.
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0 Introduction

A compact Riemann surface always ha s hermitian metric with constant 67

curvature, in particular the curvature sign can be taken to be constant:

the negative sign corresponds to curves of general type (genus ě 2),

while the case to zero curvature corresponds to elliptic curves (genus 1),

positive curvature being obtained only for P1 (genus 0). In higher di-

mensions the situation is must more subtle and it has been a long stand-

ing conjecture due to Frankel to characterize Pn as the only compact

Kähler manifold with positive holomorphic bisectional curvature. Hrat-

shorne strengthened Frankel’s conjecture and asserted that Pn is the only

compact complex manifold with ample tangent bundle. In his famous

paper [Mo79], Mori solved Hartshorne’s conjecture by using character-

istic p methods. Around the same time Siu and Yau [SY80] gave an

analytic proof of the Frankel conjecture. Combining algebraic and an-

alytic tools Mok [Mk88] classfied all compact Kähler manifolds with

semi-positive holomorphic bisectional curvature.

From the point of view of algebraic geometry, it is natural to con-

sider the class fo projective manifolds X whose tangent bundle in nu-

merically effective (nef). This has been done by Campana and Peternell

[CP91] and - in case of dimension 3 -by Zheng [Zh90]. In particular, a

complete classification is obtained for dimension at most three.

The main purpose of this work is to investigate compact (most often

Kähler) manifolds with nef tangent or anticanonical bundles in arbitrary
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dimension. We fist discuss some basic properties of nef vector bun-

dles which will be needed in the sequel in the general context of com-68

pact complex manifolds. We refer to [DPS91] and [DPS92] for detailed

proofs. Instead, we put here the emphasis on some unsolved questions.

1 Numerically effective vector bundles

In algebraic geometry a powerful and flexible notion of semi-positivity

is numerical effectivity(“nefness”). We will explain here how to extend

this notion to arbitrary compact complex manifolds.

Definition 1.1. A line bundle L on a projective manifold X is said to be

numerically effective (nef for short) if L ¨ C ě 0 for all compact curves

C Ă X.

It is cleat that a line bundle with semi-positive curvature is nef. The

converse had been conjectured by Fujita [Fu83]. Unfortunately this is

not true; a simple counterexample can be obtained as follows:

Example 1.2. Let Γ be an elliptic curve and let E be a rank 2 vector

bundle over Γ which is a non-split extension of O by O; such a bundle

E can be described as the locally constant vector bundle over Γ whose

monodromy is given by the matrices

ˆ
1 0

0 1

˙
,

ˆ
1 1

0 1

˙

associated to a pair of generators of π1pΓq. We take L “ OEp1q over the

ruled surface X “ PpEq. Then L is nef and it can be checked that, up to a

positive constant factor, there is only one (possibly singular) hermitian

metric on L with semi-positive curvature; this metric is unfortunately

singular and has logarithmic poles along a curve. Thus L cannot be

semi-positive for any smooth hermitian metric.

Definition 1.3. A vector bundle E is called nef if the line bundle OEp1q
is nef on PpEq (= projectivized bundle of hyperplanes in the fibres of E).
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Again it is clear that vector bundle E which admits a metric with

semi-positive curvature (in the sense of Griffiths) is nef. A compact

Kähler manifold X having semi-positive holomorphic bisectional curva-

ture has bu definition a tangent bundle T X with semi-positive curvature.

Again the converse does not hold. One difficulty in carrying over the

algebraic definition of nefness to the Kahler case is the possible lack of

curves. This is overcome by the following:

Definition 1.4. Let X be a compact complex manifold with a fixes her- 69

maitian metric ω. A line bundle L over X in nef if for every ε ą 0 there

exists a smooth hermitian metric hε on L such that the curvature satisfies

Θhε ě ´εω.

This means that the curvature of L can have an arbitrarilly small

negative part. Clearly a nef line bundle L satisfies L ¨ C ě 0 for all

curves C Ă X, but the coverse in not true (X may have no curves at

all, as is the case for instance for generic complex tori). For projective

algebraic X both notions coincide; this is an easy consequence of Se-

shadri’s ampleness criterion: take L to be a nef line bundle in the sense

of Definition 1.1 and let A be an ample line bundle; then LbK b A is

ample for every integer k and thus L has smooth hermitian metric with

curvature form ΘpLq ě ´ 1
k
ΘpAq.

Definition 1.3 can still be used to define the notion of nef vector bun-

dles over arbitrary compact manifolds. If pE, hq is a hermitian vector

bundle recall that the Chern curvature tensor

ΘhpEq “ i

2π
D2

E,h “ i
ÿ

1ď j,kďn
1ďλ,µďr

a jkλµdz j ^ dzk b e‹
λ b eµ

is a hermitian (1,1)-form with values in HompE, Eq. We say that pE, hq
is semi-positive in Griffiths’ sence [Gr69] and write ΘhpEq ě 0 if

ΘhpEqpξ b tq “
ř

a jkλµξ jξkvλvµ ě 0 for every ξ P TxX, v P Ex,

x P X. We write ΘhpEq ą 0 in case there is strict inequality for ξ ‰ 0,

mv ‰ 0. Numerical effectivity can then be characterized by the follow-

ing differential geometric criterion (see [De91]).
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Criterion 1.5. Let ω be a fixed hermitian metric on X. A vector bundle

E on X is nef if and only if there is a sequence of hermitian metrics hm

on S mE and a sequence εm of positive numbers decreasing to 0 such

that

Θhm
pS mEq ě ´mεmω b IdS mE

in the sense of Griffiths.

The main functional properties of nef vector bundles are summa-

rized in the following proposition.

Proposition 1.6. Let X be an arbitrary compact complex manifold and

let E be a holomorphic vector bundle over X.

(i) * If f : Y Ñ X is a holomorphic map with equidimensional fibres,70

then E is nef if and only if f ‹E is nef.

(ii) Let ΓaE be the irreducible tensor representation of GlpEq of high-

est weight a “ pa1, . . . arq P Zr, with a1 ě . . . ě ar ě 0, Then

ΓaE is nef. In particular, all symmetric and exterior powers of E

are nef.

(iii) let F be a holomorphic vector bundle over x. If E and F are nef,

then E b F is nef.

(iv) If some symmetric power S mE is nef pm ą 0q, then E in nef.

(v) Let 0 Ñ F Ñ E Ñ Q Ñ 0 be an exact sequence of holomorphic

vector bundles over X. Then

(αq E nef ñ Q nef.

(βq F, Q nef ñ E nef.

(γq E nef, pdet Qq´1 nef ñ F nef.

The proof of these properties in the general analytic context can be

easily obtained by curvature computations. The argumentsa are parallel

*We expect (70) to hold whenever f is surjective, but there are serious technical

difficulties to overcome in the nonalgebraic case.
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to those of the algebraic case and will therefore be omitted (see [Ha66]

and [CP91] for that case). Another useful result which will be used over

and over in the sequel is

Proposition 1.7. Let E be a nef vector bundle over a connected compact

n-fold X let σ P H0pX, E‹q be a non zero section. Then σ does not

vanish anywhere.

Proof. We merely observe that if hm is a sequence of hermitian metrics

in S mE as in criterion 5, then

Tm “ i

π
BB 1

m
log ||σm||hm

has zero BB-cohomology class and satisfies Tm ě ´εmω. It follows that

Tm converges to a weak limit T ě 0 with zero cohomology class. Thus

T “ iBBϕ for some global plurisubharamonic function ϕ on X. By the

maximum principle this implies T “ 0. However, if σ vanishes at some

point x, then all Tm have Lelong number ě 1 at x. Therefore so has T ,

contradiction. �

one of out key results is a characterizations of vector bumdles E

which are numerically flat, i.e. such that both E and E‹ are nef.

Theorem 1.8. Suppose that X is Kähler. Then a holomorphic vector 71

bundle E over X in numerically flat iff E admits a filtration

t0u “ E0 Ă E1 Ă . . . Ă Ep “ E

by vector subbundles such that the quotients Ek{Ek´1 are hermitian flat,

i.e. given by unitary representations π1pXq Ñ Uprkq.

Sketch of Proof . It is clear by 1.6 (v) that every vector bundle which

os filtrated with hermitian flat quotients is nef as well as its dual. Con-

versely, suppose that E is numerically flat. This assumption implies

c1pEq “ 0 Fix a Kähler metric ω. If E is ω-stable, then E is Hermite-

Einstein by the Unlenbeck-Yau theorem [UY86], Moreover we have

0 ď c2pEq ď c1pEq2 by Theorem 1.9 below, so c2pEq “ 0. Kobayashi’s
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flatness that E is hermitian flat. Now suppose that E is unstable and take

F Ă OpEq to be destabilizing subsheaf of minimal rank p. We then have

by definition c1pF q “ c1pdetF q “ 0 and the morphism detF Ñ ΛpE

cannot have any zero curvature current on the line bundle detF , contra-

diction). This implies easily that F is locally free, and we infer that F

is also numerically flat. Since F is stable by definition, F must be her-

mitian flat. We set E1 “ F , observe that E1 ´ E{E1 is again numerically

flat and proceed by induction on the rank. �

Another key point, which has been indeed used in the above proof, is

the fact that the Fulton-Lazarsfeld inequalities [FL83] for Chern classes

of ample vector bundles still hold for nef vector bundles over compact

Kähler manifolds:

Theorem 1.9. Let pX, ωq be a compact Kähler manifold and let E be a

nef vector bundle on x. Then for all positive polynomials p the cohomol-

ogy class PpcpEqq is numerically positive, that is,
ş

Y
PpcpEqq

Ź
ωk ě 0

for anu k and any subvariety Y of X.

By a positive polynomial in the Chern classes, we mean as usual

a homogeneous weighted polynomial Ppc1m . . . , crq with deg ci “ 2i,

such that P is a positive integral combination of Schur polynomials:

Papcq “ detpcai´i` jq1ďi, jďr, r ě a1 ě a2 ě . . . ě ar ě 0

(by convention C0 “ 1 ana ci “ 0 if i ‰ r0, rs, r “ rank E). The

proof of Theorem 1.9 is based essentially on the same artuments as the

original proof of [FL83] for the ample case: the starting point is the

nonnegativity of all Chern classes ckpEq (Bloch-Gieseker [BG71]); the

general case then follows from a formula of Schubert calculus known as72

the Kempf-Laksov formula [KL74], which express any Schur ployno-

mial PapcpEqq as a Chern class ckpFaq of some related vector bundle

Fa. The only change occurs in the proof of Gieseker’s result, where the

Hard Lefschetz theorem is needed for arbitrary Kähler metrics instead

of hyperplane sections (fortunately enough, the technique then gets sim-

lified, covering tricks being eliminated). Since c1ck´1 ´ ck

0 ď ckpEq ď c1pEqk for all k
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Therefore all Chern monomials are bounded above by corresponding

powers c1pEqk of the same degree, and we infer:

Corollary 1.10. If E in nef and c1pEqn “ 0, n “ dim X, then all Chern

polynomials PpcpEqq of degree 2n vanish.

2 Compact Kähler manifolds with nef anti-canoni-

cal line bundle

Compact Kähler manifolds with zero or semi-positive Ricci curvature

have been investigated by various authors (cf. [Ca57], [Ko61], [Li67],

[Li71], [Li72], [Bo74a], [Bo74b], [?], [Ko81] and [Kr86]). The purpose

of this section is to discuss the following two conjectures.

Conjecture 2.1. Let X be a compact Kähler manifold with numerically

effective anticanonical bundle K´1
X

. Then the fundametal group π1pXq
has polynomial growth.

Conjecture 2.2. Let x be a compact Kähler manifold with K´1
X

numer-

ically effective. Then the Albanese map α : X Ñ AlbpXq is a smooth

fibration onto the Albanese torus. If this hold, one can infer that there

is a finite étale cover rX has simply connected fibres. In particular, πipXq
would almost abelian (namely an extension of a finite group by a free

abelian group).

These conjectures are known to be true if K´1
X

is semi-positive. In

both cases, the proof is based in differential geometric techniques (see

e.g. [Bi63], [HK78] for Conjecture 2.1 and [Li71] for Conjecture 2.2).

However, the methods of proof are not so easy to carry over to the nef

case. Our main contributions to these conjectures are derived from The-

orem 2.3 below.

Theorem 2.3. Let X be a compact Kähler manifold with K´1
X

nef. Then 73

π1pXq is a group of subexponential growth.

The proof actually gives the following additional fact (this was al-

ready known before, see [Bi63]).
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Corollary 2.4. If morever ´KX is hermitian semi-positive, then π1pXq
has polynomial growth of degree ď 2 dim X, in particular h1pX,OXq ď
dim X.

As noticed by F. Campana (private communication), Theorem 2.3

also implies the following consequences.

Corollary 2.5. Let X be a compact Kähler manifold with K´1
X

nef.

Let α : X Ñ AlbpXq be the Albanese map and set n “ dim X, d “
dimαpXq. If d “ 0, 1 od n, α is surjective. The same is true if d “ n ´ 1

and if X is projective algebraic.

Corollary 2.6. Let x be a Kähler surface or a projective 3-fold with

K´1
X

nef. Then the Albanese map α : X Ñ AlbpXq is surjective.

We now explain the main ideas required in the proof of Theorem

2.3. If G is a finitely generated group with generators g1, . . . , gp, we

denote by Npkq the number of elements γ P G which can be written as

words

γ “ g
ε1

i1
. . . g

εk

ik
, ε j “ 0, 1 or ´ 1

of length ď k in terms of the generators. The group G is said to have

subexponential growth if for every ε ą 0 there is a constant Cpεq such

that

Npkq ď Cpεqeεk for k ě 0.

This notion is independent of the choice of generators. In the free group

with two generators, we have Npkq “ 1 ` 4p1 ` 3 ` 32 ` ¨ ¨ ¨ ` 3k´1q “
2 ¨ 3k ´ 1, thus a group with subexponential growth cannot contain a non

abelian free subgroup.

The first step consists in the construction of suitable Kähler metric

on X. Since K´1
X

in nef, for every ε ą 0 there exists a smooth hermitian

metric hε on K´1
X

such that

uε “ ΘhεpK´1
X

q ě ´εω.
By [Y77] and [Y78] there exists a unique kähler metric ωε in the coho-

mology class ω such that

Riccipωεq “ ´εωε ` εω ` uε. (+)
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In fact uε belongs to the Ricci class c1pK´1
X

q “ c1pXq, hence so does 74

the right hand side ´εωε ` εω` uε. In particular there exists a function

fε such that

uε “ Riccipωq ` iBB fε.

If we set ωε “ ω ` iBB fϕ (where ϕ depends on ε), equation (+) is

equivalent to the Monge-Ampère equation

´
ω ` iBB

¯n

ωn
“ eεϕ´ fε (++)

because

iBB logpω ` iBBϕqn{ωn “ Riccipωq ´ Riccipωεq
“ εpωε ´ ωq ` Riccipωq ´ uε

“ iBBpεϕ ´ fεq.

It follows from the general results of [Y78] that (++) has a unique

solution ϕ, thanks to the fact the right hand side of (++) is increas-

ing in ϕ. Since uε ě ´εω, equation (+) implies in particular that

Riccipωεq ě ´εω.

Now, recall the well-known differential geometric technique for

bounding NpKq (this technique has been explained to us in a very ef-

ficient way by S.Gallot). Let pM, gq be a compact Riemannian m-fold

and let E Ă rM be a fundamental domain for the action of π1pMq on the

universal covering rM. Fix a P E and set β ´ diam E . Since π1pMq acts

isometrically on rM with respect to the pull-back metric g, we infer that

Ek “
ď

γPπ1pMq, lengthpγqďk

γpEq

has volume equal to Npkq VolpMq and is contained in the geodesic ball

Bpa, αk ` βq, where α is maximum of the length of loops representing

the generators g j. Therefore

NpKq ď VolpBpa, αk ` βqq
VolpMq (˚)
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and it is enough to bound the volume of geodesic balls in rM. For this

we use the following fundamental inequality due to R. Bishop [Bi63],

Heintze-karcher [HK78] and M. Gage [Ga80].

Lemma 2.7. Let

Φ : Ta
rM Ñ rM, Φpζq “ expapζq

be the (geodesic) exponential map. Denote by75

Φ˚dVg “ apt, ζq dt dσpζq

the exrpression of the volume element in spherical coordinates with t P
R` and ζ P S ap1q “ unit spheren in Ta

rM. Suppose that apt, ζq does

not vanish for t Ps0, τpζqr, wiht τpζq “ `8 or apτpζq, ζq “ 0 Then

bpt, ζq ´ apt, ζq1{pm´1q satisfies on s0, τpζqr the inequality

B2

Bt2
bpt, ζq ` 1

m ´ 1
Riccigpvpt, ζq, vpt, ζqqbpt, ζq ď 0

where

vpt, ζq “ d

dt
expaptζq P SΦptζqp1q Ă TΦptζq rM.

If Riccig ě ´εg, we infer in particular

B2b

Bt2
´ ε

m ´ 1
b ď 0

and therefore bpt, ζq ď α´1 sinhpαtq wiht α “
a
ε{pm ´ 1q (to check

this observe that bpt, ζq “ t ` optqq at 0 and that sinhpαtqBb{Bt ´
α coshpαtqb has a negtive derivative). Now, every point x P Bpa, rq
can be joined to a4 by a minimal geodesic art of lenght ă r. Such a

geodesic are cannot contain any focal point (i.e. any critical value of Φ),

except possibly at the end point x. It follows that Bpa, rq is the image be

Φ of the open set

Ωprq “ tpt.ζq P r0, rrˆS ap1q; t ă τpζqu.
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Therefore

VolgpBpa, rqq ď
ż

Ωprq
Φ˚dVg “

ż

Ωprq
bpt, ζqm´1dt dσpζq.

As α´1 sinhpαtq ď teαt, we get

VolgpBpa, rqq ď
ż

S ap1q
dσpζq

ż r

0

tm´1epm´1qαtdt ď vmrme
?

pm´1qεr

(˚˚)

where vm is the volume of the unit ball in Rm.

In our application, the difficulty is that the matrix g “ ωε varies

with ε as well as the constants α “ αε, β “ βε in (˚), and αε
a

pm ´ 1qε
need nit converge to 0 as ε tents to 0. We overcome theis difficulty by

the following lemma. �

Lemma 2.8. Let U1,U2 be compact subsets of rX. Then for every δ ą 0, 76

there are closed subsets U1,ε,δ Ă U1 and U2,ε,δ Ă U2 with VolωpU jU j,ε,δq
ă δ, such that any two points x1 P U1,ε,δ, x2 P U3,ε,δ can be joined by

a path of length ď Cδ´1{2 with respect to ωε, where C is a constant

independent of ε and δ.

We will not explain the details.The basic observation is that
ż

x

ωε ^ ωn´1 “
ż

X

ωn

does not depend on ε, therefore ||ωε||L1pXq is uniformly bounded. This

is enough to imply the existence of suffciently many paths of bounded

lenght between random points taken in X (this is done for example by

computing the average lenght of piecewise linear paths).

We let U be a comnpact set containing the fundamental domain E,

so large that U˝ X gjpU˝q ‰ H for each generator g j. We apply Lemma

2.8 with U1 “ U2 “ U and δ ą 0 fixed such that

δ ă 1

2
VolωpEq, δ ă 1

2
VolωpU X g jpUqq.

We get Uε,δ Ă U with VolωpUUω,δq ă δ and diamωε ď Cδ´1{2 The

inequalities on volumes imply that VolωpUε,δ X Eq ě 1
2

VolεpEq and
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Uε,δ X g jpUε,δq ‰ H for every j (note that all g j preserve volumes). It

is then clear that

Wk,ε,,δ :“
ď

γPπ1pXq,lengthpγqďk

γpUε,δq

satisfies

VolωpWk,ε,δq ě Npkq VolωpUε,δ X Eq ě Npkq1

2
VolωpEq and

diamωεpWk,ε,δq ď k diamωε Uε,δ ď kCδ´1{2.

Since m “ dimR X “ 2n, inequality (˚˚) implies

VolωεpWk,ε,δq ď VolωεpBpa, kCδ´1{2qq ď C4k2neC5
?
εk .

Now X is compact, so there is a constant Cpεq ą 0 such that ωn ď
Cpεqωn

ε. We conclude that

NpKq ď 2 VolωpWk,ε,δq
VolωpEq ď C6Cpεqk2neC5

?
εk .

The proof of Theorem 2.3 is complete. �

Remark 2.9. It is well known and easy to check that equation (++) im-77

plies

Cpεq ď exp

ˆ
max

X
fε ´ min

X
fε

˙
.

Therefore it is reasonable to expect the Cpεq has polynomial growth

in ε´1; this would imply that π1pXq has polynomial growth by taking

ε “ k´2. When K´1
X

has a semipositive metric, we can even take ε “ 0

and find a metric ω0 with Riccipω0q “ u0 ď 0. This implies Corollary

2.4.

Proof of Corollary 2.5. If d “ 0, then by definition H0pX,Ω1
X

q “ 0 and

AlbpXq “ 0.

If d “ n, the albanese map has generic rank n, so there exist holo-

morphic 1-forms u1, . . . , un such that u1 ^ . . . ^ un ı 0. How ever
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u1 ^ . . . ^ un is a section of KX which has a nef dual, so u1 ^ . . . ^ un

cannot vanish by Proposition 1.7 and KX is trivial. Therefore u1 ^
. . . ûk . . . ^ un ^ v must be a constant for every holomorphic !-form v

and pu1, ldots, unq is a basis of H˝pX,Ω1
X

q. This implies dim ApXq “ n,

hence α is surjective.

If d “ 1, the image C “ αpXq is a smooth curve. The genus g of C

cannot be ě 2, otherwise π1pXq would be mapped onto a subgroup of

finite index in pi1pCq, and thus would be of exponential growth, contra-

dicting Theorem 2.3 Therefore C is an elliptic curve and is a subtorus of

AlbpXq. By the universal property of the Albanese map, this is possible

only if C “ AlbpXq.

The case d “ n ´ 1 is more subtle and uses Mori theory (this is why

we have to assume X projective algebraic). We refer to [DPS92] for the

details.

3 Compact complex manifolds with nef tangent bun-

dles

Several interesting classes of such manifolds are produces by the fol-

lowing simple observation.

Proposition 3.1. Every homogeneous compact complex manifold has a

nef tangent bundle.

Indeed, if X is homogeneous, the Killing vector fields generate T X,

so T X is a quotient of a quotient of a trivial vector bundle. In praticular,

we get the following

Examples 3.2. (homogeneous case)

(i) Rational homogeneous manifolds: Pn, flag manifolds,quadrics Qn

(all are Fano manifolds, i.e. projective algebraic with K´1
X

ample.)

(ii) Tori IC {Λ (Kähler, possibly non algebraic). 78

(iii) Hopf manifolds IC 0{H where H is a discrete group of homotheties

(non Kähler for n ě 2).
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(iv) Iwasawa manifolds G{Λ where G is the group of unipotent upper

triangular p ˆ p matrices and λ the subgroup of matrices with

entries in the ring of integers of some imaginary quadratic field.

eg. Zris (non Kähler for p ě, although T X is trivial).

We must remark at this point that not all manifolds X with nef tan-

gent bundles are homogeneous, the automorphism group may even be

discrete:

Example 3.3. Let Γ “ IC {pZ ` Zτq, Imτ ą 0, be ana elliptic curve.

Consider the quotient space X “ pΓˆΓΓq{G where G “ 1, g1, g2, g1g2 »
Z2 ˆ Z2 is given by

g1pz1, z2, z3q “
ˆ

z1 ` 1

2
,´z2,´z3

˙
,

g1pz1, z2, z3q “
ˆ

´z1, z2 ` 1

2
,´z3 ` 1

2

˙
,

g1g2pz1, z2, z3q “
ˆ

´z1 ` 1

2
,´z2 ` 1

2
, z3 ` 1

2

˙
.

Then G acts freely, so X is smooth. It is clear also that T X is nef

(in fact T X is unityu flat). Since the pull-back of T X to Γ ˆ Γ ˆ Γ is

trivial, we easily conclude that T X has no sections, thanks to the change

of signs in g1, g2, g1g2. Therefore the automorphism group AutpXq is

discrete. The same argument shows that H0pX,Ω1
xq “ 0.

Example 3.4. Let X be the ruled surface bbPpEq over the elliptic curve

Γ “ ICpZ` Zτq defined in Example 1.2. Then the relative tangent bun-

dle of bbPpEq Ñ Γ(=relative anticanonical line bundle) is π‹pdet E‹q b
OEp2q » OEp2q and TΓ is trivial, so T X is nef. Moreover X is almost

homogeneous, with automorphisms induced by

px1, z1, z2q ÞÑ px ` a, z1 ` b, z2q, pa, bq P IC2

and a single closed orbit equal to the curve tz2 “ 0u. Here, no finite

étale cover of X can be homogeneous, otherwise K´1
X

“E p∈q would be
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semi-positive. Observe that no power of K´1
X

is generated by sections,

although K´1
X

in nef.

Our main result is structure theorem on the Albanese map of com-

pact Kähler manifolds with nef tangent bundles.

Main Theorem 3.5. Let X be a compact Kähler manifold with nef tan- 79

gent bundle T X. Let rX, be a finite étale cover of X of maximum irregu-

larity q “ qprXq “ h1prX,OrXq. Then

(i) π1prXq » Z2q .

(ii) The albanese map α : rX Ñ AprXq is a smooth fibration over a

q-dimensional torus with nef relative tangent bundle.

(iii) The fibres F of α are Fano manifolds with nef tangent bundles.

Recall that a Fano manifold is by definition a compact comples man-

ifold with ample anticanonical bundle K´1
X

. It is well known that Fano

manifolds are always simply connected (Kobayashi [Ko61]). As a con-

sequence we get

Corollary 3.6. With the assumtions of 3.5. the fundamental group π1pXq
is an extension of a finite group by Z2q .

In order to complete the classification of compact Kähler maniflods

with nef tangent bundles (up to finite étale cover), a solution of the fol-

lowing two conjectures would be nechap5-enum-(i)eded.

Conjecture 3.7. (Campana- Peternell [CP91]) Let X be ab Fano mani-

fold Then X has a nef tangent bundle of and only if X i rational homo-

geneous.

The evidence we have for Conjecture 3.7 is that it is true up to di-

mension 3. In dimension 3 there are more than 100 different types of

Fano manifolds, but only five types have a nef tangent bundle, namely

bbP3, Q3 (quadric), P1 ˆP2, P1 ˆP1, P1 ˆP1 and the flag manifold F1,2

of lines and planes in IC3;m all five are homogeneous.
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A positive solution to Conjecture 3.7 would clarify the structure of

fibers in the Albanese map of Theorem 3.5. To get a complete picture

of the situation, one still needs to know how the fibers are deformed

and glued together to yield a holomorphic family over the Albanese

torus. We note that K´1
rX is relatively ample, thus for m large the fibres

can be embedded in the projectivized bundle of the direct image bundle

α˚pK´m

rX . The structure of the deformation i described by the following

theorem.

Theorem 3.8. In the situation of Theorem 3.5, all direct image bundles

Em “ α˚pK´m

rX q are numerically flat over the Albanese torus. Moreover,

for p " m " 0, the fibers of the Albanese map can ne described as Fano

submanifolds of the fibers of IPpEmq defined by polynomial equations of

degree p, in such a way that the bundle of equations Vm,p Ă S ppEmq is

itself numerically flat.

Theorem 3.8 is proved in [DPS91] in case X is projective algebraic.80

The extension to the Kähler case has been obtatined by Ch. Mourougane

in his PhD Thesis work (Grenoble, still unpublished). We now explain

the main steps in the proof of Theorem 3.5 One of the key points is the

following

Proposition 3.9. Let X be a compact Kähler n-fold with T X nef. Then

(i) If c1pXqn ą 0, then X is a Fano manifold.

(ii) If c1pXqn “ 0, then χpOXq “ 0 and there exists a non zero holo-

morphic p-form, p suitable odd and a finite étale cover rX Ñ X

such that qprXq ą 0.

Proof. We first check that every effective divisor D of X in nef. In fact,

let σ P H0pX,OpDqq be a section with divisor D. Then for k larger

than the maximum vanishing order of σ on X, the k-jet section jkσ P
H0pX, jkOpDqq has no zeroes. Therefore, there is an injection O Ñ
JkOpDq and a dual surjection

pJkOpDqq‹ b OpDq Ñ pDq.
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Now , JkOpDq has a filtration whose graded bundle is
À

0ďpďk S pT ‹Xb
OpDq, so pJkOpDqq‹ b OpDq has a dual filtration with graded bundleÀ

0ďpďk S pT X. By 1.6 (70) and 1.6 (v)(β), we conclude that pJkOpDqq‹b
OpDq is nef, so its quotient OpDq in nef by 1.6 (v) (α).

Part (70) is based on the solution of the Grauert-Riemenschneider

conjecture as proved in [De85]. Namely, L “ K´1
X

“ ΛnT X is nef and

satisfies c1pLqn ą 0, so L has Kodaira dimension n (holomorphic More

inequalities are needed at that point because X is not suppose a priori to

be algebraic). It follows that X is Moishezon,thus projective algebraic,

and for m ą 0 large we have Lm “ OpD ` Aq with divisors D, A such

that D is effective and A ample. Since D must be in fact nef, it follows

that L “ K´1
X

is ample, as desired.

The most difficult part is (ii). Since c1pXqn “ 0, Corollary 1.10 im-

plies χpOXq “ 0. By Hodge symmetry, we get h0pX,Ω
p

X
q “ hppX,OXq

and

χpOXq “
ÿ

0ďpďn

p´1qph0pX,Ω
p

X
q “ 0.

From this and the fact that h0pX,OXq “ 1, we infer the existence of a

non zero p-form u for some suitable odd number p. Let

σ : Λp´1T X Ñ Ω1
X

be the bundle moriphism obtained by contracting pp ´ 1q-vectors with 81

u. For every k ą 0, the morphism Λkσ can be viewed as section of the

bundle ΛkpΛp´1T ‹Xq bΛkT ‹X which has nef dual. Hence by Proposi-

tion 1.7 we know the Λkσ is either identically zero or does not vanish.

This mean is that σ has constant rank. Let E be the image of σ. Then

E is a quotient bundle of Λp´1T X, so E in nef, and E is subbundle of

Ω1
X

“ T ‹X, so E‹ is likewise nef. Theorem 1.8 implies the existence of

a hermintian flat subbundle E1 Ă E. If E1 would be trivial after pulling-

back to some finite etale cover rX, we would get a trivial subbundle of

Ω1
rX , hence qprXq ą 0 and the proposition would be proved. Otherwise

E1 is given by some infinite representation of π1pXq inti some unitary

group. Let Γ be the monodromy group (i.e. the image of π1pXq by the

representation). We use a result of Tits [Ti72] according to which every
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subgroup contains either a non abelian free subgroup or a solvable sub-

group of finite index. The first case cannot occur by Theorem ??.?. In

the second case,we may assume Γ solvable by taking some finite étale

cover. We consider the series of derived groups

Γ Ą Γ1 Ą . . . Ą ΓN “ 0

and the largest index k such that Γk has finite index in Γ. Then the

inverse image of Γk in π1pXq defines a finite étale cover rX of X with

infinite first homologu group (the representation maps this group onto

Γk{Γk`1 which is infinite). Hence qprXq ą 0, as desired. �

Proof of the Main Theorem. Let X be compact Kähler mainfold with

nef tangent bundle. Since a son zero holomorphic form u P H0pX,Ω1
X

q
can never vanish by Proposition 1.7, it follows immediately that the Al-

banese map α has rank to qpXq at very point, hence α is a submersion

and qpXq ď n. Let prXq be a finite étale cover with maximum irregularity

q “ qprXq (note that prXq also a nef tangent bundle, so qprXq ď n). let

F denote the fibers of the Albanese map α : prXq Ñ AprXq The relative

tangent bundle exact sequence.

0 Ñ T F Ñ T X
dαÝÑ α‹T ApXq Ñ 0.

in which T ApXq is trivial shows by 1.6 (v)pγq that T F in nef. Lemma

3.10 (iii) below implies that all finite étale covers rF of F satisfy qprFq “
O. Hence the fibers F must be Fano by proposition 3.9 and the main

Theorem follows. �

Lemma 3.10. Let X,Y be compact Kähler manifolds and let g : X Ñ Y

be a smooth fibration with connected fibers. We let qpXq be the irreg-

ularity of X and rqpXq be the sup of the irregularity of all finite étale

covers. If F denotes any fibre of g, then

(i) qpXq ď qpYq ` qpFq,82

(ii) rqpXq ď rqpYq ` rqpFq.
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(iii) Suppose that the boundary map π2pYq Ñ π1pFq is zero, that π1pFq
contains an abelian subgroup of finite indes and that Y contains

a subvariety S with π1pS q » π1pYq, such that any two generic

points in the universal covering Ŝ can be joined thorugh a chain

of holomorphic images IC Ñ Ŝ . Then

rqpXq “ rqpYq ` rqpFq.

The proof is based on a use of the Leray spectral sequence and a

study of the resultig monodromy on H1pF, ICq. Triviality of the mon-

odromy is achieved in case (iii) becase all Kähler deformations of tori

over Y must be trivial. We refer the reader to [DPS91] for the details. In

our application, Y is taken to be the Albanese torus, so assumption (iii)

is satisfied with S “ Y (π1pFq contains an abelian subgroup of finite

indes thanks to Corollary 3.6, by using an induction on dimension).

4 Classification in dimension 2 and 3

By using the Kodaira classification of surface and the structure theorems

of Section 3, it is not difficult to classify all Kähler surface with nef

tangent bundles; except for tori, the Kähler classification in identical to

the projective one. The projective case was already mentioned in [CP91]

and [Zh90].

Theorem 4.1. Let X be a smooth Kähler surface such that T X is nef.

Then X is minimal and is exactly one of the surfaces in the following

list:

(i) X is torus;

(ii) X is hyperellipitic;

(iii) X “ P2;

(iv) X “ P1 ˆ P1;
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(v) X “ PpEq, where E is a rank 2-vector bundle on an elliptic curve

C with either

[pαq ] E “ O‘ L, L P Pic0pCq, or

[pβq ] E is given by a non split extension 0 Ñ O Ñ E Ñ L Ñ 083

with L “ O or deg L “ 1.

The list of non-kähler surfaces in the Kodaira classification is much

smaller. It is then rather easy to check nefness in each case:

Theorem 4.2. The smooth non Kähler compact comlex surface with nef

tangent bundles are precisely:

(i) Kodaira surfaces (that is surfaces of Kodaira dimension 0 with

b1pXqx odd);

(ii) Hopf-surfaces (that is, surfaces whose universal cover is IC2 0).

A similar classification can be obtained for 3-dimensional compact

Kḧler manifolds.

Theorem 7.1. Let X be a Kähler 3-fold. Then T X in nef if and only if X

is up to finite étale cover one of the manifolds in the following list:

(i) X “ P3;

(ii) x “ Q3, the 3-dimensional quadric;

(iii) X “ P1 ˆ P2;

(iv) X “ F1,2, the flag manifolds of subspaces of IC3;

(v) X “ P1 ˆ P1 ˆ P1;

(vi) X “ PpEq, with a numerically flat rank 3-bundle on an elliptic

curve C;

(vii) X “ PpEqˆCPpFq, with E, F numerically flat rank 2-bundles over

an elliptic curve C;
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(viii) X “ PpEq, with E a numerically flat rank 2-bundle over a 2-

dimensional complex torus;

(ix) X “ 3-dimensional complex torus.

The only non-algebraic manifolds appear in classes (viii) and (ix)

when the Albanese torus is not algebraic. Let us mention that the classi-

fication of projective 3-flods with nef tangent bundles was already car-

ried out in [CP91] and [Zh90]. In addition to Theorem 3.5, the main

ingredient is the classfication of Fano 3-folds by Shokrov and Mori-

Mukai. An insepection of the list yields the first classes (i)-(v)
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généralisée non négative, J. Diff. Geom. 6 (1971) 47-94.

[Li72] Lichnerowicz. A, Variétés Kählériennes à première classe de
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Algebraic Representations of Reductive Groups

over Local Fields

William J. Haboush*

Introduction
87

This paper is an extended study of the behaviour of simplicial co- sheaves

in the buildings associated to algebraic groups, both finite and infinite

dimensional. Recently the theory of simplicial sheaves and co-sheaves

has found a number of important applications to the representation the-

ory and cohomology theory of finite theory of finite groups (see [T],

[RS]), the computations of teh cohomology of arithmetic groups and the

problem of admissible representatiosn of P-adic groups and teh Lang-

lands classification ([CW], [BW]). My interest has been, for the most

part, the representation theory of semi-simple groups over fields of pos-

itive characteristic. In this area, of course, the driving force of much

recent work has been the so-called Lusztig characteristic p conjecture

[L1] (so called to distinguish it from a number of other equally intersect-

ing Lusztig conjectures). In contemplating this conjecture one is struck

by certain resonances with work in admissible representations etc.

The line of argument I am hoping to achieve is something like this.

One should attempt to use the homoligical algebra of simplicial co-

sheaves to construct a category of representations of something like

the loop group associated to th semisimple group, G, which have com-

putable character theory. Then one should attempt to express the finite

dimensional representations of G as virtual representations in the cat-

egory. Then presumably the “generic decomposition patterns” should

be formulae expressing the character of a dual Weyl module in terms

of these computable characters. The hope of constructing such a theory

has led me to conduct the rather extended exploration below.

*This research was founded in part by the National Science Foundation
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One is immediately tempted to replace harmonic analysis with a

purely algebraic theory and to use this theory to do the representation-

theoretic computations necessary. My replacement for harmonic analy-88

sis is this. Let G be algebraic of simple type over Z. Let K be a field

complete with respect to a discrete rank one valuations, let O be the val-

uation ring and let L be its residue field. Then consider the Bruhat-Tits

building of GpKq. It is a simplicial complex. Let G “ GpKq. Let I

be its Bruhat-Tits building. Then I is G equivariant. Let k be another

field. My idea is to consider the category of G equivariant co-sheaves

of k-vector spaces which are, in some sense made precise within, lo-

cally algebraic. Then in a manner entirely analogous to the classical

notion of rational of rational representative functions, this category ad-

mits an injective co-generator. The endomorphism ring of this canonical

co-generator is a certain algebra. Let it be denoted H . [T] shows that

for suitably finite bG is a certain algebra. Let it be denoted H-module.

Then one may sent the class of a finite dimensional G- representation

to the alternating sum of the left derived functors of the co-limit of its

induced G-co-sheaf in the Grothendieck ring of H . In this context that

one would hope to obtain interesting identities relating finite dimen-

sional representation theory to the representation theory ofH .

I have made certain choices in this discussion. As I am discussing

sheaves and co-sheaves on simplicial complexes, I have decided to use

the word carapaces for co-sheaves. There are three reasons: the first

is that the word, co-sheaves, seems rather cobbled together, the second

is that a carapace really would look like a lobster shell or such if one

were to draw one and the third is the Leray used the word for sheaves

and I don’t like to see such a nice word go to waste. am working for

the most part with carapaces rather than sheaves because I am working

on an infinite simplicial complex and in moving form limit to co-limit,

one in moving from an infinite direct product sort of thing to an infi-

nite co-product sort of thing. Thus,in using limits rather than co-limits,

one loses structure just as one does in taking an adic completion of a

commutative ring. I have also decided to include a discussion of the

homological algebra of carapaces. Now all of this material is some sort

of special case of certain kinds of sheaves on sites or the homologi-
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cal algebra of abelian group valued functors, but with all due apologies

to those who have worked on those topics, I would prefer to formu-

late this material in a way which anticipates my intentions. A number

of mathematicians have done this sort of thing. Tits and Solomon [S],

[T], Stephen Smith and mark Ronan [RS] immediately come to mind.

But again, working on a infinite complex has dictated that I reformulate

many of the elements for this situation.

1 Carapaces and their Homology
89

Basic references for this section are [Mac] and [Gr]. Basic notions and

definition all follow those two sources. A simiplicial complex, X, will

be a set verpXq together with a collection of finite subsets of verpXq such

that when ever σ P X every subset of σ is in X. These finite subsets of

verpXq are the simplices of X. The dimension ofσ is its cardinal less one

and the dimension of X, if it exists,is the maximum of the dimensions of

simplices in X. We shall view X as a category, the morphisms being the

inclusions of simlices. We identify verpXq with the zero simplices of X.

If X and Y are simplicial complexes a morphism of complexes from X

to Y is just a convariant functor from X to Y; a simplicial morphism is a

morphism of complexes taking vertices to vertices.

Let R be a commutative ring with unit fixed for teh remainder of

this work and let ModpRq denote the category of R-modules. Let X be a

simplicial complex.

Definition 1.1. An R-carapace on X is a convariant functor from X

to ModpRq. If A and B are two R-carapaces on X, a morphism of R-

carapaces from A to B is a natural transformation of functors.

If A is an R-carapace on X and σ P X is a simplex, then Apσq
is called the segment of A along σ. A sequence of morphisms of R-

carapaces will be called exact if and only if the corresponding sequence

of segments is exact for each simplex in X. The product (respectively co-

product) of a family of R-carapaces is the R-carapace whose segments

and morphisms are the products (respectively co-products) of those in
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the family of carapaces. If σ Ď τ is a pair of simplices in X write eτ
A,σ

or eτσ when there is no possibility of confusion for the map from Apσq
to Apτq. I will call it the expansion of A form σ to τ. Finally, if A and

B are two R-carapaces on X, write HomR,XpA, Bq for the R-module of

morphisms of R-carapaces from A to B.

Let M be an R-module. Then let MX denote the constant carapace

with value M. That is, its segment along any simplex is M and its ex-

pansions are all the identity map. In addition for any given simplex, σ,

there are two dually defined carapaces, M Òσ and M Óσ defined by:

M Òσ pτq “ Mpσ Ď τq
M Òσ pτq “ p0qpσ Ę τq (1.2)

M Óσ pτq “ M pσ Ě τq
M Óσ pτq “ p0q pσ Ğ τq (1.3)

90

In M Òσ, the expansions are the identity for paris τ, γ such that

σ Ď τ Ď γ and 0 otherwise. In M Óσ they are the identity for τ, γ such

that τ Ď γ Ď σ and 0 otherwise.

Lemma 1.4. Let X be a simplicial complex and let M be an R-module

and let A be an R-carapace on X. Then,

1. HomR,XpM Òσ, Aq “ HomRpM, Apσqq

2. HomR,XpA, M Óσq “ HomRpApσq, Mq

3. If M is R-projective, then M Òσ is projective in teh category of R-

carapaces on X.

4. If M is R-injective, then M Óσ is injective in the category of R-

carapaces on X.

Proof. Statements (1) and (2) require no proof. Note that the functor

which assigns to an R-carapace on X its segment along σ is an exact

functor This observation together with (1) and (2) implies (3) and (4).

�
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Proposition 1.5. Let X be a simplicial complex. Then the category of

R-carapaces on X has enough projectives and enough injectives.

Proof. Let A be any R-carapace on X. We must show that there is a

surjective map from a projective R-carapace to X and an injective map

from A into an injective R-carapace. For each simplex, σ in X choose

a projective R-module, Pσ, with a surjective map πσ mapping Pσ onto

Apσq. Let

P “
ž

σPX

Pσ Òσ

For each σ, let πσ be the morphism of carapaces corresponding to πσ
given by 1.4, 1. Define π by:

π “
ž

σPX

πσ.

Then π is a surjective map from a projective to A. 91

To construct an injective, choose an injective module and an inclu-

sion, jσ : Apσq Ñ Iσ. Then define an injective carapace, I, and an

inclusion, j, as products of the carapaces Iσ Óσ and inclusions jσ de-

fined dually to the corresponding objects in the projective case. �

Proposition 1.6. Let X be a simplicial complex. Then

(1) If P is a projective R-caparapace on X, then Ppσq is R projective

for each σ P X.

(2) If I is an injective R-carapace on X, then Ipσq is R injective for each

σ P X.

Proof. Suppose P is projective. For each σ let πσ : Fσ Ñ Ppσq be

a surjective map from a projective R-module onto Ppσq. Then Q “š
σPX Fσ Òσ is projective by 1.4 and

š
σPX πσ maps Q onto P. Since P

is projective, it is a direct summand of Q. But then Ppσq is a direct sum-

mand of Qpσq “
š

τĎσ Fτ which is clearly projective. This establishes

the first statement.

To prove the second statement, for each σ choose and embedding,,

jσ : Ipσq Ñ Jσ where Jσ in R-injective. Then use
ś

σPX to embed I in
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ś
σPX Jσ and reason dually to the previous argument replacing, at each

point where it occurs, the co-product with the product. �

It is clear that there are natural homology and cohomology theories

on the category of R-carapaces on X. The most natural functors to con-

sider are the limit and the co-limit over X. To simplify the discussion,

CarRpXq denote the category of R-carapaces on X.

Definition 1.7. Let U denote any sub-category of X, and let A be an

R-carapace on X. Then

ΣpU, Aq “ limÝÑ
σPU

Apσq

ΓpU, Aq “ limÐÝ
σPU

Apσq.

We will refer to ΣpU, Aq as the segment of A over U and to ΓpU, Aq as

the sections of A over U.

Certain observation are in order. Since subcategories of X are cer-

tainly not in general filtering the functor, ΣpU, ?q, is right exact on CarRpXq.

Similarly ΓpU, ?q is left exact. Furthermore ΓpU, Aq “ HomR,UpRU , Aq,

On the other hand, ΣpU, Aq cannot be represented as a homomorphism

functor in any obvious way but its definition as a direct limit allows us92

to conclude that:

HomRpΣpX, Aq, Mq “ HomR,XpA, MXq

Definition 1.8. For any R-carapace on X, A, let

HnpX, Aq “ LnΣX, A

and let

HnpX, Aq “ RnΓpX, Aq
the left and right derived functors of ΣpX,´q and ΓpX,´q respectively.

These groups shall be referred to as the expskeletal homology and co-

homology groups of X with coefficients in A.
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Example 1.9. The Koszul Resolution of the Constant Carapace.

Choose an ordering on the vertices of X. For each r ě 0, let Xprq de-

note the set of simplices of dimension r. Let KqpX,Rq “
š

σPXpqq
R Òσ.

If A is any R-carapace on X, then
Źq

R
A is understood to be the carapace

whose segment along σ is
Źq

R
pApσqq. Then, it is not at all difficult to

see that
Źq`1

R
K0pX,Rq “ KqpX,Rq Furthermore, when σ Ď τ there is

always a natural map from M Òτ to M Òσ obtained by applying 4,1 to

M Òτ and noting that since M Òσ pσq “ M “ M Ò pτq there is a map in

HomR,XpM Òτ, MM Òσq corresponding to the identity. Make use of the

ordering on the vertices of X to define an alternating sum of the maps

corresponding to the faces of a simplex. It is easy to see the that this

gives a complex of carapaces:

. . . Ñ pX,Rq Ñ Kq´1pX,Rq Ñ . . . Ñ K0pX,Rq Ñ RX Ñ p0q

Then check that the sequence of segments on σ is just the standard

Koszul resolution of the unit ideal which begina with a free module of

rank dimpσq ` 1 and the map which sends each of its generators to one.

Consequently, this construction gives a resolution of the constant cara-

pace by projectives. On the other hand it is evident that σpX,KqpX,Rqq
is just the R-module of simplicial q-chains on X with coefficients in R

and that the boundaries are the standard simplicial boundaries. In this

way, one verifies that the exoskeletal homology and cohomology with

coefficients in a constant carapace is just the simplicial homology and

cohomology. This phenomenon has been observed and exploited by

Casselman and Wigner in their work on admissible representations and

the cohomology of artihmetic groups [CW].

2 Operations on Carapaces
93

In the category of R-carapaces on X there is a self-evident notion of

tensor product:

Definition 2.1. Let A and B be two R-carapaces on X. Let:

pA bR Bqpσq “ Apσq bR Bpσq
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Then A bR B is a carapace which we will refer to as the tensor product

of A and B.

The properties of the tensor product are for the most part clear. Most

of them are stated in the following.

Proposition 2.2. Let X be a simplicial complex. Then the tensor product

of R-carapaces on X is an associative, symmetric, bi-additive functor

right exact in both variables. Furthermore:

(1) For any R-carapace, A, RX bR A » A

(2) If P is a projective R-carapace then tensoring with P on either side

is an exact functor.

(3) For any two R-carapaces, A and B, there is a natural map:

tA,B : ΣpX, A bR Bq Ñ ΣpX, Aq bR ΣpX, Bq

Moreover, tA,B is a natural transformation in A and B and it is func-

torial in X as well.

Proof. The first statement is self-evident; the second follows trivially

from 1.6 but the third might require some comment. To construct tA,B let

eA,σ : Apσq Ñ ΣpX, Aq and eB,σ : BpΣq Ñ ΣpX, Bq be the expansions.

Then eA,σ bR eB,Σ maps A bR Bpσq into ΣpX, Aq bR ΣpX, Bq compatibly

with respect to expansion. Since ΣpX, A bR Bq is a colimit, this defines

tA,B uniquely and ensures that it is functorial as asserted. �

The construction of a tensor product is thus quite straightforward but

the construction of an internal homomorphism functor with the requisite

adjointness properties presents certain technical difficulties. For any σ P
X let xpσq denote the subcategory of X whose objects are the simplices

τ such that τ Ě σ. The morphisms of Xpσq are inclusions of simplices.

Then Xpσq is not a subcomplex of X. Ifσ Ď τ then Xpτq Ď Xpσq. There

is a natural restriction map from the group HomR,XpσqpA|Xpσq, B|Xpσqq
to HomR,XpτqpA|Xpτq, B|Xpτqq. We will will write eτ

H ,σ
for this restriction

map.
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Definition 2.3. Let A and B be two R-carapaces on X. The carapace94

of local homomorphisms Fro A to B will be written HomR,XpA, Bq. Its

value on σ is

HomR,XpA, Bqpσq “ HomR,XpσqpA|Xpσq, B|Xpσqq

Its expansions are the maps eτ
H ,σ

For want of a direct reference, we include some discussion of the

basic properties ofHom.

Theorem 2.4. The local homorophism functor, HomR,XpA, Bq, is addi-

tive, covariant in B and contravariant in A and left exact in both vari-

ables. Moreover

(1) HomR,XpRX , Aq » A, functorially in A

(2) ΓpX,HomR,XpA, Bqq “ HomR,XpA, Bq

(3) There is a canonical isomorphism functorial in A, B, and C,

φ : HomR,XpA,HomR,XpB,Cqq Ñ HomR,XpA bR B,Cq

(4) There is a functorial isomorphism:

HomR,XpRX ,HomR,XpA, Bqq » HomR,XpA, Bq

Proof. Of the three preliminary statements, only left exactness requires

comment. What must be shown is the left exactness of segments of

HomR,XpA, Bq as A and B vary over short exact sequences. But

HomR,XpA, Bqpσq “ HomR,XpσqpA|Xpσq, BXpσqq. Restriction to Xpσq
is exact and HomR,Xpσq is left exact in both of its arguments. The req-

uisite left exactness follows immediately.

To establish (1), we must establish the isomorphism on segments.

But

HomR,XpRX , Aqpσq “ HomR,XpσqpRX , A|Xpσqq,
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but this last expression is equal to:

limÐÝ
τPXpσq

Apτq.

However the category, Xpσq has an initial element and so the projective

limit is just Apσq.

For Statement (2), write:95

ΓpX,HomR,XpA, Bqq “ limÐÝ
τPX

pA|Xpσq, B|Xpσqq

There is a natural map from ΓpX,HomR,XpA, Bqq to this projective limit.

Just send f to the element in the limit whose component at σ is the

restriction (the pull-back actually) of f to the sub-category, Xpσq. It is

a triviality to verify that this map is an isomorphism.

Rather than giving a fully detailed proof of (3), we will give com-

plete definitions of φ and a map ψ which is inverse to it. The necessary

verifications, though numerous and quite technical, contain no surprises

and so we leave them to the reader. First suppose

f P HomR,XpA,HomR,XpB,Cqq. Then for a P Apσq, fσpaq is a family,

fσpaq “ t f paqτuτĚσ where f paqτ P HomRpBpτq,Cpτqq. The following

equations express the facts that f is a carapace morphism and that f paq
is carapace morphism from B|pσq to C|xpσq:

fτpeτA,σpaqqγ “ fσpaqγ (2.1)

e
γ

C,τ
˝ fτpaqτ “ fτpaqγ ˝ e

γ

B,τ
(2.2)

Then we may define φ : HomR,XpA,HomR,XpB,Cqq Ñ HomR,XpA bR

B,Cq and ψ opposite to it by the equation:

φp f qσpa b bq “ r fσpaqσspbq a P Apσq, b P Bpσq (2.3)

rφpFqσpaqsτpbq “ fτpreτA,σpaq b bq a P Apσq, b P Bpτq (2.4)

These are the two maps, inverse to one another, which establish (3).

The last statements is obtained by applying the third to the left hand

side and observing that RX bR A » A. �

110



Algebraic Representations of Reductive Groups over Local Fields 111

3 Derived Functors

In this section we introduce the most elementary derived functors on

CarRpXq. These include the derived functors of both the module val-

ued and the carapace valued tensor and homomorphism functors and

the relation between the two. First recall that by 1.4, whenever P is a

projective R-module and σ is a simplex in X then P Òσ is a projective

R-carapace. Consequently a coproduct of carapaces of the form F Òσ,

where F is a free R-module, is a projective R-carapace. We will refer to

such carapaces as elementary projectives. Furthermore notice that if M

is any R-module then σpX, M Òτq “ M. Hence if Q is an elementary

projective, σpX,Qq is a direct sum of free modules and hence free.

Lemma 3.1. Let X be any simplicial complex. 96

(1) Every R-carapace on X is a surjective image of an elementary pro-

jective.

(2) If P is a projective R-carapace on X, then σpX, Pq is R-projective.

(3) A tensor product of elementary projectives is an elementary projec-

tive.

(4) A tensor product of projectives is projective.

Proof. Let A be an R-carapace on X. For each σ P X let Fσ be a free

R-module and let qσ : Fσ Ñ Apσq be surjective morphism. Then, just

as in 1.5,
š

σPX Fσ Òσ is an elementary projective and
š

σPX Qσ maps

in onto A. Thus 1) is established.

To prove 2), choose an elementary projective, F, and a surjective

map, q : F Ñ P. Since P is projective, it is a direct summand of F and

so σpX, Pq is direct summand of σpX, Fq which is free. This establishes

2.

The fourth statement follows from the third because, by 1, every pro-

jective is a direct summand of an elementary projective. Hence we must

prove 3). But this reduces to proving that is σ and τ are two simplices,

then R Òσ bRR Òτ is elementary projective. But R Òσ bRR Òτ pγq ‰ 0
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if and only if γ Ě σ and γ Ě τ. Thus R Ò bRR Òτ‰ p0q if and only

if σ Y τ “ α is a simplex and then R Òσ bRR Òα. This establishes the

result. �

There are at least four very obvious homological bifunctors on

CarRpXq

Definition 3.2. Let A and B be R-carapaces on X. Write ExtrR,X for

the r’th right derived functor of the left exact module valued bifunc-

tor, HomR,Xpa, Bq. Write Ext
q

R,X
for the carapace valued q’th right de-

rived functor of the carapace valued local homomorhism functor. Write

T or
R,X
q pA, Bq for the q’the carapace valued left derived functor of the

carapace valued tensor product, A bR B and write Tor
R,X
q pA, Bq for the

q’th left derived functor of the right exact bifunctor σpX, A bR Bq.

Lemma 3.3. If P is a projective R-carapace on X, then for any R-

carapace, A, P bR A is σ-acyclic andHomR,XpP, Aq is Γ-acyclic.

Proof. Let tQ ju, j ď 0 be a projective resolution of A. Then tP bR Q ju
is a projective resolution of P bR A. Apply the functor σ to obtain

Tor
R,X
j

pA, Pq “ H jpA bR Pq. But Tor
R,X
j

pA, Pq “ p0q because P is

projective. This establishes the σ-acyclicity of A bR P. For the other

acyclicity, let tK ju be a projective resolution of RX . Then HomR,XpK j,97

HomR,XpP, Aqq “ HomR,xpK j bR P, Aq. But K j b P is a projective

resolution of P. Thus H jpX,HomR,XpP, Aqq “ Ext
j

R,X
pP, Aq which is

p0q because P is projective. �

The elementary properties of these four functors are described in the

following.

Proposition 3.4. Let A and B be R-carapaces on X, Then

(1) T or
R,X
q pA, Bqpσq “ TorR

q pApσq, Bpσqq

(2) Tor
R,X
q pRX , Aq “ HqpX, Aq

(3) Ext
q

R,X
pRx, Aq “ HqpX, Aq
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(4) There is a spectral sequence with E
p,q

2
term:

E
p,q

2
“ HppX,Ext

q

R,X
pA, Bqq

and whose abutment is:

Ext
p`q

X,R
pA, Bq

(5) There is a spectral sequence with E2
p,q term:

E2
p,q “ HppX,T orR,X

q pA, Bqq

and with abutment:

Tor
R,X
p`qpA, Bq

Proof. To prove 1), let P j be a projective resolution of A. Then for each

σ, tP jpσqu is a projective resolution of Apσq. Moreover the segment

of P j bR B along σ is P j bR bpσq. But the segment along σ is an

exact functor on CarRpXq and so the σ-segment of the homology of the

complex, P j bR B is the homology of the complex P jpσq bR Bpσq. This

is just the result desired.

Statements 2 and 3 are both essentially trivial. Just note that

Tor
R,X
q pRX , Aq (respectively Ext

q

R,X
pRX , Aq) is a connected sequence of

homological functors acyclic on projectives (respectively injectives) and

that Tor
R,X

0
pRX , Aq “ ΣpX, Aq (respectively Ext0R,XpRX , Aq “ ΓpX, Aqq.

The two statement follow.

The local global spectral sequences in 4) and 5) ar just composi-

tion of two functor sequences as in [Gr]. Let FApBq “ A bR B and

let GApBq “ HomR,XpB, Aq. By Lemma 3.3, FA carries projectives to

Σ-acyclics and GA carries projectives to Γ-acyclics. The left derived

functors of FA are the functors, T or
R,X
q pA,´q while the right derived

functors ofGA are the functors, Hom
q

R,X
pA,´q. The construction of the

spectral sequences is standard. �
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4 Homological Dimension
98

In this section we will determine the homological dimension of CarRpXq
for a finite dimensional simplicial complex, X. Write Xr for the set of

simplices in X of dimension r and write Xn for
Ť

rěn Xprq. If M is an R-

module,write pdpMq for the projective dimension of M and write hdpRq
for the homological dimension of R.

Definition 4.1. Let A be an R-carapace on X.

(1) Write spAq ď n if Apσq “ p0q whenever dimpσq ă n and let spAq “
in f tn : spAq ď nu. Then spAq is called the support dimension of A.

(2) We say that A is locally bounded if pdpApσqq ď q for some fixed

q ě 0. In that case let ldpAq “ suptpdpApσqq : σ P Xu. When it

exists, ldpAq is called the local projective dimension of A.

Proposition 4.2. Suppose that A is an R-carapace on X of support di-

mension at least n and local projective dimension r. Then there is an

exact sequence:

0 Ñ A1 Ñ Pr Ñ . . . Ñ P0 Ñ A Ñ 0 (4.3)

so that:

(1) ldpA1q “ 0

(2) Pi is projective

(3) spA1q ě n ` 1

(4) spPiq ě n

Proof. For each σ P Xn choose a projective module, Qσ and a surjective

morphism, φσ : Qσ Ñ Apσq Ñ 0. For each σ, let φσ : Qσ ÒσÑ A be

the morphism of carapace induced by φσ. Let Q0 “
š

σPXn
pQσq Òσ and

let d0 “
š

σPXn
φσ. Since spAq ď n, d0 in surjective. Let N0 “ kerpd0q.

Then, clearly spN0q ď n but ldpN0q ď r ´ 1. Thus we may repeat the
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process the process with A replaced by N0 and continue inductively until

we obtain an exact sequence:

0 Ñ Nr´1 Ñ Qr´1 Ñ . . . Ñ Q0 Ñ A Ñ 0.

In this sequence, the Qi are projective, the support dimensions of the Qi

and of Nr´1 are at least n and ldpNr´1q are at least n and ldpNr´1q “ 0.

