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INTERNATIONAL COLLOQUIUM ON GEOMETRY AND
ANALYSIS

BOMBAY, 6-14 JANUARY 1992
REPORT

AN INTERNATIONAL COLLOQUIUM on ‘Geometry and Anal-
ysis’ was held at the Tata Institute of Fundamental Research, Bombay
from January 6 to January 14, 1992. Professors M. S. Narasimhan and
C.S. Seshadri turned sixty at about this time. In view of the crucial
role both of them played in the evolutions of the School of Mathemat-
ics as a centre of excellence, it was considered appropriate to devote
the Colloquium to recent developments in areas of geometry and anal-
ysis close to their research interests, and to felicitate them on this oc-
casion. The range of topics dealt with included vector bundles, moduli
theory, complex geometry, algebraic and quantum groups, and differen-
tial equations. The Colloquium was co-sponsored by the International
Mathematical Union and the Tata Institute of Fundamental Research,
and was financially supported by them and the Sir Dorabji Tata Trust.

The Organizing Committee for the Colloquium consisted of Pro-
fessors Kashmibai, David Mumford, Gopal Prasad, R. Parthasarathy
(Chairman), M.S. Raghunathan, T. R. Ramadas, S. Ramanan and R.
R. Simha. The International Mathematical Union was represented by
Professor Mumford.

The following mathematicians gave one-hour addresses at the Collo-
quium: S.S. Abhyankar, A. Adimurthy, A. Beauville, F.A. Bogomolov,
C. de Concini, J.P. Demailly, W. J. Haboush, G. Harder, A. Hirschowitz,
N. J. Hitchin, S. P. Inamber, K. T. Joseph, G. R. Kempf, V. Lakshmibai,
H. Lange, M. Maruyama, D. Mumford, M. P. Murthy, N. Nitsure, M.
V. Nori, K. Okamoto, C. Procesi, N. Raghavendra, S. Ramanan, Y. T.
Siu, V. Srinivas, S. Subramanian, G. Trautmann. Besides the members
of the School of Mathematics of the Tata Institute, mathematicians from
universities and educational institutions in India and abroad were also
invited to attend the Colloquium.



The social programme for the Colloquium included a Tea Party on
January 9, a documentary film on 6 January, a Carnatic Flute Recital on
January 8, a Hindustani Vocal Recital on January 11, a Kathakali Dance
on January 13, a Dinner at Gallops Restaurant, Mahalaxmi on January
12, an Excursion to Elephanta Caves on January 14, and a Farewell
Dinner Party on January 14, 1992.
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Fundamental Group of the Affine Line in Positive
Characteristic

Shreeram S. Abhyankalﬁ

1 Introduction

I have known both Narasimhana and Seshadri since 1958 when I had
a nice meal with them at the Student Cafeteria in Cité Universitaire in
Paris. So I am very pleased to be here to wish them a Happy Sixtieth
Birthday. My association with the Tata Institute gore back even further
to 1949-1951 when, as a college student, I used to attend the lectures
of M. H. Stone and K. Chandraseksharan, first in Pedder Road and then
at the Yacht Club. Then in the last many years I have visited the Tata
Institute numerous times. So this Conference is a nostalgic homecoming
to me.

To enter into the subject of Fundamental Groups, let me, as usual,
make a.

2 High-School Beginning
So consider a polynomial

f=fM)=Y"+ay" ' +... 4a,

with coefficients ay, .. ., a, in some field K; for example, K could be the
field of rational numbers. We want to solve the equation f = 0, i.e.,
we want to find the roots of f. Assume that f is irreducible and has no
multiple roots. Suppose somehow we found a root y; of f. Then to make

“Invited Lecture delivered on 8 January 1992 at the International Colloquium on
Geometry and Analysis in TIFR in Bombay. This work was partly supported by NSF
Grant DMS-91-01424



2 Shreeram S. Abhyankar

the problem of finding the other roots easier, we achieve a decrease in
degree by “throwing away” the root y; to get

[y

= =YY" b Y T 4 by
Y —y

fi = Ai(Y)
If fi1(Y) is also irreducible and if somehow we found a root y, of fi,
then “throwing away” y,» we get

_ )

_ Yn—2 —|—ClYn_3 + o+ Cps.
Y=y

f=hRY

Note that the coefficients b; ..., b, of f| do involve y; and hence they
are note in K, but they are in K(y;). So, although we assumed f to
be irreducible in K[Y], when we said “if fj is irreducible,” we clearly
meant “if f] is irreducible in K(y;)[Y]”. Likewise, irreducibility of f
refers to its irreducibility in K(y,y2)[Y]. And so on. In this way we get
a sequence of polynomials fi, f>, ..., fi;, of degreesn—1,n—2,...,n—m
in Y with coefficients in K(y;), K(y1,y2),..., K(y1,--.,ym), where f; is
irreducible in K(yy,...,y;)[Y] fori =1,2,...,m — 1. If f,, is reducible
in K(y(1),...,ym)[Y] then we stop, otherwise we proceed to get fy,+1,
and so on. Now we may ask the following.

Question: Given any positive integers m < n, doers there exist an irre-
ducible polynomial f of degree n in Y with coeffcients in some field K
such that the above sequence terminates exactly after m steps, i.e., such
that f1, f>,..., fin—1 are irreducible but f;, is reducible?

I presume that most of us, when asked to respond quickly, might say:
“Yes, but foe large m and n it would be time consuming to write down
concrete examples”. However, the SURPRISE OF THE CENTURY
is that the ANSWER is NO. More precisely, it turns out that

2.1 fi, f2, f3, fa, f5 irreducible = fg, f7, ..., fn—3 irreducible.

In other words, if f1, ..., fs5 are irreducible then fi,..., f,— are all
irreducible except the f;,_», which is a quadratic, may or may not be
irreducible. This answers the case of m > 6. Going down the line to
m < 5 and assuming m < n — 2, for the case of m = 5 we have that

2



Fundamental Group of the Affine Line in Positive Characteristic 3

2.2 fi1, f2, f3, fs irreducible but f5 reducible = n = 24 or 12 and for
the case of m = 4 we have that

2.3 fi, f2, f3 irreducible but f; reducible = n = 23 or 11.
Going further down the line, for the case of m = 3 we have that

24 fi, f> irreducible but f3 reducible = Refined FT of Proj Geom

i.e., if fi, f> are irreducible but f3 is reducible,then there are only a
few possibilities and they are suggested by the Fundamental Theorem
of Projective Geometry, which briefly says that “the underlying division
ring of a synthetically defined desarguestion projective plane is a field
in and only if any three point of a projective line can be mapped to any
other three points of that projective line by a unique projectivity.” Going
still further down the line for the case of m = 2 we have that

2.5 fj irreducible but f, reducible = known but too long

i.e., if fj is irreducible but f; is reducible, the answer is known but
the list of possibilities is too long to write down here. Finally, for the
case of m = 1 we have that

2.6 fi has exactly two irreducible factors = Pathol proj Geom + Stat

i.e., if f1 has exactly two irreducible factors, then again a complete
answer is known, which depends on Pathological Projective Geometry
and Block Designs from Statistics! Here I am reminded of the beautiful
course on Projective Geometry which I took from Zariski (in 1951 at
Harvard), and in which I learnt the Fundamental Theorem mentioned
in (2.4). At the end of that course, Zariski said to me that “Projective
geometry is a beautiful dead subject, so don’t try to do research in it”
by which he implied that the ongoing research in tha subject at that
time was rather pathological and dealt with non- desarguesian planes
and such. But in the intervening thirty or forty years, this “patholog-
ical” has made great strides in the hands of pioneers from R. C. Bose
and S. S. Shrikhande [58] to P. Dembowski and D. G. Higman
[34]], and has led to a complete classification of Rank 3 groups, which

3



4 Shreeram S. Abhyankar

from our view-point of the theory of equations is synonymous to case
2.6). So realizing how even a great man like Zariski could be wrong oc-
casinally, I have learnt to drop one of my numerous prejudices, namely
my prejudice against Statistics.

Note that a permutation group is said to be transitive if any point
(of the permuted set) can be sent to any other, via a permutation in
the group. Likewise, a permutation group is m-fold transitive (briefly:
m-fold transitive) if any m points can be sent to any other m points,
via a permutation in that group. DoublyT ransitive = 2 — transitive,
TriplyTransitive = 3 — transitive, and so on. By the one point stabi-
lizer of a transitive permutation group we mean the subgroup consisting
of those permutations which keep a certain point fixed; the orbits of that
subgroup are the minimal subsets of the permuted set which are mapped
to themselves by every permutation in that subgroup; of the nontrivial
orbits are called the sub degrees of the group, so that the numbers of sub
degress is one less than than rank. Thus a Rank 3 group is transitive per-
mutation group whose one point stabilizer has three orbits; the lengths
of the two nontrivial orbits are the sub degrees. Needless to say that
a Rank 2 group is nothing but a Doubly Transitive permutation group.
At any rate, in case (2.6), the degrees of the two irreducible factors of
f1 correspond to the sub degrees of the relevant Rank 3 group. Now
CR3(= the Classification Theorem of Rank 3 groups) implies that very
few pairs of integres can be the sub degrees of Rank 3 groups, very few
nonisomorphic Rank groups can have the same sub degrees; see Kantor-
Liebler [42] and Liebeck [44]. Hence ([2.6) says that if fi has exactly
two irreducible factors then their degrees (and hence also n) can have
only certain very selective values.

Here, by the relevant group we mean the Galois group of f over
K, which we donate by Gal(f, K) and which, following Galois, we de-
fine as the group of those permutations of the roots y; ..., y, which re-
tain all the polynomial relations between them wiht coefficients in K.
This definition makes sense without f being irreducible but still assum-
ing f to have no multiple roots. Now our assumptio of f being irre-
ducible is equivalent to assuming that Gal(f, K) is transitive. Likewise,
fis---» fm—1 are irreducible iff Gal(f, K) in m-transitive. Moreover, as

4



Fundamental Group of the Affine Line in Positive Characteristic 5

already indicated, fi has exactly two irreducible factors iff Gal( f, K) has
rank 3. To match this definition of Galois with the modern definition, let
L be the splitting field of f over K, i.e., L = K(y;...,yn). Then accord-
ing to the modern definition, the Galois group of L over k, denoted by
Gal(L, K), is defined to be the group of all automorphisms of L which
keep K point wise fixed. Considering Gal(f, K) as a permutations group
of the subscripts 1,...,n of yj,...,y, for every 7 € Gal(L, K) we have
a unique o € Gal(f, K) such that 7(y;) = y,;) for 1 <i < n. Mow we
get an isomorphism of Gal(L, K) onto Gal(f, K) by sending each 7 to
the corresponding o.

Having sufficiently discussed case ([2.6), let us note that (2.3)) is
equivalent to CDT (=Classification Theorem of Doubly Transitive per-
mutation groups) fr which we manu refer to Cameron [22]] and Kantor
[41]]. At any rate, CDT implies that if fi is irreducible but f> is re-
ducible then we must have: either n = g for some prime power g, or
n = (¢ —1)/(qg — 1) for some integer [ > 1 and some prime power ¢,
orn = 221 _ 2= for some integer [ > 2, orn = 15, or n = 176,
orn = 276. Likewise (2.4) is equivalent to CTT(= Classification of
Triply Transitive permutation groups) which is subsumed in CDT, and
as a consequence of it we can say that if f, f> are irreducible but f3 is
reducible then we must have: either n = 2! for some positive integer /,
or n — g + 1 for some prime powder g, or n = 22.

Similarly, (23)) is equivalent to CQT (= Classification of Quadru-
ply Transitive permutation groups) which is subsumed in CTT, and as
a consequence of it we can say that if fi, f>, f3 are irreducible but f4 is
reducible then we must have: eithee n = 23 and Gal(f, K) = Mj3 or
n = 11 and Gal(f,K) = M, where M stands for Mathieu. Likewise,
22 is equivalent to CFT(= Classification of Fivefold Transitive per-
mutation groups) which is subsumed in CQT, and as a consequence of it
we can say that if f1, f2, f3, f4 are irreducible but f5 is reducible then we
must have: either n = 24 and Gal(f, K) = M4 and Gal(f, K) = Mj».

Note that, M»4 and My, are the only 5-told but not 6-fold transitive
permutation groups other than the symmetric group S5 (i.e., the group
of all permutations on 5 letters) and the alternating group A7 (i.e., the
sub-group of s7 consisting of all even permutations). Moreover, M3 and

5



6 Shreeram S. Abhyankar

M are the respective one point stabilizers of M»4 and M1, and they are
the only 4-fold but not 5-fold transitive permutation groups other than
s4 and Ag. Here the subscript denotes the degree, i.e., the number of
letters being permuted. The four groups Ma4, M3, M2, M1, were con-
structed by Mathieu [46] in 1861 as examples of highly transitive per-
mutation groups. But the fact that they are the only 4-transitive permuta-
tion groups others than the symmetric groups and the alternating groups,
was proved only in 1981 when CDT, and hence also CTT, CQT, CFT and
CST, were deduced from CT(= Classification Theorem of finite simple
groups); see Cameron and Cameron-Cannon [24]]. Recall that a
group is simple if it has no nonidentity normal subgroup other than it-
self; it turns out that the five Mathieu groups Moy, M3, M, M2, M1y
and My, is the point stabilizer of M»3, are all simple. Now CST refers
to the Classification Theorem of Sixfold Transitive permutation groups,
according to which the symmetric groups and the alternating groups are
the only 6-transitive permutation groups; note that S, is m-transitive but
not (m + 1)-transitive, whereas A,, is (m — 2)-transitive but not (m — 1)-
transitive for m > 3. In 2.2) to (2.6) we had assumed M < n — 2
to avoid including the symmetric and alternating groups; dropping this
assumption, (2.1)) is equivalent to CST with the clarification that, under
the assumption of (2.I), the quadratic f,_; is irreducible or reducible
according as Gal(f, K) = s, or A,.

We have already hinted that CR3 was also deduced as a consequence
of CT; Liebeck [44]). The proof of CT itself was completed in 1980 (see
Gorenstein [32]]) with staggering statistics: 30 years; 100 authors; 500
papers; 15,000 pages! Add some more pages for CDT and CR3 and so
on.

All we have done above is to translate this group theory into te lan-
guage of theory of equations where K is ANY field. So are still talking
High-School? Not really, unless we admint CT into High-School!
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Summarizing, to compute the Galois group Gal(f, K), say when K is the
field k(X) of univariate rational functions over an algebraically closed
ground field k, by throwing away roots and using some algebraic geom-
etry we find some multi-transitivity and other properties of the Galois
groups and fedd there into the group theory machine. Out comes a list
of possible groups. Reverting to algebraic geometry, sometimes aug-
mented by High-School manipulations, we successively eliminate var-
ious members from that list until, hopefully, one is-left. That then is
the answer. I say hopefully because we would have a contradiction in
which the ultimate reality (Brahman) is described by Neti Neti, not this,
not that. If you practice pure Advaita, then nothing is left, which is too
austere. So we fall back on the kinder Dvaita according to which the
unique God remains.

4 Riemann and Dedekind

In case K = C(X) and a; = a;(X) € C[X] for 1 < i < n, where C is the
field of comples numbers, following Riemann we can consider the
monodromy group of f thus.

Fix a nondiscriminant point g, i.e., value mu € C of X for which the
equation f = 0 has n distinct roots. Then, say by the Implicit Function
Theorem, we can solve the equation the equation f = 0 near y, getting
n analytic solutions 77y (X), ..., 7,(X) near u. To find out how there so-
lutions are intertwined, mark a finite number of values ay, ..., a,, of X
which are different from p but include all the discriminant points, and let
C,, be the complex X-plane minus these w points. Now by making ana-
lytic continuations along any closed path I" in C,, starting and ending at
w so that n; continues into 17; with I'(i) = jfor 1 < i < n. AsT varies
over all closed paths in C,, starting and ending at u, the permutations
I span a subgroup of S, called the monodromy group of f which we
denote bye M(f).
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By identifying the analytic solutions 7y, ...,n, with the algebraic
roots yi,...,Y,, the monodromy group M(f) gets identified with the
Galois group Gal(f, C(X)), and so these two groups are certainly iso-
morphic as permutation groups.

To get generators for M(f), given any a € C,, let T, be the path in
C,, consisting of a line segment from y to a point very near « followed
by a small circle around « and then back to u along the said line segment.
Let us write the corresponding permutation I”, as a product of disjoint
cycles, and let ey, ..., e; be the lengths of these cycles. To get a tie-up
between these Riemannian considerations and the thought of Dedekind
[28], let v be the valuation of C(X) corresponding to «, i.e., v(g) is the
order of zero at alpha for every g € C[X]. Then, as remarked in my
1957 paper [3], the cycle lengths ey, ..., e, coincide with the ramifica-
tion exponents of the various extensions of v to the root field C(X)(y1),
and their LCM equals the ramification exponent of any extension of v to
the splitting field C(X)(y1,...,y,). In particular, T, is the identity per-
mutation iff @ is not a branch point, i.e., if and only if the ramification
exponents of the various extensions of v to the root field C(X)(y;) (or
equivalently to the splitting field C(X)(yy,...,y,)) are all 1. Atany rate,
a branch point is always a dicriminant point but not conversely. Indeed,
the difference between the two is succinctly expressed by Dedekind’s
Theorem according to which the ideal generated by the Y-derivative of
f equals the products of the different and the conductor. In this connec-
tion you may refer to pages 423 and 438 of any my Monthly Article[5]
which costitutes some of my Ramblings in the woods of algebraic ge-
ometry. You may also refer to pages 65 and 169 of my recent book [6]
for Scientists and Engineers inti which these Ramblings have now been
expanded.

Having given a tie-up between the ideas of Riemanna and Dedekind
(both of whom wre pupils of Gauss) concerning branch points, ramifi-
cation exponents, and so on, it is time to say that these things actually
go back to Newton [47]]. For an excellent discussion of the seventeenth
century work of Newton on this matter, see pages 373-397 of Part II of
the 1886 Textbook of Algebra by Chrystal [27]. For years having rec-
ommended Chrystal as the best book to learn algebra from, from time to

8
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time I decide to take my own advice a wealth of information it contains!
At any rate, am la Newton, we can use fractional power series in X to
factor f into linear factors in Y, and then combine conjugacy classes to
get a factorization f = l_[f-l:l ¢; where ¢; is an irreducible ploynomail of
degree ¢; in Y whose coefficients are power series in X — . If the field C
were not algebraically closed then the degree of ¢; would be ¢; f; with f;
being certain “residuce degrees” and we would get the famous formula
o{’:lei f; = n of Dedekind- Domain Theory. See Lectures 12 and 21 of
Scientists [6]].

Geometrically speaking, i.e., following the ideas of Max Noether
[48], if we consider the curve f = 0 in the discriminant points cor-
respond to vertical lines which meet the curve in less than n point,
the branch points correspond to vertical tangents, and the “ conductor
points” are the singularities. See figure 9 on page 429 of Ramblings [3]].

Getting back to finding generators for M(f), with the refinement of
discriminant points into branch points and conductor points in hand, it
suffices to stipulate that a1, . . . , @), inculdue all the branch points rathaer
than all the discrimant points. Now bye choosing the base point u suit-
ably, we may asume that the line from mu to a1, . . . , @,, do not meet each
other except at . Now it will turn out that the permutations I';, , ..., T},
generate M(f). This follows from the Monodromy Theorem together
with the fact that the (fopological) fundamental group m;(C,,) of C,
(also called the Poincare group of C,,) is the free group F,, on w gener-
ators. Briefly speaking, the monodromy Theorem says that two paths,
which can be continuously deformed into each other, give rise to the
same analytic continuations. The fundamental group itself may heuris-
tically be described as that incarnation of the monodromy group which
works for all functions whose branch points are amongest a1, ..., .
More precisely, 711)(C,,) consists of the equivalent means they can be
continuously deformed inti each other. Now the (equivalence classes

of the) paths I'y,,..., I, are free generators of m;(C,,), and we have
an obvious epimorphism of 7;(C,,) = F,, onto M(f) and hence the
permutations I'y,, ..., Ty, generate M(f); for relevant picture etc., you

may see pages 442-443 of Ramblings [3] or pages 171-172 of Scien-
tists [6]. So the curve f = 0, or equivalently the Galois extension

9



10 Shreeram S. Abhyankar

L = C(X)(y1,---,Yn), is an ramified covering of C,,, and tha Galois
Group Gal(L,C(X)) = Ga(f,C(X)) is generated by w generators. Sur-
prisingly, to this day there is no algebraic proof of this algebraic fact.

The Riemann Existence Theorem says that conversely, every finite
homomorphic image of 71(C,,) can be realized as M(f) for some f.
Thus be defining the algebraic fundamental growp s(C,,) as the set of
all finite groups which are the Galois groups of finite unramified cover-
ings of C,,, we can say that m4(C,,) coincides with the set of all finite
groups generated by w generators. Needless to say that, a fortiori, there
is no algebraic proof of the converse part of this algebraic fact either.

Now, in the complex (X,Y)-plane, f = 0 is a curve C, of some
genus g, i.e., if from C, we delete a finite number of points including
all its singularities, then what we get is homeomorphic to a sphere with
g handles minus a finite number of points. For any nonnegative inte-
ger w, let C,,, be obtained by adding to C, its points at infinity, then
desingularizing it, and finally removing w -+ 1 points from the desingu-
larized verison. Then C,,, is homomorphic to a sphere with g handles
minus w + 1 points, and hence it can be seen that 711 (Cy,,) = Fag,; for
instance see the excellent topology book of Seifert and Threlfall [54].
The above monodromy and existence considerations generalize fromn
the genus zero case to the case of general g, and we get the result that
the algebraic fundamental group ms(C,,,) coincides with the set of all
finite groups generated be 2g + w generators, where 74 (C,,,) is defined
to be the set of all finite groups which are the Galois groups of finite
unramified coverings of Cg .

S Chrystal and Forsyth

Just as Chrystal excels in explaining Newtonian (and Eulerian) ideas,
Forsyth’s 1918 book on Function Theory [31]] is highly recommended
for getting a good insight into Riemannian ideas. Thus it was by ab-
sorvbing parts of Forsyth that, in my recent papers [8] and [[10], I could
algebracize some of the monodromy considerations to formulate certain
“Cycle Lemmas” which say that under such and sucn conditions the Ga-
lois group contains permutations having such and such cycle structure.

10
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Now the Rirmann Existence Theorem was only surmised be Rie-
mann by appealing to the Principle of his teacher Dirichlet which,
after Weierstrass Criticism was put on firmee ground by Hilbert in 1904
[33]]. In the meantime another classical treatment of the Riemann Exis-
tence Theorem was carried out culminating in the Klein-Poincaré-Koebe
theory of automorphic functions, for which again Forsyth’s book is a
good source. A modern treatment of the Riemann Existence Theorem

using coherent analytic sheaves was finally given by Serre in his famous
GAGA paper [53] of 1956.

6 Serre

Given any algebraically closed ground field k of any nonzero charac-
teristic p, in my 1957 paper [3], all this led me to define and algebraic
fundamental group m4(Cg,,) of Cg,, = C, minus w + 1 points, where w
is a nonnegative integer and Cy is a nonsigular projetive curve of genus
g over k, to be the set of all finite groups which can be realized as Galois
groups of finite unramified coverings of Cy,,. In tha paper, I went on to
conjecture that 4 (C,,,) coincides with the set of all finite groups G for
which G/p(G) is generated by 2g +w generators, where p(G) is the sub-
group of G generated by all its p-Sylow subgroups. The g = w = 0 case
of this conjecture, which may be called the quasi p-group conjecuture,
says that for the affine line Ly over k we have m4(Ly) = Q(p) where
QO(p) denotes the set of all quasi p-groups, i.e., finite groups which are
generated by their p-Sylow subgroups. It may be noted every finite sim-
ple group whose order is divisible bey p is obviously a quasi p-group.
Hence in particular the alternating group A, is a quasi p-group when-
ever eithern > p > 2 orn—3 > p = 2. Likewise the symmetric group
S, is a quasi p-group provided n > p = 2.

In support of the quasi p-group conjecture,in the 1957 paper. I wrote
down several equations giving unramified coveing of the affine line L
and suggested that their Galois groups be computed. This included the
equation fn,q, s = 0 with

Fn,q,s,a:Yn—ClXth-f-l and n=gq-+t

11
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where 0 # a € k and ¢ is a positive power of p and s and ¢ are posi-
tive integers with 7 # 0(p), and we want to compute its Galois group
Gugsq = Gal(Fp g4, k(X)).

By using a tiny amount of the information contained in the above
equation, I showed that 74 (L;) contains many unasolvable groups, and
indeed by taking homomorphic imagtes of subgroups of members of
ma(Ly) we get all finite groups; see Result 4 and Remark 6 on pages
841-842 of [3]]. This was somewhat of a surpise because the comples
affine line is simply connected, and although 4 (L) was known to con-
tain p-cyclic groups (so called Artin-Schreier equations), it was felt that
perhaps it does not contain much more. This feeling, which turned out
to be wrong, might have been based on the facts that L is a “commuta-
tive group variety” and the fundamental group of a topological group is
always abelian; see Proposition 7 on page 54 of Chevalley [26]].

To algebracize the fact that the comples affine line is simply con-
nected, be the genus formula we deduce that the affine line over an al-
gebraically closed ground field of characteristic zero has no nontrivial
unramified coverings. In our case of characteristic p, the same formula
shows that every membed of 74 (Ly) is a squasi p-group; see Result 4
on page 841 of [3].

Originally I found the above equation fn,q,s,a = 0 by taking a sec-
tion of a surface which I had constructed in my 1955 Ph.D. Thesis [1]]
to show that jung’s classical method [40] of surface desigularization
doed not work for nonzero charactheristic because the local fundamental
group above a normal crossing of the branch locus need not be solvable,
while in the comples case it is always abelian. This failure of Jung’s
method led me ti devise more algoprithmic techniques fr desingulariz-
ing surfaces in nonzero characteristic, and this formed the positive part
of my Ph.D. Thesis [2].

Soon after the 1957 paper, I wrote a series of articles [4] on “tame
coverings” of higher dimensional algebraic varieties, and took note of
Grothendieck proving the “tame part” of the above conjecture which
says that the members of 74 (Cy,,,) whose order is prime to p are exavtly
all the finite gropus of order prime to p generated by 2g + w generators.

12



Fundamental Group of the Affine Line in Positive Characteristic 13

But after these two things,for a long time I forgot all about covering
and fundamental groups.

Then suddenly, after a lapse of nearly thirty years, Serre pulled me
back into the game in October 1988 by writing to me a series of letters
in which be briefly said: “I can now show that if t = 1 then En,q,s,a =
PSL(2,q). Can you compute G, s, for f = 22 Also, can you find
unramified A,, coverings of L;?”

Strangely, the answers to both these questions turned out to be al-
most the same. Namely, with much prodding and prompting by Serre
(hundred e-mails and a dozen s-mails=snail-mails) augmented by groups
theory lessons first from Kantor and Feit and then Cameron and O’Nan,
and by using the method of throwing away roots, CT in the guise of
CDT, the Cycle Lemmas, the Jordan-Marggraff Theorems on limits of
transitivity (see Jordan [39] and Marggraff [43] or Wielandt [60]), and
finally some High-School type factorizations, in the papers [8] to [10] I
proved that:

t=1= Gugsa = PSL(2,9q). (6.1)
g=p>2<tand (p,t) # (7,2) = Gugsa = An- (6.2)
g=p>2<tand (p,t) = (7,2) = Gnysa = PSL(2,8).  (6.3)
g=p=2= En,q,m =S, (6.4)
q=p>2>and (p,t) # (7,2) = Gugsa = An- (6.5)
p=2<q<t=Gugsa=An (6.6)
p=2<g=4andt=3(andn = 7) = Gy 450 = PSL(3,2). (6.7)
p=3<g=9andt = 2(andn = 11) :>6n,q’m = M. (6.8)

Note that PSL(m.q) = SL(m,q)/(scalarmatrices) where SL(m,q) =
The group of all m by m matrices whose determinant is 1 and whose
entries are in the field GF(g) of ¢ elements. Now my proof of (6.1)
uses the Zassenhaus-Feit-Suzuki Theorem which characterizes doubly
transitive permutation groups for which no 3 points are fixed by a non-
identity permutation; see Zassenhaus [62]], Feit [30] and Suzuki [59].
As Serre has remarked, his proof of (6.1)) may be called a “descending”

13
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proof as opposed to my “ascending” proof. Serre’s proof may be found
in his November 1990 letter to me which appears as an Appendix to my
paper [8]]. Actually, when [8] was already in press, Serre found that a
proof somewhat similar to his was already given by Carlitz in 1956.

Throwing away one root of f,,,q,s,a and then applying Abhyankar’s
Lemma (see pages 181-186) of Part III of [4]]) and deforming things
conveniently, we get the monic polynomial fn’q,s,a,b,u of degree n — 1 in
Y with coefficient in k(x) given by

—/

Fn,q,s,a,b,u = t_z [(Y + t)t - Yt] (Y + b)q —aX Y

with 0 # b € k and positive integer u,n — 1. Now upon letting

qg—1
= (g +1)LCM {1,
r=la+o ( GCD(q—l,q+t)>
and _;,q,&mh’u = Gal(f;,q’s’a,h,u,k(X)), in the papers [8] and [10] I also
—
proved that, in the following cases, F, ,  ,;, = 0 gives an unramified

covering of L with the indicated Galois group:

(6.1’)£=u=t>2s«fﬁq=pandsz()(pfl)andszo(t):>
Gn,q,s,a,b,u = An—l-

—
n.q.s,a,bu

62)b=u=t=2andg=p#T7ands=0(p—1) =
An_1.

(6.3) If t = 2 and ¢ = p > 5 then u can be chosen so that 1 < u <
(p+1)/2 and GCD(p + 1,u) = 1, and for any such u upon
assuming b = u/(u — 1) and s = O(u(p + 1 — u)), we have

—/

Gn,q,s,a,b,u = Ap—1.
64) b=u=tandg=p=2ands=0(t) = Gygsapu = Sn1-
65) b=u=1>qandp>2ands=0(r) = Gyyapu = An-i-

—/

6.6) b=u=t>qg=p=2ands=0(r) = G, 45 0pu = Sn—1-

14



Fundamental Group of the Affine Line in Positive Characteristic 15

—
n,q,s,a,b,u

67y b=u=t>qg>p=2ands=0(r) = =A,1.

Another equation written down in the 1957 paper giving an unrami-
fied covering of Ly is Fp; s, = 0 where n, t, s are positive integers with

t <n=0(p) and GCD(n,t) = 1 and s = 0(¢)

and F n.t.5.a 1 the polynomial given by

~

Fn,t,s,a:Yn_aYt+XSWithO?5a€k.

Again upon letting F,,;,, = Gal(F,q, k(X)), in the papers [8] and
I proved that:

(6.1%) 1 <t<4and p # 2= Gprsa = An.

62%) 1 <t<n—3and p #2 = Gprsa = Ap.

(63%) 1 <t=n—3andp #2and 11 # p # 23 = Gprsa = Ap.
64%) 1 <t<4<nandp=2= Gursq = Apn

6.5%) 1 <t<n—3and p=2= Gsqa = Ap

In Proposition 1 of the 1957 paper I discussed the polynomial
h—1 .
Y+ 4 aXY 414 Y a; Y0P with t = 0(p) and 0 # a € k and

i=1
a; € k giving an unramified covering of L;. The polynomial F studied
in (6.1) to (6.6) is the hp = gand a; = ... = a,—; = 0 ace of this
after “reciprocating” the roots and changing X to X*. Considering the
p=2=h=t—1anda = a; = 1 case this we get the polynomial.

Fo=Y +x¥*+ 7> +1
and it can be shown that:
(6.1°) For p = 2 the equation F° = 0 gives an unramified coveing

of Ly with Gal(F°, k(X)) = A7.

15
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By throwing away a root of f° and then invoking Abhyankar’s Lemma
we obtain the polynomial

F/o _ Y6+X27Y5+XS4Y4+(X18+X36)Y3+X108Y2+(X90+X135)Y+X162

and therefore by (6.1°) we see that:

(6.2°) for p = 2 the equation F’° = 0 gives an unramified covering
of L with Gal(F"°, k(X)) = As.

Now it was Serre who first propted me to use CT in calculating the
various Galois groups discsussed above. But after I had done this, agin
it was Serre who groups discussed above. Bit after I had done this, agin
it was Serre who prodded me to try to get around CT. So, as described
in the papers [8]] and [10], by traversing as suitable path in items (6.1) to
(6.2°) we get a complete equational proof of the following Facts without
CT:

Facts. (6.i) For alln > p > 2 we have A, € ms(Ly) . (6.ii) For all
n>=p = 2wehave S, € ms(Ly). (6.ii) Forn > p = 2 a with
3 # n # 4 we have A, € ma(Ly): (note that A3 and A4 are not quasi
2-groups).

While attempting to circumvent CT, once I got a very amusing e-
mail from Serre saying ‘About the essential removal of CT from your
Ap-determinations: what does essential mean? (Old story: a noble man
had a statue of himself made be a well-known sculptor. The sculptor
asked: do you want an equestrian statue or not? The noble man did not
understand the word. He said: oh, yes, equestrian if you want, but not
too much. ..). This is what I feel about non essential use of CT.”

In any case, learnings and adopting (or adapting) all this group the-
ory has certainly been very rejuvenating to me. To state CT very briefly:
Z, (= the cyclic group of prime order p), A, (excluding n < 4), PSL(n+
1,q) (excluding n = 1 and ¢ < 3) together with 15 other related
and reincarnated infinite families, and the 26 sporadics including the
5 Mathieus is a complete list of finite simple groups; for details see Ab-
hyankar [8] and Gorenstein [32]].

16



Fundamental Group of the Affine Line in Positive Characteristic 17
7 Jacobson and Berlekamp

Concerning items (6.6), (6.7"), (6.4*) and (6.5%), when I said that I
proved them in [§]] and [10], what I actually meant was that I proved
their weaker version asserting that the Galois group is the alternating
group of the symmetric group, and then thanks to Jacobson’s Crite-
rion,the symmetric group possibility was eliminated in my joint paper
Ou and Sathaye [14]. What I am saying is that the classical criterion,
according to which the Galois group of an equation is contained in the
alternating two. A version of such a criterion which is valid for all char-
acteristics including two was given by Jacobason in this Algebra books
published in 1964 and 1974 [38]]; an essentially equivalent version
may also be found in the 1976 paper [20] if Berlekamp with some pre-
liminary work in his 1968 book [[19]]; both these criteria have a bearing
on the Arf invariant of a quadratic form [18] which itself was inspired
by some work of Witt [61]]. This takes care of A, coverings for charac-
teristic two provided 6 # n # 7.

This leaves us with the Ag and A7 coverings for characteristic two
described in items (6.2°) and (6.1°). Again using the Jacobson’s Crite-
rion, these are dealt with in my joint paper with Yie [17]].

Thus, although Facts (6.1) and (6.ii) are indeed completely proved
in my papers [8] and [10], but for Fact (6.iii) I was lucky to enjoy the
active collaboration of my former (Sathaye) and present (Ou and Yie)
students.

Likewise, item (6.7) is not proved in my papers [8]] to [10], but was
communicated to me by Serre (e-mail of October 1991) and is included
in my joint paper with Yie. Similarly, item (6.8) is not in my papers
[8] to [10Q], but is proved in my joint paper with Popp and Seiler.

In [8]] T used polynomial F into the polynomial F and thereby get a
proof of a stronger version of (6.1%) to (6.5%) without CT. Let us start
by modifying the Third Irreducibility Lemma i Section 19 of [8] thus
[in the proof of that lemma,once &, (1, Z) has been mistakenly printed as

&z It

17
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7.1 Let k be any field which need not be algebraically closed and
whose characteristic chc k need not be positive. Letn > ¢ > 1 be
integers such that GCD(n,t) = 1 and t = 0(chck), and let Q(Z) be the
monic polynomial of degree n— 1 in Z with coefficients in k(Y) obtained
by putting

[z+Y)" =Y —[Y""+Y | [(Z+Y) - Y]

Q(z) = z .

Then Q(Z) is irreducible in k(Y)[Z].

Proof. Since # 0(chc, k), upon letting

n n t t

¢,(%7) - [(Z + Y; Y"] [(Z +ZY) Y]
by the proof of the above cited lemma we see that: &, (Y, Z) and (Y, Z)
are homogeneous polynomials of degree &’ = n — 1 and u = t — 1 re-
spectively, the polynomials £’,(1,Z) and 7,(Y,Z) have no nonconstant
common factor in k[Z], and the polynomial 7,(Y,Z) has a has a non-
constant irreducible factor in k[Z] which does not divide &, (1,Z) and
whose square does not divide 7,(Y, Z). Upon letting

t n n n t t
fA(Y,Z)ZY[(Z—FY) Y]ZY[(Z-i-Y) Y]
we see that £4(Y,Z) is a homogeneous polynomail of degree 1 = n +
t—land A(1,2) = &,(Y.Z) + n,(1,Z) and therefore: the polynomi-
als £,(Y,Z) and n,(1,Z) have no nonconstant commot fator in K|[Z],
and the polynomial 7,(1,Z) has na nonconstant irreducible factor in
k[Z] which does not divide &,(1,Z) and whose square does not divide
nu(1,Z). The proof of the Second Irreducibilitiy Lemma, of Section
19 of [8] clearly remains valid if only one of the polynomials &,(Y, Z)
and 7,(Y,Z) is assumed to be regular in Z, and in the present situa-
tion 7, (Y, Z) is obviously regular in A. Therefore by the said lemma,
the polynomial &,(Y,Z) + n,(Y,Z) is irreducible k(Y)[Z]. Obviously
Q) = Y '[&(Y.Z2) +nu(Y.Z)] and hence Q(Z) is irreducible
ink(Y)[Z]. i

and n,(Y,Z) =

By using (ZI)) we shall now prove:

18



Fundamental Group of the Affine Line in Positive Characteristic 19

7.2 Let k be any field which need not be algebraically closed and
whose characteristifc chc k£ need not be positive. Let 0 # a € k and
let n, ¢, s be positive integers such that 1 < 7 £ O(chck) and 1 <n—1 £
0(chc k) and GCD(n, t) = 1. Then the polynomial ®(Y) = Y"—aX*Y'+
1 is irreducible in k(X)[Y], its y-discriminant is nonzero, and for its Ga-
lois group we have: Gal(®(Y), k(X)) = A, or S,. Similarly, the polyno-
mial ¥(Y) = Y" —aY’ + X* is irreducible in k(X)[Y], its Y-discriminant
is nonzero, and for its Galois group we have: Gal(¥(Y),k(X)) = A, or
S

Proof. In view of the Basic Extension Principle and Corollaries (3.2)
and (3.5) of the Substitutional Principle of Sections 19 of [8], with-
out loss of generality we may assume that k is algebraically closed and
a =1 = s. Since ® and V¥ are linear in X, they are irreducible. By
the discriminant calculation in Section 20 of [§] we see that their Y-
discriminants are nonzero. As in the beginning of section 21 of [8] we
see that the valuation X = o0 of k(X)/k splits into two valuations in the
rood field of W(Y) and their reduced ramification exponents are ¢ and
n—t. Now t and n—t are both nondivisible by chc k and GCD(t,n—t) =
1, and hence by the Cycle Lemma of Section 19 of [8] we conclude that
Gal(®(Y),k(X)) contains a t-cycle and an (n — r)-cycle. By throw-
ing away a root of ®(Y) we get [®(Z + Y) — ®(Y)] /Z which equals
Q(Z) because by solving ®(Y) = 0 we get X = Y"' + Y~'. Conse-
quently by ([ZI) we Conclude that Gal(®(Y)mnk(X)) is double tran-
sitive. Clearly either 1 < t < (n/2)or 1 < n—1t < (n/2), and
hence by Marggraff’s Second Theorem as stated in Section 20 of [8]]
we get Gal(®(Y), k(X)) = A, or S,. By Corollaries (3.2) and (3.5)
of the Substitutional Principle of section 19 of [8] it now follows that
Gal(Y" — X" "Y' + 1,k(X)) = A, or S,. By multiplying throughout
by x", we obtain the polynomial ¥" — Y’ + X" whose Galois group
must be the same as the Galois group of ¥ — X"~"Y" + 1. Therefore
Gal(Y" — Y' + X", k(X)) = A, or S,, and hence again by Corollaries
(3.2) and (3.5) of the Substitutional Principle of Section 19 of [8]] we
conclude that Gal(W(Y), k(X)) = A, or S,. o

19
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To get back to the polynomial F n.t.s.a> 1€t us return to the assumption
of k being an algebraically closed field of nonzero characteristic p. Let
0 # a € k and let n, t, s be positive integers with

t <n=0(p)and GCD(n,r) =1 and s = 0(¢r)

and recall that F, nnsa = 0 gives an unramified covering of L; where

~

Frisa=Y"—aY +X*

and we want to consider the Galois group GN,,,,M = Gal(widetildeF .4,
k(X)). Since every member of 7r4(Ly) is a quasi p-group and since S, in
not a quasi p-group for pgeq3, in view of (2.28) of [14], by the ¥ case
of (7.2) we get the following sharper version of (6.1*) to (6.5%):

(71%) I<t<n—1= Gpisa = An.

Just as the samall border values of t play a special role for the bar
polynomial in (6.1) to (6.8), likewise the condition 1 # t # n — 1 in
(7.1%) in not accidental as shown by the following four assertions:

(72%) 1=t=n—5and p =2 = G, 50 = PSL(2,5) ~ As.
(73%) 5=t=n—1land p =2 = G,,5a = PSL(2,5) ~ As.
(74%) 1=t=n—1land p =3 = Gprsa = M| ~ My;.
(7.5%) 1 =tandn = p" = Gursa = (Z,)"

Out of these four assertions, (7.2*) and (7.3*) may be found in my
joint paper [17] with Yie, and (7.4*) may be found in my joint paper
[15] with Popp and Seiler. If may be noted that PSL(2,5) and As are
isomorphic as abstract groups but not as permutation groups. Likewise
M, found by taking the image of the M; found by taking the images
of the M1 under a noninner automorphism of M;; found by taking the
image of the M/ found by taking the image of the M1, under a noninner
automorphism of M;; see my paper [8]] or volume III of the encyclope-
dic groups theory book of Huppert and Blackburn.
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Concering assertion (7.5%), multiplying the roots by a suitable nonzero
element of £ we can reduce to the case of t = 1 = a and n = p™ and
then, remembering that (Z,)" = the m-fold direct product of the cyclic
group Z, of order p = the underlying additive group of GF(p™), our
claim follows from the following remark:

(7.1%¥%) If Y?" — Y + x is irreducible over a field k of characteristic
p, with x € K and GF(p™) < K, then by taking a root y of Y”" — Y + x
we have Y7 — Y + x = [ Liegr(ym Y — (v + i)] and hence exactly as in

the p-cyclic case we get Gal (Y7" —Y + x,K) = (z,)™.
By throwing away a root of F' nt.sa Of degree n — 1 in Y with coeffi-
cients in k(X) given by

ﬁ,n,l,s,a = Y_l [(Y+ 1)n - 1] - aX_SY_l [(Y + l)t - 1]

and for its Galois group G’ nisa = Gal (ﬁ "ntsar k(X )), in my joint pa-
per with Popp and Seiler it is shown that:

(711 =t=n—1landp =3and S = 0(n — 1) = Gpssa =
PSL(2,11), where, for the said values of the parameters, the equation
G ntsa = 0 gives an unramified covering of L.

Finally let
F(d)

n.g,s,d,

, = YU — aX*y¥ 4+ p with positive integer d # 0(p)

where once again a, b are nonzero elements of k and n, ¢, s are positive
integers with < n and GCD(n,t) = 1 and n —t = g = a positive

power of p. For the Galois group E,qu) sab = Gal(fffil), sabr k(X)), in my

joint paper [[15] with Popp and Seiler it is shown that:
72)d=t=2=n-9andg =9andp = 3 = G —

n,q,s,a,b

M;“l ~ M, where, for the said values of the parameters, the equation

—(d . . .
sz,q),s,a,b = 0 gives an unramified covering of L.
Again note that M}, and My, are isomorphic as abstract groups but 18
not asa permutations groups; here MY, is the transitive but not 2-transi-
tive incarnation of M obtained by considering its cosets according to

the index 22 subgroup PSL(2,9).
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8 Grothendieck

Having dropped my prejudice against Statistics, it is high time to show
my appreciation of Grothendieck.