That is Nr´1pσq is projective for each σ. Now let 99

Qr “
ž

σPXn

pNr´1pσqq Òσ .

Clearly, Qr maps onto Nr´1 and the map is an isomorphism on segments

over simplices of dimension n. Let dr be the composition of the map

onto Nr´1 with the inclusion into Qr´1 and let A1 “ kerpdrq. Clearly,

A1 and the Qi answer the requirements of the proposition. �

Theorem 4.4. Let X be a simplicial complex of dimension d and let A

be a locally bounded R-carapace on X of local projective dimension r.

Then pdpAq ď d ` r.

Proof. Apply Proposition 4.2 with n “ 0. The result is the exact se-

quence:

0 Ñ A1 Ñ Pr Ñ . . . Ñ P0 Ñ A Ñ 0

Then apply 4.2 to A1 observing that ldpA1q “ 0 and spA1q ď 1. The

result is a short exact sequence, 0 Ñ A2 Ñ Q1 Ñ A1 Ñ 0 where Q1

is projective, ldpA2q “ 0 and spA2q ď 2. We may continue until we

reach spAdq ď d. But for any B, if the segments of B are projective and

spBq ď dimpXq then B is projective. We may thus assemble these short

sequences and the sequence of Pi to obtain a sequence:

0 Ñ Ad Ñ Qd´1 Ñ . . . Ñ Q1 Ñ Pr Ñ . . . Ñ P0 Ñ A Ñ 0

This exact sequence is the projective resolution establishing the result.

�

Corollary 4.5. If dimpXq “ d and if M is an R-module of projective

dimension r, then pdpMXq ď r`d. If M is projective then pdpMXq ď d.
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Corollary 4.6. If R is of homological dimension r and dimpXq “ d then

the homological dimension of CarRpXq is at most d ` r.

Neither of these corollaries requires so much as one word of proof.

5 Carapaces and Morphisms of Complexes

Recall that a morphism of complexes from X to Y is just a covariant

functor from the category of simplices in X to the category of simplices

in Y; it is simplicial if it carries vertices to vertices. If S is a subset of the

vertex set of X then it admits a simplicial complex structure by taking as

its set of simplices the set of simplices in X all fo whose vertices lie in S .

We will write S̃ fof this complex. When we speak of a subcategory of

X we will always, unless otherwise indicated, mean a full subcategory

of the simplex category of X. If U and V are subcategories if X we100

will write U Ă V to indicate that U is a full subcategory of V . In this

case there is always a functorial map from ΣpU, Aq to ΣpV, Aq for any

carapace, A.

Suppose that f is a morphism of complexes from X to Y and that Z

is a simplicial sub-complex of Y . Let f ´1pZq denote the simplicial sub-

complex of X which has as its set of simplices the set tσ P X : f pσq P
Zu. Clearly, f ´1 is a functor from the subcomplexes in Y to those in X.

Definition 5.1. Let X and Y be simplicial complexes, let A be a R-

carapace on X and let B be one on Y. Let F : X Ñ Y be a morphism of

complexes.

(1) Let p f ˚pBqqpσq “ Bp f pσqq and let eτ
f ˚pBq,σ “ e

f pτq
B, f pσq. Then f ˚pBq

is an R-carapace on X and f ˚ is a covariant functor from CarRpYq
to CarRpXq. The carapace f ˚pBq is called the inverse image of B

under f .

(2) Let p f˚pAqqpσq “ Σp f ´1pσ̃q, Aq and let eτ
f˚pAq,σ be the natural

map of segments induces by the inclusion of categories, f ´1pσ̃q Ă
f ´1pτ̃q when σ Ă τ. Then f˚ is a covariant functor from carapaces
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on X to carapaces on Y. The carapaces, f˚pAq is called the direct

image of A by f .

Both f ˚ and f˚ are additive. In addition they satisfy the adjointness

properties expected.

Theorem 5.2. Let X and Y be simplicial complexes, let f be a morphism

of complexes from X to Y, let A be an R-carapace on X and let B be one

on Y.

(1) f ˚ is exact.

(2) f˚ is right exact.

(3) f˚ is left adjoint to f ˚. That is,

HomR,ApA, f ˚pBqq » HomR,Yp f˚pAq, Bq

functorially in A and B.

Proof. The first statement is a triviality. The second statement in noth-

ing more than the right exactness of co-limits. Thus only the last state-

ment requires attention.

To prove 3), we will give morphisms, 101

ψ : HomR,XpA, f ˚pBqq Ñ HomR,Yp f˚pAq, Bq

and φ inverse to it. Begin with ψ. If α P HomR,Xpa, f ˚pBqq, write

α “ tασuσPX . Then ασ maps Apσq to Bp f pσqq for each σ compatibly

with respect to σ. Then σ P f ´1pρ̃q if and only if f pσq Ď ρ. Thus the

set of maps, e
ρ

B, f pσq ˝ ασ is direct system of maps giving a morphism

from r f˚pAqspρq “ Σp f ´1pρ̃q, Aq to Bpρq. For each ρ call this map βρ.

Then since βρ is functorial in ρ, the family tβρuρPY is a morphism, β,

from f˚pAq to B. Let ψpαq “ β.

Now we wish to define φ . If β P HomR,Yp f˚pAq, Bq then β is a

family tBρuρinY where βρ maps Σp f ´1pρ̃q, Aq to Bpρq. For any σ in X,

let ρ “ f pσq and let aσ be the natural map from Apσq to Σp f ´1pρ̃q, Aq.
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Then βρ ˝aσ is a map from Apσq to Bp f pσqq for each σ. Let ασ “ β f pσq
for each σ and let φpβq be the map α “ tασuσPX . We leave the task of

verifying that ψ and φ are maps of the requisite type and that they are

inverse to one another to the reader. �

It is entirely expected the f ˚ has a left adjoint. It is a bit surprising,

though not at all subtle, that is also has a right adjoint. Let f : X Ñ Y be

a morphism of complexes. For ρ P Y let f :pρq denote the sub-category

of X consisting of all σ P X such that f pσq Ě ρ.

Definition 5.3. Let X and Y be simplicial complexes, let f : X Ñ Y be

a morphism of complexes and let A be an R-carapace on X. Define an

R-carapace on Y by the equation:

f:pAqpρq “ Γp f :pρq, Aq

This is clearly an R-module valued functor on the simplex category of Y

and so it is an R-carapace on Y. We will call it the right direct image of

A under f .

Proposition 5.4. Let f : X Ñ Y be a morphism of complexes, let A be

an R-carapace on X and let B be one on Y. Then f: is left exact and

right adjoint to f ˚. That is,

HomR,Xp f ˚pBq, Aq » HomR,YpB, f:pAqq

functorially in A and B.

Proof. Left exactness follows from the left exactness of Γ and so we102

only need to establish the adjointness. We give the two morphisms. Let

µ : HomR,YpB, f:pAqq Ñ HomR,Xp f ˚pBq, Aq

be one of the two morphisms and let ζ be its inverse.

Choose δ in HomR,YpB, f:pAqq. For each ρ P Y , δ takes each ele-

ment, b P Bpρq to a compatible family, trδρpbqsσu f pσqĚρ where rδρpbqsσ P
Apσq. For each σ we must give a map ηpδqσ : Bp f pσqq Ñ Apσq. Let

rηpδqσs pbq “
“
δ f pσqpbq

‰
σ
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This defines η.

To define ζ, choose b P Bpρq adn suppose that

β P HomR,Xp f ˚pBq, Aq.

If f pσq Ě ρ let aσ “ βσpe
f pσq
B,ρ

pbqq. Then let

ζpβqρpbq “ taσu f pσqĚρ

We leave the verifications involved to the reader. �

Corollary 5.5. Let X,Y and f be as above. Then:

(1) f˚ carries projectives on X to projectives on Y.

(2) For any R-carapace A on X, ΣpY, f˚pAqq “ ΣpX, Aq.

(3) f: carries injectives on X to injectives on Y.

(4) For any A on X, ΓpY, f:pAqq “ Γpx, Aq
Proof. For the first statement, let P be a projective on X and let M Ñ
N Ñ 0 be a surjective map in CarRpXq. Consider the map, HomR,Y

p f˚pPq, Mq Ñ HomR,Yp f˚pPq,Nq. By the adjointness statement in

5.2, 3), this is the same as the map HomR,XpP, f ˚pMqq Ñ HomR,X

pP, f ˚pNqq. But now f ˚ is exact and P is projective on X and so this

map is surjective. This takes care of 1).

In general, if M and N are R-modules and there is an isomorphism

HomRpM,Qq » HomRpN,Qq functorial in Q, then M » N. Apply this

to 2) using the definition of the functor ΣpX, ?q and 3) to obtain:

HomRpΣpY, f˚pAqq, Mq “ HomR,Yp f˚pAq, MYq
“ HomR,XpA, MXq “ HomRpΣpX, Aq, Mq

Statement 2) follows. 103

The proof of 3) is precisely dual to the proof of 1). To establish 4),

apply 5.4 and 2.4, 2). Write:

ΓpY, f:pAqq “ HomR,YpRY , f:pAqq “ HomR,XpRX , Aq “ ΓpX, Aq

Thus 4) is also proven. �
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Corollary 5.5 establishes exactly what is necessary for two compo-

sition of functor spectral sequences. Many are possible but we content

ourselves with the two most obvious.

Proposition 5.6. Let X and Y be simplicial complexes, let A be an R-

carapace on X and let f : X Ñ Y be a morphism of complexes.

(1) There is a spectral sequence with E2
p,q term:

E2
p,q “ HppY, Lq f Aq

and abutment:

HrpX, Aq

(2) There is a spectral sequence with E
p,q

2
term:

E
p,q

2
“ HppY,Rq f:Aq

and abutment:

HrpX, Aq

These spectral sequences are sufficiently standard that no proof is

required. The proofs in [Gr], for example, apply.

6 Certain Special Carapaces

This section will be devoted to the study of certain acyclic carapaces.

We will need certain conventions. If X is a simplicial, a complement in

X is a full subcategory of its simplex category such that the complement

of its collection of simplices is a simplicial complex. The reader may

verify that C is a complement in X if, whenever σ P C and τ Ě σ then

τ P C. Alternatively C is a complement in X if and only if whenever

σ P C, then Xpσq Ď C. These two conditions apply to arbitrary subcol-

lections of the simplex set of X and we will use the term complement in

this sense. Clearly arbitrary unions and intersetions of complements are

complements.
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Definition 6.1. Let X be a simplicial complex.104

(1) An R-carapace, B, is called brittle if for every sub-complex of X, Z,

the natural map, ΣpZ, Bq Ñ ΣpX, Bq is injective.

(2) An R-carapace, F, is called flabby if for every complement in X, C,

the natural map ΓpX, Fq Ñ ΓpC, Fq in surjective.

Our development follows standard treatments of flabbyness for

sheaves. On occasion something more is called for in the brittleness ar-

guments. Flabbyness will be an entirely familiar concept, but brittleness

might be a bit strange. We will begin with some descriptive comments.

First notice that if dimpXq ą 0 then RX is not brittle. Suppose that σ is

positive dimensional simplex in X and that x and y are distinct vertices

in it. Let Z “ tx, yu. That is, Z is the disconnected two point com-

plex. Then clearly, ΣpX,RXq “ R ‘ R and, since σ P X and Z Ď σ,

the map, ΣpZ,RXq Ñ ΣpX,RXq is not injective since it factors through

RXpσq “ R.

If σ P X and B is brittle then by definition, Bpσq Ď ΣpX, Bq. But

brittleness also forces the relation, BpσqXBpτq “ BpσXτq where the in-

tersection is taken in ΣpX, Bq. To see this just note that, because ΣpZ, Aq
is nothing but the inductive limit over Z, there is an exact sequence,

0 Ñ Bpσ X τq Ñ Bpσq
ž

Bpτq Ñ Σpσ Y τ, Bq Ñ 0

and, by brittleness, an inclusion Σpσ Y τ, Bq Ď ΣpX, Bq.

Before proceeding a convention is necessary. If σ is a simplex in X

then write σ̂ for the complex whose vertex set is σ but whose simplex

set is the set of all proper subsets of σ. That is σ is not a simplex in σ̂

which is a simplicial sphere. Then σ̂ Ă σ̃.

We will also require the following. Let f : M Ñ N be a morphism

of R-modules. Then f is injective if and only if, for each injective R-

module, J, the induced map HomRpN, Jq Ñ HomRpM, Jq is surjective.

Finally suppose that Z is a simplicial sub-complex of X. Let C be

the set the simplices of X which are not siplices of Z. For any R-module,

M, define R-carapaces M˚
Z

and MC
˚ by the equation:
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M˚
z pσq “ M if σ P Z

M˚
z pσq “ p0q if σ R Z

(6.2)

Then MC
˚ is defined by exactly the same equations, replacing M˚

Z
by

MZ
˚ and Z by C. As Z is a complex M˚

Z
in naturally a quotient of MX

while MC
˚ is naturally a subobject. In fact, the following is exact:105

0 Ñ MC
˚ Ñ MX Ñ M˚

Z Ñ 0

In addition, the following hold

HomR,XpA, M˚
Z q “ HomRpΣpZ, Aq, Mq

HomR,XpMC
˚ , Aq “ HomRpM,ΓpC, Aqq

(6.3)

Lemma 6.4. Let X be a simplicial complex, let Z Ď X be a subcomplex

of X and let C be a complement in X. Then if A is brittle on X, A|Z is

brittle on Z. If A is flabby on X, then A|C is flabby on C.

Proof. If A is brittle and Z1 is subcomplex of Z then the composition,

ΣpZ1, Aq Ñ ΣpZ, Aq Ñ ΣpX, Aq is the map, ΣpZ1, Aq Ñ ΣpX, Aq. If a

composition in injective, each map in it injective. This proves the first

statement. The proof of the second statement i precisely dual to it and

so we leave in to the reader. �

Theorem 6.5. Let X be a simplicial complex and let

0 Ñ A1 Ñ A Ñ A2 Ñ 0

be exact.

(1) If A2 is brittle, then

0 Ñ Σpx, A1q Ñ ΣpX, Aq Ñ ΣpX, A2q Ñ 0

is exact.
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(2) If A1 is flabby, then

0 Ñ ΓpX, A1q Ñ ΓpX, Aq Ñ ΓpX, A2q Ñ 0

is exact.

Proof. To prove (1) we need only show that ΣpX, A1q Ñ ΣpX, Aq is injec-106

tive. By the observation above, it would suffice to show that

HomRpΣpX, Aq, Jq Ñ HomRpΣpX, A1q, Jq is surjective for an injective,

J. But HomRpΣpX, Aq, Jq “ HomR,XpA, JXq and the same for A1. Thus,

to establish (1), it suffices to prove that every carapace morphism, f :

A1 Ñ JX extends to a morphism. f̃ : A Ñ JX .

Let j : A1 Ñ A be the injection and let π : A Ñ A2 be the surjection.

Let f : A1 Ñ JX be a morphism of carapaces. Let F be the family of

paris, pZ, fZq where Z is a subcomplex and fZ : A|Z Ñ JZ is a morphism

such that fZ ˝ J “ f |Z . Order these by inclusion on Z and extension on

fZ . This orders F inductively and so Zorn’s Lemma yields a maximal

element, pW, fWq. If W ‰ X there is some σ P X such that σ R W.

If σ X W “ H we may trivially extend fW to W Y ttu where t is any

vertex in σ. This contradicts maximality. Thus we may assume that

σ X W ‰ H. Let σ̃ X W “ Y . Consider fσ : A1pσq Ñ J. By the

injectivity of J, we may choose f 1
σ : Apσq Ñ J such that f 1

σ˝ jσ “ fσ. If

γ Ď σ let f 1
γ “ f 1

γ ˝ eσ
A,γ

. Since j is morphism, the following commutes:

A1pσq jσ // Apσq

A1pγq

eσ
A1 ,γ

OO

jγ

// Apγq

eσ
A,γ

A

OO

Hence f 1
γ ˝ jγ “ f 1

σ ˝eσ
A,γ

˝ jγ “ f 1
σ ˝eσ

A1,γ “ fγ. That is, f 1 ˝ j “ f on σ.

But on σ̃X W “ Y , fW ˝ j “ f . Thus on Y , p fW ´ f 1q˝ j “ 0. It follows

that fW ´ f 1 induces a map form A2|Y to JY . But ΣpY, A2q Ñ pX, A2q
is brittle. Hence HomR,XpA2, Jxq Ñ HomR,YpA2|Y, JYq is surjective.

Thus, there is and f2 P HomR,XpA2, JXq such that π˝ f2|Y “ p fW ´ f 1q|Y .

Consequently, p f 1 `π˝ f2q|σ̃XW “ fW |σ̃XW . Hence fW can be extended
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to W Y σ̃ contradicting the maximality of pW, fWq. That is W “ X and

so 1) is established.

To prove 2) we must prove that ΓpX, Aq Ñ ΓpX, A2q is surjective.

An element a P Γpz, Aq is a function on Z such that apσq P Apσq and

eτ
A,σ

papσqq “ apτq. Suppose a2 P ΓpX, A2q is given. Order the pairs

pC, aCq, where C is a complement and aC P ΓpC, Aq, πpacq “ a2|C ,

by inclusion and extension. This being an inductive order, there is a

maximal element, pU, aUq. If U ‰ X, there is simplex, τ not in U.

Choose ãr P Apτq such that πτpãrq “ a2pτq. Define ã1 in Xpτq by

ã1pσq “ eσ
A,τ

pp̃aqrq. If Xpτq X U “ H then ã1 extends aU contradicting

maximality of pU, aUq, and so we may assume that Xpτq X U ‰ H.

This intersection is a complement. Consider the difference ã1 ´ aU on

this intersection. Now πpã1 ´ aUq “ 0 on Xpτq X U whence p̃a1 ´
aUq|Xpτq X U P ΓpXpτq X U, A1q Since A1 is flabby there is an element

a1 P ΓpX, A1q such that a1|Xpτq X U “ pa1 ´ aUq|Xpτq X U. Clearly

a1 ´ pa1|Xpτqq extends aU contradicting maximality. Thus U “ X and107

we have established 2) �

Corollary 6.6. Let

0 Ñ A1 Ñ A Ñ A2 Ñ 0

be an exact sequence of R-carapaces on X.

(1) If A and A2 are brittle, then A1 is also.

(2) If A and A1 are flabby, then A2 is also.

Proof. We prove 1). Suppose Z is a subcomplex of X. Then, by 6.4,

A|Z and A2|Z are both brittle and hence, 0 Ñ ΣpZ, A1q Ñ ΣpZ, Aq is

exact. Thus the following diagram, which has exact rows and columns,

commutes:

0

��
0 // ΣpZ, A1q //

��

ΣpZ, Aq

��
0 // ΣpX, A1q // ΣpX, Aq
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It is immediate the ΣpZ, A1q Ñ ΣpX, A1q is monic. As for Statement 2),

noting that Z must be replaces by a complement, the proof is both well

known and strictly dual to the proof of 1). �

Proposition 6.7. Let X and Y be simplicial complexes let f : X Ñ Y be

a morphism of complexes and let A be an R-carapace on X. Then

(1) If A is brittle, then f˚pAq is brittle.

(2) If A is flabby then f:pAq is flabby.

Proof. To prove 1), let U Ď Y be a subcomplex. Then, f ´1pUq is a

subcomplex of X and so, if A is brittle, then Σp f ´1pUq, Aq Ñ ΣpX, Aq
is injective. But Σp f ´1pUq, Aq “ ΣpU, f˚Aq and ΣX, A “ ΣpY, f˚Aq by

definition. That proves the first statement. The proof of 2) is completely

parallel except that it uses 5.5, 4 in place of the corresponding properties

of f˚ �

Proposition 6.8. Let X be a simlicial complex. 108

(1) Projective carapaces are brittle; injective carapaces are flabby.

(2) a coproduct of brittle carapaces is brittle; a product of flabby cara-

paces is flabby.

(3) For any simplex, σ P X and any R-module, M, M Òσ is brittle and

M Óσ is flabby.

Proof. Let Z be any subcomplex of X. let C be its complement and let

M any R-module. Then 0 Ñ MC
˚ Ñ MX Ñ M˚

Z
Ñ 0 is exact. Thus,

if P is projective, HomR,XpP, MXq Ñ HomR,XpP, M˚
Z

q is surjective, But

this is the map, HomRpΣpP, Xq, Mq Ñ HomRpΣpP,Zq, Mq. But this map

will be surjective for every M if and only if the map ΣpZ, Pq Ñ ΣpX, Pq
is injective (in fact, it must be split).

If I in injective, we need only consider the case, M “ R. Then

HomR,XpRX , Iq Ñ HomR,XpRC
˚ , Iq is surjective. This is the sequence,

ΓpX, Iq Ñ ΓpC, Iq and hence (2) is established.
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To prove 2), let tAiuiPI be a family of R-carapaces on X. Since

inductive limits of arbitrary co-products are co-products and projective

limits of products are products, we may write:

Σ

˜
Z,
ž

iPI

Ai

¸
“
ž

iPI

ΣpZ, Aiq

Γ

˜
C,

ź

iPI

Ai

¸
“
ź

iPI

ΓpC, Aiq
(6.9)

Since a co-product of monomorphisms is monic and a product of sur-

jections is surjective, 3) follows at once.

Statement 3) is quite clear. �

Proposition 6.10. If A a brittle R-carapace on X, then HipX, Aq “ 0 for

all i ą 0. If F is flabby, then HipX, Fq “ 0 for all i ą 0.

Proof. First choose a projective, P and a surjective map so that there is

an exact sequence:

0 Ñ A0 Ñ P Ñ A Ñ 0

The acyclicity of P the Theorem 6.5 together imply that for any brit-

tle A, H1pX, Aq “ 0. Then choose a projective resolution of A. Break

this into a series of short exact sequences, use Corollary 6.6 and apply109

induction. The same technique, applied dually, gives the second state-

ment.

We conclude with local criteria for which there no immediate appli-

cations but which are somewhat interesting. �

Proposition 6.11. Let A a be an R-carapace on X.

(1) If for each simplex σ P X the map, Σpσ̂, Aq Ñ Σpσ̂, Aq, is injective

then A is brittle.

(2) If for each simplex σ P X the restriction A|Xpσq is flabby, then A is

flabby.
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Proof. Proofs of these statements use Zorn’s lemma as its was used in

Theorem 6.5 First we prove 1). Let Z be an arbitary subcomplex of X.

We must show that ΣpZ, Aq Ñ ΣX, A is injective. As in the proof of

theorem 6.5, this comes to proving that for any injective module, J, any

morphism, f : A|Z Ñ JZ , admits and extension, f : A Ñ JX . Applying

Zorn one finds a maximal subcomplex on which f admits and extension

and so, replacing Z by this maximal subcomplex, we may assume that

f does not extend to any subcomplex contating Z. If the vertex x is

not in Z then f clearly extends to the disconnected union and so we

may assume that very vertex is in Z. Choose a simplex, σ of minimal

dimension among the simplices not in Z. Then σ̂ Ď Z. Making use of

the condition in (1), we obtain a diagram:

0 // Σpσ̂, Aq

��

// Σpσ̃, Aq

ΣpZ, Aq
fZ

��
J

Hence there is a map, fi : Σpσ̃, Aq Ñ J extending fZ and so one

may extend f to Z Y σ contradicting maximality. It follows that it must

be that Z “ X.

The proof of 2), by duality, in entirely straightforward and so we

omit it. �

7 Canonical Resolutions

In this section we give canonical chain and co-chain complexes which

can be used to compute the exoskeletal homology and cohomology

groups. They arise from canonical resolutions and they are sufficiently 110

canonical that they will be seen to be equivariant when there is a group

action involved.
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Let A be an R-carapace on X. Then by 1.4, 1) and 2), the identity

map on Apσq induces a map, πσ : pApσqq ÒσÑ A and a map jσ : A Ñ
pApσqq Óσ.

Definition 7.1. Let X be a simplicial complex and let A be an R-carapace

on X.

(1) Let

T0pAq “
ž

σPX

pApσqq Òσ and let πA “
ž

σPX

πσ

(2) Let

S0pAq “
ź

σPX

pApσqq Óσ and let jA “
ź

σPX

jσ.

(3) Let K0pAq “ KerpπAq.

(4) Let C0pAq “ Cokerp jAq.

This definition has certain immediate consequences.

Lemma 7.2. Let X be a simplicial complex and let A be an R- carapace

on X.

(1) The four functors, T0, K0, S0, and C0 are exact additive functors.

(2) Both πA and jA are natural transformations in the argument A. Fur-

ther πA is always surjective and jA is always monic.

(3) For all A, T0pAq is brittle and S0pAq is flabby.

(4) If A is brittle, then K0pAq is brittle; if A is flabby, C0pAq is flabby.

Proof. That T0 and S0 are exact and additive is a trivial observation.

Since T0pAq is a coproduct of carapaces of the form M Òσ, proposition

6.8, 2) and 3) guarantee that it is brittle. The flabbyness ofS0pAq follows

similarly from the fact that it is a product of carapaces of the form M Óσ.

ThatK0 and C0 are exact is littel more thant the snake lemma. Statement

2) is a triviality and so only 4) remains to be proven. This follows from

3) and Corollary 6.6. �
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Definition 7.1 and lemma 7.2 are just what is necessary to construct

standard resolutions.

Definition 7.3. Let A be an R-carapace on X. LetKnpAq “ K0pKn´1pAqq 111

and let CnpAq “ C0pCn´1pAqq. That is Kn is the pn ` 1q1st iterate of

K0 and the same, mutatis mutandis, is ture for Cn. Let Tn`1pAq “
T0pKnpAqq and let Sn`1pAq “ S 0pCnpAqq for n ď 0. Define maps,

δn : Tn`1pAq Ñ TnpAq and δn : Sn`1pAq as follows. The map, δn is

the composition of the natural surjection, Tn`1pAq Ñ\ pAq, with the

inclusion, KnpAq ãÑ Tn. Similarly δn is the composition of the surjec-

tion, SnpAq Ñ CnpAq, and the inclusion, CnpAq ãÑ Sn`1pAq. Then

tTnpAq, δnu is called the canonical brittle resolution and tSnpA, δnqu is

called the canonical flabby resolution of A.

Some remarks are in order. First of all, since each of the func-

tors, Tn and Sn, are compositions of exact functors, they are them-

selves exact functors. Further, by Lemma 7.2, for any A, each of the

carapaces TnpAq is brittle while the SnpAq are flabby. Thus, letting

CnpX, Aq “ ΣpX,TnpAqq and CnpX, Aq “ ΓpX,SnpAqq, whenever 0 Ñ
A1 Ñ A Ñ A2 Ñ 0 is exact,

0 Ñ CnpX, A1q Ñ CnpX, Aq Ñ CnpX, A2q Ñ 0

and

0 Ñ CnpX, A1q Ñ CnpX, Aq Ñ CnpX, A2q Ñ 0

are exact. Abusing language, use δn and δn for the maps of segments and

sections respectively as well as maps of carapaces, the homology groups

of the complexes, tCnpS , Aq, δnu and tCnpX, Aq, δnu are connected se-

quences of homological functors.

Definition 7.4. Let A be an R-carapace on X. The complex, tCnpX, Aq, δnu
will be called the complex of Alexander chains on X with coefficients in

A; CnpX, Aq, δnu will be called the Alexander co-chains. The homology

of the complex of Alexander chains will be called the Alexander homol-

ogy and it will be written, Ha
npX, Aq. The homology of the Alexander

co-chain complex will be called the Alexander cohomology and it will

be written Hn
apX, Aq.
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Proposition 7.5. The Alexander homology and cohomology of the sim-

plicial complex, X, with coefficients in A are isomorphic, respectively,

to the exoskeletal homology and cohomology of X with coefficients in A,

functorially in A.

Proof. By Proposition 6.10, the exoskeletal homology groups vanish on

brittle carapaces while the cohomology groups vanish on flabby cara-

paces. Hence the Alexander groups are the homology groups of the

segments (respectively sections) over an acyclic resolution. The propo-

sition follows. �

The following is an interesting footnote.112

Proposition 7.6. If A is projective, the canonical brittle resolution of

A consists of projective carapaces. If A in injective, each term in the

canonical flabby resolution in injective.

Proof. It suffices to prove that if A is projective then T0pAq and K0pAq
are projective and the corresponding statement for an injective A and S0

and C0. Suppose that P is projective and that I in injective. Then by

Proposition 1.6, Ppσq is projective and Ipσq is injective for each σ P X.

But then, by 1.4, pPpσqq Òσ is projective and pIpσqq Óσ in injective.

By the definition of T0 and S 0 and because coproducts of projective are

projective and products of injectives are injective, T0pPq is projective

and S0pIq is injective. But then

0 Ñ K0pPq Ñ T0pPqPπP Ñ P Ñ 0

and

0 Ñ I
jIÝÑ S0pIq Ñ C0pIq Ñ 0

are exact. The last two terms of the first sequence are projective while

the first two terms of the second sequence are injective. HenceK0pPq in

projective and C0pIq is injective. An iterative application of these facts

establishes the result. �
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8 G-carapaces and their Homology

In this section we consider a simplicial complex, X, with a G-action for

some group, G. Then there is a corresponding notion of G-carapace and

several ways of constructing G-representations on the homology and

cohomology of a G-carapace. One of our main purpose in this section

is to show that all of these representations are the same. The method is

standard “relative homological algebra”.

If X is a simplicial complex and G is group, a simplicial action of

G on X is an action of G in the vertex set of X which carries simplices

to simplicies. If σ is a simplex in X, write Gσ for the setwise stabilizer

of σ and Ĝσ for the pointwise stabilizer of σ. We will usually write

tg for the translation map, tgpxq “ gx. Then, if A is an R-carapace on

X, the iverse image of A under tg is the carapace, rtgpAqspσq “ Apgσq.

When space does not permit otherwise, write g˚A for t˚
g pAq. Recall

that the expansions on t˚
g pAq are the maps, eτ

g˚A,σ
“ e

gτ

A,gσ
. Notice that

t˚
g pt˚

h
Aq “ g˚

hg
pAq.

Definition 8.1. A G-carapace on X is an R-carapace, A together with 113

a family of isomorphisms, Φ “ tΦgugPG, Φg :Ñ t˚
g A, such that for any

pair, g, h P G, the diagram:

A
Φg //

Φhg

��

t˚
g A

t˚g Φh

��
t˚
hg

A t˚
g pt˚

h
Aq

(8.2)

commute. That is, t˚
g pΦhq ˝ Φg “ Φhg.

If pA,Φq and pB,Ψq are two G-carapaces a G´morphism f : A Ñ B

is just a morphism such that Ψg ˝ f “ t˚
g p f q ˝ Φg. Clearly G-carapaces

are an Abelian category.

We now apologize for a digression which some would perfer to con-

ceal in an “obviously”. Write
ś

A for the functor
ś

σPX Apσq. An

element, a, in
ś

A is a function such that apσq P Apσq. If α is an auto-
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morphism of X, there is an isomorphism, Iα
A

:
ś
α˚A Ñ

ś
A. It is de-

fined by
“
Iα
A

paq
‰

pσq “ apα´1pσqq. Now the coproduct,
š

σPX Apσq, the

module of relations, N, such that
š

σPX Apσq{N “ ΣpX, Aq and ΓpX, Aq
are all submodules of

ś
A preserved by Iα

A
and hence Iαα induces two

other maps, both of which we will denote Iα
A

, from ΣpX, α˚Aq to ΣX, A

and from ΓpX, α˚Aq to ΓpX, Aq. These maps are functorial in the same

ways and so we will describe their properties for
ś

A and consider them

established for all three functors. Let A and B be two R-carapaces and

let α and β be automorphisms of X. Let φ : A Ñ B be a morphism. The

following equations, whose proof we leave to the reader, are the proper-

ties of interest. We emphasize that we shall use these equation for Σ and

Γ rather than
ś

.

IαA ˝ I
β

α˚A
“ I

α˝β
A´ź

φ

¯
˝ IαA “ IαB ˝

ź
α˚φ

(8.3)

In general, if f : A Ñ B is a morphism, write f Σ and f Γ for the

induced morphisms on the segments and the sections respectively. Let

pA,Φq be a G-carapace on X. Then there are natural representations of

G on ΣpX, Aq and ΓpX, Aq respectively denoted ΦΣ and ΦΓ defined by

the equations: `
ΦΣ

˘
g

“ I
g

A
˝ pΦgqΣ

`
ΦΓ

˘
g

“ I
g

A
˝ pΦgqΓ

(8.4)

114

To see that these are representation, we just apply 8.3 Then, pΦΣqgh “
I

gh

A
˝pΦghqΣ “ I

g

A
˝I

g˚A

h
˝pph˚ΦpgqqΣq˝˝ΦΣ

h
“ I

g

A
˝pIg˚A˝ph˚ΦgqΣq˝ΦΣ

h
“

I
g

A
˝ pΦΣg ˝ Ih

A
q ˝ΦΣ

h
“ pΦΣqg ˝ pΦΣqh The computation for ΦΓ is virtually

identical.

It is also clear that this argument gives canonically determined rep-

resentations of G on the left derived functors of ΣpX, ?q and right derived

functors of ΓpX, ?q. We give the argument for ΣpX, ?q. Let α be an au-

tomorphism of X. Then α˚ is an automorphism of CarRpXq and so it

carries projectives to projectives and injectives. It is moreover an exact

functor. Let . . . Ñ Pr Ñ Pr´1 Ñ P0 Ñ A Ñ 0 be a projective resolu-

tion of A. Then . . . Ñ α˚Pr Ñ α˚Pr´1 Ñ . . . Ñ α˚P0 Ñ α˚A Ñ 0
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is projective resolution of A and, applying ΣpX,´q, deleting α˚A and

taking homology yields the left derived functors of ΣpX, α˚p´qq. Mak-

ing use of the functoriality expressed by the second equation of 8.3), we

obtain a commutative diagram.

¨ ¨ ¨ // ΣpX, α˚Prq //

Iαpr

��

ΣpX, α˚Pr´1q //

Iαpr´1

��

¨ ¨ ¨ // ΣpX, α˚P0q
Iα
P0

¨ ¨ ¨ // ΣpX, Prq // ΣpX, Pr´1q // ¨ ¨ ¨ // ΣpX, P0q

Passing to the homology of these complexes, we obtain unique, canon-

ically defined morphisms, LrIα
A

: HrpX, α˚Aq Ñ HrpX, Aq. Clearly, the

dual construction will yield canonical morphisms, RqIα
A

: HqpX, α˚Aq Ñ
HqpX, Aq.

Suppose that G acts on X and that A is a G-carapace with G-structure,

Φ. It is now clear that there is a canonical representation of G on

the exoskeletal homology and cohomology groups of X in A. Write

LrΦg : HrpX, Aq Ñ HrpX, g˚Aq and RqΦg : HqpX, Aq Ñ HqpX, g˚Aq
for the map induced by Φg on the homology and the cohomology re-

spectively. Let Φ
q
g “ RqI

g

A
˝ RqΦg and Φ

g
r “ LrI

g
a ˝ LrΦg. Then Φ

g
r and

Φ
q
g are easily seen to give the unique representations on the homology

and cohomology groups making them into homological functors with

values in the category of G-modules.

What remains in the question of natural G-structure on carapace

valued functors applied to G-carapaces. Let A be a carapace with G-

structure, Φ, and let B be one with G-structure, ψ. First consider the

tensor product, A bR B. Inverse image preserves tensor product. That 115

is, tgpA bR Bq » t˚
g pAq bR t˚

g pBq. Consequently, the family of isomor-

phisms, tΦg bR ψg : g P Gu, is a G-structure on A bR B. observe that

the commutativity ex-pressed by diagram 8.2) can also be described by

the equation:

Φh,gσ ˝ Φg,σ “ Φhg,σ (8.5)

Consider the carapace of local homomorphisms. By definition

HomX,RpA, Bqpσq “ HomXpσq,RpA|Xpσq, B|Xpσqq. We define a map,

Θg,σ : HomXpσq,RpA|Xpσq, B|Xpσqq Ñ HomXpgσq,RpA|Xppgqσq, B|Xpgσqq.
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The translation, tg maps Xpσq to Xpgσq. Hence Φg maps A|Xpσq to

tg˚pA|Xpgσqq and similarly for B. Consequently, for any

f P HomXpσq,RpA|Xpσq, B|Xpσqq, ψg,,σ ˝ f ˝ pΦg,σq´1

maps tg˚pA|Xpgσqq to tg˚pB|Xpgσqq. Hence, t˚
g´1pψg,σ ˝ f ˝ pΦg,σq´1q P

HomXpgσq,RpA|Xpgσq, B|Xpgσqq. But, this last group is just

HomX,RpA, Bqpgσq.

Hence, define the G-structure onHomX,R by the equation:

Θg,σp f q “ t˚
g´1pψg|Xpσq ˝ f ˝ pΦg|Xpσqq´1q (8.6)

This equation is to be understood in the following sense. The map

Φg|Xpsigmaq maps the restriction of A to Xpσq to the corresponding re-

striction of t˚
g A while ψg|Xpσq does the same for B. Hence the composi-

tion in parentheses takes t˚
g pAq|xpσq to t˚

g pBq|xpσq. Thus the inverse image

of this map under tg´1 yields an element ofHomX,Rpgσq “ HomXpgσq,R
pA|Xpgσq, B|Xpgσqq which is what i needed.

We check that Θ is a G-structure by establishing 8.5 for it by direct

computation. The computation is:

Θh,g,σp f q “ t˚
phgq´1pψhg ˝ f ˝ pΦhgq´1q

“ t˚
h´1pt˚

g´1pt˚
g´1 t˚

g pψgq ˝ f ˝ Φ´1
g ˝ t˚

g pΦ´1
h

qqq
“ t˚

h´1pψh ˝ tg´1 f ˝ Φ´1
g q ˝ Φ´1

h
q

“ Θh,gσpΘg,σp f qq

Thus Θ is a natural G-structure on HomX,RpA, Bq. But

ΓpX,HomX,RpA, Bqq “ HomX,RpA, Bq. Hence 8.4 determines a repre-

sentation of G on HomX,RpA, Bq. This is what we will call the natural

representation of G on HomX,RpA, Bq. The explicit description of this

action is:

g ¨ f “ t˚
g´1pψg ˝ f ˝ pΦgq´1q g P G f P Homx,RpA, Bq (8.7)
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Establish this as follows. If T is and G-carapace with G-structure Θ,116

then if τ P ΓpX,T q the action of G on ΓpX,T q defined by 8.4 is described

by the equation:

pg.τqσ “ Θg,g´1σpτg´1σq (8.8)

When T “ HomX,RpA, Bq, this becomes pg ¨ f qσ “ Θg,g´1σp fg´1σq.

Under the identification of HomX,RpA, Bq with ΓpX,HomX,RpA, Bqq, the

σ component of the map, f , is f |Xpσq. Using this, apply 8.6 to compute

the right hand side of 8.8 for T “ HomX,RpA, Bq. We obtain:

pg ¨ f qσ “ t˚
g´1pψg|Xpg´1σq ˝ p f |Xpg´1σqq ˝ pΦg|Xpg´1σqq´1q.

By the definition of inverse image, this is pt˚
g´1pψg´1 ˝ f ˝ pΦgq´1qq|Xpσq

and this is just the right hand side of 8.7 restricted to Xpσq. This proves

the truth of 8.7.

Proposition 8.9. Let A, B and C be G-carapaces with G-structures, Φ,

ψ and Υ respectively. Then, the natural adjointness isomorphism

φ : HomX,RpA,HomX,RpB,Cqq Ñ HomX,RpA bR B,Cq

is a G-morphism.

Proof. Fixσ P X, A P Apσq, b P Bpσq and f P HomX,RpHomx,RpB,Cqq
and recall the definition of φ. It is φp f qσpa b bq “ r fσpaqsσ pbq and in

interpreting this formula one must remember that fσpaq P HomX,pσq,R
pB|Xpσq,C|Xpσqq. We will show that φpg¨ f q “ g¨φp f q and we will prove

this by evaluating both sides of this equation on a a b b P Apσq b Bpσq.

Starting with the left hand side:

rφpGg ¨ f qσspa b bq
“ rpt˚

Gg´1pΘGg ˝ f ˝ pΦGgq´1qqσpaqsσpbq by 8.7

“ rpΘGg,Gg´1 σ ˝ fGg´1 σ ˝ pΦGg,Gg´1 σq´1qpaqsσpbq
“ ΥGg,Gg´1 σpr fg´1σpΦ´1

Gg,Gg´1 σ
paqqGg´1 σspψGg,Gg´1 σpbqqq

“ ΥGg,Gg´1 σrφp f qpΦGg,Gg´1 σpaq b φGg,Gg´1 σpbqqs
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by the def. of ψ

“ rGg ¨φp f qspa b bq by 8.7q

That is φpGg ¨ f qσpa b bq “ rGg ¨φp f qsσpa b bq as asserted. This proves

the result. �

We conclude this section by showing that the canonical brittle and

flabby resolutions of a G-carapace, A are naturally equivariant. A cosider-

ation of the definition of these resolutions shows that if suffices to show

that there are canonical G-structure on T0pAq and S0pAq so that the

maps, T0pA Ñ Aq and A Ñ S0pAq are G-equivariant.

Lemma 8.10. Let α : X Ñ X be an automorphism. Let M be an117

R-module, let A be an R-carapace and let Φ : A Ñ α˚A be an isomor-

phism.

(1) α˚pM Òσq “ M Òα´1σ.

(2) α˚pM Óσq “ M Óα´1σ.

(3) There is a natural equality T0pα˚Aq “ α˚ f pT0pAqq.

(4) There is a natural equality S0pα˚Aq “ α˚S0pAq.

Proof. The first two statements are trivially true. As for the third and

fourth statements, the proofs are nearly identical and so we prove only

the first. Write:

T0pα˚Aq “
ž

σPX

α˚pAqpσq Òσ

“
ž

σPX

pApασqq Òσ

“
ž

σPX

pApαq Òα´1σ

“
ž

σPX

α˚pApσq Òσq

“ α˚T0pAq
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Thus α˚pT0pAq “ T0pα˚Aqq. That is, the two apparently different con-

struction applies to A, α˚T0pAq and T0pα˚pAqq result in identically the

same object. �

Proposition 8.11. Let A be a G-carapace on X with G-structure Φ. For

each Gg P G, let ΦT
Gg

“ T0pΦGgq and let ΦS
Gg

“ S0pΦGgq. Then ΦT

and ΦS are G-structures. Furthermore the surjection, πA : T0pAq Ñ A

and the injection, jA : A Ñ S0pAq are G-equivariant.

Proof. First, we show that ΦT and ΦS are G-structures. For ΦT the

calculation is:

ΦTGg “ T0pt˚
h pΦGgq ˝ Φhq

“ T0pt˚
h pΦGgqq ˝ T0pΦhq

“ t˚
h pT0pΦGgqq ˝ T0pΦhq

To prove that πA and CMjmathA are equivariant just note that π is a

natural transformation from T0 to the indentity functor while j is one

form the identity functor to S0. Then note that ΦT
Gg

and ΦS
Gg

are just the

values of T0 and S0 on the morphism, ΦGg. �

Corollary 8.12. Let A be a G-carapace on X. Then there are canonical

G-structures on the canonical brittle and flabby resolutions of A so that

the natural morphisms are G-equivariant.

Proof. This is nothing more than an interative application of 8.11). The 118

details are left to the reader. �

9 Induced and Co-Induced Carapaces

Let X be a simplicial complex. Recall that Xprq denotes the set of sim-

plices of dimension r. We will use Xn to denote the collection of sim-

plices of dimension at least n. That is, Xn “
Ť

rěn Xprq.

Let G be a group acting simplicially on X. Recall that for any sim-

plex, σ P X, Gσ “ tGg : Gg P G,Ggσ “ σu and Ĝσ “ tGg : Gg P
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GσGg x “ x @ P σu. We will call the action of G on X separated if

whenever τ Ď σ and Gg τ Ď σ for some Gg P G, then Gg τ “ τ.

If G acts on X, let Yp0q “ xp0q{G be the orbit space and let π :

Xp0q Ñ Yp0q be the quotient map. Construct a simplicial complex, Y ,

with vertex set, Yp0q, by taking as simplices in Y all finite subsets, τ Ď Y

such that τ “ πpσq for some simplex σ in X. If the action of G on X is

separated, then for each simplex σ in X, Gσ Ď Ĝσ and the dimension of

πpσq is equal to the dimension of σ.

If G is acting on X so that the action is separated and if Y is the

quotient with quotient map π : X Ñ Y , then a section to π is a simplicial

map, s : Y Ñ X, such that π ˝ s “ idY . A separated action admitting a

section, s : Y Ñ X, will be called an excellent action. If the action of

G on X is excellent with section, s : Y Ñ X, we will identify Y with its

image, spYq, in X and we shall refer to π as the retraction onto Y . We

will describe this situation by saying that pX,Gq is an excellent pair with

retraction π :Ñ Y . Notice that the action of G on X is separated if and

only if whenever Xpσq X XpGgσq ‰ H then Ggσ “ σ.

If C is a category and X is a simplicial complex, then a C-valued

sheaf on X is just a contravariant functor from X to C. Ifσ Ď τ and S is a

sheaf on X write rσ
S,τ

: Spτq Ñ Spσq for the corresponding map and call

it the restriction. If G operates simplicially on X, then the assignment,

Ĝpσq “ Ĝσ is a sheaf of groups on X. If the action is separated, then

Gσ “ Ĝsigma, and so this also is a sheaf of groups. In any case we will

refer to Ĝ as teh stabilizer of the action.

If f : X Ñ Y is a morphism of complexes and S is a sheaf on Y then

f ˚S, defined by the equation f ˚Spσq “ Sp f pσqq with the corresponding

restrictions is called the inverse image of S. When f is the inclusion of

a subcomplex, we call f ˚S the restriction of S to X and we may on

occasion write it, SX .

Suppose now that G is a group and that H is a subgroup. We wish

to fix notation for induced and co-induced modules. Write RrGs for the

group algebra of G over R and write RrGsℓ for the free rank one RrGs-119

module isomorphic to RrGs as an R-module but with RrGs structure de-

fined by the equation, Gg ¨x “ x Gg´1 for x P RrGs and Gg P G. We

simply write Gg x for the product in RrGs. Let M be an H-module.
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Then the G-module induced by M is RrGs bRrHs M; the G-module

co-induced by M is HomRrHspRrGsℓ, Mq. The G-structure on the in-

duced module is just that obtained from left multiplication on RrGs.
The structure on the co-induced module is just the structure described

by pGg f qpxq “ f pGg´1 xq. Write IG{H M for the induced module and

CG{H M for the co-induced module.

Choose a complete set of coset representatives Q Ă G for the space

of left cosets, G{H. Then IG{H M “
š

GgPQ Gg bM. Write Gg M for

Gg bM. The R-module, Gg M depends only on the coset Gg H and not

on the particular representative, Gg.

Suppose now that H “ Gσ for some simplex, σ. If γ P Gσ write

Mγ to denote xM for any x such that xσ “ γ. Then Mγ depends only

on γ for xσ “ yσ “ γ if and only if x P yGσ “ yH. If Gg γ “ τ

then Gg Mγ “ Mτ. Dually, RrGsℓ “
š

xPQ RrHs ¨ x “
š

xPQ xRrHs.
Hence CxPQpMq “

ś
xPQ HomRrHspxRrHs, Mq. If γ P Gσ let Mγ “

HomRrHspxRrHs, Mq for any x such that xσ “ γ. This is well defined.

Moreover, if yγ “ λ then left translation by y carries Mγ to Mλ.

Definition 9.1. Suppose G acts on X, that σ is a simplex in X and that

M is a Gσ representation over R. Let:

TσpMq “
ž

rPGσ

Mτ Òτ

S σpMq “
ź

rPGσ

Mτ Óτ
(9.2)

Then TσpMq is called the carapace induced by M and S σpMq is called

the carapace coinduced by M.

Proposition 9.3. Let G act on X and let M be a representation of Gσ

over R. Then

(1) TσM and S σM both admit canonical G-structures.

(2) Let A be any G-carapace on X. Then

HomX,RpTσM, AqG “ HomGσ
pM, Apσqq

139



140 William J. Haboush

and

Homx,RpA, S σMqG “ HomGσ
pApσq, Mq

(3) TσpMq is brittle; S σpMq is flabby.

Proof. First observe that 3) is just a consequence of Definition 9.1 and120

Proposition 6.8. We pass to the construction of G-structures on TσpMq
and S σpMq.

First we evaluate these carapaces on a typical simplex, τ. Recall that

τ̃ denotes the full simplicial complex underlying τ. Then:

TσpMqpτq “
ž

γPτ̃XGσ

Mγ

S σpMqpτq “
ź

γPXpτqXGσ

Mγ (9.4)

�

If Gg P G, then Gg carries distinct simplicies in τ̃ X Gσ to dis-

tinct simplices in ĄGg τ X Gσ. Hence left multiplication by Gg car-

ries separate summands in TσpMqpτq to the corresponding summands

in TσpMqpGg τq. Let ΦGg,τ be the sum of left multiplication by Gg on

the separate components of TσpMqpτq. Similarly define a map, ψGg,τ,

from S σpMqpτq to S σpMqpGg τq by taking it to be left translation by

Gg on each of the factors. Then, using Equation 8.5, one verifies that Φ

and ψ are G-structures.

Only 2) remains to be proved. We compute directly.

HomX,RpTσpMq, Aq “ HomX,Rp
ž

τPGσ

Mτ, Aq

“
ź

τPGσ

HomX,RpMτ Òτ, Aq

“
ź

τPGσ

HomRpMτ, Apτqq by4, (1)of1

Let Υ “ tΥGguGgPG be the G-structure on A and let t fτuτPGσ
be an el-

ement of
ś

τPGσ
HomRpMτ, Apτqq. The element fτ may be thought of
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as the τ segment of a morphism, f : TσpMq Ñ A. Moreover these

segments may be chosen freely because TσpMq is the direct sum of

the carapaces, Mγ Òγ ad γ ranages over Gσ. Then, by equation 8.7,

Gg ¨t fτuτPGσ
is the element of the same product whose τ-component is

ΥGg,Gg´1 τ ˝ fGg´1 τ ˝ Gg´1. This element of the product is G-stable if

and only if

ΥGg,σ ˝ fσ ˝ Gg´1 “ fGgσ. (9.5)

That is, if the family, t fτu is G-invariant, each component is uniquely

determined by fσ. Conversely, given fσ P HomGσ
pM, Apσqq one may

use Equation 9.5 to define fGgσ for eac, Gg, chosen that carries σ to

Ggσ. Any other such element is of the form Gg h for some h P Gσ. But

then replacing Gg by Gg h in 9.5) yields the same result because fσ is,

by hypothesis, a Gσ-morphism. The proof for S σpMq is too similar to

bear repetition.

Proposition 9.6. Let G act on X and let M be a representation of Gσ 121

over R. Then:

ΣpX,TσpMqq “ IG{Gσ
pMq

ΓpX, S σpMqq “ CG{Gσ
pMq

Proof. Begin by observing that for any R-module, N, ΣpX,N Òσq “ N

and ΓpX,Ndownarrowσq “ N. Let U be some complete set of repre-

sentatives of the cosets, Gg Gσ. Then,

Σpx,TσpMqq “ ΣpX,
ž

γPGσ

Mγ Òγq by Definition 9.1

“
ž

γPGσ

ΣpX, Mγ Òγq

“
ž

xPU

Mxσ

“
ž

xPU

bM “ IG{Gσ
pMq

The corresponding compution for S σpMq is:

ΓpX, S σpMqq “ ΓpX,
ź

γPGσ

Mγ Óγq
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“
ź

xPU

ΓpX, Mxσ Óxσq

“
ź

xPU

Mxσ

“
ź

xPU

HomRrGσspxRrGσs, Mq

“ HomRrGσsp
ž

xPU

xRrGσs, Mq

“ HomRrGσspRrGsℓ, Mq “ CG{GσpMq.

�

Proposition 9.7. Let G act excellently on X with retraction π : X Ñ
Y Ď X. Then

TσpApσqq “
ž

γPGσ

Apγq Òγ

S σpApσqq “
ź

γPGσ

Apγq Óγ

Proof. Let Φ be the G-structure on A. Then
š

γPGσ Apγq admits a natu-

ral representation of G. If Gg P G let φGg “
ś

γPGσΦGg,γ. It is under-

stood that application of φg must be followed by reindexing of compo-

nents. Furthermore, the natural injection, jσ : Apσq Ñ
š

γPGσ Apγq is

Gσ equivariant. Thus, jσ extends to a G-morphism, jA : IG{Gσ
Ñ Apγq.

Then jApGg bApσqq “ φGgp jAp1bApσqqq “ ΦGg,σpApσqq “ ApGgσq.

Since IG{Gσ
pApσqq is a coproduct of the R-submodules, Gg bApσq, it is

clear that jA is an isomorphism. Since Apσqγ “ Gg bApσq one sees

that jA restrict to isomorphisms jγ : Apσqγ Ñ Apγq which comprise122

an equivariant family in the sense that φGg ˝ jγ “ jGg γ ˝ hGg is left

homothety by g.

Now consider Apσqγ By definition it is HomRrGσspGg rrGσs, Apσqq
with Gσ-action, x f puq “ f px´1 ¨ uq “ f puxq and where Gg is any ele-

ment carryingσ to γ. For some choice of Gg, let βγp f q “ ΦGg,γp f pGgqq.

Choose x P Gσ. Then ΦGg x,γ f pGg xq “ ΦGg x,γpX´1 f qpGgq “ ΦGg,σ ˝
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Φx,σpX´1 f qpGgq “ ΦGg,σ f pGgq. Consquently, βγ is independent of the

choice of Gg and the maps tβγu are an equivariant family as above.

To prove the two statements of the proposition, note that, by defini-

tion, TσpApσqq “
š

γPGσ Apσqγ Òγ and S σpApσqq “
ś

γPGσ
Apσqγ Óγ.

The isomorphisms in question, then, are
š

γPGσ jγ Òγ and
ś

γPGσ βγ Óγ.

�

Proposition 9.8. Let pX,Gq be excellent with quotient, Y Ď X, and

retraction, π. Let A be any G-carapace of R-modules on X. Then:

(1) T0pAq “
š

σPY TσpApσqq.

(2) S0pAq “
ś

σPY S σpApσqq.

(3) ΣpX,T0pAqq “
š

σPY IG{Gσ
pApσqq. That is ΣpX,T0pAqq is a co-

product of induced modules.

(4) ΓpX,S0pAqq “
ś

σPY CG{Gσ
pApσqq. That is ΓpX,S0pAqq is a prod-

uct of coinduced modules.

Proof. Statements 3) and 4) follow form 1) and 2) by a direct apllication

of proposition 9.6 and so we need only prove 1) and 2).

To prove 1) and 2), first notice that since G acts excellently, we may

write the collection of simplices in X as the disjoint union
Ť
σPY Gσ.

Then,just apply Proposition 9.7. One obtains:

T0pAq “
ž

τPX

Apτq

“
ž

σPY

ž

τPGσ

Apτq

“
ž

σPY

TσpApσqq by Proposition 9.7

For calS 0pAq, the proof is:

S0pAq “
ź

σPY

ź

τPGσ

Apτq
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“
ź

σPY

S σpApσqq

We leave the G-structures to the reader. �

Before proceeding note that if Y Ď X, if σ P Y and if M is an

R-module, we may perform the constructions M Òσ and M Óσ both

in X and in Y and that the results might differ. Rather than lingering123

upon unnecessary distinctions or unnecessarily complicating notation,

we caution the reader to maintain a certain vigilance in reading the next

proof.

Lemma 9.9. Let G act excellently on X with retraction π : X Ñ Y

and section, s. Then for any σ P Y, and Gσ-module, M, s˚pTσpMqq “
M Òσ.

Proof. By definition, TσpMq “
š

γPGσ Mγ Òγ. Evaluating,

TσpMqpλq “
ž

γPλXGσ

Mγ.

Suppose that two simplices, Ggσ and hσ both lie in λ. The action is

excellent and so separated. It followed that Ggσ “ hσ. If λ P Y then

Gσ X λ̃ is just one simplex and if σ P Y that simplex must be σ. That

is, for any λ P Y , TσpMqpλq “ M Òσ pλq which establishes the result.

Suppose X is a simplicial complex and that M is a sheaf of groups

on X. Let V be a carapace of R-modules on X. Suppose that for each

σ P X, we are given a representation, ρσ : Mpσq Ñ AutRpVq. Then for

each pair, σ Ď τ notice that Vpσq is naturally an Mpτq module simply

by pulling back by the restriction, rσ
M,τ

. �

Definition 9.10. Let X be a simplicial complex and let M be a sheaf of

groups on X. Then a carapace of representations of M on X over R is

a carapace of R-modules, V, together with a family of representations,

ρσ : Mpσq Ñ AutRpVq such that for any pair, σ Ď τ, the expansion,

eτ
V,σ

, is an Mpτq-morphism. If A and B are two carapaces of representa-

tions of M on X over R, a morphism of carapaces of representations is

morphism of carapaces which is an Mpσq-morphism for ecah simplex,

σ.
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Notice that carapaces of representations of M are clearly an Abelian

category. Generally, when there is no danger of confusion, we will just

say M-carapace to denote a carapace of representations of M on X over

R.

Let G operate excellently on X with retraction, π : X Ñ Y . Write

s : Y Ñ X for the inclusion. Since excellent actions are separated,

Gσ “ Ĝσ, is a sheaf of groups on X which we will write G˚. If A is a

G-carapace of R-modules on X, then A is certainly a carapace of repre-

sentations over the sheaf of groups, G˚. Finally notice that if f : X Ñ Y

is a morphism of complexes and if V is a carapace of representations

over the sheaf of groups, M on Y then it is purely formal to check that

f ˚pMq is a carapace of representations over the sheaf of groups, f ˚M.

Definition 9.11. Suppose that G operates excellently on X with retrac- 124

tion, π : X Ñ Y, and section, s : Y Ñ X. Let A be a G-carapace of

R-modules on X. Then theprototype of X on Y is s˚pAq. It is a carapace

of representations over s˚G˚, the restriction of the sheaf of stabilizers.

It is patently obvious that s˚ is ana exact functor from the category

of G-carapaces to the category of carapaces of representations of s˚G˚
on Y over R. More can be said. We will write G˚ for the restriction of

the stabilizer sheaf to Y if there is no danger of confusion.

Theorem 9.12. Let G act excellently on X with retraction π : X Ñ
Y and section, s. Then s˚ is an isomorphism of categories from the

category of G-carapaces of R-modules on X to the category of carapace

of representations of s˚G˚ on Y over R.

Proof. In this discussion the functors Ti and Ki on X as well as the cor-

responding functors associated to Y occur. Consequently we will use Ti

and Ki exclusively for the functors associated to X. The corresponding

functors on Y will be written T i and K i.

Write CarRpG, Xq for the category of G carapaces of R-modules on

X and CarRpG˚,Yq for the category of carapaces of representations of

G˚ in R-modules on Y . Then s˚ is an exact functor from CarRpG, Xq to

CarRpG˚,Yq. Define a functor from CarRpG˚,Yq to CarRpG, Xq by the
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equation:

T 0
YpAq “

ž

σPY

TσpApσqq (9.13)

Then s˚pT 0
Y

pAqq “
ś

σPY s˚pTσpApσqqq “
š

σPY Apσq Òσ by Lemma

9.9. But then by the definition of the functorT 0, this says that s˚pT 0
Y

pAqq “
T 0pAq. Let T 1

Y
pAq “ T 0

Y
pK0pAqq. For each σ P Y , there is a natural in-

clusion, K0pAqpσq Ñ T 0
Y

pAqpσq. By Proposition 9.3, 2), this inclusion

gives a unique map qσ : TσpK0pAqpσqq Ñ T 0
Y

pAq. Let qA “
š

σPY qσ.

Then qA maps T 1
Y

pAq to T 0
Y

pAq and its restriction to Y is just the nat-

ural map from T 1pAq to T 0pAq. Define a functor on CarRpG˚,Yq to

CarRpG, Xq by the equation:

IYpAq “ CokerpqAq (9.14)

We will show that IY is inverse to s˚. First suppose that A is in

CarRpG˚,Yq. Then the sequence,

T 1
YpAq ą qa ąą T 0

YpAq Ñ IYpAq Ñ 0

is exact. Apply the exact functor, s˚. The result is a commutative dia-125

gram:

s˚T 1
Y

pAq qA // s˚T 0
Y

// s˚pIYpAqq //

��

0

T 1pAq
δ1

// T 0pAq
πA

// A // 0

By exactness of the rows and commutativity, s˚IYpAq is isomorphic to

A.

Now consider B is CarRpG, Xq. First notice that proposition 3, (??)

gives canonical maps, TσpBpσqq Ñ B. Sum to obtain a canonical

map, d0T 0
Y

ps˚Bq Ñ B Ñ 0. This map clearly vanishes on the im-

age of T 1
Y

ps˚Bq. Hence it induces a mapping, ξB : IYps˚Bq Ñ B.

Apply the exact functor, s˚ and use what we have just proven. Then

s˚pIYpS ˚Bqq “ s˚pBq and ξB induces the identity on segments in Y .
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Now finally note that a G-morphism of G-carapaces which is an iso-

morphism on Y is an isomorphism. That is IYps˚pBqq » B functorially

in B. It follows that IY is inverse to s˚. �

In what follows, Theorem 9.12 will be a very essential and funda-

mental tool for analyzing CarRpG, Xq.

10 Recollections and Fundamentals; Buildings

For the most part we follow the notation and conventions of [BTI] and

[BT II]. Our purpose here is a brief review which will establish notation

and emphasize one or two differences. Throughout K is a field complete

with respect to the discrete rank one valuation, ω : K˚ Ñ Z. Then O

will be the center of ω, k will be the residue field of O and ξ : OÑ k is

the natural map.

Let G be be a Chevalley group scheme defined over Z. Assume

it to be split, simply connected, connected and of simple type. Let T

be a maximal torus, let N be its Cartan subgroup and let B be a Borel

subgroup containing T all given as group subschemes of G defined over

Z.

Each of these group schemes being a functor, applying any one of

them to ξ gives a morphism which, in all cases, we will also call ξ from

GpOq to Gpkq, BpOq to Bpkq, etc.. let G “ GpKq, let G0 “ Gp′q and let

G “ Gpkq. Let B “ BpKq, let B “ Bpkq but let B “ tx P G0 : ξpxq P
Bu. Let N “ NpKq, let T “ TK and let H “ N X B.

Let X denote the finite free Z-module of characters of T, let Φ de-

note the roots of G with respect to T; let Φ` denote those positive with

respect to B; let ∆ be a basis of simple roots in Φ` and let α̃ denote

the largest root. Let Γ “ HomZpX,Zq be the group of one parameter 126

subgroups of T and let Φ Ď Γ be the set of co-roots.

Let tUα : α P Φu be a set of root subgroups let Uα “ UαpKq
and let xα : Uα Ñ Ga,Z be the natural isomorphism. Let Uα,n “ tu :

ωpxαpuqq ě nu and observe that Uα,0 “ UpOq.

Let N0 “ N X G0. Then Γ can be identified with the group scheme

morphisms, γ : Gm,Z Ñ T. Write ă γ, χ ą for the value, γpχq when
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γ P Γ and χ P X. We may always think of γ as a map, map : K˚ Ñ T

and so we may write χpγpyqq “ yăγ,χą. Following this convention, we

may define the action of N on Γ by the equation, pnγqpxq “ npγpxqqn´1.

For t P T write tχ for χptq. Then N acts on X by the equation χnptq “
χpntn´1q. Then N0 normalizes T and so acts on it by conjugation. Con-

sider the semi-direct product, T Ÿ N0. For any pt, nq P T

trianglele f tN0, define a mapping, τt,n : Γ P Γ by the equation,

xτpt,nqpγq, χ ą“ ´ωptχq` ăn γ, χy
Then τt,n is an affine transformation and pt, nq ÞÑ τpt,nq is an action of

T Ÿ N0 on Γ. If n P T X N0 it is clear that τn,n´1 “ idΓ and so this

action reduces to an affine action of T ¨ N0 “ N on Γ. If n P N, γ P Γ
write n “ tn0 and let nγ “ τpt,n0qpγq. It is straightforward to verify that

if nγ “ γ for all γ P Γ then n P H.

Let A “ Γ bZ R and extend the action of N to A by linearity. Let

XR “ X bZ R and choose a form on XR invariant under the vector Weyl

group. For λ, χ P XR write the form, pλ|χq. With this form, identify A

with XR and write α̌ “ 2α
pα|αq for each α P Φ.

Since H acts trivially under τ, and since N{H is naturally isomorphic

to the affine Weyl group τ induces an action of the affine Weyl group on

A and it is a triviality that this is the canonical action.

For any pair, pα, rq P Φ ˆ Z, let α˚ “ tx P A : αpxq ` r ě 0u.

These are closed half spaces and they are in bijective correspondence

with Φ ˆ Z. If the half space, α˚ corresponds to the pair pα, rq, write

Uα˚ for the group, Uα,r defined above. Write Bα˚. The closed half

spaces, α˚, are called the affine roots of G in A and we write Σ for the

set of all affine roots of G in A.

Define an equivalence on A by saying that x „ y if and only if

x P α˚ if and only if y P α˚ for all α P Σ. These equivalence classes

are the facets of A and they are the interiors of simplies (because G

is of simple type). Their closures give a simplicial decomposition of

A. The maximal dimensional facets are called chambers. They are the

connected components of A
Ť
α˚PΣ Bα˚.

Let ∆̃ denote the set of affine roots pα, 0q, α P ∆ and p´β, 1q where β

is the unique largest root relative to the dual Weyl chamber. Let S denote
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the set of reflections thorugh the hyperplanes, Bα˚ for all α˚ P ∆̃. These 127

reflections afford a Coxeter presentation of the affine Weyl group, N{H,

so that (G, B, N, S) is a Tits system in G. Then N{H acts transitively on

the chambers of A.

Let C0 “
Ş
α˚P∆̃ α

˚ and let C0 be its interior. Let F be any contained

in C0 and let S F “ ts P S : spFq “ Fu. In pariticular S C0
“ H. For

any F, let PF be the subgroup of G generate by B and some arbitararily

chosen set of representatives of S F chosen and it is called the parahoric

subgroup of G associated to F. By definition, the parahoric subgroup

of G relative to the Tits system, pG, B,N, S q, are the conjugates of the

subgroups, PF . We shall call the facets, F Ď C0 the types of G with

respect to the Tits system, pG, B,N, S q. If P is a parahoric subgroup

of G, then P is conjugate to a unique group of the form PF for some

F. Then we call F the type of P and we write F “ τP. Notice that

our terminology differs slightly from [BTI] in which the subsets, S F are

called the types.

We may now describe I “ IpG, B,N, S q, the building of G with

respect to the Tits system, pG, B,N, S q. As a point set, IpG, B,N, S q is

the set of pairs, pP, xq where P parahoric and x P τpPq. Now G acts on

this set by the equation, GgpP, xq “ pGg P Gg´1, xq.

Let x be any point of A. Then for some n P N, nx P C0. Then the

point nx is uniquely determined. Let F be the smallest open facet con-

taining nx. Let apxq “ pn´1PFn, nxq. The group, n´1PFn is uniquely

determined just as nx is and so a maps bA into IpG, B,N, S q. (This

map is called j in [BTI].) We may now make IpG, B,N, S q into a geo-

metric simplicial complex. Its simplices are just G translates of closed

facets in apAq and its vertices are translates of the special points. The

G-translates of apAq are called the apartments of IpG, B,N, S q.

There are several structures on I “ IpG, B,N, S q. First there is

what is called an affine structure in [BTI]. If x and y are any two points

in I they are contained in one apartment. Thus for any λ P r0, 1s, there

is a point λx ` p1 ´ λqy determined by the apartment. This point is,

however, independent of the apartment chosen and the operation which

assigns to each pair, px, yq together with a real λ P r0, 1s, the point

λx ` p1 ´λqy is the affine structure. There is a G invariant metric whose
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restriction to any apartment is the metric is written dpx, yq. Finally there

is a “bornology” on subsets of G. A set is called bounded if it is con-

tained in a finite union of double cosets, BwB for w P N. Now let us

record some statements particularly useful to us. They are for the most

part simple rearrangements of statements in [BTI] and [BT II].

Lemma 10.1. The action of G on IpG, B,N, S q is excellent with section,128

C0.

Proof. First,m C0 is a fundamental domain for the G action and G is

transitive on maximal dimensional simplices. This implies that the ac-

tion is separated. The coled chamber, C0, is isomorphic to the quotient if

I by the G action and the inclusion of C0 into I is clearly a section. �

Lemma 10.2. G acts transitively on the paris pF,Cq where F is a facet

and C is an apartment containing F.

Proof. This is just 2.26, p. 36 in [BTI]. �

Proposition 10.3. The action of B on IpG, B,N, S q is excellent with

section.

a : A Ñ I.

Proof. The action of G on IpG, B,N, S q “ I is separated and so, a

fortiori, the action of B is as well. Let C0 be the chamner associated

ot B. Recall the definition of the retraction of I on A with center, C0

([BTI] 2.3.5, P. 38). As we remarked, given any two facets, there is

an apartment containing them. Thus for any fact, F Ď I, there is an

apartment A1 containing F and C0. By 10.2, there is an element Gg in

G so that GgpC0,A1q “ pC0,Aq whence Gg F Ď A. Let ρC0,ApF1q “
Gg F. We show that ρ´1

C0,A
pF1q “ B ¨ F.

Suppose that ρC0,ApF1q “ F. Then, by definition, there is an apart-

ment, A1, containing C0 and F1 and an element Gg P G, so that Gg A1 “
A, GgF1 “ F and Gg C0 “ C0. Since Gg C0 “ C0, Gg P B and

Gg F1 “ F. Hence ρ´1
C0,A

pF1q Ď B ¨ F. The opposite inclusion is clear.

To complete the proof that I{B “ A. we use, nearly unmodified,

the proof of 2.3.2, p. 37 of [BTI]. Clearly, for any facet, F, the orbit,
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B ¨ F meets A. What remains to be shown is that B ¨ F contains exactly

one facet in A.

Suppose that F and F1 are in A and that F “ bF1, b P B. Then, F “
nF0, F1 “ n1F0 for some F0 Ď C0. The stabilizer of F (respectively,

F1) is nPF0
n´1pn1PF0

pn1q´1 respectively). Then bn1PF0
pn1q´1b´1 “

nPF0
n´1. Since parahoric subgroups are self normalizing, n´1bn1 P PF0

and hence, b´1n P n1PF0
. Let X “ S F0

and let Wx be the subgroup of

W generated by X. Then PF0
“ BWX B. By [?], IV, 6, Proposition 2,

n1PF0
Ď Bn1WX B. If ν : N Ñ W is the natural surjection, this implies

that νpnq P νpn1qwX and so nPF0
n´1 “ n1PF0

pn1q´1. But F is the fixed

point set of nPF0
n´1 and F1 is the fixed point set of n1PF0

pn1q´1. Con- 129

sequently, since the two groups are equal, F “ F1. thus for any facet,

B ¨ F contains exactly one facet in A. As this is true, in particular, for

vertices, A is the quotient of I by the action of B and so the proposition

is proven. �

11 Mounmental Complexes

In this section the term monumental is thought of as meaning resem-

bling or having the scale of a building ad it is used in the history of art.

We use it to describe certain G actions which have all the properties of

the natural actions on buildings which are of interest to us. If X is a

finite dimensional simplicial complex and if G is a group acting on it

then a subcomplex, Y Ď X will be called homogeneous if, Whenever Y

contains two simplices, τ and γ such that τ “ Gg γ for some Gg P G,

there is an element s P G such that sY “ Y and τ “ sγ.

Definition 11.1. Let G be a group and let X be a finite dimensional sim-

plicial complex on which G is acting with a separared action. Then the

action of G on X will be called monumental if and only if the following

conditions hold:

(1) Every simplex in X is contained in a maximal dimensional simplex.

(2) G acts transitively on the maximal dimensional simplices.
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(3) For any simplex, σ in X the stabilizer, Gσ is self normalizing in G.

(4) If σ is a maximal dimensional simplex, the stabilizer, Gσ, acts ex-

cellently and it admits a homogeneous section, Y Ď X.

Suppose that G is a group acting monumentally on X. Then a max-

imal dimensional simplex will be called a closed chamber; its interior

will be called a chamber. Let C be a closed chamber in X. Then sep-

aration of the action implies the for any simplex σ in X, the orbit, Gσ

contains at most one simplex which is a face of C while homogeneity

implies that there is always at least one. Consequently the action of G

is excellent with quotient C and section equal to the inclusion of C in X.

Let B “ bpCq denote the G stabilizer of C and let Y be a homogeneous

subcomplex of X mapping isomorphically onto the quotient, X{B Then

any translate of Y , Gg Y will be called an apartment of type Y . In general

we will think of the type, Y as chosen and fixed once and for all and so

we will often speak merely of apartments.

Let F be a field. Let H be a commutative Hopf algebra over F with130

comultiplication, muH : H Ñ H bF H, augmentation, ǫH : H Ñ F,

and antipode, sH : H Ñ H. Then H will be called proalgebraic if it is

reduced and a direct limit of sub-Hopf algebras finitely generated over

F. Then S pecpHq is a proalgebraic group scheme over F.

If H is proalgebraic over F let GH denote the group of F-valued

points of H. That is GH is the group of F-homomorphisms from H to

F. Let F pGH , Fq denote the ring of F functions on GH and let γH be the

natural map from H to F pGH , Fq, namely γHpaqpφq “ φpaq. We will

say that H separates k-points if γH is injective.

Definition 11.2. Let G be a group. A monumental G-complexis a sim-

plicial complex, X, on which G is acting monumentally together with a

G-carapace of commutative F-algebras with unit, pA, tΦGguGgPGq, and

G-morphisms, µA : AÑ AbF A, sA : AÑ A and ǫA Ñ FX so that

that following conditions are satisfied:

(1) Each of the morphisms, µA, sA and ǫA is a morphism of G-carapaces

of commutative F-algebra and for any simplex, σ, Apσq, µA,σ,

sA,σ, ǫA,σ is a profinite Hopf algebra over F.
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(2) For each pair of simplices,σ Ď τ, the expansion, eτ
A,σ

is a surjective

morphism of proalgebraic Hopf algebras.

(3) The G structure, tΦGguGgPG acts by isomorphisms of carapraces

of proalgebraic Hopf algebras. That is ΦGg,σ is a Hopf algebra

isomorphism for each Gg and σ.

(4) For each σ letGpσq “ GApσq. ThenG is naturally a sheaf of groups

with the G structure induced by Φ. Then Apσq is reduced for each

σ and there is an isomorphism of G-sheaves, α : G˚ Ñ G.

The first three conditions of Definition 11.2 are self explanatory but

the third requires some amplification. First of all, if M is a simplicial

sheaf on X and ψ is an automorphism of X, ψ˚Mpσq “ Mpψpσqq. The

G-structure on G˚ is that arising from conjugation. That is, define cGg,σ :

Gσ Ñ GGgσ by the equation:

cGg,σpxq “ Gg x Gg´1 (11.3)

Now we explain the G-structure on G induced by Φ. The functor G

is contravariant and so GpΦGg,σq maps GpGgσq to Gpσq. Thus define a

G-structure, tΓGguGgPG by the equation:

ΓGg,σGpΦGg´1,Ggσq (11.4)

Recalling that elements of Gpσq are the F-homomorphisms fromApσq 131

to F, this map can be more explicitly written, ΓGg,σpxq ´ x ˝ΦGg´1,Ggσ.

It is customary to write apxq for xpaq when a is in a ring and x is a

F-point of the ring. We may use α to identify Gσ with Gpσq, writing,

for a P Apσq and Gg P Gσ, apGgq to denote rασpGgqspaq. With these

conventions, Condition 3) is nothing more than the equation:

rΦGg,σpaqspxq “ apGg´1 x Ggq (11.5)

Henceforth of X is a monumental G-complex with carapace of F-

Hopf algebras A we will just say that pG, X,Aq is a monumental G-

complex over F. Further we will use α to identify G˚ with G and we
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will always view Apσq as a ring of function of Gσ. The definitions of

this section contain all the properties of buildings which will be used

lated on. The next section explains how the affine building of the group

of K-valued points of some semi-simple group for some valued field, K

satisfies all of these conditions for an appropriate choice of the carapace

A.

12 The Main Examples

In this section we will discuss three monumental complexes. The first

two are quite straightforward by the third requires a short dicussion of

some classical results of M. Greenberg. Such symbols as

K, ω, k,O,G,G,B, B

etc. mean just what they did in the previous section.

The Admissible Complex

Let K be a locally compact, non-Archimedean field and let F be any

(discrete) field. Let IpG, B,N, S q be the buildings associated to G. For

each σI, Gσ, the parahoric subgroup associated to the facet, σ, is a

profinite group. For eachσ letA0
F

pσq denote the ring of locally constant

F-valued functions on Gσ. For any set T , T F will denote the set of all

F-valued functions on T . Then

A0
Fpσq “ limÝÑ

M

pGσ{MqF

where M varies over the open normal subgroups of Gσ. Since each

of the algebras, pGσ{MqF is in fact a finite dimensional Hopf algebra

with augmentation and antipode and since the inclusionspGσ{M1qF Ď
pGσ{M2qF when M2 Ď M1, is a Hopf morphism, A0

F
pσq is a Hopf

algebra with antipode and augmentation.It is clearly profinite and it is

also clear that the expansions are surjective Hopf morphisms. Let GF be132
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the sheaf of F-points of the carapaceA0
F

as in §11.2, 4). Then GFpσq is

the set of algebra homomorphisms,

Homal
F plimÝÑ

M

pGσ{MqFq “ limÝÑ
M

Homal
F ppGσ{MqF , Fq

“ limÝÑ
M

Gσ{M

“ Gσ

That is, there is a canonical isomorphism of sheaves of groups, α :

G˚ Ñ GF . Finally define the G structure tΦGguGgPG by the equation,

rΦGg,σpaqspxq “ apGg´1 x Ggq. SinceI is the building of G 1),2) and 3)

of §11 show that G acts monumentally on it. We have just observed that

A0
F

and I satisfy Conditions 1) through 4) of Definition 10.2. Hence

pI,A0
F

q is a monumental G complex. We shall call it the admissible

complex of G over F. We note that the group. G, may be replaced by a

central extension, G̃.

The Spherical Complex

For this example we depart somewhat from usual terminology. Let F

be an algebraically closed field and let GF “ GpFq be the group of F

points of the Chevalley scheme, G which we assume to be of simple

type. Construct a complex as follows. The vertices of S are the proper

reduced maximal parabolic subgroup schemes of GF which we regard

as the base extension of G to F. The set P1, ldotsPn is a simplex in S if

and only if the intersection P1 X . . . X Pn is parabolic. Let GF act on S

by conjugation. For any σ P S, we write Gσ for the stabilizer. Then Gσ

is just the intersection of the groups corresponding to the vertices of σ.

A chamber is the set of maximal parabolics containing a maximal torus.

We must first establish that the action of G on S is monumental. The

first three conditions of Definition 11.1 are quite well known. The proof

of the fourth condition is again a modification of the proof of 2.3.2 of

[BTI]. Let B be a Borel subgroup containing the maximal torus, T , and

let N be the normalizer of T . Let P be any parabolic subgroup of G.
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By [H], 6.1, the intersection of any two parabolic subgroups contains a

maximal torus. Thus there is maximal torus, S , in P X B. Hence there is

some element, b P B, so that bsb´1 “ T . Hence bPb´1 contains T . Let

ApT q denote the apartment corresponding to T .m We have shown that

for any facet, τ, the B orbit, Bτ meets ApT q.

Now suppose that P and Q are two B-conjugate parabolics both of

which contain T . Then there are element m and n in N and b in B and

a parabolic P0 containing B so that P “ nP0n´1, Q “ mP0m´1 and

bPb´1 “ Q. Thus, bnP0n´1b´1 “ mP0m´1 and so, since P0 is self

normalizing, bn P mP0. By [Bo], IV, 2.5.2, bn P BMW0B where W0 is133

the Weyl group of P0. Hence nP0n´1 “ mP0m´1, That is any two B

conjugate parabolics containing T are necessarily equal. It follows that

any B orbit Bτ meets ApT q in exactly one facet. Condition 4) of the

definition in hence established.

For any σ P S let Apσq be the coordinate ring of the parabolic

subgroup, Gσ. It is an elementary exercise in the theory of algebraic

groups to see that pGF ,S,Aq is a monumental GF complex.

The Affine Complex

To describe this complex, we must recall some classical results of M.

Greenberg. Let k be a perfect field and let R be a ring scheme over

k. Let X be any k scheme. Define a ringed space, R̃pXq as follows.

Its topological space is the underlying topological space of X and we

denote it bpXq. If U is open in bpXq, let GR,XpUq “ RpS pecpOXpUqqq.

As this functor is representible, it is a sheaf of rings on bpXq. Call R a

scheme of local rings if GR,X is a sheaf of local rings for each scheme,

X and assume this to be the case.

Let V “ Rpkq. Then for each X, GR,X is a sheaf of V algebras. Let

R̃pXq “ pbpXq,GR,Xq. Then R̃ is a covariant functor from k schemes to

V local of S pecpVq schemes. Though we call the following the first the-

orem of Greenberg, it is not given as one theorem in [MGI] but it largely

summarizes the content of §4 of that work, especially Propositions 1 to

4 of §4 and the extensions thereof in §6.
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12.1 First Theorem of Greenberg. Suppose the ring scheme, R, is a

projective limit of schemes each isomorphic to affine n space over k for

varying n. Then there is a right adjoint to the functor GR,X from the

category of k schemes to the category of V-schemes. That is, there is a

functor F so that for any k scheme, X, and any S pecpVq scheme, Y, the

following holds:

HomVpGRpXq,Yq “ Homk ´ pX,FpYqq

Moreover F satisfies:

(1) If Y is of finite type over S pecpVq, then FpYq is a projective limit of

schemes of finite type over k.

(2) If Y is affine then so is FpYq.

(3) If Y is a group scheme over S pecpVq, then FpYq is group scheme

over k in such a way that the adjointness isomorphism of (2) is a

group morphism functorially in X.

This brings us to what we will call the second theorem of Greenberg. 134

In this case we are assemblings parts of §6, Proposition 1 of [MGI] and

Proposition 2 and the structure theorem of [MG II], §2. Assume that

R “ limÝÑ
n

where Rn is a ring scheme over k which is k. isomorphic to

A n
k
, affine n ` 1 space over k. Let In be the scheme of ideals in R

corresponding to the kernel of the projection R Ñ Rn. Let Ir
n be the

scheme of ideals in Rr such that o Ñ Ir
n Ñ Rr Ñ 0 is an exact sequence

of group schemes for the additive structure. Assume that Ir
n is affine n´r

space over k and that Rr is a locally trivial fiber space over Rn with fibre

IR
n and the it is in fact a vector bundle over Rn. Let Gn “ GRn

and let Fn

be its right adjoint. Let UnpYq be the kernel of FpYq Ñ FnpYq and let

Ur
npYq be the kernel of FrpYq Ñ FnpYq, pr ą nq.

12.2 Second Theorem of Greenberg. Let Y be a smooth group

scheme with connected fibres over S pecpVq. If r ě n ě 0, Ur
n is a fi-

nite dimensional unipotent group scheme. Moreover, FrpYq is S pecpVq
isomorphic to the total space of a vector bundale over F0pYq.
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We will refer to bUnpYq (respectively, Ur
npYq) as the congruence

subscheme of bFpYq (respectively FrpYqq of level n, and we shall call

FpYq the realization of Y over k.

Now we return to the notation and conventions, of §10. Assume that

k in perfect. Let X “ IpG, B,N, S q. By Proposition 10.3, the G action

os monumental. We will show that X is a monumental complex over

G. One of the more astonishing results in [BT II] is that for any σ P X,

there is group scheme over O, Mσ, so that the generic fiber of Mσ is

the base extension to K of G and such that MσpOq “ Gσ. Since G is

split and simply connected and ω is discrete, Mσ can be assumed to be

smooth with connected fibers. These group schemes are determined up

to isomorphism if one requires that they admit Bruhat decompositions

of a particular type. (see section 4.6 of [BT II]) We may assume that the

schemes Mσ are carried to each other by the conjugation action on the

generic fibre. Finally we will assume that O is the ring of k points of a

ring scheme which is a projective limit of affine spaces over k. This is

the case when O is the ring of Witt vectors of k or the ring the of formal

power series in one variable over k. Then for any σ P X, Gσ is the set

of k points of FMσ, the Greenberg realization of Mσ over k.

Now we may describe the affine complex. Choose O as above to

be the k points of a ring scheme isomorphic to an inverse limit of affine

spaces. Choose G, ω, B etc. as in §11 and let X “ IpG, B,N, S q. For

each σinX, le Apσq be the k coordinate ring of FMσ. The verification

that pG, X,Aq is a monumental complex is now an entirely routine af-

fair. This monumental complex over G is what we shall call the affine135

complex of G over k.

13 Locally Rational Carapaces

In this section and for the remainder of this discussion pG, X,Aq will

always denote a monumental G-complex over the field , k, Recall that

the action of the G-structure on A can be described by the equation

ΦGg,σp f q “ f ˝cGg´1 where cy denotes conjugation by y. Recall also that

if M is any proalgebraic group with coordinates ring, A, over k, and if V
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is a rational representation of M with structure map β : V Ñ VbkA, then

if M acts on A be conjugation, γGgp f q “ f ˝ cg´1 , then β is equivariant

as a map from the representation, V , to the representation V bk A, where

the actions on V andA are determined by β and γ respectively.

Definition 13.1. Let pG, X,Aq be a monmental complex and let Φ be

the G-structure onA. A locally rational carapace of representations on

pG, X,Aq is a G-carapace of k-vector spaces on X, V, with G structure,

ψ and a morphism of G-carapaces, beta : V Ñ V bk A so the for each

σ, the map βσ : Vpσq Ñ Vpσq bk Apσq is a comodule structure map

in such a way that for each Gg, ψGg,σ is morphism of comodules.

A morphism of locally rational carapaces is a G-morphism of G-

carapaces, f : V Ñ U which is a comodule morphism on each segment.

It is clear that the locally rational carpaces on pG, X,Aq are an abelian

category.

The reader is cautioned to note that that the G-structures on A and

V exist quite apart from the local comodule structure map β. In partic-

ular A admits several local comodule structures corresponding to left

translation, right translation and conjugation. These are non-isomorphic

locally rational structures on the same G-carpace. The comultiplication

µ : A Ñ A bk A may be regarded as the local structure correspond-

ing locally to right translation. We will write Ar for A with this local

comodule structure.

The reader is cautioned to note that that the G-structures onA and V

exist quite apart from the local comodule structure map, β. In particular

A admits several local comodule structure corresponding to left trans-

lation, right translation and conjugation. These are non-isomorphic lo-

cally rational structures on the same G-carapace. The comultiplication,

µ : A Ñ A bk A may be regarded as the local structure correspond-

ing locally to right translation. We will write Ar for A with this local

comodule structure.

Proposition 13.2. Let pG, X,Aq be a monumental complex and let V,

β be a locally rational carapace of representation on pG, X,Aq. Let

mu, ǫ, s denote the structure morphisms onA. Then
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(1) The structures onA endow the segment, ΣpX,Aq, with the structure

of a co-algebra with co-unit and antipode.

(2) The structure morphism, β, makes the segment, ΣpX,Vq into a co-

module over ΣpX,Aq.

(3) Both the co-algebra structure data on ΣpX,Aq and the comodule136

structure map on ΣpX,Vq are G morphisms of representations.

Proof. Inn this proof, we will make use of two functional properties of

the map, tA,B of Proposition 2.2, 3) which have not been established.

Let A, A1, B, B1 and C be k-carapaces on X and let α : A Ñ A1 and

β : B Ñ B1 be morphisms. The two functorial properties, whose proofs

we leave to the reader, are these:

tA1B1 ˝ Σpα b βq “ pΣα b Σβq ˝ tA,B

ptA,B b idΣCq ˝ tAbB,C “ pidΣA b tB,Cq ˝ tA,BbC (13.3)

Now define structure data on ΣA as follows. Let µΣ “ tA,A ˝Σµ, let

eσ “ Σe and let sΣ “ Σs.

The proof, for example, of co-associativity is the following compu-

tation:

pµΣ b idΣAq ˝ µΣ “ ptA,A b idΣAq ˝ ppΣµq b idΣAq ˝ tA,A ˝ Σµ
“ ptA,A b idΣAq ˝ tAbA,A ˝ Σpµ b idAq ˝ Σµ
“ ptA,A b idΣAq ˝ tAb,A,A ˝ ΣpidA b µq ˝ Σµ

by the co-associativity of µ

“ pidΣA b tA,Aq ˝ tAA,AbA ˝ ΣpidA b µq b Σµ byp136q
“ pidΣAbtA,Aq ˝ pidΣA b Σµq ˝ tA,A ˝ Σµ
“ ridΣA b ptA,A ˝ Σµqs ˝ ptA,A ˝ Σµq
“ pidΣA b µΣq ˝ µΣ

The proof of the remaining axioms making ΣA into a coalgebra

with co-unit and antipode are similar and are, for that reason, left to the

reader.
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Define the co-action on ΣV by the equation, βσ “ tV,A ˝ Σβ. The

proof that this is co-associative in truly indentical to the above compu-

tation with the firstA’s in the expression there replaced by V’s.

The last numbered assertion just follows from functoriality. �

Definition 13.4. Let pG, X,Aq be monumental complex. The algebra of

measures on pG, X,Aq, which we write L1pG, X,Aq or, more briefly as

L1pXq when no confusion will result, is the algebra pΣAq˚, the k-linear

dual of ΣA.

Much of what follows depends on a natural L1pG, X,Aq-structure

on the exoskeletal homology groups of a locally rational carapace. To

construct this action we must examine the functor, T0 of §7, (1), the

first term in the canonical brittle resolution. Recall that for any carapace

A, rT0pAqspσq “
š

τĎσ Apτq and the expansions are the natural inclu-

sions . Moreover, the boundary map, δ0 naturally maps T0pAq into A.

Proposition 13.5. Let pG, X,Aq be a monumental complex and let V be 137

a locally rational carapace on X with structure map β. Then

(1) The carapace, T0pVq, admits a natural structure map, β0, making it

into a locally rational carapace.

(2) The structuremap , β0 is uniquely determined by the requirement

that δ0 be a morphism of locally rational carapaces.

(3) If Vpσq is finite dimensional for each σ then the same is true of

T0pVq.

Proof. Suppose that pV, βq is locally rational and that τ Ď σ are two

simplices in X. Then, pidVpτq b eσ
A,τ

q ˝ βτ “ βτ,σ makes Vpτq inti a

Apσq comodule in such a way that the diagram,

Vpτq
V,Tσ

��

βτ,σ // Vpτ bApσqq
eσ

V,τ

��
Vpσq βσ // Vpσq bApσq
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commutes. Thus pβ0qσ “
š

τĎσ βτ,σ is comodule structure map on

rT0pVqspσq Then p˚q may be applied twice, once to prove that T0pVq is

a carapace of co-modules over A and again to prove that β0 commutes

with the two comodule structure morphisms. One verifies directly that

β0 is a G-morphism. The uniqueness statement is clear as is the finite-

ness statement. �

Proposition 13.6. Let pG, X,Aq be a monumental complex. Then for

each rgeq0 the r’th exoskeletal cohomology, HrpX,´q, is covariant func-

tor from the category of locally rational carapaces on X to the category

of left L1pG, X,Aq-modules.

Proof. By Proposition 13.2, Σ is a functor from the category of locally

rational carapaces to the category of ΣpAq co-modules. The identity

functor takes ΣpAq-co-modules to L1pXq “ pΣpAqq˚-modules. Thus Σ

is a covariant functor to the category of left ∞pXq modules.

By Proposition 13.5 and the definition of the canonical brittle resolu-

tion (Definition 7.1), the canonical brittle resolution of V is a resolution

by locally rational carapaces with boundary maps which are morphisms

of locally rational carapaces. Thus the Alexander chains are a complex

of L1pXq-modules. The result follows immediately. �

We shall be working with subalgebras of L1pXq. In consequence, a138

“working description” of it might be of use. First notice that L1pXq “
HomkpΣA, kq “ HomX,kpA, kXq. Thus a typical element of L1pXq is

a family, tBσuσPX where Bσ P Apσq˚, the linear dual of Apσq. The

coherence condition on the family, tBσuσPX is the commutativity of:

Apσq
eτ
A,σ

��

Bσ // k

Apτq Bτ
// k

(13.7)

for every pair, σ Ď τ. This should be understood in the following sense.

For any pro-algebraic group, the linear dual of its coordinates ring is an

algebra under convolution. If one group contains another as a closed

162



Algebraic Representations of Reductive Groups over Local Fields 163

subgroup, then the dual of its coordinate ring contains the dual of the

coordinate ring of the subgroup. Thus, 13.7) says that whenever σ Ď
τ the Bσ P pApτqq˚. In particular Bσ P

Ş
γĚσ as γ ranges over the

chambers containing σ. In each of the main examples, this means that

Bσ is in linear dual of th coordinate ring of the radical of Gσ . This

prompts us to define the X-radical of a stabilizer, Gσ as the intersection,

RGpσq “
Ş
γĚσ Gγ where the intersection is taken over all chambers,

γ, which contain σ .

Henceforth we will write A˚pσq for the linear dual of Apσq. Re-

call that for any commutative Hopf algebra A, the dual algebra, A˚ can

be identified with the algebra of k-linear endomorphisms of A which

commute with left translation or alternatively with those that commute

with right translation. That is, ω : A Ñ A is an endomorphism com-

muting with left translations, then φ “ eA ˝ ω P A˚ is an element of

the dual such that φ ˚ a “ ωpaq for all a P A and where the operation

of φ is by right convolution. There is a similar statement with left and

right interchanged. With this in mind, it is clear that L1pXq is the alge-

bra of k endomorphisms of A which are co-module morphisms for left

translation (but not necessarily G-morphisms).

The G-action on L1 can now be described. If Gg P Gσ then, Gg can

be thought of as a k-homomorphism form Apσq to k and so as an ele-

ment ofA˚pσq and Gσ can be thought of as a subgroup of the unit group

of A˚pσq. Hence in this case Gg acts by true conjugation, Gg ¨B “
Gg B Gg´1. More generally the action is pGg ¨Bqσ “ BGgσ ˝ ΦGgσ.

14 The Injective Co-generator
139

Let pG, X,Aq be a monumental complex. In this section we show that

the category of locally rational carapaces admits an injective cogenera-

tor. We give a particular injective cogenerator and we use it to construct

a module category containing an image of the locally rational carapaces.

Let C denote a chamber in X and let A denote an apartment con-

taining C. The unadorned symbols, τi and Si will denote the canonical

brittle and flabby resolutions on X (see 8.3) whileTC
i

andSi
C

will denote
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those on C and T A
i

and Si
A

those on A. Let ι : C Ñ X be the inclusion.

By Theorem 9.12, ι˚ is an isomorphism of categories from G-carapaces

on X to G˚-carapaces on C. Recall that IC denotes its inverse.

The locally rational carapaces on X are a subcategory of the G-

carapaces on X ans so ι˚ carries them to a subcategory on C. The reader

can work out their properties when necessary; we will frequently argue

in that category rather than the category of locally rational carapaces on

X. For a G-carapace on X,V , we will VC to denote its restriction to C.

If R is the coordinate ring of the proalgebraic group, H, it admits

several structures as a rational representation. Let µ, e and s be the

structural data for R. Write Rℓ for the left translation module, Rτ for

the right translations module and R unadorned for the conjugating ac-

tion, γxpaqpgq “ apx´1gxq. Notice that s establishes an isomorphism

between Rℓ and Rτ. Consequently except when the particular features

of a calculation or proof demand other wise we will always write Rτ for

this representation.

For a representation of H, M, write M5 to mean the vector space, M

refurbished with the trivial representation. If β : M Ñ M bk R is the

coaction on M, then the coassociativity of β is precisely equivalent to the

statement that β is an H morphism from M to M5 bk Rτ It is also true that

β is an H-morphism from M to M bk R where the tensor product is with

respect to the given structure on M and the conjugating representation

on R.

If M is any vector space equipped with the trivial representation,

then M bk Rτ is H-injective, (It is, in fact, co-free.) To prove it, let f :

N Ñ MbkRτ be an H-map, and let j : N Ñ Q be an H-monomorphism.

Let ξ : Q Ñ Q bk R be the coaction. Just choose φ : Q Ñ M so the

φ˝ j “ pidM beq˝ f . Then it is straightforward to verify that pφbidRq˝ξ
is a comodule map from Q to M bk R whose composition with j is just

f .

Suppose that P is a closed subgroup of H of finite codimension.

If N is a representation of P then the induced algebraic representa-

tion is a representation of H, IH{PpNq together with a P morphism,

ǫN : IH{PpNq Ñ N inducing the Frobenius reciprocity isomorphism,140

HomHpW, IH{PpNqq “ HomPpW|P,Nq. To construct IH{PpNq consider

164



Algebraic Representations of Reductive Groups over Local Fields 165

N bk R. The subgroup P acts on this product diagonally through the

given representation on N and right translation on R. In addition, H acts

by left translation on R and the trivial action on N. The actions of H and

P on N bk R commute and so pN bk RqP is an H sub-representation of

N5 bk Rℓ. Then, IH{PpNq “ pN bk RqP, and the map ǫN is the restriction

of idN b e. Composing idN b s with the inclusion of IH{PpNq in N bk R,

we obtain a functorial map:

ı : IH{PpNq ãÑ N5 bk Rτ (14.1)

The following is crucial.

Lemma 14.2. Let H be profinite with structural data as above. Let V

be a rational representation of H. There is a vector space, U, and exact

sequence,

0 Ñ V Ñ V bk Rτ Ñ U bk Rτ

Proof. Let α : V Ñ V5 bk Rr be the coaction viewed as an H-morphism.

We will construct a morphism ψ : V5 bk Rτ Ñ pV bk Rq5 bk Rτ so that

kerpψq “ impαq. Let nupv b aq “ v b 1 ˆ a and let pλ “ idV b m b
idRq ˝ pαb idR b idRq ˝ idVrps b idRq ˝ µs. These are both H morphisms

for notice that if τpv b r b sq “ v b s b r, then τ ˝ λ is a comodule

structure on V5 bk Rτ. With this interpretation, the kernel of τ ˝ pνλq is

just the space of invariants for this action. But then V bk R is the module

of sections for a homogeneous bundle on H and the image of α is the

subspace of invariant sections. Applying τ again. we have shown that

the kernel of ν ´ λ is the image.

Notice that as a G˚-carapace, AC is equipped with the conjugating

representation. If V is a rational G˚-carapace, then V bk Ac always

denotes the tensor product with respect to this structure. The comodule

structure, α : V Ñ V bk AC is a G˚-morphism with respect to this

structure. is not a G˚-morphism with respect to the right translation

action.

Define the carapace, Aτ
C

by the equation, calAr
C

pσq “ Apσqτ. Let

Ar “ ICpAr
C

q. Clearly,A andAτ are not isomorphic as G carapaces.

Let S0
C

pkcq “ IC . Since k is field, IC is injective. Let IAr
C

“
IC bkA

r
C

. Then idIc
b µ makes IAτ

C
into a locally rational carapaces of
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G˚-modules. Tensoring the natural inclusion, kC ãÑ IC , withAτ yields

the natural inclusion:

 : Aτ
C Ñ IAτ

C

In general we will call a carapace locally finite if each of its seg-141

ments is a finite module. �

Proposition 14.3. Let pG, X,Aq be monumental with chamber, C. Let

J be an injective k-carapace on C. Then J bk A
r
C

is injective in the

category of rational G˚-carapaces.

Proof. The corresponding proof for a proalgebraic group globalizes.

Let U and V be two rational G˚ carapaces with co-actions, α : U Ñ
U bk AC and β : V Ñ V bk AC respectively. Let ν : U Ñ V be a

G˚-monomorphism and let f : U Ñ J bk A
r
C

be any G˚ map. Let

eA : AÑ kC be the counit. Then pidJ b eAq ˝ f maps U to the k injec-

tive, J. Hence there is a map, φ : V Ñ J such taht pidJ beAq˝ f “ φ˝µ.

Then pφb idAq ˝ β maps V to J bkA
r and a routine computation shows

it to be a G˚-morphism extending f . �

Definition 14.4. Let pG, X,Aq be monumental with chamber, C. Let

σ Ď C be a face and let V be a rational Gσ-module. Let rVσ be the

carapace on C with values:

rVσpτq “ IGτ{Gσ
pVq if τ Ď σ

rVσpτq “ p0q otherwise
(14.5)

The expansions are the canonical maps corresponding to transitivity of

induction. The locally rational carapace on X,ICprVσq will be written,

V
||
σ.

Lemma 14.6. Let pG, X, calAq be monumental with chamber, C. Let V

be a representation of Gσ for some face σ in C. Then if U is any locally

rational G-carapace,

HomX,GpU,V
||
σq “ HomC,Gpι˚U, rVσq “ HomGσ

pUpσq,Vq
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Proof. The first equality is just the isomorphism induced by the isomor-

phism of categories, ι˚. To prove the secon, suppose the f P HomC,G˚

pιU, rVσq We must show that f is uniquely determined by fσ. If τ is not

a face of σ then, fτ “ 0. Write eσ
V,τ

for the expansion in rVσ. If τ Ď σ,

then eσ
V,τ

circ fτ “ fσ ˝ eσ
U,τ

. But eσ
V,τ

“ ǫV and so fτ is the Gτ-morphism

uniquely determined by Frobenius reciprocity. The result follows. �

Lemma 14.7. Let pG, X,Aq be monumetal with chamaber, C. Then, for 142

each face, σ,

ČApσqτ
σ

“ pk Óσq bk A
τ
C

Proof. This is just the following observation. Let H be a group and let P

be a closed subgroup with coordinate rings, R and S respectively. Then

IH{PpS τq “ Rτ and the identification is functorial. �

Theorem 14.8. Let pG, X,Aq be monumental with chamber, C. Then:

(1) If V is an injective rational Gσ-module then, rVσ (respectively, V
||
σq is

an injective rational G˚ carapace on C (respectively an injectively

locally rational G-carapace on X).

(2) The carapace, IXA
τ
C

“ ICpICq is injective in teh category of lo-

cally rational carapaces on X.

(3) Let V be a locally rational carapace on X. Then there are k-vector

spaces, M and N and an exact sequence of locally rational G-

carapaces:

0 Ñ V Ñ M bk IXA
τ Ñ N bk IXA

τ

If V is locally finite, then M may be taken to be finite dimensional.

Proof. To prove 1),notice that it suffices to prove the statement for ratio-

nal G˚ carapces on C. Notice that Lemma 14.6 implices that the functor,
rVσ, carrying rational Gσ modules, V , to G˚-carapaces is right adjoint to

the exact functor which associates to ca carapace its σ segment. The

statement is an immediate consequence.
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To prove 2),notice that IXA
τ
C

“ ICpICqbkA
τ and so by Proposition

14.3 it is injective.

Now we establish 3). Making use of the canonical equivalence, we

may prove the correspondig statement for rational G˚ carapaces on C.

Thus let V be rational on C.

Let α : V Ñ V bk A be the coaction on V . For each face in C,

Σ, we may use the correspondence of lemma 6 to construct the unique

map, ψ : V Ñ ĆVpσq
σ

, such that ψσ “ id. Now consider the canonical

morphisms ıVpσq of (1). These morphisms induce a monomorphism of

G˚-carapaces, ıσ : ĆVpσq
σ

Ñ rVpσq5 Óσs bk A
τ. Let fσ “ ıσ ˝ ψ and

let f “
ś

σĎC fσ. This is an injective map from V to

ź

σĎC

pVpσq5 Óσ bAτq

Let M “
š

σĎC Vpσq5 and let jσ : Vpσq5 Ñ M be the natural143

inclusion. Let πσ be the natural projection of
ź

σĎC

pVpσq5 Óσ bAτq

on Vpσq Óσ bAτ. Then IX

š
σĎCpπσ ˝ fσq is the required map. If V

is locally finite, M is finite. To conclude the proof just note that this

construction may be applied to the cokernel of the map we have just

defined. �

Corollary 14.9. The carapace IXA
τ
C

is an injective cogenerator for the

category of locally rational G-carapaces on X.

Proof. This is just Statement 3) of the theorem. �

Corollary 14.10. Let EG,X “ EndX,GpIXA
τq. Then the functor PX,B de-

fined by PX,GpVq “ HomX,GpV, IXA
τq is a fully faithfull contravariant

embedding of the category of locally rational G-carpaces on X in the

category of left EG,X modules.

Proof. This follows from Corollary 14.9 by a direct application of the

Gabriel Mitchell embedding theorem. �
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15 Locally Rational Carapaces

In this section we will construct a section from a certain subcategory

of the category of EG,X modules to the category of locally finite locally

rational carapaces. We begin with a preliminary description of EG,X .

Recall first that is R is the coordinate ring of a proalgebraic group then

thelinear endomorphisms of R commuting with right convolutions are

just convolutions on the left with elements of the linear dual of R. If

ω is such an involution, then let ω be the element of the dual defined

by the equation, ωp f q “ rωp f qspeq. Then left convolution with ω is ω.

Also notice that Frobenius reciprocity for the indentity subgroup is the

equation, HomGpV, M b Rτq “ HomkpV, Mq.

Now observe that the carapace (on C), IAτ
C

may be written as the

finite product,
ś

σĎC
ČApσqτ

σ
. Hence,

HomX,GpIAτ
C , IA

τ
Cq “

ź

σ,τĎC

HomX ,GpČApσqτ
σ
, ČApσqσ

σ
q (15.1)

By Lemma 14.6, HomX ,GpČApσqτ
σ

, ČApσqτ
τ

“ p0q whenever ČApσqτ
σ

pτq 144

“ p0q. That is, the Hom is null unless σ Ě τ. When this condition does

hold:

HomX,GpČApσqτ
σ
,ČApτqτ

τ
q “ HomGpτqpApτqτ,Apτqτq

because ČApσqτ
σ

“ Apτqτ. Thus the σ, τ component of the homomor-

phism is an element B P Apτq˚ operating by left convolution. Hence

an element of EG,X can be represented as a matrix, pBτ,σqτĎσ, where

Bτ,σ P pApτq˚q. Notice also that if τ Ď σ thenApσq˚ Ď Apτq˚. Notice

also that if τ Ď σ then Apσq˚ Ď Apτq˚. Consequently, if pBτ,σqτĎσ
and pBτ,σqτĎσ correspond to two elements of EX,G, for any τ, γ, σ such

thatτ Ď γ Ď σ, the product, Bτ,γBγ,σ is defined and is an element of

Apτq˚.

For a locally algebraic carapace, V,PX,GpVq may also be calucilated

directly:

PX,GpVq “ HomX,GpV, IACq “
ź

σĎC

HomGpσqpVpσq,Apσqq
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By the remarks above, HomGpσqpVpσq,Apσqq “ Vpσq˚, the contragre-

dient. Hence, PX,GpVq “
ś

σĎc Vpσq˚. Moreover, if Bτ,σ is an element

of EX,G then Bτ,σ operates on
´

eσ
V,τ

¯˚
puq for u P Vpσq˚ and peσv,τq˚ the

adjoint of the expansion in V . Having established this much, we leave

the remainder of the proof of the following to the reader.

Proposition 15.2. Let pG, X,Aq be monumental and let V be locally

rational on X. Then:

(1) The ring EX,G is equal to the ring of matrices, pBτ,σqτĎσ. The prod-

uct of two such matirces is given by pBτ,σq ¨ pBτ,σq “ pδτ,σq where

δτ,σ “
ÿ

τĎγĎσ
Bτ,γBγ,σ

(2) The module PX,GpVq is isomorphic as an additive group to the set of

vectors pvσqσĎC where the component, vσ is in the contragredient

module, Vpσq˚. The action of pBτ,σq on pvσq yields puσq where

uσ “
ÿ

σĎĎC

Bσ,γpE
γ

V,σ
q˚pvγq

For the remainder of this section, we will write I to denote the

canonical co-generator, IAτ
C

. Then, EX,G “ EndX,GpIq. First, restriction

to the chamber, C, is an isomorphism to the category of G˚-carapaces.

On the category of locally algebraic G˚-carapaces on C, the segment

over σ is an exact functor to the category of algebraic representations145

of Gpσq. Consequently, for each σ, the segment Ipσq evaluted as a

carapace on C, is left EX,G-module and the action commutes with the

co-action, Ipσq Ñ Ipσq bApσq. Evaluating the restriction of I to C on

the facet, σ, we obtain the module of vectors, paτqτĚσ : aτ P Apσq, By

the description of EX,G above the action of the marix, pBγ,λqγĎλ, on the

vector, paτqτĄ.

pBγ,λq ¨ paτqτĄσ “ pbτqτĚσ
where bτ “ ΣCĚγĚτ Bτ,γ ¨ aγ

(15.3)
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Furthermore, since elements of EX,G act as morphisms of carapaces, the

expansions, which are compositions of projection of functions, are left

EX,G-morphisms. Notice that the result would have been quite different

if we had evaluated before restricting of C. We write ICpσq to denote the

EX,G-module, I|Cpσq. Since X and G ar fixed throughout this section, we

will write E for EX,G as long as no ambiguity will result.

Lemma 15.4. Let M be a finitely generated E-module. Let ĂM be the G-

carapace on X whose prototype on C has theσ-setment, HomEpM, ICpσqq
and the expansions, HomEpidM, e

λ
I,γ

q. Then ĂM is a locally algebraic

carapace on X. Furthermore ĂM is a G subcarapace of an finite direct

sum of carapaces each isomorphic to I.

Proof. As usual we need only consider the restriction of rM to C. Being

the composition of a convariant functor with a carapace, it is certainly a

carapace. We propose to show that it is locally algebraic.

Write α : ICpqσ Ñ ICpσq b Apσq be the coaction commuting

with teh E action. Finite generation over E menas that there is an exact

sequenece, E‘τ Ñ M Ñ p0q. Moreover tensoring with Apσq alos

results in an exact sequence.

Write alpha1 for the map from HomEpM, ICpσqq to HomEpM, Iσb
Apσqq and write α2 for the map indued when M is replaced by E‘τ.
also notice that, for nay E-module, N, we may write HomEpE‘τ,N bk

Uq “ pN bk Uqbτ “ HomEpE‘τ,Nq bk U for any k-vector space, U.

Putting this all togethe, we obtain a commuttive diagram:

0 // HomEpM, IXpσqq
α1

��

// HomEpE‘τ, ICpσqq
α2

��
0 // HomEpM, ICpσq bApσqq // HomEpE‘τ, ICpσqq bApσq

(15.5)

First obseve that ther is a natural embedding on HomEpM, ICpσqqb 146

Apσq in HomEpM, IXpσqq b Apσqq. Then all that must be proven is

that the image of α1 is contained in HomEpM, ICpσqq bApσq for then

α1 will a fortiori be coaction while the horizantal arrow in the first row

of 15.5 is the embedding we establishing tha last assertion of the lemma.
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Let j denote the upper horizontal arrow in 15.5 and let j1 denote the

lower one. Let taγ : γ P Γu be a basis forApσq. If u P HomEpM, ICpσqb
Apσqq, then we may write j1 is injective, u “

ř
γpφγq|M b aγ. But this

shows that each element of HomEpM, ICpσqbApσqq is in HomEpM, IC

pσqq b Apσq. That is the two space are equal so the result is estab-

lished. �

Definition 15.6. Let V be a locally algebraic G-carapace on X. We

shall say that V in finitely congenerated if for some integer, r ě 0, there

is an exact sequence, 0 Ñ V Ñ I‘τ.

Since Px,GpIq “ E, and since I is injective, it is clear that PX,G

carries finitely cogenerated carapaces to finitely generated E-modules.

Further, by lemma 4, the functor M ÞÑ ĂM carries finitely generated

E-modules to finitely cogenerated carapaces. Notice that finitely co-

genrated carapaces are not an Abelian category. While subcarapaces

of finitely cogenerated carapaces are finitely cogeneratd it is not clear

that quotiendts of finitely cogenerated carapaces are finitely cogener-

ated. This is of courese dual to the question pof whether submodules

of finitely generated E-modules are finitely generated. That is, it would

imply left Noetherianness of E.

Theorem 15.7. Let pG, X,Aq be monumetal. Then

(1) The functor PX,G carries the category of finitely cogenerated cara-

paces on X to the category of finitely generated E-modules.

(2) The functorM ÞÑ ĂM carries the category of finitely generated E-

modules to the category of finitely cogenerated carapaces on X.

(3) If V is locally finite carapace on X, there is anatural isomorphism

from V to PĄX,GpVq. Moreover these two functors are isomorphisms

between the category of locally finite carapaces and the category of

E- modules which are finite dimensional over k.

Proof. The first statement in the theorem was proven in the paragraph

above. The second statement follows immediately from Lemma 15.4.

Only the last statemnet requires proof.
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Since PX,GpVq “
š

σĎC Vpσq˚, it is clear that when V is locally147

finite, calPX,GpVq is finite dimentsional. For the converse, let eλ,γ for

λ Ď γ Ď C denote the element of E corresponding to the matrix

whoseµ, ν ‰ pλ, γq and whose λ, γ entry is the identity in Apλq˚. The

elements eλ,λ are a complete set of othogonal idempotents. Further

for each λ such that λ Ğ σ, eλ,λICpσq “ p0q. If M is anu left E-

module, write Mσ “ eσ,σM Then, calM “
š

σĎC Vpσq˚, it is clear

that when V is locally finite, PX,GpVq is finite dimensional. For the

converse. let eλ,γ for λ Ď γ Ď C denote the element of E corre-

sponding to the matrix whose µ, ν entry is 0 when pµ, νq ‰ pλ, γq adn

whose λ, γ entry is the identity in Apλq˚. The elements eλ,λ are a

complete set of orthogonal idempotents, Further for each λ such that

λ Ğ σ, eλ,λICpσq “ p0q. IfM is any left E- module. write Mσ “ eσ,σM

then, M “ coprodγĎCMτ. By simple restriction there is a map from

HomEpM, ICpσqq “ HomApσq˚pMσ,Apσqq. We propose to show that

it is an isomorphism.

By the remarks above, if f P HompM, ICpσqq, then f pMγq “ p0q
whenever γ Ğ σ. Hence it suffices to determine f onMτ for τ Ď σ. If

u “ eτ,τu PMτ then, f peσ,τuq. But eσ,τu PMσ and so f is determined

by its restriction toMσ. Thus.

HomEpM, ICpσqq “ HomApσq˚pM,Apσqq (15.8)

This has two consequences. First, for generalM, there is a natural

inclusion HomApσq˚pMσ,Apσqq ãÑ M˚
σ given by f ÞÑ e ˝ f where

e just denotes evaluation at the identity. The image of this map is al-

ways algebraic and whenMσ is itself algebraic it is an isomorphism as

remarked in the first paragraph of this section. Thus if M is finite di-

mensional, the same can be said of ĂMpσq. Moreover, when V is locally

algebraic, PX,GpVqσ “ Vpσq˚. Thus if V is locally finite, Vpσq˚ is finite

dimensional and so the last part of Statement 3) follows at once. �
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hoku Math. Jour. 9 (1957) 119–221.

[H] W. J.Haboush, Reductive groups are geometrically reductive, Ann.

Math. 102(1975) 67–83.

[Hu] J. E. Humphreys. Introduction to Lie Algebras and Representation

Theory, Springer-Verlag, New York(1991)

[NM] N. Iwaori and H. Matsumoto, On some Bruhat decomposiotion

and teh structre of the Hecke rings of p-adic Chevalley groups,

Publ. Math. IHES 25 (1965) 5–48.

[KL] D. Kazxhadan and G. Lausztig, Proof of the Deligne-Langlands 149

conjecture for Hecke algebras, Inv. Math. 87 (1987) 153–215.

[L1] G. Lusztig, Hecke algebras and Jangtzene’s generic decompsition

paterns, Adv. in Math. 37 (1980) 121–164.

[L2] G. Lusztig,Some examplex of squar integrable representations of

p-adic groups, Trans. Amer. Math. Soc. 277(1983) 623–653.

[L3] G. Lusztig, Equivariant K-theory and representations of Hecke al-

gebras, Proc. Amer. Math. Soc. 94 (1985) 337–342.

[L4] G. Lusztig, Equivariant K-theory and representations of Hecke al-

gebras II, INv. Math 80 (1985) 209–231

[M] I. G. Macdonald, Spherical fucntions on a groups of p-adic type,

Ramanujan Institute Lecture Notes, Ramanujan Institute, Centre

for Advanaced Study in Mathematics, Madras (1971) 1–79.

175



176 William J. Haboush

[Mac] S. MacLane. Homology, Die Grundlehren der Mathematischen

Wiesensaften in Einzeldarstellungen Vol. 114, Academic Press,

Springer-Verlag, Berlin-Göttingenr-Heidelberg (1963) 1–422.

[PS] A. pressely and G. Segal, Loop Groups, Clarendon Press, Oxford

(1986).

[R] M. Ronan, Lectures on buildings, Perspectives in Mathematics, 7

Academic Press, Harcourt Brace Jovanovich, Boston-San Diego-

New York-Derkeley-London-Sydney-Tokyo-Toronto (1989) 1–

201.

[RS] M. Ronan and S. d. Smith, Sheaves on buildings and modular

representations of Chevalley groups, J. Algebra 96 (1985)

[S] L. Solomon, Mackey formula in the group ring of a Coxeter group,

J. Aglebra 41 (1976) 225–264.

[T] J. Tits, Two properties of Coxeter complexes, appendix to A Makey

formula in the group in the group ring of a Coxerter group J. Al-

gebra 41 (1976) 255–264.

Department of Mathematics

University of Illinois

273 Altgeld Hall

1409 W. Green St.

Urbana, Illinois 61801

U.S.A.

176



Poncelet Polygons and the Painlevé Equations

N. J. Hitchin

Dedicated to M.S. Narasimhan and C. S. Seshadri

on the occasion of their 60th birthdays

1 Introduction

The celebrated theorem of Narasimhan and Seshadri [13] relating stable 151

vector bundles on a curve to unitary representations of its fundamental

group has been the model for an enormous range of recent results inter-

twining algebraic geometry and topology. The object which meditates

between the two areas geometry and topology. The object which medi-

ates between the two areas in all of these generalizations is the notion

of a connection, and existence Theorems for various types of connec-

tion provide the means of establishing the theorems. In one sense, the

motivation for this paper is to pass beyond the existence and demand

more explicitness. What do the connections look like ? Can we write

them down? This question is our point of departure. The novelty of our

presentation here is that the answer involves a journey which takes us

backwards in time over two hundred years form the proof of Narasimhan

and Seshadri,s theorem in 1965.
For simplicity, instead of considering stable bundles on curves of

higher genus we consider the analogous case of parabolically stable bun-
dles, in the sense of Mehta and Seshadri [11], on the complex projective
line CP1. Such a bundle consists of a vector bundle with a weighted flag
structure at n marked points a1, . . . , an. The unitary connection that is
associated with it is flat and has singularities at the points. In the generic
case, the vector bundle itself is trivial, and the flat connection we are
looking for can be written as a meromorphic mˆm matrix-valued 1-form
with a simple pole at each point ai. The parabolic structure can easily be
read off form the residuces of the form. The other side of the equation
is a representation of the fundamental group π1pCP1 ta1, ldots, anuq in
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Upmq. the holonomy of the connection, and this presents more prob-
lems. Such questions occupied the attention of Fuchs, K-lein and others
in the last century under the alternative name of monodromy of ordi-152

nary differential equations. Now if we fix the holonomy, and ask for the
corresponding 1-form for each set of distinct points ta1, . . . anu Ă CP1,
what in fact we are asking for is a solution of a differential equation, the
so-called Schlesinger equation (1912) of isomonodromic deformation
theory. To focus things even more, in the simple case where m “ 2 and
n “ 4, and explicit form for the connection demands a knowledge of
solutions to a single nonlinear second order differential equation. This
equation, originally found in the context of isomonodromic deforma-
tions by R. Fuchs in 1907 [4], is nowadays called Painlevé’s 6th equa-
tion

d2y

dx2
“ 1{2

ˆ
1

y
` 1

y ´ 1
` 1

y ´ x

˙ˆ
dy

dx

˙2

´
ˆ

1

x
` 1

x ´ 1
` 1

y ´ x

˙
dy

dx

` ypy ´ 1qpy ´ xq
x2px ´ 1q2

ˆ
α ` β

x

y2
` γ

x ´ 1

py ´ 1q2
` δ

xpx ´ 1q
py ´ xq2

˙

and in the words of Painlevé, the general solutions of this equation are

“transcendantes essentiellement nouvelles” That, on the face of it, would

seem to be the end of the quest for explicitness-we are faced with the

insuperable obstacle of Painlevé transcendants.