For example by using the (very existential and highly nonequational)
work of Grothendieck [33]] on tame coverings of curves, in [7]] and [[11]]
I have shown that for any pairswise nonisomorphic nonabelian finite
simple groups Dy,...,D, with |AutD,| # 0(p) the wreath product
(Dy x -+ x D,) Wr Z, belongs to ma(Ly). For instance we may take
Dy =A,,..D,=A4A,, withd <M <M, <...< M, <p.

Actually, using Grothendieck [33]] I first prove an Enlargement The-
orem and then from i deduce the above result about wreath products as
a group theoretic consequence. The Enlargements Theorem asserts that
if ® is any 74 (L), then some enlargement of ® by J belongs to ma (Ly).

Now enlargement is a generalization of group extensions. Namely,
an enlargement of an group ® by a group J is group G together with an
exact sequence | — H — J — 1 and a normal subgroup A of A(H),
where A is the given map of H into G, such that A(H)/A is isomorphic
to ® and no nonidentity normal subgroup of G is contained in A. Note
that here G is an extension of H by J. The motivation behind enlarge-
ments is the fact that a Galois extensions of A Galois extension need not
be Galois and if we pass to the relevant least Galois extension then its
Galois group is an enlargement of the second Galois group by the first.

Talking of group extensions, as a striking consequence of CT it can
be seen that the direct product of two finite nonabelian simple groups is
the only extensions of one by the other. Here the relevant direct conse-
quence of CT is the Schreier Conjecture which which says that the outer
automorphism group of any finite nonabelian simple group is solvable;
see Abhyankar [11]] and Gorenstein [32]].

As another interesting result, in [[12] I proved that 74 (L) is closed
with respect to direct products. it should also be noted that Nori [49] has
shown that 74 (Ly) contains SL(n, p™) and some other Lie type simple
groups of characteristic p.

Returning to Grotherndieckian techniques, Serre [56] proved that if
ma(Ly) contains a group H then it contains every quasi p-group which
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is an extension of H by a solvable group J.

Indeed it appears that the ongoing work of Harbarter and Raynaud
using Grothendieckian techniques is likely to produce existential proofs
of the quasi p-group conjecture.

But it seems worthwhile to march on with the equational concrete
approach at least because it gives results over the prime field GF(p) and
also because we still have no idea what tha complete algebraic funda-
mental group n< (L) looks like where 7§ (L) is the Galois group over
k(X) of the compositum of all finite Galois extensions of k(X) which
are ramified only at infinity and which are contained in a fixed algebraic
closure of k(X).

9 Ramanujan

In the equational approach . “modula” things seem destined to plays a
significant role. For instance the Carlitz-Serre construction PSL(2, g)
coverings and Serre’s alternative proof [57] that G, 4, = PSL(2,8)
forg = p = 7 and n = 9, are both modular. Similarly my joint paper
[16] with Popp and Seiler which uses the Klein and Macbeath curves for
writing down PSL(2, 7) and PSL(2, 8) coverings for small characteristic
is also modular in nature.

Inspired by all this, I am undertaking the project of browsing in the
2 volume treatise of Klein and Fricke [43] on Elliptic Modular Func-
tions to prepare mysely for understanding Ramanujan himself who may
be called the king of Things Modular, where Things = Funcitons, equa-
tions, Mode of Thought or what have you; see Ramanujan’s Collected
Papers and Ramanujan Revisited [15]].

To explain what are moduli varieties and modular funtions in a very
naive but friendly manner: The discriminant b*> — 4ac of a quadratic
aY? 4 bY + c is the oldest known invariant. Coming to cubics or quartics
aY*+bY3 +cY? +e we can, as in books on theory of equations, consider
algebraic invariants, i.e., polynomial functional of a, b, ¢, d, e which do
not change (much) when we change Y by a fractional linear transforma-
tion (see my Invariant Theory Paper [[13])), or we may consider transcen-
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denatal invariants and then essentially we ge ellipatic modular func-
tions. More generally we may consider several (homogeneous) polyno-
mials in several (set-of) variables; when thought of as funcitions of the
variables they give us algebraic varieties or multi-periodic functions or
abelian varieties and so on; but as functions of the coeficients we get
algebraic invariants or moduli varieties or modular functions. Modular
functions and their transforms are related by modular equations; thinks
of the expansion of sin 76 in terms in sin !

But postponing this to another lecture on another day, let me end
with a few equational questions suggested by the experimental data pre-
sented in this lecture.

Question 9.1. Which quasi p-groups can be obtained by coverings of
a line by a line? In other words, which quasi p-groups are the Ga-
lois groups of f over k(X) for some monic polynomial f in ¥ with
coefficients in k[X] such that f is linear in X, no valuation of k(X)/k
is ramified in the splitting field of f other than the valuations X = 0
and X = oo, and the may even allow the given quasi p-group to equal
p(Gal(F, k(X))) ; note that Gal(f, k(X))/p(Gal(f,k(X))) is necessarily
a cyclic group of order prime to p. In any case this prime to p cyclic
quotient as well as the tame branch point at X — 0 can be removed be
Abhyankar’s Lemma. [Hoped for Answer: many quasi p-groups if not
all].

Question 9.2. Do fewnomilas suffice for all simple quasi p-groups? Et-
ymology: binomial, trinomial, ..., fewnomial. In other words,is there a
positive integer d (hopefully small) such that every simple quasi p-group
can be realized as the Galois group of a polynomial f containing at most
d terms in Y (more precisely, at most d monomials i Y) with coefficients
in k[X] which gives an unramified covering of the X-axis L;? Indeed,do
fewnomias suffice for most (if not all) quasi p-groups (without requiring
them to be simpel)? If not, then do sparanomials suffice for most (if not
all) quasi p-groups? Etymology: sparnomial = spare polynomial in Y
plus a polynomial in Y?.
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Question 9.3. Which quasi p-groups can be realized as Galois groups of
polynomials in ¥ whose coeffcients are polynomials in X over the prime
field GF (p) such that no valuation of GF(p)[X] is ramified in the rele-
vant splitting field and such tha GF(p) is relatively algebraically closed
in the splitting field and such that GF(p) is relatively. algebraiclally
closed in that splitting field? Same question where we drop the condi-
tion of GF(p) begin relatively algebraically closed but where we repalce
quasi p-groups by finite groups G for which G/p(G) is cyclic. For in-
stance, given any positive power ¢’ of any prime p’ such that the order of
PSL(2,q’) is divisible by p, we may ask whether there exists an unram-
ified covering of the affine line over GF(p) whose Galois group is the
semidirect product of PSL(2,q") with Aut(GF(¢')), i.e., equivalently,
whether there exists a polynomial in ¥ over GF(p)[X], with Galois
group the said semidirect product, such that no valuation of GF(p)[X]
is ramified in the relevant splitting field (without requiring GF(p) to be
relatively algebraically closed in that splitting field). Note that, in [9],
this last question has been answered affirmatively for p = 7 and ¢’ = 8.
Also note that for even ¢’ the said semidirect product is the projective
semilinear group PUL(2,q’), whereas for odd ¢’ it is an index 2 sub-
group of PT'L(2,q’); for definitions see [8].

Question 9.4. Do we get fewer Galois groups if we replace branch locus
by discriminant locus? For instance, can every quasi p-group be real-
ized as the Galois group of a monic polynomial in Y over k[X]| whose
Y-discriminant is a nonzero element of k? Likewise which members
of ma(Lg,), where Ly,, = L; minus w points, can be realized as Ga-
lois groups of monic polynomials in ¥ over k[X]| whose Y-discriminants
have no roots other than the assigned w points. We may ask the same
thing also for ground fields of characteristic zero.

Question 9.5. Concerining the bar and tilde equations discussed in (6.1)
to (6.8) and (7.1%*) to (7.5%) respectively, what further interesting groups
do we out of the border values of t?
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Question 9.6. Can we describe the complete algebraic fundamental
group ng(Lk)? More generally, for a nonsigular projective curve C,
of genus g minus w + 1 points, can we describe the complete algebraic
fundamental 7§ (Cy,)?

Question 9.7. Descriptively speaking, can the “same” equation give un-
ramified coverings of the affine line for all quasi p-groups in the “same
family” of groups? For instance, Y?*! — XY + 1 = 0 gives an un-
ramified covering of the affine line, over a field of characteristic p, with
Galois group PS L(2, g) for every power g every prime p. Now thinking
of the larger family of groups PS L(m,q), can be find a ‘single” equa-
tion with integer coefficients, “depending” on the parameters m and g,
giving an unramified covering of the affine line, over a field of charac-
teristic p, whose Galois group is PS L(m, q) for every integer m > 1 and
every power g of every prime p? Can we also arrange that the “same”
equation gives an unramified covering of the affine line, over every field
whose characteristic divides the order of PSL(m, ¢), whose Galois group
is PSL(m, ¢)? Even more, can we arrange that at the same time the Ga-
lois group of that equation over Q(X) is PSL(m, ¢) (but no condition on
ramification) where Q is the algebraic closure of Q?

Note 9.8. Two or more of the above questions can be combined in an
obvious manner to formulate more questions.
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Impact of geometry of the boundary on the positive
solutions of a semilinear Neumann problem with
Critical nonlinearity

Adimurthi

Dedicated to M.S. Narasimhan and C.S. Seshadri on their 60th
Brithdays

Let n > 3 and P" be a bounded domain with smooth boundary. We
are concerned with the problem of existence of a function u satisfying
the nonlinear equation

—Au=u’—Au in Q

u>0
0
-0 on 0Q (1)
v
where p = "+2 ,A > 0. Clearly u = — AY(=1 is a solution (@) and we
call it a triVial solutlon. The exponent p = "+§ is critical from the view

point of Soblev imbedding. Indeed the solution of (1) corresponds to
critical points of the functional

S |Vul?dx + 2§ u*dx
(SQ |u|p+1dx)2/[7+1

Oa(u) = (2)

on the manifold
M = {u € HI(Q);J |u|P T dx = 1} 3)
Q

In fact, if v < O is a critical pomt of @) on M, then u — Q(v)"/(P=1)v
satisfies (I)). Note that p + 1 = = is the limiting exponent for the

imbedding H'(Q) > L>/(*=2) (Q) Slnce this imbedding is not com-
pact, the manifold M is not weakly closed and hence O, need not satisfy
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Impact of geometry of the boundary on the positive solutions... 33

the Palais Smale condition at all levels. Therefore there are serious dif-
ficulties when trying to find critical points by the standard variational
methods. In fact there is a sharp contrast between the sub critical case
p< Z%% and the critical case p = %

Our motivation for investigation comes from a question of Brezis
[IT]]. If we replace the Neumann condition by Dirichlet condition # = 0
on 0Q in (), then the existence and non existence of solutions depends
in topology and geometry of the domain (see Brezis-Nirenbreg [14]],
Bhari-Coron [9]], Brezis [[10]). In view of this, Brezis raised the follow-

ing problem
“Under what conditions on A and Q, () admits a solution?”

The interest in this problem not only comes from a purely mathemat-
ical question, but it has application in mathematical biology, population
dynamics (see [[16]) and geometry.

In order to answer the above question let us first look at the subcrit-
ical case where the compactness in assured.

n+2

Subcritical case 1 < p < 7=5.

This had been studied extensively in the recent past by Ni [18]], and
Lin-Ni-Takagi [16]. In [16], Lin-Li-Takagi have proved the following

Theorem 1. There exist two positive constants A, and Ay such
a) If 1 < A, then (1) admits only trivila solutions.
b) If A > A, then () admits non constant solutions.

Further Ni [I8] and Lin-Ni [15] studied the radial case for all 1 <
p < o and proved the following

Theorem 2. Let Q = x;|x| < 1is a ball. Then there exists two positive
constants Ay and A* such that A, < A* such that 1, < A* and

a) Forl < p <o, A > A*, (1) admits a radially increasing solution

b) if p # % then for 0 < A1 < A, (1) does not admit a non

constant radial solution.
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34 Adimurthi

c) Let Q = {x;0 < a < |x| < B} be an annuluar domain and
1 < p < . Then there exist two positive constants 1, < A* such
that for 1, = A*, () admits a non constant radial solution and if
A < A*, then (@) does not admit a non constant radial solution.

In view of these results Lin and Ni [I5] made the following

n+2

29 Conjecture. Let p > 2 then there exist two positive constants 4 < A*

n—2
such that

(A) For 0 < A < A, (1) does not admit non constant solutions.
(B) For A < A, (1) admits a non constant solution.

In this article we analyze this conjecture in the critical case p =
%. Surprisingly enougn, the critical case is totally different from the
subcritical. In fact the part (&) fo the conjecture in general is false. The
following results of Adimurthi and Yadava [4] and Budd, Knaap and
Peletier [12] gives a counter example to the Part (A of the conjecture.

Theorem 3. Letn = 4,5,6 and Q = {X : |x| < 1}. Then there exist
a Ay > 0 such that for 0 < 1 < Ay, (D) admits a radially decreasing
solution.

Let us now turn our attention to part (Bl) of the conjecture. Let S de-
note the best Sobolev constant for the imbedding H' (R") — L>/("=2)(R")

given by
S —inf{f |Vu\2dx:J |u| /"2 dx = 1} (4)
n Rn

Then S is achieved and any minimizer in given by U, x, for some & > 0,
xo € R" where

- n(n—2) T
o0~ || ”
Unaa(x) = 55U (x ~ x‘)) (6)
g7 2
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In order to answer part (B) of the conjecture, geometry of the bound-
ary play an important role. To see this, we look at a more general prob-
lem than (), the mixed problem.

Let 0Q =Ty u T, Ig nT'| = ¢,T; are submanifolds of dimension
(n — 1). The problem is to find function u satisfying

nt2
—Au+Au=u—2 in Q

u>0
u=0 on Iy @)
0
a—‘Lj:O on F]
Let
H'(Ty) ={ue H'(Q):u=0 on Ty} (8)
S(/l’ FO) = lnf{Q/l(u) sue H' (Ty) m M} )

Clearly, if S (A,T) is achieved by some v, then we can take v < 0
and u = S (4, l"o)#v satisfies (). u is called a minimal energy solu-

tion. Existence of a minimal energy solution is proved in Adimurthi and
Mancini [[I]] (See also X.J. Wang [22]]) and have the following

Theorem 4. Assume that there exist an xy belonging to the interior of
[y such that the mean curvature H(xo) at xo with respect to unit outward
normal is positive. Then S (A,1) is achieved.

Sketch of the Proof. The proof consists of two steps.
Step 1. Suppose S (1,Ty) < S /2%/", then S (1, mI'y) is achieved.

Let v € H' () n M be a minimizing sequence. Clearly {v;} is
bounded in H'(Q). Let for subsequence of {v;} still denoted by
{vk}, coverges weakly to vy and almost everywhere in Q. We first
claim that vo # 0. Suppose vo = 0, then by Cherrier imbedding
(See [8]]) for every & > 0, there exists C(g) > 0 such that

2/p+1
1= (J |vk|p+ldx>
Q
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36 Adimurthi
2/n

S

< (1 +£)J |Avi|2dx + C(s)fv,%dx.
Q

By Rellich’s compactness, vy — 0 in L?(Q) and hence in the
above inequality letting k — o0 and € — 0 we obtain

22/n
1 < lim (1 +&) lim Q(v)
&—0 k—00
22/n
= S(A,T
55 (4.To)
<1

which is a contradiction. Hence vy £ 0. Let iy = vy — Vj, then
hi — 0 weakly in H'(Q) and strongly in L?(Q). Hence

S(A,To) = Qa(vk) +0(1)

s/p+1
— 0.(w) < | \vw“) o [ 1amPax o)
Q Q

Now by Brezis-Lieb Lemma, Cherrier imbedding, from the
above inequality, and by the hypothesis, we have for sufficiently
small € > 0,

2/p+1
S(A,Ty) = §(A,Ty) (J |vk\l’+‘dx>
Q

2/p+1 2/p+1
< S(4,To) { <J |v0]1’“dx> + (J |hkp+ldx> }
Q Q

+0(1)
2/p+1 22/n
= 5(4,To) <J |v0|p+1dx> + = (1+e)x
Q

L |th|2dx} +0(1)

2/p+1
_S(ATy) U |vo|f’+1dx> + f Vi P + 0(1)
Q Q
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2/p+1
= S(4,T)) <J;z |Vo|p+1dx> + 8 (A4,Ty) — Qa(vo) x

2/p+1
(L)
Q

this implies that Q,(vp) < S (4,T). Hence vy is a minimizer. 31

Step 2. S(A,Ty) < S /22"
Let xp belong to the interior of I'; at which H(xp) > 0 and r > 0
that B(xo,r) nTo = ¢. Let 9 € Cj°(B(xo,r)) such that ¢ = 1 for
|x — xo| < r/2. Lete > 0 and v, = ¢U,,. Then v, € H'(T})
and we can find positive constants A, and a, depending only on n

such that
S
Qi) = 2 AnH(x0)B1(€) + andBa(e) + 0(B1(e) + Ba(e))
(10)
where

elog/® ifn=23
Bi(e) = {

£ itn >4
£ itn >4
Bale) =< elogl/e ifn =4
& itn >4

Hence for & small and since H(xp) > 0 we obtain Q,(ve) <
S /2% and this proves Step (3I)) and hence the theorem.

Now it is to be noted the the curvature condition on I'; is very essen-
tial. If the curvature conditions fails, then in general (7)) may not admit
any solution.

Example. Let

B=x:|x| <1and
Q=xeB:x,>0
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F]ZXE@QZX,,:O
Iy=x€0Q:x,>0

Let u € H'(T) be a solution of (7). Define w on B by

(s x) = w(x', x,) ifx, >0
o w(x', x,) if —x, <0

Since % = 0 on I'|, w satisfies

nt2
—Aw + Aw = wr-2 in B
w >0
w=0 on 0B.

Hence by Pohozaev’s identity we obtain

—AJ wldx = J \Vw|2(x, v)d¢
B 0B

Hence by a contradiction. Notice that the mean curvature is zero on ;.

Proof of Part (B) of the Conjecture

Let Iy = 0Q. Since 0Q is smooth, we can find an xy € JQ such that
H(xp) > 0. Hence from theorem (@), (I) admits a minimal energy

solution u,. Let ug = A'/7~1 and A* = W Then A > A*

S
Oa(uy) < o < Q" = 04(uo)

Hence u, is a non constant solution of () and this proves part (B)) of the
conjecture.
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Properties of the minimal energy solutions

1. By Theorem[3] part (A) of conjecture in general is flase. Now we can
ask whether this is true among minimal energy solution? In fact it is
true. The following is proved in Adimurthi-Yadava [6]].

Theorem 5. There exist a A, > 0 such that for all 0 < 1 < A, the
minimal energy solution are constant.

Proof. By using the blow up techinque [13]], we can prove that for
every € > 0 there exists a ad(g) > 0 such that for 0 < 1 < A(e), if
u, is a minimal energy solution, then

lulop < & (11)

where | - |5 denotes the L* norm. Let y; be the first non zero eigen-
value of

—AY = in Q
a—dle on 0Q.
ov

1
Letu, = @ SQ u dx and ¢, = uy — u,. Then @, satisfies

1

—Ap) + Apy = ﬁf’l + pf () + ttp,l)pfl tpﬁdtdx
0

From (1) we have 0 < u, + tp; < uy < & and {5¢dx = 0.
Therefore we obtain

(u1 + Q) JQ <pidx < fg (|V¢p,1|2 + /hpi) dx < pePl™! JQ <p3dx

Now choose &’~! = ‘2‘—; and A, = A(&), then the above inequality
implies that ¢, = 0 and hence u, is a constant. This proves the
theorem. O
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2. Concentration and multiplicity results. From the concentration
compactness results of P.L.. Lions if u, is a minimal energy so-
lution of (@), then for anu sequence A; — oo with |Vu,, |*dx — du,
there exist a xo € 0Q such that du = #6 xo- Now the natural ques-
tion in “is it possible to characterize the concentration points x”?
One expects from the asymptotic formula (I0Q) that xo must be a point
of maximum mean curvature. This has been proved in Adimurthi,

Pacella and Yadava [7] and we have the following

Theorem 6. Let uy be a minimal energy solution of (1) and p, € Q be
such that

u (Py) = max {uﬂ(x); XE€E 5}
then there exist aly > 0 such that for all 1 > Ay
a) p, € 0Q and is unique,

b) Let n = 7. The limit points of {P,} are contained in the points of
maximum mean curvature.

Part @) of this Theorem is also proved in [19].

In view of the concentration at the boundary, it follows that the min-
imal energy solutions are not radial for A sufficiently large and Q beging
tha ball. Hence in a ball, for large A, we obtain at least two solutions
one radial and the other non radial (see [3]]). If Q is not a ball then in
Adimurthi and Mancini [2]], they obtained that Catyo(dQ ™) number of
solutions for () where 0Q" is the set of points in dQ where the mean
curvature is positive (here for X < U, Y topological space, then Caty (x)
is category of X in Y). Further if 0Q has rich geometry in the sense
described below, then Adimurthi-Pacella and Yadava have obtained
more solutions of (). They have proved the following

Theorem 7. Let n = 7. Assume that 0€ has k-peaks, that is there exist
k-points xy,...x; < 0Q at which H(x;) is strictly local maxima. Then
there exists aly > 0 such that for A > Ay, there are k distinct solutions
{ui,}¥ = 1 of @) such that u;, concentrates at x; as A — .
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Theorems [6] and [71 has been extended for the mixed boundary value
problems.

Theorem [7 is not applicable in the case when Q is a ball. On the
other hand, given a positive integer k, there exists a A(k) such that for
A > A(k), (1) admits at least kK number of radial solutions (see [I8])).
Part (B)) of the conjecture gives infinitely many rotationally equivalent
solutions of minimal energy. In view of this it is not clear how to obtain
more non radial solutions which are not rotationally equivalent.
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Sur la cohomologie de certains espaces de
modules de fibrés vectoriels

Arnanud Beauvilleﬁ

Dédié a M.S. Narasimhan et C.S. Seshadri
pour leur 60 anniversaire

Soit X une surface de Riemann compacte. Fixons des entiers r et d
premiersm entre eux, avec r = 1, et notons M 1’ espace des modules
U, (r,d) des fibriés d. C’est une variété projective et lisse, et il existe
un fibré de Poincaé & sure X x M; cela signifie que pour tout point e
de M, correspondant a un fibré E sur X, la restriction de & a X x e est
isomorphe a E.

Notons p, g les projections de X x M sur X et M respectivement.
Soit m un entier < r; la classe de Chern ¢, (&) admet une décomposition
de Kiinneth

cn(8) = P & 4 i,

avec & € H*(X,Z),u; € H* (M, Z),deg(¢;) + deg(w;) = 2m.

Nous dirons que les classes y; sont les composantes de Kiinneth de
cn€. Un des resultats essientiels de est la détermination d’un
ensemble de générateurs de 1’algébre de cohomologie H*(M.Z); il ala
consequence suivante:

Théoréeme. L’algeébre de cohomologie H*(M, Q) est engendrée par
les composantes de Kiinneth des classes de Chern de &.

Let but de cette note est de montrer comment la méthode de la di-
agonale utlilisée dans [E-S]] fournit une démonstration trés simple de ce
théoreme. Celcui-ci résulte de I’énoncé un peu plus général que voice:

*Avec le support partiel du projet europeéen Science “Gremetry of Algebraic Vari-
eties”, Contrat n° SCI-0398-C(A).
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Proposition. Soient X une variété complex projective et lisse, et M
un espace de modules espace de modules de faisceaux stables sur x
(par rapport d une polarisation fixée, cf. [[M|]). On fait les hypothéses
suivantes:

(i) La variété M est projective et lisse.
(ii) 1l existe un faiseceau de Poincaré & sur M.

(iii) Pour E, F dans M, on a Ext'(E, F) = 0 pour i > 2.

Alors I’algébre de cohomologie H* (M, Q) est engendrée par les
composantes de Kiinneth des classes de Chern de &.

La démostration suit de pres celle du th. 1 de [E-S]|. Rappelons-enl’
idee fondamentale: soit ¢ la classe de cohomologie de la diagonale dans
H*(M x M, Q); notons p et g les deux projections de x M sur M. Soit
6 = > p*ui - q*v;, la décompostion de Kiinneth de §; alors I’espace

l
H*(M, Q) est engendré par les v;. En effect, pour A dans H*(M, Q), on
a

A= qu(6-p*A) = ) deg(d- i)y
d’ou notre assertion. Il s’agint donce d” exprimer la classe ¢ en fonction
des classes de Chern du fibré universel.

Notons pp, p» le deux projections de C x M x M sur C x M, et 7 la
projections sur M x M; désignons par H le faisceau Hom(p} &, p5&).
Vul’,hypothese (i), I’hypercohomologie R, H est représentée dans la
catégorie dérivée par un complexe de fibrés K*®, nul en degré différent
de O rt 1. Autrement dit, il existe un morphisme de fibrés u:K? — K'!
tel qu, on ait, pour tout point x = (E, F) de M, une suite exacte

0 — Hom(E, F) — K°(x) ), k'(x) — Ext'(E,F) — 0.

Come I’espace Hom(E, F) est non nul si et seulement si E et F est
non nul si et seulement si £ F sont isomorphes, on voit que la diagonale
A de M x M colncide ensemblistement avecle lieu de dégénérescence
D de u (défine par I’annulation des mineurs de rang maximal de «). On
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peut prouver comme dans I’ égalité schématique, mais cela n’est
pas nécessaire pour démontrer la proposition.
Soit E un eélément de M. On a

rg(K®) — rg(K') = dim Hom(E, F) — dim Ext' (E, F)

quel que soit le point (E,F) de M x M. Puisque Ext*(E,E) = 0,
la dimension m de M est egale a dim Ext!(E, E); ainsi la sous-variéé
déterminantale D de Mx M ala codimension attendue rg(K')—rg(k°)+
1. Sa classe de cohomologie &' € H"(M x M,Z) est alors donnée par
la formule de Proteous

6 = cm(K' — K%) = cpp(—n!H),

ol mr! désigne le foncteur image directe en K-théorie. Cette classe étant
multiple de la classe ¢ de la diagonale, on conclut avec le lemme suivant:

Lemme. Soit A la sous-bQ-algbre de H*(M, Q) engendrée par les
composantes de Kiinneth des classes de Chern de &, et soient p et q les
deux projecutions de M x M sur calM. Les classes de Chern de n!H
sont de la forme Y, P*1; - q*v;, avec p;, v; € A.

Notons r la projections de C x M x M sur C. Tout polyndme en
les classes de Chern de pjcalE et de P5E est une somme de produits de
la forme r*y - % p*u - 7g*v, ot u et v appartiennent a A. Le lemme
rémme rSulte alors de la formule de Riemann-Roch

ch(mr!'H) = n.(r* Todd(C) ch(H)).

Remarque. La condition (i) de la proposition est évidenmment trés
con-traignante. Donnons deux exemples:

a) X est une surface rationnelle ou réglée, et la polarisation H vérifie
H K, < 0. Largument de cor. 6.7.3] montre que la condi-
tion (Il est satisfaite. Si de plus les coefficients a; du polynd me
de Hilbert des éléments de M, écrit sous la forme X(E) ® H") =

2 o

m—+1 . .. N
> a; ; > , sont premiers entereux, les conditions (@) a (il sont
i=0

=
satisfaites [M] $6].
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b)

Dans le cas d’ une surface rationnelle, on obtient mieux. Pour toute
variété T, désignons par CH*(T') I’anneau de Chow de T'; gri ce a
I’isomorphisme CH*(XtimesM) =~ CH*(X) ® CH*(M), on peut
remplacer dans la démonstration de la proposition 1’anneau de co-
homologie par I’anneau de Chow. On en déduit quela cohomolo-
gie rationnelle de M est algébrique, c’est-a-dire que 1’application
“classe de cycles” de cycles” CH*(M) ® Q — H*(M,Q) est u
isomphisme d’ anneaux. Dans le cas X = P?, ellingsrud et Strgmme
obtiennent le mdome résultat sur Z, plus le fait que ces groupes sont
sans torsion, grace a 1’outil supplémentaire de la suite spectrale de
Beilinson.

X est une variéteé de Fano De dimension 3. Soit S une surface
lisse appartenant au systéme linéaire | — K| (de sorte que S est
une surface K3). Lorsqu’elle est satisfaite, la condition () a des
conséquences remarquables [T]]: elle entraine que application de re-
striction £ — E|g définit un isomorphisme de M une sous-variété
largrangienne d’un espace de modules Mg de fibrés sur S (muni de
sa structure symplectique canonique). Il me semble intéressant de
mettre en évidence des espace de modules de fibrés sur une variété
de Fano (et déja sur P3) possédant la propriété (fi).
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Some quantum analogues of solvable Lie groups

C. De Concini, V.G. Kac and C. Procesi

Introduction

In the papers [DK2], [DKP2|the quantized enveloping
algebras introduced by Drinfeld and Jimbo have been studied in the case
q = &, aprimitive [-th root of 1 with / odd (cf. calx for basic definitions).
Let us only recall for the moment that such algebras are canonically con-
structed starting from a Cartan matrix of finite type and in praticular we
can talk of the associated classical objects (the root system, the simply
connected algebraic group G. etc.) For such a algebra tha generic (resp.
any) irreducible representation has dimesion equal to (resp. bounded
by) IV where N is the number of positive roots and the set of irreducible
representations has a canonical map to the big cell of the corresponding
group G.

In this paper we analyze the structure of some subalgebras of quan-
rized enveloping algebras corresponding to unipotent and solvable sub-
groups of G. These algebras have the non-commutative structure of iter-
ated algebras of twisted polynomials with a derivation, an object which
has often appeared in the general theory of non-commutative rings (see
e.g. [KP], [GL] and references there). In pariticular, we find maximal
demensions of their irreducible representations. Our results confirm the
validity of the general philosophy that the representation theory is inti-
mately connected to the Poisson geometry.

1 Twisted polynomial rings

1.1 In this section we will collect some well knownn definitions and
properties of twisted derivations.
Let A be an algebra and let o be an automorphism of A. A twisted
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derivation of A realtive ot ¢ is a linear map D : A — A such that:
D(ab) = D(a)b + o(a)D(D).

Example. An element a € A induces an inner twisted derivation ad,a
relative to o defined by the formula:

(abya)b = ab — o (b)a.

The following well-known fact is very useful in calculations with
twisted derivations. (Hre and further we use “box’ notation:

[n], [’“} [m]lm — 1] [n] ![m —n+ 1]

[n] = %,[n]! — [1][2]...

One also writes [1]y, etc. if g is replaced by ¢?.)

Proposition. Let a € A and let o be an automorphism of A such that
o(a) = g*a, where q is a scalar. Then

(adya)™ Z [’7] a" ol (x)al.

Proof. Let L, and R, denote the operators of left and right multiplica-
tions by a in A. Then
adya = L, — R,0.

Since L, andR, commute, due to the assumption o-(a) = g’a we have

Ly(R,0) = ¢ *(Ry0) L.

Now the proposition is immediate from the following well-known bino-
mial formula applied to the algebra End A. O

Lemma. suppose that x andy y are elements of an algebra such that
yx = g*xy for some scalar q. Then

m

e = 3 || gty

J=0
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Proof. is by induction on m using

e -

which follows from
qb[a] +a “[b] = [a + b].
m|

Let ¢ be a positive integer and let ¢ be a primitive £-th root of 1. Let
{' = (if £is odd and :%f if £ is even. Then, by definition, we have

/
[i} = 0 forall jsuchthat0 < j < £'.

This together with Proposition [LTlimplies
Corollary. Under the hypothesis of Proposition[[ Il we have:
(adya)’ (x) = a"x — o (x)a" if ¢ is a primitive £ — th root of 1.

Remark. Let D be a twisted derivation associated to an automorphism
o such that oD = ¢?Do. Then by induction on m one obtains the
following well-known g-analogue of the Leibniz formula:

D"(a) = Y || 400 I
j=0

It follows that if ¢ is a primitive ¢-th root of 1, then D is a twisted

. . . !
derivation associated to o

1.2 Given an automorphism o of A and a twisted derivation D of A
relative to o we define the rwisted polynomial algebra Ay, p[x] in the
indeterminate x to be the F-module A ®g F[x]| thought as formal poly-
nomials with multiplication defined by the rule:

xa = o(a)x + D(a).
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When D = 0 we will also denote theis ring by A,[x]. Notice that the
definition has been chosen in such a way that in the new ring the given
twisted derivation becomes the inner derivation ad, x.

Let us notice that if a,b € A and a is invertible we can perform the
change of variables y := ax + b and we see that A, p[x] = Ay p[y]. It
is better to make the formulas explicit separately when b = 0 and when
a = 1. In the fist case yc = axc = a(o(c)x + D(c)) = a(o(c))a™'y +
aD(c) and we see that the new automorphism ¢ is the composition
(Ada)or, so that D’ := aD is a twisted derivation relative to o”’. Here
and further Ada stands for the inner automorphism:

(Ada)x = axa™'.

In the case a = 1 we have yc = (x + b)c = o(c)x + D(b) + bc =
o(c)y + D(b) + bc — o(c)b, so that D' = D + ad,b. Summarizing we
have

Proposition. Changing o, D to (Ada)o, aD (resp. to o, D + Dy) does
not change the twisted polynomial ring up to isomorphism.

We may express the previous fact with a definition: For a ring A two
pairs (o, D) and (07, D’) are equivalent if they are obtained one from
the other by the above moves.

If D = 0 we can also consider the twisted Laurent polynomial alge-
bra A, [x, x~!]. Itis clear that if A has no zero divisors, then the algebras
As.p[x] and A, [x, x~1] also have no zero divisors.

The importance for us of twisted polynomial algebras will be clear
in the section on quantum groups.

1.3 We want to study special cases of the previous construction.

Let us first consider a finite dimensional semisimple algebra. A over
and algebraically closed field F, let ), Fe; be the fixed points of the
center of A under o where the e¢; are central idempotents. We have
D(ej) = D(e?) = 2D(e;)e; hence D(e;) = 0 and, if x = xe;, then

D(x) = D(x)e;. It follows that, decomposing A @), Ae;, each compo-
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nent Ae; is stable under o~ and D and thus we have

Aplx] = D(Aei)eplx].

1

This allows us to restrict our analysis to the case in which 1 is the only
fixed central idempotent.
The second special case is described by the following:

Lemma. Consider the algebra A = F* with o the cyclic permuta-
tion of the summands, and let D be a twisted derivation of this algebra
relative to o. Then D is an inner twisted derivation.

Proof. Compute D on the idempotents: D(e;) = D(e7) = D(e;)(e; +

ei+1). Hence we must have D(e;) = aje; — bje;r; and from 0 =
D(ejei+1) = D(ei)eir1D(ei+1) we deduce b; = a;+1. Let now a =
(ay,ay, ..., ax); an easy computation shows that D = ad,a. O

Proposition. Letr o be the cyclic permutation of teh summands of the
algebra FO*. Then

(a) FEK [x, x_l] is an Azumaya algebra of degree k over its center
F [xk, x_k].

(b) R :=F* [x, xil] gk k] F [x, xil] is the algebra of k x k matri-
ces over F [x, xil].

Proof. Tt is enough to prove (B). Let u := x ® x Ve i=e®1; we
have ¥ = X*® x % = 1 and ue; = e;i+1u. From these formulas it
easily follows that the elements e;u/(i, j = 1,...,k) span a subalgebra
A and that there exists an isomorphism A~ (F) mapping F® to the
diagonal matrices and u to the matrix of the cyclic permutation. Then
R:A®FF[x,x*1]. O

1.4 Assuem now that A is semi-simple and that o induces a cyclic
permutation of the central idempotents.
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Lemma. (a) A = My(F)®

(b) Let D be a twisted derivation of A realtive to o. Then the pair (o, D)
is equivalent to the pair (o”,0) where

o"(a1,a2,...,ak) = (ak,al,az,...,ak_l) (1.4.1)

Proof. Since o permutes transitively the simple blocks they must all
have the same degree d so that A = My(F)®*. Furthermore we can
arrange the identifications of the simple blocks with matrices so that:

o (ar,a,...,ar) = (t(ax),a1, a2, ..., ar1),

where 7 is an automorphism of My(F). Any such automorphism in
inner, hence after composing o~ with an inner automorphism, we any
assume in the previous formula that 7 = 1, Then we think of A as
My(F) ® FO, the new automorphism being of the form 1 ® o’ where
o’ FO*F _ F9K s given by (LAI).

We also have that M, (F) = A” and F®* is the centralizer of A”. Nest
observe that D restricted to A” is a derivation of M, (F) with values in
@ My(F), ie., D(a) = (Di(a),Da(a),...,Di(a)) where each D; is
a derivation of M, (F). Since for M,(F). all derivations are inner we
can find an element u € A such that D(a) = [u,a] for all a € M F. So
(D—adyu)(a) = [u,a] — (ua—o(a)u) = 0 fora € A”. Thus, changing
D by adding —ad,u we may assume that D = 0 on My(F).

Now consider b € F& and ac € M (F); we have D(b)a = D(ba) =
D(ab) = aD(b). Since F® is the centralizer of M,(F) we have D(b) €
F®* and D induces a twisted derivation of F&*. By Lemma [[3 this last
derivation is inner and the claim is proved. O

Summarizing we have

Proposition. Let A be a finite- dimensional semisimple algebra over
an algebraically closed field E. Let o be an automorphism of A which
induces a cyclic permutation of order k of the central idempotents of A.
Let D be a twisted derivation of A relative to o. Then:

Acplx] = My(F) @ F¥[x],
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Agp[x, x7 1 = My(F) @ F[x, x71].

This last algebra is Azumaya of degree dk.

1.5 We can now globalize the previous constructions. Let A be a prime
algebra (i.e. aAb = 0, a,b € A, implies that @ = 0 or b = 0) over
a field F and let Z be the center of A. Then Z is a domain and A is
torsion free module over Z. Assume that A is a finite module over Z.
Then A embeds in a finite-dimensional central simple algebra Q(A) =
A®yzQ(Z), where Q(Z) is the ring of fractions of Z. If Q(Z) denotes the
algebraic closure of Q(Z) is the ring of fractions of Z. If Q(Z) denotes
the algebraic closure of Q(Z) in the ring of fractions of Z. If Q(Z)
denotes the algebraic closure of Q(Z) we have that A ®, Q(Z) is the full
ring M;(Q(Z)) of d x d matrices over Q(Z). Then d is called the degree
of A.

Let o be an automorphism of the algebra A and let D be a twisted
derivation of A relative to . Assume that

(a) There is subalgebra Zj of Z, such that Z in finite over Z.
(b) D vanishes on Zj and o restricted to Zj is the identity.

These assumptions imply that o restricted to Z is an automorphism
of finite order. Let d be the degree of A and let k be the order of o on the
center Z. Assume that the field F has characteristic 0. The main result
of this section is:

Theorem. Under the above assumptions the twisted polynomial alge-
bra Ay.p|x] is an order in a central simple algebra of degree kd.

Proof. Let Z7 be the fixed points in Z of o. By the definition, it is cleat
that D restricted to Z7 is derivation. Since it vanishes on a subalgebra
over which it is finite hence algebraic and since we are in characteristic
zero it follows that D vanishes on Z7. Let us embed Z7 in an alge-
braically closed field L and let us consider the algebra A ®o L = L&
and A xz L = My(L). Thus we get that A ®z- L = @F_ M4(L). The
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pair o, D extends to A ®z- L and using the same notations we have that
(A ®zr L)op[x] = (Asigma,p[x]) ®z- L. We are now in the situation
of a semisimple algebra which we have already studied and the claim
follows. |

Corollary. Under the above assumptions, Ay p|x] and As[x] have the
same degree.

Remark. The previous analysis yields in fact a stronger result. Consider
the open set of Spec Z where A is an Azumaya algebra; it is clearly o-
stable. In it we consider the open part where o has order exactly k.
Every orbit of k elements of the group generated by o gives a point
F(p) in Spec Z7 and A @z Z ®z+ F(p) = ®_ My(F(p)). Thus we
can apply the previous theory which allows us to describe the fiber over
F(p) of the spectrum of A, p|[x].

1.6 Let A be a prime algebra over a field F of characteristic 0, let
X1,...,X, be a set of generators of A and let Z; be a central subalgebra
of A. Foreachi = 1,...,K, denote by A’ the subalgebra of A generated
by xi,...,x and let Z) = Zy n A’. We assume that the following three
conditions hold foreachi =1,...,k:

(a) XiXj = b,-jxjx,- + P,‘j if i > j. where b,‘j eF, P,‘j e A1,
(b) A'is a finite module over Zé.

(c) Formulas o(xj) = bjjx; for j < i define a automorphism of A'~!
which is the identity on Zl

Note that letting D;(x;) = P;; for J < i, we obtain A’ = A’ ! p, Xl
so that A is an iteratated twisted polynormal algebra, Note also that each
triple (A'~!, o, D;) satisfies assumptions [.3] @) and (B).

We may consider the twisted polynomial algebras A’ with zero deriva-
tions, so that the relations are x;x; = b;;x;x; for j < i. We call this the
associated quasipolynomial algebra (as in [DK1])).

We can prove now the main theorem of this section.
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Theorem. Under the above assumptions, the degree of A is equal to the
degree of the associated quasipolynomial algebra A.

Proof. We use the following remark. If there is an index % such that the
element P;; = O for all i > h and all j, then monomials in the variables
different from x;, form as subalgebra B and the algebra A is a twisted
polynomial ring B, p[X]. The associated ring B, [Xy] is obtained by
setting py; = O for all j. Having made this remark we see that can
inductively modify the relations [L.6I@) so that at the A-th step we have
an algebra A} with the same type of relations but P;; = O foralli > n—h
and all j. Since A} and A}, are of type B, p[x] and B[x] respectively
we see, by Corollary [[.3] that they have all the same degree. |

2 Quantum groups

2.1 Let (a;;) be an indecomposable n x n Cartan matrix and let dj, .. .,
d, be relatively prime positive integers such tha d;a;; = djaj;. Recall
the associated notions of the weight, coroot and root lattices p, Q" and
Q, of the root and coroot systems R and R, of the Weyl group W, the
W-invariant bilinear form (.|.), etc.:

Let P be a lattice over Z with basis wy,...,w, and let Q¥ = Homg
(P, Z) be the dual lattice with the dual basis 1V, ..., @, ", i.e. {w;, @, ) =
5,‘j. Let P, = Z?:l Z, w;. Let

n n
p=2w,-, aj=2a,-‘,-w,-(j=l,...,n),
i=1 i=1

andlet 0 = 3" Za; < P,and Q4 = 377 Zy ;.

Define automorphisms s; of p by s;(w;) = wj—d;ja; (i, j=1,...,n).
Then s;(@;) = @; — a;ja;. Let W be the subgroup of GL(p) generated
by s1,...,s,. Let

I ={ai,...,a,}, Hvz{alv,...,a/,f},
R=WI, R"=RnQ,, RY=WII".
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The map @; — «a;” extends uniquely to a bijective W-equivariant map
@ — «a;’ between R and RY. The reflection s, defined by s,(1) =
A — (A, a" )a lies in W for each @ € R, so that s,, = s;.

Define a bilinear pairing P x Q — Z by (w;|e;) = 6;jd;. Then
(@ilaj) = dia;j, giving a symmetric Z-valued W-invariant bilinear form
on Q such that (a|a) € 2Z. We may indentify Q" with a sublattice of
the Q-span of P (containing Q) using this form. Then:

a’ = dl._la/,-, " =2a/(a|a).

One defines the simply connected quantum group U associated to
the matrix (a;;) as analgebra over the ring A := [q, g_1, (¢% — g~%)7"].
with generators E;, Fi(i = 1,...,n), K,(a € P) subject to the follow-
ing relations (this is simple variation of the construction of Drinfeld and
Jimbo):

K(zKﬁ = k(z+,87 kO =1,
To(Ei) = ¢V E;, 00 (F;) = g1,
ke, — K_a,

g — g4’
(ady_, E;)'~™E; =0, (ady, F;)'"F; =0 (i # j),

[Ei, Fj] = 6ij

where 0, = Ad K,. Recall that U has a Hopf algebra structure with
comultiplications A, antipode S and counit n defined by:

SEi=—K 4E;, SFi = —FK;, Ska = K_,
nE; =0, nF; =0, nK, = 1.
Recall that the braid group By (associated to W), whose canonical

generators one denotes buy 77, acts as a group of automorphisms of the
algebra U ([L]):

TiK, = Ks,-(a)’ TE; = _FiKa,-
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1
TE; = —ady, (—E;))"“E;j,
=] [_alj]dl ( O-a/[( l)) J
Tik = kT;,

where k is a conjugate-linear anti-automorphism of U, viewed as an
algebra over IC, defined by:

kE; = F;, kF; = E;, kKo = Ko, kg =g .