Notwithstanding Painlevé’s statement, for certain values of the con-

stants α, β, γ, δ, there do exist solutions to the equation which can be

written down, and even solutions that are algebraic. One property of

any solution to the above equation is that ypxq can only have branch

points at x “ 0, 1, ,8. This is essentially the “Painlevé property”, that

there are no movable singularities. If we find an algebraic solution,

then this means we have an algebraic curve with a map to CP1 with

only three critical values. Such a curve has a number of special prop-

erties. On the one hand, it is defined by a subgroup of finite index in

Γp2q Ă S Lp2,Zq, and also,by a well-known theorem of Weil,is defined

over Q. In this paper we shal construct solutions by considering the case

when the holonomy group Γ of the connection is finite. In that case the

solution ypxq to the Painlevé equation is algebraic.
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Our approach here is to consider, for a finite subgroup Γ of S LpX,Cq,

the quotient space S Lp2,Cq{Γ and an equivariant compactification Z.

Thus Z is a smooth projective threefold with an action of S Lp2,Cq and

a dense open orbit. The Maurer-Cartan form defines a flat connection on

S Lp2,Cq{Γ with holonomy Γ, which extends to a meromophic connec-

tion on Z. The idea is then to look for rational curves in Z such taht the

induced connection is of the required form. By construction the holon-

omy is Γ, and if we can find enough curves to vary the cross-ratio of the

singular points a1, . . . a4, then we have a solution to the Painlevé equa-

tion. The question of finding and classifying such equivarian compacti-

fications has been addressed by Umemura and Mukai [12], but here we 153

focus on one particular case. We take Γ to be the binary dihedral group

D̃k Ă S Up2q. This might seem very restrictive within the context of

parabolically stable bundales, but behind it there hides a very rich seam

of algebraic geometry which has its origins further back in history than

Painlevé.

In the case of the dihedral group, the construction of a suitable com-

pactification is due to Schwarzenberger [16], who constructed a family

of rank 2 vector bundles Vk over CP2. THe threefold corresponding to

the dihedral group Dk turns out to be the projectivizesd bundle PpVkq.

There are two types of relevant rational curves. Those which project to

a line in CP2 yield the solution y “ sqrtx to the Painlevé equation with

coefficients pα, beta, γ, δq “ p1{8,´1{8, 1{2k2, 1{2 ´ 1{2k2q. Those

which project to a conic lead naturally to another problem, and this one

goes back at least to 1746 (see [3]). It is the problem of Poncelet poly-

gons. We seek conics B and C in the plane such that there is a k-sided

polygon inscribed in C and circumscribed about B. Interest in this prob-

lem is still widespread. Poncelet polygons occur in questions of stable

bundales on projectives spaces[14] and more recently in the workl of

Barth and Michel [1]. In fact, we can use their approach to find the

modular curve giving the algebraic solution ypxq of the Painlevé equa-

tion corresponding to Γ “ D̃k. This satisfies Painlevé equation with

coefficients pα, β, γ, δq “ p1{8,´1{8, 1{8, 3{8q. It is essentially Cay-

ley’s solution in 1853 of the Poncelet problem which allows us to go

further and produce explicit solutions. It is method which fits in well
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with the isomonodromic approach.

There are a number of reasons why this is a fruitful area of study.

One of them concerns solutions of Painlevé equation in general and their

relation to integrable systems, another is the connection with self-dual

Einstein metrics as discussed in [6]. In the latter context, the threefolds

constructed are essentially twistor spaces, and the rational curves twistor

lines,but we shall not pursue this line of approach here. Perhaps the

most intriguing challenge is to find any explicit solution to an equation

to which Painlevé remark refers.

The structure of the paper is as follows. In Section 2 we consider

singular connections and the isomonodromic deformation problem, and

in Section 3 see how equivariant compactifications give solutions to the

problem. In Section 4 we look at the way the dihedral group fits in with

the problem of Poncelet polygons. Section 5 and 6 discuss the actual so-

lutions of the Painlevé equation, especially for small values of k. Only

there can we see in full explicitness the connection which, in the context

of the theorem of Narasimhan and Seshadri, relates the parabolic struc-

ture and the representation of the fundamental group, however restricted154

this example may be. In the final section we discuss the modular curve

which describes the solutions so constructed.

The author wishes to thank M.F. Atiyah and A. Beauville for useful

conversations.

2 Singular connections

We intrduce here the basic objects of our study -flat meromorphic con-

nections with singularities of a specified type. For the most part we

follow the exposition of Malgrange [10].

Definition 1. Let Z be a complex manifold, Y a smooth hypersurface

and E a holomorphic vector bundle over Z. let ∇ be a flat holomor-

phic connection on E over Z Y with connection form A in some local

trivialization of E. Then on U Ď Z we say that

(1) ∇ is meromorphic ifA is meromorphic on U.
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(2) ∇ has a logarithmic singularity along Y if, in a local coordinate

system pz1 . . . , znq of Z, with Y given by z1 “ 0, A has the form

A “ A1
dz1

z1

` A2dz2 ` . . . ` Andzn

where Ai is holomorphic on U.

One may easily check that the definition is independent of the choice

od coordinates and local trivialization. The essential point about a loga-

rithmic singularity is that the pole only occurs in the conormal direction

to Y . In fact ∇ defines a holomorphic connection on E restricted to Y ,

with connection form

AY “
nÿ

i“2

Aip0, z2, . . . , znqdzi.

If Z is 1-dimensional, then such a connection is just a meromor-

phic connection with simple poles. Flatness is automatic because the

holomorphic curvature is a (2,0) form which is identically zero in one

dimension. If we take Z “ CP1, Y “ ta1, . . . , an,8u and the bundle E

to be trivial, then A is a matrix-valued meromorphic 1-form with simple

poles at z “ a1, . . . , an,8 and can thus be written as

A “
iÿ

i“1

Aidz

z ´ ai

The holonomy of a flat connection on ZzY is obtained by parallel trans- 155

lation around closed paths and defines, after fixing a base point b,a rep-

resentation of the fundamental group

ρ : π1pZzYq Ñ GLpm,Cq

In one dimension, the holonomy may also be considered as the effect of

analytic continuation of solutions to the system of ordinary differential

equations

d f

dz
`

nÿ

i“1

Ai f

z ´ ai

“ 0
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around closed paths through b. As such, one often uses the classical term

monodromy rather than the differential geometric holonomy. Changing

the basepoint to b1 effects an overall conjugation (by the holonomy along

a path from b to b1) of the holonomy representation.

For the punctured projective line above, we obtain a representation

of the group π1pS 2zta1, . . . , an,8uq. This is a free group on n genera-

tors, which can be taken as simple loops γi from b passing once around

ai. Moving b close to ai, it is easy to see that ρpγiq is conjugate to

expp´2πiAiq.

There is also a singularity of A at infinity with residue A8. Since the

sum of the residues of a differential is zero, we must have

A8 “ ´
nÿ

i“1

Ai

and so ρpγin f tyq is conjugate also to expp´2πiA8q. In the fundamental

group itself γ1γ2 . . . γnγ8 “ 1 so that in the holonomy representation

ρpγ1qρpγ2q . . . ρpγ8q (1)

Thus the conjugacy classes of the residuces Ai of the connection deter-

mine the conjugacy classed of ρpγiq, and these must also satisfy (1).

This is partial information about the holonomy representation. How-

ever, the full holonomy group depends on the position of the poles ai.

The problem of particular interset to us here is the isomonodromic defor-

mation problem to determine the dependence of Ai on a1, . . . , an in order

that the holonomy representation should remain the same up to conju-

gation. All we have seen so far is that the conjugacy class of expp2πiAiq
should remain constant.

One way of approaching the isomonodromic deformation problem,156

due to Malgrange, is via a universal deformation space. Let Xn denote

the space of ordered distinct points pa1, . . . , anq P C, and X̃n its uni-

versal covering. It is well-known that this is a contractible space- the
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classifying space for the braid group on n strands. Now consider the

divisor

Ym “ tpz, a1, . . . , anq P CP1 ˆ Xn : z ‰ amu
and let Ỹm be its inverse image in CP1 ˆ X̃n. Furthermore, define Ỹ8 “
tp8, xq : x P X̃nu.

The projection onto the second factor p : CP1zta1, . . . , an,8u, and

the contractibility of X̃n implies fro the exact homotopy sequence that

the inclusion i of a fibre induces an isomorphism of fundamental groups

π1pCP1zta0
1, . . . , a

0
n,8uq – π1pCP1 ˆ X̃nztỸ1 Y . . . Y Ỹn Y Ỹ8uq

Thus a flat connection on CP1zta0
1
, . . . , a0

n,8u extends to flat connection

with the same holonomy on CP1ˆX̃nztỸ1Y. . .YỸnYỸ8u. Malgrange’s

theorem asserts that this flat connection has logarithmic singularities

along Ỹm and Ỹ8.

More precisely,

Theorem 1 (Malgrange [10]). Let ∇0 be flat holomorphic connection

on the vector bundle E0 over CP1zta0
1
, . . . , a0

n,8u, with logarithmic sin-

gularities at a0
1
, . . . , a0

n. Then there exists a holomorphic vector bundle

E on CP1 ˆ X̃n with a flat connection ∇ with logarithmic singularities at

Ỹ1, . . . , Ỹn, Ỹ8 and an isomorphism j : i˚pE,∇q Ñ pE0,∇0q. Further-

more, pE,∇, jq is unique up to isomorphism.

Now suppose that E0 is holomorphically trivial. The vector bundle

E will not necessarily be trivial on all fibres of the projection p, but for

a dense open set U Ď X̃n it will be. Choose a basis e0
1
, e0

2
, . . . e0

m of the

fibre of E0 at z “ 8. Now since∇ has a logarithmic singularity on Ỹ8, it

induces a flat connection there, and since Ỹ8 – X̃n is simply connected,

by parallel translation we can unambiguously extend e0
1
, e0

2
, . . . , e0

m to

trivialization of E over Ỹ8. Then since E is holomorphically trivial on

each fibre over U. we can uniquely extend e0
1
, e0

2
, . . . , e0

m along the fibres

to obtain a trivialization e1, . . . , em of E on CP1ˆU. It is easy to see that,

relative to this trivialization, the connection form pf ∇ can be written

A “
nÿ

i“1

Ai

dz ´ dai

z ´ ai

(2)
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where Ai is a holomorphic function of a1, . . . , an.157

The flatness of the connection can then be expressed as:

dAi `
ÿ

j‰i

rAi, A js
dai ´ da j

ai ´ a j

“ 0

which is known as Schlesinger’s equation [15].

The gauge freedom in this equation involves only the choice of the

initial basis e0
1
, e0

2
, . . . , e0

m and consists therefore of conjugation of the Ai

by a constant matrix.

The case which interests us here in where the holonomy lies in

S Lp2,Cq, (so that the Ai are trace-free 2 ˆ 2 matrices), and where there

are 3 marked points a1, a2, a3 which, together with z “ 8, are the sin-

gular points of the connection. By a projective transformation we can

make these points 0,1, x, Then

Apzq “ A1

z
` A2

z ´ 1
` A3

z ´ x

and Schlesinger’s equation becomes:

dA1

dx
“ rA3, A1s

x

dA2

dx
“ rA3, A2s

x ´ 1
(3)

dA3

dx
“ ´rA3, A1s

x
´ A3, A2

x ´ 1

where the last equation is equivalent to

A1 ` A2 ` A3 “ ´A8 “ const.

The relationship with the Painlevé equation can best be seen by fol-

lowing [8]. Each entry of the matrix Ai jpzq is of the form qpzq{zpz ´
1qpz ´ xq for some quadratic polynomial q. Suppose that A8 is diago-

nalizable, and choose a basis such that

A8 “
ˆ
λ 0

0 ´λ

˙
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then A12 can be written

A12pzq “ kpz ´ yq
zpz ´ 1qpz ´ xq (4)

for some y P CP1zt0, 1, x,8u. If the Aipxq satisfy (3), then the function 158

ypxq satisfies the Painlevé equation

d2y

dx2
“ 1{2

ˆ
1

y
` 1

y ´ 1
` 1

y ´ x

˙ˆ
dy

dx

˙2

´
ˆ

1

x
` 1

x ´ 1
` 1

y ´ x

˙
dy

dx

` ypy ´ 1qpy ´ xq
x2px ´ 1q2

ˆ
α ` β

x

y2
` γ

x ´ 1

py ´ 1q2
` δ

xpx ´ 1q
py ´ xq2

˙
(5)

where

α “ p2λ ´ 1q2{2

β “ 2d det A2
1

γ “ ´2 det A2
2

δ “ p1 ` 4 det A2
3q{2 (6)

For the formulae which reconstruct the connection from ypxq we refer

to [8], but essentially the entires of tha Ai are rational functions of x, y

and dy{dx. For our purposes it is useful to note the geometrical form of

the definition of ypxq given by 4:

Proposition 1. The solution ypxq to the Painlevé equation correspond-

ing to an isomonodromic deformation Apzq is the point y P CP1zt0, 1,

x,8u at which Apyq and A8 have a common eigenvector.

Note that strictly speaking there are two Painlevé equations (with

α “ p˘2λ ´ 1q2{2q correspinding to the values of y with this property.

3 Equivariant compactifications

Consider the three- dimensional complex Lie group S Lp2,Cq and the

Lie algebra-valued 1-form

A “ ´pdgqa´1.
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The form A is the connection form for a trivial connection on the trivial

bundle. It simply relates teh trivializations of the principle frame bundle

by left and right translation.

Now let Γ be a finite subgroup of S Lp2,Cq. Then S Lp2,Cq{Γ is

non-compact ciompelx manifold and since A is invariant under right

translations,it descentds to this quotient. Thus, on S Lp2,Cq{Γ, A defines

a flat connection on the trivial rank 2 vector bundle. Its holonomy is

tatutologically Γ.

In this section, we shall consider an equivarient compactification of

S Lp2,Cq{Γ, that is to say, a compact compelx manifold Z on which

S Lp2,Cq acts with a dense open orbit with stabilizer conjugate to Γ. Let159

Z be such a compactification, then the action of the group embeds the

lie algebra g in th space of holomorphic vector fields on Z. Equivalently,

we have a vector bundle homomorphism

α : Z ˆ g Ñ TZ

which is generically an isomorphism.It fails to be an isomorphism on

the union of the lower dimensional orbits of S Lp2,Cq, and this is whereŹ3
α P H0pZ,Homp

Ź3
g,
Ź3

T qq – H0pZ,K´1q is a section of the

anticanonical bundle, so the union of the orbits of dimension less than

three form an anticanonical divisor Y , which may of course have several

components or be singular.

In the open orbit Z{Y – S Lp2,Cq{Γ, the action is equivalent to left

multiplication, and the connection A above is given by

A “ α´1 : TZ Ñ Z ˆ g.

It is clearly meromorphic on Z, but more is true.

Proposition 2. If
Ź3

α vanishes non-degenerately on the divisor Y, then

the connection A “ α´1 has a logarithmic singularity along Y.

This is a local statement, and so it can always be applied to the

smooth part of Y even if there are singular points.

Proof. In local coordinates, α is represented by a holomorphic function

Bpzq with values in the space of 3 ˆ 3 matrices. The divisor Y is then
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the zero set of det B. If det B has a non-degenerate zero at p P Y , then

its null-space is one-dimensional at p, so the kernel of α, the the Lie

algebra of the stabilizer of p, is one-dimensional. Thus the S Lp2,Cq
orbit through p is two-dimensional, and so Y is the orbit.

Now for any quare matrix B, let B_ denote the transpose of the

matrix of cofactors. Then it is well-known that

BB_ “ pdet BqI

Hence in local coordinates

A “ α´1 “ B_

det B

and so A has a simple pole along Y . From Definition 1, we need to show 160

that the residue in the conormal direction. For this consider the invariant

description of B_. We have on Z

^2α : ^2g Ñ ^2T

and using the identifications ^2g – g˚ and ^2T – T ˚ b ^3T, B_

represents the dual map of ^2α:

p^2αq˚ : T Ñ g b ^T.

Now the image of α at p is the tangent space to the orbit Y at p by

the definition of α. Thus the image of ^2α is ^2TYp which means that

p^2αq˚ annihilates TY , which is the required result.

Note that the kernel of ^2α is the set of two-vectors v ^ w where

w P g and v is ion the Lie algebra of the stabilizer of p. Thus the residue

at p of the connection A lies in the Lie algebra of the stabilizer. �

Now suppose that P is a rational curve in Z which meets Y transver-

sally at four points. Then the restriction of A to P defines a connection

with logarithmic poles at the points and, from the map of fundamental

groups

π1pPzta1, . . . , a4uq Ñ π1pZzYq Ñ ΓÑ S Lp2,Cq,
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its holonomy is contained in Γ. A deformation of P will define a nearby

curve in the same homotopy class and hence the induced connection will

have the same holonomy. To obtain isomonodromic deformations, we

therefore need to study the deformation theory of such curves.

Proposition 3. Let p Ă Z be a rational curve meeting Y transversally

at four points. Then P belongs to a smooth four-parameter family of

rational curves on which the cross-ratio of the points is nonconstant

function.

Proof. Th proof is standard Kodaira-Spencer deformation theory. By

hypothesis P meets the anticanonical divisor Y in four points, so the

degree of KZ on P is -4. Hence, in N is the normal bundle of P – CP1,

deg N “ ´ deg KZ ` deg KP “ 2

and so

N – Opmq ‘ Op2 ´ mq
for some integer m. However, since C is transversal to the 2-dimensional

orbit Y of S Lp2,Cq, the map α always maps onto the normal bundle to

C. We therefore have a surjective homomorphism of holomorphic vector

bundles

β : Ob g Ñ N

and this implies that 0 ď m ď 2. As a consequence, H1pP,Nq “ 0

and H0pP,Nq is four-dimensional, so the existence of a smooth family

follows fro Kodaira [9].

Since β is surjective, its kernel is a line bundle of degree-deg N “161

´2, so we have an exact sequence of sheaves:

Op´2q Ñ Ob g Ñ N.

Under α, the kernel maps isomorphically to the sheaf of sections of the

tragent bundle T P which vanish at the four points P X Y . From the long

exact cohomology sequence we have

0 Ñ g Ñ H0pP,Nq δÝÑ H1pP,Op´2qq Ñ 0
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and since H0pP,Nq is 4-dimensional and g is 3-dimensional, the map

δ id surjective. But αδ is the Kodarira-Spencer map for deformations

of the four points on P, so since it is non-trivial, the cross-ratio is non-

constant. �

Example.

As the reader may realize, the situation here is very similar to the study

of twistor spaces and twistor lines, and indeed there is a differential

geometric context for this (see [6], [7]). This is not the agenda for this

paper, but it is a useful example to see the standard twistor space-CP3

and the straight linex in it-within the current context.

Let V be the 4-dimensional space of cubic polynomials

ppzq “ c0 ` c1z ` c2z2 ` c3z3

and consider V as a representation space of S Lp2,Cq under the action

ppzq ÞÑ p

ˆ
az ` b

cz ` d

˙
pcz ` dq3.

This is the unique (up to isomorphism) 4-dimensional irreducible rep-

resentation of S Lp2,Cq. Then Z “ PpVq “ C¶3 is a compact three-

fold with an action of S Lp2,Cq and moreover the open dense set of

cubics with distinct roots in an orbit. This follows since given any two

triplex of distinct ordered points in CP1, there is a unique element of

PS Lp2,Cq which takes one to the other. However, the cubic polyno-

mial determines an unordered triple of roots, and hence the stabilizer

in PS Lp2,Cq is the symmetric group S 3. Thinking of this as the sym-

metries of an equilateral triangle, the holonomy group Γ Ă S Lp2,Cq
of the connection A “ α´1 is the binary dihedral group D̃3. The lower-

dimensional orbits consist firstly of the cubics with one repeated root,

which is 2-dimensional, and those with a triple root, which constitute 162

a rational normal curve in CP3. Together they form the discriminant

divisor Y , the anticanonical divisor discussed above.
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A generic line in CP3, generated by polynomials ppzq, qpzq meets Y at

those values of t for which the discriminant of tppzq ` qpzq vanishes,

i.e. where

tppzq ` qpzq “ 0

tp1pzq ` q1pzq “ 0

have a common root. This occurs for t “ ´qpαq{ppαq where α is a

root of the quartic equation

p1pzqapzq ´ ppzqq1pzq “ 0

and so the line meets Y in four generically distinct points. Thus the

4-parameters family of lines in CP3 furnish an example of the above

proposition.

As we remarked above, this is an example of an isomonodromoc defor-

mation, as would be any family of curves P in Proposition 3. It yields

a solution of the Painlevé equation either by applying the argument of

Theorem 1 to the connection with logarithmic singularities on Z, or ap-

pealing to the universality of Malgrange’s construction. We shall not

derive the solution of the Painlevé equation here from CP3, since it will

appear via a different compactification in the context of Poncelet poly-

gons. There we shall also see how a striaght line in CP3 defines a pair

on conics with the Poncelet property for triangles.

4 Poncelet polygons and projective bundles

In this section we shall study a particular class of equivariant compact-

ifications, originally due to Schwarzenberger [16]. Consider the com-

plex surface CP1 ˆ CP1 and the holomorphic involution σ which inter-

changes the two factors. The quotient space is CP2. A profitableway of

viewing this is a the map which assigns to a pair of complex numbers

the coefficients of the quadratic polynomial which has them as roots. In

affine coordinates we have the quotient map

π : CP1 ˆ CP1 Ñ CP1
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pw, zq ÞÑ p´pw ` zq,wzq.

From this it is clear that π is a double covring branched over the image 163

of the diagonal, which is the conic b Ă CP2 with equation 4y “ x2.

Moreover the line tau ˆ CP1 Ă CP1 ˆ CP1 maps to a line in CP2

which meets B at the single point πpa, aq. The images of the two lines

tau ˆ CP1 and CP1 ˆ tbu are therefore the two tangents to the conic B

from the point πpa, bq.

Now let Opk, lq denote the unique holomorphic line bundle of bide-

gree pk, lq on CP1 ˆCP1, and define the direct image sheaf π˚Opk, 0q on

CP2. This is a locally free sheaf, a rank 2 vector bundle Vk, and we may

form the projective bundle PpVkq, a complex 3-manifold which fibres

over CP3

p : PpVkq Ñ CP2

with fibres CP1.

Clearly the diagonal action of S Lp2,Cq on CP1 ˆ CP1 induces an

action on PpVkq. Take a point z P PpVkq and consider its stabilizer.

If ppzq P CP2zB, then ppzq “ πpa, bq where a ‰ b. Consider the

projective bundle pulled back to CP1 ˆ CP1. The point pa, bq is off the

diagonal in CP1 ˆ CP1. so the fibre of ppVkq “ Ppπ˚Opk, 0qq is

PpOpk, 0qa ‘ Opk, 0qbq. (7)

The stabilizer of pa, bq in S Lp2,Cq is on 3-dimensional, and acts on

pu, vq P Opk, 0qa ‘ Opk, 0qb as

pu, vq ÞÑ pλku, λ´kvq.

Thus, as long as u ‰ 0 or v ‰ 0, the stabilizer of the point represented by

pu, vq in the fibre in finite. Thus the generic orbit is three-dimensional.

We have implicitly just defined the divisor Y of lower-dimensional

orbits, but to be more prescise, we have the inverse image of the branch

locus

D1 “ π´1pBq
as one component. The other arises from the direct image construction

as follows.
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Recall that by definition of the direct image, for any open set U Ď
CP2,

H0pU,Vkq – H0pπ´1pUq,Opk, 0qq
so that there is an evaluation map

ev : H0pπ´1pUq, π˚vkq Ñ H0pπ´1pUq,Opk, 0qq.

The kernel of this defines a distinguished line sub-bundle of π˚pVkq and

thus a section of the pulled back projective bundlePpVkq. This copy oc

CP1 ˆ CP1 in PpVkq is a divisor D2.

Both divisors are components of the anticanonical divisor Y , and164

it remains to check the multiplicity. Now let U be the divisor class

of the tautological line bundle over the projective bundle PpVkq..The

divisor D2 is a section of PpVkq pulled back to CP1 ˆ CP1, and from its

definition it is in the divisor class p˚p´Uq ` Opk, 0q. Thus in PpVkq,

D2 „ ´2U ` kH (8)

where H is the divisor class of the pull-back by π of the hyperplane

bundle on CP2. Clearly, since B is a conic,

D1 „ 2H. (9)

Now from Grothendieck-Riemann-Roch applied to the projection π, we

find c1pVkq “ pk ´ 1qH, from which it is easy to see that the canonical

divisor class is

K „ 2U ´ pk ` 2qH

so since ´k „ ´2U ` pk ` 2qH „ D1 ` D2, the multiplicity in 1 for

each divisor and we can take Z “ PpVkq as an example of an equivariant

compactification to which Proposition 2 applies.

The stabilizer of a point in ZzY is in this case the binary dihedral

group D̃k, which is the inverse image in S Up2q of the group of symme-

tries in S Op3q – S Up2q{ ˘ 1 of a regular plane polygon with k sides.

Although this can be seen quite easily from the above description of the

action, there is a direct way of viewing ZzY ´ PpVkqzD1 Y D2 as the

S Lp2,Cq orbit of a plane polygon.
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Note that a polygon centred on 0 P C3 is described by a non-null

axis orthogonal to the plane of the polygon, and by k (if k is odd) or k{2

(if k is even) equally spaced axes through the origin in that plane. Now,

given a point z P PpVkqzD1 Y D2, its projection ppzq “ x P PpC3qzB

is a non-null direction in C3 which we take to be the axis. To find the

other axes we use two facts:

• The map s ÞÑ sk from Op1, 0q to Opk, 0q defines a rational map

mk : PpV1q Ñ PpVkq of degree k.

• The projective bundle PpV2q is the projectivized tangent bundle

PpT q of CP2.

The first fact is a direct consequence of the definition of the direct image

sheaf:

H0pU,Vkq – H0pπ´1pUq,Opk, 0qq
for any open set U Ď CP2. The second can be found in [16]. 165

Given these two facts, consider the set of points

m2pm´1
k

pzqq Ă PpV2q.
Depending on the parity of k this consists of k or k{2 points in PpT q all

of which project to x P CP2. In other words they are line through x or,

using the polarity with respect to the conic B. points on the polar line of

x. Reverting to linear algebra, these are axes in the plane orthogonal to

x.

We now need to apply Proposition 3 to this particular set of ex-

amples to find rational curves which meet the divisor Y “ D1 ` D2

transversally in four points. Now if P is such a curve, then the inter-

section number P. D1 ď 4 so ppPq “ C is a plane curve of degree d

which meets the branch conic B in 2d ď 4 points, hence d “ 1 or 2. We

consider the case d “ 2 first. The curve C is a coniv in CP2. The set

of all conics forms a 5-parameter family and we want to determine the

4-parameter family of conics which lift to PpVkq.

Theorem 2. A conic C Ă CP2 meeting B transversally lifts to PpVkq
if and only if there exists a k-sided polygon inscribed in C and circum-

scribed about B.
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Proof. A lifting of C is a section PpVkq over C, or equivalently a line

subbundle M Ă Vk over C. Since C is a conic, the hyperplane bundle H

is of degree 2 on C, so we can write M – Hn{2 for some integer n. The

inclusion M Ă Vk thus defines a holomorphic section s of the vector

bundle Vk b H´n{2 over C. But Vk is the direct image sheaf of Opk, 0q,

so we have an isomorphism

H0pC,Vk b H´n{2q – H0pC̃,Opk, 0q b π˚pH´n{2qq

where C̃ “ π´1pCq Ă CP1 ˆ CP1 is the double covering of the conic C

branched over its points of intersection with B. But it is easy to see that

π˚pHq – Op1, 1q so on C̃ we have a holomorphic section s̃ of Opk ´
n{2,´n{2q.

We have more, though, for since the intesection number´K.P “
pD1 ` D2q.P “ 4 and D1.P “ B.C “ 4, P lies in PpVkqzD2, where D2

was given as the kernel of the evaluation map. It the section s̃ vanishes

anywhere, then the section of PpVkq will certainly meet D2, thus s̃ is

everywhere non-vanishing an Opk ´ n{2,´n{2q is the trivial bundle. In

particular, its degree is zero on C̃. Now C is a conic, so C̃ is the divisor

of a section of π˚pH2q – Op2, 2q and so the degree of the line bundle is166

2k ´ 2n “ 0 and thus n ´ k. Hence a conic in CP2 lifts to Ppvkq if and

only if it has the property that

Opk{2,´k{2q – O on C̃.

Now recall the Poncelet problem [3]: to find a polygon with k sides

which is inscribed in a conic C and circumscribed about a conic B. The

projection

π : CP1 ˆ CP1 Ñ CP2

we have already used is the correct setting for the problem.

Let pa, bq be a point in CP1 ˆ CP1 and consider the two lines tau ˆ
CP1 and CP1 ˆ tbu passing through it. The first line is a divisor of

the linear system Op1, 0q and the second of Op0, 1q. As we have seen,

their images in CP2 are the two tangents to the branch conic B from the

point πpa, bq. Now let C be the conic which contains the vertices of the
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Poncelet polygon, and let P1 “ pa1, b1q P C̃ Ă CP1 ˆ CP1 be a point

lying over an initial vertex. The line ta1u ˆ CP1 meets C̃ „ Op2, 2q in

two points generically,. which are P1 and a second point P2 “ pa1, b2q.

The two points πpP1q and πpP2q lie on C, and the line joining them is

pipta1uˆCP1q which is tangent to B, and hence is a side of the polygon.

The other side of the polygon through pipP2q is πpCP1 ˆ tb2uq which

meets the conic C at πpP3q “ πpa2, b2q. We carry on this procedure

using the two lines through each point, to obtain P1, . . . , Pk`1. Since the

Poncelet polygon is closed with k vertices, we have πpPk`1q “ πpP1q.

Consider now the divisor classes Pi ` Pi`1. We have

P1 ` P2 „ Op1, 0q
P2 ` P3 „ Op0, 1q
P3 ` P4 „ Op1, 0q
. . . . . .

and Pk ` Pk`1 „“ calO1, 0 if k is odd and „ Op0, 1q if k is even.

In the odd situation, taking the alternating sum we obtain

P1 ` Pk`1 „ Oppk ` 1q{2,´pk ´ 1q{2q (10)

and since πpPk`1 “ πpP1qq, then Pk`1 “ P1 or σpP1q. However, in the

former case, we would have

Pk ` P1 „ Pk`1 „ Op1, 0q „ P1 ` P2

and consequently P2 „ Pk on the elliptic curve C̃ which implies P2 “ 167

Pk. But πpPkq and πpP2q and πpP2q are different vertices of the polygon,

so we must have Pk`1 “ σP1. This that the divisor Pk`1 ` P1 “
π´1pπpP1qq ans so in the notation above

Pk`1 ` P1 „ H1{2 “ Op1{2, 1{2q.

From (10) we therefore obtain the constraint on C̃

Opk{2,´k{2q „ O (11)
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which is exactly the condition for the conic to lift to PpVkq. A similar

argument leads to the same condition for k even, where in this case

Pk`1 “ P1.

In the case that d “ 1, C is a line, but the argument in very similar.

Here M – Hn for some n and on C̃ we have a section ξ of Opk ´ n,´nq.

This time, since P.D2 “ 2, the line bundle is of degree 2, so k ´ 2n “ 2,

and so a lifting is defined by a section of O1 ` k{2, 1 ´ k{2 on C̃. �

Example.

Let us now compare this interpretation with the equivariant compacti-

fication CP3 of S Lp2,Cq{D̃3 discussed earlier. In the first place, con-

sider the line bundle

Ũ “ U ´ 2H

on PpV3q.Now since for any 2-dimensional vector space V˚ – V b
^2V˚, PpVkq “ PpV˚

k
q, but with different tautological bundles. The

tautiological bundle for PpV˚
3

q is actually Ũ, and so there are canonical

isomorphisms

H0pPpV3q,´Ũq – H0pCP2,V3q – pCP1 ˆ CP1,Op3, 0qq
– H0pCP1,Op3qq – C4.

The linear system | ´ Ũ| therefore maps PpV3q equivariantlu to CP3.

Since P.D1 “ 4 and P.D2 “ 0, it follows from (8) and (9), that P.H “ 2

and P.U “ 3, and so P.Ũ “ ´1, so under this mapping the curves P

map to projective lines.

There is a more geometic way of seeing the relation of lines in CP3

to Poncelet triangles. Recall that we are viewing CP3 as the space

of cubic polynomials, and CP2 as the space of quadratic polynomials.

The quadraitcs with a fixed linear factor z´α describe, as we have seen,168

aline in CP2 which is tangent to the discriminant conic at the quadratic

pz´αq2. Thus the three linear factors of a cubic pz´αq,pz´βq,pz´γq,

pz ´ γqpz ´ αq.
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Now consider a straight line of cubics ptpzq “ tppzq ` qpzq with roots

αt, betaptq and γt. We have a 1-parameter family of triangles and

tppαq ` qpβq “ 0

tppβq ` qpβq “ 0.

Now from these two equations

0 “ ppαqqpβq ´ ppβqqpαq “ pα ´ βqrpα, betaq

where rpα, βq is a symmetric polynomial in α, β. It is in fact quadratic

in αβ, αβ and thus defines a conic C in the plane.

Hence, as t varies, the vertices of the triangle lie on fixed conic C, and

we have a solution of the Poncelet problem for k “ 3.

5 Solutions of Painlevé VI

To find more about the connection we have just defined on Z “ PpVkq
entails descending to local coordinates, which we do next.

Consider the projective bundle PpVkq pulled back to CP1 ˆ CP1. At

a point off the diagonal pa, bq P CP1 ˆ CP1, as in (7), the fibre is

PpOpk, 0qa ‘ Opk, 0qbq “ PpOpk, 0q ‘ Op0, kqqa,b

and awat from the zero section of the second factor, this is isomorphic

to

Opk,´kqa,b.

Now choose standard affine coordinates pw, zq in CP1 ˆ CP1. Since

KCP1 – Op´2q, we have corresponding local trivializations dw and dz

of Op´2, 0q and Op0,´2q. These define a local trivialization

pdwq´k{2pdzqk{2 of calOk,´k, and thus coordinates

pw, z, sq ÞÑ spdwq´k{2pdzqk{2

pw,zq.
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Note that Z is the quotient of this space by the involution pw, z, sq ÞÑ169

pz,w, s´1q. From this trivialization, the natural action of S Lp2,Cq on

differentials gives the action on Z:

pw, z, sq ÞÑ
ˆ

aw ` b

cw ` d
,

az ` b

cz ` d
,

pcz ` dqk

pcw ` dqk
s

˙
.

Differenting this expression at the identity gives the tangent vector

pw1, z1, s1q corresponding to a matrix

ˆ
a1 b1

c1 ´a1

˙
P g

as

w1 “ ´c1w2 ` 2a1w ` b1

z1 “ ´c1z2 ` 2a1z ` b1

s1 “ ´kc1pw ´ zqs

This is αpa1, b1, c1q P TZpw,z,sq. Solving for pa1, b1, c1q gives the entries of

the matrix of 1-forms A “ α´1 as

A11 “ dw ´ dz

2pw ´ zq ´ pw ` zqds

2kspw ´ zq

A12 “ wdz ´ zdw

pw ´ zq ` wzds

kspw ´ zq (12)

A21 “ ´ ds

kspw ´ zq
Proposition 4. The resedue of the connection at a singular point is con-

jugate to
ˆ

1{4 0

0 ´1{4

˙
on D1 and

ˆ
1{2k 0

0 ´1{2k

˙
on D2

Proof. In these coordinates, s “ 0 is the equation of D2. From (2), the

residue of A at s “ 0 is
ˆ

´pw ` zq{2kpw ´ zq wz{kpw ´ zq
´1{kpw ´ zq pw ` zq{2kpw ´ zq

˙
(13)
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which has determinant ´1{4k2 and therefore eigenvalues ˘1{2k.

To find the rediduce at D1, we need different coordinates, since the

above ones are invalid on the diagonal. Take the affine coordinates x “
´pw ` zq, y “ wz on CP2. Since the holomorphic functions in w, z form 170

a module over the symmetrix functions generated by 1, w´z we can use

these to give coordinates in the projectivized direct image PpVkq, which

are valid for w “ z. We obtain an affine fibre coordinate t related to s

above by

s “ t ` w ´ z

t ´ w ` z
.

Using this ans local coordinates x and u “ pw ´ zq2 “ x2 ´ 4y on CP2

the divisor D1 is given by u “ 0 and the residue here is

ˆ
1{4 ` x{2kt x{4 ` x2{4kt

´1{kt ´1{4 ´ x{2kt

˙
(14)

This has determinant ´1{16 and hence eigenvalues ˘1{4. �

Remark . Exponentiating the residues we see that the holonomy of a

small loop around the divisor D1 or D2 is conjugate to:

ˆ
i 0

0 ´i

˙
on D1

ˆ
eiπ{k 0

0 e´iπ{k

˙
on D2

In the dihedral group Dk Ă S Op3q the conjugacy classes are those of a

reflection in the plane and a rotation by 2π{k.

These facts tell us something of the structure of the divisor D1. Since

we know that the residue of the meromorphic connection at a singular

point lies in the Lie algebra of the stabilizer of the point, and this is here

semisimple, the orbit is isomorphic to

S Lp2,Cq{C˚ – CP1 ˆ CP1z∆

where ∆ is the diagonal. The projections onto the two factors must, by

S Lp2,Cq invariance, be the two eigenspaces of the residue correspond-

ing to the eigenvalues ˘1{4.
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Now D1 “ π´1pBq is a projective bundle over the conic B – CP1.

By invariance it must be one of the factors above. To see which, note that

from (14), eigenvectors for the eigenvalues 1/4 and -1/4 are respectively.

ˆ
x ` kt

´2

˙
and

ˆ
x

´2

˙

and so, from the choice of coordinates above, clearly the second repre-

sents the projection ot B. Note, moreover, that on the diagonal w “ z,

the coordinate x “ ´pw ` zq “ ´2z, so that x is an affine parameter171

on B – ∆ – CP1. Furthermore, when x “ 8 the vector

ˆ
1

0

˙
is an

eigenvector of the residue with eigenvalue -1/4.

Now let us use this information to determine the solution to tyhe

Painlevé equation corresponding to a rational curve P Ă Z. Recall that

the curve C “ πpPq is a plane curve of degree d, where d “ 1 or d “ 2.

As we have seen,when d “ 1, any line is of this form, but when d “ 2,

the conic must circumscribe a Poncelet polygon.

By the S Lp2,Cq action, we can assume that C meets the conic B at

the poitn x “ ´8. From the discussion above, if A8 is the residue of

the connection at this point, then

A8

ˆ
1

0

˙
“ ´1

4

ˆ
1

0

˙

From Proposition 1, the solution of the Painlevé equation is the point y

on the curve P at which Apyq has this same eigenvector, i.e. where

A21pyq “ 0

Proposition 5. A line in the plane defines a solution to Painlevé sixth

equation with coefficients pα, β, γ, δq “ p1{8,´1{8, 1{2k2, 1{2´1{2k2q.

A Poncelet conic in the plane defines a solution to the Painlevé equation

with coefficients pα, β, γ, δq “ p1{8,´1{8, 1{8, 3{8q.

Proof. The residuces on D1 and D2 are given by (14) and (13). The

lifting of a line meets D1 and D2 in two points each, so using (6) (and
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taking account of the fact that the roles of the two basis vectors ar inter-

changed), we obtain the first set of coefficients. The lifting of a Poncelet

conic meets D1 in four points, which gives the second set, agin from

(6). �

Proposition 6. The lifting of a line in CP3 to PpVkq defines the solution

y “
?

x

of Painlevé VI with pα, β, γ, δq “ p1{8,´1{8, 1{2k2, 1{2 ´ 1{2k2q.

Proof. Taking tha double covering C̃ Ă CP1 ˆCP1 of the line C and the 172

coordinates w, z, s on the corresponding covering of Z, the lifted curve

P id defined locally by a function s on the curve C̃. in fact , as we shall

see next, s is a meromorphic function on C̃ with certain properties.

From the comments following Theorem 2, the lifting is given by a

holomorphic section ξ of Op1 ` k{2, 1 ´ k{2q. This line bundle has

degree 2 on C̃, and so ξ vanishes at two points. Applying the involution

σ, the σ˚ξ is a section of Op1 ´ k{2, 1 ` k{2q. Considering ξ as a

section of Opk, 0q b Op1 ´ k{2, 1 ` k{2q. Considerign ξ as a section of

Opk, 0q b Op1 ´ k{2, 1 ´ k{2q, teh lifting of C to PpVkq is defined by

pξa,b, ξb,aq, or in the coordinates w, z, s,

spdwq´k{2pdzqk{2 “ ξ{σ˚ξ. (15)

Since dw´1{2 and dz´1{2 are holomorphic sections ofOp1, 0q andOp0, 1q,

it follows that on C̃, s is a meromophic function. Now using the S Lp2,Cq
action, we may assume that the line C is given by x “ 0, which means

that C̃ has equation

w “ ´z

which defines as obvious trivialization of Opk,´kq and from which we

deduce that s has two simple zeros at pa1,´a1
q, pa2,´a2q and two poles

at p´a1, a1q, p´a2, a2q. Using z as an affine parameter on C̃, wer obtain,

up to a constant multiple,

s “ pz ` a1qpz ` a2q
pz ´ a1qpz ´ a2q . (16)
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Now y “ wz is an affine parameter on the line C, which meets the conic

B at y “ 0,8. The lifting P meets the divisor D2 where y “ ´a2
1

and

y “ ´a2
2
, so putting a1 “ i and a2 “

?
´x then Pm is a projective

line with a parametrization such that the singular points of the induced

connection are 0, 1, x,8, as required for the Painlevé equation.

It ramians to determine the solution of the equation, which is given

by A21pyq “ 0. But from (12), this is where ds “ 0, and from (16) this

is equivalent to

1

z ` a1

´ 1

z ´ a1

` 1

z ` a2

´ 1

z ´ a2

“ 0

which gives

y “ ´z2 “ ´a1a2 “
?

x

with the above choices of a1, a2. �

Remarks.

1. By direct calculation, the fucntion y “ ?
x solves Painlevé VI for173

any coefficient satisfying α ` β “ 0 and γ ` δ “ 1{2. From (6) this

occurs when the residues are conjugate in pairs.

2. When k “ 2, we obtain pα, β, γ, δq “ p1{8,´1{8, 1{8, 3{8q which

are the coefficients arising from Poncelet conics. We shall see the

same solution appearing in the next section in the context of Poncelet

quadrilaterals.

Naturally, the solutions corresponding to Poncelet conics are more com-

plicated, and we shall give some explicitly in Section 6. Here we give

the general algebraic procedure for obtaining them.

In the case of a conic C in CP2, we have a section ξ, in fact a trivial-

ization, of the bundle Opk{2,´k{2q on the elliptic curve C̃. As in (15),

we still define the lifting by

spdwq´k{2pdzqk{2 “ ξσ˚ξ

but in this case ξ is non-vanishing. The section pdwq´k{2 vanishes to

order k at 8 P CP1, and so at the two points p8, in f tyq, p8, bq where C̃
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meets t8u ˆ CP1. Similarly pdzq´k{2 vanishes at p8,8q, pb,8q. The

meromorphic function s can be regarded as a map oc curves

s : C̃ Ñ CP1.

It follows that s is a meromorphic function on C̃ with a zero of order k

at pb,8q, a pole of order k at p8, bq and no other zeros or poles.

The derivative ds in invariantly defined as a section of Kc̃bs˚K´1

CP´1 –
s˚Op2q (since C̃ is an elliptic curve and hence has trivial canonical bun-

dle). In particular ds vanishes with total multiplicity 2k. But since

p8, aq and pa,8q are branch points of order k, ds has a zero of order

k ´ 1 at each of these points, leaving two extra points as the remaining

zeros. Since the involution σ takes s to s´1, these points are paired by

the involution, and give a single point y P CP1 which is our solution to

the Painlevé equation.

Fortunately Cayley’s solution in 1853 to the Poncelet problem gives

us means to find y algebraically. A usefull modern account of this is

given by Griffiths and Harris in [5], but the following description I owe

to M.F. Atiyah.

Suppose the elliptic curve C̃ is described as a cubic in CP2 given by

v2 “ hpuq, where hpuq is a cubic in polynomial and hp0q “ c2
0

‰ 0. We

shall find the condition on the coefficients of h in order that there should

exist a polynomial gpv, uq of degree pn ´ 1q (a section of Opn ´ 1qq on

the curve with a zero of order p2n ´ 1q at pv, uq “ pc0, 0q and a pole of

order pn ´ 2q at u “ 8. Given such a polynomial, 174

spv, uq “ gpv, uq
gp´v, uq

is the function on the curve (for k “ p2n ´ 1q) used above, and the zeros

of its derivative define the solution ypxq to the Painlevé equation. A very

similar procedure deals with the case of even k.

To find g, expand
a

hpuq as a power series in z, making a choice c0

of square root of hp0q:

v “ c0 ` c1u ` c2u2 ` ¨ ¨ ¨
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and the put

vm “ c0 ` c1u ` ¨ ¨ ¨ ` cm´1um´1.

Now clearly v ´ vn has a zero of order n on the curve at u “ 0, as

do other functions constructed from the vm:

v ´ vn “ cnun ` ¨ ¨ ¨ ` c2n´2u2n´2 ` ¨ ¨ ¨
upv ´ vn´1q “ cn´1un ` ¨ ¨ ¨ ` c2n´3u2n´2 ` ¨ ¨ ¨

u2pv ´ vn´2q “ cn´2un ` ¨ ¨ ¨ ` ¨ ¨ ¨
. . . “ . . .

un´2pv ´ v2q “ c2un ` ¨ ¨ ¨ ` cnu2n´2 ` ¨ ¨ ¨

We can then find n ´ 1 coefficients λ0, λ1, . . . , λn´2 such that

gpv, uq ” λ0pv ´ vnq ` λ1upv ´ vn´1q ` ¨ ¨ ¨ ` λn´2un´2pv ´ v2q

vanishes at u “ 0 to order 2n ´ 1 if and only if

det M “ 0 where M “

»
——–

cn cn´1 . . . c2

cn`1 cn . . . c3

. . . . . . . . . . . .

c2n´2 c2n´3 . . . cn

fi
ffiffifl (17)

This is Cayley’s form of the Poncelet constraint.

If (17) holods, gpv, uq is a polynomial of degree n ´ 1 which, upon

inspection, vanishes with multiplicity n ´ 2 at the inflexion point at in-

finity of the curve. Its total intersection number with the cubic C̃ is

3pn ´ 1q “ p2n ´ 1q ` pn ´ 2q, so there are no more zeros. Thus the

condition det M “ 0 is necessary and sufficient for the construction of

the required function s with a zero of order k at pv, uq “ pc0, 0q and a

pole of order k at pv, uq “ p´c0, 0q.

In the case of a pair of conics in the plane, defined by symmetric175

matrices B and C,. the constraint is on the cubic hpuq “ detpB ` uCq in

order for the conics to satisfy th Poncelet condition.

Note that

gpv, uq “ ppuqv ` qpuq
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where p and q polynomials of degree n ´ 2 and n ´ 1 respectively. Thus

s “ ppuqv ` qpuq
´ppuqv ` qpuq

and ds vanishes if

pqv1 ` pp1q ´ pq1qv “ 0.

Using v2 “ hpuq, this is equivalent to

rpuq ” ppuqqpuqh1puq ` 2pp1puqqpuq ´ ppuqq1puqqhpuq “ 0

This is a polynomial in u of degree n2n ´ 1, which by construction

vanishes to order k ´ 1 ´ 2n ´ 2 at u “ 0. It is thus of the form

rpuq “ au2n´2pu ´ bq

and so y, the solution to the Painlevé equation which corresponds to a

zero of ds, is defined in terms of the ration of the two highest coefficients

of rpuq. Since the solution the solution to the Painlevé equation has

singularities at the four points 0, 1, x,8, a Möbius transformation gives

the variable x, and the solution ypxq, as:

x “ e3 ´ e1

e2 ´ e1

y “ b ´ e1

e2 ´ e1

(18)

where e1, e2 and e3 are the roots of hpuq “ 0.

To calculate b expalicitly is easy. Putting ppuq “ p0 ` P1u ` ¨ ¨ ¨ `
Pn´2un´2 and qpuq “ qo ` q1u ` ¨ ¨ ¨ qn´1un´1 and looking at the coef-

ficients of rpuq, we find

b “ pn´3

pn´2

´ 3
qn´2

qn´1

“ λn´3

λn´2

´ 3
λ0 ` λ1cn´3 ` ¨ ¨ ¨ ` λn´2c0

λ0cn´1 ` λ1cn´2 ` ¨ ¨ ¨ ` λn´2c1

from the definition of ppuq and qpuq. Now the coefficient λi are the

entries of column vector λ such that Mλ “ 0. Thus in the generic case

where the rank of M is n ´ 3, these are given by cofactors of M. We can 176
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then write

b “ ´
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cn cn´1 . . . c2

. . . . . . . . . . . .

c2n´3 c2n´4 . . . cn´1

cn´1 cn´2 . . . c1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(19)

This effectively gives us a concrete form for the solution of the Painlevé

equaton for k pdd, through we shall try to be more explicit in special

cases in the nest section. When k is even, a similar analysis can be

applied. Very briefly, if k “ 2n and n ď 2, then the vanishing of

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Cn`1 cn . . . c3

cn`2 cn`1 . . . c4

. . . . . . . . . . . .

c2n´1 . . . . . . cn`1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

is the condition for the existence of λi so that

gpv, uq “ λ0pv ´ vn`1q ` λ1upv ´ vnq ` ¨ ¨ ¨ ` λn´2u3pv ´ v3q

has a zero of order 2n at u “ 0. The rest follows in a similar manner to

the above.

6 Explicit solutions

We shall now calculate explicit solutions to Painlevé VI with coefficients

pα, β, γ, δq “ p1{8,´1{8, 1{8, 3{8q for small values of k. Clearly, from

the interpretation in terms of Poncelet polygons, we must have k ď 3.

The discussion in the previous section shows that we need to perform

calculations with the coefficients of the cubic hpuq “ detpb`uCq where
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B and C are symmetric matrices representing the conics we have de-

noted with the same symbol. For convenience, we take the cubic

hpuq “ p1 ` px1 ` x2quqp1 ` px2 ` x0quqp1 ` px0 ` x1quq
“ 1 ` 2s1u ` ps2

1 ` s2qu2 ` ps1s2 ´ s3qu3 (20)

where si is the ith elementary symmetric function in x0, x1, x2.

6.1 Solutions for k “ 3 177

For k “ 3 the Poncelet constraint from (17) is c2 “ 0, which is s2 “ 0

for the above cubic, and can therefore be writtne

1

x0

` 1

x1

` 1

x2

“ 0.

This is the equation in homogeneous coordinates px0, x1, x2q for a plane

conic which can clearly be parametrized rationally by

x0 “ 1

1 ` s
x1 “ ´1

s
x2 “ ´1 (21)

The polynomial g is just gpv, uq “ v ´ p1 ` s1uq, and this gives

rpuq “ s1s3u3 ` 3s3u2

and hence b “ ´3{s1. Substituting the parametrization (21) in (18) and

using the fact that the roots hpuq “ 0 are u “ ´1{px1 ` x2q etc, gives

the solution ypxq to the Painlevé equation ad

y “ s2ps ` 2q
ps2 ` s ` 1q where x “ s3ps ` 2q

2s ` 1

6.2 Solutions for k “ 4

The Poncelet constraing here is c3 “ 0, which in the formalism above

is s3 “ 0, that is

x0 “ 0 x1 “ 0 x2 “ 0.
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In CP3 this consists of three lines. Take the component x0 “ 0 and

parametrize it by

x1 “ 1 x2 “ s.

Now the polynomial g is given by gpv, uq “ v ´ p1 ` s1u ` 1
2

s2u2q,

which yields

rpuq “ 1

2
s1s2

2u4 ` s2
2u3

and hence b “ ´2{s1. Substituting the parametrization, we obtain x “
s2, y “ s, thus the solution to the Painlevé equation is

ypxq “
?

x.

Remark. In Proposition 6, we saw that the same solution y “ ?
x with178

coefficients pα, β, γ, δq “ p1{8,´1{8, 1{8, 3{8q arises from taking an

curve P in PpV2q with P.D1 “ P.D2 “ 2, and hence has holonomy in D2,

which is the quaternion group t˘1,˘i,˘ j,˘ku, a proper subgroup of

D̃4. Recall also that from [16], PpV2q – PpT q, the projectivized tangent

bundle of CP2 together with a line passing through it, or equivalently

a line with a distinguished point. Thus there is a projection also to the

dual projective plane CP2˚. In other words

PpT q “ tpp, Lq P CP2 ˆ CP2˚ : p P Lu

with projections onto the two factors. In the terminology above, the

two corresponding hyperplane divisor classes are H and H ´ U. Now

the curve P which defines the solution to the Painlevé equation satisfies

P.H “ P.pH ´ Uq “ 1. It follows easily that P is obtained by taking a

point q P CP2 and a skew line M. The set

P “ tpp, Lq P PpT q : q P L and p “ L X Mu

describes the rational curve P Ă PpT q.

According to our formula, this curve must correspond to a Poncelet

conic. In act, letpp, Lq be a point of P, let ℓ denote the pole of the line

L with respect to the conic B. The line ℓp has pole q, and as L varies

in the pencil of lines through p, the point q describes a conic C. If L
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is a tangent through p to the conic B, then q4 is the point of contact

BX L. Let q1 and q2 be the two points of contact of the tangents through

p, then the conic C passes through p, q1 and q2. But pq1 pq2 is then

a degenerate Poncelet quadrilateral, and by Poncelet’s theorem [3], if

there is a Poncelet polygon through one point of C, then there exists one

through each point.

6.3 Solution for k “ 5

From (17), the Poncelet constraint is

det

„
c3 c2

c4 c3


“ 0

which in terms of the symmetric functions si is

4s2
3 ` s2

2 ´ 4s1s2s3 “ 0 (22)

Now from (19),

b “ ´c2

c3

´ 3
pc3 ´ c1c2q
pc1c3 ´ c2

2
q

“ s2

s3

´ 6
ps3 ` s1s2q
p2s1s2 ` s2

2
q

and using (22) this becomes 179

b “ ´20
s2s3

p4s2
3

` 3s3
2
q

It is convenient to introduce coordinates u, v by setting

x0 “ 1 u “ 1

x1

` 1

x2

v “ 1

x1x2

and then the constraint (22) becomes

v “ p1 ` uqp1 ´ uq2

4u
(23)

and

´5
pu ` 1qpu ´ 1q2

p3upu ` 1q2 ` pu ´ 1q2q
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Now 1{x1 and 1{x2 are the roots of the quadratic z2 ´ uz ` v “ 0,

and so, using (23),

1

x1

,
1

x2

“ 1

2
pu ˘

a
1 ` u ´ u´1q

and now putting

w2 “ 1 ` u ` u´1 (24)

we finally obtain the solution of the Painlevé equation as

y “ pu ´ w ` 2qpu ` wq
pu ` w ´ 2qpu ´ wq

ˆ
1 ´ 20u2

p3upu ` 1q2 ` pu ´ 1q2q

˙

where x “ pu ´ w ´ 2qpu ´ w ` 2qpu ` wq2

pu ` w ´ 2qpu ` w ` 2qpu ´ wq2
and w2 “ 1 ` u ` u´1

Note that (24) is the equation of an elliptic curve, so that x and y are

meromorphic functions on the curve. It is a special elliptic curve, in

fact under the Cremona transformation xi ÞÑ 1{xi, the equation (22)

transforms into the plane cubic

s3
1 ´ 4s1s2 ` 4s3 “ 0

and the symmetric group S 3 clearly acts as automorphism of the curve.

The study of the Poncelet constraints for smal values of k in under-

taken in [1], and the reader will find that, apart from k “ 6 and k “ 8,

the formulae rapidly become more complicated. We shall only consider

now these two further cases.

180

6.4 Solution for k “ 6

Here, from [1], we find that the constraint factorizes

px0x1 ` x1x2 ` x2x0qp´x0x1 ` x1x2 ` x2x0qpx0x1 ´ x1x2 ` x2x0q
px0x1 ` x1x2 ´ x2x0q “ 0.

The first factor represent the case k “ 3 embedded in k “ 6, by thinking

of a repeated Poncelet triangle as a hexagon, We choose instead the third
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factor, which can be written as

1

x0

“ 1

x1

` 1

x2

.

This is a conic, and we rationally parametrize it by setting

x0 “ 1

1 ` s
x1 “ 1

s
x2 “ 1.

After some calculation, this gives a solution to the Painlevé equa-

tions

y “ sp1 ` s ` s2q
p2s ` 1q

where x “ s3ps ` 2q
p2s ` 1q

6.5 Solution for k “ 8

Here, again referring to [1], we find the constraint equation splits into

components

p´x2
0x2

1 ` x2
1x2

2 ` x2
2x2

0qpx2
0x2

1 ´ x2
1x2

2 ` x2
2x2

0qpx2
0x2

1 ` x2
1x2

2 ´ x2
2x2

0q “ 0.

one of which is given by the equation

1

x1
0

“ 1

x2
1

` 1

x2
2

and , parametrizing this conic rationally in the usual way with

x0 “ 1 x1 “ 1 ` s2

2s
x2 “ 1 ` s2

1 ´ s2

one may obtain the solution to the Painlevéd equation as

y “ 4sp3s2 ´ 2s ` 1q
p1 ` sqp1 ´ sq3ps2 ` 2s ` 3q

where x “
ˆ

2s

1 ´ s2

˙4

.
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7 Painlevé curves
181

The examples above show that there do indeed exist algebraic solutions

to Painlevé sixth equation, for certain values of the coefficients, despite

the general description of solutions to these equations as “Painlevé tran-

scendants”. In general, an algebraic solution is given by a polynomial

equation

Rpx, yq “ 0

which defines an algebraic curve. So far, we have only seen explicit

examples where this curve is rational or elliptic, but higher genus curves

certainly do occur. We make the following definition:

Definition 2. A Painlevé curve is the normalization of an algebraic

curve Rpx, yq “ 0 which solves Painlevé’s sixth equation (5) for some

values of the coefficients pα, β, γ, δq.

Just as the elliptic curve above corresponding to the solution for

k “ 5 was special, so are Painlevé curves in general. The equation (5)

was in fact found not by Painlevé, but by R. Fuchs [4], but nevertheless

falls into the Painlevé classification by its characteristic property that its

solution have no “movalble singular points”. What this means is that the

branch points or essential singularities of solutions ypxq are independent

of the constants of integration. In the case of Painlevé VI, these points

occur only at x “ 0, 1,8. Now if X is a Painlevé curve, x and y are

meromorphic functions on X, and so there are no essential singularities.

The function

x : X Ñ CP1

is thus a map with branch points only at x “ 0, 1,8.

Such curves have remarkable properties. In the first place, it fol-

lows from Weil’s rigidity theorem[17], that X is defined over the alge-

braic closure Q of the rationla (from Belyi’s theorem [2] this actually

characterizes curves with such functions). Secondly, by uniformizing

CP1zt0, 1,8u,

X – H{Γ
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where H is the upper half-plane and γ is asubgroup of finite index in

the principal congruence subgroup γp2q Ă S Lp2,Zq. Thus, in some

manner, each algebraic solution of Painlevé VI gives rise to a problem

involving elliptic curves.

Coincidentally, the investigation of the Poncelet problem by Barth

and Michel in [1] proceeds by studying a modular curve. This is curve

which occurs in parametrizing elliptic curves with

• a level-2 structure 182

• a primitive element of order k

In our model of the Poncelet problem, the elliptic curve is C̃, the level-2

structure identifies the elements of order two (or equivalently an order-

ing of the branch points of π), and the Poncelet constraint (11) selects

the line bundle Op1{2,´1{2q of order k on C̃ or equivalently a point of

order k on the curve, the zero of the function s in Section 5. Choosing a

primitive element avoids recapturing a solution for smaller k.

As described by Barth and Michel, the stabilizer of a primitive ele-

ment of order k is

Γ00pkq “
"ˆ

a b

c d

˙
P S Lp2,Zq : a ” d ” 1pkq and c ” 0pkq

*

(25)

Now if k is odd, matrices A P γ00pkq can be chosen such that A mod 2

is any element of S Lp2,Z2q. Thus γ00pkq acts transitively on the level-2

structures. Consider in this case the modular curve

X00pk, 2q “ H{Γ00pkq X Γp2q (26)

Since ´I P Γ00pkq acts trivially on H, this is a curve parametrizing

opposite pairs of primitive elements of order k, and level-2 structures.

When k is even, however, only the two matrices

ˆ
1 0

0 1

˙ ˆ
1 1

0 1

˙
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are obtained by reducing mod 2 from Γ00pkq. Thus the group has three

orbits on the level-2 structures, and the curve X00pk, 2q has three com-

ponents each given by (26).

There is another curve in the picture: the curve Πk defined by the

Cayley constraint (17), with the ci symmetric functions of px0, x1, x2q
as defined by (20). This is a plane curve in homogeneous coordinates

px0, x1, x2q. Barth and Michel show that a birational image of X00pk, 2q
lies as a union of components of Πk. In the examples of Section 6, we

have already seen this curve, connected for k “ 3, 5 but with different

components for k “ 4, 6, 8.

In the algebraic construction of y in Section 5, it is clear fro (19) that

x and y are meromorphic functions on Πk, and so the Painlevé curve Xk

is a rational image of the modular curve. In fact, we have the following

Proposition 7. The Painlevé curve Xk defined by Poncelet polygons is

birationally equivalent to the modular curve H{Γ00pkq X Γp2q.

Proof. Let Yk be the modular curve,then we already have a map f :183

Yk Ñ Xk as described above. We shall define an inverse on the comple-

ment of a finite set.

Let the Painlevé curve be defined by the equation

Rpx, yq “ 0

and suppose px, yq is a point on the curve such that BR{By ‰ 0. Then

dy

dx
“ ´BR{Bx

BR{By

is finite, and thus we can recover the connection matrix Apzq on

CP1zt0, 1, x,8u, its coefficients being rational in x, y, dy{dx, by us-

ing the formulae for defining the connection from the solution of the

Painlevé equation as in [8] (cf Section 2).

Now pull the connections back to the elliptic curve E which is the

double covering of CP1 branched over the four points. The fundamen-

tal group of the punctured elliptice curve consists of he words of even

length in the generators γ1, γ2, γ3 of π1pCP1zt0, 1, x,8uq. But under
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the holonomy representation into S Op3q “ S Up2q{ ˘ 1 these gener-

ators map to reflections in a plane. Thus the even words map to the

rotations in the dihedral group, the cyclic group Zk. Around a singular

point in CP1, the holonomy is conjugate to

ˆ
i 0

0 ´i

˙

and so on the double covering branched around the point, the holonomy

is ˆ
´1 0

0 ´1

˙

and hence the identity in S Op3q.

Thus the holonomy is that of a smooth connection, and so defines

an element of Hompπ1pEq,Zkq. This is flat line bundle of order k, and

through the constructions in Sections 4 and 5 is the same bundle as

Op1{2,´1{2q. We have actually made a choice here, since holonomy

is determined up to conjugation. There is a rotation in S Op3q which

takes the generating rotation of the cyclic group Zk to its inverse. Thus

x, y defines a pair of k-torsion points on the elliptic curve, and hence a

single point of the modular curve Yk “ X00pk, 2q. �

Remark. A straightforward consideration of the branching over 0, 1,8
leads to the formula

g “ 1

4
pp ´ 3q2

for the genus g of X00pp, 2q when p is prime (see [1]). Thus the Painlevé 184

curve can have arbitrarily large genus.
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Scalar conservation laws with boundary condition

K. T. Joseph

1 Introduction

Many of the balance lawas in Physics are conservation laws. We con-187

sider scalar conservation laws in a single space variable,

ut ` f puqx “ 0. (1.1)

On the flux function f puq, we assume either

f 2puq ą 0 and lim
|u|Ñ8

f puq
|u| “ 8 (H1)

or

f puq “ log
“
aeu ` be´u

‰
, (H2)

where a and b are positive constants such that a ` b “ 1. An important

special case is the Burgers equations i.e., when f puq “ u2

2
.

Initial value problem for (1.1) is to find upx, tq satisfying (1.1) and

the initial data

upx, 0q “ u0pxq. (1.2)

It is well known that (see Lax [8]) solution of (1.1) in the classical sense

develop singularities after a finite time, no matter how smooth the initial

data u0pxq is and cannot be continued as a regular solution. The can

be continued however as a solutions in weak sense. However, weak

solutions of (1.1) are not determined uniquely by their initial values.

Therefore, some additional principle is needed for prefering the physical

solution to others. One such condition is (See Lax [9]),

upx ` 0, tq ď upx ´ 0, tq. (1.3)
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Scalar conservation laws with boundary condition 219

This condition is called entropy condition.

Existence and uniqueness of weak solution of (1.1) and (1.2) satsi-188

fying the entropy condition (1.3) is well known (see Hopf [2], Lax [9],

Olenik [14], Kruskov [7] and Quinn [13]). Hopf [2] derived an explicit

for the solution when f puq “ u2

2
and Lax [9] extended this formula for

general convex f puq.

Let f ˚puq be the convex dual of f puq i.e.,

f ˚puq “ max
θ

ruθ ´ f pθqs, (1.4)

U0pxq “
1ż

0

u0pyqdy (1.5)

and

Upx, tq “ min
´8ăyă8

„
u0pyq ` t f ˚

ˆ
x ´ y

t

˙
. (1.6)

For each fixed px, tq, there may be several minimisers y0px, tq for (1.6),

define

y`
0

px, tq “ maxty0px, tqu, y´
0

px, tq “ minty0px, tqu. (1.7)

Lax [9] proved that, for each fixed t ą 0, y´
0

p., tq and y`
0

p., tq are left

continiuous and righrt continuous respectively, and both are continuous

except on a common denumerable set of points of x and at the points of

continuity

y`
0

px, tq “ y´
0

px, tq.
Define

upx, t “ p f ˚q1
ˆ

x ´ y0px, tq
t

˙
(1.8)

upx˘, tq “ p f ˚q1
˜

x ´ y˘
0

px, tq
t

¸
. (1.9)

Clearly upx, tq is well defined A.e. px, tq and upx˘, tq is well defined for

all px, tq Lax [9] proved the following theorem.
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220 K. T. Joseph

Theorem 1. upx, tq defined by (1.8) and (1.9) is the weak solution of

(1.1) and (1.2) which satisfies the entropy condition (1.3).

Let us consider the mixed initial boundary value problem for (1.1)

in x ą 0, t ą 0. We prescribe the initial data.

upx, 0q “ u0pxq, x ą 0. (1.10)

It follows from the work of Bardos et al [1] that we really cannot impose

such a boundary condition

up0, tq “ λptq (1.11)

at X “ o, arbitarily and hope to have a solution. Bardos et al studied189

this problem in several space variables by vanishing viscosity method.

For one space variable their formulation is as follows.

sup
kPIpup0`,tq,λptqq

tsgnpup0`, tq ´ kqp f pup0`, tqq ´ f pkqqu “ 0 a.e t ą 0

(1.12)

where the closed interval Ipu, λq is defined by Ipu, λq “ rminpu, λq,
maxpu, λqs. Under the assumption f 2puq ą 0, (1.12) is equivalent to

saying (see Lefloch [10])

$
’’’&
’’’%

either

up0`, tq “ λ`ptq
or

f 1pup0 ` tqq ď 0 and f pup0`, tqq ě f pλ`ptqq

(1.13)

where

λ`ptq “ maxtλptq, u˚u, (1.14)

and u˚ is th solution of f 1puq “ 0. There exists only the solution u˚,

because of the strict convexity of f puq.

Definition. Let u0pxq be in L8p0,8q and λptq is continuous, by a solu-

tion of (1.1) (1.10) and (1.11) we mean a solution in the sense of Bardos-

Leroux and Nedelec. That is bounded measurable function upx, tq in
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x ě 0, t ą 0 such that
ż 8

0

ż 8

0

puφt ` f puqφxqdxdt “ 0 (1.15)

for all test functions φpx, tq P C8
0

p0,8qˆ p0,8q, upx, 0q satisfies (1.10)

a.e. x ą 0, upx ` tq and upx´, tq satisfy (1.3) for x ą 0 and up0`, tq
satisfies (1.13).

Bardos et al [1] proved the existence and uniqueness of solution of

(1.1), (1.10) and (1.11) (see also Lefloch [10]). We are interested in ex-

tending Lax formula (1.8) for the solution, which contains solution of a

variational inequality. This cariational inequality is not solvable explicit.

In a series of papers Joseph [3], Joseph and Veerappa Gowda [4, 5], an

explicit formuala is derived for the solution of (1.1), (1.10) and (1.11),

generalizing theorem 1. The case os two boundaries is considered in

[6].

Before teh statement of our main theorem we introduce some nota-

tions. For each fixed px, y, tq, x ě 0, t ą 0 and α ą 0,Cαpx, y, tq denotes

the following class of paths pβpsq, sq in the quarter plane

D “ tpz, sq : z ě 0, s ě 0u.

Each pathe connects the point py, 0q to px, tq and is of the form 190

z “ βpsq

where βpsq is piecewise linear function with one line of three straight

lines of possible shapes shown in Figure, share the absolute value of

slope of each straight line is ď α.
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Let u0pxq P L8p0,8q and λptq is continuous. Let λ`ptq be defined

by (1.14) and let

α “
#

8 if f puq satisfies pH1q
1 if f puq satisfies pH2q (1.16)

For each fixed px, y, tq, x ě 0, y ě 0, define

Qpbx, by, btq

“ min
βǫCαpx,y,tq

„
´
ż

ts:βpsq“0u
f pλ`psqqds `

ż

ts:βpsqą0u
f ‹
ˆ

ds

Bs

˙
ds



(1.17)

It can be shown that Qpx, y, tq is Lipschitz continous function. Let

Q1px, y, tq “ B
Bx

Qpx, y, tq (1.18)

and

Upx, tq “ min
0ďă8

„ż y

0

u0pzqdz ` Qpx, y, tq

. (1.19)

For each fixed px, tq there may be several minimisers for (1.19). Define

y´
0

px, tq “ minty0px, tqu, y`
0

px, tq “ maxty0px, tqu (1.20)

It can be shown that (see [5]), for each fixed t ą 0, y´
0

p., tq and191

y`
0

p., tq are left continuous and right continuous respectively, and both

are continuous except on a comman denumerable set of points of x and

at the points of continuity

y`
0

px, tq “ y´
0

px, tq

Define

upx, tq “ Q1px, y0px, tq, tq and (1.21)

upx˘, tq “ Q1px, y˘
0

px, tq, tq (1.22)

Clearly upx, tq is well defined a.e x ą 0, t ą 0 and upx˘, tq is well

defined for all x ą 0, t ą 0. Our main result is the following theorem.
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Theorem 2. Let upx, tq be given by (1.21) and (1.22), then it is the

solution of (1.1) (1.10), (1.13) and (1.3).

Here we remark that viscosity solution of Hamilton Jacobi equation

with Neumann boundary condition (see Lions [11, 12]).

$
’&
’%

Ut ` f pUxq “ 0

Upx, 0q “ U0pxq
“Uxp0, tq “ λptq”

(1.23)

is closely related to our problem. In fact the proof of theorem 2 shows

the following result.

Theorem 3. The function Upx, tq defined by

Upx, tq “ min
0ďyď8

rU0pyq ` Qpx, y, tqs (1.24)

is a viscosity solution of (1.23).

Here Qpx, y, tq is defined the same way a (1.17).

We arrived at these results,by first working out two examples namely

the Burgers equation [3] and the Lax’s equation [4].

2 Burgers Equation

In this section, we conside the Burgers equation in x ą 0, t ą 0

$
’’’&
’’’%

ut `
ˆ

u2

2

˙

x

“ ǫ

2
uxx,

upx, 0q “ u0pxq,
up0, tq “ λptq,

(2.1)

Let us define

Uǫpx, tq “ ´
ż 8

x

upy, tqdy,U0pyq “ ´
ż 8

0

u0pyqdy. (2.2)
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Then (2.1) becomes192

$
’’’&
’’’%

Ut `
ˆ

U2
x

2

˙
“ ǫ

2
Uxx,

Upx, 0q “ U0pxq,
Uxp0, tq “ λptq.

(2.3)

by the Hopf-Cole transformation

V “ e
´ 1
ǫ

U,
(2.4)

We can linearize the problem (2.3)

$
’&
’%

Vt “ ǫ
2
Vxx,

ǫVxp0, tq ` λptqVp0, tq “ 0,

Vpx, 0q “ e´ 1
ǫ

U0pxq.

(2.5)

When λptq “ λ, a constant, the solution of (2.5) can be explicitly written

down:

Vǫpx, tq “ 1

p2πtǫq1{2

»
——–
ż 8

0

e

´1
ǫ

»
–U0pyq`

px ´ yq2

2t

fi
fl

dy

fi
ffiffifl`

`
ż 8

0

e

´1
ǫ

»
–U0pyq`

px ´ yq2

2t

fi
fl

dy ` 2pλ{ǫq
p2πtǫq1{2

ż 8

0

ż 8

y

e

´
1

ǫ

»
–λpy´zq`U0pyq`

py ` zq2

2t

fi
fl

dzdy.

(2.6)

From (2.4), we have

Uǫpx, tq “ ´ǫ logpVǫpx, tqq. (2.7)

Substituting (2.6) in (2.7), we have an explicit formula for Uǫpx, tq. Us-

ing the method of stationary phase one can show that the limǫÑ0 Uǫ
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px, tq “ Upx, tq exists and is given by (1.24). The general variable

boundary data λt can be treated by using a comparison theorem and

some elementary convex analysis. The details can be found in [3].

3 Lax’s equation
193

In this section, we consider the Lax’s equation

ut `
`
log

“
aeu ` be´u

‰
x

˘
“ 0, (3.1)

In x ą 0, t ą 0. In the case of no boundary Lax [9] studied this example

by a difference scheme. We consider the case with boundary. Let

un
k » upk∆, n∆q, k “ 0, 1, 2, . . . , n “ 0, 1, 2, . . . (3.2)

∆ being the mesh size. Let u∆px, tq be the approximate solution defined

by $
’&
’%

un`1
k

“ un
k `

“
gpun

k´1, u
n
kq ´ gpun

k , u
n
k`q

‰

u0
k “ u0pkp∆qq

un
0 “ λpn∆q

(3.3)

where the numerical flux gpu, vq is given by

gpu, vq “ log
“
aeu ` be´v

‰
. (3.4)

Let

Un
k “ ´

8ÿ

j“k

un
j ,U

k
k “ ´

8ÿ

j“k

u0p j∆q,Un
k “ log Vn

k , (3.5)

then from (3.3), we get

$
’’&
’’%

Vn`1
k

“ aVn
k`1 ` bVn

k´1, n “ 1, 2, . . . , k “ 1, 2, 3, . . .

V0
k “ e´U0

k , k “ 0, 1, 2,

Vn
0 “ eλpnqVn

1 , n “ 1, 2, . . .

(3.6)
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when λ “ λptq, a constant, an explicit formula can be obtained for the

solution of (3.6) namely

Vn
k “

$
’’’’’’’’’’&
’’’’’’’’’’%

epn´kqλ
nÿ

q“0

ˆ
n

q

˙
aqbn´qV0

2n´2q

`
n´k´1ÿ

j“0

e jλS n,k` j, if n ą k

nÿ

q“0

ˆ
n

q

˙
aqbn´qV0

n`k´2q, if n ď k

(3.7)

where194

S n,k “
rÿ

q“0

Cn
q,kaqbn´q

´
V0

n`k´2q ´ eλV0
n`k`1´2q

¯

r “

$
’&
’%

n ` k ` ´1

2
if pn ` kq is odd

n ` k ` ´2

2
if pn ` kq is even

Cn
q,k “

#`
n
q

˘
, if q ď k ´ 1`

n
q

˘
´
`

n
q´k

˘
, if q ě k

and ˆ
n

j

˙
“ n!

j!pn ´ jq!

By retracing the transformation (3.5), and using (3.7), we get an explicit

formula for U∆px, tq “ ´
ş8

x
u∆py, tqdy. Using Stirling’s asymptotic

formula one can study the limit, lim∆Ñ0 U∆px, tq “ Upx, tq and show

that Upx, tq is given by (1.24). As in the case the Burgers Equation here

agin once can prove a comparison theorem and with the help of this

comparison theorem general variable λptq can be treated. The details

are omitted and can be found in [4].
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4 Proof of Main theorem

The examples of last two section suggest the formula for the case of

general convex f puq.

Following Lax [9], we introduce

uNpx, tq “
ş8

0
Q1px, y, tqe´Nru0pyq`Qpx,y,tqsdy
ş8

0
e´NrU0pyq`Qpx,y,tqsdy

(4.1)

fNpx, tq “
ş8

0
f pQ1px, y, tqqe´NrU0pyq`Qpx,y,tqsdy

ş8
0

e´NrU0pyq`qpx,y,tqsdy
(4.2)

VNpx, tq “
ż 8

0

e´NrU0pyq`Qpx,y,tqsdy. (4.3)

UNpx, tq “ ´ 1

N
log VN . (4.4)

where U0pxq, Qpx, y, tq,Q1px, y, tq are defined in Sec 1. It is clear that
#

limNÑ8 uNpx, tq “ Q1px, y0px, tq, tq a.epx, tq
limNÑ8 fNpx, tq “ f rQ1px, y0px, tq, tqs a.epx, tq

(4.5)

where y0px, tq minimises (1.19) and 195

lim
NÑ8

UNpx, tq “ Upx, tq, (4.6)

and
BU

Bx
“ Q1px, y0px, tq, tq. (4.7)

It can be shown that ż 8

0

ż 8

0

puNφt ` fNqdxdt “ 0 (4.8)

for all test function φ P C8
0

p0,8q ˆ p0,8q.

Let N Ñ 8 and use (4.5) we get from (4.8)

upx, tq “ Q1px, y0px, tq, tq (4.9)

solves (1.1) in distribution. It can be shown that upx, tq defined by (4.9)

satisfies initial condition (1.10) boundary condition (1.13) and entropy

condition (1.3). The details can be found in [5].
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Bases for Quantum Demazure modules-I

By V. Lakshmibai*

(Dedicated to professores M. S. Narasimhan and

C.S. Seshadri on their 60th birthdays)

1 Introduction

Let g be a semi-simple Lie algebra over Q of rank n. Let U be the197

quantized enveloping algebra of g as constructed by Drinfeld (cf [D])

and Jimbo (cf [J]). This is an algebra over Qpvq (v being a parameter)

which specializes to Upgq for v “ 1, upgq being the universal enveloping

algebra of g. This algebra has agenerators Ei, Fi,Ki, 1 ď i ď n, which

satisfy the quantum Chevalley and Serre relations (cf [L1]). Let A “
Zrv, v´1s and U˘

A
be the A-sumbalagebra of U generated by Er

i
(resp.

Fr
i
), 1 ď i ď n, r P Z`, (here Er

i
, Fr

i
are the quantum divided powers

(cf [J])). Let d “ pd1, ldot, dnq P pZ`qn and Vd be the simple U-module

with a non-zero vector e such that Eie “ 0, Kie “ v´die (recall that Vd

is unique up to isomorphism). Let us denote Vd by just V . Let W be the

Weyl group of g.

Let w P W and let w “ si1 . . . sir be a reduced expression for w. Let

U´
w,A

denote the A-submodule of U spanned by F
pa1q
i1

. . . Far
ir
, ai P Z`.

We observe ([L4]) that U´
w,4

depends only on w and not onth reduced

expression chosen. For w P W, let Vw,A “ U´
w,A

e. We shall refer to

Vw,A as the Quantum Demazure module associated with w. Let w0 be

the unique element in W of maximal lenght. Then Vw0,A is simply U´
A

e.

In the sequel, we shall denote Vw0,A by just VA.

Let g “ sℓ (3). In this paper, we construct an A-basis for VA, which

is compatible with tVw,A,w P Wu. The construction is done using the

*Partially supported by NSF Grant DMs 9103129 and alos by the Faculty Develop-

ment Fund of Northeastern University.
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configuration of Schubert varieties in the Flag variety G{B. Let Id “
µ0 ă µ1 ă µ2 ă µ3 “ w0 be a chain in Wp“ S 3q. Let µi´1 “ sβi

µi

for some positive root βi. Let npµi´1, µiq “ pµi´1pλq, β˚
i
q, where λ “ 198

d1ω1 ` d2ω2, ω1 and ω2 being the fundamental weights of sℓp3q. Let

denote npµi´1, µiq by just ni. Let C “ tpµ0, µ1, µ2, µ3; m1,m2,m3q :

1 ě m1

n1
ě m2

n2
ě m3

n3
ě 0u. Given c “ pµ0, µ1, µ2, µ3; m1,m2,m3q, Let

τc “ µr, where r is the largest integer such that mr ‰ 0. Given two

elements

c1 “ tpµ0, µ1, µ2, µ3; m1,m2,m3qu, c2 “ tλ0, λ1, λ2, λ3; p1, p2, p3u

in C. let us denote
mi

npµi´1,µiq (resp.
pi

npλi´1,λiq ) by just ai (resp. bi). We say

c1 „ c2, if

(1) ai “ bi

(2) either

(a) a1 “ a2 ą a3, µ2 “ λ2

or

(b) a1 ą a2 “ a3, µ1 “ λ1

or

(c) a1 “ a2 “ a3

We shall denote C{ „ by C, For θ P C, we shall denote τθ “ τθ, c being

a representative for θ (note that τθ is well-defined). We have (Theorems

6.7 and 7.2)

Theorem. VA has an A-basis Bd “ tvθ, θ P Cu where vθ “ Dθe,Dθ

being a monomial in F
1
i
s of the form F

pn1q
i1

. . . f
pnrq
ir

. Further, for w P
W, tvθ|w ě τθu is an A-basis for Vw,A.

Let Bd denote Lusztig’s canonical basis for VA (cf [L2]). It turns out

that the transition matrix from Bd to Bd is upper triangular. We also give

a conjectural A-basis Bd for VA for g of other types. An element in Bd is

again of the form F
pn1q
i1

¨ ¨ ¨ F
pnrq
ir

e. We conjecture that the trasition matrix
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232 V. Lakshmibai

from Bd toBd is upper triangular. The sections are organized as follows.

In §2, we recall some results pertaining to the configuration of Schubert

varieties in G{B. In §3, we describe a conjectural A-basis for VA (and

also for Vw,A). In §4, we study C in detail and constuct Bd and Bd. In

§6 and §7, we prove the results for G “ S Lp3q. in §8, an Appendix, we

have explicitly established a bijection between the elements of C (the

indexing set for Bd) and the classical standard Young tableaux on S Lp3q
of type pd1, d2q.

The author would like to express her gratitude to SPIC Science

Foundation for the hospitality extended to het during her stay (Jan-Feb,

1992) there, when research pertatining to this paper was carried out.

2 Preliminaries
199

Let G be a semi-simple, simply connected Chevalley group defined over

a field k. Let T be a maximal k-split torus, B a Borel subgroup, B Ą T .

Let W be the Weyl group, and R the root system of G relative to T . Let

R` (resp. S ) be the system of positive (resp. simple) roots of G relative

to B. For w P W, let Xpwq “ BwBpmod Bq be tghe Schubert variety in

G{B associated with w.

Definition 2.1. Let Xpϕq be a Schubert divisor in Xpτq. We say that

Xpϕq is moving divisor in Xpτq moved by the simple root α, if ϕ “ sατ.

Lemma 2.2 (Cf [LS]). Let Xpϕq be a moving divisor in Xpτq moved by

α. Let Xpwq be a Schubert subvariety in Xpτq. Then either

(i) Xpwq Ď Xpϕq or

(ii) Xpwq “ Xpsαw1q for some Xpw1q Ď Xpϕq.

Definition 2.3. Let λ be a dominant integral weight of G. Let Xpwq be

a divisor on Xpτq. Let w “ sβτ, for some β P R`. We define mλpw, τq
as the non-negative integer mλpw, τq “ pwpλq, β˚qp“ ´pτpλq, β˚qq, and

call it the lambda multiplicity of Xpwq in Xpτq. (Here (,) is aW-invariant

scalar product on HompT,Gmq).
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Lemma 2.4. Let Xpϕq be a moving divisor in Xpτq moved by α. Let

Xpwq be divisor in Xpτq. Let w “ sβτ, θ “ sαϕ, where β, γ P R` (note

that γ “ sαpβqq. Let m “ mλpw, τq, s “ mλpθ,wq, p “ mλpϕ, tauq, r “
pβ, α˚q. Then

(a) mλpθ, ϕq “ m

(b) p “ s ` mr

Proof.

(a) mλpθ, ϕq “ pθpλq, γ˚q “ pθpλq, psαθpλqq, β˚q “ pwpλq, β˚q “ m

(b) Now sβsαθpλq “ sαsγθpλq implies that sα ` mβ “ mγ ` pα.

Hence pp´sqα “ mβ´mγ “ mpβ´rαq “ mrα. Hence p “ s`mr.

�

Lemma 2.5. Let Xpθq be a divisor in Xpτq. Let θ “ sβτ, where β P R`. 200

Let β be non-simple, say β “ Σciαi, αi P S . Then for at least one i with

ci ‰ 0, we have pτpλq, α˚
i
q ă 0.

Proof. Let m “ mλpθ, τq. Then pτpλq, β˚q “ ´m ă 0. The assertion

follows from this. �

2.6 Lexicographic shellability

Given a finite partially ordered setH which is graded (i.e., which has

an unique maximal and an unique minimal element and in which all

maximal chains m i.e., maximal totally ordered subsets of H, have the

same length), the lexicographic shellability of H (cf [B-W]) consists in

labelling the maximal chains m in H, say λpmq “ pλ1pmq, λ2pmq, . . . ,
λrpmqq (here r in the length of any maximal chain in H), where λipmq
belong to some partially ordered set Ω, in such a way that the following

two conditions hold:

(L1) If two maximal chains m and m1 coincide along their first d edges,

for some d, 1 ě d ě r, then λipmq “ λipm1q, 1 ď i ď d.
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(L2) For any interval rx, ysp“ τ P H : X ě τ ě yq, together with a

chain c going down from the unique maximal element in H to y, there

is a unique maximal chain m0 in rx, ys whose label is increasing (i.e.

λ1pm0q ď λ2pm0q ď ¨ ¨ ¨ λtpm0q, t being the lenght of any maximal

chain in rx, ys) and if m is any other maximal chain in rx, ys, then λpm0q
is lexicographically , λpmq (here, the label for any chain m in rx, ys is

induced from the maximal chain of H consisting of c, followed by m0,

followed by an arbitrary path from x to the unique minimal element of

H.)

Theorem 2.7. (cf [B-W]) the Bruhat order of a Coxeter group is lexi-

cographic shellable.

2.8 Labelling of maximal chains in rx, ys for H “ W

We fix a reduced expression of w0,the element of the maximal length in

W and label the maximal chains in X as in [B-W](with respect to this

fixed reduced expression for w0). Let m be maximal chain in rx, ys. Let

c be the (unique) chain from w0 to y whose label is increasing. We take

the label for m as the induced by maximal chain in W consisting of c,

followed by m, followed by an arbitrary path from x to Id.

3 A conjectural Bruhat-order compatible A-basis

for VA

201

3.1 Let g “ LiepGq. Let U, A,U˘
A
, Ei, Fi,Ki,Vd,VA,Vw,A etc. be as in

§1. Let λ “ Σdiωi, ωi being the fundamental weights of G. We shall in-

dex that set of simple roots of G as in [B]. Let c “ tµ0, µ1, . . . , µru be a

chain in W, i.e., ℓpµiq “ ℓpµi´1q ` 1 (if dt “ 0 for t “ ii, . . . , is, then we

shall work with WQ, the set of minimal representatives of WQ in W,WQ

being the subgroup of W generated by the set of simple reflections

tst, t “ i1 . . . , isu). Let µi´1 “ sβiµi
, βi P R`. Let mλpµi´1, µiq “ mi.

We set ℓpcq “ r, and call it the length of c.

Definition 3.2. A chain c is called simple (resp. non-simple if all (resp.

some) β1
i
s are simple (resp. non-simple)).
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Definition 3.3. By a weighted chain, we shall mean (c, n) where c “
tµ0, . . . , µru is a chain and n “ tn1, . . . , nru, ni P Z`.

Definition 3.4. A weighted chain (c, c, n) is said to be admissible if 1 ě
n1

m1
ě n2

m2
ě ¨ ¨ ¨ ě nr

mr
ě 0.

Lemma 3.5. Let Xpϕq be a moving divisor in Xpτq moved by the simple

root α. Let c “ tµ0, µ1, . . . µr “ τu be a chain, and let µi´1 “ sβµi, βi P
R`. Further let βr ‰ α, and βi P S , i ‰ r (note that we allow βr to be

non-simple). Then either

(1) βi “ α, for some i, (or)

(2) βi ‰ α, 1 ď i ď r, in which case µi ą sαµi, and sαµi ă ϕ, 0 ď i ď r

Proof. Let βi ‰ α, 1 ď i ď r. We shall now show that µi ą sαµi, 0 ď
i ď r. For i “ r, this is clear (since sαµr “ ϕ ă τ). For i “ r ´ 1,this

follows from Lemma 2.2 We have

pµr´2pλq, α˚q “ pµr´1pλq ` mr´1βr´1, α
˚q ă 0,

since pµr´1pλq, α˚q ă 0, and pβr´1, α
˚q ď 0. (note that µr´1 ą sαµr´1 ñ

pµr´1pλq, α˚q ă 0 ,and that pβr´1, α
˚q ď 0, since βi P S , 1 ď i ď r ´1).

Hence µr´2 ą sαµr´2. In a similar way one concludes µi ą sαµi. The

assertion that sαµi is ă ϕ follows Lemma 2.2. �

202

3.6 Let pc, nq be an admissible weighted chain. With notations and

assumptions as in Lemma 3.5, we define as admissible weighted chain

psαpcq, sαpnqq as follows:

Case 1. Let βi ‰ α, 1 ď i ď r. We set

sαpcq “ tsαµ0, sαµ1, . . . , sαµr “ ϕu
sαpnq “ n

(Note that mλpsαµi´1q, sαµiq “ mλpµi´1, µiq (Lemma 2.4 (a)) and hence

(sαpcq, sαpnqq is admissible).
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Case 2. Let βi “ α, from some i, 1 ď i ď r. Let t be the largest integer,

1 ď t ď r such that βt “ α. We set

sαpcq “ tµ0, µ, ¨ ¨ ¨ , µr´1 “ sαµt, sαµt, sαµt`1, ¨ ¨ ¨ , sαµr “ ϕu

and we define sαpnq “ tn1
i
, ¨ ¨ ¨ , n1

r´1
u by

n1
i “ ni, 1 ď i ď t ´ 1

n1
i “ ni`1, t ď i ď r ´ 1

(note that 1 ě n1
1

m1
1

ě ¨ ¨ ¨ ě n1
r´1

m1
r´1

ě 0, by the same considerations as in

Case 1 (here m1
i

“ mi, 1 ď i ď t ´ 1,m1
i
p“ psαµi, sαµi`1qq “ mi`1, t ď

i ď r ´ 1q.

3.7 With notations and assumptions as in 3.6, we donet by pc
α
, n

α
q the

admissible weighted chain, where

c
α

“ psαpcq, µrq, nα “ psαpnq, n1
rq

and n1
r in given as follows:

Let

k “
#

0, if case 1 holds

t, if case 2 holds

For i ě k, let γi “ sαpβiq (note that sαµi´1 “ sγi
sαµi).

x “
#

mpsαµ0, µ0q, if case 1 holds

nt, if case 2 holds

y “
#ř

nipβi, α
˚q

ti ą k | γi ‰ βiu

n1
r “ x ` y

Then n1
r is given by203

n1
r “ x ` y
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3.8 Let pc, nq be an admissible weighted chain. Further, let c be not

simple. To pc, nq, we attach a canonical (not necessarily admissible)

weighted chain pδpcq, δpnqq with δpcq simple, as follows: We preserve

the above notation for c. We do the construction using induction on

rp“ ℓpcqq.

Starting point of induction Let c “ tpτ,wqu,where xpwq is a divisor in

Xpτq,w “ sβτ, β P R`, β non-simple. (We refer to this situation as Xpwq
being a non-moving divisor in Xpτq). Let n “ pn1q, where n1 ď mp“
mλpw, τqq. By induction on dim Xpτq, we may suppose that Xpτq is of

least dimension such that Xpτq has a non-moving divisor. Let β “ Σciαi.

then at least for one i with ci ‰ 0, we have pτpλq, α˚
i
q ă 0 (Lemma 2.5).

Let t be at least for one i with ct ‰ 0 such that pτpλq, α˚
t q ă 0 (the

indexing of the simple roots being as in [B]). Denote αt by just αt by

just α. Let salphaw “ θ, ϕ “ sγθ. Then γ “ sαpβq. Further by our

assumption on dim Xpτq, γ P S . Hence we obtain pβ, α˚q ą 0, say

pβ, α˚q “ r, and β “ γ ` rα. We set

pδpcq, δpnqq “ tpθ, ϕ, τq; pp1, p2qu

where p1 “ n1, P2 “ n1 ` a with a “ mλpθ,wq (lemma 2.4).

Let now ℓpcq ą 1. Let c “ tµ0, µ1, . . . , µru, µi´1 “ sβµi, 1 ď i ď r.

We may suppose that βi P S , 1 ď i ă r. For, otherwise, if i is the

least integer such that βi in non-simple we may work with p∆pnq,∆pcqq,

(where ∆pcq is the chain δpµ0, ¨ ¨ ¨ , µiq followed by tµi`1, ¨ ¨ ¨ , µru, and

use induction on #tt, 1 ď t ď r : βtis non-simpleu. Let us denote βr by

just β. Let β “ Σciαi. Since pτpλq, β˚q ă 0, we have (Lemma 2.5, for

at least one t with ct ‰ 0, pτpλq, α˚
t q ă 0. Let i be the least integer such

that ci ‰ 0 and pτpλq, α˚
i
q ă 0. Let us denote αi by just α. Let ϕ “ sατ.

We set (3.7)

δpcq “ c
α
, δpnq “ n

α

3.9 Given a simple weighted chain pc, nq (not necessarily admissible)

we set

vc,n “ F
pnrq
ir

¨ ¨ ¨ F
pn1q
i1

eµ
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where c “ tµ “ µ0, . . . µru, n “ tn1, . . . , nru, βt “ αit , 1 ď t ď
r, and eµ is the extermal weight vector associated to µ, (Note that it

τ0 “ Id ă τ1 ă ¨ ¨ ¨ ă τr “ µ is anu simple chain from Id to µ,

and τi´1 “ sβτi, βi P S , 1 ď i ď r, then eµ “ F
pnrq
βr

. . . F
pn1q
β1

e, where

ni “ mλpτi´1, τiq (2.3))

3.10 Let pc, nq be admissible. Let us denote the unequal values in204

t n1

m1
, ¨ ¨ ¨ , nr

mr
u by a1, ¨ ¨ ¨ , as so that 1 ě a1 ą a2 ą ¨ ¨ ¨ ą as ě 0. Let

i0, ¨ ¨ ¨ , is be defined by

i0 “ 0, is “ r,
n j

m j

“ at, it´1 ` 1 ď j ď it

We set

Dc,n “ tpa1, ¨ ¨ ¨ , asq; pµi0 , ¨ ¨ ¨ , µis
qu

Definition 3.11. Let pc, nq, pc1, n1q be two admissible weighted chains.

Let Dc,n„pc1, n1q, if s “ t, and at “ a1
t,it “ jt, µit “ τ jt , 0 ď t ď s

3.12 Given µ, τ P W, µ ă τ, we shall label the chain in rµτs as in 2.8.

Let C “ tall admissible weighted chainsu, and C “ C{„. Given x P C,

let

S x “ tpc, nq P C : pc, nq is a representative of x and c is simpleu
Nx “ tpc, nq P C : pc, nq is a representative of x and c in non-simpleu

Let us define xmin P C as follows.

Case 1. S x ‰ φ. We set

xmin “ pc0, n0q
where pc0, n0q is lexicographically the least in S x.

Case 2. S x ‰ φ. In this case we set

xmin “ pc0, n0q
where pc0, n0q is lexicographically the least in Nx.
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3.13 Let x P C. Let xmin “ pc0, n0q. Define vx P VA as follows:

Case 1. S x ‰ φ. We set

vx “ vc0,n0

Case 2. S x “ φ. We set

vx “ vδpc0q,δpn0q

3.14 Let x P C. Let pc, nq be a representative of x. Let c “ pµ0, ¨ ¨ ¨ , µrq.

We define τx “ µs, where is s is the largest integer such that nx ‰ 0

(Note that τx is well-defined).

Conjectures 3.15. 205

(1) tvx, x P Cu is an A-basis for VA

(2) tvx : w ě τxu is an A-basis for A,w

(3) Let Bd denote tvx, x P Cu, and Bd, Lusztig’s canonical basis for VA

([L2]). The transition matrix from Bd to Bd is upper triangular.

4 The case G = SL p3q

4.1 For the rest of the paper we shall suppose that G “ S Lp3q. Let

us denote that elements of W by tτi, φi, i “ 0, 1, 2, 3, j “ 1, 2u, where

τ0 “ Id, τ1 “ s1, τ2 “ s2s1, τ3 “ s1s2s1, ϕ2 “ s1s2. We shall label the

maximal chains in W with respect to teh reduced expression s1s2s1 of

w0 ([B-W]).

4.2 Let d “ pd1, d2q and λ “ d1ω1 ` d1ω2. We shall suppose that

d1, d2 are both non-zero (If d1 “ 0 for instance,then we work with

tId, s2, s1s2u, the set of minimal representatives of Wpp“ ts1, Iduq in

W). Also, for simplicity of notation, we shall denote d1 by m and d2 by

n.
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4.3 Given a pair pϕ, , τq such that Xpϕq is a divisor in Xpτq, let us

denote mλpϕ, τq bu just mpϕ, τq. We have

mpϕ, τq “

$
’&
’%

m, if pϕ, τq “ pτ0, τ1q, pϕ1, τ2q or pϕ2, t3q
m ` n, if pϕ, τq “ pτ1, τ2q or pϕ1, ϕ2q
n, if pϕ, τq “ pτ0, ϕ1q, pτ1, ϕ2q or pτ2, τ3q

4.4 We shall denote an admissible weighted chain c “ pµ0, µ1, µ2, µ3q,
n “ pn1, n2, n3q, where if ni “ 0, i being the least such integer, then c

is to be understood as the chain pν0, ¨ ¨ ¨ , µi´1q. For instance, if n3 “ 0

and n1, n2 are non-zero then c “ pµ0, µ1, µ2q. If n1 “ 0 “ n2 “ n3, we

shall call c a trivial chain consisting of just µ0.

4.5 We have four types of admissible weighted chains given as fol-

lows.

Type I: tpτ0, τ1, τ2, τ3q, pn1, n2, n3q : 1 ě n1

m
ď n2

m`n
ě n3

n
ě 0u

Type II: tpτ0, ϕ1, τ1, τ3q, pn1, n2, n3q : 1 ě n1

n
ď n2

m
ě n3

n
ě 0u

Type III: tpτ0, τ1, ϕ2, τ3q, pn1, n2, n3q : 1 ě n1

m
ď n2

n
ě n3

m
ě 0u

Type IV: tpτ0, ϕ1, ϕ2, τ3q, pn1, n2, n3q : 1 ě n1

n
ď n2

m`n
ě n3

m
ě 0u

4.6 Given206

∆1 “ ppµ0, µ1, µ2, µ3q, pn1, n2, n3qq,∆2 “ ppλ0, λ1, λ2, λ3qpp1, p2, p3qq

in C, let use denote
ni

mpµi´1,µiq (resp.
pi

mpλi´1,λiq ) by just ai(resp. bi). We

have ∆1 „ ∆2, if

(1) ai “ bi

(2) (a) a1 “ a2 ą a3, µ2 “ λ2, or

(b) a1 ą a2 “ a3, µ1 “ λ1, or

(c) a1 “ a2 “ a3
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We note that if (a) holds, then λ2 “ τ2 or ϕ2, and the equivalence can

hold only between elements of either Type I and II, or Type III and IV

repectively if (b) holds, then λ1 “ τ1 or ϕ1, and the equivalence can

hold only between elements of either Type I and III or Type II and IV

respectively.

4.7 Let x P C. Let xmin “ pc, nq (3.12). Let c “ pµ0, µ1, µ2, , µ3q,

n “ pn1, n2, n3q, and ai, 1 ď i ď 3 as above. Note that if in 4.5, 2a

holds, and µ2 “ τ2presp.ϕ2q, then pc, nq is of Type I (resp Type IV). If

2b holds, and µ1 “ τ1presp.ϕ1q, then pc, nq is of Type I (resp. type IV).

If 2c holds, then pc, nq is of Type I.

4.8 With notation as in 4.7, the element vx P VA (3.13) may be ex-

pressed explicity as

vx “

$
’’’’&
’’’’%

F
pn3q
1

F
pn2q
2

F
pn1q
1

e, if c is of Type I

F
pn3q
1

F
pn1`n2q
2

F
pn2q
1

e, if c is of Type II

F
pn3q
2

F
pn1`n2q
1

F
pn2q
2

e, if c is of Type III

F
pn3q
2

F
pn2q
1

F
pn1q
2

e, if c is of Type IV

(note that vx is external ðñ ni is either 0 or “ mi, where mi “ mλpµi´1,

µiq). We shall denote tvx, x P Cu by Bd.

4.9 Lusztig’s canonical basis for VA. An element in VA of the form

F
ppq
1

F
pqq
2

F
prq
1

e, q ě p ` r or F
puq
2

F
ptq
1

F
psq
2

e, t ě u ` s will be referred to

as a Lusztig element or just a L-element. We have F
prq
1

e ‰ 0 ðñ r ď m.

Let r ď m; then F
prq
2

e ‰ 0 ðñ q ď r ` n (using the relation

F
pqq
2

F
prq
1

“
minpq,rqÿ

j“0

v´ j´pq´ jqpr´ jqF
pr´ jq
1

F
p jq
α1`α2

F
pq´ jq
2

q

Let now, r ď m, p ` r ď q ď r ` n; then F
p

1
F

q

2
Fr

1
e ‰ 0 (by 207

Uqpℓ2qq-theory since K1pF
pqq
2

F
prq
1

eq “ v´aF
pqq
2

F
prq
1

e (where a “ m `
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q ´ 2r, and p ď a). Thus an L-element of the form F
ppq
1

F
pqq
2

F
prq
1

e (resp.

F
puq
2

F
ptq
1

F
psq
2

e) is non-zero if and only if r ď m, and q ď r ` n (resp.

s ď n, t ď s ` m). Hence if Bd denotes Lusztig’s canonical basis for

VA, then

Bd “
#

F
ppq
1

F
pqq
1

F
prq
1

e, p ` r ď q ď r ` n, r ď m, and

F
puq
2

F
ptq
1

F
psq
2

e, u ` x ď t ď s ` m, s ď n

+

(here one notes that the if q “ p`r, then F
ppq
1

F
pqq
2

F
prq
1

e “ F
prq
2

F
pqq
1

F
ppq
2

e)

Let p, q, r, p1, q1, r1 P Z`. Let

L “
#

pp, q, rq, r ď m, p ` r ď q ď r ` n, and

pp1, q1, r1q, r1 ď n, p1 ` r1 ď q1 ď r1 ` m

+

where pp, q, rq is identified with pp1, q1, r1q, if q “ q1 “ r ` p, p “ r1,
r “ p1 (note that L is an indexing set for Bd).

5 A bijection between L and C

Lemma 5.1. Let pp, q, rq in L be such that r ď m, p ` r ď q ď r ` n.

Further let r
m
,

p

n
,

q´r

n
be all distinct. Then precisely one of the following

holds

(1) 1 ě r
m

ě q

m`n
ě p

n
ě 0

(2) 1 ě q´r

n
ě r

m
ě p

n
ě 0

(3) 1 ě q´r

n
ě p`r

m`n
ě r

m
ě 0

Proof. We first observe that under the hypothesis that r
m
,

p

n

q´r

n
are dis-

tinct, the three cases are mutually exclusive. We now distinguish the

following two cases.

Case 1. r
m

ă q

m`n

This implies that
q´r

n
ą r

n
. In this case

p`r

m`n
ă q´r

n
, necessarily; for

r`p

m`n
ě g´r

n
would imply

p`2r´q

m
pě q´r

n
q ą r

m
, which is not possible,

since q ě p ` r. Hence either
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(a) 1 ě q´r

n
ě p`r

m`n
ě r

m
ě 0, in which case (??) holds or

(b) 1 ě q´r

n
ě r

m

p`r

m`n
ě 0, in which case (2) holds.

Case 2. r
m

ě q

m`n
The hypothesis that q ě p ` r implies that

q

m`n
ě p

n
.

Thus in this case (1) holds.

�

5.2 Let pp, q, rq in L be such that r ď m, p ` r ě q ě r ` n. We 208

now define an element θpp, q, rq in C. Let us denote θpp, q, rq “ pc, nq,

where c and n are given as follows.

(a) Let r
m
,

p

n
,

q´r

n
be all distinct.

We set

c “

$
’&
’%

pτ0, τ1, τ2, τ3q, if (1) of (5.1) holds

pτ0, ϕ1, τ2, τ3q, if (2) of (5.1) holds

pτ0, ϕ1, τ2, τ3q, if (3) of (5.1) holds

n “

$
’&
’%

pr, q, pq, if (1) of (5.1) holds

pq ´ r, r, pq, if (2) of (5.1) holds

pq ´ r, p ` r, rq, if (3) of (5.1) holds

(b) Let r
m

“ q´r

n
‰ p

n
.

Then (3) of 5.1 cannot hold, and the cases (1) and (2) of 5.1 coin-

cide.

We set

c “ pτ0, τ1, τ2, τ3q, n “ pr, q, pq

(c) Let r
m

“ p

n
‰ q´r

n
.

Then (1) of 5.1 cannot hold, and (2) and (3) of 5.1 coincide. We set

c “ pτ0, ϕ1, ϕ2, τ3q, n “ pq ´ r, p ` r, rq
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(d) Let
p

n
“ q´r

n
‰ r

m
.

This implies that q “ r ` p. In this case (2) of 5.1 cannot hold, and

(3) are mutually exclusive. We set

c “
#

pτ0, τ1, τ2, τ3q, if (1) of 5.1 holds

pτ0, ϕ1, ϕ2, τ3q if (3) of 5.1 holds

n “
#

pr, q, pq, if (1) of 5.1 holds

pq ´ r, p ` r, rq, if (3) of 5.1 holds

(e) Let r
m

“ p

n
“ p`r

n`m
.

This implies that
q

m`n
“ r

m
“ p`r

n`m
. Then all three cases of 5.1

coincide, and we set

c “ pτ0, τ1, τ2, τ3q, n “ pr, q, pq

Remark 5.3. We observe that in all of the cases (a) through (e) above,209

pc, nq is of type I, II or IV. Also, if x “ pc, nq, then it is easily seen that

xmin “ pc, nq.

Lemma 5.4. Let pp1, q1, r1q in L be such that r1 ď n, p1`r1 ď q1 ď r1`m.

Further, let r1
n
,

q1´r1

m

p1

m
be all distinct. Then precisely one of the following

holds.

(1) r1
n

ě q1m ` n ě p1

m
ě 0

(2) 1 ě q1´r1

m
ě r1

n
ě p1

m
ě 0

(3) 1 ě q1´r1

m
ě p1`r1

m`n
ě r1

n
ě 0

The proof is similar to that of Lemma 5.1.

5.5 Let pp1, q1, r1q in L be such that r1 ď n, p1 ` r1 ď r1 ` m. We now

define an element θpp1, q1, r1q in C. Let us denote θpp1, q1, r1q “ pc1, n1q,

where c1 and n1 are given as follows.
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(a) Let r1
m
,

p1

m
,

q1´r1

m
, be all distinct. We set

c1 “

$
’&
’%

pτ0, ϕ1, ϕ2, τ3q, if (1) of 5.4 holds

pτ0, τ1, ϕ2, τ3q, if (2) of 5.4 holds

pτ0, τ1, τ2, τ3q if (3) of 5.4 holds

n1 “

$
’&
’%

pr1, q1, p1q if (1) of 5.4 holds

pq1 ´ r1, r1, p1q, if (2) of 5.4 holds

pq1 ´ r1, p1 ` r1, r1q if (3) of 5.4 holds

(b) Let r1
n

“ q1´r1

m
‰ p1

m
. We set

c1 “ pτ0, ϕ1, ϕ2, τ3q, n1 “ pr1, q1, p1q

(the discussion being as in 5.2 (b))

(c) Let r1
n

“ p1

m
‰ q1´r1

n
. We set

c1 “ pτ0, τ1, τ2, τ3q, n1 “ pq1 ´ r1, p1 ` r1, r1q

(d) Let
p1

m
“ q1´r1

m
‰ r1

n
. In this case, (1) of 5.4 cannot hold and (1) and

(3) of 5.4 are mutually exclusive.

We set

c1 “
#

pτ0, ϕ1, ϕ2, ϕ3q, if (1) of 5.4 holds

pτ0, τ1, τ2, τ3q, if (3) of 5.4 holds

(e) Let r1
n

“ p1

m
“ q1´r1

m
. This implies that r1

n
“ p1`r1

m`n
“ q1

m`n
. Then all

the three cases of 5.4 coincide and we set

c1 “ pτ0, τ1, τ2, τ3q, n1 “ pq1 ´ r1, p1 ` r1, r1q

Remark 5.6. In all of the cases (a) through (e) above, (c1, n1) is of Type 210

I, III or IV. Also if y “ pc1, n1q, the ymin “ pc1, n1q.
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5.7 Let

L1 “ tpp, q, rq P L : r ě m, p ` r ď q ď r ` nu
L2 “ tpp1, q1, r1q P L : r1 ď n, p1 ` r1 ď q1 ď r1 ` mu

An element pp1, q1, r1q in L2 will be identified with the element pp, q, rq
in L1, if r1 “ p, p1 “ r, q1 “ q “ r ` p “ r1 ` p1. When this happens,

we shall express it as pp1, q1, r1q „ pp, q, rq. Let θ be as in 5.2 (resp. 5.5).

We observe that if pp1, q1, r1q „ pp, q, rq, then θpp1, q1, r1q “ θpp, q, rq.

To see this, let θpp, q, rq “ pc, nq, Then since
q´r

n
“ p

n
, only (d) or (e)

of 5.2 can hold. If (e) of 5.2 holds, then (e) of 5.5 also holds. We have

(5.2 (e), 5.5 (e)),

c “ pτ0, τ1, τ2, τ3q, n “ pr, q, pq
c1 “ pτ0, τ1, τ2, τ3q, n1 “ pq1 ´ r1, p1 ` r1, r1qp“ pr, q, pqq

Thus pc, nq “ pc1, n1q.

Let that (d) of 5.2 hold. We distinguish the following two cases.

Case 1. r
m

ą p

n

This implies that 1 ě r
m

ą q

m`n
ą p

n
ě p

n
ě 0, and 1 ě q1´r1

m
ą

r1`p1

m`n
ą r1

n
ě 0. Hence we get (5.2(d), 5.5(d))

c “ pτ0, τ1, τ2, τ3q, n “ pr, q, pq
c1 “ pτ0, τ1, τ2, τ3q, n1 “ pq1 ´ r1, r1 ` p1, r1qp“ pr, q, pqq

Thus pc, nq “ pc1, n1q

Case 2.
p

n
ą .

m
.

This implies that 1 ě p

n
ą p`r

m
ą r

m
ě 0, and 1 ě r1

n
ą q1

m`n
ą

p1

m
ě 0. Hence we get (5.2, (d), 5.5(d))

c “ pτ0, ϕ1, ϕ2, τ3q, n “ pq ´ r, p ` r, rqp“ pr1, q1, p1qq
c1 “ pτ0, ϕ1, ϕ2, τ3q, n1 “ pr1, q1, p1q

Thus pc, nq “ pc1, n1q.
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In view of the discussion above we obtain a map θ : L ÝÑ C, which

induces a map θ : L ÝÑ C in a obvious way (as above, we identify an

element pp1, q1, r1q of L where q1 “ p1 ` r1, r1 ď n, q1 ď r1 ` m, with the

element pr1, q1, p1q).

5.8 We now define a map ψ : C ÝÑ L. Let x P C. Let xmin “ pc, nq. 211

We distinguish the following cases. Let n “ pa, b, cq. ( We follow the

convention in 4.4)

Case 1. pc, nq is of Type I.

This implies 1 ě a
m

ě bm ` n ě cn ě 0. We have b ě c (since
b

m`n
ě c

n
) We set

ψpxq “
#

pc, b, aq if b ě a ` c

pb ´ c, a ` c, cq if b ă a ` c

(note that a
m

ě b
m`n

ñ a
m

ě b´a
m

and hence b ě a ` n, since a
m

ě 1.

Also c ě n, since c
n

ě 1. Thus pc, b, aq P L1, (in the case b ě a ` c)

and pb ´ c, a ` c, cq P L2 (in the case b ă a ` c)).

Case 2. pc, nq is of Type II. This implies tht 1 ě a
n

ě b
m

ě c
n

ě 0. Then

pc, a ` b, bq P L1, and we set

ψpxq “ pa, a ` b, bq

Case 3. pc, nq is of Type III. This implies that 1 ě a
m

ě b
n

ě c
m

ě 0.

Then pc, a ` b, bq P L2, and we set

ψpxq “ pa, a ` b, bq

Case 4. pc, nq is of Type IV.

This implies that 1 ě a
n

ě b
n`m

ě c
m

ě 0. Then we set (as in case

1)

ψpxq “
#

pc, b, aq, if b ě a ` c

pb ´ c, c ` a, cq, if b ă a ` c
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(note that pc, b, aq P L2 (if b ě a ` c) and (b ´ c, c ` a, cq P L1 (if

b ă a ` c)). It is easily checked that ψoθ “ IdL and θoψ “ Idc. Thus

we obtain

Theorem 5.9. The map θ : L Ñ C is a bijection

6 An A-basis for VA

212

6.1 For r P bbz, s P Z`, we set

„
r

S


“ rrsrr ´ 1s ¨ ¨ ¨ rr ` 1 ´ ss

rss ¨ ¨ ¨ r1s

Where for m P Z, rms “ νm,´ν´m

ν´ν´1 . Let α “ ai, a1 “ α j, where ai j “ ´1.

Let

Fα`α1 “ νFαFα1 ´ Fα1 Fα. (1)

We have ([L1]),

F
pMq
α Fα1 “ ν´1Fα`α1 F

pM´1q
α ` ν´MFα1 F

pMq
α (2)

FαF
pNq
α1 “ v´1FN´1

α1 Fα`α1 ` ν´N Fα1 F
pNq
α Fα (3)

Hence we obtain (using (1))

F
pN´1q
α1

FαFα1 “ rN ´ 1sFpNq
α1 Fα ` FαF

pNq
α1 (4)

FαFα1 F
pM´1q
α1 “ rM ´ 1sFα1 F

pMq
α ` F

pMq
α Fα1 (5)

Lemma 6.2. Let α, α1 be as above. For t, u, v P N, we have,

F
ptq
α F

puq
α1 F

pvq
α “

tÿ

j“t´k

ˆ
t ` v ´ u

j

˙
F

pu´pt´ jqq
α F

pv`tq
α F

pt´ jq
α1

where k “ minpu, tq. This is proved by induction on t using (2)-(5)

above.
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6.3 Let Bd be the canonical A-basis for VA as constructed in [L2].

Then we have ([L3]), Bd “ B1 Y B2, where

B1 “ tF
pcq
1

F
pbq
2

F
paq
1

e, pa, b, cq P L1u
B2 “ tFc1

c F
pb1q
1

F
pa1q
2

e, pa1, b1, c1q P L2u

(here we identify F
pc1q
2

F
pb1q
1

F
pa1q
2

e, with F
pcq
2

F
pbq
1

F
paq
2

e if pa, b, cq „ pa1, b1,

c1q). Note that if pa1, b1, c1q P L2, and b1 “ c1 `a1, then F
pc1q
2

F
pb1q
1

F
pa1q
2

“
F

pa1q
1

F
pb1q
2

F
pc1q
1

.

6.4 Let x P C, xmin “ pc, nq, and n “ a, b, c. We have (4.8) 213

vx “

$
’’’’&
’’’’%

F
pcq
1

F
pbq
2

F
paq
1

e, if pc, nq if of Type I

F
pcq
1

F
pa`bq
2

F
pbq
1

e, if pc, nq if of Type II

F
pcq
2

F
pa`bq
1

F
pbq
2

e, if pc, nq if of Type III

F
pcq
2

F
pbq
1

F
paq
2

e, if pc, nq if of Type IV

6.5 Let us take an indexing I of L such that

(1) If pp, q, rq, pa, q, bq are in L1 with a ą p, then pp, q, rq preceeds

pa, q, bq.

(2) if pp1, q1, r1q, pa1, q1, b1q are in L2, with a1 ą p1, then pp1, q1, r1q pre-

ceeds pa1, q1, b1q.

Then via the bijection ψ : C ÝÑ L, we obtain an indexing J of

C induced by I. Let M be the matrix expressing the elements in Bd as

A-linear combinations of the elements in Bd, for the indexing J of Bd

(resp. I of Bd)

Theorem 6.6. M is upper triangular with diagonal entries equal to 1.

Proof. Let x P C, xmin “ pc, nq, n “ pa, b, cq. We may suppose that

c ‰ 0; for if c “ 0, then vx P Bd obviously. If pc, nq is of Type II or III,

then vx P Bd clearly. We now distinguish the following two cases: �
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Case 1. pc, nq is of Type I.

We have vx “ F
pcq
1

F
pbq
2

F
paq
1

e. Hence, if b ě a ` c, then vx P Bd. Let

then b ă a ` c. We have (Lemma 6.2, with α “ α1, α
1 “ α2, t “ c, u “

b, v “ a),

vx “
cÿ

j“0

„
c ` a ´ b

j


F

pb´pc´ jqq
2

F
pa`cq
1

F
pc´ jq
2

e (˚)

(Note that pc, nq being of Type I, we have 1 ě a
m

ě b
m`n

ě c
n

ě 0.

Hence b ą c, and min pc, bq “ c). Now on R.H.S of (˚), each term

F
pb´lq
2

F
pa`cq
1

F
plq
2

e is in L2, since l ď c ď n, a ` c ď m ` c (as a ě m),

and a ` c ą b ´ l ` lp“ bq. pc, nq in C corresponds to the element

pb ´ c, a ` c, cq in L (under the indexing J (resp. I) for C (resp. L)).

Also, it is clear that all the other terms (on the R. H.S. of (˚)) succeed

F
pb´cq
2

F
pa`cq
1

F
pcq
2

( in the indexing I for Bd).

Case 2. pc, n) is of Type IV.214

The discussion is exactly similar to that of case 1.

Theorem 6.7. Bd is an A-basis for VA.

Proof. This follows fro Theorem 6.6, since Bd is an A-basis for vA. �

7 Basis for quantum Demazure modules

7.1 Let x P C, xmin “ pc, nq, n “ pa1, a2, a3). Let τx be as in 3.14.

Then τx is given as follows. If a1 “ a2 “ a3 “ 0, then τx “ Id. Let r

be the largest integer ď 3 such that ar ‰ 0.

(1) r “ 1. This implies that c is of Type I or IV. We have τx “
τ1presp.ϕ1) if c is of Type I (resp. IV).

(2) r “ 2. This implies that τx “ τ2, if c is of Type I or II and τx “ ϕ2,

if c is of Type III or IV

(3) r “ 3. This implies that τx “ τ3.
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Theorem 7.2. Let w P W. Let Bw “ tvx : τx ď wu. Then Bw be an

A-basis for Vw,A.