2.2 Fix areduced expression wy = S, ... s;, of the longest element of
W, and let

Bi = @i, B2 = i, (aiz)’ BN = Sip Sy (aliN)
be the corresponding convex ordering of R™. Introduce the correspond-
ing root vectors (m = 1,...,N) ([L]):
Eg =T;....T;

m > 5 lm—1

E. Eg, =T, ...T; ,Fi, = kEp

Im—1

(they depend on the choice of the reduced expression).
Fork = (ki...,ky) € Z% we let

E* = Ejl .. Eg ky, F* = kE".

Lemma. (a) [L] The elements F kK E", where k,r € ZIX, a € P, from
a basis of U over A.

(b) [LS] Fori < jone has:

EgEp, — qPPDEs Eg = > c(EF, (2.2.1)
kezZly

where ¢; € IC [q, qil] and ¢; # 0 only when k = (ky,...,ky) is such
thatk; =Ofors <iand s > j

An immediate corollary is the following:

Letw = s;, ... s;, which we complete to a reduced expression wy =
s, - .. siy of the longest element of W. Consider the elements Eg, j =
1,...,k. Then we have:
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Proposition. (a) The elements Eg;, j = 1,...,k, generate a subalge-
bra U which is independent of the choice of the reduced expression

of w.

(b) If W = ws with s a simple reflection and I(W') = I(w) + 1 =
k+1, then U is a twisted polynomial algebra of type U" D[E,Bk )
where the formulas for o and D are implicitly given in the formulas

221D

Proof. (a) Using the face that once can pass from one reduced expres-
sion of w to another by braid relations one reduces to the case of rank 2
where one repeats the analysis made by Luszting ([L]). (b) is clear by
Lemma22] m]

The elements K, clearly normalize the algebras ¢" and when we add
them to these algebras we are performing an iterated construction of
Laurent twisted polynomials. The resulting algebras will be called B".

Since the algebras U" and 8" are iterated twisted polynomial rings
with relations of the type[L.6l@) we can consider the ass001ated quasipoly
nomial alagebras, and we will denote them by U" and B". Notice that
the latter algebras depend on the reduced expression chosen for w. Of
course the defining relations for these algebras are obtained from 2.2.1))
by replacing the right-hand side by zero. We could of coures also per-
form the same construction with the negative roots but this is not strictly
necessary since we can simply apply the anti-automorphism k to define
the analogous negative objects.

3 Degrees of algebras U and B¢

3.1 We specialize now the previous sections to the case g = &, a prim-
itive ¢-th root of 1. Assuming that £/ > maxd;. we may consider the
1

specialized algebras:
Us=U/(g—E), U =U"/(q—E), BE =8B"/(q - &), etc.

We have obvious subalgebra inclusions U < B < Ug.
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First, let us recall and give a simple proof of the following crucial

fact [DK1]J:

Proposition. Elements E'(a € R) and Ké(ﬁ € P) lie in the centre zg of
Ug if €' > max |ajj| (for any generalized Cartan matrix (a;;)).
i

Proof. The only non-trivial thing to check is that [E¢, E;] = 0 fori # j.
From the “Serre relations” it is immediate that (ad, E)'E; = 0. Due
to Corollary [IT] this can be rewritten as

Et’/ 8—€ (a,|<xj)E E[
proving the claim. O

As has been alreadu remarked, the algebras U and B are iterated
twisted polynomial algebras with relations of the type [L6l@) Proposition
[B.Ilshows that they satisfy conditions[T.6{{b) and (@). Hence Theorem[I.6
implies

Corollary. Algebras U and ﬂg (resp.Bg and Eg ) have the same
degree.

3.2 We proceed to calculate the degrees of algebras T[g and ?g. Re-
cal that these algebras are, up to inverting some variables, quasipolyno-
mial algebras whose generations satisfy relations of type x;x; = b;;x;x;,
i,j=1,...,s, where the elements b;; have tha special form b;; = &,
the ¢;; being entries of a skew-symmetric integral s x s matrix H. As
we have shown in [[DKP2]], Proposition 2.2] considering H as the ma-
trix of a linear map Z° — (Z/(¢))*, the degree of the corresponding
twisted polynomial algebra is v/A, where A is the number of element of
the image of this map.

Fix w € W and its reduced expression w = s;, ...s;,. We shall
denote the matrix H for the algebras Tlg and Efg” by A and S respectively.
First we describe explicitly these matrices.

Let d = 2 unless (a;;) is of type G, in which case d = 6, and
let Z' = Z[d~'|. Consider the roots fi,...J as in Section and
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consider the free Z’-module V with basis iy, . . ., ux. Define on V a skew-
symmetric bilinear form by

Cuilujy = (BilB;) if i < j.

Then A is the matrix of this bilinear form in the basis {u;}. Identifying
V with its dual V* using the give basis, we may think of A as a linear

operator from V to itself.
A -'C
(e )

Furthermore,
where C is the n x k matrix ((w;|B;))1<i<n,1<j<t- We may think of the

x

matrix C as a linear map from the module V with the basis u1, ..., Uy to
the module Q¥ ®yz Z' with the basis @Y, ..., a, . Then we have:
Clu)) =i, i=1,...,k (3.2.1)

To study the matrices A and S we need the following
Lemma. Given w = ' 6;w; with 6; = 0 or 1, set
I,={tel,... k|s,(w) # w}.
Then
ww) =w— Zﬁj.
J€iw

Proof. by induction on the length of w . Write w = w's;,. If k ¢ I,
then w(w) = w'(w) and we are done by induction. Otherwise w(w) =
w(w — @;,) = w'(w) — Br and again we are done by induction. mi

n
Note that 1,2,...,k = [[ I,

3.3 Consider the operators: M = (A —'C) and N = (CO) so that
S=M®N.
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Lemma. (a) The operator M is surjective.

(b) The vectors v,, = (Ztelw u) — w — w(w), as w runs through the
fundamental weights, form a basis of the kernel of M.

(c) Nvp) = w—w(w) =Ds Br

Proof. (a) We have by a straightforward computation:

S (ui +Bi) = —(BilBi)ui — 2 Y (BilB))u; — B
J>i
and
M(u; + ;) = —(BilBi)u; — 2> (BilB))u;
J>i
Since (B;|B;) is invertible in Z’ the claim follows.

(b) Since the vectors v,, are part of a basis and, by @), the kernle
of M is a direct summand, it is enough to show that these vectors lier
in the kernel. Now to check that M(v,,) = 0 is equivalent to seeing
tha v, lies in the kernel of the corresponding skew-symmetric form, i.e.
(Ujlve,) =0forall j=1,... k:

Using Lemma[3.2] we have

vy = =2 (BilBr) + 2(Bjw(w:)) + a;. (3.3.1)
t>j
where aj = 01if j ¢ I, and a; = (B|B;) otherwise.

We proceed by inductions on k = I(w). Let us write v, (w) to stress
the dependence on w. For k = 0 there is nothing to prove. Let w = w's;,
with I(w") = I(w) — 1. We distinguish two cases according to whether
i = igornot. If i =# i, ie. k ¢ I,,, we have that v,, = v, (W) hence
the claim follows by induction if j < k. For j = k we obtain from

BG31):
vy = =2(Brlw(wi)) = =2(w' (i)W (wi)) = —2(ay|w;) = 0.

Assume now that iy = i so that w = w’s;. Then v, (w) = v, (W) +uy —
Bi. For j < k by induction we get:

(ujlvey = ujluy — ujlBy = —(BjlBk) + (BjlBr) = 0.
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Finally if j = k we have:

2(Bilw(wi)) + (BelBr) = 2(W ailw'(wi — @1)) + (il
= 2((1’,"60,‘) — (CL’,'|CL’,') = 0.

Finally using 3.2.T), we have: N(vy,) = >, [, hence (@ follows
form Lemma[3.2] ' m|

3.4 Inorder to compute the kernel of S we need to compute the kernel
of N on the submodule spanned by the vectors v,,. Let us identify this
module with the weight lattice p by identifying v,, with w;. By Lemma
B3l@), we see that N in identified with map 1 — w : P — Q. At this
point we need the following fact:

Lemma. Consider the highest root § = Y_, a;; of the root system R.
Let7 =7" [al_l,...,a,fl], andlet M' = M ®7;Z', M" = M ®z Z" for
M = p or Q. Then for any w € W, the Z"-submodule (1 — w)P" of Q"
is a direct summand.

Proof. Recall that one can represent w in the form w = §,, ...s,,
where y1 ...y, is alinearly independent set of roots (see e.g. [C]]). Since
in the decomposition y¥ = Zi ria;” one of the r; is 1 or 2, it follows that
(1 —=s))P' =2Z,.Since | —w = (1 =5, ...5), )y, + (1 —s,,), we
deduce by induction that

(L=w)P' = > Zy, (3.4.1)

Recall now that any sublattice of Q spanned over Z by some roots is
a Z-span of a set of roots obtained from II by iterating the following
procedure: add a highest root to the set of simple roots, then remove
several other roots form this set. The index of the lattice M thus obtained
in M ®z Q n Q is equal to the product of coefficients of removed roots
in the added highest root. Hence it follows from (3.4.) that

(1= W)P”) ®RzQn Q" = (1 —w)P”,

proving the claim. |
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We call € > 1 a good integer if it is relatively prime to d and to all
the a;.

Theorem. If{ is a good integer, then
deg BY = deg By, = el ((0¥)+rank(1-w)),

Proof. From the above descussion we see that deg Eg = {*, where s =
(¢(w)+n)— (n—rank(1 —w)), which together with Corollary B.J]proves
the claim. O

3.5 We pass now to Ug. For this we need to compute the image of
the matrix A. Computing first its kernel, we have that K er A is iden-
tified with the set of linear combinations ) ; ¢;v,, for which . ¢;(w; +
w(w;)) = 0i.e. X ciw; € ker(1 + w). This requires a case by case anal-
ysis. A simple case is when wy = —1, so that 1 + w = wo(—1 + wow)
and one reduces to the previous case. Thus we get

Proposition. If wy = —1 (i.e. for types different from A,, Dy,+1 and
E¢) and if € is a good integer, we have:

degUg = degT{g = f%(f(W)-‘rrank(l-s-w)_n).

Let us note the special case w = wy. Remark that defining ‘w :=
—wo(w) we have an involution w — ‘w on the set of fundamental
weights. let us denote by s the number of orbits of this involution.

Theorem. If& is a primitive {-th root of 1, where { is an integer greater
than 1 and relatively prime to d, then algebra ‘Z/{go and Bgo have degrees

N+s .
I N=2 and 072 respectively.

Proof. In this case I(wp) = N and the maps w — w + wp(w) and
w— w— wy(w) are w —> w —'w and w — w + 'w and so their ranks
are clearly n — s and s respectively. |
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4 Poisson structure

4.1 Before we revert to the discussion of our algebras we want to make
a general remark. Assume that we have a manifold M and a vector bun-
dle V of algebras with 1 (i.e. 1 and the multiplication map are smooth
sections). We identify the functions on M with the sections of V which
are multiples of 1. Let D be a derivation of V, i.e. a derivation of the
algebra of sections which maps the algebra of functions on M into itself
and let X be the corresponding vector field on M.

Proposition. For each point p € M there exists a neighborhood U, and
a map ¢, defined for |t| sufficiently small on V|U, which is a morphism
of vector bundles covering the germ of the 1-parameter group generated
by X and is also an isomorphism of algebras.

Proof. The hypotheses on D imply that it is a vector field on V linear on
the fibers, hence we have the existence of a local lift of the 1-parameter
group as a morphism of vector bundles. The condition of being a deriva-
tion implies that the lift preserves the multiplications section i.e. it is a
morphism of algebras. O

We will have to consider a variation of this: suppose M is a Poisson
manifold and assume furthermore that the Poisson structure lifts to V
i.e. for each (local) functions f and section s we have a Poisson bracket
which is a derivation. This means that we have a lift of the Hamiltonian
vector fields as in the previous proposition. We deduce:

Corollary. Under the previous hypotheses, the fibers of V over points
of a given symplectic leaf of M are all isomorphic as algebras.

Proof. The proposition implies that in a neighborhood of a point in a
leat the algebras are isomorphic but since the notion of isomorphism is
transitive this implies the claim. m|

4.2 Let us recall some basic facts on Poisson groups (we refer to [D]],
[STS]], [LW] for basic definitions and properties). Since a Poisson struc-
ture on a manifold M is a special type of a section of A>T (M) it can be
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viewed as a linear map from 7%(M) to T(M). The image of this map
is thus a distribution on the manifold M, It can be integrated so that we
have a decomposition of M into symplectic leaves which are connected
locally closed submanifolds whose tangent spaces are the spaced of the
distribution. In fact in our case the leaves will turn out to be Zarisko
open sets of algebraic of algebraic subvarieties.

For a group H the tangent space at each point can be identified to
the Lie algebra 7 by left translation and thus a Poisson structure on H
can be given as a family of maps y, : #* — hias h € H. Let G be an
algebraic group and H, K < G algebraic groups if their corresponding
Lie non-algebras (g, %, k) form a Manin triple , i.e. (cf. [Dl], [LW]) if g
has a non-degenerate,symmetric invariant bilinear form with respect to
which the Lie subalgebras 7 an k are isotropic and g = 7 @ k (as vector
spaces). Then it follows that we have a canonical isomorphism 7* = k.
Having identified 7#* with k, the Poisson structure on H is thus described
by giving for every h € H alinear map y;, : k — h.

Let x € k, consider x as an element of g, set 7 : ¢ — 7 to be the
projection with kernel k. Set:

yi(x) = (Adh)-(Adh) ™" (x).

Then one can verify (aw in [LW]]) that the corresponding tensor satis-
fies the required properties of a Poisson structure. (In fact any Poisson
structure on H can be obtained in this way.)

Notice now that the (restriction of the) canonical map:

§:H—G/K

is an étale covering of some open set is G/K. Thus for every point
h € H we can identify the tangent space to H in & with the tangent space
of G/K at delta(h). By using right translation we can then identify the
tangent space to G/K at 6(h) with g/(Adh)K, the tangent space at h € H
with 7 by right translation and the isomorphism between them with the
projection i — g/(Adh)k.

Using all these identifications once verifies that the map y;, previ-
ously considered is the map induced by differentiating the left K-action
on G/K. From this it follows.
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Proposition. The symplectic leaves for the symplectic structure on H
coincide with the connected components of the preimages under 6 of
K-orbits under the left multiplications of G/K.

Consider now a quotient Poisson groups S and H, that is S is a
quotient group of H and the ring IC[S | < IC[H] is a Poisson subalgebra.
Let U be the kernel of the quotient homomorphism ¢ : H — §, let
s = Lie S, u = Lie U and dyp : i — s the Lie algebra quotient map.
Then u is an ideal in % and we identify s* with a subspace of #* = k by
taking u < g under the invariant form and intersecting it with k. Then
for p € S the linear mar: y,, : s* — s giving rise to the Poisson structure
is given by:

Yp = (d¢) - (vpls")
where rildep € H is any representative of p(y, is independent of the
choice of p).

The construction of the Manin triple corresponding to the Poisson

manifold S is obtained from the following simple fact:

Lemma. Let (g,%,k) be a Manin triple of Lie algebras, and let u — h
be an ideal such that uL(ing) intersected with k is a subalgebra of the
Lie algebra k. Then

(a) u* is a subalgebra of g and u is an ideal of u 1.

(b) (uL/u, h/uk N uL) is Manin triple, where the bilinear form on u*-

is induced by that of g.

Proof. Straightforward. m|

4.3 In the remaining sections we will apply the above remarks to the
Poisson groups associated to the Hopf algebra Ug and its Hopf subal-
gebra Bg := Bg(’, and will derive some results on representations of the
algebra Bg. From now on & is a primitive £-th root of 1 where £ > 1 is
relatively prime to d.

Let Zy (resp. ZO+ ) be the subalgebra of Ug (resp. Bg) generated by
the elements Eé with @ € R (resp. @ € R") and Kp with g € P. (We
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assume fixed a reduced expression of wy; Zy and Z(;r are independent of
this choice [DKT].) Recall that they are central subalgebras (Proposition
BID.
It was shown in [DKT]] that Z and Zg“ are Hopf subalgebras, hence
Spec Zy and Spec ZO+ have a canonical structure of an affine algebraic
group. Furthermore. since Ug is a specialization of the algebra U at
q = &, the center Zg of Ug possesses a canonical Poisson bracket given
by the formula:

[a.b]
20%(q - &)

where a denotes the preimage of a under the canoncila homomorphism
U — Ug. The algebras Z; and Spec Z(;r have a canonical structure of
Poisson algebraic groups, Spec Zar begin a quotient Poisson group of
Spec Zp.

In an explicit isomorphism was constructed between the
Poisson grout Spec Zj and a Poisson group H which is described below.
We shall identify these Poisson groups.

Let G be the connected simply connected algebraic group associated
to the Cartan Matrix («;;) and let g be its (complex) Lie algebra. We fix
the triangular decomposition g = u_ +t+ U4, letby =t + uy, and
denote by (.|.) the invariant bilinear form on g which on the set of roots
R < t* coincides with that defined in Section 2.1l Let U4, B+ and T be
the algebraic subgroups of G corresponding to Lie algebras u+, B+ and
t. Then as an algebraic group, H is the following subgroup of G x G:

{a,b} = mod (¢ — &),a,b € Zg,

H = {(tu+,t_1u,)|t eT,ui e WJ_F} .

The Poisson structure on H is given by the Manin triple (g ® g, %, k),
where

h={(t+uy,—t+u_)|tetur €uy},
k=1{(g.9)lg € s},

and the invariant bilinear form of g ® g is

((x1,x2)|(v1,¥2)) = = (x1[y1) + (x2[y2)-
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We identify the group By = H/{(l,u_|u_ € U_)}. The Manin
triple generating Poisson structure on B is obtained from (a@®g, i, k) by
taking the ideal u = {(0,u—_,u_ € u_)} and applying the construction
given by Lemma.2] We clearly obatina the triple (¢®1, b, b_), where
we used identifications

by = {(ui — 1, it)|ui €E Uy, te t}.

According to the general recipe of Proposition the symplectic
leaves of the Poisson group B are obtained as follows. We identify the
groups B with the following subgroups of G x T':

BJ_r = {(l_lui,ti1)|l€ T,l/tJ_r € Ui} .
The inclusion By < G x T induces an étale morphism
6:B. — (GxT)/B_.

Then the symoplectic leaves of B are the connected components of the
preimages under the map under the map ¢ of B_-orbits on G x T/B_
under the left multiplication .

In order to analyze the B_-orbitson g x T/B_, letuy : By — T
denote the canonical homomorphisms with kernels U+ and consider the
equivariant isomorphism of B_-varieties y : G/U_ — (G x T)/B_
given by y(gU_) = (g, 1)B_, where B_ acts on G/U_ by

b(gU_) = bgu_(b)U_. (4.3.1)
Then the map & gets identified with the map 6 : By — G/U_ given by
6(b) = bu+(b)U-_.

We want to study the orbits of the action (@3] of B_ on G/U_.
Consider the action of B_ on G/B_ by left multiplication. Then the
canonical map pi : G/U_ — G/B_ is B_-equivariant, hence 7 maps
every B_-orbit O in G/U_ to a B_-orbit in G/B_, i.e. a Schubert cell
Cyw = b_wB_/B_ for some e € W. We shall say that the orbit O is
associated to w.
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Remark. We have a sequence of maps:

B, % (G xT)/B. 15 G/U_ % G/B,.
Lety =7 o y~! o §and X,, = B n B_wB_. Then:
7~ YCy) =b_wB_/U_ and y~(C,,) = X,,.
We can prove now the following

Proposition. Let O be a B_-orbit in G/U_ under the action {.31)
associated to w € W. Then the morphism:

mlo: 0 — Cy
is a principal torus bundle with structure groups:
T = {w ' (t)t!, wheretreT}.
In particular:
dimO = dimC,, + dimT" = I(w) + rank(I — w).

Proof. For g € G we shall write [g] for the coset ;U_. The morphism 7 61
is clearly a principle T-bundle with T acting on the right by [g]t := [g].
The action (£.3.J) fo B_-orbits. Each of B_ commutes with the right
T-action so that 7 permutes the B_-orbits. Each B_-orbit is a principal
bundle whose structure group is the subtorus of 7" which stabilizes the
orbit. This subtorus is independent of the orbit since 7" is commutative.
In order to compute it we proceed as follows. Let [g1], [g2] be two ele-
ments in O mapping to w € C,,. We may assume the g; = nh, go = nk
with h,k € T uniquely determined, where n € Ng(T) is representative
of w. Suppose that b[nh]| = b[nk], b € B_. We can first reduce to the
case b = t € T; indeed, writing b = ut we see that # must fix w € Cy,
hence un = nu' with ' € U_ and hence u acts trivially on #[nh]. Next
we have that, by definition of the T-action @.3.1),

[nk] = [tmht™"] = [n(n'tht™")]
hence k = n~'mht=" or k = h(h'n"'tnht™") = h(n'tt™") as

required. |
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Lemma. Let O c By be a symplectic leaf associated to w. Then
oT = X,,.

Proof. From our proof we know that the map ¢ is a principal T-bundle
and T permutes transitively the leaves lying over C,, O

We thus have a canonical stratification of B, indexes by the Weyl
group, by the subsets x,,. Each such subset is a union of leaves permuted
transitively by the right multiplications of the group 7.

We say that a point a € Spec Z; = B lies over w if ¢/(a) € C,.

4.4 RecallthatT = Z*®zA" and therefore any A € P = Homz(Q ', Z*)
defines a homomorphism (again denoted by)A : T — Z* Foreachre T
we define and automorphism £, of the algebra Bg by:

Bi(Ko) = a(t)Ky, Bi(Ey) = a(t)E,.

Note that the automorphisma B; leave Z(;” invariant and permute transi-
tively the leaves of each set y~!(C,,) < B..
Givena € B, = Spec Z;, denote by m, the corresponding maximal
ideal of Za” and let
A, = Bg/m,Bs.

These are finite-dimensional algebras and we may also consider these
algebras as algebras with trace in order to use the techniques of .

Theorem. Ifa,b € Spec ZJ lie over the same element w € W, then the
algebras A, and Ay, are isomorphic (as algebras with trace).

Proof. We just apply Proposition.T]to the vector bundle of algebras A,
over a symplectic leat and the group T of algebra automorphisms which
permutes the leaves in ¢~ !(C,,) transitively. ]

45 Let BY := B, nwB_w !and U" := U, n wU_w~! so that
BY = U"T. Setalso Uy, := U, nwU_w~!. One knows that dim B" =
n + I(w) and that the multiplication map:

o:U, x B" - B,
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is an isomorphism of algebraic varieties. We define the map

pw:B. — BY
to be the inverse of o followed by the projection on the second factor.

Proposition. The map
Pwlxyw : X,y — B”
is birational.

Proof. We need to exhibit a Zarisko open set 2 < B" such that for any
b € Q there is a unique u € U,, with ub € x,,.
Let n € Ng(T) be as above a representative for w so that:

X,y = {b € B |b = binb,, where by,b, € B_}.

Consider the Bruhat cell B_n~!B_ — G. Every element in B_n"'B_
can be written uniquely in the form:

bn'u, where be n"'B"n, uc U_.

The set B, U_ = B, B_ is open dense and so it intersects B_n"'B_ =
n~!'p"U_ in a non-empty open set which is clearly B_-stable for the
right multiplication, hence B,B_ n B_n"'B_ = n~'QU_ for some
non empty open set Q < B". In particular Q < nB.B_ = nU,B"U_.
Take b € Q and write it as b = nxcv with x € U,,, c € BY, v e U_.
By the remarks made above this decomposition is unique; furthermore,
nxn~' € U,, ncn™!' € B_. For the element n='b = xcv we have
by construction that xcv € B_n~'B_ and nx"'n"'b = (ncnfl) nv e
B_nB_ and nx"'n~! € U,,. Thus setting u := nx~'n~'we have found
u € U, such that ub € X,,. This u is unique since the element x is

unique. m|

We are ready now for the concluding theorem which is in the spirit
of the conjecture formulated in [DKPT].
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Theorem. Let p € X,, be a point over w € W and let A, be the corre-
sponding algebra. Assume that [ is good integer. Then the dimension of

each irreducible representation of A, is divisible by =12 (I(w)+rank(1—-w)),

Proof. Consider the algebra B for which we know by Theorem[3.3]that
deg BY — l%(l(w)+rank(l—w)).

The subalgebra Zj,, of Z, generated by the elements K ﬂ and E!, where
A e Pand @ € RT is such that —w~'a € R¥, is isomorphic to the
coordinate ring of B", and Bg is a finite free module over Z,,. Thus by
[DKPZ2] there is a non empty open set A of B" such that for p € A any
irreducible representation of 8" lying over p is of maximal dimension,
equal to the degree of 8. Now the ideal / defining X,, has intersection 0
with Zj,, and so when we restrict a generic representation of B¢ laying
over points of X,, to the algebra By we have, as a central character of
Zy.w, a point in A Thus the irreducible representation restricted to 8"
has all its composition factors irreducible of dimension equal to deg B".
This proves the claim. |

It is possible that the dimension of any irreducible representation
of Bg whose central character restricted to ZO+ is a point of x,, is ex-
actly ¢ 3(¢0w)+rank(1-w)) * This fact if true would require a more detailed
analysis in the spirit of Section [[3l

We would like, in conclusion, to propose a more general conjec-
ture, similar to one of the results of on solvable Lie algebras of
characteristic p.

Let A be an algebra over IC [q, q_l] on generators X, ..., X, satis-
fying the following relations:

XiXj = qh"-’xjxi + Pij ifi > j,

where (h;;) is a skew-symmetric matrix over Z and P;; € IC [q, q_l]
[x1,...,x,]. Let £ > 1 be an integer relatively prime to all elementary
divisors of the matrix (4;;) and let A, = A/(q — &) and assume that all
elements xf are central. Let Zy = IC [xf .. ,xf;] ; this algebra has a
canonical Poisson structure.
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Conjecture. Let 7 be an irreducible representation of the algebra A, and
let O, < Spec Zj be the symplectic leaf containing the restriction of the
central character of 7 to Zy. Then the dimension of this representation
is equal to ¢z dimOx

This conjecture of course holds if all P;; are 0, and it is in complete
agreement with Theorems 1.6, 3.5 and 4.6.
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Compact complex manifolds whose tangent
bundles satisfy numerical effectivity properties

Jean-Pierre Demailly
(joint work with Thomas Peternell and Michael Schneider)

Dedicated to M. S. Narasimhan and C.S. Seshadri
on their sixtith birthdays

0 Introduction

A compact Riemann surface always ha s hermitian metric with constant
curvature, in particular the curvature sign can be taken to be constant:
the negative sign corresponds to curves of general type (genus = 2),
while the case to zero curvature corresponds to elliptic curves (genus 1),
positive curvature being obtained only for P! (genus 0). In higher di-
mensions the situation is must more subtle and it has been a long stand-
ing conjecture due to Frankel to characterize P, as the only compact
Kihler manifold with positive holomorphic bisectional curvature. Hrat-
shorne strengthened Frankel’s conjecture and asserted that P, is the only
compact complex manifold with ample tangent bundle. In his famous
paper [Mo79]], Mori solved Hartshorne’s conjecture by using character-
istic p methods. Around the same time Siu and Yau [SY80] gave an
analytic proof of the Frankel conjecture. Combining algebraic and an-
alytic tools Mok [MKkS88] classfied all compact Kéhler manifolds with
semi-positive holomorphic bisectional curvature.

From the point of view of algebraic geometry, it is natural to con-
sider the class fo projective manifolds X whose tangent bundle in nu-
merically effective (nef). This has been done by Campana and Peternell
and - in case of dimension 3 -by Zheng [Zh90]. In particular, a
complete classification is obtained for dimension at most three.

The main purpose of this work is to investigate compact (most often
Kihler) manifolds with nef tangent or anticanonical bundles in arbitrary
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dimension. We fist discuss some basic properties of nef vector bun-
dles which will be needed in the sequel in the general context of com-
pact complex manifolds. We refer to and for detailed
proofs. Instead, we put here the emphasis on some unsolved questions.

1 Numerically effective vector bundles

In algebraic geometry a powerful and flexible notion of semi-positivity
is numerical effectivity(‘“nefness”). We will explain here how to extend
this notion to arbitrary compact complex manifolds.

Definition 1.1. A line bundle L on a projective manifold X is said to be
numerically effective (nef for short) if L - C = 0 for all compact curves
CcX

It is cleat that a line bundle with semi-positive curvature is nef. The
converse had been conjectured by Fujita [Fu83l]. Unfortunately this is
not true; a simple counterexample can be obtained as follows:

Example 1.2. Let " be an elliptic curve and let £ be a rank 2 vector
bundle over I which is a non-split extension of O by O; such a bundle
E can be described as the locally constant vector bundle over I' whose
monodromy is given by the matrices

1 0 1 1
(0 1) ’ <0 1>
associated to a pair of generators of 71 (T'). We take L = Og(1) over the
ruled surface X = P(E). Then L is nef and it can be checked that, up to a
positive constant factor, there is only one (possibly singular) hermitian
metric on L with semi-positive curvature; this metric is unfortunately

singular and has logarithmic poles along a curve. Thus L cannot be
semi-positive for any smooth hermitian metric.

Definition 1.3. A vector bundle E is called nef if the line bundle Og(1)
is nef on P(E) (= projectivized bundle of hyperplanes in the fibres of E).
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Again it is clear that vector bundle E which admits a metric with
semi-positive curvature (in the sense of Griffiths) is nef. A compact
Kdihler manifold X having semi-positive holomorphic bisectional curva-
ture has bu definition a tangent bundle T X with semi-positive curvature.
Again the converse does not hold. One difficulty in carrying over the
algebraic definition of nefness to the Kahler case is the possible lack of
curves. This is overcome by the following:

Definition 1.4. Let X be a compact complex manifold with a fixes her-
maitian metric w. A line bundle L over X in nef if for every € > O there
exists a smooth hermitian metric hg on L such that the curvature satisfies

O, = —sw.

This means that the curvature of L can have an arbitrarilly small
negative part. Clearly a nef line bundle L satisfies L - C = 0 for all
curves C < X, but the coverse in not true (X may have no curves at
all, as is the case for instance for generic complex tori). For projective
algebraic X both notions coincide; this is an easy consequence of Se-
shadri’s ampleness criterion: take L to be a nef line bundle in the sense
of Definition [[1] and let A be an ample line bundle; then L¥X ® A is
ample for every integer k and thus L has smooth hermitian metric with
curvature form (L) > —10(A).

Definition[L 3l can still be used to define the notion of nef vector bun-
dles over arbitrary compact manifolds. If (E,h) is a hermitian vector
bundle recall that the Chern curvature tensor

l
2 . *
On(E) = ﬂDE,h =1 Z ajkpdzj A dze @ €3 @ ey
1<jk<n
1<Au<r

is a hermitian (1,1)-form with values in Hom(E, E). We say that (E, h)
is semi-positive in Griffiths’ sence [Gr69] and write ®y(E) > 0 if
O(E)E® 1) = Y ajpuéi&vavy = 0 for every ¢ € T X, v € E,,
x € X. We write @,(E) > 0 in case there is strict inequality for & # 0,

mv # 0. Numerical effectivity can then be characterized by the follow-
ing differential geometric criterion (see [[De91)]).
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Criterion 1.5. Let w be a fixed hermitian metric on X. A vector bundle
E on X is nef if and only if there is a sequence of hermitian metrics hy,
on S™E and a sequence &, of positive numbers decreasing to 0 such
that

®hm (SmE) = —menw K IdsmE

in the sense of Griffiths.
The main functional properties of nef vector bundles are summa-
rized in the following proposition.

Proposition 1.6. Let X be an arbitrary compact complex manifold and
let E be a holomorphic vector bundle over X.

70 (i) Hlf f Y — X is a holomorphic map with equidimensional fibres,
then E is nef if and only if f*E is nef.

(ii) Let T°E be the irreducible tensor representation of GI(E) of high-

est weight a = (ay,...a,) € Z', withay, > ... = a, = 0, Then
I'“E is nef. In particular, all symmetric and exterior powers of E
are nef.

(iii) let F be a holomorphic vector bundle over x. If E and F are nef,
then E @ F is nef.

(iv) If some symmetric power S™E is nef (m > 0), then E in nef.

(v) Let 0 - F — E — Q — 0 be an exact sequence of holomorphic
vector bundles over X. Then

(a) E nef=> Q nef.
(B) F, Q nef = E nef.
(y) E nef, (det Q)~! nef = F nef.

The proof of these properties in the general analytic context can be
easily obtained by curvature computations. The argumentsa are parallel

*We expect (Z0) to hold whenever f is surjective, but there are serious technical
difficulties to overcome in the nonalgebraic case.
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to those of the algebraic case and will therefore be omitted (see [Ha66]]
and for that case). Another useful result which will be used over
and over in the sequel is

Proposition 1.7. Let E be a nef vector bundle over a connected compact
n-fold X let o € H°(X,E*) be a non zero section. Then o does not
vanish anywhere.

Proof. We merely observe that if 4, is a sequence of hermitian metrics
in S™E as in criterion 5, then

i =1
Ty = —d0—log||o™||p,
Toom

has zero ag—cohomology class and satisfies 7, > —e,w. It follows that
T, converges to a weak limit 7 > 0 with zero cohomology class. Thus
T = i0d¢ for some global plurisubharamonic function ¢ on X. By the
maximum principle this implies 7 = 0. However, if o vanishes at some
point x, then all 7}, have Lelong number > 1 at x. Therefore so has T,
contradiction. O

one of out key results is a characterizations of vector bumdles E
which are numerically flat, i.e. such that both E and E* are nef.

Theorem 1.8. Suppose that X is Kihler. Then a holomorphic vector
bundle E over X in numerically flat iff E admits a filtration

{O}ZE()CElC...CEp:E

by vector subbundles such that the quotients Ey/Ex_ are hermitian flat,
i.e. given by unitary representations n1(X) — U (rg).

Sketch of Proof. It is clear by (@) that every vector bundle which
os filtrated with hermitian flat quotients is nef as well as its dual. Con-
versely, suppose that E is numerically flat. This assumption implies
c1(E) = 0 Fix a Kéhler metric w. If E is w-stable, then E is Hermite-
Einstein by the Unlenbeck-Yau theorem [UYS86], Moreover we have
0 < ¢2(E) < ¢1(E)? by Theorem[L9below, so c2(E) = 0. Kobayashi’s
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flatness that E is hermitian flat. Now suppose that E is unstable and take
¥ < O(E) to be destabilizing subsheaf of minimal rank p. We then have
by definition ¢;(¥) = ci(det¥) = 0 and the morphism det ¥ — APE
cannot have any zero curvature current on the line bundle det 7, contra-
diction). This implies easily that # is locally free, and we infer that
is also numerically flat. Since F is stable by definition, & must be her-
mitian flat. We set E; = F, observe that E/ — E/E is again numerically
flat and proceed by induction on the rank. O

Another key point, which has been indeed used in the above proof, is
the fact that the Fulton-Lazarsfeld inequalities [FL83] for Chern classes
of ample vector bundles still hold for nef vector bundles over compact
Kéhler manifolds:

Theorem 1.9. Let (X, w) be a compact Kiihler manifold and let E be a
nef vector bundle on x. Then for all positive polynomials p the cohomol-
ogy class P(c(E)) is numerically positive, that is, §, P(c(E)) \ w* =0
for anu k and any subvariety Y of X.

By a positive polynomial in the Chern classes, we mean as usual
a homogeneous weighted polynomial P(cim...,c,) with degc; = 2i,
such that P is a positive integral combination of Schur polynomials:

Pu(c) = det(cq—iv)i<ijers r=a1r=a>...2a,>0

(by convention Cy = 1 anac¢; = 0ifi # [0,r], r = rankE). The
proof of Theorem [[.9]is based essentially on the same artuments as the
original proof of [FL83] for the ample case: the starting point is the
nonnegativity of all Chern classes c;(E) (Bloch-Gieseker [BG71]); the
general case then follows from a formula of Schubert calculus known as
the Kempf-Laksov formula [KL74], which express any Schur ployno-
mial P,(c(E)) as a Chern class ¢x(F,) of some related vector bundle
F,. The only change occurs in the proof of Gieseker’s result, where the
Hard Lefschetz theorem is needed for arbitrary Kdhler metrics instead
of hyperplane sections (fortunately enough, the technique then gets sim-
lified, covering tricks being eliminated). Since cjcy—1 — ck

0 < ci(E) < ¢ (E)X for all k
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Therefore all Chern monomials are bounded above by corresponding
powers ¢ (E)* of the same degree, and we infer:

Corollary 1.10. If E in nef and ¢;(E)" = 0, n = dim X, then all Chern
polynomials P(c(E)) of degree 2n vanish.

2 Compact Kihler manifolds with nef anti-canoni-
cal line bundle

Compact Kéhler manifolds with zero or semi-positive Ricci curvature
have been investigated by various authors (cf. [Ca57], [Ko61], [Li67],

, , [Bo744d], [Bo74bl, [?], and [K186]]). The purpose
of this section is to discuss the following two conjectures.

Conjecture 2.1. Let X be a compact Kihler manifold with numerically
effective anticanonical bundle K ! Then the fundametal group (X)
has polynomial growth.

Conjecture 2.2. Let x be a compact Kéhler manifold with K,/ ! numer-
ically effective. Then the Albanese map @ : X — Alb(X) is a smooth
fibration onto the Albanese torus. If this hold, one can infer that there
is a finite étale cover X has simply connected fibres. In particular, 7;(X)
would almost abelian (namely an extension of a finite group by a free
abelian group).

These conjectures are known to be true if K, lis semi-positive. In
both cases, the proof is based in differential geometric techniques (see
e.g. [Bi63l], for Conjecture 2.1l and for Conjecture 2.2)).
However, the methods of proof are not so easy to carry over to the nef
case. Our main contributions to these conjectures are derived from The-
orem 2.3 below.

Theorem 2.3. Let X be a compact Kéhler manifold with K, U nef. Then
71(X) is a group of subexponential growth.

The proof actually gives the following additional fact (this was al-
ready known before, see ).
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Corollary 2.4. If morever —Kx is hermitian semi-positive, then my(X)
has polynomial growth of degree < 2dim X, in particular h'(X,Ox) <
dim X.

As noticed by F. Campana (private communication), Theorem
also implies the following consequences.

Corollary 2.5. Let X be a compact Kihler manifold with Ky ! nef.
Let @ : X — AIb(X) be the Albanese map and set n = dimX, d =
dima(X). Ifd = 0,1 od n, a is surjective. The same is true ifd = n— 1
and if X is projective algebraic.

Corollary 2.6. Let x be a Kdihler surface or a projective 3-fold with
Ky U nef. Then the Albanese map a : X — Alb(X) is surjective.

We now explain the main ideas required in the proof of Theorem
If G is a finitely generated group with generators gi,...,g,, we
denote by N (k) the number of elements y € G which can be written as

words
£

i gj=0,lor —1

y=9;'...9
of length < k in terms of the generators. The group G is said to have
subexponential growth if for every & > 0 there is a constant C(g) such
that

N(k) < C(g)e* for k = 0.

This notion is independent of the choice of generators. In the free group
with two generators, we have N(k) = 1 +4(1 +3 +32+... + 3k 1) =
2.3k 1, thus a group with subexponential growth cannot contain a non
abelian free subgroup.

The first step consists in the construction of suitable Kéhler metric
on X. Since K, Uin nef, for every € > 0 there exists a smooth hermitian
metric i on K ! such that

Uy = @hE(Kgl) > —sw.

By and [[Y78]] there exists a unique kihler metric wy in the coho-
mology class w such that

Ricci(wg) = —ew, + ew + ug. (+)
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In fact u, belongs to the Ricci class ¢ (K, 1 = ¢1(X), hence so does
the right hand side —ew, + ew + u,. In particular there exists a function
fe such that

us = Ricci(w) + i00f;.

If we set w, = w + i&éﬁa (where ¢ depends on &), equation (&) is
equivalent to the Monge-Ampere equation

(w + ié?g) ’

- — eS‘P_fs (++)
w

because

i001og(w + i0dg)" /w" = Ricci(w) — Ricci(w,)

= &(ws — w) + Ricci(w) — u,
= iag(‘s‘p - fs)

It follows from the general results of that (FF) has a unique
solution ¢, thanks to the fact the right hand side of (FF) is increas-
ing in ¢. Since u, > —ew, equation (F) implies in particular that
Ricci(wg) = —ew.

Now, recall the well-known differential geometric technique for
bounding N(K) (this technique has been explained to us in a very ef-
ficient way by S.Gallot). Let (M, g) be a compact Riemannian m-fold
and let E — M be a fundamental domain for the action of 7, (M) on the
universal covering M. Fix a € E and set 8 — diam E . Since 7 (M) acts
isometrically on M with respect to the pull-back metric g, we infer that

= J
yem (M), length(y)<k

has volume equal to N(k) Vol(M) and is contained in the geodesic ball
B(a,ak + B), where « is maximum of the length of loops representing
the generators g;. Therefore

Vol(B(a, ak + B))
Vol(M)

N(K) < ()
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and it is enough to bound the volume of geodesic balls in M. For this
we use the following fundamental inequality due to R. Bishop ,
Heintze-karcher [HK78]] and M. Gage [Ga80].

Lemma 2.7. Let
O:T,M— M,  ®F)=exp,)
be the (geodesic) exponential map. Denote by
O*dV, = a(1,{) dt do({)

the exrpression of the volume element in spherical coordinates with t €
Ry and ¢ € S,(1) = unit spheren in T,M. Suppose that a(t,{) does
not vanish for t €]0,7({)[, wiht ©({) = 40 or a(t({),{) = 0 Then
b(1,0) — a(t,0)" "=V satisfies on 10, 7(£)[ the inequality

2

0

Riccig (v(1, ), v(1.£))b(t,) < 0

where

d ~
v(t, () = ZGXPa(@) € Sau)(1) € Touy)M.

If Riccig > —&g, we infer in particular

0%b £

ﬁ m—1

and therefore b(t,{) < a~!sinh(ar) wiht @ = +/g/(m — 1) (to check
this observe that b(1,{) = t + o(t)) at O and that sinh(ar)ob/0t —
a cosh(at)b has a negtive derivative). Now, every point x € B(a,r)
can be joined to a4 by a minimal geodesic art of lenght < r. Such a
geodesic are cannot contain any focal point (i.e. any critical value of @),
except possibly at the end point x. It follows that B(a, r) is the image be
@ of the open set

b<0

Q(r) ={(t.0) € [0,r[xS,(1);t < 1()}.
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Therefore
Volg(B(a, r)) < f OV, J b(t, )"\ dt do(2).
Q(r) Q(r)
As o~ !'sinh(at) < te”, we get

Volg(B(a,r)) < f do—(g)f =1 pm="1)at g vmr’”e\/m
Sa(1) 0
()

where v,, is the volume of the unit ball in R™.

In our application, the difficulty is that the matrix g = w, varies
with ¢ as well as the constants @ = @, 8 = B in @), and @z +/(m — 1)e
need nit converge to 0 as ¢ tents to 0. We overcome theis difficulty by
the following lemma. m|

Lemma 2.8. Ler Uy, U, be compact subsets of X. Then forevery 6 > 0,
there are closed subsets U} s 5 © Uy and Uy .5 < Uy with Vol,(U;U . s)
< 0, such that any two points x| € Uiz, x2 € Uz s can be joined by
a path of length < C5 12 with respect to wg, where C is a constant
independent of € and 6.

We will not explain the details.The basic observation is that

fa)g/\a)"_lsz"
X X

does not depend on &, therefore ||we|[.1(x) is uniformly bounded. This
is enough to imply the existence of suffciently many paths of bounded
lenght between random points taken in X (this is done for example by
computing the average lenght of piecewise linear paths).

We let U be a comnpact set containing the fundamental domain E,
so large that U° n g;(U°) # J for each generator g;. We apply Lemma
28lwith Uy = U, = U and ¢ > 0 fixed such that

1 1
5 < EVolw(E), 6 < EVolw(U ng;(0)).

We get U,s — U with Vol,,(UU,;s) < & and diam,,, < C5~ '/ The
inequalities on volumes imply that Vol,(Uss N E) > 3 Vol,(E) and
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76



77

88 Jean-Pierre Demailly

Ues N 9j(Uss) # & for every j (note that all g; preserve volumes). It
is then clear that

Wk,s,,é = U 7(U9,6)
yvenm (X),length(y)<k

satisfies

Vol,(Wies) = N(k) Vol,(Ugs N E) > N(k)% Vol,(E) and
diam,,, (Wj..s) < kdiam,, U,s < kCs~ /2.
Since m = dimp X = 2n, inequality =) implies
Voly, (Wiss) < Vol (B(a,kC5 %)) < C4k®eCs vk,

Now X is compact, so there is a constant C(g) > 0 such that 0" <
C(e)w!. We conclude that

2 VO]w(Wk,€’5)

NEK) < =0, (E)

< CoC(e)k* e,

The proof of Theorem 2.3]is complete. i

Remark 2.9. It is well known and easy to check that equation (FH) im-
plies

C(e) < exp <m§1x fe— n}}nfg> .