Proof. Let Xpϕq be a moving divisor in Xpwq, moved, by α. Then we

see easily that

Vw,A “ U´
α,A

Vϕ,A (˚)

where U´
α,A

is the A-submodule of U generated by Fr
α, 4 P Z`. For

w “ τ0p“ Idq, the result is clear. For w “ τ3, the result follows from

Theorem 6.7.

(1) Let w “ τ1. Then (˚) implies that tF
prq
1

e, r P Z`u generates Vw,A.

Now F
prq
1

e “ 0, for f ą m. Hence tF
prq
1

e, 0 ď r ď mu is an a

A-basis for Vw,A, while Bw is precisely tF
prq
1

e, 0 ď r ď mu

(2) Let w “ ϕ1. The proof is similar as in (1).

(3) Let w “ τ2 and ϕ “ τ1. Then we have (in view of (˚)), tF
pqq
2

v, v P 215

Bϕu generates Vw,A. We have F
pqq
2

F
prq
1

e “ 0, if q ą r ` n (4.9).

Hence tF
pqq
2

F
prq
1

e, r ď m, q ď r`nu generates Vw,A as an A-module.

Now, if r
m

ě q

m`n
, then F

pqq
2

F
prq
1

e “ vx, where x “ c, n, c “
pτ0, τ1, τ2q, n “ pr, qq; if

q

m`n
ą r

m
, then F

pqq
2

F
prq
1

e “ vx, where

x “ pc, nq, c “ pτ0, ϕ1, ϕ2q, n “ pq ´ r, rq (6.4). Hence we see that

Bw generates Vw,A. The linear independence of Bw follows Theorem

6.7 (since Bw Ď Bd).

(4) Let w “ ϕ2. The proof is similar to that in (215).

�

8 Appendix

We have used the results of [L2] mainly to prove that #C “ dimVd, (§5).

We can get around proving #C “ dimpVdq, by showing that #C “ #t
standard Young tableaux on S Lp3q of type pm, nqu. We can then prove

251



252 V. Lakshmibai

the results of §6, §7 in the same spirit as in [LS]. In this Appendix, we

establish a bijection between C and tstandard Young tableaux on S Lp3q
of type pm, nqu.

8.1 Let G “ S Lp3q. Let P1 “ tId, s1u, P2 “ tId, s2u. Let us denote

the set of minimal representatives of WP1
(resp. WP2

) in W by Θ “
tΘ1,Θ2,Θ3u (resp. Λ “ tλ1, λ2, λ3u). Then Θ (resp. Λ) is totally

ordered (under the Bruhat order ľ ). Let θ3 ľ θ2 ľ θ1; λ3 ľ λ2 ľ λ1.

Let X “ tθ3, θ2, θ1, λ3, λ2, λ1u We have a partial order ě on X given as

follows. Lets x, y P X. The x ě y, if either both x, y P Θ (resp. Λ), and

x ľ y, or x (resp. y) P Θpresp.Λq, and px, yq ‰ pθ1, λ3). A classical

standard Young tableau on G of type pm, nq can be noted as

τ1τ12 ¨ ¨ ¨ τ1mτ21τ22 ¨ ¨ ¨ τ2n

where τ1 j(resp. τ2k) P Θ (resp. Λ ) and

τ11 ě τ12 ě ¨ ¨ ¨ ě τ1m ě τ21 ě τ22 ě ¨ ¨ ¨ ě τ2n

Let Y “ tstandard Young tableaux of type pm, nqu

8.2 Let a P Y , say a “ τ11 ¨ ¨ ¨ τ1mτ21 ¨ ¨ ¨ τ2n. We define the integers216

ra, qa, pa, ua, ta, sa as follows.

ra “ #tτ1 j : τ1 j “ θ3u
pa “ #tτ1 j, τ2k : τ1 j “ θ2, τ2k “ λ3u

qa ´ ra “ #tτ2k : τ2k “ λ3 or λ2u
ua “ ra

ta “ ra ` pa

sa “ qa ´ ra

Note that ra ě m, qa ď ra ` n, ra ` pa ď qa ´ ra ` m. Note also that

ra, pa, qa (resp. ua, ta, sa) completely determine “a”.
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8.3 The map f : Y Ñ C.

For a P Y , we define f paq “ pca, naq as follows. For simplicity of

notation let us drop off the suffix ‘a1 is in ra, ¨ ¨ ¨ , sa, ca, na. (We follow

the convention in 4.4) while denoting a chain pc, nq). We first observe

that

r

m
,

q

m ` n
,

q ´ r

n
,

p ` 2r ´ q

m
,

p ` r

m ` n
,

s

n
,

t ´ s

m ` n
,

u ` s

m ` n
,

t

m ` n
,

are all ď 1. We now distinguish the following cases.

Case 1. 1 ě r
m

ě q

m`n
ě p

n
ě 0

We set c “ pτ0, τ1, τ2, τ3q, n “ pr, q, pq

Case 2.
q

m`n
r
m

Now
q

m`n
ą r

m
ðñ q´r

n
ą r

m

We divide this case into the following cases.

Case 2(a). 1 ě q´r

n
ą p`r

m`n
ě f racrm ě 0.

This is equivalent to

1 ě s

n
ě t

m ` n
ě u

m
ě 0

We set c “ pτ0, ϕ1, ϕ2, ϕ3q, n “ ps, t, uq.

Case 2(b). 1 ě p`r

m`n
ě f racq ´ rn ě r

m
ě 0

This is equivalent to

1 ě p ` 2r ´ q

m
ě q ´ r

n
ě r

m
ě 0

We set c “ pτ0, ϕ1, τ2, τ3q, n “ pp ` 2r ´ q, q ´ r, rq
Case 2(c). 1 ě q´r

n
ě r

m
ě p`r

m`n
ě 0 217

This is equivalent to

1 ě q ´ r

n
ě r

m
ě p

n
ě 0

We set c “ pτ0, τ1, ϕ2, τ3q, n “ pq ´ r, r, pq
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Case 3.
q

m`n
ď r

m
,

q

m`n
ă p

n

Now,
q

m`n
,ě r

m
ðñ q´r

n
ă q

m`n
, and

q

m`n
ă p

n
ðñ q´p

m
ă

q

m`n
ă p

n
Hence in this case, we have

q´r

n
ď q

m`n
ă p

n
. This implies

that q ă r ` p, i.e., u ` s ă t.

We divide this case into the following subcases.

Case 3(a). 1 ě s
n

ě t
m`n

ě u
m

ě 0

We set c “ pτ0, ϕ1, ϕ2, τ3q, n “ ps, t, uq
Case 3(b). t

m`n
ě s

n
. Now t

m`n
ě s

n
ðñ t´s

m
ě s

n
. The condition

u ` s ă t implies u`t
m`n

ă t´s
m

(for, otherwise), u`s
m`n

ě t´s
m

ě s
n

ñ
u`s´pt´sq

n
ě t´s

m
ě s

n
ñ u ` s ě t, which is not true) Hence, either.

1 ě t ´ s

m
ě u ` s

m ` n
ě s

n
ě 0(or) (1)

1 ě t ´ s

m
ě s

n
ě u ` s

m ` n
ě 0 (2)

Now (1) is equivalent to

1 ě p ` 2r ´ q

m
ě q

m ` n
ě q ´ r

n
ě 0

and we set c “ pτ0, τ1, τ2, τ3q, n “ pp ` 2r ´ q, q, q ´ rq, if (1) holds.

Similarly, (2) is equivalent to

1 ě t ´ s

m
ě s

n
ě u

m
ě 0

and we set c “ pτ0, τ1, ϕ3, τ3q, n “ pt ´ s, s, uq, if (2) holds.

8.4 The map g : C ÝÑ Y .218

Let x P C, xmin “ pc, nq, n “ pa, b, cq. Set gpxq “ a, where rp“
raq, qp“ qaq, pp“ paq are given as follows.

pr, q, pq “
#

pa, b, cq if pc, nq is of Type I

pb, a ` b, cq if pc, nq is of Type II
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ps, t, uq “
#

pb, a ` b, cq, if pc, nq is of Type III

pa, b, cq, if pc, nq is of Type IV

(where, recall that u “ r, t “ r ` p, s “ q ´ r). It is easily checked that

go f “ IdY , f o f “ Id
C

. Thus we obtain

Theorem 5. The map f : Y ÝÑ C is a bijection.
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An Appendix to Bases for Quantum Demazure

modules-I

Let g be symeetrizable Kac-Moody Lie algebra, and U be the quantized 221

enveloping of g as constructed by Drinfeld (cf [D]) and Jimbo (cf [J]).

This is an algebra over Qpvq (v being a parameter) which specializes ti

Upgq for v “ 1,Upgq being the universal enveloping algebra of g. This

algebra has agenerators Ei, Fi, ki, 1 ď i ď n, which satisfy “the quantum

Chevalley and Serre relations”. Let U˘ be the Qpvq-sub algebra of U

generated by Ei(respFi), 1 ď i ď n. Let A “ Zrv, v´1s and U˘
A

be the

A-subalgebra of U generated by E
prq
i

(resp. Fr
i
), 1 ď i ď n, r P Z`,

(here E
prq
i
, F

prq
i

are the quantum divided powers of (cf [J])). Let λ be a

dominant, integral weight and Vλ the associated simple U-module. Let

us fix a highest weight vector e in Vλ and denote VA “ UAep“ U´
A

eq.

Let W be the Weyl group of g. For w P W, let ew be the corresponding

extremal weight vector in Vλ of wight wpλq. Let Vw “ U`ew,Vw,A “
U`

A
ew. In [La] (see also [LS]), we proposed a conjecture (which we

recall below) towards the construction of an A-basis for VA compatible

with tVw,A,w P Wu. This conjecture consists of two parts. The first part

givews a (conjectural) character formula for the U`-module Vw in terms

of certain weighted chains in W. The second part gives a conjectural

A-basis Bλ for VA, compatible with tVw,Aw P Wu. We now state the

conjecture.

Part I Iλ, an indexing set for Bλ

Let λ “ Σdiωi, ωi being the fundamental weights.

Admissble weighted λ-chains

Let c “ tµ0, µ1, . . . µru be a λ-chain in W, i.e., µiµi´1, ℓpµiq “ ℓpµi´1q`
1 (if dt “ 0 for t “ i1, . . . , is, then we shall work with wQ, the set of

minimal representatives of WQ in W,WQ being the weyl group of the
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parabolic subgroup Q, where S Q “ ptαt, t “ i1, ¨ ¨ ¨ , isuq).

Let µi´1 “ siµi, where βi is some positive real root. Let pµi´1pλq, β˚q “222

mi.

A 1. Definition. A λ -chain c is called simple if all β1
i
s are simple.

A 2. Definition. m By a weighted λ chain we shall mean pc, nq where

c “ tµ0, ¨ ¨ ¨ , µru is chain and n “ tn1, . . . , nru, ni P Z`.

A 3. Definition.A weighted λ-chain pc, nq is said to be admissible if

1 ě n1

m1
ě ¨ ¨ ¨ ě nr

mr
ě 0.

Let pc, nq be admissible. Let us denote the unequal values in
!

n1

m2
, ¨ ¨ ¨

nr

mr

)
by a1, ¨ ¨ ¨ , as so that 1 ě a1 ą a2 ą ¨ ¨ ¨ ą as ě 0. Let i0 ¨ ¨ ¨ , is

be defined by

i0 “ 0, is “ r,
n j

m j

“ at, it´1 ` 1 ď j ď it.

We set

Dc,n “ tpa1, . . . , asq; pµi0 , . . . , µis
qu

A 4. Definition. Let pc, nq, pc1, n1q be two admissible weighted λ-chains.

Let Dc,n “ tpa1, . . . , asq; pµi0 ¨ ¨ ¨ , µis
qu, and Dc1,n1 “ tpa1

1
, ¨ ¨ ¨ , a1

l
q;

pτ j0 , . . . , τ jlqu. We say pc, nq „ pc1, n1q, if s “ t, and at “ a1
t, it “ jt,

µit “ τ jt ,1 ď t ď s.

Let Cλ “ t all admissible weighted λ-chainsu, and Iλ “ Cλ{ „. Let

π P Iλ, and let pc, nq be as representative of π. With notations as above,

we set

τpπq “ µis
, vpπq “

sÿ

t“0

pat ´ at`1qµit pλq

where a0 “ 1 and as`1 “ 0 (note that τpπq and vpπq depend only on π

and not on the representative chosen). For w P W, let

Iλpwq “ tπ P Iλ | w ě τpπqu.

A 5. Conjecture.

char Vw “
ÿ

πPIλpwq
evpπq
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Part II: An A-basis for VA compatible with tVw,A,w P

Wu

Let π, pc, nq etc. be as in Part I. To pc, nq there corressponds a canon-

ical (not necessarily admissible) weighted chain pδpcq, δpnqq with δpcq
simple (cf [La],3.8). Let δpcq “ tθ “ τo, . . . , τru, n “ tn1, ¨ ¨ ¨ , nru,

βt “ αit , 1 ě t ě r (note that βt’s are simple). We set

vc,n “ F
pnrq
ir

¨ ¨ ¨ F
pn1q
i1

eθ

A 6. Conjecture. For each π P Iλ, choose a representative pc, nq for π. 223

Then tvc,n : w ě τpπqu is A-basis for Vw,A.

In [Li], Littelmann proves Conjecture 1, and as a consequence gives

a Littlewood-Richardshon type “decomposition rule” for a symmetriz-

able KacMoody lie algebras g, and a “ restriction rule” for a Levi subal-

gebra L of g which we state below.

Let θ be a dominant integral weight and let π P Iθ. Let pc, nq be a

representative of π and let Dc,n be as above. Let us denote

ppπ, θq “
#

sÿ

k“t

pak ´ ak`1qµik pθq, 0 ď t ď s

+

A 7. Definition. Let λ, θ be two dominant, integral weights. Let π P
Iθ. Then π is said to be λ-dominant if λ ` ppπ, θq is contained in the

dominant Weyl chamber.

A 8. Definition. Let L be a Levi subalgebra of g, and let π P Iλ. Then

π is said to be L-dominant if ppπ, λq is contained in the dominant Weyl

chamber of L.

Decomposition rule. ([Li]) Let λ, µ be two dominant integral weights.

Let Ipλ, µq “ tπ P Iµ | π is λ ´ dominantu. Then

Vλ b Vµ “
â

πPIpλ,µq
Vλ`vpπq
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Restriction rule. ([Li]) Let L be a Levi subalgebra of g . Let Ipλ, Lq “
tπ P Iλ : π is L-dominantu. Then

resLVλ “
à

πPIpλ,Lq
Uvpπq

(here, for an integral weight θ contained in the dominant Weyl chamber

of L,Uθ denotes the corresponding simple highest weight module of L)

In [Li], Littelmann introduces operators eα, fα on Iλ, (for α simple),

and associates an oriented, colored (by the simples roots) graph GpVλq
with Iλ as the set of vertices, and π

αÝÑ π1 if π1 “ fαpπq. He conjectures

that GpVλq is the crystal graph of Vλ as constructed by Kashiwara ([K]).

Using the decomposition rule, Littlemann gives in [Li] a new (and

simple) proof of the Parthasarathy-Ranga Rao Varadarajan conjecture.
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Moduli Spaces of Abelian Surfaces with Isogeny*

Ch. Birkenhake and H. Lange

To M.S. Narasimhan and C.S Seshadri

on the occasion of their 60th birthdays

Let pX, Lq be as polarized abelian surface or type p1, nq. An isogeny225

of type p1, nq is an isogeny of polarized abelian surfaces π : pX, Lq Ñ
pY, Pq such that P defines a principle polarization on Y . According

to [H-W] the coarse moduli space A1,n of such triplets pX, L, πq ex-

ists and is analytically isomorphic to the quotient of the Siegel upper

half space of degree 2 by the action of Γ “ tM P S p4pZq : M “
pmi jq with n|mi4, i “ 1, 2, 3u. Ap1,nq is a finite covering of themod-

ulinpsace of principally ploarixed abelina surface as well as of the mod-

uli space of polarized abelian surface of type p1, nq. On the other hand,

the moduli space of polarized abelian surfaces with level n-structure is

as finite covering of Ap1,nq. If for example n is a prime, the degrees of

these coverings are pn ` 1qpn2 ` 1q, pn ` 1q and npn ´ 1q respectively

The aim of the present papert is to give explicit algebraic descrip-

tions of the moduli spaces A1,2 (see Theorem 3.1) and A1,3 (see Theo-

rem 6.1). An immediate consequence is that the moduli spacesA1,2 and

A1,3 are rational.

An essential ingredient of the proof is the fact that the moduli space

A1,n is canonically isomorphic to the moduli space Cn
2

of cyclic étale

n-fold coverings of curves of genus 2. This will be shown in Section

1. The second important tool is the fact that the composition of every

C Ñ H in Cn
2

with the hyperlliptic covering H Ñ P1 is Galois with

the dihedral group Dn as Galois group (see Section 2). Finally we need

some results on duality of polarizations on abelian surfaces which we

compile in Section 4.

We would like to thank W. Barth and W.D. Geyer for some valuable

discussions.

*Supported by DFG-contract La 318/4 and EC-contract SC1-0398-C(A)
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1 Abelian Surface with an Isogeny of Type p1, nq
226

In this section we show that there is a canonical isomorphism between

the moduli space of polarized abelian surfaces with isogeny of type

p1, nq and the moduli space of cyclic étale n-fold coverings of curves

of genus two.

Let X be an abelian surface over the field of complex numbers. Any

ample line bundle L on X defines a polarization on X. In the notation

we do not distinguish between the line bundle L and the corresponding

polarization. Denote by pX “ Pic0pXq the dual abelian variety. The

polarization L determines an isogeny

φL : x Ñ pX, x ÞÑ t˚
x L b L´1

where tx : X Ñ X is the translation map y map y` x. The kernel KpLq of

ϕL is isomorphic to pZ{n1Z ˆ Z{n2Zq2 for some positive integers n1, n2

with n1| n2. We call pn1, n2q the type of the polarization. Any polariza-

tion of type pn1, n2q is the n1-th power of a unique polarizations of type

p1, n2

n1
q. Hence for moduli problems it suffices to consider polarizations

of type p1, nq.

From now on let L be a line bundle defining a polarization of type

p1, nq. An isogeny of type p1, nq is by definition an isogeny of polarized

abelian varieties π : pX, Lq Ñ pY, Pq whose kernel is cyclic of order n.

Necessarily Pm defines a principal polarization on Y and ker p is con-

tained in KpLq. Conversely, according to [L-B] Cor. 6.3.5 any cyclic

subgroup of KpLq of order n defines an isogeny of type p1, nq of pX, Lq.

In particular, if n is a prime number, then pX, Lq admits exactly n`1 iso-

genies of type p1, nq. According to [L-B] Exercise 8.4 the moduli space

A1,n of polarzed abelian sufaces with isgeny of type p1, nq exists and

is analytically isomorphic to the quotient of the Siegel upper half space

h2 of degree 2 by the group tM P S p4pZq|M “ pmi jq with n|mi4, i “
1, 2, u.

In the sequel a curve of genus two means either a smooth projective

curve of genus 2 or a union of two elliptic curves intersecting transver-

sally at the origin. Note that such a union E1 ` E2 is of arithmetic genus

2. Torelli’s Theorem implies that the moduli space of principally polar-
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264 Ch. Birkenhake and H. Lange

ized abelian surfaces can be considered as a moduli space for curves of

genus two in this sense.

Let f : C Ñ H be a cyclic étale covering of degree n of a curve

H of genus 2. According to Hurwitz’formula formular C has arithmetic

genus n ` 1 . Every line bundle l P Pic0pHq of order n determines

such a cyclic étale covering f : C Ñ H (for an explicit description of

the covering see Section 2). Two such line bundles lead to the same227

covering, if they generate the same group in Pic0pHq. This implies that

the (coarse) moduli space Cn
2

of cyclic étale n-fold coverings of curves

of genus two is a finite covering of the moduli space M2 of curves of

genus two. In particular Cn
2

is an algebraic variety of dimension 3. The

moduli spacesA1,n and Cn
2

are related as follows.

1.1 Propostion There is a canonical biholomorphic mapAp1,nq Ñ Cn
2

There seems to be no explicit construction of the moduli space Cn
2

in

the literature. One could also interprete Proposition 1.1 as a construction

of Cn
2
. However it is not difficult to show its existence in a different way

and thus the proposition makes sense as stated.

Proof. Step I: The map A1,n Ñ Cn
2
. Let π : pX, Lq Ñ pY, Pq be an

isogeny of type p1, nq. We may assume that π˚P » L as line bundles.

Since pY, Pq is a principally polarized abelian surface there is curve H

of genus 2 (in above sense) such that Y “ JpHq, the Jacobian pf H, and

P » OYpHq. Note that for H “ E1 ` E2 with elliptic curves E1 and E2,

JpHq “ Pic0pHq » E1 ˆ E2. By assumption C : π´1H P |L|. The étale

covering π : X Ñ Y is given by a line bundle l P Pic0pYq of order n and

the coverin π|C : C Ñ H corresponds to l|H. Since the restriction map

Pic0pYq „ÝÑ Pic0pHq is an isomorphism, the line bundle l|H is of order

n and thus π|C : C Ñ H is an element of Cn
2
.

Step II: The inverse map A1,n Ñ Cn
2
. Let f : C Ñ H be a cyclic

étale covering in Cn
2

associated to the line bundle lH P Pic0pHq. Via the

isomorphism Pic0pJpHqq „ÝÑ Pic0pHq the line bundle lH extends to a

line bundle l P Pic0pJpHqq of order n. Let π : X Ñ Y “ JpHq denote

the cyclic éta;e n-fold covering associated to l. Then L “ π˚OYpHq
defines a polarization of type p1, nq, since KpLq is a finite group of order
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n2 (by Riemann-Roch) and contains the cyclic group ker π of order n.

Hence π : pX, Lq Ñ pY,OYpHqq is an element ofAp1,nq.
Obviously the maps Ap1,nq Ñ Cn

2
and Cn

2
Ñ Ap1,nq are inverse to

each other. Finally, extending the above construction to families of mor-

phisms of curves and abelian varieties one easily sees that the maps are

holomorphic.

2 Cycli Étale Coverings of Hyperelliptic Curves

Any curve H of genus 2 (in the sense of section 1) admits a natural

involution ι with quotient H{ι of arithmetic genus 0. The aim of this

section is to show that for any finite cyclic étale covering f : C Ñ H the 228

composition C Ñ H Ñ H{ι is Galois and to compute its Galois group.

We prove the result in greated generality than actually needed, since this

makes no difference for the proof.

In this section a hyperelliptic curve means a complete, reduced, con-

nected curve admitting an involution whose quotient is of arithmetic

genus zero. Let H denote a hyperelliptic curve of arithmetic genus g

over k with hyperelliptic covering H Ñ P. Suppose f : C Ñ H is a

cyclic étale covering of degree n ě 2. We first show that the composed

map C Ñ P is a Galois covering with the dihedral group Dn of order 2n

as Galois group.

Let ι : H Ñ H denote the hyperelliptic involution and τ : C Ñ C an

automorphism generating the group GalpC|Hq. There is a line bundle

L P Pic0pHq with Ln » OH such that C “ SpecpAq with A :“ OH ‘
L ‘ ¨ ¨ ¨ ‘ Ln´1 and where the OH-algebra structure of A is given by an

isomorphism σ : OH
„ÝÑ Ln. Consider the pull back diagram

SpecpĂ˚ Aq “Ă˚ C
i //

��

C “ Spec A

f

��
H

Ă // H

Since ι˚L “ L´1 , the isomorphism σ induces isomorphisms

σν “ pσ b 1L´νq ˝ ι˚ : Lν Ñ Ln´ν
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266 Ch. Birkenhake and H. Lange

for ν “ 0, . . . , n´1 which yields an OH-algebra isomorphism A Ñ ι˚A.

Hence we may identify ι˚C “ C and j : C Ñ C is an automorphism.

2.1 Proposition. The covering C Ñ P is Galois with GalpC|P1q “ Dn

Proof. If suffices to show jτ j “ τ´1. Accordings to [[EGAI], Th.9.1.4]

the automorphism τ of C “ Spec A corresponds to an OH-algebra auto-

morphism τ̃ : A Ñ A, namely

τ̃pa0, a1, . . . , an´1q “ pa0, ξa1, . . . , ξ
n´1an´1q with ξ “ exp

ˆ
2πi

n

˙
.

Similarly using [[EGAI], Cor. 9.1.9] the automorphism j of C corre-

sponds to the algebra automorphism ̃ : A Ñ A over ι˚ defined by

̃pa0, a1, . . . , an´1q “ pσ0pa0q, σn´1pan´1q, . . . , σ1pa1qq.

We have to show that ̃τ̃, ̃ “ τ̃´1. But σn´νξn´νσνpaνq “ ξ´νaν. This

implies the assertion. �

The dihedral group Dn contains the involutions jτν for ν “ 0, . . . , n ´ 1229

and for even n also τ
n
n . These involutions correspond to double cover-

ings C Ñ Cν “ C{ jτν for ν “ 0, . . . , n ´ 1 and C Ñ C1 “ C{τ n
2 for

even n. If C is smooth and irreducible we have for the genera gc1
ν and

gc1 of Cν and C1

2.2 Proposition.

a) For on odd: gcν “ 1
2
pg ´ 1qpn ´ 1q for ν “ 0, . . . , n ´ 1.

b) For n even: p n
2

´ 1qpg ´ 1q ď gν ď 1
2
npg ´ 1q for all 0 ď ν ď n ´ 1

and gc1 “ n
2

` 1.

The proof is an application of the formula of Checvalley-Weil (see

[C-W]). We omit the details. The genus of C1 can be computed by

Hurwitz’ formula since C Ñ C1 is étale.

2.3 Remark. Let H “ E1 ` E2 be a reducible curve of genus two as

in Section 1. The curve H is hyperelliptic with hyperelliptic involution
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ι the multiplication by -1 on the each curve Ei. The quotient P “ H{ι
consists of two copies of P1 intersecting in one point. In this situation

Proposition 2.1 can be seen also in the following way.

If for example the covering Ñ H is nontrivial on each component

Ei, then C consists of two elliptic curves F1 and F2 intersecting in n

points. We choose one of these points to be the origin of F1 and F2

the remaining intersection points are x. . . . , pn´1qx for some n-division

point x on F1 and F2. The automorphism τ : C Ñ C defined as the

translation tx by x on each Fi generates the group of covering transfor-

mations of C P H. The involution ι on H lifts to an involution j on C, the

multiplication by (-1) on each Fi. Obviously jτ j “ τ´1 , so C Ñ H{ι
is a Galois covering with Galois group Dn “ą j, τ ą. As in the irre-

ducible case we consider the double coverings C Ñ Cν “ C{ jτν for

ν “ 0, . . . , n ´ 1 and C Ñ C1 “ C{τ π
2 for even n. Also here the result

of Proposition 2.2 is valid: for example, if n is odd and the covering

C Ñ H is nontrivial on each component, then Cν consists of two copies

of P1 intersection in n`1
2

points, the images of kx for k “ 0, . . . , n´1
2

. In

particular Cν has arithmetical genus n´1
2

. The other cases can be worked

out in a similar way.

3 The Moduli SpaceA0

1,2

Denote by A0
1,n

the open set in A1,n corresponding to abelian surfaces

of type p1, nq with and isogeny onto a Jacobian of a smooth curve of

genus 2. The aim of this section is to give a description of the moduli 230

spaceA0
1,2

. From this it is easy to see thatA1,2 is rational.

Let Ã1 the modulo space of elliptic curves E together with a set of

four points of E of the form t˘p1,˘p2u. Necessarily such a set does

not cotain any 2-division point of E. We write the elements of Ã1 as

pairs pE, t˘p1,˘p2uq. The main result of this section is

3.1 Theorem. The moduli space A0
1,2

of polarized surfaces with an

isogeny of type p1, 2q onto a Jacobian of a smooth curve of genus 2 is

canonically isomorphic to Ã1.

267



268 Ch. Birkenhake and H. Lange

3.2 Corollary. The moduli spaceAp1,2q is rational.

Proof of Corollary 3.2 Via the j-invariant, U :“ C ´ t0, 1728u is the

moduli space of elliptic curves without nontirivial automorphisms. U

admits a universal elliptic curve p : E Ñ U. Consider the quotient

p : E{p´1q Ñ U by the action of p´1q on every fibre. And open set of

Ã1 can be identified with an open set of the relative symmetric product

S 2
p
pE{p´1qq over U. Every fibre of S 2

p
pE{p´1qq Ñ U is isomorphic to

P2, so S 2
p
pE{p´1qq is a P2-bundle over U. According to [G] Corollaire

1.2 the Brauer group of U is zero. Hence S 2
p
pE{p´1qq is the projec-

tivization of a vector bundle on U and thus it is rational. �

For the proof of Theorem 3.1 we first describe the mapA0
p1,2q Ñ Ã1.

Let pX, L, πq be an element in A0
p1,2q and f : C Ñ H the corresponding

étale double covering of a curve H of genus 2 according ot Proposition

1.1. As we say in the last section the automorphism group of C contains

the group D2. As above denote by τ P D2 the involution corresponding

to the covering C Ñ H and j P D2 a lifting of the hyperelliptic invo-

lution on H. Either from the proof of Proposition 2.2 or by considering

the ramification points of the 4-fold covering C Ñ P1 one easily sees

that the genera of the curves C{ j and C{ jτ are 0 and 1. By eventually

interchanging the roles of j and jτ we may assume that E “ C{ j is an

elliptic curve and C{ jτ “ P1. In particular the curve C is hyperelliptic

and we have a commutative diagram

C //

f

��

E

��
H // P1

We can choose the origin in E in such a way that (-1) is the involution

on E corresponding to the covering E Ñ P1, so that the ramification

points of E Ñ P1 are the 2-division points of E. From the commutative231

diagram we see that the 4 ramification points p1, . . . , p4 P E of the

covering c Ñ E are different from the 2-division points of E. Since the

involutions j and τ commute and τ is a lifting of (-1) on E, the involution
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(-1) acts on the set tp1, . . . , p4u. Hence we may assume that p3 “ ´p1

and p4 “ ´p2. Now define the map

ψ : A0
p1,2q Ñ Ã1, pX, L, πq ÞÑ pE, t˘p1,˘p2uq.

Since E and the set t˘p1,˘p2u can be given via algebraic equations

out of the covering C Ñ H, the map ψ is holomorphic and it remains to

show that it admits an inverse.

Let pE, t˘p1,˘p2uq P Ã1. Note that E admits exactly four double

coverings ramified in ˘p1 and ˘p2, since the line bundle OEpp1 ` p2 `
p´p1q ` p´p2qq admits exactly 4 square roots in Pic2pEq. They can be

given as follows: Let E be given by the equation y2 “ xpx´1qpx´aq and

choose as usual the origin to be the flex at infinity. Then the nontivial 2-

division points of E are px, yq “ p0, 0q, p1, 0q, pa, 0q. Write pi “ pxi, yiq
for i “ 1, 2 and consider the double coverings Di Ñ P1, i “ 0, . . . , 3,

defined by the equations

y2
0 “ xpx ´ 1qpx ´ aqpx ´ x1qpx ´ x2q

y2
1 “ xpx ´ X1qpx ´ x2q

y2
2 “ px ´ 1qpx ´ x1qpx ´ x2q

y2
3 “ px ´ aqpx ´ x1qpx ´ x2q

Finally denote by Ci the curve corresponding to the composition of the

function fields of E and Di. Then we have the following commutative

diagram

Ci
//

��

Di

��
E // P1

According to Abhyhankar’s lemma Ci Ñ E is not ramified over the

2-division points of E, hence C0, . . .C3 are exactly the four double cov-

erings of E ramified in ˘p1 “ px1,˘y1q and p2 “ px2,˘y2q. Moreover

D0 is of genus 2 and D1,D2,D3 are genus 1 and Ci|P1 is Galois with

GalpCi|P1q “ D2 “ă ji, τi ą where ji and τi are the involutions corre-

sponding to Ci Ñ E and Ci Ñ Di respectively. The third involution in
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GalpCi|P1q is jiτi. The corresponding curves D1
i

“ Ci{ jiτi are given by

the equations respectively

z2
0 “ px ´ x1qpx ´ x2q

z2
1 “ px ´ 1qpx ´ aqpx ´ x1qpx ´ x2q

z2
2 “ xpx ´ aqpx ´ x1qpx ´ x2q

z2
3 “ xpx ´ 1qpx ´ x1qpx ´ x2q

Hence C0 is the only covering of E ramified in ˘p1 and ˘p2 admitting232

an étale double covering of a curve of genus 2 in this way. So the data

pE, t˘p1,˘p2uq determine uniquely an element of C2
2
, namely C0 Ñ

D0. Let pX, L, πq denote the corresponding element ofA0
1,2

and define a

map

ϕ : Ã1 Ñ A0
p1,2q, pE, t˘p1,˘p2uq ÞÑ pX, L, πq.

Obviously ϕ is holomorphic and inverse to ψ. This completes the proof

of Theorem 3.1.

The above proof easily gives another description of the moduli space

A0
1,2

. Let H3pD2q denote the moduli space of isomorphism classes of

curves of geneus three given by the following equation

y2 “ px2 ´ 1qpx2 ´ αqpx2 ´ βqpx2 ´ γq (1)

with pairwise different α, β, γ P C˚ ´ t1u. Every curve in H3pD2q is

hypereliptic and its automorphism group contains D2 “ tx ÞÑ ˘x, y ÞÑ
˘yu which explains the notation.

3.3 Proposition There is a canonical isomorphismA0
p1,2q » H3pD2q.

Proof. Let px, L, πq P A0
1,2

and C Ñ H be the associated étale double

covering in C2
2
. As we saw in the proof above the curve C is hyperel-

liptic. Moreover AutpCq contains D2 according to Proposition 2.1. It

is well known (see e.g. [I]) that every hyperelliptic curve C of genus

three with D2 Ă AutpCq admits an equation of the form (1). Hence the

assignment pX, L, pq ÞÑ C gives a holomorphic mapA0
1,2

Ñ H3pD2q.
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For the inverse map suppose C P H3pD2q is given by an equation

(1). The involution px, yq ÞÑ p´x,´yq induces the double covering C Ñ
H, where H is given by the equation v2 “ upu´1qpu´αqpu´βqpu´γq.

It is easy to see that C Ñ H is an element of C2
2

and the assignment

C ÞÑ tC Ñ Hu defines a holomorphic map H3pD2q Ñ C2
2

» A0
p1,2q

which in inverse to the mapA0
p1,2q Ñ H3pD2q given above. �

3.4 Remark. Let U “ tpα, β, γq P pC˚ ´t1uq3 : α ‰ β ‰ γ ‰ αu. The

moduli spaceH3pD2q is birational to the quotient of U by a (nonlinear)

action of the group Z2 ˆ S4. As a consequence of Corollary 3.2 the

quotient U{Z2ˆS4 is rational, which seems not be known from Invariant

Theory.

4 Remarks on Duality on Polarized Abelian Sur-

faces
233

In this section we introduce the dual of a ploarization of an abelian sur-

face and compile some of its properties needed in the next section. The

results easily generalize to abelian varieties of arbitrary dimension.

Let pX, Lq be a polarized abelian surface of type p1, dq. Recall that

the polarization L induces an isogeny from X onto its dual ϕL : x Ñ
pX,x ÞÑ t˚

x L b L´1. Its kernel KpLq is isomorphic to the group Z{dZ ˆ
Z{dZ.

4.1 Proposition. There is a unique polarization L̂ on X̂ characterized

by the following two equivalent properties:

iq ϕ˚
L L̂ ” Ld and iiq ϕL̂ϕL “ d ¨ 1X

The polarization L̂ is also of type p1, dq.

Proof. The equivalence i) ðñ ii) follows from the equation ϕϕ˚
L

L̂ “
ϕ̂LϕL̂ϕL, since the polarization L and the isogeny ϕL determin each other

and ϕ̂L “ ϕL (see [L-B] Section 2.4). The uniqueness of L̂ follows from

ii) and again, since L̂ and ϕL̂ determine each other.
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For the existence of L̂ note that ϕ´1
L

exists in HompX̂, Xq b Q since

ϕL is an isogeny. By [L-B] Proposition 1.2.6 ψ “ dϕ´1
L

: X̂ Ñ X is an

isogeny. We have

ϕψ˚L “ ψ̂ϕLψ “ ψ̂d “ dψ. (1)

According to [L-B] Lemma 2.5.6 there exists a polarization L̂ P PicpX̂q
such that L̂d ” φ˚L and hence

ϕψ˚L “ ϕL̂d “ dϕL̂.

Together with (1) this implies ψ “ ϕL̂ and thus ϕL̂ϕL “ d ¨1X . Moreover

ii) implies that L̂ is of type p1, dq. �

In the next section we need the following example of a pair of dual

polarizations.

4.2 Example. Let E be an elliptic curve and Ξ the polarization on

E ˆ E defined by the divisor E ˆ t0u ` t0u ˆ E ` ∆, where ∆ denotes

the diagonal in E ˆ E. If we identity as usual E “ Ê via ϕOEp0q, then234

we have for the dual polarization Ξ̂ on E ˆ E

pΞ “ OEˆEpE ˆ t0u ` t0u ˆ E ` Aq,

where A denotes the antidiagonal in EˆE. To see this note that Ξ can be

written as Ξ “ p˚
1
OEp0q ` p˚

2
OEp0q ` α˚OEp0q where pi : E ˆ E Ñ E

are the projections and α : E ˆ E Ñ E is the difference map αpx, yq “
x ´ y. Hence we have for ϕΞ : E ˆ E Ñ E ˆ E

ϕΞ “ pp1ϕOEp0q p1 ` pp2ϕOEp0q p2 ` pαϕOEp0qα

“
ˆ

0 0

0 1

˙
`
ˆ

0 0

0 1

˙
`
ˆ

1 ´1

´1 1

˙
“
ˆ

2 ´1

´1 2

˙

Similarly, if Ψ denotes the polarization defined by the divisor E ˆ t0u `
t0u ˆ E ` A, then ϕΨ “

ˆ
2 1

1 2

˙
. This implies

ϕΨϕΞ “
ˆ

2 1

1 2

˙ˆ
2 ´1

´1 2

˙
“ 3 ¨ 1EˆE .
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Since both polarizations are of type (1,3), Proposition 4.1 gives Ψ “ pΞ.

Let C be a smooth projective curve and pJ,Θq its canonically prin-

cipally polarized Jacobian variety.

4.3 Proposition. For a morphism ϕ : C Ñ X the following statements

are equivalent

i) pϕ˚q˚Θ ” pL

ii) ϕ˚rCs “ rLs in H2pX,Zq.

Both conditions imply that ϕ is birational onto its image.

Here rCs denotes the fundamental class of C in H2pC,Zq. Similarly

rLs denotes the first Chern class of L in H2pX,Zq.

Proof. Identify J “ Ĵ via ϕθ. Condition i) is equivalent to

ϕL̂ “ ϕpϕ˚q˚Θ “ xϕ˚ϕ˚

By the Universal Property of the Jacobian ϕ extends to a homomorphism

from JpCq to X also denoted by ϕ. According to [L-B] Corollary 11.4.2

the homorphisms ϕ˚ : pX Ñ JpCq and ϕ : JpCq Ñ X are related by 235

pϕ “ ´ϕ˚. Hence ϕpL “ ϕpϕ.

Let δpϕpCq, Lq and δpL, Lq denote the endomorphisms of X associ-

ated to the pairs pϕpCq, Lq and pL, Lq induced by the intersetion product

(see [L-B] Section 5.4). Applying [L-B] Propositions 11.6.1 and 5.4.7

condition i) is equivalent to

δpϕpCq, Lq “ ´ϕpϕϕL “ ´ϕpLϕL “ ´d ¨ 1X “ ´pL2q
2

1X “ δpL, Lq.

According to [L-B] Theorem 11.6.4 this is equivalent to rϕpCqs “ rLs.
Since L is of type p1, dq and hence primitive, i) as well as ii) imply that

ϕ is birtional onto its image. Hence ϕ˚rCs “ rϕpCqs. �

5 Abelian Surfaces of Type (1,3)

Recall that A0
p1,3q Ă Ap1, 3q is the opemn subset corresponding to

abelian surfaces X of type p1, 3q with an isogeny onto a Jacobian of
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a smooth curve of genus 2. In this section we derive some properties of

the elements ofA0
p1,3q .

Let π : pX, Lq Ñ pY, Pq » pJpHq,OpHqq be an element of A0
p1,3q

corresponding to the cyhclic ’etale 3-fold covering f : C Ñ H of a

smooth curve H of geneus 2 (see Proposition 1.1). According to Propo-

sition 2.1 the Galois group of the composed covering C Ñ H Ñ P1

is the dihedral group D3 generated by an involution j : C Ñ C over

the hyperelliptic involution ι of H and a covering transformation τ of

F : C Ñ H. According to Proposition 2.2 the involutions j, jτ, jτ2 are

elliptic. Denote by fν : C Ñ Eν “ C{ jτν the corresponding coverings.

The automorphisms j and τ of C extend to automorphisms of the Jaco-

bian JpCq which we also denote by j and τ. For any point c P C we

have an embedding

αc : C Ñ JpCq, p ÞÑ OCpp ´ cq.

Since the double coverings fν : C Ñ Eν are ramified, the pull back ho-

momorphism Eν “ Pic0pEνq Ñ Pic0pCq “ JpCq is an embedding (see

[L-B] Proposition 11.4.3). We always consider the elliptic curves Eν as

abelian subvarieties of JpCq. Then the followind diagram commutes

C
�

� αc //

fν ��❄
❄❄

❄❄
❄❄

❄ JpCq

p1` jτνq}}③③
③③
③③
③③

Eν

(1)

for ν “ 0, 1, 2 and any c P C. Since τp1 ` jτνq “ p1 ` jτν`1qτ, the236

automorphismτ of JpCq restritcs to isomorphisms

τ : Eν Ñ Eν`1

for ν P Z{3Z.

The curve C is containde in teh abelian surface X and generates X

as a group, since L “ OXpCq is simple. So the Universal Property of the

Jacobian yields a surjective homomorphism JpCq Ñ X, the Kernel of

which is described by the following
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5.1 Proposition. 0 Ñ Enu ˆ Eν
p1`τp2ÝÝÝÝÑ JpCq Ñ X Ñ 0 is an exact

sequence of abelian varieties for ν P z{3Z.

Here pi : Eν ˆ Eν Ñ Eν denotes the i-th projection for i “ 1, 2.

Forthe proof of the proposition we need the following

5.2 Lemma . For a general c P C either h0pOCp2c ` jc ` jτcqq “ 1 or

h0pOcp2c ` jc ` jτ2cqq “ 1.

Proof. According to Castelnuovo’s inequality (see [ACGH] Exercies

C-1 p.366) C is not hyperelliptic. We indentify C with its image in

P3 under the canonical embedding. Assume h0pOCp2c ` jc jτcqq “
h0pOCp2c ` jc jτ2cqq “ 2 for all c P C. Denote Pc “ spanp2c, jc, jτcq
and P1

c “ spanp2c, jc, jτ2cq in P3. According to the Geometric Riemann-

Roch Theorem (see [ACGH] p.12) the assumption is equivalent to

dim Pc “ dim P1
c “ 2.

For any p P C denote by TpC that tangent of C at p in P3. Applying the

Geometric Riemann-Roch Theorem again, we obtain

4 ´ dimspanpTcC,T jcCq “ h0pOcp2c ` 2 jcqq ě h0pOE0
p2π0pcqqq “ 2.

Since h0pOCp2c`2 jcqq ě 2 by Clifford’s Theorem, dim spanpTcC,T jcCq “
2. On the other hand, since a general c P C is not a ramification

point of a trigonal pencil, we have h0pOcp2c ` jcqq “ 1 and thus dim

spanpTcC, jcq “ 2. Hence

Pc “ spanpc, jc,TcCq “ spanpc, jc,T jcCq “ P jc.

Similarly we obtain P1
c “ P1

jc
. Since deg C “ 6, this implies

Pc X C “ t2c, 2 jc, jτc, τ2cu and P1
c X C “ t2c, 2 jc, jτ2c, τcu.

In particular Pc “ spanpTcC,T jcCq “ P1
c. But then the plane Pc con-

tains more than 6 points of C, a contradiction. �
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Proof of the Proposition. It suffice to prove the proposition for ν “ 0.237

Step I: The map p1 ` τp2 is injective. According to Lemma 5.2 we

may assume h0p2c ` jc ` jτcq “ 1 (if h0p2c ` jc ` jτ2cq “ 1, then

we work with ν “ 2 instead of ν “ 0). We have to determine the points

p, q P C satisfying the quation

p1 ` jqαcppq ` τp1 ` jqα jτ2cpqq “ 0.

Here we use the fact that E0 “ p1` jqαcpCq “ p1` jqα
jτ2c

pCq according

to diagram (1). Since h0p2c ` jc ` jτcq “ 1, the above equation is

equivalent to teh following identityh of divisor on C.

p ` jp ` τq ` τ jq “ 2c ` jc ` jτc.

But the only solution are pp, qq P tpc, τ2cq, pc, jτ2cq, p jc, τ2cq, p jc, jτ2cqu,

all of which represent the point p0, 0q P E0 ˆ E0 “ p1 ` jqαcpCq ˆ p1 `
jqα jτ2cpCq. Hence p1 ` τp2 is an injective homomorphism of abelian

varieties.

Step II: The sequence is exact at JpCq. The homomorphism JpCq Ñ
X fits into the following commutative diagram

JpCq

!!❈
❈❈

❈❈
❈❈

❈

N f

��

X

g
}}④④
④④
④④
④④

JpHq

(2)

Where N f is the divisor norm map associated to f : C Ñ H and g is

an isogeny of degree 3. Since the kernel of N f consists of 3 connected

components,the kernel of JpCq Ñ X is an abelian surface. Hence it

suffices to show that N f pp1 ` τp2qpEν ˆ Eνq “ 0. But

N f p1 ` jτνq “ p1 ` ττ2qp1 ` jτνq
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“ p1 ` τ ` τ2 ` j ` jτ ` jτ2q

is the divisor norm map of the covering C Ñ P1 and hence is the zero

map. �

The Proposition implies that the images of Eνˆ Eν in JpCq coincide

for ν “ 0, 1, 2. Therefore it suffices to consider the case ν “ 0.

The automorphism τ of JpCq is of order 3 and induces the identity

on JpHq . So by diagram (2) it induces the indentity on X. Hence there

is an automorphism T of E0 ˆ E0 of order 3 fitting into the following

commutative diagram

0 // E0 ˆ E0

T

��

p1`τp2// JpCq
τ

��

// X // 0

0 // E0 ˆ E0

p1`τp2// JpCq // X // 0.

5.3 Lemma. T “
ˆ

0 ´1

1 ´1

˙
238

Proof. Since τ is a covering transformation of the 3-fold covering f :

C Ñ H, it satisfies the equation τ2τ ` 1 “ 0 on im pE0 ˆ E0q Ă
ker N f Ă JpCq. So in terms of matrices we have p1 ` τp2 “ p1, τq “

p1,´1 ´ τ2q. An immediate computation shows that T “
ˆ

0 ´1

1 ´1

˙
is

the only solution of the equation p1, τqT “ τp1,´1 ´ τ2q. �

The automorhism T restricts to isomorphisms

E0 ˆ t0u TÝÑ t0u ˆ E0
TÝÑ ∆ TÝÑ E0 ˆ t0u

where ∆ denotes the diagonal in E0 ˆ E0. Hence p1 ` τp2 maps the

curves E0 ˆ t0u, t0u ˆ E0 and ∆ onto E0, E1 and E2 respectively.

5.4 Lemma. The canonical principal polarization Θ on JpCq induces a

polarization Ξ of type p1, 3q on E0 ˆ E0 which is invariant with respect

to the action of τ. Moreover Ξ “ rE0 ˆ t0u ` t0u ˆ E0 `∆s is H2pE0 ˆ
E0,Zq.
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Proof. The dual of the divisor norm map N f is the pull back map f ˚

(see [L-B] 11.4(2)). So dualizing diagram (2) above we get

JpCq

pX

Ă
aa❇❇❇❇❇❇❇❇

JpHq
pg

==⑤⑤⑤⑤⑤⑤⑤⑤

f ˚

OO

Denote by P the canonical principal polarization of JpHq. Since p f ˚qΘ ”
3P and pg is an isogeny of degreee 3, the induced polarization ι˚Θ on
pX is of type (1,3). According to Proposition 3.1 and [L-B] Proposi-

tion 12.1.3 pEx ˆ E0, pxq is a pair of complementary abelian subvari-

eties of JpCq. Hence by [L-B] Corollary 12.1.5 the induced polarization

Ξ :“ pp1 ` τp2q˚Θ on E0 ˆ E0 is also of type (1,3). moreover Ξ is in-

variant under T , since the polarizationΘ is invariant undert τ. It remains

to prove the last assertion.

It suffices to prove the equation in the N’eron-Severi group. NSpE0ˆ
E0q is a free abelian group generated by rE0 ˆt0us, rt0uˆE0s, r∆s, and,

if E0 admits complex multiplication, also the class rΓs of the graph Γ of

an endomorphism γ of E0. Since Ξ is invariant under T and T permutes

the curves E0 ˆ t0u, t0u ˆ E0 and∆, we have

Ξ “ aprE0 ˆ t0us ` rt0u ˆ E0s ` r∆sq ` brΓs

for some integers a, b.239

Assume b ‰ 0. Then necessarily rΓs is invariant with respect to the

action of T . Since pt0u ˆ E0 ¨ Γq “ 1, this implies that also

1 “ pE0 ˆ t0u ¨ γq “ p∆ ¨ Γq.

on the other hand pE0 ˆ t0u ¨ Γq “ deg γ and p∆ ¨ Γq “ number of fixed

points of γ. But on an elliptic curve there is no automporphims with

exactly one fix point, a contradiction. So b “ 0.
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Since the polarization Ξ is type (1,3) and thus

6 “ pΞ2q “ a2pE0 ˆ t0u ` t0u ˆ E0 ` ∆q2 “ 6a2,

this implies the assertion. �

If we identity JpCq and E0 ˆ E0 with their dual abelian varieties, the

map pp1 ` τp2q^ is a surjective homomorphism JpCq Ñ E0 ˆ E0. The

composed map

ac : C
αcÝÑ JpCq pp1`τp2q^

ÝÝÝÝÝÝÑ E0 ˆ E0

is called the Abel-Prym map of the abelian subvariety E0ˆE0 of pJpCq,Θq.

Recall from Example 4.2 the pΞ “ rE0 ˆ t0u ` t0u ˆ E0 ` As is the dual

polarization of Ξ.

5.5 Lemma. ac : C Ñ E0 ˆ E0 is an embedding and it image acpCq
defines the polarization pΞ.

Proof. According to [L-B] Corollary 11.4.2 we have a˚
c “ α˚

c pp1 `
τp2q “ ´pp1`τp2q : EˆE Ñ JpCq. Hence pa˚

c q˚Θ “ pp1`τp2q˚Θ “
Ξ. So Proposition 4.3 implies that αc is birational onto its image and

ac˚rCs “ pΞ. It remains to show that acpCq is smooth. But by the

adjunction formula papacpCqq “ ppΞ2q
2

` 1 “ 4 “ pgpCq. �

Recall that KppΞq is the kernel of the isogeny ϕpΞ : E0ˆE0 Ñ E0ˆE0.

According to Example 4.2 ϕpΞ “
ˆ

2 1

1 2

˙
and hence

KppΞq “ tpx, xq P E0 ˆ E0 : 3x “ 0u.

Consider the dual pT of the automorphism T of EˆE as an automorphism

of E ˆ E. From Lemma 5.3 we deduce that

pT “
ˆ

0 1

´1 ´1

˙
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Moreover the polarization pΞ is invariant under pT , i.e. pT ˚pΞ “ pΞ. This240

follows for example from

ϕpΞ “ 3ϕ´1
Ξ

“ 3ϕ´1

T 2˚Ξ
“ 3Tϕ´1

Ξ
pT “ TϕpΞ

pT “ ϕ˚
pT
pΞ.

Denote by Fix pT the set of fixed points of pT . We obviously have

Fix pT “ KppΞq “ tpx, xq P E0 ˆ E0 : 3x “ 0u.

This shows that KppΞq is the set of those points y if E0ˆE0, for which

the translation map ty commutes with pT . This is the essential argument

in the proof of the following

5.6 Lemma. |E0 ˆ t0u ` t0u ˆ E0 ` A| is the unique linear system

defining the polarization pΞ on which induces the identity, i.e. pT restricts

to an automorphims of every divisor in |E0 ˆ t0u ` t0u ˆ E0 ` A|.

Proof. Let D any divisor defining the polarization pΞ. We first claim that

in pT ˚D “ D, and the eigenvalue of the corresponding action on the

sections defining D is 1, then pT induces the identity on the linear system

|D|. For any y P KppΞq “ FixppT q we have pT ˚t˚
y D “ t˚

y D “ t˚
y D. The

Stone-vonNeumann Theorem implies that translating D by elements of

KppΞq leads to a system of generators of the projective space |D|. So pT
acts as the identity on the linear system |D|. This proves the claim.

In order to show that |E0 ˆ t0u ` t0u ˆ E0 ` A| is the only linear

system defining pΞ on which pT acts as the identity, note first that pT ˚pE0ˆ
t0u`t0uˆE0 `Aq “ E0 ˆt0u`t0uˆE0 `A. Moreover the eigenvalue

of the corresponding action the section defining E0 ˆt0u`t0uˆ E0 ` A

is 1. Any linear system on E0 ˆ E0 defining pΞ contains a divisor of the

form t˚
z pE0 ˆ t0u ` t0u ˆ E0 ` Aq for some z P E0 ˆ E0. Since no group

of translations acts on the divisor E0 ˆ t0u ` t0u ˆ E0 ` A itself, the

divisor t˚
z pE0 ˆ t0u ` t0u ˆ E0 ` Aq is invariant under pT if and only if

z P Fix pT “ KppΞq. This completes the proof of the lemma. �
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5.7 Lemma.

a) For any c P C there exists a point y “ ypCq P E0 ˆ E0 uniquely

determined modulo KppΞq such that t˚
y acpCq P |E0 ˆ t0u ` t0u ˆ

E0 ` A|.

b) The set tt˚
y`xacpCq|x P KppΞqu does not depend on the choice of c.

Proof.

a) According to Lemma 5.5 the divisor acpCq is algebraically equiva- 241

lent to E0 ˆ t0u ` t0u ˆ E0 ` A. Hence there is a y P E0 ˆ E0

such that the divisors t˚
y acpCq and E0 ˆ t0u ` t0u ˆ E0 ` A are lin-

early equivalent. The uniqueness of y modulo KppΞq follows from the

definition of KppΞq.

b) Varying c P C, the subset tt˚
y acpCq|c P Cu of |E0 ˆ t0u ` t0u ˆ

E0 ` A| depends continuously on c. On the other hand, the curves in

tt˚
y acpCq|c P Cu differ only by translations by elements of the finite

group KppΞq. Hence the set tt˚
y`xacpCq|x P KppΞqu is independent of

the point c. �

6 The Moduli SpaceA0

p1,3q

In this section we use the results of §5 in order to give an explicit de-

scription of the modulo spaceA0
p1,3q.

Let pX, L, πq be an element of A0
p1,3q with corresponding étale 3-

fold covering tC Ñ Hu P C3
2
. The hyperelliptic covering H Ñ P1

lifts to an elliptic covering C Ñ E. The elliptic curve E is uniquely

determined by C Ñ E. The elliptic curve E uniquely determined by

C Ñ H. Let pΞ denote the polarization on E ˆ E defined by the divisor

E ˆ t0u|t0u ˆ E ` A. According to Lemma 5.5 and 5.7 there is an

embedding C ãÑ e ˆ E uniquely determined module translations by

element s of KppΞq whose image is contained in the linear system |E ˆ
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t0u ` t0u ˆ E ` A|. On the other hand, consider the automorphism

pT “
ˆ

0 1

´1 ´1

˙
of E ˆ E. According to Lemma 5.6 it restricts to an

automorphism of C which coincides with the covering transformation

of C Ñ H. Since Fix pT “ KppΞq, this implies C X KppΞq “ H.

Let M denote the moduli space of pairs pE,Cq with E an elliptic

curve and C a smooth curve in the linear system |E ˆt0u`t0uˆ E ` A|
modulo translations by elements of KppΞq such that C X KppΞq “ H.

Using level structures it is easy to see thatM exists as a coarse mouli

space for this moduli problem.

Summing up we constructed a holomorphic map ψ : A0
p1,3q ÑM.

6.1 Theorem. ψ : A0
p1,3q ÑM is an isomorphism of algrbraic varieties.

Proof. It remains to construct an inverse map. Let pE,Cq PM. Accord-242

ing to Lemma 5.6 the automorphism pT of E ˆ E acts on every curve of

the linear system. In particular pT restricts to an automorphism τ of C

which is of order 3, since C generates Eˆ as ga group. Moreover τ is

fixed point free, since C X Fix pT “ H. So τ induces an étale 3-fold cov-

ering C Ñ H corresponding to an element pX, L, πq P A0
p1,3q. It is easy

to see that the mapMÑ A0
p1,3q, pE,Cq ÞÑ pX, L, πq is holomorphic and

inverse to ψ. �

6.2 Corollary. Ap1,3qis a rational variety.

Proof. It suffices to show that the open set M0 “ tpE,Cq P M : E

admits no nontrivial automorphismsu is rational.

The opent set U “ C ´t0, 1728u parametrizing elliptic curves with-

out nontrivial automorphisms admit a universal family E Ñ U. Con-

sider the line bundle qEˆUEpE ˆU t′u ` t′u ˆU E ` Aq on the fibre

product p : E ˆU E Ñ U where A denotes the relative antidiagonal.

According to Grauert’s Theorem p˚OEˆUEpEˆU t0u ` t0u ˆU E`Aq
is a vector bundle of rank 3 over U. The corresponding projective bun-

dle PU :“ Ppp˚OEˆUEpE ˆU t0u ` t0u ˆU E `Aqq parametrizes the

linear systems |E ˆ t0u ` t0u ˆ E ` A|. By constructionM0 is an open
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subset of the quotient PU{KpΞq, where KpΞq acts as usual on the fibres

of PU Ñ U. Since every vector bundle on U is trivial, PU » P2 ˆ U

and PU{KpΞq » P2{pX{3Z ˆ Z{3Zq ˆ U, which is rational by Lüroth’s

theorem (see [G-H] p. 541). �
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la Cohomologie des Schémas, North Holland, Amsterdam, (1968)

88–188.

[G-H] Griffiths P., Harris J., Principles of Algebric Geometry, John Wi-

ley & Sons, Now York (1978).

[H-W] Hulek K., Weintraub S.H., Bielliptic Abelian Surfaces, Math. 243

Ann. 283 (1989) 411–429.

[I] Ingrisch E., Automorphismengruppen und Moduln hyperelliptis-

cher Kurven, Dissertation Erlangen (1985).

[L-B] Lange H., Birkenhakel Ch., Complex Abelian Varieties, Springer

Grundlehren 302 (1992).

Ch. Birkenhake

H. Lange

Mathematishes Institut

Bismarckstraße 1 1
2

D-8520 Erlangen

283



Instantons and Parabolic Sheaves

M. Maruyama

Introduction

S. Donaldson [1] found a beautiful bijection between the set of marked245

S Uprq-instantons and the set of couples of a rank-r vector bundle on

P2
C

and a trivialization on a fixed line. Then, based on a fixed line.

Then, based on Hulek’s result in [3], he concluded that the moduli space

of marked S Uprq-instantons with fixed instanton number is connected.

Hulek’s result is, however, insufficient to deduce the connectedness. In

fact, a vector bundle E on P2
C

is said to be s-stable in Hulek’s sense if

H0pP2
C
, Eq “ 0 and H0pP2

C
, E_q “ 0. Hulek [3] proved that the set of

s-stable vector bundles on P2
C

wit rpEq “ r, c1pEq “ 0 and c2pEq “ n

is parametrized by an irreducible algebric set. There are vector bundles

on P2
C

that correspond to marked S Uprq-instatons but are not s-stable.