Therefore it is reasonable to expect the C(g) has polynomial growth
in &~!; this would imply that 7 (X) has polynomial growth by taking
& =k2. When K ¥ ! has a semipositive metric, we can even take & = 0
and find a metric wp with Ricci(wp) = up < 0. This implies Corollary

24

Proof of Corollary[2.3l If d = 0, then by definition H°(X,Q}) = O and
Alb(X) = 0.

If d = n, the albanese map has generic rank n, so there exist holo-
morphic 1-forms uy,...,u, such that uy A ... A u, # 0. How ever
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Ui A ... A uy,is a section of Ky which has a nef dual, sou; A ... A u,
cannot vanish by Proposition [[7] and K is trivial. Therefore u; A
..Uk ... N uy A v must be a constant for every holomorphic !-form v
and (uy, ldots, uy) is a basis of H°(X,Qj,). This implies dim A(X) = n,
hence « is surjective.

If d = 1, the image C = «(X) is a smooth curve. The genus g of C
cannot be > 2, otherwise 71 (X) would be mapped onto a subgroup of
finite index in pi; (C), and thus would be of exponential growth, contra-
dicting Theorem 23] Therefore C is an elliptic curve and is a subtorus of
Alb(X). By the universal property of the Albanese map, this is possible
only if C = Alb(X).

The case d = n— 1 is more subtle and uses Mori theory (this is why
we have to assume X projective algebraic). We refer to for the
details.

3 Compact complex manifolds with nef tangent bun-
dles

Several interesting classes of such manifolds are produces by the fol-
lowing simple observation.

Proposition 3.1. Every homogeneous compact complex manifold has a
nef tangent bundle.

Indeed, if X is homogeneous, the Killing vector fields generate 7'X,
so TX is a quotient of a quotient of a trivial vector bundle. In praticular,
we get the following

Examples 3.2. (homogeneous case)

(i) Rational homogeneous manifolds: P,, flag manifolds,quadrics Q,
(all are Fano manifolds, i.e. projective algebraic with K ! ample.)

(ii) Tori IC /A (Kihler, possibly non algebraic).

(iii) Hopf manifolds IC 0/H where H is a discrete group of homotheties
(non Kihler for n > 2).

&9
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(iv) Iwasawa manifolds G/A where G is the group of unipotent upper
triangular p x p matrices and A the subgroup of matrices with
entries in the ring of integers of some imaginary quadratic field.
eg. Z[i] (non Kihler for p >, although T'X is trivial).

We must remark at this point that not all manifolds X with nef tan-
gent bundles are homogeneous, the automorphism group may even be
discrete:

Example 3.3. Let I' = IC /(Z + Z7), Imt > 0, be ana elliptic curve.
Consider the quotient space X = (I'xIT)/G where G = 1,91,02,9192 ~
Zy x Zj is given by

1
91(z1,22,23) = <Zl + 5 —22, —Z3> )

(@a2m) = (2 + 03+ 5
91(21,22,23) = 21,22 ok 3 5 )

1 1 1
91092(21,22,23) = <—Zl 5t st 5) :
Then G acts freely, so X is smooth. It is clear also that 77X is nef
(in fact TX is unityu flat). Since the pull-back of TX to ' x I' x I'is
trivial, we easily conclude that 7X has no sections, thanks to the change
of signs in g1,92,9192. Therefore the automorphism group Aut(X) is
discrete. The same argument shows that H°(X, Ql) = 0.

Example 3.4. Let X be the ruled surface bbP(E) over the elliptic curve
[ = IC(Z + Z7) defined in Example[I.2] Then the relative tangent bun-
dle of bbP(E) — TI'(=relative anticanonical line bundle) is 7* (det E*) ®
Og(2) ~ Og(2) and TT is trivial, so TX is nef. Moreover X is almost
homogeneous, with automorphisms induced by

(x1,21,22) = (x + a,z1 + b,22), (a,b) € IC?

and a single closed orbit equal to the curve {zo = 0}. Here, no finite
étale cover of X can be homogeneous, otherwise K l—¢ (€) would be
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semi-positive. Observe that no power of K, l'is generated by sections,
although K Uin nef.

Our main result is structure theorem on the Albanese map of com-
pact Kéhler manifolds with nef tangent bundles.

Main Theorem 3.5. Let X be a compact Kdhler manifold with nef tan-
gent bundle TX. Let X, be a finite étale cover of X of maximum irregu-
larity g = q(X) = h'(X,O0%). Then

(i) 7 (X) ~ 7%.

(ii) The albanese map o = X — A()?) is a smooth fibration over a
q-dimensional torus with nef relative tangent bundle.

(iii) The fibres F of a are Fano manifolds with nef tangent bundles.

Recall that a Fano manifold is by definition a compact comples man-
ifold with ample anticanonical bundle K ' It is well known that Fano
manifolds are always simply connected (Kobayashi [Ko61l]). As a con-
sequence we get

Corollary 3.6. With the assumtions of (3.3 the fundamental group mry(X)
is an extension of a finite group by Z%.

In order to complete the classification of compact Kédhler maniflods
with nef tangent bundles (up to finite étale cover), a solution of the fol-
lowing two conjectures would be nechap5-enum-(i)eded.

Conjecture 3.7. (Campana- Peternell [CP91]]) Let X be ab Fano mani-
fold Then X has a nef tangent bundle of and only if X i rational homo-
geneous.

The evidence we have for Conjecture 3.7]is that it is true up to di-
mension 3. In dimension 3 there are more than 100 different types of
Fano manifolds, but only five types have a nef tangent bundle, namely
bbPs, Q3 (quadric), Py x P, P; x Py, Py x Py and the flag manifold F »
of lines and planes in IC?;m all five are homogeneous.

91
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A positive solution to Conjecture [3.7] would clarify the structure of
fibers in the Albanese map of Theorem To get a complete picture
of the situation, one still needs to know how the fibers are deformed
and glued together to yield a holomorphic family over the Albanese
torus. We note that K= ! is relatively ample, thus for m large the fibres
can be embedded in the projectivized bundle of the direct image bundle
o (K;" The structure of the deformation i described by the following
theorem.

Theorem 3.8. In the situation of Theorem all direct image bundles
Eyn = ay (K;”) are numerically flat over the Albanese torus. Moreover,
for p » m > 0, the fibers of the Albanese map can ne described as Fano
submanifolds of the fibers of IP(E,,) defined by polynomial equations of
degree p, in such a way that the bundle of equations V,, , < SP(E,,) is
itself numerically flat.

Theorem 3.8lis proved in in case X is projective algebraic.
The extension to the Kéhler case has been obtatined by Ch. Mourougane
in his PhD Thesis work (Grenoble, still unpublished). We now explain
the main steps in the proof of Theorem [3.3] One of the key points is the
following

Proposition 3.9. Let X be a compact Kdhler n-fold with T X nef. Then
(i) If c1(X)" > O, then X is a Fano manifold.

(ii) If c1(X)" = 0, then x(Ox) = 0 and there exists a non zero holo-
morphic p-form, p suitable odd and a finite étale cover X — X

~

such that g(X) > 0.

Proof. We first check that every effective divisor D of X in nef. In fact,
let o € H°(X,0(D)) be a section with divisor D. Then for k larger
than the maximum vanishing order of o on X, the k-jet section j*o €
H°(X, *O(D)) has no zeroes. Therefore, there is an injection O —
J*O(D) and a dual surjection

(JO(D))* ® O(D) — (D).
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Now , J*O(D) has a filtration whose graded bundle is - p<k STT*X®
O(D), so (J*O(D))* ® O(D) has a dual filtration with graded bundle
Do<p<r SPTX. By[LA(TQ) and[LAIW)(B), we conclude that (J*O(D))*®
O(D) is nef, so its quotient O(D) in nef by [L.6 (@) ().

Part (70) is based on the solution of the Grauert-Riemenschneider
conjecture as proved in [De85]. Namely, L = K, U'— A"TX is nef and
satisfies ¢;(L)" > 0, so L has Kodaira dimension n (holomorphic More
inequalities are needed at that point because X is not suppose a priori to
be algebraic). It follows that X is Moishezon,thus projective algebraic,
and for m > 0 large we have L™ = O(D + A) with divisors D, A such
that D is effective and A ample. Since D must be in fact nef, it follows
that L = K ¥ Lis ample, as desired.

The most difficult part is (. Since ¢;(X)" = 0, Corollary [[LT0im-
plies x(Ox) = 0. By Hodge symmetry, we get h%(X, Q}) = h”(X, Ox)
and

x(0x) = Y, (~DPR(X.Q5) = 0.

0<p<n

From this and the fact that 2°(X,Ox) = 1, we infer the existence of a
non zero p-form u for some suitable odd number p. Let

. —1 1
o AN TX — Qy

be the bundle moriphism obtained by contracting (p — 1)-vectors with 81
u. For every k > 0, the morphism A*o- can be viewed as section of the
bundle A¥(AP~!T*X) ® A*T*X which has nef dual. Hence by Proposi-
tion [7] we know the Afo is either identically zero or does not vanish.
This mean is that o has constant rank. Let E be the image of o~. Then
E is a quotient bundle of AP~ITX, so E in nef, and E is subbundle of
Q)lf = T*X, so E* is likewise nef. Theorem [[.§]implies the existence of
a hermintian flat subbundle £y < E. If E; would be trivial after pulling-
back to some finite etale cover X, we would get a trivial subbundle of
Q)l?, hence q()N( ) > 0 and the proposition would be proved. Otherwise
E; is given by some infinite representation of 7;(X) inti some unitary
group. Let I" be the monodromy group (i.e. the image of 71 (X) by the
representation). We use a result of Tits according to which every
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subgroup contains either a non abelian free subgroup or a solvable sub-
group of finite index. The first case cannot occur by Theorem ??2.?. In
the second case,we may assume I solvable by taking some finite étale
cover. We consider the series of derived groups

ol o...oIy=20

and the largest index k such that I'; has finite index in I'. Then the
inverse image of Iy in 1 (X) defines a finite étale cover X of X with
infinite first homologu group (the representation maps this group onto
I /Ti41 which is infinite). Hence ¢(X) > 0, as desired. ]

Proof of the Main Theorem. Let X be compact Kihler mainfold with
nef tangent bundle. Since a son zero holomorphic form u € H%(X, Q})
can never vanish by Proposition[L7] it follows immediately that the Al-
banese map « has rank to g(X) at very point, hence « is a submersion
and g(X) < n. Let (X ) be a finite étale cover with maximum irregularity
g = q(X) (note that (X) also a nef tangent bundle, so q(X) < n). let
F denote the fibers of the Albanese map a : (X) — A(X) The relative
tangent bundle exact sequence.

0> TF - TX 2% o*TA(X) — 0.

in which TA(X) is trivial shows by [L6] (¥)(y) that TF in nef. Lemma
(@) below implies that all finite étale covers F of F satisfy g(F) =
O. Hence the fibers F must be Fano by proposition and the main
Theorem follows. O

Lemma 3.10. Let X, Y be compact Kdihler manifolds and letq : X — Y
be a smooth fibration with connected fibers. We let q(X) be the irreg-
ularity of X and q(X) be the sup of the irregularity of all finite étale
covers. If F denotes any fibre of g, then

(i) q(X) < q(Y) + q(F),
(ii) g(X) < q(Y) + q(F).
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(iii) Suppose that the boundary map nty(Y) — m1(F) is zero, that 7ty (F)
contains an abelian subgroup of finite indes and that Y contains
a subvariety S with n\(S) ~ m(Y), such that any two generic
points in the universal covering S can be joined thorugh a chain
of holomorphic images IC — S. Then

q(X) = q(¥) +4(F).

The proof is based on a use of the Leray spectral sequence and a
study of the resultig monodromy on H'(F,IC). Triviality of the mon-
odromy is achieved in case (i) becase all Kéhler deformations of tori
over Y must be trivial. We refer the reader to for the details. In
our application, Y is taken to be the Albanese torus, so assumption (il
is satisfied with S = Y (;(F) contains an abelian subgroup of finite
indes thanks to Corollary 3.6 by using an induction on dimension).

4 Classification in dimension 2 and 3

By using the Kodaira classification of surface and the structure theorems
of Section [3 it is not difficult to classify all Kihler surface with nef
tangent bundles; except for tori, the Kéhler classification in identical to
the projective one. The projective case was already mentioned in
and [Zh90Q].

Theorem 4.1. Let X be a smooth Kdhler surface such that TX is nef.
Then X is minimal and is exactly one of the surfaces in the following
list:

(i) X is torus;

(ii) X is hyperellipitic;
(iii) X = Py;
(iv) X =Py x Py;
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(v) X = P(E), where E is a rank 2-vector bundle on an elliptic curve
C with either

[(@) JE=0®L, LePic’(C), or

83 [(B) ] E is given by a non split extension0) — O — E — L — 0
with L = O ordegL = 1.

The list of non-kidhler surfaces in the Kodaira classification is much
smaller. It is then rather easy to check nefness in each case:

Theorem 4.2. The smooth non Kdhler compact comlex surface with nef
tangent bundles are precisely:

(i) Kodaira surfaces (that is surfaces of Kodaira dimension 0 with
b1(X)x odd);

(ii) Hopf-surfaces (that is, surfaces whose universal cover is IC%0).

A similar classification can be obtained for 3-dimensional compact
Khler manifolds.

Theorem 7.1. Let X be a Kdihler 3-fold. Then T X in nef if and only if X
is up to finite étale cover one of the manifolds in the following list:

(i) X =Ps3;
(ii) x = Qs, the 3-dimensional quadric;
(iii) X =Py x Py;
(iv) X = F1,, the flag manifolds of subspaces of IC3;
(v) X =P xPy xPy;

(vi) X = P(E), with a numerically flat rank 3-bundle on an elliptic
curve C;

(vii) X = P(E)xcP(F), with E, F numerically flat rank 2-bundles over
an elliptic curve C;
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(viii) X = P(E), with E a numerically flat rank 2-bundle over a 2-
dimensional complex torus;

(ix) X = 3-dimensional complex torus.

The only non-algebraic manifolds appear in classes (viil) and (ix])
when the Albanese torus is not algebraic. Let us mention that the classi-
fication of projective 3-flods with nef tangent bundles was already car-
ried out in and [Zh90]. In addition to Theorem the main
ingredient is the classfication of Fano 3-folds by Shokrov and Mori-
Mukai. An insepection of the list yields the first classes (i)-(@)
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Algebraic Representations of Reductive Groups
over Local Fields

William J. Haboush]

Introduction

This paper is an extended study of the behaviour of simplicial co- sheaves
in the buildings associated to algebraic groups, both finite and infinite
dimensional. Recently the theory of simplicial sheaves and co-sheaves
has found a number of important applications to the representation the-
ory and cohomology theory of finite theory of finite groups (see [TI],
[RSI]), the computations of teh cohomology of arithmetic groups and the
problem of admissible representatiosn of P-adic groups and teh Lang-
lands classification ([CWI], [BWI]). My interest has been, for the most
part, the representation theory of semi-simple groups over fields of pos-
itive characteristic. In this area, of course, the driving force of much
recent work has been the so-called Lusztig characteristic p conjecture
[L1]] (so called to distinguish it from a number of other equally intersect-
ing Lusztig conjectures). In contemplating this conjecture one is struck
by certain resonances with work in admissible representations etc.

The line of argument I am hoping to achieve is something like this.
One should attempt to use the homoligical algebra of simplicial co-
sheaves to construct a category of representations of something like
the loop group associated to th semisimple group, G, which have com-
putable character theory. Then one should attempt to express the finite
dimensional representations of G as virtual representations in the cat-
egory. Then presumably the “generic decomposition patterns” should
be formulae expressing the character of a dual Weyl module in terms
of these computable characters. The hope of constructing such a theory
has led me to conduct the rather extended exploration below.

*This research was founded in part by the National Science Foundation
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One is immediately tempted to replace harmonic analysis with a
purely algebraic theory and to use this theory to do the representation-
theoretic computations necessary. My replacement for harmonic analy-
sis is this. Let G be algebraic of simple type over Z. Let K be a field
complete with respect to a discrete rank one valuations, let O be the val-
uation ring and let L be its residue field. Then consider the Bruhat-Tits
building of G(K). It is a simplicial complex. Let G = G(K). Let 7
be its Bruhat-Tits building. Then 7 is G equivariant. Let & be another
field. My idea is to consider the category of G equivariant co-sheaves
of k-vector spaces which are, in some sense made precise within, lo-
cally algebraic. Then in a manner entirely analogous to the classical
notion of rational of rational representative functions, this category ad-
mits an injective co-generator. The endomorphism ring of this canonical
co-generator is a certain algebra. Let it be denoted . shows that
for suitably finite G is a certain algebra. Let it be denoted #{-module.
Then one may sent the class of a finite dimensional G- representation
to the alternating sum of the left derived functors of the co-limit of its
induced G-co-sheaf in the Grothendieck ring of 9. In this context that
one would hope to obtain interesting identities relating finite dimen-
sional representation theory to the representation theory of H.

I have made certain choices in this discussion. As I am discussing
sheaves and co-sheaves on simplicial complexes, I have decided to use
the word carapaces for co-sheaves. There are three reasons: the first
is that the word, co-sheaves, seems rather cobbled together, the second
is that a carapace really would look like a lobster shell or such if one
were to draw one and the third is the Leray used the word for sheaves
and I don’t like to see such a nice word go to waste. am working for
the most part with carapaces rather than sheaves because I am working
on an infinite simplicial complex and in moving form limit to co-limit,
one in moving from an infinite direct product sort of thing to an infi-
nite co-product sort of thing. Thus,in using limits rather than co-limits,
one loses structure just as one does in taking an adic completion of a
commutative ring. I have also decided to include a discussion of the
homological algebra of carapaces. Now all of this material is some sort
of special case of certain kinds of sheaves on sites or the homologi-
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cal algebra of abelian group valued functors, but with all due apologies
to those who have worked on those topics, I would prefer to formu-
late this material in a way which anticipates my intentions. A number
of mathematicians have done this sort of thing. Tits and Solomon [S]],
[T], Stephen Smith and mark Ronan [RS]] immediately come to mind.
But again, working on a infinite complex has dictated that I reformulate
many of the elements for this situation.

1 Carapaces and their Homology

Basic references for this section are and [Gr]]. Basic notions and
definition all follow those two sources. A simiplicial complex, X, will
be a set ver(X) together with a collection of finite subsets of ver(X) such
that when ever o € X every subset of ¢ is in X. These finite subsets of
ver(X) are the simplices of X. The dimension of ¢ is its cardinal less one
and the dimension of X, if it exists,is the maximum of the dimensions of
simplices in X. We shall view X as a category, the morphisms being the
inclusions of simlices. We identify ver(X) with the zero simplices of X.
If X and Y are simplicial complexes a morphism of complexes from X
to Y is just a convariant functor from X to Y; a simplicial morphism is a
morphism of complexes taking vertices to vertices.

Let R be a commutative ring with unit fixed for teh remainder of
this work and let Mod(R) denote the category of R-modules. Let X be a
simplicial complex.

Definition 1.1. An R-carapace on X is a convariant functor from X
to Mod(R). If A and B are two R-carapaces on X, a morphism of R-
carapaces from A to B is a natural transformation of functors.

If A is an R-carapace on X and o € X is a simplex, then A(o)
is called the segment of A along o. A sequence of morphisms of R-
carapaces will be called exact if and only if the corresponding sequence
of segments is exact for each simplex in X. The product (respectively co-
product) of a family of R-carapaces is the R-carapace whose segments
and morphisms are the products (respectively co-products) of those in
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the family of carapaces. If o < 7 is a pair of simplices in X write e}, |
or e7. when there is no possibility of confusion for the map from A(o)
to A(t). I will call it the expansion of A form o to 7. Finally, if A and
B are two R-carapaces on X, write Homg x (A, B) for the R-module of
morphisms of R-carapaces from A to B.

Let M be an R-module. Then let Mx denote the constant carapace
with value M. That is, its segment along any simplex is M and its ex-
pansions are all the identity map. In addition for any given simplex, o,
there are two dually defined carapaces, M 1, and M |“ defined by:

(1.2)

(1.3)

In M 1, the expansions are the identity for paris 7, y such that
o € 7 < y and 0 otherwise. In M |7 they are the identity for 7, v such
that 7 € y € o and 0 otherwise.

Lemma 1.4. Let X be a simplicial complex and let M be an R-module
and let A be an R-carapace on X. Then,

1. HOIIIR’X(M TO-,A) = HOmR(M,A(O'))
2. HomR,X(A,M lo-) = HomR(A(O'),M)

3. If M is R-projective, then M 1, is projective in teh category of R-
carapaces on X.

4. If M is R-injective, then M |7 is injective in the category of R-
carapaces on X.

Proof. Statements () and @) require no proof. Note that the functor
which assigns to an R-carapace on X its segment along o is an exact
functor This observation together with (1) and @) implies (@) and @).

|
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Proposition 1.5. Let X be a simplicial complex. Then the category of
R-carapaces on X has enough projectives and enough injectives.

Proof. Let A be any R-carapace on X. We must show that there is a
surjective map from a projective R-carapace to X and an injective map
from A into an injective R-carapace. For each simplex, o in X choose
a projective R-module, P, with a surjective map n, mapping P, onto

A(o). Let
P = ]_[ PO’ TO’

oeX
For each o, let T, be the morphism of carapaces corresponding to 7,
given by [L4l [l Define r by:
= H .

oeX

Then r is a surjective map from a projective to A.

To construct an injective, choose an injective module and an inclu-
sion, j, : A(0) — I,. Then define an injective carapace, I/, and an
inclusion, j, as products of the carapaces I, |” and inclusions ;. de-
fined dually to the corresponding objects in the projective case. m|

Proposition 1.6. Let X be a simplicial complex. Then

(1) If P is a projective R-caparapace on X, then P(o) is R projective
for each o € X.

(2) If 1 is an injective R-carapace on X, then I(o) is R injective for each
ogeX.

Proof. Suppose P is projective. For each o let n, : F, — P(0) be
a surjective map from a projective R-module onto P(co-). Then Q =
[ I,ex Fo 1o is projective by [L4land | [,y 7, maps Q onto P. Since P
is projective, it is a direct summand of Q. But then P(o) is a direct sum-
mand of Q(o) = [ [, Fr which is clearly projective. This establishes
the first statement.

To prove the second statement, for each o~ choose and embedding,,
Jo : I1(0) — J, where J, in R-injective. Then use [ [y to embed 7 in
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[ [,<x Jo and reason dually to the previous argument replacing, at each
point where it occurs, the co-product with the product. |

It is clear that there are natural homology and cohomology theories
on the category of R-carapaces on X. The most natural functors to con-
sider are the limit and the co-limit over X. To simplify the discussion,
Carg(X) denote the category of R-carapaces on X.

Definition 1.7. Let U denote any sub-category of X, and let A be an
R-carapace on X. Then

(U, A) = lim A(r)
oelU
(U, A) = lim A(c").

oelU

We will refer to 2(U, A) as the segment of A over U and to T'(U, A) as
the sections of A over U.

Certain observation are in order. Since subcategories of X are cer-
tainly not in general filtering the functor, X(U, ?), is right exact on Carg(X).
Similarly T'(U, ?) is left exact. Furthermore I'(U,A) = Homg (R, A),
On the other hand, (U, A) cannot be represented as a homomorphism
functor in any obvious way but its definition as a direct limit allows us
to conclude that:

HOII]R(Z<X,A), M) = HOII]R’)(<A, Mx)
Definition 1.8. For any R-carapace on X, A, let
H,(X,A) = L,2X, A

and let
H"(X,A) = R'T(X,A)

the left and right derived functors of 2(X, —) and T'(X, —) respectively.
These groups shall be referred to as the expskeletal homology and co-
homology groups of X with coefficients in A.
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Example 1.9. The Koszul Resolution of the Constant Carapace.
Choose an ordering on the vertices of X. For each r > 0, let X(r) de-
note the set of simplices of dimension r. Let K, (X,R) = Haex<q> R 1.

If A is any R-carapace on X, then /\7e A is understood to be the carapace
whose segment along o is /A% (A(c")). Then, it is not at all difficult to
see that /\qul Ko(X,R) = K,(X,R) Furthermore, when o= < 7 there is
always a natural map from M 1, to M 1, obtained by applying 4,1 to
M 1, and noting that since M 1, (0) = M = M 1 () there is a map in
Homg x(M 1., MM 1) corresponding to the identity. Make use of the
ordering on the vertices of X to define an alternating sum of the maps
corresponding to the faces of a simplex. It is easy to see the that this
gives a complex of carapaces:

— (X.R) — K,_1(X.R) > ... — Ko(X.R) — Ry — (0)

Then check that the sequence of segments on o is just the standard
Koszul resolution of the unit ideal which begina with a free module of
rank dim(c) + 1 and the map which sends each of its generators to one.
Consequently, this construction gives a resolution of the constant cara-
pace by projectives. On the other hand it is evident that (X, K, (X, R))
is just the R-module of simplicial g-chains on X with coefficients in R
and that the boundaries are the standard simplicial boundaries. In this
way, one verifies that the exoskeletal homology and cohomology with
coefficients in a constant carapace is just the simplicial homology and
cohomology. This phenomenon has been observed and exploited by
Casselman and Wigner in their work on admissible representations and
the cohomology of artihmetic groups [CWI].

2 Operations on Carapaces

In the category of R-carapaces on X there is a self-evident notion of
tensor product:

Definition 2.1. Let A and B be two R-carapaces on X. Let:
(A ®r B)(0) = A(0) ®r B(0r)
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Then A ®g B is a carapace which we will refer to as the tensor product
of A and B.

The properties of the tensor product are for the most part clear. Most
of them are stated in the following.

Proposition 2.2. Let X be a simplicial complex. Then the tensor product
of R-carapaces on X is an associative, symmetric, bi-additive functor
right exact in both variables. Furthermore:

(1) For any R-carapace, A, Rx QR A ~ A

(2) If P is a projective R-carapace then tensoring with P on either side
is an exact functor.

(3) For any two R-carapaces, A and B, there is a natural map:
IAB: Z(X,A Rr B) — E(X,A) QRr E(X, B)

Moreover; ta p is a natural transformation in A and B and it is func-
torial in X as well.

Proof. The first statement is self-evident; the second follows trivially
from[L6]but the third might require some comment. To construct #4 g let
eaor t A(0) > Z(X,A) and ep, : B(X) — X(X, B) be the expansions.
Then e4 » ®r epx maps A Qg B(o) into (X, A) ®g X(X, B) compatibly
with respect to expansion. Since X(X,A ®g B) is a colimit, this defines
14 p uniquely and ensures that it is functorial as asserted. |

The construction of a tensor product is thus quite straightforward but
the construction of an internal homomorphism functor with the requisite
adjointness properties presents certain technical difficulties. For any o €
X let x(o) denote the subcategory of X whose objects are the simplices
7 such that 7 © ¢. The morphisms of X(o-) are inclusions of simplices.
Then X (o) is not a subcomplex of X. If o < 7 then X(7) < X (o). There
is a natural restriction map from the group Homg x(o) (A|x () Blx (o))
to Homg x (1) (A|x(r)> Blx(r)). We will will write e;{’g for this restriction
map.
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Definition 2.3. Let A and B be two R-carapaces on X. The carapace
of local homomorphisms Fro A to B will be written Homg x (A, B). Its
value on o is

WomR,X(A, B) (0’) = HomR’X(U) (A|X(O'), B|X(O'))
Its expansions are the maps eg, _

For want of a direct reference, we include some discussion of the
basic properties of Hom.

Theorem 2.4. The local homorophism functor, Homg x (A, B), is addi-
tive, covariant in B and contravariant in A and left exact in both vari-
ables. Moreover

(1) Hompg x(Rx,A) ~ A, functorially in A
(2) T(X,Homg x(A, B)) = Homg x (A, B)
(3) There is a canonical isomorphism functorial in A, B, and C,

¢ : Homg x (A, Homg x(B,C)) — Homg x (A ®g B, C)

(4) There is a functorial isomorphism:

HOIIIR’X(Rx, WomR,X(A, B)) ~ HomR,X(A, B)

Proof. Of the three preliminary statements, only left exactness requires
comment. What must be shown is the left exactness of segments of
Homp x(A,B) as A and B vary over short exact sequences. But
Homg x(A, B)(0) = Homg x(s)(Alx(s), Bx(s))- Restriction to X(o)
is exact and Homg x (o) is left exact in both of its arguments. The req-
uisite left exactness follows immediately.

To establish (1), we must establish the isomorphism on segments.
But

Hompg x(Rx,A)(0) = Homg, x (o) (Rx, Al x(o))s
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but this last expression is equal to:

lim A(7).
7eX (o)

However the category, X (o) has an initial element and so the projective
limit is just A(o).
For Statement (), write:

F(X7 7_{OWLR,X(A’ B)) = liﬂl(A|X((r)’ B‘X((r))
TeX

There is a natural map from I'(X, Homg x (A, B)) to this projective limit.
Just send f to the element in the limit whose component at o is the
restriction (the pull-back actually) of f to the sub-category, X (o). It is
a triviality to verify that this map is an isomorphism.

Rather than giving a fully detailed proof of (), we will give com-
plete definitions of ¢ and a map ¢ which is inverse to it. The necessary
verifications, though numerous and quite technical, contain no surprises
and so we leave them to the reader. First suppose
f € Homg x (A, Homg x(B,C)). Then for a € A(0), fy(a) is a family,
fola) = {f(a)r}ro0 Where f(a), € Homg(B(t),C(7)). The following
equations express the facts that f is a carapace morphism and that f(a)
is carapace morphism from B|(c") to C|y(¢):

fT(eZ,o-(a))y = fo(a), (2.1)

et 0 fr(a)e = frla)yoey, 2.2)

Then we may define ¢ : Homg x (A, Hompg x(B,C)) — Homg x (A ®g
B, C) and ¥ opposite to it by the equation:

¢(f)e(a®b) = [fo(a)s](b) acA(o).beB(o)  (2.3)
[¢(F)o(a)]:(b) = fe(lej o(a) ®b) a€Alo),beB(r)  (24)

These are the two maps, inverse to one another, which establish (3).
The last statements is obtained by applying the third to the left hand
side and observing that Ry Qr A ~ A. m]
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3 Derived Functors

In this section we introduce the most elementary derived functors on
Carg(X). These include the derived functors of both the module val-
ued and the carapace valued tensor and homomorphism functors and
the relation between the two. First recall that by [L4] whenever P is a
projective R-module and o is a simplex in X then P 1, is a projective
R-carapace. Consequently a coproduct of carapaces of the form F 1.,
where F is a free R-module, is a projective R-carapace. We will refer to
such carapaces as elementary projectives. Furthermore notice that if M
is any R-module then o-(X, M 1;) = M. Hence if Q is an elementary
projective, o-(X, Q) is a direct sum of free modules and hence free.

Lemma 3.1. Let X be any simplicial complex.

(1) Every R-carapace on X is a surjective image of an elementary pro-
Jective.

(2) If P is a projective R-carapace on X, then o (X, P) is R-projective.

(3) A tensor product of elementary projectives is an elementary projec-
tive.

(4) A tensor product of projectives is projective.

Proof. Let A be an R-carapace on X. For each o € X let F, be a free
R-module and let g, : F, — A(0) be surjective morphism. Then, just
as in[L3 [ [,cx Fo 1o is an elementary projective and | [ .y O, maps
in onto A. Thus[I)) is established.

To prove ), choose an elementary projective, F, and a surjective
map, g : F — P. Since P is projective, it is a direct summand of F and
so o (X, P) is direct summand of o-(X, F) which is free. This establishes

The fourth statement follows from the third because, by[I] every pro-
jective is a direct summand of an elementary projective. Hence we must
prove [3). But this reduces to proving that is o and 7 are two simplices,
then R 1, ®gR 1; is elementary projective. But R 1, ®gR 1+ (y) # 0
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if and only if y © o-and y © 7. Thus R 1 ®gR 1.# (0) if and only
if o U T = «is a simplex and then R 1, ®rR 1,. This establishes the
result. o

There are at least four very obvious homological bifunctors on
Carg(X)

Definition 3.2. Let A and B be R-carapaces on X. Write Exty , for
the r’th right derived functor of the left exact module valued bi’func-
tor, Homg, x (a, B). Write 8xtq RX for the carapace valued q’th right de-
rived functor of the carapace valued local homomorhism Sfunctor. Write
Torgx(A, B) for the q’the carapace valued left derived functor of the

carapace valued tensor product, A ®g B and write Torf;’x (A, B) for the
q’th left derived functor of the right exact bifunctor o-(X, A Qg B).

Lemma 3.3. If P is a projective R-carapace on X, then for any R-
carapace, A, P ®g A is o-acyclic and Hompg x (P, A) is T-acyclic.

Proof. Let {Q;}, j < 0be a projective resolution of A. Then {P ®r Q;}
is a projective resolution of P Qg A. Apply the functor o to obtain
Torf’X(A,P) = Hj(A ®r P). But Torf’X(A,P) = (0) because P is
projective. This establishes the o-acyclicity of A ®g P. For the other
acyclicity, let {K;} be a projective resolution of Ry. Then Homg x (K,
Hompg x(P,A)) = Homg,(K; ®& P,A). But K; ® P is a projective
resolution of P. Thus H/(X, Homgx(P,A)) = Extfe’x(P, A) which is
(0) because P is projective. m]

The elementary properties of these four functors are described in the
following.

Proposition 3.4. Let A and B be R-carapaces on X, Then
(1) Tory*(A,B)(c) = TorR(A(c), B(c))

(2) Tork™(Rx,A) = Hy(X,A)

(3) Exty y(Ry,A) = HI(X,A)
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(4) There is a spectral sequence with Eg’q term:
EP? = HP (X, &xty, (A, B))
and whose abutment is:

Ext} ! (A, B)

(5) There is a spectral sequence with Eiq term:
2 X
E; = Hy(X.TorX¥ (A, B))

and with abutment:

RX
Tor,", (A, B)

Proof. To provel[l), let P; be a projective resolution of A. Then for each
o, {P;(0)} is a projective resolution of A(c-). Moreover the segment
of P; ®g B along o is P; ®g b(c). But the segment along o is an
exact functor on Carg(X) and so the o-segment of the homology of the
complex, P; ®g B is the homology of the complex P (o) ®g B(cr). This
is just the result desired.

Statements [2] and [3] are both essentially trivial. Just note that
Torg’x (Rx,A) (respectively Ext;’e,X(RX,A)) is a connected sequence of
homological functors acyclic on projectives (respectively injectives) and
that Torg™ (Rx,A) = Z(X,A) (respectively Exty o (Ry,A) = T'(X,A)).
The two statement follow.

The local global spectral sequences in H)) and [5) ar just composi-
tion of two functor sequences as in [Gr]. Let F4(B) = A ®g B and
let G4o(B) = Homgx(B,A). By Lemma[3.3] Fy4 carries projectives to
Y-acyclics and G4 carries projectives to I'-acyclics. The left derived
functors of F, are the functors, 7 or;e “*(A, —) while the right derived
functors of G4 are the functors, H omz’X (A, —). The construction of the
spectral sequences is standard. |
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4 Homological Dimension

In this section we will determine the homological dimension of Carg(X)
for a finite dimensional simplicial complex, X. Write X" for the set of
simplices in X of dimension r and write X,, for ( J,-, X ("), If M is an R-
module,write pd (M) for the projective dimension of M and write hd(R)
for the homological dimension of R.

Definition 4.1. Let A be an R-carapace on X.

(1) Write s(A) <

) if A(o) = (0) whenever dim(o) < nand let s(A) =
inf{n: s(A)

n
< n}. Then s(A) is called the support dimension of A.

(2) We say that A is locally bounded if pd(A(o)) < q for some fixed
q = 0. In that case let ld(A) = sup{pd(A(c)) : o € X}. When it
exists, ld(A) is called the local projective dimension of A.

Proposition 4.2. Suppose that A is an R-carapace on X of support di-
mension at least n and local projective dimension r. Then there is an
exact sequence:

0->A'-P - ... 5Py —>A—-0 (4.3)
so that:
(1) ld(A') =0
(2) P;is projective
(3) s(AY)=n+1
(4) s(P;) =n

Proof. For each o € X, choose a projective module, Q“ and a surjective
morphism, ¢7 : Q7 — A(o) — 0. For each o, let ¢, : Q7 1,— A be
the morphism of carapace induced by ¢”. Let Qo = [ [,cx, (Q7) 1o and
letdy = [ [,cx, #o- Since s(A) < n, dy in surjective. Let No = ker(dp).
Then, clearly s(No) < n but ld(Ny) < r — 1. Thus we may repeat the
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process the process with A replaced by Ny and continue inductively until
we obtain an exact sequence:

0N = Qrj—...—>Qp—A—0.

In this sequence, the Q; are projective, the support dimensions of the Q;
and of N,_; are at least n and Id(N,_) are at least n and Id(N,_;) = 0.
That is N, (o) is projective for each 0. Now let

O, = H (Nr—l(o-)) To -

oeX,

Clearly, O, maps onto N,_; and the map is an isomorphism on segments
over simplices of dimension n. Let d, be the composition of the map
onto N,_; with the inclusion into Q,_; and let A! = ker(d,). Clearly,
A' and the Q; answer the requirements of the proposition. m|

Theorem 4.4. Let X be a simplicial complex of dimension d and let A
be a locally bounded R-carapace on X of local projective dimension r.
Then pd(A) < d +r.

Proof. Apply Proposition 4.2 with n = 0. The result is the exact se-
quence:

0— Al —-P,—...>Py—>A—>0
Then apply 4.2 to A! observing that [d(A') = 0 and s(A') < 1. The
result is a short exact sequence, 0 — A? > 0, — A' = 0 where 0,
is projective, Id(A?) = 0 and s(A?) < 2. We may continue until we
reach s(A9) < d. But for any B, if the segments of B are projective and
s(B) < dim(X) then B is projective. We may thus assemble these short
sequences and the sequence of P; to obtain a sequence:

0545041 >...50 5P, —>...>P)—>A—0

This exact sequence is the projective resolution establishing the result.
O

Corollary 4.5. If dim(X) = d and if M is an R-module of projective
dimension r, then pd(Myx) < r+d. If M is projective then pd(Myx) < d.
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Corollary 4.6. If R is of homological dimension r and dim(X) = d then
the homological dimension of Carg(X) is at most d + r.

Neither of these corollaries requires so much as one word of proof.

5 Carapaces and Morphisms of Complexes

Recall that a morphism of complexes from X to Y is just a covariant
functor from the category of simplices in X to the category of simplices
in Y; it is simplicial if it carries vertices to vertices. If S is a subset of the
vertex set of X then it admits a simplicial complex structure by taking as
its set of simplices the set of simplices in X all fo whose vertices liein S .
We will write S fof this complex. When we speak of a subcategory of
X we will always, unless otherwise indicated, mean a full subcategory
of the simplex category of X. If U and V are subcategories if X we
will write U < V to indicate that U is a full subcategory of V. In this
case there is always a functorial map from X(U,A) to X(V,A) for any
carapace, A.

Suppose that f is a morphism of complexes from X to Y and that Z
is a simplicial sub-complex of Y. Let f~!(Z) denote the simplicial sub-
complex of X which has as its set of simplices the set {o- € X : f(o) €
Z}. Clearly, f~! is a functor from the subcomplexes in Y to those in X.

Definition 5.1. Let X and Y be simplicial complexes, let A be a R-
carapace on X and let B be one on Y. Let F : X — Y be a morphism of
complexes.

(1) Let (f*(B))(0) = B(f(0)) and let e}*(B)J = egf;zg). Then f*(B)
is an R-carapace on X and f* is a covariant functor from Carg(Y)
to Carg(X). The carapace f*(B) is called the inverse image of B
under f.

(2) Let (fi(A))(o) = Z(f'(5),A) and let e;.*(A)(r be the natural
map of segments induces by the inclusion of categories, f~'(5) <
f~Y (%) when o < 1. Then f, is a covariant functor from carapaces
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on X to carapaces on Y. The carapaces, fi(A) is called the direct
image of A by f.

Both f* and fy are additive. In addition they satisfy the adjointness
properties expected.

Theorem 5.2. Let X and Y be simplicial complexes, let f be a morphism
of complexes from X to Y, let A be an R-carapace on X and let B be one
onY.

(1) f*is exact.
(2) f+ is right exact.
(3) f« is left adjoint to f*. That is,
Homg, (A, f*(B)) ~ Homg y(f«(A), B)
functorially in A and B.

Proof. The first statement is a triviality. The second statement in noth-
ing more than the right exactness of co-limits. Thus only the last state-
ment requires attention.

To prove3), we will give morphisms,

l// . HomR,X(A,f*(B)) — HomR,y(f* (A),B)

and ¢ inverse to it. Begin with ¢. If @« € Homgx(a, f*(B)), write
@ = {a&}oex. Then a, maps A(o) to B(f (o)) for each o compatibly
with respect to o. Then o € f~!(p) if and only if f(cor) < p. Thus the
set of maps, elz);, Flo) © Yo is direct system of maps giving a morphism
from [f(A)](0) = Z(f~'(5),A) to B(p). For each p call this map S,
Then since 8, is functorial in p, the family {8,},cy is a morphism, 3,
from f,(A) to B. Let ¢(a) = B.

Now we wish to define ¢ . If 8 € Homg y(fx(A), B) then B is a
family {B,} iy Where 8, maps (f~'(3),A) to B(p). For any o in X,
let p = f(o) and let a,, be the natural map from A(c) to Z(f~1(p),A).
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Then 3, 0a, is a map from A(or) to B(f (o)) for each 0. Let @y = B (o)
for each o and let ¢(B) be the map @ = {@y}secx. We leave the task of
verifying that ¢ and ¢ are maps of the requisite type and that they are
inverse to one another to the reader. m|

It is entirely expected the f* has a left adjoint. It is a bit surprising,
though not at all subtle, that is also has a right adjoint. Let f : X — Y be
a morphism of complexes. For p € Y let fT(p) denote the sub-category
of X consisting of all o € X such that f(o) 2 p.

Definition 5.3. Let X and Y be simplicial complexes, let f : X — Y be
a morphism of complexes and let A be an R-carapace on X. Define an
R-carapace on Y by the equation:

£ (A)(p) =T(f(p). 4)

This is clearly an R-module valued functor on the simplex category of Y
and so it is an R-carapace on Y. We will call it the right direct image of
A under f.

Proposition 5.4. Let f : X — Y be a morphism of complexes, let A be
an R-carapace on X and let B be one on Y. Then f; is left exact and
right adjoint to f*. That is,

HomR,x (f* (B), A) ~ HomR,y(B, fT (A))
functorially in A and B.

Proof. Left exactness follows from the left exactness of I and so we
only need to establish the adjointness. We give the two morphisms. Let

Mo HOl’IlR,y(B, fT(A)) - H0mR7x<f* (B),A)

be one of the two morphisms and let { be its inverse.

Choose 6 in Homp y(B, f;(A)). For each p € Y, § takes each ele-
ment, b € B(p) to a compatible family, {[6, ()]0} s(r)5, Where [6,(D)]s €
A(o). For each o we must give a map (6 ) :B(f(0)) — A(o). Let

[7(6)s] (b) = [0 ()],
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This defines 7.
To define ¢, choose b € B(p) adn suppose that

ﬂ € HomR,X(f* (B),A)
If (o) 2 pletay = Bor(eh”) (b)). Then let

0
f(ﬁ)p(b) = {afr}f(cr)zp
‘We leave the verifications involved to the reader. O

Corollary 5.5. Let X, Y and f be as above. Then:

(1) f« carries projectives on X to projectives on Y.

(2) For any R-carapace A on X, 2(Y, f«(A)) = (X, A).
(3) fi carries injectives on X to injectives on Y.

(4) Forany Aon X, T'(Y, f;(A)) =T'(x,A)

Proof. For the first statement, let P be a projective on X and let M —
N — 0 be a surjective map in Carg(X). Consider the map, Homg y
(f«(P),M) — Homgy(f«(P),N). By the adjointness statement in
@), this is the same as the map Homg x (P, f*(M)) — Homgx
(P, f*(N)). But now f* is exact and P is projective on X and so this
map is surjective. This takes care of [I)).