For example, if c2pEq ă rpEq, E cannot be s-stable and we have, on the

other hand, S Uprq-instantons with instanton number n ă r.

In this article we shall show that we can regard the couple pE,Hq of

a vector bundle E on P2
C

and a trivialization h of E on a fixed line as a

parabolic stable vector bundle. Then, the connectedness of the moduli

space of marked S Uprq-instantons reduces to that of the moduli space of

parabolic stable sheaves. It is rather complicated but not hard to prove

the connectedness of the modulo space of parabolic stable sheaves. The

author hopes that he could prove in this way the connectedness of the

moduli space of marked S Uprq-instantons.

Notation. For a field k and integers m, n, Mpm, n, kq denotes the set of

pmˆnq-matrices over k and Mpn, kq does the full matrix ring Mpn, n, kq,

If f : x Ñ S is a morphism of schemes, E is coherent sheaf on X and

if s is a point (or, geromtric point) of S , then Epsq denotes the sheaf

E bOS
kpsq. For a coherent sheaf F on a variety Y , we denote the rank
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of F by rpFq. Assuming Y to be smooth and quasi-projective, we can

define the i-th chern class cipFq of F.

1 A result of Donaldson
246

We shall here reproduce briefly the main part of Donaldson’s Work [1].

Fix a line ℓ in P2
C

. Let E be vector bundle of rank r on P2
C

wiht the

following properties:

E|ℓ » O‘r
ℓ
, (1.1.1)

c1pEq “ 0 and c2pEq “ n. (1.1.2)

(1.1.1) implies that E is µ-semi-stable and hence c2pEq “ n ě 0. Since

the mu-semi-stability of E implies H0pP2
bC
, Ep´1qq “ 0, we see that E

is the cohomology sheaf of monad

H bC OP2p´1q sÝÑ K bC OP2
tÝÑ L bC OP2p1q,

where H,K and L are C-vector spaces of dimension n, 2n ` r and n,

respectively. s is represented by a p2n ` rq ˆ n matrix A whose entries

are linear forms on P2
C

. Fixing a system of homogeneous coordinates

px : y : zq of P2
C

, we may write

A “ Axx ` Ayy ` AzZ,

where Ax, Ay, Az P Mp2n ` r, n,Cq. Similarly t is represented by

B “ Dxx ` Byy ` Bzz

with Bx, BymBz P Mpn, 2n ` r,Cq. The condition ts “ 0 is equivalent

to BxAx “ ByAy “ BzAz “ 0, BxAy “ ´ByAz “ ´BzAy and BzAx “
´BxAz. E is represented by such a monad uniquely up to the action of

GLpHq ˆ GLpKq ˆ GLpLq.

We may assume that ℓ is defined by z “ 0. Then E|ℓ is trivial if and

only if det BxAy ‰ 0. We can find bases of H,K and L so that BxAy “ In,
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where In is the identitiy matrix of degree n. Changing the basis of L, we

have

Ax “

¨
˝

In

0

0

˛
‚

n

n

r

, Ay “

¨
˝

0

In

0

˛
‚

n

n

r

and

Bx “ p
n

0,
n

In,
r

0q, By “ p
n

´In,
n

0,
r

0q.

Then, setting247

Az “

¨
˝
α1

α2

a

˛
‚

with α1, α2 P Mpn,Cq and a P Mpr, n,Cq, the equations ByAz “ ´BzAy

and BzAx “ ´BxAz imply Bz “ p´α2, α1, bq with b P Mpn, r,Cq. The

last equation BzAz “ 0 means

1.2 rα1, α2s ` ba “ 0.

On ℓ we have an exact sequence

0 Ñ Oℓp´1q uÝÑ O‘2
ℓ

vÝÑ Oℓp1q Ñ 0.

The restriction of our monad to ℓ is

Oℓp´1q‘n ‘nu‘0ÝÝÝÝÑ p‘nO‘2
ℓ

q ‘ O‘r
ℓ

‘nv‘0ÝÝÝÝÑ Oℓp1q‘n

and the trivialization of E|ℓ comes from the last term of the middle. The

equivalence defined by the action of GLpHq ˆ GLpKq ˆ GLpLq induces

an action of the group

$
&
%pp,

¨
˝

p´1 0 0

0 p´1 0

0 0 q

˛
‚, pq

ˇ̌
ˇ̌
ˇ̌ p P GLpn,Cq, q P GLpr,Cq

,
.
-

on the above normalized matrices. The action of q is nothing but chang-

ing the trivializations of E|ℓ.
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The condition that the above normalized couplepA, Bq gives rise to

a vector bundle is the for every pλ, µ, νq P P2
C

,

λAx ` µAy ` νAz “

¨
˝
λIn ` να1

µIn ` να2

νa

˛
‚

is an injection of H to K and

λBx ` µBy ` µBz “ p´µIn ´ να2, λIn ` να1, νbq

is a surjection of K to L. If ν “ 0, then these conditions are trivially

satisfied. Thus we have the following.

1.3 Proposition. The set tpE, hq|E has the properties (1.1.1) and (1.1.2).

h is a trivilization of E|ℓu { » is in bijective correspondence with the

set of quadruples pα1, α2, a, bq of matrices with the following properties

(1.3.1), (1.3.2) and (1.3.3) modulo an action of GLpn,Cq:

α1, α2 P Mpn,Cq, a P Mpr, n,Cq and b P Mpn, r,Cq, (1.3.1)

248

rα1, α2s ` ba “ 0, (1.3.2)

f or all pλ, µq P C2, (1.3.3)

¨
˝
λIn ` α1

µIn ` α2

a

˛
‚

in injective and p´µIn´α2, λIn`α1, bq is surjective. Here p P GLpn,Cq
sends pα1, α2, a, bq to ppα1 p´1, pα2 p´1, ap´1, pbq.

Let us embed P2
C

into P3
C

as the plane defined by w “ 0, where

px : y : z : wq is a system of homogeneous coordinates of P3
C

. Now we

look at the vector bundle defines by a monad

H bC OP3p´1q cÝÑ K bC OP3
dÝÑ L bC OP3p1q,
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and trivialized on ℓ “ tz “ w “ 0u, c and d are represented by

A “ Axx ` Ayy ` Azz ` Aww

B “ Bxx ` Byy ` Bzz ` Bww

with

Ax “

¨
˝

In

0

0

˛
‚, Ay “

¨
˝

0

In

0

˛
‚, Az “

¨
˝
α1

α2

a

˛
‚, Aw “

¨
˝
α̂1

α̂2

â

˛
‚

and

Bx “ p0, In, 0q, By “ p´In, 0, 0q, Bz “ p´α2, α1, bq, Bw “ pα̂2, α̂1, b̂q.

The condition dc “ 0 of the monad means

rα1, α2s ` ba “ 0, (1.4.1)

rα̂1, α̂2s ` b̂â “ 0, (1.4.2)

rα1, α̂2s ` rα̂1α2s ` bâ ` b̂a “ 0. (1.4.3)

249

Let H “ R ` Ri ` R j ` Rk be the algebra of quaternions over

R. Regarading C4 as H2, bH acts on C4 from left. Hence we have a

j-invariant real analytic map

π : P3
C “ tC4zt0uu{C˚ Ñ S 4 – P2

H.

A vector bundle E of rank r on P3
C

is called an instanton bundle if it

comes from as S Uprq-instanton on S 4 , or equivalently if the following

conditions are satisfied:

there is and isomorphism λ of E to j˚pE_q such that the composition

j˚ptλ´1q. λ is equal to idE when we identify j˚p j˚pE_q_q with E,

(1.5.1)

E|π´1pxqis trivial for allx P S 4. (1.5.2)
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Ab instanton bundle E is the cohomology of a monad which appeared

in the above. The instanton structure of E provides this space K with a

Hermitian structure and an isomorphism of L to H
_

.

For λ “ pλ1, λ2, λ3, λ4q P C4, we set

Apλq “ Axλ1 ` Ayλ2 ` Azλ3 ` Awλ4

bpλq “ Bxλ1 ` Byλ2 ` Bzλ3 ` Bwλ4

Since Apλq˚ “t Apλq defines a linear map of K – K
_

to H
_ – L, we

have a linear map

Apλq “ Apλq˚ ‘ Bpλq : K Ñ L ‘ L.

The quaternion algebra H acts on L ‘ L by

i

ˆ
u

v

˙
“
ˆ´

?
´1u

´
?

´1v

˙
, j

ˆ
u

v

˙
“

ˆ
v

´v

˙

Then the condition that

Apqλqpvq “ qApλqpvq for all q P H, v P K

is equivalent to the condition that pA, Bq gives rise to an S Uprq-instanton

bundle.

Now the above condition can be written down in the form

Ap jp0, 0, z,wqq “
ˆ´tAzw `t Awz

´Bzw ` Bwz

˙

“ j

ˆ
tAzz `t Aww

Bzz ` Bww

˙
“
ˆ

Bzz ` Bww

´tAzz ´t Aww

˙

that is, 250
tAw “ Bz and tAz “ ´Bw.

Thus we have α̂1 “ ´α˚
2
, α̂2 “ α˚

1
, â “ b˚ and b̂ “ ´a˚. On the

other hand, Apλq is injective if and only if Apλq˚ is surjective. Thus our
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monad defines a vector bundle if and only if Apλq˚ is sujective. Thus

our monad defines a vector bundle if and only if Apλq is surjective for

all λ P C4zt0u. (1.3.3) implies that Apλq is surjectifve for λ P C3zt0u
which gives our plane w “ 0 and then so isApqλq. Since tqλ|q P H, λ P
C3zt0uu sweeps C4zt0u, (1.3.3) is equivalent to the condition thatApλq
is surjective for all λ P C4zt0u

Now the condition (1.4.2) is the adjoint of (1.4.1) or (1.3.2) and the

condition (1.4.3) becomes

rα1, α
˚
1 s ` rα2, α

˚
2 s ` bb˚ ´ a˚a “ 0.

Let MpS Uprq, nq be the set of isomorphism classes of marked S Uprq-

instantons with instanton number n. MpS Uprq, nq is the set of the iso-

morphism classes of teh couples p∇, gq of an S Uprq-instanton ∇ and an

element g of the fiber over northpole of the S Uprq-principle fiber bun-

dle where the instantion is defined. What we have seen in the above is

stated as follows.

1.6 Proposition. MpS Uprq, nq is in bijective correspondence with the

Upnq-quotient of the set of quadruples tpα1, α2, a, bqu of matrices with

the properties (1.3.1), (1.3.2), (1.3.3) and

rα1, α
˚
1 s ` rα2, α

˚
2 s ` bb˚ ´ a˚a “ 0. (1.6.1)

Assume that G “ GLpn,Cq acts on CN with a fixed norm structure

such that Upnq does isometrically. Take a G-invariant subscheme W of

CN whose points are att stable. Let W0 be the set points that are nearest

to the origin in its G-orbit.

1.7 Proposition. W{G is isomorphic to W0{Upnq.

Let us look at the C-linear space V “ Mpn,CqˆMpn,CqˆMpr, nCqˆ
Mpn, r,Cq where GLpn,Cq acts as in Proposition 1.3. ThenUpnq acts on

V isometrically with respect to the obvious norm of V . Let W be the

subscheme of V defined by (1.3.2) and (1.3.3). Then we have have the

following key results.

1.8 Lemma. [1, p. 458] A point pα1, α2, a, bq in W is contained in W0

if and only if it has the property (1.6.1).
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1.9 Lemma. [1, Lemma]. W is contained in the set of stable points of

V with respect to the action of GLpn,Cq.

Therefore, we come to the main result of [1].

1.10 Theorem. The set tpα1, α2, a, bq | p1.3.1q, p1.3.2q and p1.3.3q 251

are satisfiedu {GLpn,Cq is in bijective correspondence with the set

tpα1, α2, a, bq|p1.3.1q, p1.3.2q and p1.1.2q. h is a trivialization of E|ℓu{ –
is isomorphic to the space MpS Uprq, nq .

2 Parabolic sheaves

Let px,OXp1q,Dq be a triple of a non-singular projective variety X over

an algebraically closed field k, an ample line bundle OXp1q on X and an

effective Cartier divisor D on X. A coherent torsion free sheaf E is said

to be a parabolic sheaf if the following data are assigned to it:

a filtration 0 “ Ft`1 Ă Ft Ă ¨ Ă F1 “ EbOX
ODby coherent subsheaves,

(2.1.1)

a system of weights 0 ď α1 ă α2 ă ¨ ¨ ¨ ă αt ă 1. (2.1.2)

We denote the parabolic sheaf by pE, F˚, α˚q.

For a parabolic sheaf pE, F˚, α˚q, we define

par ´ χpEpmqq “ χpEp´Dqpmqq `
tÿ

i“1

αiχpFi{Fi`1pmqq.

If E1 is a coherent shubsheaf of E with E{E1 torsion free,then we have

an induced parabolic structure. In fact, since E1 bOX
OD can be regarded

as a subsheaf of E bOX
OD, we have a filtration 0 “ F1

δ`1
Ă F1

δ
Ă

F1
δ

Ă ¨ ¨ ¨ Ă F1
δ

“ E1 bOX
OD such that F1

j
“ E1 bOX

OD X Fi for

some i. The weight α1
j

of F1
j

is defined to be αi with i “ maxtk|F1
j

“
E1 bOX

OD X Fku.

2.2 Definition. A parabolic pE, F˚, α˚q is said to be stable if for every

coherent subsheaf E1 with E{E1 torsion free and with 1 ď rpE1q ă rpEq
and for all sufficiently large integers m, we have

par ´ χpE1pmqq{rpE1q ă par ´ χpEpmqq{rpEq,
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where the parabolic structure of E1 is the induces from that of E.

Let S be a scheme of finite type over a universally Japanese ring

and now let pX,OXp1q,Dq be a triple of a smooth, projective, geometri-

cally integral scheme X over S , an S -ample line bundle OXp1q on X an

effective relative Cartier divisor D on X over S .

2.3 Lemma. If T is a locally noetherian S -scheme and of E is aT-flat252

coherent sheaf on X ˆs T such that for every geometric point t of T , Eptq
is torsion free, then E|D “ E bOX

OD is flat over T .

Proof. For every point y of T , Epyq is torsion free and Dy is a Cartier

divisor on Xy. Thus the natural homomorphism Ep´Dqpyq Ñ Epyq is

injective. Then, since E is T -flat, E|D “ E|Ep´Dq is T flat Q.E.D.

Let E be a coherent sheaf on X ˆS T which satisfies the condition in

the above lemma. E is said to be a T -family of parabolic sheaves if the

following data are assigned to it:

a filtration 0 “ Ft`1 Ă Ft Ă ¨ ¨ ¨ Ă F1 “ E|D by coherent (2.4.1)

subsheaves such that for 1 ă i ă t, E|D{Fi is flat over T,

a system of weights 0 ď α1 ă α2 ă ¨ ă αt ă 1. (2.4.2)

As in teh absolute case we denote by pE, F˚, α˚q the family of parabolic

sheaves. For T -families of parabolic sheaves pE, FX,α˚q and pE1, F1
˚, α

1
˚q,

they are said to he equivalent and we denote pE, F˚, α˚q „ pe1, F1
˚, α

1
˚q if

there is an invertible sheaf L on T such that E is isomorphic to E1 bOT
L,

the filtration F˚ is equal to F1
˚ bOT

L under this isomorphism and if the

systems of weights are the same.
Fixing polynomials Hpxq,H1pxq, . . .Htpxq and a system of weights

0 ď α1 ă ¨ ¨ ¨ ă αt ă 1, we set

par ´ ΣpH,H˚, α˚qpT q “

$
’’&
’’%

pE, F˚, α˚q

ˇ̌
ˇ̌
ˇ̌
ˇ̌

pE, F˚, α˚qis aT ´ family of

parabolic sheaves with the

the properties p2.5.1q and

p2.5.2q

,
//.
//-

L
„

for every geometrix point y of T and 1 ď i ď t, χpepyqpmqq “ (2.5.1)
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Hpmq and χppEpyq{Fi`1pyqqpmqq “ Hipmq,

for every geometric point y of T, pEpyq, F˚pyq, α˚q is stable. (2.5.2)

Obviously par ´ΣpH,H˚, α˚q defines a contravariant functor of the cat-

egory pSch {S q of locally notherian S -schemes to that of sets. Note that

for every geometric point s of S and every member

pE, F˚, α˚q P par ´ ΣpH,H˚, α˚qpsq,

we have

par ´ χpEpmqq “ Hpmq ´
tÿ

i“1

εiHipmq,

where εi “ αi`1 ´ αi with αt`1 “ 1. 253

One of main results on parabolic stable sheaves is stated as follows.

2.6 Theorem. [7] Assume that all the weights α1, . . . , αt are rational

numbers. Then the functor par ´ ΣpH,H˚, α˚q has a coarse moduli

scheme MX{S pH,H˚, α˚q of locally of finite type over S . If S is a scheme

over of field of characteristic zero, then the coarse moduli scheme is

quasi-projective over S .

Now let us go back to the situation of the preceding section. We have

a fixed line ℓ in P2
C

, a torsion free, coherent sheaf E of rank r on P2
C

and

a trivialization of E|ℓ. There is a bijective correspondence between the

set of trivilzations of E|ℓ and the set

TE “ tϕ : E|ℓ Ñ Oℓpr ´ 1q|H0pϕq : H0pE|ℓq „ÝÑ H0pOℓpr ´ 1qqu{ –

where – means isomorphism as quotient sheaves.

2.7 Lemma. Let E be a torsion free, coherent sheaf of rank r on P2
C

such that E|ℓ is a trivial vector bundle. For every element pϕ : E|ℓ Ñ
Oℓpr ´ 1qq of TE , kerpϕq is isomorohic to Oℓp´1q‘r´1

Proof. Since kerpϕq is a vector bundle of rank r ´ 1 on the line ℓ, it

is isomorphic to a direct sum Oℓpa1q ‘ ¨ ¨ ¨ ‘ Oℓpar´1q of line bundles.

Our condition on ϕ means that H0pℓ, kerpϕqq “ 0, Combining this and
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the fact that degpkerpϕqq “ 1 ´ r, we see that a1 “ ¨ ¨ ¨ “ ar´1 “ ´1.

Q.E.D.

Fixing a system of weights α1 “ 1{3, α2 “ 1{2, every element ϕ of

TE gives rise to a parabolic structure of E:

0 “ F3 Ă F2 “ kerpϕq – Oℓp´1q‘r´1 Ă F1 “ E|ℓ.

2.8 Proposition. If E as in Lemma 2.7. Assume E has the properties

(1.1.1) and (1.1.2), then the above parabolic sheaf is stable.

Proof. Set r “ rpEq. We know that

par ´ χpEpmqq{rpEq “ pm ´ 1q2

2
` 3pm ´ 1q

2
` 1 ´ n

r

` pr ´ 1qm

2r
` pr ` mq

3r

“ m2

2
`
ˆ

1 ´ 1

6r

˙
m ` 1

3
´ n

r
.

Pick a coherent subsheaf E1 of E with E{E1 torsion free and write254

par ´ χpE1pmqq{rpE1q “ m2

2
` a1m ` a0.

Then we see

a1 “ µpE1q ` 1

2
` 1

rpE1q
´

s

2
` t

3

¯
,

where s ` t “ rpE1q and 0 ď t ď 1. Thus if µpE1q ă 0, then we have

a1 ď 1

rpE1q ` q ă ´1

r
` 1 ă 1 ´ 1

6r

and hence we obtain the desired inequality. We may assume therefore

that c1pE1q “ 0. Since E{E1 is torsion free, E1 is locally free in a neigh-

borhood of ℓ and E1|ℓ is a subsheaf of E|ℓ. Thus the triviality of E|ℓ
implies tha E1|ℓ – O‘rpE1q

ℓ
and hence E1|ℓ is not contained in F2. Since
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E1|ℓ{pF2 X E1|ℓq is subsheaf of F1{F2 – Oℓpr ´ 1q, it is of rank 1. We

have two cases.

Case 1. F2 X E1|ℓ “ 0 and rpE1q “ 1. Then the length of the filtration

of E1|ℓ is 1 and the weight is 1/3. Thus we see that

a1 “ 1

2
` 1

3
“ 1 ´ 1

6
ă 1 ´ 1

6r
.

Case 2. F2 X E1|ell ‰ 0. In this case F1
2

“ F2 X E|1
ℓ

is a subsheaf of

Oℓp´1q‘pr´1q and hence for m ě 0,

χpF1
2pmqq ď prpE1q ´ 1qm.

On the other hand, since E1|ℓ{F1
2

is a subsheaf of Oℓpr ´ 1q, we have

that for m ě 0,

χpE1|ℓ{F1
2pmqq ď m ` r.

Combining these, we get

a1 ď 1

2
` 1

2
´ 1

2rpE1q ` 1

3rpE1q “ 1 ´ 1

6rpE1q ă 1 ´ 1

6r
.

This completes our proof.

3 Connectedness of the moduli of instantons
255

Let us set

Hpxq “ rx2

2
` 3rx

2
` r ´ n

H1pxq “ x ` r

H2pxq “ rx ` r

α1 “ 1

3
and α2 “ 1

2
.
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For these invariants, we have the modulo space Mpr, nq “ MpH,H˚, α˚q
of parabolic stable sheaves on pP2

C
,OP2p1q, ℓq. There is an open sub-

scheme Mpr, nq of M̃pr, nq consisting of pE, F˚, α˚q with the properties

E|ℓ – O‘r
ℓ

and E|ℓpr ´ 1q, (3.1.1)

for the surjection ϕ : E|ℓ Ñ E|ℓ{F2,H
0
pϕq is isomorphic. (3.1.2)

Mpr, nq contains a slightly smaller open subscheme Mpr, nq0 consisting

of locally free sheaves. What we have seen in the above is MpS Uprq, nq –
Mpr, nq0.

3.2 Proposition. Mpr, nq is smooth and of pure dimension 2rn.

To prove this proposition we shall follow the way we used in [5].

Let us start with the general setting in Theorem 2.6. Let Σ be the family

of the classes of parabolic stable sheaves on the fibres of X over X with

fixed invariants. For simplicity we assume that Σ is bounded (Proposi-

tion 3.2 is the case). If m is a sufficiently large integer and if pE, F˚, α˚q
is a representative of a member of Σ over a geometric point s of S , then

we have that

both Ep´Dsqpmq and Epmq are generated by their global sections

(3.3.1)and for all i ą 0,HipEp´Dsqpmqq “ HipEpmqq “ 0,

for 1 ď j ď t and i ą 0,HipF j{F j`1pmqq “ 0 and F jpmq is (3.3.2)

generated by its global sections.

Replacing every member

pE, F˚, α˚q P par ´ ΣpH,H˚, α˚qpT q

by pOXpmq bOS
E,OXpmq bOS

F˚, α˚q, we may assume m “ 0. Setting

N “ dimH0pXpsq, Eq for a member pE, F˚, α˚q of Σ on a fiber Xs over

s, fixing a free OS -module V of rank N and putting VX “ V bOS
OX ,256

there is an open subscheme R of Q “ QuotH
VX{X{S

such that for every
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algebraically closed field k,a k-valued point z of Q is in Rpkq if and only

if the following conditions are satisfied:

For the universal quotient ϕ : VX bOS
OQ Ñ Ẽ the induced (3.3.3)

the induced map H0pϕpZqq : V bOs
kpsq Ñ H0pXs, ẼpZqq

is an isomorphism, wheresis the image ofzin S pkq.

For every i ą 0,HipXpsq, Ẽpzqq “ 0. (3.3.4)

Ẽpzq is torsion free . (3.3.5)

We denote the restriction of Ẽ to XR “ X ˆS R by the same Ẽ. Then,

by Lemma 2.3 we see that Ẽ|DR
is flat over R. Let Rt be the R-scheme

QuotẼ|DR
{XR{R and let

Ẽ|DR
bOR
ORt

Ñ Ẽt

be the universal quotent. Assume that we have a sequence

R j Ñ R j`1 Ñ ¨ ¨ ¨ Ñ Rt Ñ R

of scheme R j and a sequence of sheaves Ẽ j, Ẽ j`1 . . . , Ẽt, Ẽ|DR
such that

Ẽi is Ri-flat coherent sheaf on XRi
and that there is a surjection

Ẽi bORi
ORi´1

Ñ Ẽi´1.

Set R j´1 to be QuotẼ j{XR j
{R j

and take the universal quotient

Ẽ j bOR j
OR j´1

Ñ Ẽ j´1.

on R j´1. By induction on j we come to R1 and we have a sequence of

surjections

Ẽ|DR
bOR
OR1

Ñ Ẽt bORt
OR1

Ñ ¨ ¨ ¨ Ñ Ẽ2 bOR2
OR1

Ñ Ẽ1.

Setting

E “ Ẽ bOR
OR1
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Fi “ kerpẼ|DR
b OROR1

Ñ Ẽi bORi
OR1

q

we get an R1-family of parabolic sheaves. There is an open subscheme

U of R1 such that for every algebraically closed field k, a k-valued point

z of R1 is in Upkq if and only if pEpxq, F˚pzq, α˚q is stable. We shall

denote the restriction of pE, F˚, α˚q to U by the same pE, F˚, α˚q.

The S -group scheme G “ GLpVq naturally acts on Q and R is G-257

invariant. There is a canonical G-linearization on z̃ and hence G so

acts on Rt that the natural morphism of Rt to R is G-invaraiant. Then

Ẽt carries a natural G-linearization. Tracing these procedure to R1, we

come eventually to a G-action on U and a G-linearization of the family

pE, F˚, α˚q. Obviously the center Gm,s of G acts trivially on U and we

have an action of G “ G{Gm,s. We can show that there exists a geomeric

quotient of U by G. Then we see

The quotient U{G is the moduli scheme in Theorem 2.6. (3.4)

For a T -family of parabolic sheaves pE, F˚, α˚q, we put

Ki “ kerpE ´ E|Dr{Fiq

and then we get a sequence of T -flat coherent subsheaves Kt`1 “ Ep´DT q
Ă kt Ă ¨ ¨ ¨ Ă K2 Ă K1 “ E. For a real number α, there is an integer i

such that 1 ď i ď t ` 1 and αi´1 ă α ´ rαs ď αi, where α0 “ αt ´ 1

and αt`1 “ 1. Then we set

Eα “ Kip´rαsDT q.

Thus we obtain a filtration tEαuαPR of E parametrized by real numbers

that has the following properties

E{Eα isT ´ flat and if α ď β, then Eα Ě Eβ. (3.5.1)

if ε is a sufficiently small positive real number, then Eα´ε “ Eα..

(3.5.1)

For every real number α, we have Eα`1 “ Eαp´DT q. (3.5.3)
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E0 “ E. (3.5.4)

The length of the filtration for 0 ď α ď 1 i f f inite. (3.5.5)

Convesely, if E is a T -flat coherent sheaf on XT such that for ev-

ery geometric point y of T , Epyq is torsion free that E has a filtration

parametrized by R with the above properties, then we have a T -family

of parabolic sheaves. Thus we may use the notation E˚ for a T - family

of parabolic sheaves pE, F˚, α˚q.

3.6 Definition. Let E and E1
˚ be T -familes of parabolic sheaves. A

homomorphism f : E Ñ E of the undelying coherent sheaves is said to

be a homomorphism of paraboic sheaves if for all 0 ď α ă 1, we have

f pEαq Ă E1
α.

HomParpE˚, E1
˚q denotes the set of all homomorphisms of parabolic 258

sheaves of E˚ to E1
˚.

If one notes that for a stable parabolic sheaf E˚ on a projective varai-

ety, a homomorphism of E˚ to itself is the multiplication by an element

of the ground field k or HomParpE˚, E˚q – k, then one can prove the

following lemma by the same argument as the proof of Lemma 6.1 in

[5].

3.7 Lemma. Let A be an artinian local ring with residuce field k

and let E˚ be a SpecpAq-family of parabolic sheaves. Assume that the

restriction E “ E˚ bA k to th closed fiber is stable. Then the natural

homomorphism A Ñ HomParpE˚, E˚q is an isomorphism.

Let us go back to the situation of (3.4). Replacing the role of Lemma

6.1 argument of Lemma 6.3 of [5] by the above lemma, we get a basic

result on the action of G in U.

3.8 Lemma. The action of G on U is free.

It is well-known that this lemma implies the following (see [5],

Proposition 6.4).

3.9 Proposition. The natural morphism π : U Ñ W “ U{G is a

principal fiber bundle with group G
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Now we come to our proof of Proposition 3.2.

Proof of Proposition 3.2. There is universal space U whose quotient

by the group G is M̃pr, nq “ MpH,H˚, α˚q under the notatior before

Proposition 3.2. Since our moduli space Mpr, nq is open in M̃pr, nq
we have a “ G-invariant open subsheme P of U which mapped onto

Mpr, nq. Tlanks to Proposition 3.9 the natural quotient morphism π :

P Ñ Mpr, nq is a principal fiber bundle with group G and hence we

have only to show that P is smooth and has the right dimension. Put

X “ P2
C

. Fix an integer m which satisfies the conditions (3.3.1) and

(3.3.2) for our Mpr, nq. We set Hrmspxq “ Hpx ` mq. Take a point E

of Mpr, nqpCq and a C-vector space V of dimension N “ H0pX, Epmqq.

we have an surjection

θ : Vx “ V bC OX Ñ Epmq.

Since the kernel K of θ is locally free, HomOx
pK, Epmqq is the tangent

space of Q “ Quot
Hrms
Vx{X{C

at the point q that is given by the above se-

quence and an obstraction of the smoothness of Q at q is in H1pX,K_bOX

Epmqq. Since Ext2
OX

pE, Eq is dual space of HomOX
pE, Ep´3qq, it van-

ishes for stable E. We can apply the same argument as ion the proofs259

of Propositions 6.7 and 6.9 in [5] to our situation and we see that Q is

smooth and of dimension

2rn ´ r2 ` N2

at the point q. P is a folber space over an open subscheme of Q whose

fibers are an open subscheme of Quot
O

‘r
ℓ

{ℓ{C consisting of surjections

O‘r
ℓ

Ñ Oℓpr ´ 1q

such that the induced map of global sections in bijective. By Lemma 2.7

the space of obstructions for the smoothness of P over Q is

H1pℓ,Oℓprq‘r´1q “ 0. Thus P is smooth over Q and hence so is over

SpecpCq. Moreover, the dimension of the fibers is equal to

dim H0pℓ,Oℓprq‘r´1q “ r2 ´ 1. Combining this and the above result
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on the dimension of Q, we see that dimP “ 2rm ` N2 ´ 1. Since

dim G “ N2 ´ 1, Mpr, nq is of dimension 2rn at every point. Q.E.D.

Base on Proposition 3.2 and Hulek’s result stated in Introduction,

we can prove the following.

3.10 Theorem. Mpr, nq0 is connected.

Proof. Our proof is divided into several steps. We set as befor X to be

P2
C

.

(I) If r “ 1, then Mpr, nq is the moudli space of ideals with colenght

n which define 0-dimentsional closed subshcemes in Xzℓ. It is

well known that this is irreducible [2].

(II) Assume that r ě 2. By Hulek’s result we see that

Up0q “ tE˚ P Mpr, nq0|H0px, Eq “ H0pX, E_q “ 0u

is irreducible. In fact, we have a surjective morphism of a PGLprq-

bundle over Hulek’s parameter space of s-stable bundles to Up0q.

Let us set

Upaq “ tE˚ P Mpr, nq0| dim H0pX, Eq “ au,

Upa, bq “ tE˚ P Upaq|E – O‘b
X

‘ E1, E1 fl OX ‘ E1
1u.

Then Upaq is locally closed and Upa, bq is constructible in Mpr, nq0.

(III) We shall compute the dimension of Upa, bq. For an E˚ P Upa, bq, 260

there is an extension

0 Ñ O‘a
X

Ñ E Ñ J Ñ 0

because E is µ-semi-stable and c1pEq “ 0[[6], Lemma 1.1]. We

have moreover that J|ℓ – O‘a
x is a direct summand of E and put

E “ O‘b
X

‘ E1. Consider the exact sequence

0 Ñ O‘a´b
X

Ñ E1 Ñ J Ñ 0.
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For the double dual J1 of J, we set T “ J1{J and c “ dim H0px,T q.

Then we see

Ext2
Ox

pT,OXq – Ext1
OX

pJ,OXq

and dim H0px,Ext2
OX

pT,OXqq “ c. On the other hand, since

c2pJ_q
“ n ´ c, J_ is locally free and since H2pX, J_q “ 0, we have

dim H1px, J_q “ n ´ c ´ pr ´ aq ` d,

where d “ dim H0pX, J_q. Thus we see

dim Ext1
OX

pJ,O
‘pa´bq
X

q “ dim H1pX, pJ_q‘a´bq`
dim H0pX,Extt

Ox
pJ,OXq‘a´bq

“ pa ´ bqtn ´ pr ´ aq ` du.

If we change free bases of O‘a´b
X

, then we obtain the same sheaf.

Hence if dim Ext1
OX

pJ,OXq ă a ´ b, then every extension of J

by O‘a´b
X

contians OX as a direct factor, which is not the case.

Therefore, we get

a ´ b ď n ´ pr ´ aq ` d or

n ´ r ` b ` d ě 0

The extensions of J by O‘a´b
X

are now parametrized by a space of

dimension pa ´ bqtn ´ pr ´ aq ` du and each point of the space is

contained in a subspace of dimension pa´bq2 `dim EndOX
pJq´1

whose points parmetrize the same extension.

(IV) Let us fix a system of homogeneous coordinates px0 : x1q of ℓ and

identity J|ℓ with the free sheaf ‘r´q

i“1
Oℓei

. If we have a surjection

ϕ : J|ℓ “ ‘r´a
i“1
Oℓei

Ñ Oℓpr ´ a ´ 1q

and if f1px0, x1q “ ϕpe1q, . . . , fr´apx0, x1q “ ϕper´aq are liearly261

independent, then for general homogeneous forms g1, . . . , gr´a of
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degree a ´ 1 and gr´q`1, . . . , gr of degree r ´ 1, we define a map

ϕ̃ of ‘ of ‘r
i“1
Oℓei

to Oℓpr ´ 1q by

ϕ̃peiq “ gix
r´a
0

` xa
1 fi 1 ď i ď r ´ a

ϕ̃pe jq “ g j r ´ a ` 1 ď j ď r.

Choosing g j suitably, we obtain a surjective ϕ̃ : ‘r
i“1
Oℓei

Ñ
Oℓpr ´ 1q which induces a bijection between the spaces of global

sections. Conversely, if we have a homomorphism ψ of ‘r
i“1
Oℓei

to Oℓpr ´ 1q such that h1 “ ψpe1q, . . . , hr “ ψperq are linearly

independent. The we can write hi uniquely in the following way:

hi “ h1
ix

r´a
0

` xa
1h”

i

where h1
i
(or, h2

j
) is of degree a ´ 1 (or , r ´ a ´ 1, resp.). There is

a permutations σ of t1, . . . ru such that h2
σp1q, . . . , h

2
σpr´aq are lin-

early independent. Thus, after a permutation of indices, the above

procedure produces ψ from a homomorphism J|ℓ Ñ Oℓpr´a´1q
which induces a bijection between the spaces of global sections.

We see therefore that the parabolic structures on E are parametr-

tized by a fiber space over the space of parabolic structures of J

whose fibres are a finite union of open subschemes of an affine

space of dimension 2ra ´ a2.

(V) Every element of EndQX
pEq induces an endomorphism of the space

H0pX, Eq and hence gives rise to an element of EndQX
pJq. Let

EndJpEq denote the subspace of EndQX
pEq consisting of the ele-

ments which induce the identity on J. Then we have

dim EndJpEq ě dim EndOX
pEq ´ dim EndOX

pJq.

On the other hand, we see

EndOX
pEq “ EndOX

pO‘b
X

q ‘ HomOX
pO‘b

X
, E1q

‘ HomOX
pE1,O

‘b
X

q ‘ EndOX
pE1q.
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Since dim H0pX, J_q “ d, there is an exact sequence

0 Ñ J1 Ñ J Ñ G Ñ 0

with pG_q_ – O‘d
X

. For a ξ in

HomOX
pG,O‘a´b

X
q – H0px,O

‘dpa´bq
X

q,

we have a member of EndpE1q

E1 Ñ J Ñ G
ξÝÑ O‘a´b

X
Ñ E1.

Thus dim EndOX
pE1q ě dpa ´ bq ` 1. Therefore, we get the262

following inequality

dim EndJpEq ě dim EndOX
pEq ´ dim EndOX

pJq
ě b2 ` bpa ´ bq ` ab ` dpa ´ bq ` 1 ´ dim EndOX

pJq
“ ab ` ad ` 1 ´ dim EndOX

pJq

(VI) There is a couple pA, J̃˚q of a scheme A and an A-family J̃˚ of

parabolic sheaves which parametrizes all parabolic stable sheaves

J˚ with rank r ´ a and c2pJq “ n such that the restriction J|ℓ is

trivial vector bundle and H0pX, Jq “ 0. We may assume that A

is reduces and quasi-finite over Mpr ´ a, nq, and hence dim A ď
2npr ´ aq. By Proposition 2.8 the sheaf J defined in the step (III)

appears as the underlying sheaf of a parabolic sheaf parametrized

by J̃˚. For the underlying sheaf J̃ of the family J̃˚, we have a

resolution by a locally free sheaves

0 Ñ B1 Ñ B0 Ñ J̃ Ñ 0.

Using this resolution and splitting out A into the direct sum of

suitable subschemes, we can construct a locally free sheaf C on A

such that for every point y of A, we have a natural isomorphism

Cpyq – Ext1
OX

pJ̃pyq,OXq.
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Note that C is not necessarily of constant rank. On D “
Vppc_q‘a´bq we have a universal sectionΞ of the sheaf g˚pC‘a´bq,

where g : X ˆ D Ñ X ˆ A is the natural projection. Let ξi be the

projection of ξ to the i-the direct factor of C‘a´b. The subset

D0ty P D|ξ1pyq, . . . , ξa´bpyq span a linear subspace of rank a ´
b Cpyqu

0 Ñ O‘a´b
XˆD0

Ñ Ẽ1 Ñ g˚pJ̃q Ñ 0,

where we denote g|D0 by g. Let H be the maximal open sub-

scheme of D0 where Ẽ1 is locally free. Set Ẽ “ Ẽ1|XˆH ‘O‘b
XˆH

.

(III) tells us

dim D0 ď 2npr ´ aq ` pa ´ bqtn ´ pr ´ aq ` du.

Note here that d may depend on connected components of D0.

Furthermore, by the result of (III) again, each point of H is con-

tained. in a subspace of dimension pa ´ bq2 ` dim EndOX
pJq ´ 1

where Ẽ1 parmetrizes the same extensions.

(VII) By breaking up H into the direct sum of suitable subschemes, we 263

may assume that g˚pJ̃q|ℓˆH has a constant trivialization and hence

so is Ẽ|ℓˆH . By the result of (IV), the parabolic structure of g˚pJ̃q
provides us with a fiber space p : Z Ñ H and a Z-family Ẽ˚ of

parabolic stable vector bundles such that pX, Ẽ˚q parametrizes all

the parabolic stable sheaves contained in Upa, bq and that every

fiber of p is of dimension 2ra ´ a2. Thus we see that

dim Z ď 2npr ´ aq ` pa ´ bqtn ´ pr ´ aq ` du ` 2ra ´ a2

“ 2nr ´ na ´ nb ` ra ` rb ´ ab ` ad ´ bd

Moreover, the conclusion of (V) shows that on the fiber of p, each

point is contained in a closed subsheme of dimension at least ab`
ad ` 1 ´ dim EndOX

pJq whose points define the same parabolic

sheaf.

(VIII) The family Ẽ˚ gives rise to a morphism of Z to Mpr, nq0 whose
image is exactly our Upa, bq. Combining the results of (VI) and
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(VII) we get

dim Upa, bq ď 2nr ´ na ´ nb ` ra ` rb ´ ab ` ad ´ bd ´ pa ´ bq2

´ dim EndOX
pJq ` 1 ´ ab ´ ad ´ 1 ` dim EndOX

pJq
“ 2nr ´ pn ´ r ` aqa ´ pn ´ r ` b ` dqb

Since for every member E˚ of Upa, bq, the underlying sheaf E is

µ-semi-stable, Riemann-Roch implies

n ´ r ` a “ dim H1pX, Eq ě 0.

This and the inequality we obtained in (III) show that

dim Upa, bq ď 2nr.

Replacing E by E_ in the definition of Upaq and Upa, bq, we de-

fine U_paq and U_pa, bq. Then, by the same argument as above

we come to a family pZ1mE1
˚q of the dual bundles of the mem-

bers of U_pa, bq. By taking the dual basis of the trivial sheaf

E1|ℓˆZ1 , we have an isomorphism E1_|ℓˆZ1 Ñ E1|ℓˆZ1 . Combin-

ing this isomorphism and the parabolic structure of E1
˚, we obtain

a Z1-family E
1_
˚ of parabolic sheaves which parametrizes all the

members of U_pa, bq. The dimension of U_pa, bq is the same as

Upa, bq.

(IX) Assume that n ě r. In this case we see that

Mpr, nq0 “ Up0q
ď˜ ď

aě1,bě0

Upa, bq
¸ď˜ ď

aě1,bě0

U_pa, bq
¸
.

By our result in (VIII) we see that if a ď 1, the both dim Upa, bq
and dim U_pa, bq are less than 2rn. On the other hand, we know

that Up0q is irreducible by [3]. This completes the proof of this

case.
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(X) Assume that n ă r . Then, Riemann-Roch implies that for every 264

member E˚ of Mpr, nq0, we have dim0pX, Eq ě r ´ n. Thus we

see that

MpR, nq0 “ Upr ´ nq
ď˜ ď

aąr´n,bě0

Upa, bq
¸
.

As in (IX) if a ą r ´ n, then dim Upa, bq ă 2rn. This means that

it is sufficient to prive that Upr ´ nq is connected. For a member

E˚ of Upr ´ nq, there is an exact sequence

0 Ñ O‘r´n
X

Ñ E Ñ J Ñ 0.

According to the type of J,Upr ´ nq is deivided into three sub-

schemes:

V0 “ tE˚ P Upr ´ nq|Jis locally free,H0pX, J_q “ 0u
V1 “ tE˚ P Upr ´ nq|Jis locally free,H0pX, J_q ‰ 0u
V2 “ tE˚ P Upr ´ nq|Jis locally freeu.

For J of E˚ P V0, we have that H0pX, J_q “ 0, c1pJ_q “ 0,

c2pJ_q “ n, rpJ_q “ n and J_ is µ-semi-stable. Hence Riemann-

Roch implies that Ext1
OX

pJ,OXq “ H1pX, J_q “ 0. Then V0 is

contained in Upr ´n, r ´nq or the undelying sheaf E of a member

of V0 is written in a form O‘r´n
X

‘ J with J s-stable. Since these

J’s are parametrized by an irreducible variety, so are the members

of V0. This proves the irreducibilty of V0. Applying the argument

before (VIII) to the set tJ_|E˚ P V1u, we find that tJ˚|E˚ P V1u
is of dimension less the 2n2. Then the dimension of A in (VI) for

V1 for V1 is of dimension less the 2n2 and hence dim V1 ă 2nr. A

similar argument tells us that our remaining problem is to prove

that L “ tJ˚|E˚ P V2u is of dimension less than 2n2.

(XI) For the underlying sheaf J of a member J˚ of L, we set J
1

to be

the double dulal of J. Since J is locally free in a neighborhood
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of ℓ, the parabolic structure of J˚ induces of J1. J1{J is a tor-

sion sheaf supported by a 0-dimensional subscheme of X. L is

the disjoint union of L1, . . . , Ln, where Lm “ tx1, . . . xku be the

support of J1{J. If the length of the artinian module pJ1{Jqxi
is ai,

then there is a filtration 0 Ă T
piq
ai

Ă ¨ ¨ ¨ Ă T
piq
1

“ pJ1{Jqxi
such

that T
piq
j

{T
piq
j`1

– kpxiq. Let J
p1q
j

be the kernel of the sujection

J1 Ñ T
p1q
1

{T
p1q
j`1

and J
p2q
j

be the kernel of J
p1q
a1

Ñ T
p2q
1

{T
p2q
j`1

. Thus

we can define a filtration J
pkq
ak

Ă ¨ Ă J
pkq
1

Ă ¨ ¨ ¨ Ă J
p1q
a1

Ă ¨ ¨ ¨ Ă
J

p1q
1

Ă J1 such that J
piq
j

{J
piq
j`1

– kpxiq and J
piq
ai

{J
pi`1q
1

– kpxi`1q265

and we see that J
pkq
ak

“ J. Since J
pi´1q
ai´1

pXiq is an n-dimensional

vector space, the surjection of J
pi´1q
ai´1

to kpxiq is parametrized by

an pn ´ 1q-dimensional projective space. Since TorO
1

pkpxiq, kpxiqq
is isomorphic to kpxiq‘2, the exact sequence

TorO1 pkpxiqq, kpxiq Ñ J
piq
j

pxiq Ñ J
piq
j´1

pxiq Ñ kpxiq Ñ 0

shows us that dim J
piq
j

pxiq ď dim J
piq
j´1

pxiq ` 1. Therefore, sur-

jections of J
piq
j

to kpxiq is parametrized by a projective space of

dimension less than or equal to n ` j ´ 2, where O “ OX,xi
.

Fixing J1
˚tJ˚ P Lm|pJ_q_ – J1u is parametrized by a space of

dimemsion less than or equal to

δm “
kÿ

i“1

aiÿ

j“1

pn ` j ´ 2q ` 2k

“ nm `
kÿ

i“1

aipai ´ 3q
2

` 2k

“ nm `
kÿ

i“1

˜
a2

i

2
´ 3ai

2
` 2

¸
.

On the other hand, the space tJ1
˚|J˚ P Lmu is of dimension 2npn´

mq. Therefore Lm is of dimension at most 2npn ´ mq ` δm. Now
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we have

2npn ´ mq ` δm “ 2n2 ´ nm `
kÿ

i“1

˜
a2

i

2
´ 3ai

2
` 2

¸

ď 2n2 ´ m2 `
kÿ

i“1

˜
a2

i

2
´ 3ai

2
` 2

¸

“ 2n2 ´
kÿ

i“1

˜
a2

i

2
` 3ai

2
´ 2 ` ai

ÿ

j‰1

a j

¸
.

It is easy to see that

kÿ

i“1

˜
a2

i

2
` 3ai

2
´ 2 ` ai

ÿ

j‰i

a j

¸

is non-negative and equal to 0 if and only if n “ 1. If n “ 1,

then both V0 and V1 are empty and V2 is exactly tJ “ Ix with Ix

the ideal of a point x P Xzℓu. There is a unique locally free sheaf

Gx which is an extension of Ix by Ox. Finally we see that in this 266

case the set undelying sheaves of the members of Upr ´ nq is

tO‘r´2
X

‘ Gx|x P Xzℓu

which is parametrized by the irreducible variety Xzℓ. Q.E.D.

Now we come to the connectedness of the moduli space of marked

S Uprq-instantons.

3.11 Corollary. The moduli space MpS Uprq, nq of marked S Uprq-

instantons with instanton number n is connected.
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Numerically Effective line bundles which are not

ample

V. B. Mehta and S. Subramanian

1 Introduction

In [6], there is a construction of a line bundle on a complex projective 269

nonsingular variety which is ample on very propersubvariety but which

is nonnample on the ambient variety. The example is obtained as the

projective bundle associated to a “general” stable vector bundle of de-

gree zero on a compact Riemann surface of genus g ě 2. Now,w e can

show by an an algebraic argument valid in any characteristic, the exis-

tence of a variety of dimension ď 3 with a line bundle as above. The

details of the proof will appear elsewhere.

2

Let C be a complete nonsingular curve defined over an uncountable al-

gerbaically closed field (of any characteristic). Let Ms
r denote the mod-

uli space of stable bundles of rank r and gegree zero on C and Mss
r the

moduli of semistable bundles of rank r and degree zero. We assume

throught that the curve C is ordinary. We can show

2.1 Proposition. Let the characteristic of the ground field be positive

and F the frobenius morphism on C. There is a proper closed subset of

M˚
r such that for any stable bundle V in the complement of this closed

set, F˚V is also stable.

Proof. We use Artin’s theorem on the algrbraisation of formal moduli

space for proving the above proposition. We have as a corollary to the

proof of Proposition (2.1).
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2.1.1 Corollary. Let C be an oridinary curve. Then the rational map

f : Mss
r Ñ Mss

r induces by the Frobenius F : C Ñ C, is etale on an

open set, and in particular, dominant.

2.1.2 Corollary. Let C be an ordinary curve, For any positive integer270

k, there is a nonempty open subset of Ms
r such that for V in this open set,

Fm˚V is stable for 1 ď m ď k.

Proof. We apply Proposition (2.1) and Corollary (2.1.1) successively.

Q.E.D.

We have

2.2 Proposition. Given a finite etale morphism p : C1 Ñ C, there

eixsts a proper closed subset of Ms
r such that any vector bundle in the

complement of this closed set remains stable on C1.

We have

2.3 Proposition. For a fixed positive ieteger k, there is a nonempty

open subset of Ms
r such for any stable bundle V in this open set, there is

no nonzero homomorphism from a line bundle of degree zero to S kV.

Using the above results, we can show

2.4 Theorem. Let C be nonsigular ordinary curve of genus ě 2 over

an uncountable algebrically closed field (of any characteristic). There

is a dense subset of Ms
r such that for any stable bundle V in this dense

set, we have

1) Fk˚pVqis stable for all K ě 1.

2) For any separable finite morphism π : C̃ Ñ C, π˚pVq is stable.

3) There is no nonzero homomorphism from a line bundle of degree zero

to the symmetric power S kpVq for any K ě 1.

Remark. If C is a smooth curve defined over a finite field (of charac-

teristic p) then any continuous irreducible represenation ρ : π
alg

1
pCq Ñ

S Lpr,Fpq of the algebraic fundamental group of C of rank r over the

finite field defines a stable vector bundle V on C such that Fm˚V » V

for some m ď 1 (see [4]). Such a bundle V statisfies Fk˚pVq is stable
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for all K ě 1. We can construct such representations for any curve C of

genus g ě 2 when r is coprime to p, and for an ordinary curve C when

p divides r.

3
271

Let C be a nonsingular ordinary curve of genus ě 2, and V a stable

vector bundle of rank 3 degree zero on C satisfying the conditions of

Theorem (2.4) above. Let π : PpVq Ñ C be the projective bundle

associated to V and L “ OPpVqp1q the universal line bundle on PpVq.

Then we have

3.1 Theorem. The line bundle L is ample on very proper subvariety of

PpVq, but L is not ample on PpVq.

Proof. We can check that L.C ą 0 for any integral curve C, and that

L2. D ą 0 for any irreducible divisor D. This implies that L|D is ample

on D. This shows that L is ample on divisors in PpVq and hence on any

proper subvariety of PpVq. Also, L, is not ample on PpVq. Q.E.D.

3.2 Remark. The case r “ 2 is covered by the first part of Theorem

(3.1).
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Moduli of logarithmic connections

Nitin Nitsure

The talk was based on the paper [N] which will, appear elsewhere. 273

What follows is a summary of the results.

Let X be a non-singular projective variety, with S Ă X a divisor

with normal crossings. A logrithmic connection E “ pE,∇q on X with

sigularity over S is a torsion free coherent sheaf E together with a C-

linear map ∇ : E Ñ Ω1
X

rlog S s b E satisfying the Leibniz rule and

having curvature zero, where Ω1
X

rlog S s is the sheaf of 1-forms on X

with logarithmic singularities over S . By a theorem of Deligne [D],

a connection with curvature zero on a non-nonsigular quasi-projective

variety Y is regular if and only if given any Hironaka completion X of

Y (so that X is non-sigular projective and S “ X ´ Y is a divisor with

normal crossings), the connection extends to a logrithmic connections

on X with singularity over S .

Carlos Simpson has constructed in [S] a moduli scheme for non-

singular connections (with zero curvature) on a projective variety. A

simple example (see [N]) shows that a modulo scheme for regular con-

nections on a quasiprojective variety does note in general exist. There-

fore, we have to consider the moduli problem for loarithmic connections

on a projective variety.

The main difference between non-singular connections and logarith-

mic connections is that for logarithmic connections, we have to define

a notion of (semi)-stability, and restrict ourselves to these. We say that

a logarithmic connection is (semi-)stable, if usual inequality between

normalized Hilbert polynomials is satisfied for any ∇-invariant coher-

ent subsheaf. In the case of non-sigular connections on a projective

variety, the normalized Hilbert polynomial is always the same, so semi-

stability is automatically fullfilled. Followigng Simpson,s method, with

the extra feature of keeping track of (semi-)stability, we prove the exi-

tance of coarse moduli scheme for (S-equivalen classes of) semistable-
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logarithmic connections which have a given Hilbert polynomial. We

also show that the infinitesimal deformations of a locally free logarith-

mic connection E are parametrized by the first hypercohomology of the

logarithmic de Rham complex associated with End pEq.

A given regular connection on a quasi-projective variety Y has in-274

finitely many extensions as logarithmic connections on a given Hironaka

completion X of Y . A canonical choice of such an extension is given by

the fundamental construction of Deligne [D], which gives a locally free

logarithmic extension. Using our description, we show that certain ex-

tensions of any given regular connections are rigid, that is, they have

no infinitesimal deformations which keep the underlying regular con-

nections fixed. The cirterion for this is that no two distinct eigenvalues

of the residue the logarithmic connection must differ by an integer. In

paticular, this shows that Deligne’s construction gives a rigid extension.
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The Borel-Weil theorem and the Feynman path

integral

Kiyosato Okamoto

Introduction

Let p and q be the canonical mometum and coordinate of a particle. In 275

the operator method of quantization, corresponding ot p and q there are

operators, P,Q which in the coordinate representation have the form:

A “ q, P “ ´
?

´1
d

dp
.

The quantization means the correspondence between the Hamilto-

nian fucntion hpp, qq and the Hamiltonian operator H “ hpP,Qq, where

a certain procedure for ordering noncommuting operator arguments P

and Q is assmed. The path integral quantization is the method to com-

pute the kernel function of the unitary operator expp´
?

´1tHq.

Any mathematically strict definition of the path integral has not yet

given. In one tries to compute path integral in general one may en-

counter the difficulty of divergence of the path integral. Many examples,

however, show that the path integral is a very poweful tool to compute

the kernel function of the operator explicitly.

The purpose of this lecture is to explain what kinds of divergence we

have when we try to compute the path integral for complex polarizations

of a connected semisimple Lie group which contains a compact Cartan

subgroup and to show that we can regularize the path integral by the

process of “normal ordering” (cf. Chapter 13 in [10]). The details and

proofs of these results are given in the forthcoming paper [7].

Since a few in the audience do not seem to know about the Feyn-

man path integral I would like to start with explaining it form a point

of view of the theory of unitary representations, using the Heisenberg

group which is most deeply related with the quantum mechanics.
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The Feynman’s idea of the path integral can be easily and clearly276

understood if one computes the path integral on the coadjoint orbits of

the Heisenberg group:

G “

$
&
%

¨
˝

1 p r

1 q

1

˛
‚; p, q, r P R

,
.
- .

The Lie algebra of G is given by

g “

$
&
%

¨
˝

0 a c

0 b

0

˛
‚; a, b, c P R

,
.
- .

The dual space of g is identified with

g
˚ “

$
&
%

¨
˝

0

ξ 0

σ η 0

˛
‚; ξ, η, σ P R

,
.
- .

by the pairing

gˆ g˚ Q pX, λq ÞÝÑ trpλXq P R.

Any nontrivial coadjoint orbit is given by an element

λσ “

¨
˝

0

0 0

σ 0 0

˛
‚ for some σ ‰ 0

Then the isotropy subgroup at λσ is given by

Gλσ “

$
&
%

¨
˝

1 0 r

1 0

1

˛
‚; r P R

,
.
- ,

and the Lie algebra of Gλσ is

gλσ “

$
&
%

¨
˝

1 0 c

0 0

0

˛
‚; c P R

,
.
- .
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We consider the real polarization:

p “

$
&
%

¨
˝

0 a c

0 0

0

˛
‚; a, c P R

,
.
- .

Then the analytic subgroup of G corresponding to p is given by 277

P “

$
&
%

¨
˝

1 p r

1 0

1

˛
‚; p, r P R

,
.
- .

Clearly the Lie algebra homomorphism

p Q

¨
˝

0 a c

0 0

0

˛
‚ ÞÝÑ ´

?
´1σc P

?
´1R.

lifts to the unitary character ξλσ :

P Q

¨
˝

1 p r

1 0

1

˛
‚ ÞÝÑ e´

?
´1σr P Up1q.

Let Lξλσ denote the line bundle associated with ξλσ over the homoge-

nous space G{P. Then the space C8pLξλσ q of all complex valued C8

-sections of Lξλσ can be identified with

 
f P C8pGq; Fpgpq “ ξλσppq´1 f pgq pg P G, p P Pq

(
.

For any g P G we define an operator π
p

λσ
pgq on C8pLξλσ q : For f P

C8pLξλσ q
pπp

λσ
pgq f qpxq “ f pg´1xq px P Gq.

LetH
p

λσ
be the Hilbert space of all square integrable sections of Lξλ .

Then π
p

λσ
is a unitary representation of G onH

p

λσ
.

We put

M “

$
&
%

¨
˝

1 0 0

1 q

1

˛
‚; q P R

,
.
- .
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Then as is easily seen the product mapping M ˆ P ÝÑ G is a real

analytic isomorphism which is surjective. Let f P C8pLξλσ q. Then,

since

f pg

¨
˝

1 p r

1 0

1

˛
‚q “ e

?
´1σr f pgq for q P G,

¨
˝

1 p r

1 0

1

˛
‚P P,

f can be uniquely determined by its values on M. From this we obtain

the following onto-isometry:

H
p

λσ
Q f ÞÝÑ F P L2pRq

where278

Fpqq “ f p

¨
˝

1 0 0

1 q

1

˛
‚q pq P Rq.

For any g “ exp

¨
˝

0 a c

0 b

0

˛
‚P G, we define a unitary operater U

p

λσ
pgq

on L2pRq such that the diagram below is commutative:

H
p

λσ
//

π
p

λσ
pgq

��

L2pRq
U
p

λσ
pgq

��
H
p

λσ
// L2pRq.

Then we have

pU
p

λσ
Fqpqq “ f pg´1

¨
˝

1 0 0

1 q

1

˛
‚q

“ f p

¨
˝

1 ´a ´c ` ab
2

1 ´b

1

˛
‚
¨
˝

1 0 0

1 q

1

˛
‚q
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“ f p

¨
˝

1 0 0

1 q ´ b

1

˛
‚
¨
˝

1 ´a ´c ` ab
2

´ aq

1 0

1

˛
‚q

“ e
?

´1σp´c` ab
2

´aqqFpq ´ bq.

Now we show that the above unitary operator is obtained by the path

integral.

In the following, for the definition of the connection form θλσ , the

hamiltonian HY and the action
şT

0
γ˚α ´ HYdt in the general case the

audience may refer to the introduction of the paper [5].

We use the local coordinates q, p, r of g P G as follows:

G Q g “

¨
˝

1 0 0

1 q

1

˛
‚
¨
˝

1 p r

1 0

1

˛
‚.

Since the canonical 1-form θ is given by g´1dg, we have

θλσ “ă λσ, θ ą“ trpλσg´1dgq “ σpdr ´ pdqq.

We choose 279

αp “ ´σpdq.

Then
dα f p

2π
“ ´σdp ^ dq

2π
.

For Y P g, the hamiltonian HY is given by

HY “ trpλσg´1Ygq “ σpaq ´ bp ` cq

where Y “

¨
˝

0 a c

0 b

0

˛
‚. The action is given by

ż T

0

γ˚α ´ HYdt “
ż T

0

t´σpptqqptq ´ σpaq ´ bp ` cqudt.
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We divide the time interval r0,T s into N-equal small intervals
“

k´1
N

T, k
N

T
‰

ż T

0

γ˚α ´ HYdt “
Nÿ

k“1

ż k
n

T

k´1
N

T

γ˚α ´ HYdt.

The physicists’ calculation rule asserts that one should take the “order-

ing”:

Nÿ

k“1

"
´σpk´1pqk ´ qk´1q ´ σpa

qk ` qk´1

2
´ bpk´1 ` cq T

N

*
.