In general, if M and N are R-modules and there is an isomorphism
Homg(M, Q) ~ Homg(N, Q) functorial in Q, then M ~ N. Apply this
to2)) using the definition of the functor £(X, ?) and [3)) to obtain:

Hompg(X(Y, f(A)), M) = Homg y(fi(A), My)
= HomR’X(A, Mx) = HomR(Z(X,A), M)

Statement [2)) follows. 103
The proof of []) is precisely dual to the proof of [Il). To establish ),
apply 5.4 and 241 D). Write:

F(Y, fT(A)) = HOInR’Y(Ry,fT(A)) = HOInR,X(Rx,A) = F(X,A)

Thus M) is also proven. |
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Corollary 5.3 establishes exactly what is necessary for two compo-
sition of functor spectral sequences. Many are possible but we content
ourselves with the two most obvious.

Proposition 5.6. Let X and Y be simplicial complexes, let A be an R-
carapace on X and let f : X — Y be a morphism of complexes.

(1) There is a spectral sequence with Ef,,q term:
2
Ep,q = HP(Y’ LLIfA)

and abutment:
H.(X,A)

(2) There is a spectral sequence with Eg’q term:
EL = HP (R fiA)

and abutment:
H' (X, A)

These spectral sequences are sufficiently standard that no proof is
required. The proofs in [[GH], for example, apply.

6 Certain Special Carapaces

This section will be devoted to the study of certain acyclic carapaces.
We will need certain conventions. If X is a simplicial, a complement in
X is a full subcategory of its simplex category such that the complement
of its collection of simplices is a simplicial complex. The reader may
verify that C is a complement in X if, whenever o € C and 7 2 o then
7 € C. Alternatively C is a complement in X if and only if whenever
o € C, then X(0) < C. These two conditions apply to arbitrary subcol-
lections of the simplex set of X and we will use the term complement in
this sense. Clearly arbitrary unions and intersetions of complements are
complements.
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Definition 6.1. Let X be a simplicial complex.

(1) An R-carapace, B, is called brittle if for every sub-complex of X, Z,
the natural map, X(Z, B) — X(X, B) is injective.

(2) An R-carapace, F, is called flabby if for every complement in X, C,
the natural map T'(X, F) — I'(C, F) in surjective.

Our development follows standard treatments of flabbyness for
sheaves. On occasion something more is called for in the brittleness ar-
guments. Flabbyness will be an entirely familiar concept, but brittleness
might be a bit strange. We will begin with some descriptive comments.
First notice that if dim(X) > 0 then Ry is not brittle. Suppose that o is
positive dimensional simplex in X and that x and y are distinct vertices
init. Let Z = {x,y}. That is, Z is the disconnected two point com-
plex. Then clearly, 2(X,Rx) = R@® R and, since o € X and Z < o,
the map, X(Z, Ry) — X(X, Rx) is not injective since it factors through
RX (0’) = R.

If o € X and B is brittle then by definition, B(c-) < X(X, B). But
brittleness also forces the relation, B(o") "B(t) = B(o-n7) where the in-
tersection is taken in (X, B). To see this just note that, because X(Z, A)
is nothing but the inductive limit over Z, there is an exact sequence,

0—>Blont)— HB )—>2(cut,B)—>0

and, by brittleness, an inclusion (o U 7, B) < X(X, B).

Before proceeding a convention is necessary. If o is a simplex in X
then write & for the complex whose vertex set is o but whose simplex
set is the set of all proper subsets of o. That is o is not a simplex in &
which is a simplicial sphere. Then 6 < &

We will also require the following. Let f : M — N be a morphism
of R-modules. Then f is injective if and only if, for each injective R-
module, J, the induced map Homg(N, J) — Homg(M, J) is surjective.

Finally suppose that Z is a simplicial sub-complex of X. Let C be
the set the simplices of X which are not siplices of Z. For any R-module,
M, define R-carapaces M’ and M¢ by the equation:
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Mi(oc)=M if oceZ

Z

M) =(0) if o¢Z

Z

(6.2)

Then M is defined by exactly the same equations, replacing M by
MZ and Z by C. As Z is a complex M, in naturally a quotient of Mx
105 while M is naturally a subobject. In fact, the following is exact:

0— M — My — M} —0
In addition, the following hold

Hompg x(A, M) = Homg(2(Z,A), M)

. (6.3)
HomR,X(M* ,A) = HomR(M, F(C,A))

Lemma 6.4. Let X be a simplicial complex, let Z = X be a subcomplex
of X and let C be a complement in X. Then if A is brittle on X, A|z is
brittle on Z. If A is flabby on X, then A|c is flabby on C.

Proof. 1If A is brittle and Z’ is subcomplex of Z then the composition,
2(Z',A) — X(Z,A) — Z(X,A) is the map, £(Z',A) — Z(X,A). If a
composition in injective, each map in it injective. This proves the first

statement. The proof of the second statement i precisely dual to it and
so we leave in to the reader. O

Theorem 6.5. Let X be a simplicial complex and let
0-A >A—-A" >0
be exact.
(1) If A" is brittle, then
0— X(x,A") - Z(X,A) - Z(X,A”) - 0
is exact.
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(2) If A’ is flabby, then
0->T(X,A) —>T(X,A) ->T(X,A") -0
is exact.

Proof. To prove () we need only show that £(X, A’) — Z(X, A) is injec-
tive. By the observation above, it would suffice to show that
Homg(2(X,A),J) — Homg(Z(X,A’),J) is surjective for an injective,
J. But Homg(2(X,A),J) = Homg x(A, Jx) and the same for A’. Thus,
to establish (D), it suffices to prove that every carapace morphism, f :
A’ — Jx extends to a morphism. f: A — Jx.

Let j: A’ — A be the injection and let 7 : A — A” be the surjection.
Let f : A’ — Jx be a morphism of carapaces. Let F be the family of
paris, (Z, fz) where Z is a subcomplex and f7 : A|z — Jz is a morphism
such that fz o J = f]|z. Order these by inclusion on Z and extension on
fz. This orders ¥ inductively and so Zorn’s Lemma yields a maximal
element, (W, fiy). If W # X there is some o € X such that o ¢ W.
If o n' W = ¢J we may trivially extend fi to W U {t} where ¢ is any
vertex in 0. This contradicts maximality. Thus we may assume that
ocnW # . Letd n W =Y. Consider f; : A'/(0) — J. By the
injectivity of J, we may choose f! : A(o) — J such that floj, = f,. If
y < o let fyl = fy1 o eg’y. Since j is morphism, the following commutes:

Al(o) 7= Ao

T eXWA

A'(y) ——=Al)
Y
Hence f} o j, = f;oez’yojy = f;oej,’y = f,. Thatis, floj = fono.
ButonGnW =7, fiyoj= f. ThusonY, (fiy — f')oj = 0. It follows
that fiy — f! induces a map form A”|y to Jy. But Z(¥,A”) — (X,A”")
is brittle. Hence Homg x(A”, J,) — Homg y(A”]Y, Jy) is surjective.
Thus, there is and f> € Homg x(A”, Jx) such that mo oy = (fiw—f")|y.
Consequently, (f' + 70 f)|snw = fw|s~w. Hence fiy can be extended
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to W u & contradicting the maximality of (W, fy). Thatis W = X and
so[I) is established.

To prove [2)) we must prove that I'(X,A) — T'(X,A”) is surjective.
An element a € I'(z,A) is a function on Z such that a(o) € A(o) and
ey »(a(o)) = a(r). Suppose a” € I'(X,A”) is given. Order the pairs
(C,ac), where C is a complement and ac € I'(C,A), n(a.) = d’|c,
by inclusion and extension. This being an inductive order, there is a
maximal element, (U,ay). If U # X, there is simplex, 7 not in U.
Choose a, € A(t) such that n.(a,) = d”"(r). Define @ in X(7) by
a (o) = ej,r((a)r). If X(1) n U = J then a; extends ay contradicting
maximality of (U,ay), and so we may assume that X(7) n U # (.
This intersection is a complement. Consider the difference d; — ay on
this intersection. Now (@ — ay) = 0 on X(t) n U whence (a; —
ay)|X(t) n U e T(X(r) n U,A’) Since A’ is flabby there is an element
a € T'(X,A’) such that d'|X(7) n U = (a1 — ay)|X(7) n U. Clearly
a; — (d'|X(7)) extends ay contradicting maximality. Thus U = X and
we have established 2)) O

Corollary 6.6. Let
0-A—>A->A">0

be an exact sequence of R-carapaces on X.

(1) If A and A” are brittle, then A’ is also.

(2) If A and A’ are flabby, then A" is also.

Proof. We prove [I)). Suppose Z is a subcomplex of X. Then, by
Alz and A”|; are both brittle and hence, 0 — X(Z,A’) — Z(Z,A) is
exact. Thus the following diagram, which has exact rows and columns,

commutes:
0

|

0—>3(ZA") —=3(Z,A)

i l

0—>3(X,A") —= X(X,A)
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It is immediate the £(Z,A") — X(X,A’) is monic. As for Statement 2)),
noting that Z must be replaces by a complement, the proof is both well
known and strictly dual to the proof of [I]). |

Proposition 6.7. Let X and Y be simplicial complexes let f : X — Y be
a morphism of complexes and let A be an R-carapace on X. Then

(1) If A is brittle, then f.(A) is brittle.
(2) If A is flabby then f;(A) is flabby.

Proof. To prove[l), let U < Y be a subcomplex. Then, f~'(U) is a
subcomplex of X and so, if A is brittle, then Z(f~1(U),A) — Z(X,A)
is injective. But Z(f~!1(U),A) = (U, f,A) and £X,A = X(Y, fA) by
definition. That proves the first statement. The proof of ) is completely
parallel except that it uses 3.3} Mlin place of the corresponding properties
of f O

Proposition 6.8. Let X be a simlicial complex.
(1) Projective carapaces are brittle; injective carapaces are flabby.

(2) a coproduct of brittle carapaces is brittle; a product of flabby cara-
paces is flabby.

(3) For any simplex, o € X and any R-module, M, M 1, is brittle and
M |7 is flabby.

Proof. Let Z be any subcomplex of X. let C be its complement and let
M any R-module. Then 0 — Mg — My — M; — 0 1s exact. Thus,
if P is projective, Homg x (P, Mx) — Homg x (P, M}) is surjective, But
this is the map, Homg(2(P, X), M) — Homg(X(P,Z), M). But this map
will be surjective for every M if and only if the map X(Z, P) — X(X, P)
is injective (in fact, it must be split).

If I in injective, we need only consider the case, M = R. Then
Homg x(Ry,I) — Homg x (RS, 1) is surjective. This is the sequence,
['(X,I) — I'(C, 1) and hence (@) is established.
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To prove ), let {A;}ic; be a family of R-carapaces on X. Since

inductive limits of arbitrary co-products are co-products and projective
limits of products are products, we may write:

) (Z,HA,-) = [ [2(z4)

iel iel (6.9)
r (C,HA,-) =] ]r(c.a)
iel iel

Since a co-product of monomorphisms is monic and a product of sur-
jections is surjective, B)) follows at once.
Statement[3)) is quite clear. m|

Proposition 6.10. If A a brittle R-carapace on X, then H;(X, A) = 0 for
alli > 0. If F is flabby, then H' (X, F) = 0 for all i > 0.

Proof. First choose a projective, P and a surjective map so that there is
an exact sequence:

0—>Ay—>P—>A—>0

The acyclicity of P the Theorem[6.3]together imply that for any brit-
tle A, H;(X,A) = 0. Then choose a projective resolution of A. Break
this into a series of short exact sequences, use Corollary and apply
induction. The same technique, applied dually, gives the second state-
ment.

We conclude with local criteria for which there no immediate appli-
cations but which are somewhat interesting. O

Proposition 6.11. Let A a be an R-carapace on X.

(1) If for each simplex o € X the map, X(6,A) — X(6,A), is injective
then A is brittle.

(2) If for each simplex o € X the restriction A|X (o) is flabby, then A is
flabby.
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Proof. Proofs of these statements use Zorn’s lemma as its was used in
Theorem [6.3] First we prove[d)). Let Z be an arbitary subcomplex of X.
We must show that £(Z,A) — XX, A is injective. As in the proof of
theorem[6.3] this comes to proving that for any injective module, J, any
morphism, f : A|Z — Jz, admits and extension, f : A — Jx. Applying
Zorn one finds a maximal subcomplex on which f admits and extension
and so, replacing Z by this maximal subcomplex, we may assume that
f does not extend to any subcomplex contating Z. If the vertex x is
not in Z then f clearly extends to the disconnected union and so we
may assume that very vertex is in Z. Choose a simplex, o of minimal
dimension among the simplices not in Z. Then & S Z. Making use of
the condition in (1)), we obtain a diagram:

(OAJ: A) —=%(5,A)
2(Z,A)
Jz

J

Hence there is a map, f; : £(6,A) — J extending fz and so one
may extend f to Z u o contradicting maximality. It follows that it must
be that Z = X.

The proof of [2), by duality, in entirely straightforward and so we
omit it. O

7 Canonical Resolutions

In this section we give canonical chain and co-chain complexes which
can be used to compute the exoskeletal homology and cohomology
groups. They arise from canonical resolutions and they are sufficiently
canonical that they will be seen to be equivariant when there is a group
action involved.
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Let A be an R-carapace on X. Then by [[L4l ) and D)), the identity
map on A(c) induces a map, 7, : (A(0)) To— A and amap j, : A —
(A(0)) 17
Definition 7.1. Let X be a simplicial complex and let A be an R-carapace
on X.

(1) Let
To(A) = H(A(O')) e andlet my = Hﬂ”

oeX oeX

(2) Let
S4) = [JA@) 17 andier ju=] o

oeX oeX
(3) Let Ko(A) = Ker(ma).
(4) Let C°(A) = Coker(ja).
This definition has certain immediate consequences.

Lemma 7.2. Let X be a simplicial complex and let A be an R- carapace
on X.

(1) The four functors, To, Ko, SO and C° are exact additive functors.

(2) Bothrma and ja are natural transformations in the argument A. Fur-
ther my is always surjective and ja is always monic.

(3) Forall A, To(A) is brittle and S°(A) is flabby.
(4) If A is brittle, then Ky(A) is brittle; if A is flabby, C°(A) is flabby.

Proof. That Ty and S° are exact and additive is a trivial observation.
Since 7o(A) is a coproduct of carapaces of the form M 1, proposition
(6.8l D) and[3) guarantee that it is brittle. The flabbyness of S°(A) follows
similarly from the fact that it is a product of carapaces of the form M |“.
That Kp and C° are exact is littel more thant the snake lemma. Statement
D) is a triviality and so only M) remains to be proven. This follows from
[B) and Corollary i
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Definition [Z]and lemmal[Z.2] are just what is necessary to construct
standard resolutions.

Definition 7.3. Let A be an R-carapace on X. Let I, (A) = Ko(K—1(A)) 111
and let C"(A) = C°(C""'(A)). That is K, is the (n + 1)'st iterate of

Ko and the same, mutatis mutandis, is ture for C". Let T,4+1(A) =
To(K,(A)) and let S"*'(A) = S°(C"(A)) for n < 0. Define maps,

6t Tur1(A) — To(A) and 8" : S"T1(A) as follows. The map, S, is

the composition of the natural surjection, Tpi1(A) —\ (A), with the
inclusion, K, (A) — T,. Similarly 6" is the composition of the surjec-

tion, S"(A) — C"(A), and the inclusion, C"(A) — S"t1(A). Then
{Tw(A),6,} is called the canonical brittle resolution and {S" (A, §")} is
called the canonical flabby resolution of A.

Some remarks are in order. First of all, since each of the func-
tors, Tn and 8", are compositions of exact functors, they are them-
selves exact functors. Further, by Lemma for any A, each of the
carapaces T,(A) is brittle while the S"(A) are flabby. Thus, letting
Con(X,A) = Z(X,Tu(A)) and C"(X,A) = I'(X,S"(A)), whenever 0 —
Al - A — A" > 0is exact,

0— Cp(X,A") = Cp(X,A) = Co(X,A") - 0

and
0— C"(X,A’) - C"(X,A) — C”(X,A”) — 0

are exact. Abusing language, use 6,, and 9,, for the maps of segments and
sections respectively as well as maps of carapaces, the homology groups
of the complexes, {C,(S,A),d6,} and {C"(X,A),d"} are connected se-
quences of homological functors.

Definition 7.4. Let A be an R-carapace on X. The complex, {C,(X,A),5,}
will be called the complex of Alexander chains on X with coefficients in
A; C"(X,A), 8"} will be called the Alexander co-chains. The homology
of the complex of Alexander chains will be called the Alexander homol-
ogy and it will be written, H(X,A). The homology of the Alexander
co-chain complex will be called the Alexander cohomology and it will
be written H! (X, A).
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Proposition 7.5. The Alexander homology and cohomology of the sim-
plicial complex, X, with coefficients in A are isomorphic, respectively,
to the exoskeletal homology and cohomology of X with coefficients in A,
functorially in A.

Proof. By Proposition[6.10] the exoskeletal homology groups vanish on
brittle carapaces while the cohomology groups vanish on flabby cara-
paces. Hence the Alexander groups are the homology groups of the
segments (respectively sections) over an acyclic resolution. The propo-
sition follows. m|

The following is an interesting footnote.

Proposition 7.6. If A is projective, the canonical brittle resolution of
A consists of projective carapaces. If A in injective, each term in the
canonical flabby resolution in injective.

Proof. Tt suffices to prove that if A is projective then 79(A) and Ky(A)
are projective and the corresponding statement for an injective A and S°
and C°. Suppose that P is projective and that / in injective. Then by
Proposition[LL6] P(c) is projective and /(o) is injective for each o € X.
But then, by L4 (P(c)) 1 is projective and (I(o7)) |7 in injective.
By the definition of 7 and S and because coproducts of projective are
projective and products of injectives are injective, 7o(P) is projective
and S°(1) is injective. But then

0 — Ko(P) — To(P)P* — P — 0

and
01581 1) —0

are exact. The last two terms of the first sequence are projective while
the first two terms of the second sequence are injective. Hence Ky (P) in
projective and C°(I) is injective. An iterative application of these facts
establishes the result. m|
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8 G-carapaces and their Homology

In this section we consider a simplicial complex, X, with a G-action for
some group, G. Then there is a corresponding notion of G-carapace and
several ways of constructing G-representations on the homology and
cohomology of a G-carapace. One of our main purpose in this section
is to show that all of these representations are the same. The method is
standard “relative homological algebra”.

If X is a simplicial complex and G is group, a simplicial action of
G on X is an action of G in the vertex set of X which carries simplices
to simplicies. If o is a simplex in X, write G, for the setwise stabilizer
of o and G, for the pointwise stabilizer of o-. We will usually write
t, for the translation map, #,(x) = gx. Then, if A is an R-carapace on
X, the iverse image of A under t, is the carapace, [1,(A)](c) = A(go).
When space does not permit otherwise, write g*A for 75(A). Recall
that the expansions on t;‘ (A) are the maps, e;* Ao 87 . Notice that

80
t;’;(t;’:A) = g}fg(A).

Definition 8.1. A G-carapace on X is an R-carapace, A together with
a family of isomorphisms, ® = {®;}eec, Oy :— 13 A, such that for any
pair, g, h € G, the diagram:

U

A———>1iA
(Dhgl lt;,k(bh (82)
t;‘gA ty (7 A)

commute. That is, t;‘(d)h) 0Dy = Dp,.

If (A, @) and (B, ¥) are two G-carapaces a G—morphism f : A — B
is just a morphism such that ¥, o f = 7 (f) o @,. Clearly G-carapaces
are an Abelian category.

We now apologize for a digression which some would perfer to con-
ceal in an “obviously”. Write [ [A for the functor [ [ .y A(c). An
element, a, in [ [ A is a function such that a(o") € A(o). If @ is an auto-
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morphism of X, there is an isomorphism, I{ : [ Ja*A — []A. Itis de-
fined by [1$(a)] (o) = a(a~"(c)). Now the coproduct, [ [,y A(c), the
module of relations, N, such that [ [ .y A(c)/N = Z(X,A) and I'(X, A)
are all submodules of [ [ A preserved by I{ and hence I induces two
other maps, both of which we will denote /¢, from (X, @*A) to X, A
and from I'(X,a*A) to I'(X, A). These maps are functorial in the same
ways and so we will describe their properties for | | A and consider them
established for all three functors. Let A and B be two R-carapaces and
let @ and B be automorphisms of X. Let ¢ : A — B be a morphism. The
following equations, whose proof we leave to the reader, are the proper-
ties of interest. We emphasize that we shall use these equation for £ and
[ rather than [ .
Lol =1."

(H¢) ol =130 [a*s

In general, if f : A — B is a morphism, write f* and f! for the
induced morphisms on the segments and the sections respectively. Let
(A, @) be a G-carapace on X. Then there are natural representations of
G on £(X,A) and T'(X, A) respectively denoted ®* and ®' defined by
the equations:

(8.3)

(8.4)

To see that these are representation, we just apply 83| Then, (@) oh =
Il‘iho(CI)gh)2 = If\oli*Ao((h*(D(g))z)oo(D% = If‘o(lg*Ao(h*q)g)z)oCD% =
I3 0(®%o1%) o @) = (@), o (@), The computation for @' is virtually
identical.

It is also clear that this argument gives canonically determined rep-
resentations of G on the left derived functors of (X, ?) and right derived
functors of I'(X, ?). We give the argument for £(X, ?). Let a be an au-
tomorphism of X. Then o* is an automorphism of Carg(X) and so it
carries projectives to projectives and injectives. It is moreover an exact
functor. Let... - P, - P,_; — Py — A — 0 be a projective resolu-
tion of A. Then ... — a*P, — a*P,_; — ... = a*Py — a*A — 0
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is projective resolution of A and, applying X(X, —), deleting a*A and
taking homology yields the left derived functors of X(X, a*(—)). Mak-
ing use of the functoriality expressed by the second equation of [8.3)), we
obtain a commutative diagram.

o ——>3(X,a*P,) —= (X, @*Pr_|) — - - —> X(X, * Py)

(2 (3
Igr l lprfl l IP()

= 3(X,P)) (X, Pr_1) (X, Po)

Passing to the homology of these complexes, we obtain unique, canon-
ically defined morphisms, LI : H,(X,a*A) — H,(X,A). Clearly, the
dual construction will yield canonical morphisms, R/I§ : HY(X,a*A) —
HY(X,A).

Suppose that G acts on X and that A is a G-carapace with G-structure,
®. It is now clear that there is a canonical representation of G on
the exoskeletal homology and cohomology groups of X in A. Write
L.®, : H(X,A) — H,(X,g"A) and R1®, : HY(X,A) — H(X,g*A)
for the map induced by ®, on the homology and the cohomology re-
spectively. Let ®f = R7I% o R1®, and ®F = L,I5 o L,®,. Then ®F and
(l)g are easily seen to give the unique representations on the homology
and cohomology groups making them into homological functors with
values in the category of G-modules.

What remains in the question of natural G-structure on carapace
valued functors applied to G-carapaces. Let A be a carapace with G-
structure, @, and let B be one with G-structure, . First consider the
tensor product, A ®g B. Inverse image preserves tensor product. That
is, 7,(A ®gr B) ~ 13 (A) ®r t3(B). Consequently, the family of isomor-
phisms, {®, ® ¥, : g € G}, is a G-structure on A ®g B. observe that
the commutativity ex-pressed by diagram [8.2)) can also be described by
the equation:

q)h,gcr o q)g,cr = (Dhg,a' (8.5)

Consider the carapace of local homomorphisms. By definition
Homxr(A,B)(0) = Homy, (Alx(r), Blx(c)). We define a map,
®g,a' : HomX(a'),R(A‘X(o-)aB|X(O')) - HomX(go'),R(A|X((g)o-)’B|X(g0'))'
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The translation, , maps X(o) to X(go). Hence ®, maps Alx(, to
tg# (Alx(go)) and similarly for B. Consequently, for any

fe HOHIX (A|X(0')’B|X 0')) l/’g sofo ( )_1

maps tgx (Alx(ee)) 10 Lo+ (Blx(4s)). Hence, t;_] (Ygo 0 f O ((Dg’(r)—l) €
Homy ,) z(Alx(gor)> Blx(gor))- But, this last group is just

Homx r(A, B)(go).

Hence, define the G-structure on Homy g by the equation:

O (f) = 151 Welx(e) 0 f 0 (@g]x(0)) ™) (8.6)

This equation is to be understood in the following sense. The map
D, |x(sigmay Maps the restriction of A to X (o) to the corresponding re-
striction of 7;A while ¥g|x (o) does the same for B. Hence the composi-
tion in parentheses takes 73 (A)| (s t0 73 (B)|x(o-)- Thus the inverse image
of this map under #,-1 yields an element of Homyr(go) = Homyy) &
(Alx(,0)> Blx(g0)) Which is what i needed.

We check that ® is a G-structure by establishing for it by direct
computation. The computation is:

Ongo(f) = tz‘hg),l (Yngo fo ((Dhg)_])
— 0 (L (L (W) 0 fo @ o a3(0, 1))
=t (Ynotyrfod ) od )
= ®h,g0'(®g,0'(f))

Thus © is a natural G-structure on Homyxg(A,B). But
['(X,Homxr(A,B)) = Homyr(A, B). Hence [8.4] determines a repre-
sentation of G on Homy g (A, B). This is what we will call the natural
representation of G on Homy z(A, B). The explicit description of this
action is:

g f=1(gofo (®,)"") g€G feHom,g(A,B) (8.7
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Establish this as follows. If 7" is and G-carapace with G-structure ©,
then if r € T'(X, T) the action of G on I'(X, T') defined by [8.4lis described
by the equation:

(g'T)O' = ®g,g*10'(7—g*10') (8.8)

When T = Homxg(A, B), this becomes (g )y = Ogo-15(fo-10)-
Under the identification of Homy g (A, B) with I'(X, Homx (A, B)), the
o component of the map, f, is f] x(o)- Using this, apply [B.6]to compute
the right hand side of B.8|for T = Homyx g(A, B). We obtain:

(g ’ f)O' = t;,kfl(wg’X(g—'a') © (f|X(g—1(r)) © ((Dg|X(g—10')>71)'

By the definition of inverse image, this is ( 1 (Yg-10fo(dg)” M X(o)

and this is just the right hand side of 8.7 restrlcted to X (o). This proves
the truth of 871

Proposition 8.9. Let A, B and C be G-carapaces with G-structures, ©,
Y and Y respectively. Then, the natural adjointness isomorphism

¢ : Homy g(A, Homx g(B,C)) — Homy z(A Q& B,C)

is a G-morphism.

Proof. Fixo € X,A € A(c),b € B(o) and f € Homy g(Hom, (B, C))
and recall the definition of ¢. Itis ¢(f)s(a ® b) = [f+(a)], () and in
interpreting this formula one must remember that f,(a) € Homy () r
(Blx(o)> C|X(0r)). We will show that ¢(g-f) = g-¢(f) and we will prove
this by evaluating both sides of this equation onaa®b € A(0") ® B(0).
Starting with the left hand side:

[¢(Gg-f)or](a®D)
[(15,-1(@cg © f o (®ce) ™))o(@)]o(b) byBT
[(®Gg,GgflaOngfla (Pgecet o)) (@) (D)

TGg,Gg ! ([ g (T( Gg Ge! O_( ))Gg*1 0'] (l/’Gg,Gg*1 a(b)))
TGg,Gg_' o-[¢(f) ((DGg,Gg_] a'( ) ® ¢Gg,Gg_] a'(b))]
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by the def. of
= [Gg-¢(/f)](a®b) byBT)

That is ¢(Gg - f) s (a®Db) = [Gg -¢(f)]s(a®b) as asserted. This proves
the result. o

We conclude this section by showing that the canonical brittle and
flabby resolutions of a G-carapace, A are naturally equivariant. A cosider-
ation of the definition of these resolutions shows that if suffices to show
that there are canonical G-structure on 7¢(A) and S°(A) so that the
maps, 7o(A — A) and A — S°(A) are G-equivariant.

117 Lemma 8.10. Let @ : X — X be an automorphism. Let M be an
R-module, let A be an R-carapace and let ® : A — a*A be an isomor-
phism.

(1) a*(M 1) = M 141,

(2) a*(M |7) =M @7

(3) There is a natural equality To(a*A) = a*/ (To(A)).
(4) There is a natural equality S°(a*A) = a*S°(A).

Proof. The first two statements are trivially true. As for the third and
fourth statements, the proofs are nearly identical and so we prove only
the first. Write:

To(@*A) = [ [a*(A) (@) 1o

oeX

= [ [(A(ao)) 1o

oeX

= ]_[ (A(@) To-1er

oeX

[ Ja*A(@) 1)

oeX

= a*To(A)
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Thus @*(79(A) = To(a*A)). That is, the two apparently different con-
struction applies to A, @*7T(A) and To(a@™(A)) result in identically the
same object. O

Proposition 8.11. Let A be a G-carapace on X with G-structure ®. For
each Gg € G, let ®f, = To(®cy) and let cpgg = S%(®gg). Then 7

and ®° are G-structures. Furthermore the surjection, s : To(A) — A
and the injection, js : A — S°(A) are G-equivariant.

Proof. First, we show that ®” and ®S are G-structures. For ®7 the
calculation is:

@’gg = To(t} (Dge) © Dp)
= To(t;(Pcg)) o To(Pn)
= 1;,(To(Pcg)) © To(Ps)

To prove that m4 and CMjmath, are equivariant just note that 7 is a
natural transformation from 7 to the indentity functor while j is one
form the identity functor to S°. Then note that dDgg and (Dgg are just the

values of 7 and S° on the morphism, ®g,. m|

Corollary 8.12. Let A be a G-carapace on X. Then there are canonical
G-structures on the canonical brittle and flabby resolutions of A so that
the natural morphisms are G-equivariant.

Proof. This is nothing more than an interative application of [8.11]). The
details are left to the reader. m|

9 Induced and Co-Induced Carapaces

Let X be a simplicial complex. Recall that X(r) denotes the set of sim-
plices of dimension r. We will use X,, to denote the collection of sim-
plices of dimension at least n. That is, X, = (-, X(r).

Let G be a group acting simplicially on X. Recall that for any sim-
plex,c € X, G, = {Gg : Gg € G,Ggo = o} and G, = {Gg : Gg €
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GrGex = x VY € o}. We will call the action of G on X separated if
whenever 7 € o and Ggt < o for some Gg € G, then Gg7 = 7.

If G acts on X, let Y(0) = x(0)/G be the orbit space and let 7 :
X(0) — Y(0) be the quotient map. Construct a simplicial complex, Y,
with vertex set, Y (0), by taking as simplices in Y all finite subsets, 7 < ¥
such that 7 = (o) for some simplex o in X. If the action of G on X is
separated, then for each simplex o in X, G, < G, and the dimension of
n(0o) is equal to the dimension of o-.

If G is acting on X so that the action is separated and if Y is the
quotient with quotient map 7 : X — Y, then a section to x is a simplicial
map, s : ¥ — X, such that m o s = idy. A separated action admitting a
section, s : ¥ — X, will be called an excellent action. If the action of
G on X is excellent with section, s : ¥ — X, we will identify ¥ with its
image, s(Y), in X and we shall refer to 7 as the retraction onto Y. We
will describe this situation by saying that (X, G) is an excellent pair with
retraction  :— Y. Notice that the action of G on X is separated if and
only if whenever X(o) n X(Ggo) # ¢ then Ggo = 0.

If C is a category and X is a simplicial complex, then a C-valued
sheaf on X is just a contravariant functor from X toC. If o0 € rand Sis a
sheaf on X write rg _: S(7) — S(o) for the corresponding map and call
it the restriction. If G operates simplicially on X, then the assignment,
G(0) = G, is a sheaf of groups on X. If the action is separated, then
Gy, = Gvigma, and so this also is a sheaf of groups. In any case we will
refer to G as teh stabilizer of the action.

If f: X — Y is a morphism of complexes and S is a sheaf on Y then
f*S, defined by the equation f*S(co") = S(f(c)) with the corresponding
restrictions is called the inverse image of S. When f is the inclusion of
a subcomplex, we call f*S the restriction of S to X and we may on
occasion write it, Sx.

Suppose now that G is a group and that H is a subgroup. We wish
to fix notation for induced and co-induced modules. Write RG] for the
group algebra of G over R and write R[G] for the free rank one R[G]-
module isomorphic to R[G] as an R-module but with RG] structure de-
fined by the equation, Gg-x = xGg~! for x € R[G] and Gg € G. We
simply write Gg x for the product in R[G]. Let M be an H-module.
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Then the G-module induced by M is R[G] Qg M; the G-module
co-induced by M is Homg)(R[G], M). The G-structure on the in-
duced module is just that obtained from left multiplication on R[G].
The structure on the co-induced module is just the structure described
by (Gg f)(x) = f(Gg~' x). Write Ig/uM for the induced module and
Cg/uM for the co-induced module.

Choose a complete set of coset representatives Q < G for the space
of left cosets, G/H. Then Ig/yM = []geco Ge®M. Write Gg M for
Gg®M. The R-module, Gg M depends only on the coset Gg H and not
on the particular representative, Gg.

Suppose now that H = G, for some simplex, o. If y € G, write
M?” to denote xM for any x such that xoo = 7y. Then M” depends only
ony for xo = yo = yif and only if x € yG, = yH. f Ggy =71
then Gg M” = M. Dually, R[G]" = [[,coR[H] - x = [],co XR[H].
Hence Cicg(M) = [], o Homgy(xR[H]|,M). If y € Go let M, =
Homp)(xR[H], M) for any x such that xo = . This is well defined.
Moreover, if yy = A then left translation by y carries M, to M.

Definition 9.1. Suppose G acts on X, that o is a simplex in X and that
M is a G4 representation over R. Let:

Ta'(M) = H M1,
reGy
9.2)
sT(M)=[[m 17
reGy

Then T,(M) is called the carapace induced by M and S (M) is called
the carapace coinduced by M.

Proposition 9.3. Let G act on X and let M be a representation of G
over R. Then

(1) ToM and S M both admit canonical G-structures.

(2) Let A be any G-carapace on X. Then
Homy z(T,M,A)® = Homg, (M, A(c))
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and
Hom, (A, S"M)® = Homg, (A(c), M)

(3) To(M) is brittle; S7 (M) is flabby.

120 Proof. First observe that[3)) is just a consequence of Definition and
Proposition [6.8] We pass to the construction of G-structures on 7 (M)
and S7(M).

First we evaluate these carapaces on a typical simplex, 7. Recall that
7 denotes the full simplicial complex underlying 7. Then:

T,(M)(r)= [[ M

yetnGy

sTM)(n) = ] My 9.4)
veX(t)nGo
O

If Gg € G, then Gg carries distinct simplicies in T N Go to dis-
tinct simplices in égr N Go. Hence left multiplication by Gg car-
ries separate summands in T, (M)(7) to the corresponding summands
in T (M)(Gg). Let @G, be the sum of left multiplication by Gg on
the separate components of T-(M)(7). Similarly define a map, ¥Gq r,
from S7(M)(7) to S7(M)(Ggr) by taking it to be left translation by
Gg on each of the factors. Then, using Equation 8.5, one verifies that ®
and y are G-structures.

Only ) remains to be proved. We compute directly.

Homy z(T(M),A) = Homyg( | [ M7 A)

17eGo

= 1_[ Homx,R(MT TT,A)

TeGor

= [ [ Homg(M™. A(z)) by4, @of

7€Gy

Let T = {TGg}Geec be the G-structure on A and let {f;}-ec, be an el-
ement of [ [ . Homg(M",A(7)). The element f; may be thought of
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as the 7 segment of a morphism, f : T,(M) — A. Moreover these
segments may be chosen freely because T, (M) is the direct sum of
the carapaces, M” 1, ad y ranages over G,. Then, by equation [§.7]
Gg -{fr}req, is the element of the same product whose T-component is
YGeGe 17 © Jge17 © Gg~!. This element of the product is G-stable if
and only if

TGg,o’ o foo Gg_l = ngo-« 9.5)
That is, if the family, {f;} is G-invariant, each component is uniquely
determined by f,. Conversely, given f, € Homg,(M,A(c)) one may
use Equation to define fggo for eac, Gg, chosen that carries o to
Gg o. Any other such element is of the form Gg 4 for some & € G,. But
then replacing Gg by Ggh in yields the same result because f; is,
by hypothesis, a G,-morphism. The proof for S (M) is too similar to
bear repetition.

Proposition 9.6. Let G act on X and let M be a representation of G, 121
over R. Then:

(X, Te(M)) = I/, (M)

I'(X,87(M)) = Cg/6,(M)
Proof. Begin by observing that for any R-module, N, 2(X,N 1,) = N

and I'(X, Ndownarrow”) = N. Let U be some complete set of repre-
sentatives of the cosets, Gg G. Then,

2(x,To(M)) = (X, [ [ M”1,) by Definition 0.1

yeGo

=[] zx.m 1))

yeGo

:Han'

xeU

= H M = Ig/G, (M)

xeU

The corresponding compution for S7 (M) is:

r(X,57(M)) =T(x, [ M, 1)

yeGo

141



122

142 William J. Haboush

= 1_[ F(Xa Mx0' ixa)
xelU

= 1_[ MxO'
xeU

= [ [ Homg(g, 1 (xR[G]. M)
xeU

= Homgg, (| [ xR[Go]. M)

xeU

= Homgig, (R[G]', M) = Cq/c, (m)-

[e

O

Proposition 9.7. Let G act excellently on X with retraction m : X —
Y < X. Then

To(A(@) =[] A0 1,
yeGo

S7(A(@) = [[ A V7

yeGo

Proof. Let @ be the G-structure on A. Then [ [, A(y) admits a natu-
ral representation of G. If Gg € G let ¢gg = HyeGa' DGy, It is under-
stood that application of ¢, must be followed by reindexing of compo-
nents. Furthermore, the natural injection, j, : A(0) — [ [ e, A(y) is
G, equivariant. Thus, j,- extends to a G-morphism, js : I/, — A(y).
Then js (Ge @A () — dag (s (18A())) = Do (A(0)) = A(Ggor).
Since I/, (A(cr)) is a coproduct of the R-submodules, Gg ®A(0), it is
clear that j4 is an isomorphism. Since A(0)Y = Gg®A(o) one sees
that j4 restrict to isomorphisms j, : A(o)Y — A(y) which comprise
an equivariant family in the sense that ¢gg © j, = jggy © hgg is left
homothety by g.

Now consider A(o-), By definition it is Homgc,(Gg r[Gs], A(0))
with G,-action, xf(u) = f(x~' - u) = f(ux) and where Gg is any ele-
ment carrying o to y. For some choice of Gg, let 8, (f) = ®gg, (f(Gg)).
Choose x € G. Then @y xy f(Ggx) = DG ry (X' f)(Gg) = Pge,r ©
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O, (X' f)(Gg) = DG f(Gg). Consquently, By is independent of the
choice of Gg and the maps {3, } are an equivariant family as above.
To prove the two statements of the proposition, note that, by defini-

tion, T (A()) = [ Lege A(0)y 1y and ST(A() = [ Leq, Al0)” 1.
The isomorphisms in question, then, are [ [ g, jy Ty and [ [,cg, By |7
m

Proposition 9.8. Let (X,G) be excellent with quotient, Y < X, and
retraction, m. Let A be any G-carapace of R-modules on X. Then:

(1) To(A) = [Lyey To(A(0)).
(2) 8°(A) = [1yer S7(A(0)).

(3) Z(X,T0(A)) = [lyey o/, (A(0)). That is (X, To(A)) is a co-
product of induced modules.

(4) T(X,8°(A)) = [lyey Co/6, (A(0)). That is T(X,S°(A)) is a prod-
uct of coinduced modules.

Proof. Statements[3)) and ) follow form[Il) and2) by a direct apllication
of proposition[9.6/and so we need only prove[Tl) and 2)).

To prove[Il) and D)), first notice that since G acts excellently, we may
write the collection of simplices in X as the disjoint union | J,.y G-
Then,just apply Proposition©.7} One obtains:

To(A) = HA(T)

TeX

“L[1] A
oeY 1eGo

= H T,(A(o)) by Proposition[9.7]
oeY

For calS°(A), the proof is:

SA=1]]]Ax

oeY reGo
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= [[s7(a(0))

oeY

We leave the G-structures to the reader. O

Before proceeding note that if ¥ < X, if o € Y and if M is an
R-module, we may perform the constructions M 1, and M | both
in X and in Y and that the results might differ. Rather than lingering
upon unnecessary distinctions or unnecessarily complicating notation,
we caution the reader to maintain a certain vigilance in reading the next
proof.

Lemma 9.9. Let G act excellently on X with retraction n : X — Y
and section, s. Then for any o € Y, and G,-module, M, s*(T(M)) =
M 17,

Proof. By definition, T,(M) = [ | M 1,. Evaluating,

yeGo

T.(M)) = [[ M.
yeAnGo

Suppose that two simplices, Gg o and ho both lie in A. The action is
excellent and so separated. It followed that Ggo = ho. If A € Y then
Go n A is just one simplex and if o € Y that simplex must be . That
is,forany 1 € Y, T, (M)(A) = M 1, (1) which establishes the result.

Suppose X is a simplicial complex and that M is a sheaf of groups
on X. Let V be a carapace of R-modules on X. Suppose that for each
o € X, we are given a representation, p, : M (o) — Autg(V). Then for
each pair, o 7 notice that V(o) is naturally an M(7) module simply

by pulling back by the restriction, ry, . |

Definition 9.10. Ler X be a simplicial complex and let M be a sheaf of
groups on X. Then a carapace of representations of M on X over R is
a carapace of R-modules, V, together with a family of representations,
oo M(0) — Autg(V) such that for any pair, o < 7, the expansion,
e{,ﬂ, is an M(t)-morphism. If A and B are two carapaces of representa-
tions of M on X over R, a morphism of carapaces of representations is
morphism of carapaces which is an M(o)-morphism for ecah simplex,
o.
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Notice that carapaces of representations of M are clearly an Abelian
category. Generally, when there is no danger of confusion, we will just
say M-carapace to denote a carapace of representations of M on X over
R.

Let G operate excellently on X with retraction, 7 : X — Y. Write
s : Y — X for the inclusion. Since excellent actions are separated,
G, = G, is a sheaf of groups on X which we will write G,. If Ais a
G-carapace of R-modules on X, then A is certainly a carapace of repre-
sentations over the sheaf of groups, G... Finally notice thatif f: X — Y
is a morphism of complexes and if V is a carapace of representations
over the sheaf of groups, M on Y then it is purely formal to check that
f*(M) is a carapace of representations over the sheaf of groups, f*M.

Definition 9.11. Suppose that G operates excellently on X with retrac-
tion, m : X — Y, and section, s : Y — X. Let A be a G-carapace of
R-modules on X. Then theprototype of X on Y is s*(A). It is a carapace
of representations over s*G., the restriction of the sheaf of stabilizers.

It is patently obvious that s* is ana exact functor from the category
of G-carapaces to the category of carapaces of representations of s*G
on Y over R. More can be said. We will write G.. for the restriction of
the stabilizer sheaf to Y if there is no danger of confusion.

Theorem 9.12. Let G act excellently on X with retraction 1 : X —
Y and section, s. Then s* is an isomorphism of categories from the
category of G-carapaces of R-modules on X to the category of carapace
of representations of s*G4 on Y over R.

Proof. In this discussion the functors 7; and %; on X as well as the cor-
responding functors associated to ¥ occur. Consequently we will use 7;
and K; exclusively for the functors associated to X. The corresponding
functors on Y will be written ’T'i and %i.

Write Carg(G, X) for the category of G carapaces of R-modules on
X and Carg(G4, Y) for the category of carapaces of representations of
G, in R-modules on Y. Then s* is an exact functor from Carg(G, X) to
Carg(Gy,Y). Define a functor from Carg(G, Y) to Carg(G, X) by the
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equation:

T(A) = | [ To(A(0)) 9.13)

oeY

Then s*(79(4)) = [Lyey 5 (T (A(@)) = [ ey A(0) T by Lemma
But then by the definition of the functor 7, this says that s* (T} (A))
To(A). Let TH(A) = T9(Ko(A)). For each o € Y, there is a natural in-
clusion, Ko(A) (o) — TY(A)(c). By Proposition @3] 2), this inclusion
gives a unique map g, : T, (Ko(A) (o)) — TY(A). Let ga = [ [ ey 9o
Then g4 maps Ty(A) to T)(A) and its restriction to Y is just the nat-
ural map from 7 (A) to To (A). Define a functor on Carg(Gy,Y) to
Carg(G, X) by the equation:

Ty(A) = Coker(qa) (9.14)

We will show that 7y is inverse to s*.