This choice of the ordering can be mathematically formulated as

follows.

We take the paths: for t P
“

k´1
N

T, k
N

T
‰

qptq “ qk´1 ` pt ´ k ´ 1

N
T qqk ´ qk´1

T{N
,

pptq “ pk´1,

qp0q “ q, and qpT q “ q1.

Then the action for the above path becomes

Nÿ

k“1

ż k
N

T

k´1
N

T

t´σpptqqptq ´ σpaq ´ bp ` cqudt

“
Nÿ

k“1

"
´σpk´1pqk ´ qk´1q ´ σpa

qk ` qk´1

2
´ bpk´1 ` cq T

N

*

The Feynman path integral asserts that the transition amplitude be-

tween the point q “ q0 and the point q1 “ qN is given by the kernel280

function which is computed as follows:
K
p

Y
pq1, q; T q

“ lim
NÑ8

ż 8

´8
¨ ¨ ¨

ż 8

´8

ż 8

´8
¨ ¨ ¨

ż 8

´8
|σ|dp0

2π
¨ ¨ ¨ |σ|dpN´1

2π
dq1 ¨ ¨ ¨ dqN´1

ˆ exp

#
?

´1σ

Nÿ

k“1

„
´pk´1pqk ´ qk´1q ´ pa

qk ` qk´1

2
´ bpk´1 ` cq T

N

+
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“ lim
NÑ8

ż 8

´8
¨ ¨ ¨

ż 8

´8
dq1 ¨ ¨ ¨ dqN´1

Nź

k“1

δp´qk ` qk´1 ` b
T

N
q

ˆ
#

´
?

´1σ

Nÿ

k“1

papqk ` qk´1q
2

` cq T

N

+

“ lim
NÑ8

δp´qN ` q0bT q exp

"
´

?
´1σpaT pq0 ` bT

2
q ` cT q

*

“ δp´q1 ` qbT q exp

"
´

?
´1σpaqT ` abT 2

2
` cT q

*
.

For F P C8
c pRq we have

ş8
´8 K

p

Y
pq1, q; T qFpqqdq

“ exp

"
´

?
´1σ

ˆ
aq1T ´ abT 2

2
` cT

˙*
Fpq1 ´ bT q

“ pU
p

λσ
pexp TYqFqpq1q.

Thus the path integral gives our unitary operator.

In the above quantization, the hamiltonian function HYpp, qq corre-

sponds to

?
´1

d

dt
U
p

λσ
pexp tYq|t“0 “ σpaq ` cq ´

?
´1b

d

dq
,

which is slightly different form

HYp´
?

´1
d

dq
, qq “ σpaq ` c `

?
´1b

d

dq
q.

This difference comes from the fact that we chose αp “ ´σpdq whereas

physicists usually take pdq.

1 Coherent representation
281

In this section, we compute the path integral for unitary representations

realized by the Borel-Wiel theorem for the Heisenberg group. In other

323



324 Kiyosato Okamoto

words, we compute the path integral for a complex polarization which is

called by physicists the path integral for a complex polarization which

is called by physicists the path integral for the coheretnt representation.

We shall show that the path integral, also in this case, gives unitary

operators of these representations.

The complexification GC of G and gC of g are given by

GC “

$
&
%

¨
˝

1 p r

1 q

1

˛
‚; p, q, r P C

,
.
- ,

g
C “

$
&
%

¨
˝

0 a c

0 b

0

˛
‚; a, b, c P C

,
.
- .

we consider the complex polarization defined by

p “

$
&
%

¨
˝

0
?

´1b c

0 b

0

˛
‚; a, b, c P C

,
.
- .

We denote by P the complex analytic subgroup of GC corresponding

to p. We put W “ GP “ GC. Then it is easy to see that Lie algebra

homomorphism

p Q

¨
˝

0
?

´1b c

0 b

0

˛
‚ ÞÝÑ ´

?
´1σc P C

lifts uniquely to the holomorphic character ξλλσ :

P Q

¨
˝

1
?

´1b c `
?

´1
2

b2

1 b

1

˛
‚ ÞÝÑ e´

?
´1σc P C˚.

We denote by Lξλσ the holomorphic line bundle on GC{P associated

with the character ξλλσ .
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We denote by ΓpLξλσ q the space of all holomorphic sections of Lξλσ
and by ΓpCq the space of all holomorphic functions on C.

We use the coordinates of g P G:282

g “ exp

¨
˚̊
˚̋

0 ´
?

´1

2
z 0

0 1
2
z

0

˛
‹‹‹‚exp

¨
˚̊
˚̊
˝

0 ´
?

´1

2
z r `

?
´1

4
|z|2

0 1
2
z

0

˛
‹‹‹‹‚

“

¨
˚̊
˚̊
˝

1 ´
?

´1

2
z ´

?
´1

8
z2

1 1
2
z

1

˛
‹‹‹‹‚

¨
˚̊
˚̊
˝

1 ´
?

´1

2
z r `

?
´1

4
|z|2 `

?
´1

8
z

2

1 1
2
z

1

˛
‹‹‹‹‚

where z P C, r P R.

We have the isomorphism

Γ

´
Lξλλσ

¯
Q f ÞÝÑP ΓpCq

where

FpZq “ f p

¨
˚̊
˚̊
˝

1 ´
?

´1
2

z ´
?

´1

8
z2

1 1
2
z

1

˛
‹‹‹‹‚

q

We denotes by Γ2pLξλσ q the Hilbert space of all square integrable

holomprphic sections of Lξλσ and by Γ2
´

C,
|σ|
2π

e´σ
2

|z|2
¯

For any g P G we define an operator π
p

λσ
pgq on Γ2pLξλσ q : For f P

Γ2pLξλσ q
pπp

λσ
pgq f qpxq “ f pg´1xq px P Gq.

Then π
p

λσ
is a unitary representation of G on Γ2pLξλσ q. Since

ż

G{Gλσ

| f pgq|2ωλσ “
ż

C

ˇ̌
ˇ̌e´σ|z|2

4 FpZq
ˇ̌
ˇ̌
2

|σ|dzdz

2π
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“
ż

C

|Fpzq|2e´σ|z|2
2 |σ|dzdz

2π
,

where we denote by ωλσ the canonical symplectic form on the coadjoint

orbit Oλσ “ G{Gλσ and we put

dzdz “
?

´1

2
dz ^ dz.

The above isomorphism gives an isometry of Γ2pLξλσ q onto Γ2pC,
|σ|
2π

e´σ
2

|z|2q.

As is easily seen Γ2pC,
|σ|
2π

e´σ
2

|z|2q ‰ t0u if and only if σ ą 0. If283

follows that

Γ2pLξλσ q ‰ t0u if and only if σ ą 0.

For the rest of the section we assume that σ ą 0.

For any g “ exp
`
0 a c 0 b 0

˘
P G, we define a uni-

tary operator U
p

λσ
pgq on Γ2pC, σ

2π
e´σ

2
|z|2q such that the diagram below

is commutative:

Γ2pLξλσ q //

π
p

λσ
pgq

��

Γ2pC, σ
2π

e´σ
2

|z|2q
U
p

λσ
pgq

��

Γ2pLξλσ q // Γ2pC, σ
2π

e´σ
2

|z|2q

Then we have pU
p

λσ
pgqFqpzq

“ f pg´1

¨
˚̊
˚̊
˝

1 ´
?

´1
2

z ´
?

´1

8
z2

1 1
2
z

1

˛
‹‹‹‹‚

q

“ f p

¨
˝

1 ´a ´c ` ab
2

1 ´b

1

˛
‚

¨
˚̊
˚̊
˝

1 ´
?

´1
2

z ´
?

´1

8
z2

1 1
2
z

1

˛
‹‹‹‹‚

q
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“ f p

¨
˚̊
˚̊
˝

1 ´
?

´1
2

pz ´ γq ´
?

´1

8
pz ´ γq2

1 1
2
pz ´ γq

1

˛
‹‹‹‹‚

ˆ

¨
˚̊
˚̋

1 ´
?

´1γ
2

´c `
?

´1
4

|γ|2 ´
?

´1
2
γz `

?
´1
8
γ2

1 ´γ

2

1

˛
‹‹‹‚q

“ eσp´
?

´1c´ 1
4

|γ|2` 1
2
γzqFpz ´ γq,

Where γ “ b `
?

´1a.

It is well-known that U
p

λσ
is an irreducible unitary representation

of G on Γ2pC, σ
2π

e´σ
2

|z|2q.

Using the parametrization:

g “

¨
˚̊
˚̊
˝

1 ´
?

´1
2

z ´
?

´1

8
z2

1 1
2
z

1

˛
‹‹‹‹‚

¨
˚̊
˚̋

1
?

´1
2

z r `
?

´1
4

|z|2 `
?

´1
8

z2

1 1
2
z

1

˛
‹‹‹‚,

we have 284

θλσ “ trpλσg´1dgq “ σpdr `
?

´1
zdz ´ zdz

4
q,

HY “ σ

ˆ?
´1

γz ´ γz

2
` c

˙
.

We choose αp “ ´
?

´1σ
2

zdz. Then we have

1

2π
dαp “

?
´1σdz ^ dz

4π
.

For fixed z, z1 P C we define the paths: For t P
“

k´1
N

T, k
N

T
‰

zptq “ zk´1,
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zptq “ zk´1 `
ˆ

t ´ k ´ 1

N
T

˙
zk ´ zk´1

T{N
,

zp0q “ z and zpT q “ z1.

Then the action becomes

ż T

0

"
1

2
σzptq9zptq ´

?
´1σ

ˆ ?
´1γzptq ´

?
´1γzptq

2
` c

˙*
dt

“
Nÿ

k“1

ż k
N

T

k´1
N

T

"
1

2
σzptq9zptq ´

?
´1σ

ˆ ?
´1γzptq ´

?
´1γzptq

2
` c

˙*
dt

“ σ

Nÿ

k“1

„
1

2
zk´1pzk ´ zk´1q ´

ˆ
γ

2
zk´1 ´ γ

4
pzk ` zk´1q `

?
´1c

˙
T

N


.

The following lemma can be easily proved.

Lemma 1. We have the following formula for c1, c2 P C.

ż

C

σdz1dz1

2π
expσ

"
´1

2
|z|2 ` z1

ˆ
1

2
z ` c1

˙
` z1

ˆ
1

2
z2 ´ c2

˙*

“ expσ

"
z2
ˆ

z

2
` c1

˙
´ 2c2

ˆ
z

2
` c1

˙*
.

Using this lemma, we can compute the path integral explicitly
as follows:285

K
p

Y
pz1, z; T q

“ lim
NÑ8

ż

C

¨ ¨ ¨
ż

C

σdz1dz1

2π
¨ ¨ ¨ σdzN´1dzN´1

2π

ˆ exp

#
σ

Nÿ

k“1

„
1

2
zk´1pzk ´ zk´1q ´

ˆ
γ

2
zk´1 ´ γ

4
pzk ` zk´1q `

?
´1c

˙
T

N

+

“ lim
NÑ8

ż

C

¨ ¨ ¨
ż

C

σdz1dz1

2π
¨ ¨ ¨ σdzN´1dzN´1

2π

ˆ exp

#
σ

Nÿ

k“1

˜
´1

2
|zk´1|2 ` zk´1p zk

2
´ γT

2N
q ` zk´1

T

2N

¸
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`σpzN ´ z0qγT

4N
´

?
´1σcT

+

“ lim
NÑ8

ż

C

¨ ¨ ¨
ż

C

σdz1dz1

2π
¨ ¨ ¨ σdzN´1dzN´1

2π

ˆ exp

"
σ

ˆ
´1

2
|z0|2 ´ z0

γT

2N
` z0

γT

2N

˙

` σ

ˆ
´1

2
|z1|2 ` z1

ˆ
z2

2
´ γT

2N

˙
` z1

ˆ
z0

2
` γT

2N

˙˙

` σ

ˆ
´1

2
|z2|2 ` z2

ˆ
z3

2
´ γT

2N

˙
` z2

γT

2N

˙

` σ

Nÿ

k“4

ˆ
´1

2
|zk´1|2 ` zk´1

ˆ
zk

2
´ γT

2N

˙
` zk´1

γT

2N

˙

`σpzN ´ z0qγT

2N
´

?
´1σcT

*

“
ˆ

lim
NÑ8

ż

C

¨ ¨ ¨
ż

C

σdz2dz2

2π
¨ ¨ ¨ σdzN´1dzN´1

2π

˙

ˆ exp

"
σ

ˆ
´1

2
|z0| ´ z0

γT

2N
` z0

γT

2N

˙

` σ

ˆ
´1

2
|z2|2 ` z2

ˆ
z3

2
´ γT

2N

˙
` z2

ˆ
z0

2
` 2

γT

2N

˙
´ γT

N

ˆ
z0

2
` γT

2N

˙˙

` σ

Nÿ

k“4

ˆ
´1

2
|zk´1|2 ` zk´1

ˆ
zk

2
´ γT

2N

˙
` zk´1

γT

2N

˙

` σpzN ´ z0qγT

4N
´

?
´1σcT

*

repeating the above procedure, 286

“ lim
NÑ8

exp

"
σ

ˆ
´1

2
|z0|2 ` zN

ˆ
z0

2
` γT

2

˙
´ γT

ˆ
z0

2
` 1

2

γT

2

˙
´

?
´1cT

˙

`σ
ˆ

´z0

γT

2N
` pz0 ´ zNqγT

4N
` γT

4N
pz0 ` γT q

˙*
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“ exp

"
σ

ˆ
´1

2
|z|2 ` z1

ˆ
z

2
` γT

2

˙
´ γT

ˆ
z

2
` γT

4

˙
´

?
´1cT

˙*

Thus for any Y “

¨
˝

0 a c

0 b

0

˛
‚P g, we have

ż

C

σdzdz

2π
K
p

Y
pz1, z : T qFpzq

“
ż

C

σdzdz

2π

"
σ

ˆ
´1

2
|z|2 ` 1

2
zpz ´ γT q ` 1

2
z1γT

´1

4
|γ|2T 2 ´

?
´1cT

˙*
Fpzq

“ exp

"
σ

ˆ
1

2
z1γT ´ 1

4
|γ|2T 2 ´

?
´1cT

˙*
Fpz1 ´ γT q

“ pU
p

λσ
pexp TYqFqpz1q.

2 Borel-Weil theorem

In this section, we consider unitary representations realized by the Borel-

Weil theorem for semisimple Lie groups.

Let G be a connected semisimple Lie group such that there exists

a complexification GC with π1pGCq “ t1u and such that rank G “
dim T,T a maximal torus of G. Let K be a maximal compact subgroup

of G which contains T , and k the Lie algebra of K. Note that G can

be realized as a matrix group. We denote the conjugation of GC with

respect to G, and that of gC with respect to g, both by - Let g and h be

the Lie algebras of G and T . We denote complexifications of g and h by287

gC and hC, respectively. Then hC is a Cartan subalgebra of gC.

Let ∆ denote the set of all nonzero roots and ∆` the set of all positive

roots. Then we have root space decomposition

g
C “ hC `

ÿ

αP∆
g
α.
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Define

n
˘ “

ÿ

αP∆`
g

˘α, b “ hC ` n´.

Let N,N´, B and T C be the analytic subgroups corresponding to n`, n´, b,
and hC, respectively.

We fix an integral form Λ on hC. Then

ξΛ : T ÝÑ Up1q, exp H ÞÝÑ eΛpHq

define a unitary character of T And ξΛ extends uniquely to a holomo-

prhic one-dimensional representation of B:

ξΛ : B “ T CN´ ÝÑ Cˆ, exp H ¨ n´ ÞÝÑ eΛpHq.

Let L̃Λ be the holomorphic line bundle over GC{B associated to the

holomorphic one-dimensional representation ξΛ of B. We denote by

LΛ the restriction of L̃Λ to the open submanifold G{T of GC{B:

G

��

�

� // GB

��

�

� // GC

��
G{T “ GB{B

�

� // GC{B

and

LΛ

��

�

� // L̃Λ

��
G{T

�

� // GC{B.

Then we can indentify the space of all holomorphic sections of LΛ with

ΓpLΛq “
!

f : GB
holÝÑ C; f pxbq “ ξΛpbq´1 f pxq, x P GB, b P B

)
.

Let πΛ be a representation of G on ΓpLΛq defined by

πΛpgq f pxq “ f pg´1xq for g P G, x P GB and f P ΓpLΛq.
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For any f P ΓpLΛq we define 288

|| f ||2 “
ż

G

| f pgq|2dg,

where dg is the Haar measure on G. We put

Γ2pLΛq “ t f P ΓpLΛq; || f || ă `8u.

Then the Borel-Weil theorem asserts that pπΛ,Γ2pLΛqq is an irreducible

unitary representations of G (Bott [1], Kostant [8] and Harish-Chandra

[2] [3] [4]).

For the moment we assume that G is noncompact.

We fix a Cartan decomposition of g:

g “ k` p.

We denote complexification of k and p by kC and f pC, respectively. Let

∆c and ∆n denote the set of all compact roots and noncompact roots,

respectively.

Now we assume that Γ2pLΛq ‰ 0. Then there exists an ordering

in the dual space of hR “ ih so that every positive noncompact root

os larger than every compact positive root. The ordering determines

sets of compact positive roots ∆`
c and noncompact positive roots ∆`

n .

Furthermore Λ satisfies the following two conditions:

xΛ, αy ě 0 for α P ∆`
c ,

xΛ` ρ, αy ă 0 for α P ∆`
n ,

where ρ “ 1
2

ř
αP∆` α. Then there exists a unique element ψΛ in ΓpLΛq

which satisfies the following conditions:

πΛphqψΛ “ ξΛphqψΛ for h P T,

dπΛpXqψΛ “ 0 for X P n`,

ψΛpeq “ 1,
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where dπΛ is the complexfication of the differential representation of

πΛ. One can show that ψΛ is an element of ΓpLΛq. We normalize dg so

that
ş

G
|ψΛpgq|2dg “ 1.

Define D to be an open subset n` which satisfies exp D ¨ B “ GB X NB,

where exp is the exponential map of n` onto N:

exp : n` „ // N

Y Y
D // exp D.

For each α P ∆, we choose an Eα of gα such that 289

BpEα, E´αq “ 1

and

Eα ´ E´α,
?

´1pEα ` E´αq P gu,
where Bp¨, ¨q is the Killing form of gC and gu “ k`

?
´1p, the compact

real form of gC. Note that

Eα “
"

´E´α for α P ∆c,

E´α for α P ∆n

We put m “ dim n` and introduce holomorphic coordinate on n` and

n´ by

Cm Ñ n`, pzαqαP∆` ÞÝÑ z “
ÿ

αP∆`
zαEα,

Cm Ñ n´, pwαqαP∆` ÞÝÑ w “
ÿ

αP∆`
wαE´α

We put

nz “ exp
ÿ

αP∆`
zαEα P N,

n´
w “ exp

ÿ

αP∆`
wαE´α P N´.
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Let ΓpDq be the space of all holomorphic functions on D. The following

correspondence gives an isomorphism of ΓpLΛq into ΓpDq:

Φ : ΓpLΛq ÝÑ ΓpDq, f ÞÝÑ F,

where

Fpzq “ f pnzq for z P D.

We putHΛ “ ΦpΓ2pLΛqq. Let us denote by UΛpgq the representation of

G onHΛ such that the diagram

Γ2pLΛq //

πΛpgq
��

HΛ

UΛpgq
��

Γ2pLΛq // HΛ

is commutative for all g P G.

We normalize the invariant measure µ onG{T such that

ż

G

f pgqdg “
ż

G{T

ˆż

T

f pghqdh

˙
dµpgT q for any f P C8

c pGq,

where dh is the Haar measure on T such that
ş

T
dh “ 1.290

We denote the measure on D also by µ which is induced by the

complex analytic isomorphism:

φ : D ãÑ G{T.

By the definition of D, φpDq is open dense in G{T . For any x P NT CN´

we denote the N´,T C´ and N´-component by npxq, hpxq and n´pxq,

respectively. Then, for any f P ΓpLΛq, g P G and h P T we have

| f pghq| “ | f pgq| and |ξΛphpghqq| “ |ξΛphpgqq|.

This shows that | f pgq| and |ξΛphpgqq| can be regraded as functions on

G{T .

We put

JΛpzq “ |ξΛphpφpzqqq|´2.
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Then we have
ż

G

| f pgq|2dg “
ż

G{T

| f pgq|2dµpgT q

“
ż

D

|Fpzq|2JΛpzqdµpzq.

We define

Γ2pDq “ tF P ΓpDq; ||F|| ă `8u,
where

||F||2 “
ż

D

|Fpzq|2JΛpzqdµpzq.

In case that G is compact, we remark in the above that

G “ K, GB ´ GC, D “ n`, g “ k, p “ 0,

∆c “ ∆, ∆n “ H, Γ2pLΛq “ ΓpLΛq,

and ΓpLΛq ‰ t0u if and only if Λ is dominant.

For the rest of this paper we assume that Γ2pLΛq ‰ t0u.

Suppose that G is noncompact. We put

p˘ “
ÿ

αP∆˘
n

g
α.

We denote by KC, P` and P´ be the analytic subgroups of GC corre-

sponding to kC, p` and p´, respectively. Then there is a unique open

subset Ω of p` such that GB “ GKCP´ “ expΩKCP´. We put

W “ P`KCP´. Then ψΛ is uniquely extended to a holomorphic func-

tion on W

Henceforth, throughout the paper, the discussions are valid for the 291

compact case as well as for the noncompact case.

Define a scalar function KΛ on GB ˆ GB by

KΛpg1, g2q “ ψΛpg˚
2 g1q.

ThenKΛp¨, g2q, with g2 fixed, can be regarded as an elemetn of Γ2pLΛq.
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We define a scalar function KΛ on D ˆ D by

KΛpz1, z2q “ KΛpnz1 , nz2q.

Note that KΛpz1, z2q is holomorphic in the first variable and anti-holomor-

phic in the second and that it can be regarded, with nz2 fixed, as an ele-

ment ofHΛ.

Now we define operators KΛ and KΛ on Γ2pLΛq andHΛ by

pKΛ f qpg2q “
ż

G

KΛpg2, g1q f pg1qdg1 for f P Γ2pLΛq

and

pKΛFqpz2q “
ż

D

KΛpz2, z1qFpz1qJΛpz1qdµpz1q for F P HΛ,

where dg1 is the Haar measure on G. Then we have the following com-

mutative diagram:

Γ2pLΛq //

KΛ
��

HΛ

KΛ

��
Γ2pLΛq // HΛ.

The important fact which we use in the next section is that KΛ is the

indentity operator.

3 Path Integrals

We keep the notation of the previous section.

In [5], we tried to compute path integrals for the complex polariza-

tion of S Up1, 1q and S Up2q and we encountered the curcial difficulty

of divergence of the path integrals. In [6], by taking the operator or-

dering into account and the regularizing the path integrals by use of the

explicit form of the integrand, we computed path integrals and proved

that the path integral gives the kernel fucntion of the irreducible unitary

representation of S Up1, 1q and S Up2q. In [7], we gave an idea how to292
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regularize the path integrals for complex polarizations of any connected

semisimple Lie group G which contains a comnpact Cartan subgroup T

and showed, along this idea, that the path integral gives the kernel func-

tion of the irreducible unitary representation of G realized by Borel-Wiel

theory.

Our idea is, in a sense, nothing but to reularize the path integral

using “normal ordering” (cf. Chapter 13 in [10]) and can be explined as

follows.

Put λ “
?

´1Λ. We extend λ to an element of the dual space of g

which vanishes on the orthgonal complement of h in g with respect to

the killing form. Then for any element Y of the Lie algebra of G, the

Hamiltonian on the flag manifold G{T is defined by

HYpgq “ xAd˚pgqλ,Yy
“

?
´1ΛpAdpg´1qYq.

Since the path integral of this Hamiltonian is divergent we regularize it

by replacing

e
?

´1HY pgq “ eΛpHpAdpg´1qYqq

“ ξΛpexppHpAdpg´1qYqqq

by

ξΛphpexppAdpg´1qYqqq,
whereH and h denote the projection operators:

H : n` ` hC ` f n´ ÝÑ hC,
h : exp n` exp hC exp n´ ÝÑ exp hC “ T C.

Remark 1. For simplicity we assume that G is realized by a linear

group. For any X P gC, we decompose X “ X` ` X0 ` X´, where

X` P n`, X0 P hC and x´ P n´. We define the “normal ordering” : : by

the rule such that the elements in n` appear in teh left, the elements in

hC in the middle and the elements in n´ in the right. Then we have

: exppX` ` X0 ` X´q :“ exp X´ exp X0 exp x´.
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For any X P gC we define ξΛpexp Xq “ eΛpXq. Then the above regular-

ization means that we replace

ξΛpexppX` ` X0 ` X´qq

by293

ξΛpexp x´qξΛpexp X0qξΛpexp X´q.

Before we start computing path integrals on the flag manifold G{T we

prepare several lemmas.

Lemma 2. For any g P NB we decompose it as

g “ nzn
´
w t where nz P N, n´

w P N´, t P T C.

Suppose that g P G X NB. Then we can express w in terms of z and z

which we denote w by wpz, zq. And we have

KΛpz, zq “ ξΛpt˚tq and JΛpzq “ KΛpz, zq´1.

For any z P D, we put gpz, zq “ nzn
´
wpz,zq.

Let d denote the exterior derivative on D. We decompose it as d “
B ` B, where B and B are holomorphic part and and anti-holomorphic

part of d, respectively.

Define

θ “ λpg´1dgq “ λpn´1
w n´1

z Bnzn
´
w q ` λpt´1dtq,

where g “ nzn
´
w t P G. And we choose

α “ λpn´´1

w n´1
z Bnzn

´
w q.

For any Y P f g, the Hamiltonian functions is given by

HYpgq “ xAd˚pgqλ,Yy “ xAd˚pgpz, zqqλ,Yy,

where g “ gpz, zq P G.
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If we decompose g “ nzn
´
w t P G X NB as in Lemma 2, then we can

show that

Λpn´´1

w n´1
z Bnzn

´
w q “ ´Λpptt˚q´1Bptt˚qq

“ ´B log KΛpz, zq.

It follows that α “ ´
?

´1B log KΛpz, zq.

Now we consider the Hamiltonian part of the action. Let

Kwpzq “ KΛpz,wq

and regard it as an element ofHΛ.

For any X P gC, we decompose it as X “ X``H`X´ with X˘ P n˘ 294

and H P hC. Then we put HpXq “ H.

Lemma 3. For any X P gC and g “ nzn
´
w t P G X NB, using the above

notation, we have

ξΛphpexp εXqq “ ξΛpexp εHpXqq ` Opεq2

and

pUΛpexp εXqKzqpzq “ KzpzqξΛphpg´1 exp εXgqq,
for sufficiently small ε. We put z0 “ z and zN “ z1. First we compute

the path integrals without Hamiltonians. Taking the same paths as in

[5], we generalize Propositions 6.1 and 6.2 in [5] as follows:

ż
Dpz, zq exp

ˆ?
´1

ż T

0

γ˚α

˙

“ lim
NÑ8

ż

D

¨ ¨ ¨
ż

D

N´1ź

i“1

dµpziq exp

˜
Nÿ

k“1

ż k
N

T

k´1
N

T

B log KΛpzptq, zk´1q
¸

“ lim
NÑ8

ż

D

¨ ¨ ¨
ż

D

N´1ź

i“1

dµpziq exp

˜
Nÿ

k“1

log
KΛpzk, zk´1q

KΛpzk´1, zk´1q

¸

“ lim
NÑ8

ż

D

¨ ¨ ¨
ż

D

N´1ź

i“1

dµpziq exp

Nź

k“1

KΛpzk, zk´1q
KΛpzk´1, zk´1q
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“ lim
NÑ8

ż

D

¨ ¨ ¨
ż

D

JΛpz0q
N´1ź

i“1

JΛpziqdµpziq
Nź

k“1

KΛpzk, zk´1q

“ JΛKΛpz1, zq,

where we used Lemma 2 and the fact that KΛ is the identity operator.

Next, for any Y P g, we quantize the Hamiltonian HY by choosing

the following ordering:

z Ñ zk, z Ñ zk´1. (C1)

In [5] we proposed to compute the path integral in the following way:

ż
Dpz, zq exp

ˆ?
´1

ż T

0

γ˚α ´ HYpgpz, zqqdt

˙

“ lim
NÑ8

ż

D

¨ ¨ ¨
ż

D

N´1ź

i“1

dµpziq exp

˜
Nÿ

k“1

log
KΛpzk, zk´1q

KΛpzk´1, zk´1q

¸

ˆ exp

˜
Nÿ

k“1

ΛpAdpgpzk, zk´1qq´1Yq T

N

¸
.

However this integral diverges. Therefore we replace295

eΛpAdpgpzk ,zk´1qq´1Yq T
N “ ξΛpexp Hp T

N
Adpgpzk, zk´1qq´1Yqq

by

ξΛphpexpp T

N
Adpgpzk, zk´1qq´1Yqqq. (C2)

Then our path integral, which generalizes the path integral given in [6],

becomes

lim
NÑ8

ż
D ¨ ¨ ¨

ż

D

JΛpz0q
N´1ź

i“1

JΛpziqdµpziq
Nź

k“1

KΛpzkmzk´1q

ˆ ξΛphpexpp T

N
Adpgpzk, zk´1q´1qYqqq.
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By Lemma 3, we see that

KΛpz1, z2qξΛphpgpz1, z2q´1 exp
T

N
Ygpz1, z2qqq

is extended to the function

ψΛpn˚
z2 expp´ T

N
Yqnz1q

defined on D ˆ D which is holomorphic in z1 and anti-holomorphic in

z2.

To proceed further, we need the following

Lemma 4. For any X P g and g1, g2 P GB,
ż

D

ψΛpn˚
z g2qψΛpg1˚ exp XnzqJΛpzqdµpzq

“
ż

D

ψΛpn˚
z exp Xg2qψΛpg1nzqJΛpzqdµpzq.

Applying this lemma to the path integral by taking X, g2 and g1 in Lemma

4 as - T
N

Y , exp
`

T
N

Y
˘

nzk
and nzk´1

for each k, respectively, we see that the

path integral equals

JΛpzqψΛpn˚
z expp´TYqnz1q

“ JΛpzqKΛpexpp´TYqnz1 , nzq.

Furthermore, we have 296

ż

D

JΛpzqKλpexpp´TYqnz1 , nzqFpzqdµpzq “ pUΛpexppTYqqFqpz1q

for any F P HΛ.

Thus we have obtained the following theorem.

Theorem. For any Y P g, choosing the ordering (C1) and taking the

regularzation (C2), the path integral of the Hamiltonian HY gives the

kernel function of the operator UΛpexppTYqq.

Remark 2. In case that G is compact,the theorem is valid for any

Y P gC, because Lemma 4 holds for any X P gC in this case.
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Geometric Super-rigidity

Yum-Tong Siu*

Introduction

A more descriptive title for this talk should be: “The superrigidity of299

Margulis as a consequence of the nonlinear Matsushima vanishing the-

orem”. What is presented in this talk is the culmination of an investiga-

tion in the theoey of geometric superrigidity which Sai-Kee-Yeung and

I started about two years ago.

We first used the method of averaging and invariants to obtain Boch-

ner type formulas which yield geometrix superrigidity for the Grass-

mannians and some other cases. Finally we obtained a general Bochner

type formula which includes the usual formulas of Bochner, Kodaira,

Matsushima, and Corlette as well as those obtained by averaging so that

all cases of geometric superrigidity in its most general form can be de-

rived from such a general Bochner type formula I would like to point out

that, for the difficult cases such as those with a Grassmannian of rank at

least two as domain and a Riemannian manifold wity nonpositive sec-

tional curvature as target, the formula form the Matsushima vanishing

theorem does not yield geometric supperigidity. For those difficult cases

one needs the cases of the general Bochner type formula motivated by

the method of averaging and invariants. Even with the other simpler

cases for which the formula from the Matsushima vanishing theorem300

yields geometric superrigidity, to get the result with only the assump-

tion of nonnegative sectional curvature for the target manifold instead

of the stronger assumption of nonnegative curvature operator condition,

one needs the use of an averaging argument.

*Partially supported by a grant from the National Science Foundation
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Geometric Super-rigidity 345

Geometric superrigidity means the Archimedian case of Margulis’s

superrigidity [?] formulated geometrically by assuming the target man-

ifold to be only a Riemannian manifold with nonpositive curvature con-

dition instead of locally symmetric. The complex case of Mostow’s

strong rigidity theorem [Mos] is a consequence of the nonlinear version

of Kodaira’s vanishing theorem which yields a stronger result requiring

only the target manifold to be suitably nonpositively curved rather than

locally symmetric [Si]. It turns out that in the same way the Archime-

dian case of Margulis’s superrigidity is a consequence of the nonlinear

version of Matsushima’s vanishing theorem for the first Betti number

[Mat]. Again the result is stronger in that the target manifold is required

only to be suitably nonpositively curved instead of locally symmetric.

Moreover, this approach provides a common platform for Margulis’s

supperrigidity for the case of rank at least two and the recentsuppe-

rigiduty result of Corlette [Co] for the hyperbolic spaces of the quater-

nions and the Cayley numbers. The reason for the such vanishing theo-

rem is the holonomy group which explians why supperigidity works for

rank at least two as well as the hyperbolic spaces of quaternions and the

Cayley numbers. The curvature RpX,Yq as an element of the Lie alge-

bra of EndpTMq generates the Lie algebra of the holonomy group. The

minimum condition is that the holonomy group is Opnq which simply

says that RpX,Yq is skew-symmetric. To get a useful vanishing theorem

one needs an additional condition to remove a term involving only the

curvature of the domain manifold. The Kähler case is the same as the

holonomy group being Upnq. Then RpX,Yq is C-linear as an element of

EndpTmq. This additional condition enables one to obtain the Kodaira

vanishing theorem for negative line bundles. Other holonomy groups

help yield vanishing theorems for geometric superrgidity. One can also

get vanishing theorems for some of the special holonomy groups.

The approach to geometric superrigidity as the nonlinear version of

Matsushima’s vanishing theorem is motivated by a remark which E. Cal-

abi made privately to me during the Arbeitstagung of 1981 when I deliv-

ered a lecture on the newly discovered approach to the complex case of

Mostow’s strong rigidity as the nonlinear version of Kodaira’s vanish-

ing theorem. Calabi remarked that there is another vanishing theorem,
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namely Matsushima’s which one should look at. He also remarked that

Kodaira’s vanishing theorem involves the curvature tensor quadratically

[Ca]. Actually the early rigidity result of A. Weil [W] already depends

on Calabi’s idea of integrating the square of the curvature [Mat, p. 316]301

and this early rigidity result launched the theory of strong rigidity and

superrigidity. ¿From this point of view it is not surprising that super-

rdidity cane be approached from Matsushima’s vanishing theorem. We

state first here the final result we obtained.

Theorem 1. Let M be a compact locally symmetric irreducible Rie-

manninan manifold of nonpositive curvature whose universal cover is

not the real or complex hypebolic space. Let N be a Riemannian man-

ifold whose complexified sectional curvature is nonpositive. If f is a

nonconstant harmonic map from M to N, then the map from the univer-

sal cover of M to that of N induced by f is a totally geodesic isometric

embedding.

Here nonpositive complexified sectional curvature means that

RNpV,W; V ,Wq ď 0

for any complexified tangent vectors V,W at any xǫN, where RN is the

curvature tensor of N. In this talk we follow the convention in Ma-

tusushima’s paper [Mat] that Ri ji j is negative for a negative curvture

tensor [[Mat], p. 314, line 6].

Theorem 2. In Theorem 1 when the rank of M is at least two, one can

replace the curvature condition of N by the weaker condition that the

Riemananian sectional curvature of N is nonpositive.

When the universal cover of M is bounded symmetric domain of

rank at least two, Theorem 1 was proved by Mok [Mo]. When the

universal cover of M is the hyperbolic space of the quaternions and

the Cayley numbers, Corlette’s result differs from Theorem 1 only in

that Corlette’s result requires the stronger curvature condition that the

quadratic form pξi jq ÞÑ RN
i jkl
ξi jξkl be nonpositive for skew-symmetric

pξi jq.

Theorem 3. In Theorems 1 and 2 let X be the universal cover of M and

Γ be the fundamental group of M. Then the conclusions of Theorems1
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and 2 remain true when the harmonic map f from M to N is replaced

by a Γ-equivariant harmonic map f from X to N.

Remark. With the existence result for equivariant harmonic maps cor-

responding to the results of Eells-Sampson [E-S], Theorem 3 implies the

following Archimedian case of the superrigidity theorem of Marugulis

[?]: For lattices Γ and Γ1 extends to a homomorphism from G to G1,
when G is noncompact simple of rank at least two and Γ is cocompact.

The general Archimedian case of the superrigidity theorem of Margulis 302

would follow from the corresponding generalization of Theorem 3. In

order not to distract from the key points of our arguments, we will not

discuss such generalizations in this talk. Also we will focus only on

Theorems 1and 2, because the modifications in the proofs of Theorems

1 and 2 needed to get Theorem 3 are straightforward.

An Earlier Approach of Averaging

After Corlette [Co] obtained the superrigidity for the case of the hyper-

bolic spaces of the quaternions and the Cayley numbers, Sai-Kee Yeung

and I started to try to undersatand how Corlette’s result could be fitted in

a more complete global picture of geometric superrigidity. Corelette’s

method is to generalize the method of the nonlinear BB-Bochner for-

mula for the complex strong rigidity by replacing the Kähler form used

there by the invariant 4-form in the case of the quaternionic hyperbolic

space. That 4-form corresponds to the once on the quaternionic projec-

tive space whose restriction to a quaternionic line is its standard volume

form. Later Gromov [G] introduced the method of foliated harmonic

maps so that Corlette’s result could be proved by applying the nonlinear

BB-Bochner formula to the leaves. In his proof of the case of Theo-

rem1 when the universal cover of M is a bounded symmetric domain

of rank at least two, Mok [Mo] remarked that, according to Gromov,

one should be able to develop the foliation technique of Gromov [G] to

extend Mok’s proof to many Riemannian symmetric manifolds of the

noncompact type with rank at least two by considering families of to-

tally geodesic Hermitian symmetric submanifolds of rank at least two.
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The earlier approach Sai-Kee Yeung and I adopted was motivated

by Gromov’s work on foliated harmonic maps. We started out by con-

sidering a totally geodesic Hermitian suymmetric submanifold σ of the

universal cover X of M. We look at the nonlinear BB-Bochner formula

applied to the restriction of the Hermitian-symmetric submanifoldσ and

the average over all such submanifolds under the action of the automor-

phism group of X.

More precisely, we let X be the quotient of a Lie group G by a max-

imum compact subgroup K and let Γ be the fundamental group of M.

Choose a suitable subgroup H of G so that H{pA X Kq is a bounded

symmetric domain of complex dimension at least two. We pull back the

harmonic map f : M Ñ N to a map f̃ from G{K to N and, for every

k is K, apply the nonlinear BB-Bochner technique developed in [[Si],

[Sa]] to the restriction of f̃ to k ¨ pH{pH X Kqq. Since the image of

k ¨ pH{pH X Kqq in ΓzX is noncompact, one has to introduce a method

a averaging over k to handle the step of integration by parts. As a re-303

sult of averaging over k the integrand of the gradient square term of the

differential of the map f in the formula is an averaged expression of the

Hessian of f .

The difficult step in this approach is to determine under what condi-

tion this averaged expression of the Hessian of f is positive definite in

the case of a harmonic map. It turns out that in some cases when we use

only one single subgroup H of G this averaging expression in general is

not positive definite for harmonic maps. To overcome this difficulty we

choose two subgroups H1 and H2 instead of a single H and we sum the

BB-Bochner formulas for the two subgroups. For example, this is done

in the case of S Opp, qq{S pOppq ˆ Opqqq for p ą 2 and q ą 2 pν “ 1, 2q
and the sum of the two averaged expressions of the Hessian of f turns

out to be positive definite for harmonic maps for this case.

In Cartan’s classification of Riemannian symmetric manifolds, be-

sides the ten exceptional ones there are only the following four series

which are not Hermitian symmetric:S Opp, qq{S pOppq ˆ Opqqq,

S ppp, qq{S pppq ˆ S ppqq, sUpkq{S Opkq, and S U˚p2nq{S ppnq. We ex-

plicitly verified that for these four series the averaged expression of the

Hessian of the Hessian of f is positive definite in the case of a harmonic
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map so that both Theorem 1 and Theorem 2 hold for these four series.

The method of verification is to use scalar invariants from the rep-

resentation of compact groups and Cramer’s rule. More precisely, let

V be a finite-dimensional vector space over R with an inner product

ă ¨, ¨ ą. Let K be a compact subgroup of the special orthogonal

group S OpVq with respect to the inner product. Let S be an element

of V‘4. To compute the average
ş

gPKg ¨S , we first enumerate all the

one-dimensional K-invariant subspaces RIκp1 ď κ ď kq of V‘4 so thatş
gPkg ¨S “

řk
κ“1 cκIκ for some constants cκ. By taking the inner prod-

uct of this equation with IΛ, we have the system of linear equationsřk
κ“1 cκ ă Iκ, IΛ ą“ă S , IΛ ą from which we can use Cramer’s rule

to solve for the constants cκ.

For such verification it does not matter whether one uses the original

Riemannian symmetric space or its compact dual and we will use its

compact dual in the following description of the verification.

For the case of G “ S Opp, qq and K “ S pOppq ˆ Opqqq for p ą
2 and q ą 2 we use the two subgroups H1 “ S Opp, 2q and H2 “
S Op2, qq of G so that H j{pH j X Kq is a bounded symmetric domain of

rank two. The tangent space of G{K is given by a p ˆ q matrix and

we denote the second partial derivative of the map f with the pα, βqth

entry and the pγ, δqth entry by fαβ,γδ. (Similar notations are also used

for the description of the other three seres without further explanation.)

Then the avearaged expression Φσ1
of the Hessian of f for the subgroup 304

H1 “ S Opp, 2q is

Φσ1
“ 1

pq ´ 1qpq ` 2q

ˆ
fαβ,αβ fγδ,γδ `

ˆ
1 ´ 2

q

˙
fαβ,αδ fγβ,γδ

´ fαβ,γβ fαδ,γδ ´ fαβ,γδ fαβ,γδ ` 2

q
fαβ,γδ fαδ,γβ,

˙

where the summation convention of summing over repeated indices is

used. Moreover, 1
ppp´1qΦσ1

` 1
qpq´1qΦσ1

is positive definite when minpp, qq
ě 3. The expression Φσ j

(and also similar expressions lates) is given

only up to a positive constant depending on the total measure of th com-

pact group K.
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For the case of G “ S ppp, qq and K “ S pppq ˆ S ppqq, the totally

geodesic Hermitian symmetric submanifold used is S Upp`qq{spUppqˆ
Upqqq. The tangent space of G{K is the set of

ˆ
c D

´D C

˙
. Before we

average, we lift the expression with arguments in

ˆ
C D

´D C

˙
to an ex-

pression with arguments in a general pp`qqˆppˆqq matrix W “ pwαiq
so that with the notation BαiBβ j

f “ B2 f

BwαiBwβ j

we have the symmetry

BJpβqJp jqB jpαqJpiq f “ BαiBβ j
f , where Jpαq “ p ` α and Jpp ` αq “ ´α

with Bp´αqi meaning ´Bαi.

The averaged expression of the Hessian of f is

3p

2
f
αiαi

f
γ jγ j

´ pp ` 2q| f
αiβ j

|2 ´ p2p ` 1q f
αiβ j

f
αpJ jqβpJiq

for q “ 1 and is

pp ` q ` 2pqq f
αiαi

f
β jβ j

´ p1 ` pq f
αiα j

f
β jβi

´p1 ` qq f
αiβi

f
β jα j

´ pp ` q ` 2pqq f
αiβ j

f
β jαi

´p2 ` p ` qq f
αiβ j

f
βpJiqαpJ jq

for q ą 1 and is positive definite when minpp, qq ě 1 and maxpp, qq ě
2.

For the case of G “ S Lpk,Rq and K “ S Opkq, we let n be the

largest integer with 2n ă k. The totally geodesic Hermitian symmetric

submanifold used is S ppnq{Upnq. The tangent space of G{K is the set

of all symmetric matrices of order k with zero trace.

The averaged expression of the Hessian of f is equal to

fαβ,αβ fλµ,λµ ´ 4

k ` 2
fαβ,γβ fαµ,γµ ´ fαβ,γδ fαβ,γδ ` 4

k ` 2
fαβ,γδ fαγ,βγ

which is nonnegative for k ě 4.

For the case of G “ S Up2nq and K “ S ppnq, the Hermitian sym-

metric submaifold is S Op2nq{Upnq. The tangent space of G{K is given
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by the set of all px,Yq of the form pX,Yq “ pA ´ D, B ` Cq with the305

p2nq ˆ p2nq matrix

ˆ
A B

C D

˙
skew-Hermitian and tracesless. Befor we

average, we lift the second derivative of f , via the map Z “ pz
αβ

q “ˆ
A B

C D

˙
ÞÑ pA ´ D, B ` Cq to the second jet f

αβδγ
“ Bz

αβ
Bz

γδ
f on

the Lie algebra of S Up2nq so that the symmetries f
αβδγ

“ ´ fβαδγ and

f
JpβqJpαqδγ “ f

αβδγ
hold, where as earlier Jpαq “ n ` α and Jpn ` αq “

´α. The averaged expression of the Hessian of f is

f
αββα

f
γδδγ

´ 2

n ´ 1
f
αβγα

f
βδδγ

´ f
αβγδ

fβαδγ ´ 2

n ´ 1
f
αβγδ

fδαβγ

which is nonnegative for n ě 3.

In the above approach by averaging, the natural curvature condition

for the target manifold is the nonnegativity of the complexified sectional

curvature. One can also consider the curvature term obtained by aver-

aging and argue by the number of invariants that the target manifold

needs only to satisfy the weaker condition of the nonnegativity of the

sectional curvature in the case of the domain manifold of rank at least

two. Mok came up with the the idea that to get directly the weaker con-

dition of nonnegative sectional curvature for the target manifold, one

can restrict the harmonic map to totally geodesic flat submanifolds of

the domain manifold and average the usual nonlinear Bochner formula

there instead of the nonlinear BB-Bochner formula.

Though this averaging method theoretically can also be applied to

the ten exceptional cases of Riemannian symmetric manifolds which are

not Hermitian symmetric, explicit computation becomes cumbersome

for them. We then changed our approach and used instead the nonlinear

Matsushima vanishing theorem in our investigations of the ten excep-

tional cases. The use of the nonlinear Matsushima vanishing theorem

in the exceptional cases is the most natural approach. In the course of

our investigation involving both the Bochner type formula from aver-

aging and those from the Matsushima vanishing theorem we came to a

much better understanding of the nature of such vanishing theorems. We

could formulate such vanishing theorems in a general setting. The most
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general case of geometric superrigidity is then a consequence of such

a general nonlinear vanishing theorem. Both the BB-Bochner vanishing

theorem and the Matsushim vanishing theorem are special cases of teh

vanishing theorem for the general setting. It also gives a very short and

elegant proof of the original Matsushima vanishing theorem.

Matsushima’s Vanishing Theorem
306

Matsushima’s theorem states that the first Betti number of a compact

complex manifold is zero if its universal cover is an irreducible bounded

symmetric domain of rank at least two.

One step of Matsushima’s original proof is the verification of the

positivity of a certain quadratic form

pξi jq ÞÑ bpgq
ÿ

i, j

pξi jq2 `
ÿ

i, j,k,l

Rikh jξ
i jξkh,

where bpgq is a constant depending on and explicitly computable from

the Lie algebra g of the Hermitian symmetric manifold and Rikh j is the

curvature tensor of the Hermitian symmetric manifold. The verification

makes use of the computations by Calabi-Vesentini and Borel on the

eigenvalues of the quadratic form given by the curvature tensor acting

on the symmetric 2-tensors of a Hermitian symmetric manifold.

Mostow’s strong rigidity theorem (for the case of simple groups)

says that if G and G2 are noncompact simple groups not equal to PS L

p2,Rq and Γ Ă G and Γ1 Ă G1 are lattices, then any isomorphism can

be extended to an isomorphishm from G to G1. For the case of bounded

symmetric domains and cocompact lattices we can state it as follows.

Let D and D1 be irreducible bounded symmetric domains of complex

dimension at least two and let M and M1 be respectively smooth compact

quotients of D and D1. If M and M1 are of the same homotopy type, then

M and M1 are biholomorphic (or anti-biholomorphic).

The vanishing theorem of Kodaira for a negative line bundle L over a

compact Kähler manifold M of complex dimension n ě 2 can be proved

as follows. We do it for the vanishing of H1pM, Lq becaucse that is the
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case we need. Suppose ξ is an L-valued harmonic p0, 1q-form on M. Let

ω be a Kähler form of M. Then

0 “
ż

M

?
´1BBp

?
´1ξ ^ ξq ^ ωn´2 “ ||Dξ||2 ´

ż

M

pRLξ, ξq

implies that ξ vanishes, where RL is the curvature of L.

The nonlinear version of Kodaira’s vanishing theorem is as follows.

Let M and N be compact Kähler manifolds and f : M Ñ N be a har-

monic map which is a homotopy equivalence. Use B f instead of ξ. We

get

0 “
ż

M

?
´1BBp

?
´1h

αβ
β f α ^ B f βq ^ ωn´2 “ ||DB f ||2

´
ż

M

RNpB f , B f , B f , B f q.

Suitable nonpositive curvature property of N implies that either B f or B f 307

vanishes. Such a curvature property is satisfied by irreducible bounded

symmetric domains of complex dimension at least two. This nonlin-

ear version implies the complex case pf Mostow’s strong rigidity the-

orem,because the theorem of Eells-Sampson implies the existence of a

harmonic map in the homotopy class of continuous maps from a com-

pact Riemannian manifold to a nonpositively curved Riemannian mani-

fold. Moreover, the target manifold is assumed to satisfy only a curva-

ture condtion instead of being locally symmetric.

The complex case of strong rigidity corresponds to the vanishing

of the first cohomology wiht coefficient in a coherent analytic sheaf.

The real analog corresponds to the vanishing of the first cohomology

with coefficient in the constant sheaf. So we should look at the van-

ishing of the first Betti number. On the other hand holomorphic means

B “ 0. Its real analog should mean d “ 0 which means parallelism. The

pullback of the metric tensor being parallel means isometry after renor-

malization. This consideration gives the motivation that the nonlinear

version of Matsushima’s vanishing theorem for the first Betti number

would yield the Archimedian case of Margulis’s superrigidity theorem
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with the assumption on the target manifold weakened from local sym-

metry to suitable nonpositive curvature.

The reason for geometric superrigidity turns out be the holonomy

group. the curvature RpX,Yq as an element of the Lie algebra of EndpT q
generates the Lie algebra of the holonomy group. The minimum condi-

tion is Opnq which simply says that RpX,Yq is skew-symmetric. The

Kähler case is the same as the holonomy group being Upnq. Then

RpX,Yq is C-linear as an element of EndpT q. It is the same as saying

that Rαβi j “ 0 for 1 ď alpha, β ď n and i, j running through 1, ¨ ¨ ¨ , n
and 1, ¨ ¨ ¨ , n. The condition is equivalent to R

αβγδ
being symmetric in α

and γ by the Bianchi identity

R
αβγδ

` R
αγδβ

` R
αδβγ

“ 0.

Vahishing Theorems from 4-Tensors

A vanishing theorem is the result of a 4-tensor Q satisfying the following

conditions. This 4-tensor Qi jkl should be skew-symmetric in i and j and

symmetric in pi, jq and pk, lq. Moreover, the following three conditions

should be satisfied:

(i) The quadratic form
ř

i, j,k,l Qi jklξ
ilξ jk is positive definite on all trace-

less ξi j.

(ii) ă Ap¨, ¨, ¨, Xq,Rp¨, ¨, ¨,Yq ą“ 0 for all X,Y .

(iii) Q is parallel.308

Once one has such a 4-tensor Q, one applies integration by parts to
ż

M

Qi jkl∇i fl∇ j fk

for any harmonic f to show that f is zero. Here ∇ denotes covariant

differentiation. We can do this for the linear as well as the nonlinear

version of the vanishing theorem. As and example let us look at Ko-

daira’s vanishing theorem. The 4-tensor is

Q
αβγ,δ

“ δαδδβγ ´ δαβδγδ.
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Note that this Q is simply the curvature tensor for the manifold of con-

satant holomorphic curvature with the sign of the second term reversed.

Then

Qi jklξ
ilξ jk “ Q

αβγδ
ξαδξβγ “

ÿ

α,δ

ξαδξαδ´
˜ÿ

α

ξαα

¸˜ÿ

β

ξββ

¸
“
ÿ

α,δ

ξαδξαδ

is positive definite. Moreover,

Qi jklRi jkh “ Q
αβγδ

R
αβγh

“ R
ββδh

´ R
δββh

“ 0.

In the case of a harmonic 1-form f , the formula is simply

ż

M

Qi jkl∇i fl∇ j fk “ ´
ż

M

Qi jkl fl∇i∇ j fk

“ ´1

2

ż

M

Qi jkl fl
“
∇i,∇ j

‰
fk

“ ´1

2

ż

M

Qi jkl flRi jkh fh “ 0.

Note that this gives a proof of Matsushima’s vanishing theorem when

we consider a harmonic form fi, because the conditions on Q imply that

fi is parallel and there is no nonzero parallel 1-form otherwise there is a

deR-ham decomposition of the universal cover. In the case of a compact

Kä hler manifold (without using any line bundle or any map) applied to

a harmonic p1, 0q-form fα the formula gives B
β

fα “ 0 for all α and β,

which is the same as saying that any harmonic p1, 0q-form on a compact

Kähler manifold is holomorphic. When this is applied to a harmonic 1-

form with values in a line bundle, we have another term in the formula

represented by the curvature of the line bundle.

Suppose the holonomy group is not Upnq. Then Berger’s theorem 309

forces then manifold to be locally symmetric except for the so-called

exceptional holonomy groups. Assume that we have a compact locally

symmetric manifold. Let K0 be the curvature tensor of constant curva-

ture 1 given by

pK0qi jkl “ δikδ jl ´ δilδ jk.
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We are going to use Q “ c0K0 ` R for some suitable constant c0. The

condition Qi jklRi jkh “ 0 simply says that ´2c0Rl j jh ` Ri jklRi jkh “ 0.

The factor Rl j jh in the first term is simply equal to the negative of the

Ricci curvature pRicqlh according to the convention in Matsushima’s pa-

per [Mat]. The second term Ri jkhRi jkh is a symmetric 2-tensor which is

parallel. Now every parallel symmetric 2-tensor is a constant multiple of

the Kronecker delta, otherwise any proper eigenspace at a point would

give rise to a deRham decomposition of the manifold. So we know that

c0 exists. We can determine the actual value of c0 by contracting the

indices h and l. We get c0 “ ´ ă R,R ą { ă R,K0 ą. Consider now

the integration by parts of

ż

M

pc0K0 ` Rqi jkl∇i fl∇ j fk.

The question now is the positive definiteness of the quadratic form

ξ ÞÑ pc0K0 ` Rqi jklξ
ilξ jk

on traceless ξ, which is the same as

ξ ÞÑ c0

ÿ

i,l

pξilq2 `
ÿ

i, j,k,l

Ri jklξ
ilξ jk. (˚)

We now look at the nonlinear version. From r∇i,∇ks fl we get an ex-

pression involving the curvature tensor of the target manifold. So

ż

M

Qi jkl∇i fl∇ j fk “
ż

M

Qi jkl fl∇i∇ j fk

“ 1

2

ż

M

Qi jkl f D
l RN

ABCD f A
i f B

j f C
k .

To simplify notations we write p f ˚RNqi jkl “ RN
ABCD

f A
i

f B
i

f C
k

f D
l

. So our

final formula is

ż

M

pc0K0 ` Rqi jkl∇i fl∇ j fk “ 1

2

ż

M

ă c0K0 ` R, f ˚RN ą
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It is simple and straightforward to verify that c0 ě bpgq. From the work

of Kaneyuki-Nagano [K-N] we can conclude that the quadratic form (˚)

is positive definite.310

The Term Involving the Curvature of the Target Manifold. We have

to worry about the sign of the term involving the curvature of the target

manifold
ş

M
ă c0K0 ` R, f ˚RN ą. We have to determine conditions

on RN so that this term is nonpositive. We need only consider pointwise

nonpositivity. Fix a point P0 of the domain manifold M. Let C be the

vector space of all 4-tensors Ti jkl which satisfies the following three

symmetry conditions: (1)Ti jkl “ ´T jikl, (2) Ti jkl “ Tkli j, and (3) Ti jkl `
Tikl j ` Til jk “ 0. In other words, C is the vector space of all 4-tensors of

curvature type. Let H denote the isotropy subgroup at that point. From

the known results on the decomposition into irreducible representations

of the representation of H on the skew-symmetric 2-tensors, we know

that there are two, three, or four independent linear scalar H-invariants

for elements of C.

Consider first the case when there are only two independent linear

scalar H-invariants given by inner products with the H-invariant ele-

ments Ii jkl and I1
i jkl

of C so that I “ K0 and ă I, I1 ą“ 0. In our

argument we can use either the complexified sectional curvature or the

usual Riemannian sectional curvature (or even the analogously defined

quaternionic or Cayley number sectional curvature). The arguments are

strictly analogous. Let us assume that the rank of the domain manifold

is at least two and consider the case of the usual Riemannian sectional

curvature. Fix any 2-plane E in the tangent space of M at P0 so that the

Riemannian sectional curvature SectpR, Eq of R for E is zero. Consider

the following expression
ş

gPH
Sectp f ˚RN , g¨Eq. This expression is equal

to a
`
ă f ˚RN , I ą `a1 ă f ˚RN , I1 ą

˘
for some real constants a and a1

depending on E. On the other hand, the integrand ă c0K0 ` R, f ˚R ą
is of the form b

`
ă f ˚RN , I ą `b1 ă f ˚RN , I1 ą

˘
for some rea 1 con-

stants b and b1. Since both expressions vanish for f equal to the identity

map, we conclude that b1 “ a1. To compute a and a1, we use K0 as the

test value to replace f ˚RN . The value b is given by

b ă K0,K0 ą“ c0 ă K0,K0 ą ` ă R,K0 ą
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and the value of a is given by

a ă K0,K0 ą“ SectpK0, Eq.

Since c0 “ ´ ă R,R ą { ă R,K0 ą it follows from Schwarz’s in-

equality and the nonpositivity of ă R,K0 ą that b is nonnegative. From

SectpK0, Eq “ 1 we conclude that pc0K0 ` Rqi jklp f ˚RNqi jkl is equal to

´ ă R,K0 ą´1 pă K0,K0 ąă R,R ą ´ ă R,K0 ą2qż

gPK

Sectp f ˚RN , g ¨ Eq.

We have thus the final formula311
ż

M

pc0K0 ` Rqi jkl∇i fl∇ j fk

“ ´ ă R,K0 ą´1 pă K0,K0 ąă R,R ą ´ ă R,K0 ą2q
ż

PPM

ˆż

gPHP

f ˚RN , g ¨ EP

˙
,

where EP is a 2-plane in the tangent space of M at P at which tthe Riem-

manian sectional curvature of M is zero and HP is the isotropy group

at P. So we have the geometric superrigidity result that any harmonic

map from such a compact locally symmetric manifold to a Riemannian

manifold with nonpositive Riemannian sectional curvature is a totally

geodesic isometric embedding.

The case of three or four independent linear scalar H-invariants oc-

curs only in the case of Hermitian or quaternionic symmetric spaces

or the case of Grassamanians. Let us illustrate the technique by look-

ing at the Hermitian symmetric case. Let KC denote the curvature ten-

sor of constant holomorphic sectional curvature. Instead of using Q “
c0K0 ` R, one uses Q “ λpK0 ´ KCq ` µpc0KC ` Rq for some suitable

constants. This method of using a suitable linear combination is parallel

to the choice of the suitable constants 1
ppp´1q ,

1
qpq´1q in the expression

1
ppp´1qΦσ1

` 1
qpq´1qΦσ2

in the earlier approach of averaging.

Details of the methods and results described above will be in a paper

to appear elsewhere.
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