Carg(G*,Y). Then the sequence,

First suppose that A is in

Ty(A) > qu >> TY(A) — Iy(A) — 0

is exact. Apply the exact functor, s*. The result is a commutative dia-
gram:
qA

s*Th(A) s*TY s*(Iy(A)) —=0
T1(A) —5—=To(A) ——=A 0

By exactness of the rows and commutativity, s*Zy(A) is isomorphic to
A.

Now consider B is Carg(G, X). First notice that proposition 3} (??)
gives canonical maps, T5(B(c)) — B. Sum to obtain a canonical
map, doTy(s*B) — B — 0. This map clearly vanishes on the im-
age of T}(s*B). Hence it induces a mapping, &g : Iy(s*B) — B.
Apply the exact functor, s* and use what we have just proven. Then
s*(Zy(S*B)) = s*(B) and &g induces the identity on segments in Y.

146



Algebraic Representations of Reductive Groups over Local Fields 147

Now finally note that a G-morphism of G-carapaces which is an iso-
morphism on Y is an isomorphism. That is 7y(s*(B)) ~ B functorially
in B. It follows that 7y is inverse to s*. O

In what follows, Theorem will be a very essential and funda-
mental tool for analyzing Carg(G, X).

10 Recollections and Fundamentals; Buildings

For the most part we follow the notation and conventions of and
[BTII]. Our purpose here is a brief review which will establish notation
and emphasize one or two differences. Throughout K is a field complete
with respect to the discrete rank one valuation, w : K* — Z. Then O
will be the center of w, k will be the residue field of O and & : O — k is
the natural map.

Let G be be a Chevalley group scheme defined over Z. Assume
it to be split, simply connected, connected and of simple type. Let T
be a maximal torus, let N be its Cartan subgroup and let B be a Borel
subgroup containing T all given as group subschemes of G defined over
Z.

Each of these group schemes being a functor, applying any one of
them to & gives a morphism which, in all cases, we will also call &€ from

G(0) to G(k), B(O) to B(k), etc.. let G = G(K), let Gy = G(7) and let
G = G(k). Let 8 = B(K), let B = B(k) butlet B = {x € Gy : £(x) €
B}.Let N = N(K),let T = TK andlet H = N n B.

Let X denote the finite free Z-module of characters of T, let ® de-
note the roots of G with respect to T; let @, denote those positive with
respect to B; let A be a basis of simple roots in @ and let & denote
the largest root. Let I' = Homz(X,Z) be the group of one parameter
subgroups of T and let ® < I be the set of co-roots.

Let {U, : @ € ®} be a set of root subgroups let U, = U,(K)
and let x, : U, — G,z be the natural isomorphism. Let U,, = {u :
w(xq(u)) = n} and observe that U, o = U(O).

Let Ng = N n Gy. Then I' can be identified with the group scheme
morphisms, y : G,z — T. Write < vy, y > for the value, y(y) when
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v € T'and y € X. We may always think of y as a map, map : K* — T
and so we may write y(y(y)) = y="*~. Following this convention, we
may define the action of N on T by the equation, ("y)(x) = n(y(x))n~!.
For t € T write #¥ for y(¢). Then N acts on X by the equation y" () =
x(ntn™"). Then Ny normalizes T and so acts on it by conjugation. Con-
sider the semi-direct product, T <« Ny. For any (t,n) € T

trianglele ftNy, define a mapping, 7;, : I' € I" by the equation,

Tamy(¥)ox >= () + <"y, x)

Then 7, is an affine transformation and (¢,n) = 7(;,) is an action of
T<NoonI. If n e T n Ny itis clear that 7, ,-1 = idr and so this
action reduces to an affine actionof T - Ng = NonI. Ifne N,y e
write n = tng and let "y = 7(; ) (). It is straightforward to verify that
if"y =vyforallyel'thenne H.

Let A = I’ ®z R and extend the action of N to A by linearity. Let
Xr = X®z R and choose a form on Xp invariant under the vector Weyl
group. For A,y € Xg write the form, (A|y). With this form, identify A

with X and write ¢ = (jﬁ for each a € ®.

Since H acts trivially under 7, and since N/H is naturally isomorphic
to the affine Weyl group 7 induces an action of the affine Weyl group on
A and it is a triviality that this is the canonical action.

For any pair, (a,r) € ® x Z, let * = {x € A : a(x) +r = 0}.
These are closed half spaces and they are in bijective correspondence
with @ x Z. If the half space, @™ corresponds to the pair (a, r), write
Uy for the group, U, , defined above. Write da*. The closed half
spaces, a*, are called the affine roots of G in A and we write X for the
set of all affine roots of G in A.

Define an equivalence on A by saying that x ~ y if and only if
x € a* if and only if y € o™ for all @ € X. These equivalence classes
are the facets of A and they are the interiors of simplies (because G
is of simple type). Their closures give a simplicial decomposition of
A. The maximal dimensional facets are called chambers. They are the
connected components of A Ua* s O™,

Let A denote the set of affine roots (a,0), @ € A and (-4, 1) where 8
is the unique largest root relative to the dual Weyl chamber. Let S denote
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the set of reflections thorugh the hyperplanes, da* for all o* € A. These
reflections afford a Coxeter presentation of the affine Weyl group, N/H,
so that (G, B, N, S) is a Tits system in G. Then N/H acts transitively on
the chambers of A.

Let Co = [ xci @* and let Cg be its interior. Let F be any contained
inCoandlet Sp = {se S : s(F) = F}. In pariticular S¢, = . For
any F, let Pr be the subgroup of G generate by B and some arbitararily
chosen set of representatives of Sz chosen and it is called the parahoric
subgroup of G associated to F. By definition, the parahoric subgroup
of G relative to the Tits system, (G, B, N, S), are the conjugates of the
subgroups, Pr. We shall call the facets, F < Cy the types of G with
respect to the Tits system, (G, B, N, S). If P is a parahoric subgroup
of G, then P is conjugate to a unique group of the form P for some
F. Then we call F the type of P and we write F = 7P. Notice that
our terminology differs slightly from [BTI] in which the subsets, S r are
called the types.

We may now describe 7 = 7(G,B,N,S), the building of G with
respect to the Tits system, (G, B, N,S). As a point set, 7 (G, B, N, S) is
the set of pairs, (P, x) where P parahoric and x € 7(P). Now G acts on
this set by the equation, Gg(P, x) = (Gg PGg~ !, x).

Let x be any point of A. Then for some n € N, nx € Co. Then the
point nx is uniquely determined. Let F be the smallest open facet con-
taining nx. Let a(x) = (n~'Ppn,nx). The group, n~! Ppn is uniquely
determined just as nx is and so a maps bA into 7(G,B,N,S). (This
map is called j in [BTI].) We may now make 7 (G, B, N, S) into a geo-
metric simplicial complex. Its simplices are just G translates of closed
facets in a(A) and its vertices are translates of the special points. The
G-translates of a(A) are called the apartments of 7 (G, B, N, S ).

There are several structures on 7 = 7(G,B,N,S). First there is
what is called an affine structure in [BTI]|. If x and y are any two points
in 7 they are contained in one apartment. Thus for any A € [0, 1], there
is a point Ax + (1 — A)y determined by the apartment. This point is,
however, independent of the apartment chosen and the operation which
assigns to each pair, (x,y) together with a real 1 € [0, 1], the point
Ax + (1 — A)y is the affine structure. There is a G invariant metric whose
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restriction to any apartment is the metric is written d(x, y). Finally there
is a “bornology” on subsets of G. A set is called bounded if it is con-
tained in a finite union of double cosets, BwB for w € N. Now let us
record some statements particularly useful to us. They are for the most
part simple rearrangements of statements in and [BTII.

Lemma 10.1. The action of G on I (G, B, N, S ) is excellent with section,
Co.

Proof. First,m Cy is a fundamental domain for the G action and G is
transitive on maximal dimensional simplices. This implies that the ac-
tion is separated. The coled chamber, Cy, is isomorphic to the quotient if
T by the G action and the inclusion of C into 7 is clearly a section. O

Lemma 10.2. G acts transitively on the paris (F, C) where F is a facet
and C is an apartment containing F.

Proof. This is just 2.26, p. 36 in [BTI]. O

Proposition 10.3. The action of B on I(G,B,N,S) is excellent with
section.
a:A—1.

Proof. The action of G on I(G,B,N,S) = I is separated and so, a
fortiori, the action of B is as well. Let Cy be the chamner associated
ot B. Recall the definition of the retraction of 7 on A with center, C
([BTI] 2.3.5, P. 38). As we remarked, given any two facets, there is
an apartment containing them. Thus for any fact, F € 7, there is an
apartment A containing F and Cy. By [10.2] there is an element Gg in
G so that Gg(Co, A1) = (Cp,A) whence GgF < A. Let pc,a(F') =
Gg F. We show thatpgol,A(F’) =B-F.

Suppose that pc, A (F') = F. Then, by definition, there is an apart-
ment, A’, containing Cy and F’ and an element Gg € G, so that Gg A’ =
A, GgF' = F and GgCy = Cy. Since GgCy = Cy, Gg € B and
Gg F' = F. Hence pEOI, A(F') S B F. The opposite inclusion is clear.

To complete the proof that 7/B = A. we use, nearly unmodified,
the proof of 2.3.2, p. 37 of [BTI||. Clearly, for any facet, F, the orbit,
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B - F meets A. What remains to be shown is that B - F' contains exactly
one facet in A.

Suppose that F and F”’ are in A and that F = bF’, b € B. Then, F =
nFy, F' = n'F for some Fy = Co. The stabilizer of F (respectively,
F') is nPr,n~ " (n'Pp,(n')~" respectively). Then bn'Pp,(n')~'b~! =
nPr,n~!. Since parahoric subgroups are self normalizing, n~'bn’ € Pp,
and hence, b~'n € n'Pr,. Let X = S, and let W, be the subgroup of
W generated by X. Then Pr, = BWxB. By [?], IV, 6, Proposition 2,
n'Pp, € Bn'WxB. If v : N — W is the natural surjection, this implies
that v(n) € v(n')wy and so nPp,n~! = n'Pp,(n')~!. But F is the fixed
point set of nPr,n~! and F’ is the fixed point set of n’' P, (n’')~!. Con-
sequently, since the two groups are equal, F = F’. thus for any facet,
B - F contains exactly one facet in A. As this is true, in particular, for
vertices, A is the quotient of 7 by the action of B and so the proposition
is proven. m|

11 Mounmental Complexes

In this section the term monumental is thought of as meaning resem-
bling or having the scale of a building ad it is used in the history of art.
We use it to describe certain G actions which have all the properties of
the natural actions on buildings which are of interest to us. If X is a
finite dimensional simplicial complex and if G is a group acting on it
then a subcomplex, ¥ < X will be called homogeneous if, Whenever Y
contains two simplices, T and y such that 7 = Ggy for some Gg € G,
there is an element s € G such that sY = Y and 7 = sy.

Definition 11.1. Let G be a group and let X be a finite dimensional sim-
plicial complex on which G is acting with a separared action. Then the
action of G on X will be called monumental if and only if the following
conditions hold:

(1) Every simplex in X is contained in a maximal dimensional simplex.

(2) G acts transitively on the maximal dimensional simplices.
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(3) For any simplex, o in X the stabilizer, G is self normalizing in G.

4) If o is a maximal dimensional simplex, the stabilizer, G, acts ex-
cellently and it admits a homogeneous section, Y < X.

Suppose that G is a group acting monumentally on X. Then a max-
imal dimensional simplex will be called a closed chamber; its interior
will be called a chamber. Let C be a closed chamber in X. Then sep-
aration of the action implies the for any simplex o in X, the orbit, Go
contains at most one simplex which is a face of C while homogeneity
implies that there is always at least one. Consequently the action of G
is excellent with quotient C and section equal to the inclusion of C in X.
Let B = b(C) denote the G stabilizer of C and let ¥ be a homogeneous
subcomplex of X mapping isomorphically onto the quotient, X/B Then
any translate of ¥, Gg Y will be called an apartment of type Y. In general
we will think of the type, Y as chosen and fixed once and for all and so
we will often speak merely of apartments.

Let F be a field. Let H be a commutative Hopf algebra over F with
comultiplication, muy : H — H ®p H, augmentation, ey : H — F,
and antipode, sy : H — H. Then H will be called proalgebraic if it is
reduced and a direct limit of sub-Hopf algebras finitely generated over
F. Then S pec(H) is a proalgebraic group scheme over F.

If H is proalgebraic over F let Gy denote the group of F-valued
points of H. That is Gy is the group of F-homomorphisms from H to
F. Let F (Gu, F) denote the ring of F functions on Gy and let yy be the
natural map from H to ¥ (Gp, F), namely yg(a)(¢) = ¢(a). We will
say that H separates k-points if yg is injective.

Definition 11.2. Let G be a group. A monumental G-complexis a sim-
plicial complex, X, on which G is acting monumentally together with a
G-carapace of commutative F-algebras with unit, (A, { PG }Geec ), and
G-morphisms, uz : A —> AQr A, 54 : A — Aand €4 — Fx so that
that following conditions are satisfied:

(1) Each of the morphisms, ua, s« and €4 is a morphism of G-carapaces
of commutative F-algebra and for any simplex, o, A(0), pac
SA.c €A IS a profinite Hopf algebra over F.
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(2) For each pair of simplices, o < 7, the expansion, e’

‘Ao 1S asurjective
morphism of proalgebraic Hopf algebras.

(3) The G structure, {@Gg}ggeg acts by isomorphisms of carapraces
of proalgebraic Hopf algebras. That is O is a Hopf algebra
isomorphism for each Gg and o

(4) Foreacho let G(o) = Ga(o)- Then G is naturally a sheaf of groups
with the G structure induced by ®. Then A(o) is reduced for each
o and there is an isomorphism of G-sheaves, a : G, — G.

The first three conditions of Definition [TT.2]are self explanatory but
the third requires some amplification. First of all, if M is a simplicial
sheaf on X and ¢ is an automorphism of X, y*M (o) = M(¢(o)). The
G-structure on G is that arising from conjugation. That is, define cgg o :
G, — Ggg o by the equation:

cGgo(x) = GgxGg ™! (11.3)

Now we explain the G-structure on & induced by ®. The functor G
is contravariant and so G(®g,,-) maps G(Ggo) to G(o). Thus define a
G-structure, {I'gg }Gee by the equation:

Toe0G( Pyt Goo) (11.4)

Recalling that elements of G(o-) are the F-homomorphisms from A(o")
to F, this map can be more explicitly written, ['g o (x) — X0 Dge-1 g -
It is customary to write a(x) for x(a) when a is in a ring and x is a
F-point of the ring. We may use « to identify G, with G(o"), writing,
for a € A(o) and Gg € G, a(Gg) to denote [a,(Gg)](a). With these
conventions, Condition [3) is nothing more than the equation:

(@G (a)](x) = a(Gg™" xGg) (11.5)

Henceforth of X is a monumental G-complex with carapace of F-
Hopf algebras A we will just say that (G, X, A) is a monumental G-
complex over F. Further we will use « to identify G, with G and we
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will always view A(o) as a ring of function of G,. The definitions of
this section contain all the properties of buildings which will be used
lated on. The next section explains how the affine building of the group
of K-valued points of some semi-simple group for some valued field, K
satisfies all of these conditions for an appropriate choice of the carapace
A.

12 The Main Examples

In this section we will discuss three monumental complexes. The first
two are quite straightforward by the third requires a short dicussion of
some classical results of M. Greenberg. Such symbols as

K,w,k,0,G,G,B,B

etc. mean just what they did in the previous section.

The Admissible Complex

Let K be a locally compact, non-Archimedean field and let F be any
(discrete) field. Let 7 (G, B, N, S) be the buildings associated to G. For
each of, G, the parahoric subgroup associated to the facet, o, is a
profinite group. For each o let ﬂ% (o) denote the ring of locally constant
F-valued functions on G,-. For any set T, T will denote the set of all
F-valued functions on 7. Then

ﬂ?«"(o-) = li_n,1<G(T/M)F

where M varies over the open normal subgroups of G,. Since each
of the algebras, (G,/M)" is in fact a finite dimensional Hopf algebra
with augmentation and antipode and since the inclusions(G,/M;)f <
(Go/Ma)F when M, = M, is a Hopf morphism, AY(c) is a Hopf
algebra with antipode and augmentation.It is clearly profinite and it is
132 also clear that the expansions are surjective Hopf morphisms. Let G be
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the sheaf of F-points of the carapace 3{(} as in STT.2L[). Then Gr (o) is
the set of algebra homomorphisms,

Hom{ (1im(Go/M)") = lim Hom{((Go/M)", F)
M M
— lim G, /M
M
=G,

That is, there is a canonical isomorphism of sheaves of groups, a :
Gy« — Gr. Finally define the G structure {®g,}geec by the equation,
[@Ggo(a)](x) = a(Gg~' xGg). Since 7 is the building of GI)[Z) and[3)
of §ITlshow that G acts monumentally on it. We have just observed that
AY. and I satisfy Conditions [I) through H)) of Definition Hence
(I,A%) is a monumental G complex. We shall call it the admissible
complex of G over F. We note that the group. G, may be replaced by a
central extension, G.

The Spherical Complex

For this example we depart somewhat from usual terminology. Let F
be an algebraically closed field and let Gr = G(F) be the group of F
points of the Chevalley scheme, G which we assume to be of simple
type. Construct a complex as follows. The vertices of S are the proper
reduced maximal parabolic subgroup schemes of Gr which we regard
as the base extension of G to F. The set Py, ldotsPn is a simplex in S if
and only if the intersection P; n ... N P, is parabolic. Let Gr acton S
by conjugation. For any o € S, we write G- for the stabilizer. Then G
is just the intersection of the groups corresponding to the vertices of o
A chamber is the set of maximal parabolics containing a maximal torus.
We must first establish that the action of G on § is monumental. The
first three conditions of Definition[[T.T]are quite well known. The proof
of the fourth condition is again a modification of the proof of 2.3.2 of
[BTI]. Let B be a Borel subgroup containing the maximal torus, 7', and
let N be the normalizer of 7. Let P be any parabolic subgroup of G.
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By [HI, the intersection of any two parabolic subgroups contains a
maximal torus. Thus there is maximal torus, S, in P n B. Hence there is
some element, b € B, so that bsb~! = T. Hence bPb~! contains 7. Let
A(T) denote the apartment corresponding to 7.m We have shown that
for any facet, 7, the B orbit, Bt meets A(T).

Now suppose that P and Q are two B-conjugate parabolics both of
which contain 7. Then there are element m and n in N and b in B and
a parabolic Py containing B so that P = nPon~', Q = mPom~" and
bPb—' = Q. Thus, bnPon~'b~! = mPym~" and so, since Py is self
normalizing, bn € mPy. By [Boll, IV, 2.5.2, bn € BMW,B where W is
the Weyl group of Py. Hence nPon~! = mPom™!, That is any two B
conjugate parabolics containing 7" are necessarily equal. It follows that
any B orbit Bt meets A(T) in exactly one facet. Condition ) of the
definition in hence established.

For any o € 8 let A(o) be the coordinate ring of the parabolic
subgroup, G,. It is an elementary exercise in the theory of algebraic
groups to see that (G, S, A) is a monumental Gy complex.

The Affine Complex

To describe this complex, we must recall some classical results of M.
Greenberg. Let k be a perfect field and let R be a ring scheme over
k. Let X be any k scheme. Define a ringed space, R(X) as follows.
Its topological space is the underlying topological space of X and we
denote it b(X). If U is open in b(X), let Grx(U) = R(S pec(Ox(U))).
As this functor is representible, it is a sheaf of rings on b(X). Call R a
scheme of local rings if Gg x is a sheaf of local rings for each scheme,
X and assume this to be the case.

Let V = R(k). Then for each X, Gg x is a sheaf of V algebras. Let
R(X) = (b(X),Grx). Then R is a covariant functor from k schemes to
V local of S pec(V) schemes. Though we call the following the first the-
orem of Greenberg, it is not given as one theorem in [MGI] but it largely
summarizes the content of §4lof that work, especially Propositions [ to
@ of §4 and the extensions thereof in 6l
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12.1 First Theorem of Greenberg. Suppose the ring scheme, R, is a
projective limit of schemes each isomorphic to affine n space over k for
varying n. Then there is a right adjoint to the functor Grx from the
category of k schemes to the category of V-schemes. That is, there is a
functor F so that for any k scheme, X, and any S pec(V) scheme, Y, the
following holds:

Homy(Gr(X),Y) = Homy — (X,F(Y))
Moreover F satisfies:

(1) IfY is of finite type over S pec(V), then ¥(Y) is a projective limit of
schemes of finite type over k.

(2) If Y is affine then so is F(Y).

(3) If Y is a group scheme over S pec(V), then F(Y) is group scheme
over k in such a way that the adjointness isomorphism of [2)) is a
group morphism functorially in X.

This brings us to what we will call the second theorem of Greenberg.
In this case we are assemblings parts of §6 Proposition [l of and
Proposition 2] and the structure theorem of [MGII], §21 Assume that
R = lim where R, is a ring scheme over k which is k. isomorphic to

n

Az, affine n + 1 space over k. Let I, be the scheme of ideals in R
corresponding to the kernel of the projection R — R,. Let I, be the
scheme of ideals in R, such that o — I — R, — 0 is an exact sequence
of group schemes for the additive structure. Assume that /), is affine n—r
space over k and that R, is a locally trivial fiber space over R, with fibre
I,’f and the it is in fact a vector bundle over R,,. Let G, = Gg, and let F,
be its right adjoint. Let U,(Y) be the kernel of F(Y) — F,(Y) and let
U/ (Y) be the kernel of F,(Y) — F,(Y), (r > n).

12.2 Second Theorem of Greenberg. Let Y be a smooth group
scheme with connected fibres over S pec(V). If r = n = 0, Ul is a fi-
nite dimensional unipotent group scheme. Moreover, F.(Y) is S pec(V)
isomorphic to the total space of a vector bundale over Fy(Y).
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We will refer to bU,(Y) (respectively, U, (Y)) as the congruence
subscheme of bF(Y) (respectively F,(Y)) of level n, and we shall call
F(Y) the realization of ¥ over k.

Now we return to the notation and conventions, of 10l Assume that
k in perfect. Let X = I(G, B, N, S). By Proposition [[0.3] the G action
os monumental. We will show that X is a monumental complex over
G. One of the more astonishing results in is that for any o € X,
there is group scheme over O, M, so that the generic fiber of M, is
the base extension to K of G and such that M,(O) = G,. Since G is
split and simply connected and w is discrete, M, can be assumed to be
smooth with connected fibers. These group schemes are determined up
to isomorphism if one requires that they admit Bruhat decompositions
of a particular type. (see section.6lof [BTII]) We may assume that the
schemes M, are carried to each other by the conjugation action on the
generic fibre. Finally we will assume that O is the ring of k points of a
ring scheme which is a projective limit of affine spaces over k. This is
the case when O is the ring of Witt vectors of k or the ring the of formal
power series in one variable over k. Then for any o € X, G,, is the set
of k points of FM,,, the Greenberg realization of M, over k.

Now we may describe the affine complex. Choose O as above to
be the k points of a ring scheme isomorphic to an inverse limit of affine
spaces. Choose G, w, B etc. as in §[Tland let X = 7(G,B,N,S). For
each oinX, le A(c) be the k coordinate ring of FM,.. The verification
that (G, X, A) is a monumental complex is now an entirely routine af-
fair. This monumental complex over G is what we shall call the affine
complex of G over k.

13 Locally Rational Carapaces

In this section and for the remainder of this discussion (G, X, A) will
always denote a monumental G-complex over the field , k, Recall that
the action of the G-structure on A can be described by the equation
Dge o (f) = f ocge-1 Where ¢, denotes conjugation by y. Recall also that
if M is any proalgebraic group with coordinates ring, A, over k, and if V
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is arational representation of M with structure map 8 : V — V®yA, then
if M acts on A be conjugation, yGg(f) = f o c,-1, then 3 is equivariant
as a map from the representation, V, to the representation V ®; A, where
the actions on V and A are determined by 5 and y respectively.

Definition 13.1. Let (G, X, A) be a monmental complex and let ® be
the G-structure on A. A locally rational carapace of representations on
(G, X, A) is a G-carapace of k-vector spaces on X, V, with G structure,
W and a morphism of G-carapaces, beta : V — V @y A so the for each
o, the map By : V(o) — V(o) @ A(o) is a comodule structure map
in such a way that for each Gg, Ygg o is morphism of comodules.

A morphism of locally rational carapaces is a G-morphism of G-
carapaces, f : V — U which is a comodule morphism on each segment.
It is clear that the locally rational carpaces on (G, X, A) are an abelian
category.

The reader is cautioned to note that that the G-structures on A and
V exist quite apart from the local comodule structure map . In partic-
ular A admits several local comodule structures corresponding to left
translation, right translation and conjugation. These are non-isomorphic
locally rational structures on the same G-carpace. The comultiplication
u: A — AR A may be regarded as the local structure correspond-
ing locally to right translation. We will write A" for A with this local
comodule structure.

The reader is cautioned to note that that the G-structures on A and V
exist quite apart from the local comodule structure map, 5. In particular
A admits several local comodule structure corresponding to left trans-
lation, right translation and conjugation. These are non-isomorphic lo-
cally rational structures on the same G-carapace. The comultiplication,
U A —-> AR A may be regarded as the local structure correspond-
ing locally to right translation. We will write A" for A with this local
comodule structure.

Proposition 13.2. Let (G, X, A) be a monumental complex and let V,
B be a locally rational carapace of representation on (G, X, A). Let
mu, €, s denote the structure morphisms on A. Then
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(1) The structures on A endow the segment, (X, A), with the structure
of a co-algebra with co-unit and antipode.

(2) The structure morphism, 3, makes the segment, X(X, V) into a co-
module over (X, A).

(3) Both the co-algebra structure data on (X, A) and the comodule
structure map on X(X, V) are G morphisms of representations.

Proof. Inn this proof, we will make use of two functional properties of
the map, #4 p of Proposition B) which have not been established.
Let A,A’,B, B’ and C be k-carapaces on X and let « : A — A’ and
B : B — B’ be morphisms. The two functorial properties, whose proofs
we leave to the reader, are these:

targ © 2((}’ ®ﬁ) = (E(I ®Zﬁ) O IA,B
(tap ®idsc) o tagp.c = (idsa @ tpc) © ta BeC (13.3)
Now define structure data on XA as follows. Let u* = 4.4 0 Xy, let
¢” = Ye and let s* = Zs.

The proof, for example, of co-associativity is the following compu-
tation:

(U* @ idsa) o u* = (taa ®idsa) o (Tu) @ idsa) o taz o Tu
= (taa®idsa) o tagan © (U ® ida) o X,
= (taa®idsa) o tag.a.a o Z(ida @ u) o X,

by the co-associativity of u

idsa ® ta.a) o tan.aga © L(ida @ u) @ u  by(136)
idsa ®tan) o (idsa ® Zu) o tana o Tu

idsa @ (taaoZu) o (tanao Zp)

idsa ® i™) o i~

(
(
[
(

The proof of the remaining axioms making XA into a coalgebra
with co-unit and antipode are similar and are, for that reason, left to the
reader.
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Define the co-action on XV by the equation, 87 = ty4 o £B. The
proof that this is co-associative in truly indentical to the above compu-
tation with the first A’s in the expression there replaced by V'’s.

The last numbered assertion just follows from functoriality. m|

Definition 13.4. Let (G, X, A) be monumental complex. The algebra of
measures on (G, X, A), which we write L} (G, X, A) or, more briefly as
LY(X) when no confusion will result, is the algebra (XA)*, the k-linear
dual of XA.

Much of what follows depends on a natural £'(G, X, A)-structure
on the exoskeletal homology groups of a locally rational carapace. To
construct this action we must examine the functor, 7o of §71 (1), the
first term in the canonical brittle resolution. Recall that for any carapace
A, [To(A)](0) = [[,c,A(r) and the expansions are the natural inclu-
sions . Moreover, the boundary map, §y naturally maps 7o(A) into A.

Proposition 13.5. Let (G, X, A) be a monumental complex and let V be
a locally rational carapace on X with structure map 3. Then

(1) The carapace, To(V), admits a natural structure map, By, making it
into a locally rational carapace.

(2) The structuremap , By is uniquely determined by the requirement
that 6o be a morphism of locally rational carapaces.

(3) If V(o) is finite dimensional for each o then the same is true of

T()(V).

Proof. Suppose that (V,3) is locally rational and that T < o are two
simplices in X. Then, (idy(;) ® €7 ) © Br = Bro, makes V(7) inti a
A(o) comodule in such a way that the diagram,

V(r) 2 vz @ Alr))

V’T(r J{ i e{‘;‘r
Bo

V(o) —= V(o) ® A(0)
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commutes. Thus (Bg)s = [[,c, Bro is comodule structure map on
[70(V)](o) Then (*) may be applied twice, once to prove that 7 (V) is
a carapace of co-modules over A and again to prove that 5y commutes
with the two comodule structure morphisms. One verifies directly that
Bo is a G-morphism. The uniqueness statement is clear as is the finite-
ness statement. O

Proposition 13.6. Let (G, X, A) be a monumental complex. Then for
each rgeqO the r’th exoskeletal cohomology, H,(X, —), is covariant func-
tor from the category of locally rational carapaces on X to the category
of left L' (G, X, A)-modules.

Proof. By Proposition > is a functor from the category of locally
rational carapaces to the category of X(A) co-modules. The identity
functor takes X (A)-co-modules to L!(X) = (X(A))*-modules. Thus X
is a covariant functor to the category of left (X) modules.

By Proposition[I3.3land the definition of the canonical brittle resolu-
tion (Definition [ZI]), the canonical brittle resolution of V is a resolution
by locally rational carapaces with boundary maps which are morphisms
of locally rational carapaces. Thus the Alexander chains are a complex
of £!(X)-modules. The result follows immediately. O

We shall be working with subalgebras of £!(X). In consequence, a
“working description” of it might be of use. First notice that £'(X) =
Homy (XA, k) = Homy (A, kx). Thus a typical element of £!(X) is
a family, {0y }sex Where 0, € A(0)*, the linear dual of A(c). The
coherence condition on the family, {0y }sex is the commutativity of:

Alor) 27k

e}wl (13.7)

for every pair, oo < 7. This should be understood in the following sense.
For any pro-algebraic group, the linear dual of its coordinates ring is an
algebra under convolution. If one group contains another as a closed
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subgroup, then the dual of its coordinate ring contains the dual of the
coordinate ring of the subgroup. Thus, [[3.7) says that whenever oo =
7 the d; € (A(r))*. In particular d, € (), as y ranges over the
chambers containing o. In each of the main examples, this means that
0o 1s in linear dual of th coordinate ring of the radical of G, . This
prompts us to define the X-radical of a stabilizer, G, as the intersection,
RG (o) = (),o, Gy Where the intersection is taken over all chambers,
v, which contain o .

Henceforth we will write A*(cor) for the linear dual of A(c). Re-
call that for any commutative Hopf algebra A, the dual algebra, A* can
be identified with the algebra of k-linear endomorphisms of A which
commute with left translation or alternatively with those that commute
with right translation. That is, w : A — A is an endomorphism com-
muting with left translations, then ¢ = e4 o w € A* is an element of
the dual such that ¢ * a = w(a) for all a € A and where the operation
of ¢ is by right convolution. There is a similar statement with left and
right interchanged. With this in mind, it is clear that £!(X) is the alge-
bra of kK endomorphisms of A which are co-module morphisms for left
translation (but not necessarily G-morphisms).

The G-action on £! can now be described. If Gg € G, then, Gg can
be thought of as a k-homomorphism form A(c) to k and so as an ele-
ment of A* (o) and G, can be thought of as a subgroup of the unit group
of A*(0). Hence in this case Gg acts by true conjugation, Gg-0 =
Gg 0 Gg~!. More generally the action is (Gg -0), = 0Ggo © Pggor-

14 The Injective Co-generator

Let (G, X, A) be a monumental complex. In this section we show that
the category of locally rational carapaces admits an injective cogenera-
tor. We give a particular injective cogenerator and we use it to construct
a module category containing an image of the locally rational carapaces.

Let C denote a chamber in X and let A denote an apartment con-
taining C. The unadorned symbols, 7; and S’ will denote the canonical
brittle and flabby resolutions on X (see[8.3]) while 7~l_c and Sic will denote
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those on C and 7/* and S, those on A. Let ¢ : C — X be the inclusion.
By Theorem[0.12] ¢* is an isomorphism of categories from G-carapaces
on X to G4-carapaces on C. Recall that 7 denotes its inverse.

The locally rational carapaces on X are a subcategory of the G-
carapaces on X ans so ¢* carries them to a subcategory on C. The reader
can work out their properties when necessary; we will frequently argue
in that category rather than the category of locally rational carapaces on
X. For a G-carapace on X, V, we will V¢ to denote its restriction to C.

If R is the coordinate ring of the proalgebraic group, H, it admits
several structures as a rational representation. Let w,e and s be the
structural data for R. Write R’ for the left translation module, R” for
the right translations module and R unadorned for the conjugating ac-
tion, y.(a)(g) = a(x~'gx). Notice that s establishes an isomorphism
between R’ and R™. Consequently except when the particular features
of a calculation or proof demand other wise we will always write R” for
this representation.

For a representation of H, M, write M’ to mean the vector space, M
refurbished with the trivial representation. If 8 : M — M ®y R is the
coaction on M, then the coassociativity of 3 is precisely equivalent to the
statement that 3 is an H morphism from M to M° @ R” It is also true that
B is an H-morphism from M to M ®; R where the tensor product is with
respect to the given structure on M and the conjugating representation
onR.

If M is any vector space equipped with the trivial representation,
then M ®y R" is H-injective, (It is, in fact, co-free.) To prove it, let f :
N — M®yR" be an H-map, and let j : N — Q be an H-monomorphism.
Leté : QO — QO ®yx R be the coaction. Just choose ¢ : Q — M so the
¢oj = (idy®e)of. Then it is straightforward to verify that (¢p®idg)o&
is a comodule map from Q to M ®; R whose composition with j is just
f.

Suppose that P is a closed subgroup of H of finite codimension.
If N is a representation of P then the induced algebraic representa-
tion is a representation of H, Iy/p(N) together with a P morphism,
en : Iy/p(N) — N inducing the Frobenius reciprocity isomorphism,
Homy (W, 1y/p(N)) = Homp(W|p, N). To construct I,p(N) consider
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N @i R. The subgroup P acts on this product diagonally through the
given representation on N and right translation on R. In addition, H acts
by left translation on R and the trivial action on N. The actions of H and
P on N ®; R commute and so (N ®y R)P is an H sub-representation of
N’ @k R'. Then, Iyy/p(N) = (N ® R), and the map ey is the restriction
of idy ® e. Composing idy ® s with the inclusion of Iy /P (N)in N @R,
we obtain a functorial map:

12 Iy/p(N) — N’ @ R° (14.1)
The following is crucial.

Lemma 14.2. Let H be profinite with structural data as above. Let V
be a rational representation of H. There is a vector space, U, and exact
sequence,

0>V -o>VRR - U R

Proof. Leta:V — VP ®x R" be the coaction viewed as an H-morphism.
We will construct a morphism ¢ : %4 ®Qk R* — (V& R)b ®x R* so that
ker(y) = im(a). Let nu(v®a) = v® 1 x aand let (1 = idy @ m ®
idg) o (¢ ®idg ®idg) o idy[(s ®idg) o u]. These are both H morphisms
for notice that if T(v ® r ® s) = v® s ® r, then 7 o A is a comodule
structure on V* ®; R™. With this interpretation, the kernel of 7 o (vA) is
just the space of invariants for this action. But then V ®y R is the module
of sections for a homogeneous bundle on H and the image of « is the
subspace of invariant sections. Applying 7 again. we have shown that
the kernel of v — A is the image.

Notice that as a G.-carapace, Ac is equipped with the conjugating
representation. If V is a rational G.-carapace, then V ®; A, always
denotes the tensor product with respect to this structure. The comodule
structure, @ : V — V Q¢ Ac is a G,-morphism with respect to this
structure. is not a G,-morphism with respect to the right translation
action.

Define the carapace, A7, by the equation, calA7.(or) = A(o)". Let
A" = Ic(AL). Clearly, A and A" are not isomorphic as G carapaces.

Let S%(kc) = Ic. Since k is field, I¢ is injective. Let LAy =
Ic ® Ap. Then idy, ® p makes LA into a locally rational carapaces of
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G.-modules. Tensoring the natural inclusion, k¢ — I¢, with A" yields
the natural inclusion:
] AL — LA

In general we will call a carapace locally finite if each of its seg-
ments is a finite module. O

Proposition 14.3. Let (G, X, A) be monumental with chamber, C. Let
J be an injective k-carapace on C. Then J ® A is injective in the
category of rational G .-carapaces.

Proof. The corresponding proof for a proalgebraic group globalizes.
Let U and V be two rational G, carapaces with co-actions, @ : U —
U Acand B : V — V @ Ac respectively. Letv : U — V be a
Gs-monomorphism and let f : U — J ®; A, be any G4 map. Let
eq : A — ke be the counit. Then (id; ® ex) o f maps U to the k injec-
tive, J. Hence there is a map, ¢ : V — J such taht (id;®eq)o f = ¢op.
Then (¢ ®id#) o maps V to J ® A" and a routine computation shows
it to be a G-morphism extending f. O

Definition 14.4. Ler (G, X, A) be monumental with chamber, C. Let
o € C be a face and let V be a rational G,-module. Let V7 be the
carapace on C with values:

V(1) = I, (V) iftrco

s (14.5)
V7 (t) = (0) otherwise

The expansions are the canonical maps corresponding to transitivity of
induction. The locally rational carapace on X, I(V?) will be written,

v,

Lemma 14.6. Let (G, X, calA) be monumental with chamber, C. Let V
be a representation of G, for some face o in C. Then if U is any locally
rational G-carapace,

Homy (U, V(U) = Homc(L*U, XN/"') = Homg,(U(0),V)
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Proof. The first equality is just the isomorphism induced by the isomor-
phism of categories, ¢*. To prove the secon, suppose the f € Homcg,
(tU, V7) We must show that f is uniquely determined by f,. If 7 is not
a face of o~ then, fr = 0. Write ef, _for the expansion in Vo IfT C o,
then egjcirc fr=fs0 eZ’T. But e“ZT = ey and so f; is the G;-morphism
uniquely determined by Frobenius reciprocity. The result follows. O

Lemma 14.7. Let (G, X, A) be monumetal with chamaber, C. Then, for
each face, o,

Ae)T = (k |7) @ AL

Proof. This is just the following observation. Let H be a group and let P
be a closed subgroup with coordinate rings, R and S respectively. Then
Iy/p(ST) = RT and the identification is functorial. o

Theorem 14.8. Let (G, X, A) be monumental with chamber, C. Then:

(1) IfV is aninjective rational G ,-module then, %4 (respectively, V(u) is
an injective rational G, carapace on C (respectively an injectively
locally rational G-carapace on X).

(2) The carapace, Ix A7, = Ic(I¢) is injective in teh category of lo-
cally rational carapaces on X.

(3) Let'V be a locally rational carapace on X. Then there are k-vector
spaces, M and N and an exact sequence of locally rational G-
carapaces:

0>V ->MIxyA — N IxyA
If V is locally finite, then M may be taken to be finite dimensional.

Proof. To prove[I),notice that it suffices to prove the statement for ratio-
nal G, carapces on C. Notice that Lemma[I4.6/implices that the functor,
Ve, carrying rational G, modules, V, to G-carapaces is right adjoint to
the exact functor which associates to ca carapace its o segment. The
statement is an immediate consequence.
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To prove[2),notice that Ix A7 = 7 ¢(I¢)®x A and so by Proposition
[[43lit is injective.

Now we establish [3). Making use of the canonical equivalence, we
may prove the correspondig statement for rational G, carapaces on C.
Thus let V be rational on C.

Leta : V — V ®; A be the coaction on V. For each face in C,
X, we may use the correspondence of lemma [@] to construct the unique

map, ¥ : V — V(o ) such that ¢, = id. Now consider the canonical
morphisms ty () of GII) These morphisms induce a monomorphism of
G -carapaces, 17 : \,/Er/)g — [V(0)” |7] @ A". Let f7 = 17 oy and
let f = [[,cc f7. This is an injective map from V to

[T(vV(e) 1 @)

o=C

Let M = [[,cc V(0)” and let j, : V(0)” — M be the natural
inclusion. Let rr, be the natural projection of

[[V(e) 17 @)

ocC

on V(o) |7 QA" Then Ix [ [,cc(ny o f5) is the required map. If V
is locally finite, M is finite. To conclude the proof just note that this

construction may be applied to the cokernel of the map we have just
defined. O

Corollary 14.9. The carapace IxA. is an injective cogenerator for the
category of locally rational G-carapaces on X.

Proof. This is just Statement[3)) of the theorem. m|

Corollary 14.10. Let Eg x = Endx(IxA"). Then the functor Px g de-
fined by Px (V) = Homyg(V,IxA") is a fully faithfull contravariant
embedding of the category of locally rational G-carpaces on X in the
category of left Eg x modules.

Proof. This follows from Corollary by a direct application of the
Gabriel Mitchell embedding theorem. m|
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15 Locally Rational Carapaces

In this section we will construct a section from a certain subcategory
of the category of &g x modules to the category of locally finite locally
rational carapaces. We begin with a preliminary description of &g x.
Recall first that is R is the coordinate ring of a proalgebraic group then
thelinear endomorphisms of R commuting with right convolutions are
just convolutions on the left with elements of the linear dual of R. If
w 18 such an involution, then let w be the element of the dual defined
by the equation, w(f) = [w(f)](e). Then left convolution with w is w.
Also notice that Frobenius reciprocity for the indentity subgroup is the
equation, Homg(V, M ® R") = Homy(V, M).

Now observe that the carapace (on C), IAL may be written as the

finite product, [ [,¢ ﬂ( ) . Hence,

Homy(LAL IAL) = [ | Homy.G(A(0)™ . A(0)” )  (15.1)

o,1cC

By Lemma[l4.6, Homy, G(?T(\UTT 7 37((7777 = (0) whenever 57(\077 7 (1) 144
= (0). That is, the Hom is null unless o- © 7. When this condition does
hold:

Homy(A(0)" , A[)7 ) = Homg () (A(T)", Ax)7)

because fT(TJ'TT 7= A(7)". Thus the o, T component of the homomor-
phism is an element ¢ € A(7)* operating by left convolution. Hence
an element of E;x can be represented as a matrix, (0rq)rcy, Where
Oro € (A(7)*). Notice also that if T € o then A(o)* < A(7)*. Notice
also that if 7 < o then A(o)* = A(r)*. Consequently, if (0ry)rco
and (gw)rgg correspond to two elements of Ex g, for any 7,7y, o such
thatr < y < o, the product, 87#5%0 is defined and is an element of
AT)*.

For a locally algebraic carapace, V, Px (V) may also be calucilated
directly:

Pxc(V) = Homyg(V,1Ac) = | [ Homg(o)(V(0), A(e))

ocC
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By the remarks above, Homg ) (V (o), A(o)) = V(0o)*, the contragre-
dient. Hence, Px(V) = [ [,<. V(0)*. Moreover, if ;- is an element

*
of Ex then dr operates on (e"T> (u) foru € V(or)* and (eJ)* the

occ

v,
adjoint of the expansion in V. Having established this much, we leave
the remainder of the proof of the following to the reader.

Proposition 15.2. Let (G, X, A) be monumental and let V be locally
rational on X. Then:

(1) The ring Ex is equal to the ring of matrices, (Cr.o)rco- The prod-
uct of two such matirces is given by (Ory) - (Oro) = (07) where

6‘1’,0’ = Z a‘r,ygy,(r

TCYyCo

(2) The module Px (V) is isomorphic as an additive group to the set of
vectors (Vo )scc Where the component, v, is in the contragredient
module, V(o)*. The action of (0r) on (vy) vields (uy) where

Uy = Z aa’,y(Ez/,g-)*(V)’)

occC

For the remainder of this section, we will write I to denote the
canonical co-generator, LA7.. Then, Exg = Endyc(I). First, restriction
to the chamber, C, is an isomorphism to the category of G.-carapaces.
On the category of locally algebraic G.-carapaces on C, the segment
over o is an exact functor to the category of algebraic representations
of G(o). Consequently, for each o, the segment I(o-) evaluted as a
carapace on C, is left &y g-module and the action commutes with the
co-action, I(0") — I(0) ® A(o). Evaluating the restriction of I to C on
the facet, o, we obtain the module of vectors, (a;);os : a; € A(o), By
the description of Ex above the action of the marix, (dy,1),c., on the
vector, (dr)ro.

(ay,/l) : (aT)TD(T = (bT)TQO'

(15.3)
where b = Xcoyor Oy - ay
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Furthermore, since elements of Ex ¢ act as morphisms of carapaces, the
expansions, which are compositions of projection of functions, are left
Ex g-morphisms. Notice that the result would have been quite different
if we had evaluated before restricting of C. We write I (o) to denote the
Ex.g-module, I|¢ (o). Since X and G ar fixed throughout this section, we
will write & for Ex as long as no ambiguity will result.

Lemma 15.4. Let M be a finitely generated E-module. Let M be the G-
carapace on X whose prototype on C has the o-setment, Homg(M,I¢ (o))
and the expansions, Homg(id, eily). Then M is a locally algebraic

carapace on X. Furthermore M is a G subcarapace of an finite direct
sum of carapaces each isomorphic to L.

Proof. As usual we need only consider the restriction of MtoC. Being
the composition of a convariant functor with a carapace, it is certainly a
carapace. We propose to show that it is locally algebraic.

Write @ : Ic()o — I¢(0) ® A(o) be the coaction commuting
with teh & action. Finite generation over & menas that there is an exact
sequenece, EY7 — M — (0). Moreover tensoring with A(c) alos
results in an exact sequence.

Write alpha for the map from Homg(M,Ic (o)) to Homg(M, 1, ®
A(c)) and write @, for the map indued when M is replaced by E°.
also notice that, for nay &-module, N, we may write Homg(.S@T, N Ry
U) = (N® U)® = Homg(EY,N) ® U for any k-vector space, U.
Putting this all togethe, we obtain a commuttive diagram:

0

Homg(M, Ix (o)) Homg(E9, 1¢(0))

ay \L s \L
0 —— Homg(M,IC(0) ® A(0)) — Homg(EY", I (o)) ® A(0r)
(15.5)
First obseve that ther is a natural embedding on Homg(M,I¢(0)) ®
A(o) in Homg(M,Ix(0)) ® A(o)). Then all that must be proven is
that the image of @ is contained in Homg(M,I¢ (o)) ® A(o) for then
a1 will a fortiori be coaction while the horizantal arrow in the first row

of[15.5]is the embedding we establishing tha last assertion of the lemma.
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Let j denote the upper horizontal arrow in[[3.3]and let j' denote the
lower one. Let {a, : y € I'} be a basis for A(c). If u € Homg(M,Ic(0)®
A(c)), then we may write /' is injective, u = > (¢,)|m ® ay. But this
shows that each element of Homg(M, I¢c(0)®@A(0)) is in Homg (M, I¢
(o)) ® A(o). That is the two space are equal so the result is estab-
lished. O

Definition 15.6. Let V be a locally algebraic G-carapace on X. We
shall say that V in finitely congenerated if for some integer, r = 0, there
is an exact sequence, 0 — V — |

Since Pyc(I) = &, and since I is injective, it is clear that Px ¢
carries finitely cogenerated carapaces to finitely generated &-modules.
Further, by lemma H] the functor M — M carries finitely generated
&-modules to finitely cogenerated carapaces. Notice that finitely co-
genrated carapaces are not an Abelian category. While subcarapaces
of finitely cogenerated carapaces are finitely cogeneratd it is not clear
that quotiendts of finitely cogenerated carapaces are finitely cogener-
ated. This is of courese dual to the question pof whether submodules
of finitely generated &-modules are finitely generated. That is, it would
imply left Noetherianness of &.

Theorem 15.7. Let (G, X, A) be monumetal. Then

(1) The functor Px carries the category of finitely cogenerated cara-
paces on X to the category of finitely generated E-modules.

(2) The functor M — M carries the category of finitely generated &-
modules to the category of finitely cogenerated carapaces on X.

(3) If V is locally finite carapace on X, there is anatural isomorphism
from'V to P%( V). Moreover these two functors are isomorphisms
between the category of locally finite carapaces and the category of
&E- modules which are finite dimensional over k.

Proof. The first statement in the theorem was proven in the paragraph
above. The second statement follows immediately from Lemma [[5.4]
Only the last statemnet requires proof.
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Since Py (V) = [[,cc V(0)*, it is clear that when V is locally
finite, calPx (V) is finite dimentsional. For the converse, let e, , for
A € y < C denote the element of & corresponding to the matrix
whosep, v # (4,7) and whose A,y entry is the identity in A(1)*. The
elements ey, are a complete set of othogonal idempotents. Further
for each A such that 1 2 o, e lc(0) = (0). If M is anu left &-
module, write M, = esoM Then, calM = [[, - V(o) itis clear
that when V is locally finite, Px (V) is finite dimensional. For the
converse. let ey, for 4 © y < C denote the element of & corre-
sponding to the matrix whose p, v entry is O when (u,v) # (4,7) adn
whose A,y entry is the identity in A(1)*. The elements e;, are a
complete set of orthogonal idempotents, Further for each A such that
AP o, edc(o) = (0). If Mis any left &- module. write M, = ;oM
then, M = coprod,ccM.. By simple restriction there is a map from
Homg(M,Ic(0)) = Homg(g)x (Mg, A(c)). We propose to show that
it is an isomorphism.

By the remarks above, if f € Hom(M,I¢(0)), then f(M,) = (0)
whenever y D o. Hence it suffices to determine f on M, for v € o. If
u = eru € My then, f(es-u). But e, -u € My and so f is determined
by its restriction to M. Thus.

Homg(M,Ic(0)) = Homg(s)x (M, A(0)) (15.8)

This has two consequences. First, for general M, there is a natural
inclusion Homg(s)x (My, A(0)) — M given by f — e o f where
e just denotes evaluation at the identity. The image of this map is al-
ways algebraic and when M, is itself algebraic it is an isomorphism as
remarked in the first paragraph of this section. Thus if M is finite di-
mensional, the same can be said of M(o-). Moreover, when V is locally
algebraic, Px(V)s, = V(o)*. Thusif V is locally finite, V(o-)* is finite
dimensional and so the last part of Statement [3)) follows at once. O
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Poncelet Polygons and the Painlevé Equations

N. J. Hitchin

Dedicated to M.S. Narasimhan and C. S. Seshadri
on the occasion of their 60th birthdays

1 Introduction

The celebrated theorem of Narasimhan and Seshadri [13]] relating stable
vector bundles on a curve to unitary representations of its fundamental
group has been the model for an enormous range of recent results inter-
twining algebraic geometry and topology. The object which meditates
between the two areas geometry and topology. The object which medi-
ates between the two areas in all of these generalizations is the notion
of a connection, and existence Theorems for various types of connec-
tion provide the means of establishing the theorems. In one sense, the
motivation for this paper is to pass beyond the existence and demand
more explicitness. What do the connections look like ? Can we write
them down? This question is our point of departure. The novelty of our
presentation here is that the answer involves a journey which takes us
backwards in time over two hundred years form the proof of Narasimhan

and Seshadri,s theorem in 1965.

For simplicity, instead of considering stable bundles on curves of
higher genus we consider the analogous case of parabolically stable bun-
dles, in the sense of Mehta and Seshadri [[11]], on the complex projective
line CP'. Such a bundle consists of a vector bundle with a weighted flag
structure at n marked points ay,...,a,. The unitary connection that is
associated with it is flat and has singularities at the points. In the generic
case, the vector bundle itself is trivial, and the flat connection we are
looking for can be written as a meromorphic m x m matrix-valued 1-form
with a simple pole at each point @;. The parabolic structure can easily be
read off form the residuces of the form. The other side of the equation
is a representation of the fundamental group 7 (CP! {ay, ldots,a,}) in
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U(m). the holonomy of the connection, and this presents more prob-
lems. Such questions occupied the attention of Fuchs, K-lein and others
in the last century under the alternative name of monodromy of ordi-
nary differential equations. Now if we fix the holonomy, and ask for the
corresponding 1-form for each set of distinct points {ay,...a,} < CP',
what in fact we are asking for is a solution of a differential equation, the
so-called Schlesinger equation (1912) of isomonodromic deformation
theory. To focus things even more, in the simple case where m = 2 and
n = 4, and explicit form for the connection demands a knowledge of
solutions to a single nonlinear second order differential equation. This
equation, originally found in the context of isomonodromic deforma-
tions by R. Fuchs in 1907 [4]], is nowadays called Painlevé’s 6th equa-
tion

d*y 11 1 ay\> (1 1 1\ dy
() (@) - ()&
YO-Dh—x x x—1 x(x—1)
i (v )
and in the words of Painlevé, the general solutions of this equation are
“transcendantes essentiellement nouvelles” That, on the face of it, would
seem to be the end of the quest for explicitness-we are faced with the
insuperable obstacle of Painlevé transcendants.

Notwithstanding Painlevé’s statement, for certain values of the con-
stants @, 3,7, 0, there do exist solutions to the equation which can be
written down, and even solutions that are algebraic. One property of
any solution to the above equation is that y(x) can only have branch
points at x = 0, 1,,00. This is essentially the “Painlevé property”, that
there are no movable singularities. If we find an algebraic solution,
then this means we have an algebraic curve with a map to CP! with
only three critical values. Such a curve has a number of special prop-
erties. On the one hand, it is defined by a subgroup of finite index in
['(2) € SL(2,Z), and also,by a well-known theorem of Weil,is defined
over Q. In this paper we shal construct solutions by considering the case
when the holonomy group I of the connection is finite. In that case the
solution y(x) to the Painlevé equation is algebraic.
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Our approach here is to consider, for a finite subgroup I" of S L(X, C),
the quotient space SL(2,C)/T" and an equivariant compactification Z.
Thus Z is a smooth projective threefold with an action of S L(2, C) and
a dense open orbit. The Maurer-Cartan form defines a flat connection on
SL(2,C)/T with holonomy I, which extends to a meromophic connec-
tion on Z. The idea is then to look for rational curves in Z such taht the
induced connection is of the required form. By construction the holon-
omy is I', and if we can find enough curves to vary the cross-ratio of the
singular points ay, . ..as, then we have a solution to the Painlevé equa-
tion. The question of finding and classifying such equivarian compacti-
fications has been addressed by Umemura and Mukai [12], but here we
focus on one particular case. We take I" to be the binary dihedral group
Dy = SU(2). This might seem very restrictive within the context of
parabolically stable bundales, but behind it there hides a very rich seam
of algebraic geometry which has its origins further back in history than
Painlevé.

In the case of the dihedral group, the construction of a suitable com-
pactification is due to Schwarzenberger [16], who constructed a family
of rank 2 vector bundles Vi over CP?. THe threefold corresponding to
the dihedral group Dy turns out to be the projectivizesd bundle P(Vy).
There are two types of relevant rational curves. Those which project to
a line in CP? yield the solution y = sqrtx to the Painlevé equation with
coefficients (a, beta,y,5) = (1/8,—1/8,1/2k*,1/2 — 1/2k?). Those
which project to a conic lead naturally to another problem, and this one
goes back at least to 1746 (see [3]]). It is the problem of Poncelet poly-
gons. We seek conics B and C in the plane such that there is a k-sided
polygon inscribed in C and circumscribed about B. Interest in this prob-
lem is still widespread. Poncelet polygons occur in questions of stable
bundales on projectives spaces[14] and more recently in the workl of
Barth and Michel [[I]]. In fact, we can use their approach to find the
modular curve giving the algebraic solution y(x) of the Painlevé equa-
tion corresponding to I' = Dy. This satisfies Painlevé equation with
coefficients (a,8,y,6) = (1/8,—1/8,1/8,3/8). It is essentially Cay-
ley’s solution in 1853 of the Poncelet problem which allows us to go
further and produce explicit solutions. It is method which fits in well
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with the isomonodromic approach.

There are a number of reasons why this is a fruitful area of study.
One of them concerns solutions of Painlevé equation in general and their
relation to integrable systems, another is the connection with self-dual
Einstein metrics as discussed in [6]. In the latter context, the threefolds
constructed are essentially twistor spaces, and the rational curves twistor
lines,but we shall not pursue this line of approach here. Perhaps the
most intriguing challenge is to find any explicit solution to an equation
to which Painlevé remark refers.

The structure of the paper is as follows. In Section 2] we consider
singular connections and the isomonodromic deformation problem, and
in Section [3 see how equivariant compactifications give solutions to the
problem. In Section @ we look at the way the dihedral group fits in with
the problem of Poncelet polygons. Section[3and[@discuss the actual so-
lutions of the Painlevé equation, especially for small values of k. Only
there can we see in full explicitness the connection which, in the context
of the theorem of Narasimhan and Seshadri, relates the parabolic struc-
ture and the representation of the fundamental group, however restricted
this example may be. In the final section we discuss the modular curve
which describes the solutions so constructed.

The author wishes to thank M.F. Atiyah and A. Beauville for useful
conversations.

2 Singular connections

We intrduce here the basic objects of our study -flat meromorphic con-
nections with singularities of a specified type. For the most part we
follow the exposition of Malgrange [10].

Definition 1. Let Z be a complex manifold, Y a smooth hypersurface
and E a holomorphic vector bundle over Z. let V be a flat holomor-
phic connection on E over Z Y with connection form A in some local
trivialization of E. Then on U < Z we say that

(1) V is meromorphic if A is meromorphic on U.
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(2) V has a logarithmic singularity along Y if, in a local coordinate
system (zy ...,zy) of Z, with Y given by z; = 0, A has the form

d
A=A1% + Ardzy + ... + Aydz,
1

where A; is holomorphic on U.

One may easily check that the definition is independent of the choice
od coordinates and local trivialization. The essential point about a loga-
rithmic singularity is that the pole only occurs in the conormal direction
to Y. In fact V defines a holomorphic connection on E restricted to Y,
with connection form

n
Ay = ZA,-(O, 2255 Zn)dz;.
i=2
If Z is 1-dimensional, then such a connection is just a meromor-

phic connection with simple poles. Flatness is automatic because the
holomorphic curvature is a (2,0) form which is identically zero in one
dimension. If we take Z = CP., Y = {ai,...,a,,0} and the bundle E
to be trivial, then A is a matrix-valued meromorphic 1-form with simple
poles at z = ay, ..., a,, o0 and can thus be written as

i
AidZ
A=
iZ; Z— da;

The holonomy of a flat connection on Z\Y is obtained by parallel trans-
lation around closed paths and defines, after fixing a base point b,a rep-
resentation of the fundamental group

p:m(Z\Y) — GL(m,C)

In one dimension, the holonomy may also be considered as the effect of
analytic continuation of solutions to the system of ordinary differential
equations

df < Aif
— + =0
dz ;z—ai
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around closed paths through b. As such, one often uses the classical term
monodromy rather than the differential geometric holonomy. Changing
the basepoint to b’ effects an overall conjugation (by the holonomy along
a path from b to b’) of the holonomy representation.

For the punctured projective line above, we obtain a representation
of the group 711 (S%\{ay,...,a,,0}). This is a free group on n genera-
tors, which can be taken as simple loops y; from b passing once around
a;. Moving b close to a;, it is easy to see that p(y;) is conjugate to

exp(—2miA;).

There is also a singularity of A at infinity with residue A,,. Since the
sum of the residues of a differential is zero, we must have

and so p(yinfsy) is conjugate also to exp(—2miAy ). In the fundamental
group itself y1¥2 ... ¥»¥as = 1 so that in the holonomy representation

py1)p(y2) ... p(y0) (1)

Thus the conjugacy classes of the residuces A; of the connection deter-
mine the conjugacy classed of p(y;), and these must also satisfy (I).

This is partial information about the holonomy representation. How-
ever, the full holonomy group depends on the position of the poles a;.
The problem of particular interset to us here is the isomonodromic defor-
mation problem to determine the dependence of A; onay, ..., a, in order
that the holonomy representation should remain the same up to conju-
gation. All we have seen so far is that the conjugacy class of exp(27iA;)
should remain constant.

One way of approaching the isomonodromic deformation problem,
due to Malgrange, is via a universal deformation space. Let X,, denote
the space of ordered distinct points (ai,...,a,) € C, and X, its uni-
versal covering. It is well-known that this is a contractible space- the
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classifying space for the braid group on n strands. Now consider the
divisor
m = {(2701,-..,0,1) € CPl X X, 12 # am}

and let ¥,, be its inverse image in CP! x X,,. Furthermore, define Y., =
{(o0,x) : x € X,,}.

The projection onto the second factor p : CP'\{ay,...,a,, 0}, and
the contractibility of X, implies fro the exact homotopy sequence that
the inclusion i of a fibre induces an isomorphism of fundamental groups

m(CP\{d), ..., a5 00}) = m(CP' x X\ {F1 u...u T, U P}

Thus a flat connection on CPI\{a(l), ...,ad, o} extends to flat connection
with the same holonomy on CP! x X,\{¥;U...uY,UY,}. Malgrange’s
theorem asserts that this flat connection has logarithmic singularities
along Y,, and Y.

More precisely,

Theorem 1 (Malgrange [10]). Let V° be flat holomorphic connection
on the vector bundle E° over CPI\{a?, e, ag, o0}, with logarithmic sin-
gularities at a(l), ...,d%. Then there exists a holomorphic vector bundle
E on CP' x X,, with a flat connection V with logarithmic singularities at
Y1....,Y,, Yy and an isomorphism j : i*(E,V) — (E°,V°). Further-
more, (E,V, j) is unique up to isomorphism.

Now suppose that E° is holomorphically trivial. The vector bundle
E will not necessarily be trivial on all fibres of the projection p, but for
a dense open set U < X,, it will be. Choose a basis e(l), g,. e of the
fibre of E? at 7 = c0. Now since V has a logarlthmlc singularity on Y., it
induces a flat connection there, and since ¥, >~ X, is simply connected,
by parallel translation we can unambiguously extend e(l), eg, e to
trivialization of E over Y. Then since E is holomorphlcally trivial on
each fibre over U. we can uniquely extend el, ez, ..., €% along the fibres
to obtain a trivialization ey, . . ., e,, of E on CP! x U. It s easy to see that,

relative to this trivialization, the connection form pf V can be written

A= ZAM 2)

Z_a[
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where A; is a holomorphic function of ay, ..., a,.
The flatness of the connection can then be expressed as:
da; — da;
dA; + Y [AiAj]———L =0
. a; — Clj
J#

which is known as Schlesinger’s equation [13]].

The gauge freedom in this equation involves only the choice of the
initial basis e(l), eg, e, e& and consists therefore of conjugation of the A;
by a constant matrix.

The case which interests us here in where the holonomy lies in
SL(2,C), (so that the A; are trace-free 2 x 2 matrices), and where there
are 3 marked points ay, az, a3 which, together with z = oo, are the sin-
gular points of the connection. By a projective transformation we can

make these points 0,1, x, Then
A A A
_ 4 n 2 n 3
Z z—1 z—x

A(z)

and Schlesinger’s equation becomes:

dA _ [As,A1]

dx X

dA, [As,A2]

k. 3
dx x—1 3)
dAs —[A3, Ay ] A3 A

dx X x—1

where the last equation is equivalent to
Al + Ay + A3 = —A,, = const.

The relationship with the Painlevé equation can best be seen by fol-
lowing [8]]. Each entry of the matrix A;;(z) is of the form ¢(z)/z(z —
1)(z — x) for some quadratic polynomial g. Suppose that A, is diago-
nalizable, and choose a basis such that

10
(o 5)
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then A, can be written

k(z = y)
S e )

for some y € CP'\{0, 1, x, c0}. If the A;(x) satisfy (@), then the function
y(x) satisfies the Painlevé equation

d2y 1 1 1 ay\> /1 1 1\ dy
A I B T DY) (2 &
dx? / (y+y—1+y—x> <dx x+x—1+y—x dx

“4)

e T y) O
where
a=(21—-1)3)2
B = 2ddetA?
y = —2detA?
6= (1+4detA})/2 (6)

For the formulae which reconstruct the connection from y(x) we refer
to [8]], but essentially the entires of tha A; are rational functions of x, y
and dy/dx. For our purposes it is useful to note the geometrical form of
the definition of y(x) given by £

Proposition 1. The solution y(x) to the Painlevé equation correspond-
ing to an isomonodromic deformation A(z) is the point y € CP'\{0, 1,
x, 00} at which A(y) and Ay, have a common eigenvector.

Note that strictly speaking there are two Painlevé equations (with
@ = (421 — 1)?/2) correspinding to the values of y with this property.

3 Equivariant compactifications

Consider the three- dimensional complex Lie group SL(2,C) and the
Lie algebra-valued 1-form

A= —(dg)a .
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The form A is the connection form for a trivial connection on the trivial
bundle. It simply relates teh trivializations of the principle frame bundle
by left and right translation.

Now let I" be a finite subgroup of SL(2,C). Then SL(2,C)/T is
non-compact ciompelx manifold and since A is invariant under right
translations,it descentds to this quotient. Thus, on S L(2, C) /T, A defines
a flat connection on the trivial rank 2 vector bundle. Its holonomy is
tatutologically I'.

In this section, we shall consider an equivarient compactification of
SL(2,C)/T, that is to say, a compact compelx manifold Z on which
SL(2,C) acts with a dense open orbit with stabilizer conjugate to I". Let
Z be such a compactification, then the action of the group embeds the
lie algebra g in th space of holomorphic vector fields on Z. Equivalently,
we have a vector bundle homomorphism

a:Zx§—>TZ

which is generically an isomorphism.It fails to be an isomorphism on
the union of the lower dimensional orbits of S L(2, C), and this is where
N @ e H(ZHom(A g, A°T)) =~ H(Z, K !) is a section of the
anticanonical bundle, so the union of the orbits of dimension less than
three form an anticanonical divisor Y, which may of course have several
components or be singular.

In the open orbit Z/Y =~ S L(2, C)/T, the action is equivalent to left
multiplication, and the connection A above is given by

A=a ' TZ>Zxg.
It is clearly meromorphic on Z, but more is true.

Proposition 2. If /\3 a vanishes non-degenerately on the divisor Y, then
the connection A = a~" has a logarithmic singularity along Y.

This is a local statement, and so it can always be applied to the
smooth part of Y even if there are singular points.

Proof. In local coordinates, « is represented by a holomorphic function
B(z) with values in the space of 3 x 3 matrices. The divisor Y is then
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the zero set of det B. If det B has a non-degenerate zero at p € Y, then
its null-space is one-dimensional at p, so the kernel of a, the the Lie
algebra of the stabilizer of p, is one-dimensional. Thus the SL(2,C)
orbit through p is two-dimensional, and so Y is the orbit.

Now for any quare matrix B, let BY denote the transpose of the
matrix of cofactors. Then it is well-known that

BBY = (detB)I
Hence in local coordinates

B\/
- det B

A=a!

and so A has a simple pole along Y. From Definition [l we need to show
that the residue in the conormal direction. For this consider the invariant
description of BY. We have on Z

A /\2g — AT

and using the identifications A%g =~ g* and A’T =~ T* ® A3T,BY

represents the dual map of A%a:
(A%a)* : T — g® AT.

Now the image of « at p is the tangent space to the orbit Y at p by
the definition of @. Thus the image of A’ is A2TY, » which means that
(A%a)* annihilates TY, which is the required result.

Note that the kernel of A2« is the set of two-vectors v A w where
w € g and v is ion the Lie algebra of the stabilizer of p. Thus the residue

at p of the connection A lies in the Lie algebra of the stabilizer. |

Now suppose that P is a rational curve in Z which meets Y transver-
sally at four points. Then the restriction of A to P defines a connection
with logarithmic poles at the points and, from the map of fundamental
groups

m(P\{ai,...,as}) > m(Z2\Y) - T — SL(2,C),
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its holonomy is contained in I'. A deformation of P will define a nearby
curve in the same homotopy class and hence the induced connection will
have the same holonomy. To obtain isomonodromic deformations, we
therefore need to study the deformation theory of such curves.

Proposition 3. Let p < Z be a rational curve meeting Y transversally
at four points. Then P belongs to a smooth four-parameter family of
rational curves on which the cross-ratio of the points is nonconstant
function.

Proof. 'Th proof is standard Kodaira-Spencer deformation theory. By
hypothesis P meets the anticanonical divisor Y in four points, so the
degree of Kz on P is -4. Hence, in N is the normal bundle of P =~ CP!,

degN = —degKz +degKp =2

and so
N =~ O(m) ®0(2 —m)

for some integer m. However, since C is transversal to the 2-dimensional
orbit Y of SL(2, C), the map a always maps onto the normal bundle to
C. We therefore have a surjective homomorphism of holomorphic vector
bundles

B:0®g—N

and this implies that 0 < m < 2. As a consequence, H'(P,N) = 0
and H°(P, N) is four-dimensional, so the existence of a smooth family
follows fro Kodaira [9].

Since g is surjective, its kernel is a line bundle of degree-deg N =
—2, so we have an exact sequence of sheaves:

0(-2) > 0®g— N.

Under a, the kernel maps isomorphically to the sheaf of sections of the
tragent bundle 7P which vanish at the four points P n Y. From the long
exact cohomology sequence we have

0—g— H(P.N) > H'(P.O(~2)) — 0
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and since H°(P, N) is 4-dimensional and g is 3-dimensional, the map
¢ id surjective. But ad is the Kodarira-Spencer map for deformations
of the four points on P, so since it is non-trivial, the cross-ratio is non-
constant. O

Example.

As the reader may realize, the situation here is very similar to the study
of twistor spaces and twistor lines, and indeed there is a differential
geometric context for this (see [6], [7]). This is not the agenda for this
paper, but it is a useful example to see the standard twistor space-CP?
and the straight linex in it-within the current context.

Let V be the 4-dimensional space of cubic polynomials
p(z) = co + c1z+ 7% + 32
and consider V as a representation space of S L(2, C) under the action

az+b
cz+d

p(z) —p ( > (cz+d)*.

This is the unique (up to isomorphism) 4-dimensional irreducible rep-
resentation of SL(2,C). Then Z = P(V) = CY? is a compact three-
fold with an action of SL(2,C) and moreover the open dense set of
cubics with distinct roots in an orbit. This follows since given any two
triplex of distinct ordered points in CP', there is a unique element of
PS L(2,C) which takes one to the other. However, the cubic polyno-
mial determines an unordered triple of roots, and hence the stabilizer
in PSL(2,C) is the symmetric group S 3. Thinking of this as the sym-
metries of an equilateral triangle, the holonomy group I' = S L(2, C)
of the connection A = o~ is the binary dihedral group D3. The lower-
dimensional orbits consist firstly of the cubics with one repeated root,
which is 2-dimensional, and those with a triple root, which constitute
a rational normal curve in CP?. Together they form the discriminant
divisor Y, the anticanonical divisor discussed above.
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A generic line in CP3, generated by polynomials p(z), g(z) meets Y at
those values of 7 for which the discriminant of 7p(z) + ¢(z) vanishes,
i.e. where

tp(z) +q(z) =0
1'(2) +4'(z) =0

have a common root. This occurs for t = —g(a)/p(a) where a is a
root of the quartic equation

P'(2)a(z) = p(z)d'(z) = 0

and so the line meets Y in four generically distinct points. Thus the
4-parameters family of lines in CP? furnish an example of the above
proposition.

As we remarked above, this is an example of an isomonodromoc defor-
mation, as would be any family of curves P in Proposition[3l It yields
a solution of the Painlevé equation either by applying the argument of
Theorem [ to the connection with logarithmic singularities on Z, or ap-
pealing to the universality of Malgrange’s construction. We shall not
derive the solution of the Painlevé equation here from CP?, since it will
appear via a different compactification in the context of Poncelet poly-
gons. There we shall also see how a striaght line in CP? defines a pair
on conics with the Poncelet property for triangles.

4 Poncelet polygons and projective bundles

In this section we shall study a particular class of equivariant compact-
ifications, originally due to Schwarzenberger [16]. Consider the com-
plex surface CP! x CP' and the holomorphic involution o~ which inter-
changes the two factors. The quotient space is CP?. A profitableway of
viewing this is a the map which assigns to a pair of complex numbers
the coefficients of the quadratic polynomial which has them as roots. In
affine coordinates we have the quotient map

n: CP! x CP' - CP!
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(w,z) — (—(w+ 2),wz).

From this it is clear that 7 is a double covring branched over the image
of the diagonal, which is the conic b = CP? with equation 4y = x.
Moreover the line {a} x CP! < CP' x CP! maps to a line in CP?
which meets B at the single point 77(a, a). The images of the two lines
{a} x CP! and CP' x {b} are therefore the two tangents to the conic B
from the point 7(a, b).

Now let O(k, [) denote the unique holomorphic line bundle of bide-
gree (k, 1) on CP' x CP', and define the direct image sheaf 7,O(k,0) on
CP2. This is a locally free sheaf, a rank 2 vector bundle V}, and we may
form the projective bundle P(V}), a complex 3-manifold which fibres
over CP?

p: P(V;) — CP?

with fibres CP'.

Clearly the diagonal action of S L(2,C) on CP' x CP! induces an
action on P(Vj). Take a point z € P(V)) and consider its stabilizer.
If p(z) € CP*\B, then p(z) = n(a,b) where a # b. Consider the
projective bundle pulled back to CP! x CP!. The point (a, b) is off the
diagonal in CP! x CP!. so the fibre of p(V}) = P(7.O0(k,0)) is

P(O(k,0)a ®O(k,0)p). )

The stabilizer of (a,b) in SL(2,C) is on 3-dimensional, and acts on
(u,v) € O(k,0), ®O(k,0); as

(u,v) — (Au, A75v).

Thus, as long as u # 0 or v # 0, the stabilizer of the point represented by
(u,v) in the fibre in finite. Thus the generic orbit is three-dimensional.
We have implicitly just defined the divisor Y of lower-dimensional
orbits, but to be more prescise, we have the inverse image of the branch
locus
Dy = Y(B)

as one component. The other arises from the direct image construction
as follows.
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Recall that by definition of the direct image, for any open set U <
CP?,
H(U, Vi) = H(n7'(U),0(k,0))

so that there is an evaluation map
ev: H(n7Y(U), n*w) — H(n71(U), O(k,0)).

The kernel of this defines a distinguished line sub-bundle of 7* (V) and
thus a section of the pulled back projective bundleP(Vy). This copy oc
CP! x CP! in P(V}) is a divisor Ds.

Both divisors are components of the anticanonical divisor Y, and
it remains to check the multiplicity. Now let U be the divisor class
of the tautological line bundle over the projective bundle P(Vy)..The
divisor D, is a section of P(V}) pulled back to CP' x CP!, and from its
definition it is in the divisor class p*(—U) + O(k,0). Thus in P(Vy),

Dy ~ =2U + kH ®)

where H is the divisor class of the pull-back by & of the hyperplane
bundle on CPZ. Clearly, since B is a conic,

Dy ~ 2H. ©))

Now from Grothendieck-Riemann-Roch applied to the projection &, we
find ¢;(Vx) = (k — 1)H, from which it is easy to see that the canonical
divisor class is

K ~2U — (k+2)H

so since —k ~ —2U + (k + 2)H ~ D + Dy, the multiplicity in 1 for
each divisor and we can take Z = P(Vj) as an example of an equivariant
compactification to which Proposition 2 applies.

The stabilizer of a point in Z\Y is in this case the binary dihedral
group Dy, which is the inverse image in S U(2) of the group of symme-
tries in SO(3) =~ SU(2)/ £ 1 of a regular plane polygon with k sides.
Although this can be seen quite easily from the above description of the
action, there is a direct way of viewing Z\Y — P(Vy)\D; u D, as the
SL(2,C) orbit of a plane polygon.

192



Poncelet Polygons and the Painlevé Equations 193

Note that a polygon centred on 0 € C? is described by a non-null
axis orthogonal to the plane of the polygon, and by k (if k is odd) or k/2
(if k is even) equally spaced axes through the origin in that plane. Now,
given a point z € P(V;)\D; U Dy, its projection p(z) = x € P(C*)\B
is a non-null direction in C* which we take to be the axis. To find the
other axes we use two facts:

e The map s — s* from O(1,0) to O(k,0) defines a rational map
my : P(Vy) — P(Vy) of degree k.

e The projective bundle P(V,) is the projectivized tangent bundle
P(T) of CP?.

The first fact is a direct consequence of the definition of the direct image
sheaf:
H(U, V) = H' (=~ 1(U),0(k,0))

for any open set U  CP?. The second can be found in [16]].
Given these two facts, consider the set of points

my(m; ' (2)) = P(Va).

Depending on the parity of & this consists of k or k/2 points in P(T) all
of which project to x € CP?. In other words they are line through x or,
using the polarity with respect to the conic B. points on the polar line of
x. Reverting to linear algebra, these are axes in the plane orthogonal to
X.

We now need to apply Proposition 3 to this particular set of ex-
amples to find rational curves which meet the divisor ¥ = D; + D»
transversally in four points. Now if P is such a curve, then the inter-
section number P. D; < 4 so p(P) = C is a plane curve of degree d
which meets the branch conic B in 2d < 4 points, hence d = 1 or 2. We
consider the case d = 2 first. The curve C is a coniv in CP?. The set
of all conics forms a 5-parameter family and we want to determine the
4-parameter family of conics which lift to P(Vy).

Theorem 2. A conic C = CP? meeting B transversally lifts to P(Vy)
if and only if there exists a k-sided polygon inscribed in C and circum-
scribed about B.
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Proof. A lifting of C is a section P(Vy) over C, or equivalently a line
subbundle M < V; over C. Since C is a conic, the hyperplane bundle H
is of degree 2 on C, so we can write M =~ H"/? for some integer n. The
inclusion M < Vj thus defines a holomorphic section s of the vector
bundle Vi, ® H~"/? over C. But V; is the direct image sheaf of O(k,0),
so we have an isomorphism

H'(C.Vi ® H™"?) = H(C,0(k,0) @ n* (H™"?))

where C = n~!(C) = CP! x CP! is the double covering of the conic C
branched over its points of intersection with B. But it is easy to see that
n*(H) =~ O(1,1) so on C we have a holomorphic section § of O(k —
n/2,—n/2).

We have more, though, for since the intesection number—K.P =
(D1 4+ D;).P =4 and D;.P = B.C = 4, P lies in P(V})\Da, where D,
was given as the kernel of the evaluation map. It the section § vanishes
anywhere, then the section of P(V}) will certainly meet D5, thus § is
everywhere non-vanishing an O(k — n/2, —n/2) is the trivial bundle. In
particular, its degree is zero on C. Now C is a conic, so C is the divisor
of a section of 7* (H?) =~ O(2,2) and so the degree of the line bundle is
2k — 2n = 0 and thus n — k. Hence a conic in CP? lifts to P(v;) if and
only if it has the property that

O(k/2,—k/2)~O on C.

Now recall the Poncelet problem [3]: to find a polygon with k sides
which is inscribed in a conic C and circumscribed about a conic B. The
projection

n: CP! x CP! — CP?

we have already used is the correct setting for the problem.

Let (a, b) be a point in CP' x CP! and consider the two lines {a} x
CP! and CP' x {b} passing through it. The first line is a divisor of
the linear system O(1,0) and the second of O(0, 1). As we have seen,
their images in CP? are the two tangents to the branch conic B from the
point 77(a, b). Now let C be the conic which contains the vertices of the
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Poncelet polygon, and let P; = (aj,b;) € C = CP' x CP! be a point
lying over an initial vertex. The line {a;} x CP' meets C ~ O(2,2) in
two points generically,. which are Py and a second point P, = (ay, by).
The two points 7(P;) and 7(P3) lie on C, and the line joining them is
pi({a;} x CP') which is tangent to B, and hence is a side of the polygon.
The other side of the polygon through pi(P,) is 7(CP' x {b,}) which
meets the conic C at n(P3) = n(az,by). We carry on this procedure
using the two lines through each point, to obtain Py, ..., Pxy1. Since the
Poncelet polygon is closed with k vertices, we have 7(Pyy1) = n(Py).
Consider now the divisor classes P; + P;;. We have

Py + P, ~O(1,0)
Py + P3 ~0(0,1)
P3 + Py ~ O(1,0)

and Py + P41 ~= calO1,0if k is odd and ~ O(0, 1) if k is even.
In the odd situation, taking the alternating sum we obtain

Pi+ Pryr ~ O((k +1)/2, (k= 1)/2) (10)

and since (P41 = n(Py)), then Py = P or o(P;). However, in the
former case, we would have

Pi 4+ P1 ~ Pryq N0(1,0) ~ P+ P

and consequently P, ~ Py on the elliptic curve C which implies P, =
Py. But 7(Py) and n1(P,) and 7(P;) are different vertices of the polygon,
so we must have Py = oPy. This that the divisor Py + P =
a~'(n(P1)) ans so in the notation above

Pii1+ Pr~ H'? = 0(1/2,1)2).
From (I0) we therefore obtain the constraint on C
O(k/2, —k/2) ~ O (11)

195

167



168

196 N. J. Hitchin

which is exactly the condition for the conic to lift to P(Vy). A similar
argument leads to the same condition for k even, where in this case
Pry1 = Pr.

In the case that d = 1, C is a line, but the argument in very similar.
Here M =~ H" for some n and on C we have a section & of O(k —n, —n).
This time, since P.D, = 2, the line bundle is of degree 2, so k —2n = 2,
and so a lifting is defined by a section of O1 + k/2,1 —k/2onC. O

Example.

Let us now compare this interpretation with the equivariant compacti-
fication CP? of S L(2,C)/Ds discussed earlier. In the first place, con-
sider the line bundle

U=U-2H

on P(V3).Now since for any 2-dimensional vector space V* =~ V ®
A2V*, P(Vk) = P(V}), but with different tautological bundles. The
tautiological bundle for P(V}) is actually U, and so there are canonical
isomorphisms

H°(P(V3), —U) = H°(CP?,V;) = (CP' x CP',0(3,0))
~ H(CP',0(3)) = C*.

The linear system | — U| therefore maps P(V3) equivariantlu to CP?.
Since P.D; = 4 and P.D, = 0, it follows from (8] and (@), that P.H = 2
and P.U = 3, and so P.U = —1, so under this mapping the curves P
map to projective lines.

There is a more geometic way of seeing the relation of lines in CP?
to Poncelet triangles. Recall that we are viewing CP? as the space
of cubic polynomials, and CP? as the space of quadratic polynomials.
The quadraitcs with a fixed linear factor z—a describe, as we have seen,
aline in CP? which is tangent to the discriminant conic at the quadratic
(z—a)?. Thus the three linear factors of a cubic (z —a),(z—f8),(z—¥),

(=) —a)
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Now consider a straight line of cubics p;(z) = 7p(z) + ¢(z) with roots
at, beta(t) and yr. We have a 1-parameter family of triangles and

tp(a) +q(B) =0
tp(B) + q(B) = 0.

Now from these two equations

0 = p(@)q(B) — p(B)g(a) = (@ — B)r(a; beta)

where r(a,B) is a symmetric polynomial in «, 8. It is in fact quadratic
in a3, af and thus defines a conic C in the plane.

Hence, as t varies, the vertices of the triangle lie on fixed conic C, and
we have a solution of the Poncelet problem for k = 3.

5 Solutions of Painlevé VI

To find more about the connection we have just defined on Z = P(Vj)
entails descending to local coordinates, which we do next.

Consider the projective bundle P(V}) pulled back to CP' x CP!. At
a point off the diagonal (a, b) € CP! x CP!, as in (@), the fibre is

P(O(k,0). ® O(k,0)) = P(O(k,0) ® O(0,k))a

and awat from the zero section of the second factor, this is isomorphic
to
O(k, —k)qp.

Now choose standard affine coordinates (w, z) in CP! x CP!. Since
Kcpt = O(—2), we have corresponding local trivializations dw and dz
of O(—2,0) and O(0,—2). These define a local trivialization
(dw)~*/2(dz)*/* of calOk, —k, and thus coordinates

k/2

(0.2.5) = slabw) (a7
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Note that Z is the quotient of this space by the involution (w,z,s) —
(z,w,s~!). From this trivialization, the natural action of SL(2,C) on
differentials gives the action on Z:

aw+b az+b (cZer)ks
ew+d  cz+d  (ew+d)k )

onzas) -

Differenting this expression at the identity gives the tangent vector
(w7, s') corresponding to a matrix

as
w = —cw? +2d'w + b’
7= +2d7+ 0V
s' = —kd'(w—2)s

This is a/(a’, b, ¢') € TZ,,, ). Solving for (a',b’, ") gives the entries of
the matrix of 1-forms A = o~ ! as

_dw—dz  (w+2z)ds

Ay = _

"Tow—2) 2ks(w—2)
wdz — zdw wzds

A = 12

12 w—2) +ks(w—z) (12)
ds

Ay = —— 2

2 ks(w—z)

Proposition 4. The resedue of the connection at a singular point is con-
jugate to

1/4 0 1/2k 0
(O _1/4> on Dy and (0 —l/2k> on Dy

Proof. In these coordinates, s = 0 is the equation of D,. From (@), the
residue of A at s = O is

—(w+2)/2k(w—z) wz/k(w — z)
( —I/Zk(w —2) ) (w —i—ZZ)/Zk(wZ— Z)) (13)
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which has determinant — 1 /4k> and therefore eigenvalues +1/2k.

To find the rediduce at D;, we need different coordinates, since the
above ones are invalid on the diagonal. Take the affine coordinates x =
—(w+2z),y = wzon CP2. Since the holomorphic functions in w, z form
a module over the symmetrix functions generated by 1, w —z we can use
these to give coordinates in the projectivized direct image P(Vy), which
are valid for w = z. We obtain an affine fibre coordinate ¢ related to s
above by

r+w-—z
§=———.
r—w+z

Using this ans local coordinates x and u = (w — z)> = x*> — 4y on CP?
the divisor D is given by u = 0 and the residue here is

1/4 + x/2kt  x/4 + x*/4kt (14)
—1/kt —1/4 — x/2kt
This has determinant —1/16 and hence eigenvalues +1 /4. O

Remark . Exponentiating the residues we see that the holonomy of a
small loop around the divisor D or D; is conjugate to:

i 0 em/k 0
<0 —i> on D <0 ein/k) on Dy

In the dihedral group Dy < S O(3) the conjugacy classes are those of a
reflection in the plane and a rotation by 27 /k.

These facts tell us something of the structure of the divisor D;. Since
we know that the residue of the meromorphic connection at a singular
point lies in the Lie algebra of the stabilizer of the point, and this is here
semisimple, the orbit is isomorphic to

SL(2,C)/C* =~ CP! x CP"\A

where A is the diagonal. The projections onto the two factors must, by
S L(2,C) invariance, be the two eigenspaces of the residue correspond-
ing to the eigenvalues +1/4.
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Now D; = n~!(B) is a projective bundle over the conic B =~ CP!.
By invariance it must be one of the factors above. To see which, note that
from (I4)), eigenvectors for the eigenvalues 1/4 and -1/4 are respectively.

() ()

and so, from the choice of coordinates above, clearly the second repre-
sents the projection ot B. Note, moreover, that on the diagonal w = z,
the coordinate x = —(w + z) = —2z, so that x is an affine parameter

on B =~ A =~ CP!. Furthermore, when x = o0 the vector <(1)> 1S an

eigenvector of the residue with eigenvalue -1/4.

Now let us use this information to determine the solution to tyhe
Painlevé equation corresponding to a rational curve P < Z. Recall that
the curve C = n(P) is a plane curve of degree d, where d = 1 or d = 2.
As we have seen,when d = 1, any line is of this form, but when d = 2,
the conic must circumscribe a Poncelet polygon.

By the S L(2, C) action, we can assume that C meets the conic B at
the poitn x = —o0. From the discussion above, if Ay is the residue of
the connection at this point, then

(o) -5 o)

From Proposition [T} the solution of the Painlevé equation is the point y
on the curve P at which A(y) has this same eigenvector, i.e. where

Az (y) =0

Proposition 5. A line in the plane defines a solution to Painlevé sixth
equation with coefficients (a,8,y,6) = (1/8,—1/8,1/2k*,1/2—1/2k?).
A Poncelet conic in the plane defines a solution to the Painlevé equation
with coefficients (a,,7,6) = (1/8,—1/8,1/8,3/8).

Proof. The residuces on Dy and D, are given by (I4) and (I3). The
lifting of a line meets Dy and D; in two points each, so using (@) (and
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taking account of the fact that the roles of the two basis vectors ar inter-
changed), we obtain the first set of coefficients. The lifting of a Poncelet
conic meets D in four points, which gives the second set, agin from

(). o
Proposition 6. The lifting of a line in CP? to P(V}) defines the solution

y=Vx
of Painlevé VI with (a,8,y,6) = (1/8,—1/8,1/2k>,1/2 — 1/2k?).

Proof. Taking tha double covering C = CP! x CP! of the line C and the 172
coordinates w, z, s on the corresponding covering of Z, the lifted curve
P id defined locally by a function s on the curve C. in fact , as we shall
see next, s is a meromorphic function on C with certain properties.

From the comments following Theorem 2] the lifting is given by a
holomorphic section ¢ of O(1 + k/2,1 — k/2). This line bundle has
degree 2 on C, and so & vanishes at two points. Applying the involution
o, the o*¢ is a section of O(1 — k/2,1 + k/2). Considering ¢ as a
section of O(k,0) ® O(1 — k/2,1 + k/2). Considerign ¢ as a section of
O(k,0) ® O(1 — k/2,1 — k/2), teh lifting of C to P(Vy) is defined by
(€4.p5€p.a), Or in the coordinates w, z, s,

s(dw) ™ (dz)? = ¢/o*¢. (15)

Since dw~"/? and dz~'/? are holomorphic sections of O(1,0) and O(0, 1),
it follows that on C, s is a meromophic function. Now using the S (2, C)
action, we may assume that the line C is given by x = 0, which means
that C has equation

w=—z

which defines as obvious trivialization of O(k, —k) and from which we
deduce that s has two simple zeros at (a1,—4, ), (a2, —az) and two poles
at (—ay,ay), (—az,az). Using 7 as an affine parameter on C, wer obtain,
up to a constant multiple,

(z+a1)(z+ a2)
(z—a1)(z—a)

S =

(16)
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Now y = wz is an affine parameter on the line C, which meets the conic
B aty = 0,00. The lifting P meets the divisor D, where y = —a% and
y = —aj, so putting a; = i and a; = +/—x then Pm is a projective
line with a parametrization such that the singular points of the induced
connection are 0, 1, x, 00, as required for the Painlevé equation.

It ramians to determine the solution of the equation, which is given
by Az1(y) = 0. But from (I2), this is where ds = 0, and from (L6) this

is equivalent to

1 1 1 1
_ + — =0
Z+ap z—a z+a z—a
which gives
y = —22 = —ai|ay = \/}
with the above choices of ay, as. m]

Remarks.

1. By direct calculation, the fucntion y = 4/x solves Painlevé VI for
any coefficient satisfying @ + 8 = 0 and y + § = 1/2. From () this
occurs when the residues are conjugate in pairs.

2. When k = 2, we obtain (e,8,y,6) = (1/8,—1/8,1/8,3/8) which
are the coefficients arising from Poncelet conics. We shall see the
same solution appearing in the next section in the context of Poncelet
quadrilaterals.

Naturally, the solutions corresponding to Poncelet conics are more com-
plicated, and we shall give some explicitly in Section [6l Here we give
the general algebraic procedure for obtaining them.

In the case of a conic C in CP?, we have a section &, in fact a trivial-
ization, of the bundle O(k/2, —k/2) on the elliptic curve C. As in ([3)),
we still define the lifting by

s(dw) K2 (d)¥? = go*¢
but in this case & is non-vanishing. The section (dw) */? vanishes to
order k at oo € CP!, and so at the two points (o0, infty), (o0, b) where C
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meets {00} x CP'. Similarly (dz)*/? vanishes at (o0, ©), (b, 0). The
meromorphic function s can be regarded as a map oc curves

s:C — CP.

It follows that s is a meromorphic function on C with a zero of order k
at (b, ), a pole of order k at (00, b) and no other zeros or poles.

The derivative ds in invariantly defined as a section of Kg@S*KEILI ~
5*0(2) (since C is an elliptic curve and hence has trivial canonical bun-
dle). In particular ds vanishes with total multiplicity 2k. But since
(c0,a) and (a, o) are branch points of order k, ds has a zero of order
k — 1 at each of these points, leaving two extra points as the remaining
zeros. Since the involution o takes s to s~!, these points are paired by
the involution, and give a single point y € CP! which is our solution to
the Painlevé equation.

Fortunately Cayley’s solution in 1853 to the Poncelet problem gives
us means to find y algebraically. A usefull modern account of this is
given by Griffiths and Harris in [5]], but the following description I owe
to M.F. Atiyah.

Suppose the elliptic curve C is described as a cubic in CP? given by
v? = h(u), where h(u) is a cubic in polynomial and 2(0) = ¢f # 0. We
shall find the condition on the coefficients of / in order that there should
exist a polynomial g(v, u) of degree (n — 1) (a section of O(n — 1)) on
the curve with a zero of order (2n — 1) at (v,u) = (co,0) and a pole of
order (n — 2) at u = c0. Given such a polynomial,

_gvu)
s(vou) = ——=
8(=v,u)
is the function on the curve (for k = (2n — 1)) used above, and the zeros
of its derivative define the solution y(x) to the Painlevé equation. A very
similar procedure deals with the case of even k.

To find g, expand +/h(u) as a power series in z, making a choice ¢
of square root of (0):

v=co+c1u+czu2+---
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and the put

V= Co+Cri+ -+ cporu™ L

Now clearly v — vn has a zero of order n on the curve at u = 0, as

do other functions constructed from the v,;,:

2”*24_...

2n—2

V— vy =cp" + -+ copnut
u(v —vy—1) = e + - + con_3u + -

MZ(V—Vn_z) = Cn_zun-|--.._|_

n—2( -2

W =) = cu 4 A U T 4
We can then find n — 1 coefficients Ag, A1, ..., A,—> such that
gv,u) = (v —wy) + Qiu(v—vp_y) + -+ + /ln_zu"_2(v - )

vanishes at u = 0 to order 2n — 1 if and only if

Cp Cpn—1 N 6
C C e C
detM =0 where M= | ! " 3 (17)
Cn—2 Cp-3 ... Cp

This is Cayley’s form of the Poncelet constraint.

If (IT7) holods, g(v,u) is a polynomial of degree n — 1 which, upon
inspection, vanishes with multiplicity n — 2 at the inflexion point at in-
finity of the curve. Its total intersection number with the cubic C is
3(n—1) = (2n— 1) + (n — 2), so there are no more zeros. Thus the
condition det M = 0 is necessary and sufficient for the construction of
the required function s with a zero of order k at (v,u) = (co,0) and a
pole of order k at (v,u) = (—co, 0).

175 In the case of a pair of conics in the plane, defined by symmetric
matrices B and C,. the constraint is on the cubic 4(u) = det(B + uC) in
order for the conics to satisfy th Poncelet condition.

Note that

gv,u) = p(u)v + q(u)
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where p and g polynomials of degree n — 2 and n — 1 respectively. Thus

P p(u)v + q(u)
—p(u)v + q(u)
and ds vanishes if
pqv' + (p'q — pq')v = 0.

Using v> = h(u), this is equivalent to

r(u) = p(u)q(u)h' (u) +2(p(u)g(u) — p(u)q'(u))h(u) = 0

This is a polynomial in u of degree n2n — 1, which by construction
vanishes to order k — 1 — 2n — 2 at u = 0. It is thus of the form

r(u) = au® 2 (u — b)

and so y, the solution to the Painlevé equation which corresponds to a
zero of ds, is defined in terms of the ration of the two highest coefficients
of r(u). Since the solution the solution to the Painlevé equation has
singularities at the four points 0, 1, x, 00, a Mdbius transformation gives
the variable x, and the solution y(x), as:

ez — €1 b— el

X=—— y= (18)
ey — €1 ey — €1

where ey, e; and e3 are the roots of h(u) = 0.

To calculate b expalicitly is easy. Putting p(u) = po + Pyu + --- +
P, _ou" 2 and q(u) = qo + q1u + - - - g1t~ " and looking at the coef-
ficients of r(u), we find

b — pn—3 o 3q}’l—2
Pn—2 qn—1
An_3 B Ao + ez + -+ Ay_2cp

An—2 AoCp—1 + Aicp2 + -+ + 201

from the definition of p(u) and g(u). Now the coefficient 4; are the
entries of column vector A such that MA = 0. Thus in the generic case
where the rank of M is n — 3, these are given by cofactors of M. We can 176
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then write
Cn C4 2 Cn Cn—1 (&)
Cn+1 Cs Cc3
.- Con—-3 Con—4 Cn—1
Con—3 Cn+l Cn—1 Ch—2 Cp-3 o
b—— _3 (19)
Cn Cn—1 c3 Cn Cn—1 2
Cnt1 Cn C4
Con—-3 Copn—4 Cn—1
Con—3 Con—4 Cn Cn—1 Cn—2 Cl

This effectively gives us a concrete form for the solution of the Painlevé
equaton for k pdd, through we shall try to be more explicit in special
cases in the nest section. When k is even, a similar analysis can be
applied. Very briefly, if k = 2n and n < 2, then the vanishing of

C,H_] Cp e Cc3
Cn+2  Cptl ... C4
Con—1 Cn+1

is the condition for the existence of A; so that
gv,u) = (v —vps1) + Qiu(v —vy) + -+ + /ln_2u3(v —v3)
has a zero of order 2n at u = 0. The rest follows in a similar manner to
the above.
6 Explicit solutions

We shall now calculate explicit solutions to Painlevé VI with coefficients
(,B,y,6) = (1/8,—1/8,1/8,3/8) for small values of k. Clearly, from
the interpretation in terms of Poncelet polygons, we must have k < 3.
The discussion in the previous section shows that we need to perform
calculations with the coefficients of the cubic h(u) = det(b+ uC) where
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B and C are symmetric matrices representing the conics we have de-
noted with the same symbol. For convenience, we take the cubic

h(u) = (1 + (x; + x2)u) (1 + (x2 + x0)u) (1 + (x0 + x1)u)
3

=1+2s1u+ (s% + 52)u® + (5152 — 53)u (20)

where s; is the ith elementary symmetric function in xg, X1, x5.

6.1 Solutions for k = 3
For k = 3 the Poncelet constraint from (I7) is ¢o = 0, which is s, = 0
for the above cubic, and can therefore be writtne
1 1 1

—+—+—=0.

X0 X1 X
This is the equation in homogeneous coordinates (xg, x;, x2) for a plane
conic which can clearly be parametrized rationally by

1 -1
= — =—1 21
1+ " s 2 D

X0 =

The polynomial g is just g(v,u) = v — (1 + sju), and this gives
r(u) = sis3u° + 3s3u°

and hence b = —3/s. Substituting the parametrization () in (I8) and
using the fact that the roots h(u) = O are u = —1/(x; + x;) etc, gives
the solution y(x) to the Painlevé equation ad

2 3
+2 +2
yo 5042 e o 202

(s2+s+1) 25+ 1
6.2 Solutions for k = 4

The Poncelet constraing here is ¢3 = 0, which in the formalism above
is s3 = 0, that is
x=0 x1=0 x=0.
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In CP? this consists of three lines. Take the component xo = 0 and
parametrize it by
x1=1 xp=sy.

Now the polynomial g is given by g(v,u) = v — (1 + sju + Jsou°),
which yields

1
r(u) = =sis5u* + ssu’

2
and hence b = —2/s;. Substituting the parametrization, we obtain x =
5%,y = s, thus the solution to the Painlevé equation is
y(x) = Vx.

Remark. In Proposition[6] we saw that the same solution y = 4/x with
coefficients (@,8,7,6) = (1/8,—1/8,1/8,3/8) arises from taking an
curve P in P(V,) with P.Dy = P.D, = 2, and hence has holonomy in D>,
which is the quaternion group {£1, +i, +j, +k}, a proper subgroup of
Dy. Recall also that from [16], P(V2) = P(T), the projectivized tangent
bundle of CP? together with a line passing through it, or equivalently
a line with a distinguished point. Thus there is a projection also to the
dual projective plane CP?*. In other words

P(T) = {(p,L) e CP* x CP** : pe L}

with projections onto the two factors. In the terminology above, the
two corresponding hyperplane divisor classes are H and H — U. Now
the curve P which defines the solution to the Painlevé equation satisfies
PH = P.(H — U) = 1. It follows easily that P is obtained by taking a
point ¢ € CP? and a skew line M. The set

P={(p,L)e P(T):qeLand p=Ln M}

describes the rational curve P < P(T).

According to our formula, this curve must correspond to a Poncelet
conic. In act, let(p, L) be a point of P, let £ denote the pole of the line
L with respect to the conic B. The line ¢p has pole ¢, and as L varies
in the pencil of lines through p, the point g describes a conic C. If L
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is a tangent through p to the conic B, then g4 is the point of contact
Bn L. Let g and g be the two points of contact of the tangents through
p, then the conic C passes through p, g and ¢;. But pgipgq» is then
a degenerate Poncelet quadrilateral, and by Poncelet’s theorem [3]], if
there is a Poncelet polygon through one point of C, then there exists one
through each point.

6.3 Solution for k = 5
From (I7), the Poncelet constraint is

which in terms of the symmetric functions s; is

4s§ + s% — 4515253 =0 (22)
Now from (19)),
b:_C_2_3(C3—0102) :2_6(S3—|—s1sz)
3 (cre3—¢3) 53 (25152 + 53)
and using (22) this becomes 179
b= —20—23

(4s§ + 3sg)

It is convenient to introduce coordinates u, v by setting

and then the constraint (22)) becomes

2
VZW (23)

and
(u+1)(u—1)?

Gu(u+1)% + (u—1)3)
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Now 1/x; and 1/x, are the roots of the quadratic z> — uz + v = 0,
and so, using 23),

— — =zt Vi+u—ul)

and now putting
w=1+u+u' (24)

we finally obtain the solution of the Painlevé equation as

u—w-—2 1

andw? =1 +u+u"

(u—w+2)(u+w) (- 20u?

Y= (w+w—2)(u—w) (1 (3u(u+1)2—|—(u—1)2)>
Werex—( (

" (

)
)
Yu—w+2)(u+w)?
(u+w=2)u+w+2)(u—w)?
Note that (24) is the equation of an elliptic curve, so that x and y are
meromorphic functions on the curve. It is a special elliptic curve, in

fact under the Cremona transformation x; — 1/x;, the equation (22)
transforms into the plane cubic

s? — 45150 +4s3 =0

and the symmetric group S5 clearly acts as automorphism of the curve.

The study of the Poncelet constraints for smal values of k in under-
taken in [Il], and the reader will find that, apart from k = 6 and k = 8,
the formulae rapidly become more complicated. We shall only consider
now these two further cases.

6.4 Solution for k = 6
Here, from [[1]], we find that the constraint factorizes

(x0x1 4+ x1x2 + x2x0) (—X0x1 + X1x2 + X2X0)(X0X] — X1X2 + X2X0)
(xpx1 + X132 — x2x0) = 0.

The first factor represent the case k = 3 embedded in k = 6, by thinking
of a repeated Poncelet triangle as a hexagon, We choose instead the third

210



Poncelet Polygons and the Painlevé Equations 211

factor, which can be written as
1 1 1

X0 X1 X2
This is a conic, and we rationally parametrize it by setting

1
1+

1
X0 x1=—- xp=1.
S

After some calculation, this gives a solution to the Painlevé equa-
tions

Cs(l+s+57)
YT T s+ )
3
2
where x:s(s——i—)
(2s+1)

6.5 Solution for k = 8

Here, again referring to [1I], we find the constraint equation splits into
components

22, 22 22\22 22 2222 22 22 _
(=xgxT + X125 + 232) (o7 — X7¥; + 00) (Kpx) + xpx; — X5%p) = 0.

one of which is given by the equation

_|_

mkml —

1 1
T2
Yoo XN
and , parametrizing this conic rationally in the usual way with

! 1+ 52 1+ 52
X0 = x| = Xy =
0 ! 2s 2 1 —s2

one may obtain the solution to the Painlevéd equation as

45(3s> — 25+ 1)
1+ s)(1—s5)3(s%+ 25 +3)

2 4
where x = il .
1 — 52

211

YT




181

212 N. J. Hitchin
7 Painlevé curves

The examples above show that there do indeed exist algebraic solutions
to Painlevé sixth equation, for certain values of the coefficients, despite
the general description of solutions to these equations as “Painlevé tran-
scendants”. In general, an algebraic solution is given by a polynomial
equation

R(x,y) =0

which defines an algebraic curve. So far, we have only seen explicit
examples where this curve is rational or elliptic, but higher genus curves
certainly do occur. We make the following definition:

Definition 2. A Painlevé curve is the normalization of an algebraic
curve R(x,y) = 0 which solves Painlevé’s sixth equation () for some
values of the coefficients (a,f3,7,9).

Just as the elliptic curve above corresponding to the solution for
k = 5 was special, so are Painlevé curves in general. The equation (3]
was in fact found not by Painlevé, but by R. Fuchs [4], but nevertheless
falls into the Painlevé classification by its characteristic property that its
solution have no “movalble singular points”. What this means is that the
branch points or essential singularities of solutions y(x) are independent
of the constants of integration. In the case of Painlevé VI, these points
occur only at x = 0,1,00. Now if X is a Painlevé curve, x and y are
meromorphic functions on X, and so there are no essential singularities.
The function

x:X — CP!

is thus a map with branch points only at x = 0, 1, c0.

Such curves have remarkable properties. In the first place, it fol-
lows from Weil’s rigidity theorem[I7]], that X is defined over the alge-
braic closure Q of the rationla (from Belyi’s theorem [2] this actually
characterizes curves with such functions). Secondly, by uniformizing
CP"\{0,1, o0},

X~ H_/F
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where H is the upper half-plane and 7y is asubgroup of finite index in
the principal congruence subgroup y(2) < SL(2,Z). Thus, in some
manner, each algebraic solution of Painlevé VI gives rise to a problem
involving elliptic curves.

Coincidentally, the investigation of the Poncelet problem by Barth
and Michel in [[I]] proceeds by studying a modular curve. This is curve
which occurs in parametrizing elliptic curves with

e alevel-2 structure
e a primitive element of order k

In our model of the Poncelet problem, the elliptic curve is C, the level-2
structure identifies the elements of order two (or equivalently an order-
ing of the branch points of ), and the Poncelet constraint (IT)) selects
the line bundle O(1/2, —1/2) of order k on C or equivalently a point of
order k on the curve, the zero of the function s in Section[3l Choosing a
primitive element avoids recapturing a solution for smaller k.

As described by Barth and Michel, the stabilizer of a primitive ele-
ment of order k is

roo(k)z{(‘; Z)eSL(Z,Z):aEdEI(k) and czO(k)}

(25)
Now if k is odd, matrices A € ypo(k) can be chosen such that A mod 2
is any element of S L(2,Z,). Thus ygo(k) acts transitively on the level-2
structures. Consider in this case the modular curve

Xoo(k,2) = H/Too(k) N I'(2) (26)

Since —I € Tgo(k) acts trivially on H, this is a curve parametrizing
opposite pairs of primitive elements of order k, and level-2 structures.
When £ is even, however, only the two matrices

61) )
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are obtained by reducing mod 2 from I'gg(k). Thus the group has three
orbits on the level-2 structures, and the curve Xoo(k,2) has three com-
ponents each given by (26).

There is another curve in the picture: the curve Iy defined by the
Cayley constraint (I7)), with the ¢; symmetric functions of (xo, X1, x2)
as defined by (20). This is a plane curve in homogeneous coordinates
(x0, x1, x2). Barth and Michel show that a birational image of Xoo(k, 2)
lies as a union of components of IT. In the examples of Section [6] we
have already seen this curve, connected for k = 3,5 but with different
components for k = 4,6, 8.

In the algebraic construction of y in Section[3] it is clear fro (T9) that
x and y are meromorphic functions on Il, and so the Painlevé curve X
is a rational image of the modular curve. In fact, we have the following

Proposition 7. The Painlevé curve X defined by Poncelet polygons is
birationally equivalent to the modular curve H/Too(k) nT'(2).

Proof. Let Y; be the modular curve,then we already have a map f :
Y, — Xj as described above. We shall define an inverse on the comple-
ment of a finite set.

Let the Painlevé curve be defined by the equation

R(x,y) =0
and suppose (x,y) is a point on the curve such that 0R/dy # 0. Then

dy  OR/ox
dx  OR/dy

is finite, and thus we can recover the connection matrix A(z) on
CP'\{0, 1, x, 0}, its coefficients being rational in x,y,dy/dx, by us-
ing the formulae for defining the connection from the solution of the
Painlevé equation as in [8]] (cf Section 2J).

Now pull the connections back to the elliptic curve E which is the
double covering of CP' branched over the four points. The fundamen-
tal group of the punctured elliptice curve consists of he words of even
length in the generators y1,72,y3 of 71 (CP'\{0, 1, x,00}). But under
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the holonomy representation into SO(3) = SU(2)/ + 1 these gener-
ators map to reflections in a plane. Thus the even words map to the
rotations in the dihedral group, the cyclic group Z;. Around a singular
point in CP!, the holonomy is conjugate to

b 2)

and so on the double covering branched around the point, the holonomy

is
-1 0
(0 5)
and hence the identity in S O(3).

Thus the holonomy is that of a smooth connection, and so defines
an element of Hom(r;(E), Zy). This is flat line bundle of order &, and
through the constructions in Sections 4] and [l is the same bundle as
O(1/2,—1/2). We have actually made a choice here, since holonomy
is determined up to conjugation. There is a rotation in S O(3) which
takes the generating rotation of the cyclic group Zy to its inverse. Thus
X,y defines a pair of k-torsion points on the elliptic curve, and hence a
single point of the modular curve Yy = Xo(k,2). O

Remark. A straightforward consideration of the branching over 0, 1, c0

leads to the formula |
— —(p—13)?
§=7(p=3)

for the genus g of Xoo(p, 2) when p is prime (see [[I]]). Thus the Painlevé
curve can have arbitrarily large genus.
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Scalar conservation laws with boundary condition
K. T. Joseph

1 Introduction

Many of the balance lawas in Physics are conservation laws. We con-
sider scalar conservation laws in a single space variable,

us + f(u) = 0. (1.1)

On the flux function f(u), we assume either

Fu) > 0and tim LY — o (Hy)
jul=o0|ul
or
f(u) = log [ae“ + be_”] , (H»)
where a and b are positive constants such that a + b = 1. An important
special case is the Burgers equations i.e., when f(u) = ”72

Initial value problem for (L) is to find u(x, 1) satisfying (L)) and
the initial data

u(x,0) = up(x). (1.2)

It is well known that (see Lax [[8]]) solution of (I_I)) in the classical sense
develop singularities after a finite time, no matter how smooth the initial
data up(x) is and cannot be continued as a regular solution. The can
be continued however as a solutions in weak sense. However, weak
solutions of (I.I) are not determined uniquely by their initial values.
Therefore, some additional principle is needed for prefering the physical
solution to others. One such condition is (See Lax [9]]),

u(x+0,1) <u(x—0,1). (1.3)
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This condition is called entropy condition.

Existence and uniqueness of weak solution of (L)) and (I.2) satsi-
fying the entropy condition (I.3) is well known (see Hopf [2]], Lax [9],
Olenik [14], Kruskov [[7] and Quinn [13])). Hopf [2] derived an explicit
for the solution when f(u) = “2—2 and Lax [9] extended this formula for
general convex f(u).

Let f*(u) be the convex dual of f(u) i.e.,

7*(u) = max(us — f(©)). (14)
1
Vo) = juo@)dy (1.5)
0
and
Ux.) = min [uo(y) Frf <"—;y>} : (1.6)

For each fixed (x, ), there may be several minimisers yo(x, ¢) for (L.6),
define

vy (x.1) = max{yo(x,1)},yy (x, 1) = min{yo(x,7)}. (1.7)

Lax [9]] proved that, for each fixed r > 0, y; (.,7) and y; (.,7) are left
continiuous and righrt continuous respectively, and both are continuous
except on a common denumerable set of points of x and at the points of
continuity

Yo (x.1) = yg (x,1).

u(xt = (f*) (L‘)(“)) (1.8)

t

x—ﬁ()”)) |

Define

; (1.9)

u(xt,1) = () (

Clearly u(x, ) is well defined A.e. (x,) and u(x+,1) is well defined for
all (x,) Lax [9] proved the following theorem.
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Theorem 1. u(x,t) defined by (L) and (L9) is the weak solution of
(1) and [@T2) which satisfies the entropy condition (I.3).

Let us consider the mixed initial boundary value problem for (I.T)
in x > 0, ¢t > 0. We prescribe the initial data.

u(x,0) = up(x), x> 0. (1.10)

It follows from the work of Bardos et al [1]] that we really cannot impose
such a boundary condition

u(0,1) = A(f) (1.11)

at X = o, arbitarily and hope to have a solution. Bardos et al studied
this problem in several space variables by vanishing viscosity method.
For one space variable their formulation is as follows.

sup {sgn(u(0+,1) — k)(f(u(0+,1)) — f(k))} =0 aet>0
kel (u(0+,1),4(1)) (L12)

where the closed interval I(u, 1) is defined by I(u,4) = [min(u, 1),
max(u, A)]. Under the assumption f”(u) > 0, (L12) is equivalent to
saying (see Lefloch [10])

either
_ I+
u(0+,1) = A7 (1) (L13)
or
Fw0+1) <0 and f(u(0+,1)) = f(A7(1))
where
AT (f) = max{A(1), u*}, (1.14)

and u* is th solution of f’(u) = 0. There exists only the solution u*,
because of the strict convexity of f(u).

Definition. Let ug(x) be in L*(0, ) and A(t) is continuous, by a solu-
tion of (1) (LIQ) and (LII) we mean a solution in the sense of Bardos-

Leroux and Nedelec. That is bounded measurable function u(x,t) in
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x =0, t > 0 such that

JOO Jw(u¢, + f(u)gy)dxdt = 0 (1.15)
0 0

for all test functions ¢(x,t) € C£(0,00) x (0, 00), u(x,0) satisfies (LIQ)
a.e. x > 0, u(x + t) and u(x—, 1) satisfy (L3) for x > 0 and u(0+,1)
satisfies (LI3).

Bardos et al [I]] proved the existence and uniqueness of solution of
@, and (.11 (see also Lefloch [10]). We are interested in ex-
tending Lax formula (L8]) for the solution, which contains solution of a
variational inequality. This cariational inequality is not solvable explicit.
In a series of papers Joseph [3]], Joseph and Veerappa Gowda [4. [3]], an
explicit formuala is derived for the solution of (LI, (ILI0) and (LI,
generalizing theorem [II The case os two boundaries is considered in
[el.

Before teh statement of our main theorem we introduce some nota-
tions. For each fixed (x,y,7),x = 0, > 0 and @ > 0,C,(x, y, ) denotes
the following class of paths (8(s), ) in the quarter plane

D ={(z,s):2=>0,s > 0}.
Each pathe connects the point (y,0) to (x, ) and is of the form
z=p(s)

where S(s) is piecewise linear function with one line of three straight
lines of possible shapes shown in Figure, share the absolute value of
slope of each straight line is < a.

(X,t) (X,1)

(o0,t1) /

(0,t2)

(Y, 0) (Y,0)
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Let up(x) € L*(0,00) and A(z) is continuous. Let A7 (¢) be defined

by (LI4) and let

_Jo i f(u) satisfies (Hj)
_{1 if f(u) satisfies (Ha) (1.16)

For each fixed (x,y,1), x > 0,y > 0, define

Q(bx, by, bt)

ds
= min |- f(At(s))ds —i—J N (—> ds]
ﬁeCa(x,y,t){ f{s:ﬁ(x)—o} (A7(s)) {s:8(s)>0} Js

It can be shown that Q(x, y, t) is Lipschitz continous function. Let

0
O1(x,y,1) = aQ(x,y, 1) (1.18)
and .
U(x,t) = 0min [J up(z)dz + Q(x,y,1) | . (1.19)
<<00 0

For each fixed (x, t) there may be several minimisers for (LT9). Define

Yo (x,7) = min{yo(x, 1)}, vy (x,1) = max{yo(x, 1)} (1.20)

It can be shown that (see [5]), for each fixed t > 0, y, (.,#) and
yar (.,t) are left continuous and right continuous respectively, and both
are continuous except on a comman denumerable set of points of x and
at the points of continuity

y('f (x,1) = Yo (x,1)
Define
u(x,t) = Q1(x,yo(x,1),t) and (1.21)
u(xt,t) = Q1(x,y5 (x,1),1) (1.22)

Clearly u(x,1) is well defined a.e x > 0, r > 0 and u(x+,1) is well
defined for all x > 0, # > 0. Our main result is the following theorem.
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Theorem 2. Let u(x,t) be given by (LZ1) and (IL.22), then it is the
solution of (L) (LI0), (CLI3) and (I3).

Here we remark that viscosity solution of Hamilton Jacobi equation
with Neumann boundary condition (see Lions 2.

U + f(Ux) =0
U(x,0) = Up(x) (1.23)
“U(0,1) = A(2)”

is closely related to our problem. In fact the proof of theorem Pl shows
the following result.

Theorem 3. The function U(x,t) defined by

U(x,1) = min [Uo(y) + Q(x,y,1)] (1.24)

0<y<oo

is a viscosity solution of (T.23).

Here Q(x,y,1) is defined the same way a (LI7).

We arrived at these results,by first working out two examples namely
the Burgers equation [3] and the Lax’s equation [4]].

2 Burgers Equation

In this section, we conside the Burgers equation in x > 0, ¢ > 0

M2 €
ur + ? . = E”xx,

u(x,0) — wo(x), 2D
u(0,1) = (1),
Let us define
Ut = = | Vo) = = [ w2
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192 Then (2.])) becomes
U2
Ut + (7)6) = %Uxm
U(x,0) = Up(x),
U,(0,7) = A().
by the Hopf-Cole transformation

1

V=e €Y
We can linearize the problem (2.3)

Vl = %V)C)ﬁ
€V(0,1) + A(r)V(0,7) = 0,
V(x,0) = e~ U0

(2.3)

2.4)

(2.5)

When A(7) = A, a constant, the solution of (2.3) can be explicitly written

down:
-1 (X _ y)Z
l o e UO(y)+ 2t
Ve(x,f) = —— dy | +
(‘x ) (27Tt€)1/2 L ¢ y
-1 (X _y)2
o = |UoM+—F—
€ 2(A4
+J e l 2t dy + ﬁ
0 (2nte)1/2

(y+2)°

1
0 oo —_lﬂ(y—z)-i‘Uo(Y)‘*‘ 2 ]
J J e € dzdy.
0 Jy

From (2.4), we have
U¢(x,t) = —elog(VE(x,1)).

(2.6)

2.7)

Substituting 2.6)) in (Z.7), we have an explicit formula for U¢(x, 7). Us-
ing the method of stationary phase one can show that the lim._,o U®
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Scalar conservation laws with boundary condition 225
(x,t) = U(x,t) exists and is given by (L.24). The general variable
boundary data At can be treated by using a comparison theorem and
some elementary convex analysis. The details can be found in [3].

3 Lax’s equation

In this section, we consider the Lax’s equation

u; + (log [ae" + be™] ) =0, (3.1

In x > 0,7 > 0. In the case of no boundary Lax [9]] studied this example
by a difference scheme. We consider the case with boundary. Let

up ~u(kA,nA),k=0,1,2,...,n=0,1,2,... 3.2)

A being the mesh size. Let u*(x, ) be the approximate solution defined
by

”ZH = + [g(uf_y, up) — gluf, )]
& = u(k(A)) G
uy = A(nA)

where the numerical flux g(u, v) is given by

g(u,v) = log[ae" + be"]. (3.4)
Let
0 0
U = = 2 Uf = = Y uwo(jA). U =log V. (35)
j=k Jj=k

then from (3.3), we get

vitl=ave  +bV] |, n=12...k=123,...
Vo= UL, k=0,1,2, (3.6)

Ve = ety n=12,...

225

193



226 K. T. Joseph

when 1 = A(r), a constant, an explicit formula can be obtained for the
solution of (3.6) namely

( n
3 (M) armavs,
g=0 \4
n—k—1 .
V=< + > My ifn>k (3.7)
=0
n
> ( >aqb” W iny <k
\ g=0 q
194 where
.
- Ay/0
Sk = Z Cypa®d"? (Vr(l)+k72q —e€ Vn+k+172q)
q=0

k+ —1

PEET T i (n+k) isodd
r

k+ —2

% if (n+k) iseven
o {(g) Gf g<k—1
. =
TG - () ife =k
and

By retracing the transformation (EI) and using (3.7), we get an explicit
formula for U*(x,t) = —S )dy. Using Stirling’s asymptotic
formula one can study the limit, hmAHO U%(x,t) = U(x,t) and show
that U(x, ) is given by (L24)). As in the case the Burgers Equation here
agin once can prove a comparison theorem and with the help of this
comparison theorem general variable A(7) can be treated. The details
are omitted and can be found in [4]].
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4 Proof of Main theorem

The examples of last two section suggest the formula for the case of
general convex f(u).
Following Lax [9], we introduce

SSO Qi(x,y,t)e —N[uo(y)+Q(x.y.1)] dy

) = T N0 0ty @D
s N[UO (y)+Q(x’y’t)]d

fulxn = 0@ D)e RS

S e~ NUoO)+a(xy0l gy

©
Vy(x,1) = f e~ NUo(»)+0(x.y.1)ldy 4.3)
0

UN(X, l) = —% IOg V. 4.4)

where Uy(x), Q(x,y,1),01(x,y, 1) are defined in Sec[Il It is clear that

limy_ o0 un(x,1) = O1(x,y0(x,1),1) ae(x,1) 45)
limy_,oo fv(x,1) = flQ1(x,y0(x,7),1)] ae(x,1) '
where yo(x, #) minimises (LI9) and
lim Uy(x,t) = U(x,1), (4.6)
N—0
and oU
E = QI(X,)’O(XJ),[)- (47)
It can be shown that
oe} o0
J f (un¢: + fv)dxdt =0 4.8)
o Jo

for all test function ¢ € C°(0,0) x (0, 0).
Let N — o0 and use (4.3) we get from (4.8))

u(x, 1) = Q1(x,y0(x,1),1) 4.9)

solves (L) in distribution. It can be shown that u(x, 7) defined by (@.9)
satisfies initial condition (I.IQ) boundary condition (I.I3)) and entropy
condition (T.3). The details can be found in [3].
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Bases for Quantum Demazure modules-I

By V. Lakshmibai

(Dedicated to professores M. S. Narasimhan and
C.S. Seshadri on their 60th birthdays)

1 Introduction

Let g be a semi-simple Lie algebra over Q of rank n. Let U be the
quantized enveloping algebra of g as constructed by Drinfeld (cf [DI])
and Jimbo (cf [J]]). This is an algebra over Q(v) (v being a parameter)
which specializes to U(g) for v = 1, u(g) being the universal enveloping
algebra of g. This algebra has agenerators E;, F;, K;, 1 < i < n, which
satisfy the quantum Chevalley and Serre relations (cf [LI]]). Let A =
Z[v,v~!] and U:‘—r be the A-sumbalagebra of U generated by E; (resp.
F),l<i<nre 7", (here E7, F! are the quantum divided powers
(cf [)). Letd = (d,ldot,d,) € (Z7)" and V, be the simple U-module
with a non-zero vector e such that E;e = 0, K;e = v~ %e (recall that Vy
is unique up to isomorphism). Let us denote V; by just V. Let W be the
Weyl group of g.

Letwe Wandletw = s;, ...s; be areduced expression for w. Let
U,, 4 denote the A-submodule of U spanned by Fl F{',a; € Z*.

i

We observe ([L4]) that U, depends only on w and not onth reduced
expression chosen. Forw € W, let V,, 4 = U;, 46 We shall refer to
Vw.a as the Quantum Demazure module associated with w. Let wy be
the unique element in W of maximal lenght. Then V,, 4 is simply U, e.
In the sequel, we shall denote V), 4 by just V4.

Let g = s€ (3). In this paper, we construct an A-basis for V4, which
is compatible with {V,, 4,w € W}. The construction is done using the

*“Partially supported by NSF Grant DMs 9103129 and alos by the Faculty Develop-
ment Fund of Northeastern University.
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Bases for Quantum Demazure modules-1 231

configuration of Schubert varieties in the Flag variety G/B. Let Id =
Mo < p1 < Hp < p3 = wo be a chain in W(= S§3). Let y;—1 = sgu;
for some positive root 8. Let n(u;—1,4;) = (ui—1(2),B7), where 1 =
dyw; + drw,,w; and w; being the fundamental weights of s£(3). Let
denote n(u;—1,u;) by just n;. Let C = {(uo, 1,2, 133 my, mp, m3)

m m m .
1> n_ll = n_zz = n_: = O}. Given ¢ = (,uo,,u],,uz,,ug;m],mz,m3), Let

T. = My, Where r is the largest integer such that m, # 0. Given two
elements

c1 = {(to, 1, 2, 33 my, my, m3) }, ¢ = {Ao, A1, A2, A3; p1, p2, p3}

in C. let us denote (ﬂ— (resp. ) by just a; (resp. b;). We say
c1 ~ ¢, if

(1) a; = b;
(2) either

(a) ay =ay > az, 1y = /12
or

(b) a1 > ax = a3,y = A4
or

(©) ai =ax = a3

We shall denote C/ ~ by C, For § € C, we shall denote Ty = 70, c being
a representative for 6 (note that 74 is well-defined). We have (Theorems

and [7.2)

Theorem. V), has an A-basis By = {vg,0 € C} where vg = Dye, Dy

being a monomial in F s of the form F; m) infnr). Further, for w €
W, {vg|lw = 14} is an A- baszsfor Vi A-

Let B, denote Lusztig’s canonical basis for V4 (cf [L2]]). It turns out
that the transition matrix from B, to B, is upper triangular. We also give
a conjectural A-basis B, for V4 for g of other types. An element in By is
(m) F-(nr)

ir

again of the form F B e. We conjecture that the trasition matrix
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from B, to B, is upper triangular. The sections are organized as follows.
In §2, we recall some results pertaining to the configuration of Schubert
varieties in G/B. In §3, we describe a conjectural A-basis for V4 (and
also for V,, 4). In §4, we study C in detail and constuct B; and B,. In
§6 and §7, we prove the results for G = S L(3). in §8, an Appendix, we
have explicitly established a bijection between the elements of C (the
indexing set for B;) and the classical standard Young tableaux on S L(3)
of type (di,d>).

The author would like to express her gratitude to SPIC Science
Foundation for the hospitality extended to het during her stay (Jan-Feb,
1992) there, when research pertatining to this paper was carried out.

2 Preliminaries

Let G be a semi-simple, simply connected Chevalley group defined over
a field k. Let T be a maximal k-split torus, B a Borel subgroup, B © T.
Let W be the Weyl group, and R the root system of G relative to 7" . Let
R (resp. S) be the system of positive (resp. simple) roots of G relative
to B. For w € W, let X(w) = BwB(mod B) be tghe Schubert variety in
G/B associated with w.

Definition 2.1. Let X(¢) be a Schubert divisor in X(t). We say that
X () is moving divisor in X(t) moved by the simple root @, if ¢ = $,T.

Lemma 2.2 (Cf [LS]). Let X(¢) be a moving divisor in X (1) moved by
a. Let X(w) be a Schubert subvariety in X(t). Then either

(i) X(w) < X(¢) or
(ii) X(w) = X(sow') for some X(w') < X(o).

Definition 2.3. Let A be a dominant integral weight of G. Let X(w) be
a divisor on X(t). Let w = sg7, for some 3 € R*. We define my(w, 1)
as the non-negative integer my(w,7) = (w(2),8%)(= —(v(1),8*)), and
call it the lambda multiplicity of X(w) in X (7). (Here (,) is aW-invariant
scalar product on Hom(T, Gp,)).
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Lemma 2.4. Let X(¢) be a moving divisor in X(1) moved by «. Let
X(w) be divisor in X(7). Let w = sgt, 6 = sq, where B,y € R™ (note
thaty = sq(B)). Let m = my(w, 1), s = my(0,w), p = my(p, tau),r =
(B,a*). Then

(a) my(0,9) =m

(b) p=s+mr

Proof.

(@) ma(6,¢) = (6(1),7") = (6(2), (520(2)), %) = (w(A), %) = m

(b) Now sps,0(1) = s¢5,0(A) implies that sa + mB = my + pa.
Hence (p—s)a = mB—my = m(B—ra) = mra. Hence p = s+mr.

O

Lemma 2.5. Let X(0) be a divisor in X(1). Let 6 = sgT, where 3 € R™.
Let B be non-simple, say B = Zc;a;, a; € S. Then for at least one i with
c¢i # 0, we have (7(2),af) < 0.

Proof. Let m = m,(60,7). Then (7(1),5*) = —m < 0. The assertion
follows from this. O

2.6 Lexicographic shellability

Given a finite partially ordered setH which is graded (i.e., which has
an unique maximal and an unique minimal element and in which all
maximal chains m i.e., maximal totally ordered subsets of H, have the
same length), the lexicographic shellability of H (cf [B-WI|) consists in
labelling the maximal chains m in H, say A(m) = (1;(m), 22(m),...,
Ar(m)) (here r in the length of any maximal chain in H), where A;(m)
belong to some partially ordered set €, in such a way that the following
two conditions hold:

(L1) If two maximal chains m and m’ coincide along their first d edges,
forsome d, 1 = d = r, then ;(m) = ;(m’),1 <i<d.
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(L2) For any interval [x,y](= 7 € H : X = 7 > y), together with a
chain ¢ going down from the unique maximal element in H to y, there
is a unique maximal chain my in [x,y] whose label is increasing (i.e.
A1(my) < Aa(mg) < ---A(mp), t being the lenght of any maximal
chain in [x,y]) and if m is any other maximal chain in [x, y], then A(m,)
is lexicographically , A(m) (here, the label for any chain m in [x,y] is
induced from the maximal chain of H consisting of ¢, followed by m,,
followed by an arbitrary path from x to the unique minimal element of
H.)

Theorem 2.7. (cf [B-WI)) the Bruhat order of a Coxeter group is lexi-
cographic shellable.

2.8 Labelling of maximal chains in [x,y]| for H = W

We fix a reduced expression of wy,the element of the maximal length in
W and label the maximal chains in X as in [B-W||(with respect to this
fixed reduced expression for wp). Let m be maximal chain in [x,y]. Let
¢ be the (unique) chain from wq to y whose label is increasing. We take
the label for m as the induced by maximal chain in W consisting of ¢,
followed by m, followed by an arbitrary path from x to /d.

3 A conjectural Bruhat-order compatible A-basis
for Va

3.1 Letg = Lie(G). Let U, A, Uy, E;, Fi, Ki, Va, Va, Vi a etc. be as in
§1. Let 4 = 2d,w;, w; being the fundamental weights of G. We shall in-
dex that set of simple roots of G as in [Bl]. Let ¢ = {uo, 1, .., 4} be a
chainin W, i.e., {(u;) = €(ui—1) + 1 (if d, = O forr = i;, ..., i5, then we
shall work with W, the set of minimal representatives of Wy in W, Wy
being the subgroup of W generated by the set of simple reflections
{S,,l‘ =1 ,ls}) Let i = Sﬂi#i,ﬁi € R™. Let m/l(yi,l,,u,') = m;.
We set £(c) = r, and call it the length of c.

Definition 3.2. A chain c is called simple (resp. non-simple if all (resp.
some) ,B;S are simple (resp. non-simple)).
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Definition 3.3. By a weighted chain, we shall mean (c,n) where ¢ =
{uo, ...y} is a chainandn = {ny,...,n,},n; € Z*.

Definition 3.4. A weighted chain (c, c,n) is said to be admissible if 1 >

nosn s o>k
m = m = /mr/o'

Lemma 3.5. Let X(¢) be a moving divisor in X (1) moved by the simple
root a.. Let ¢ = {uo, {1, ... 1, = T} be a chain, and let ;. = spu;, Bi €
R*. Further let B, # a, and B; € S,i # r (note that we allow 3, to be
non-simple). Then either

(1) Bi = a, for some i, (or)
(2) i # a,1 < i < r,inwhich case p; > Sopi, and S < ¢, 0 <i<r

Proof. LetB; # a, 1 < i < r. We shall now show that u; > suu;, 0 <
i < r. Fori = r, this is clear (since sou, = ¢ < 7). Fori = r — 1,this
follows from Lemma [2.21 We have

(ur—2(A), ™) = (r—1(A) + my_1B,—1,a*) <0,

since (¢y—1(4),@*) < 0,and (B,_1,a*) < 0. (note that y,—| > seu,—1 =
(r—1(A),@*) < 0 ,and that (8,_1,@*) < 0,sinceB; € S,1 <i<r—1).
Hence p,—» > squy—>. In a similar way one concludes p; > squ;. The
assertion that s,u; is < ¢ follows Lemma 2.2 O

202
3.6 Let (c,n) be an admissible weighted chain. With notations and

assumptions as in Lemma [3.3] we define as admissible weighted chain
(sq(c), sa(n)) as follows:

Case 1. Let8; # a,1 <i<r. Weset

Sa/(g) = {SQ#O, SaMlls .- s Salyr = (p}
sa(n) =n

(Note that m) (Sapti—1), Sapti) = ma(ui—1,1;) (LemmaZ4 @)) and hence
(sa(c), So(n)) is admissible).
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Case 2. Let 8; = a, from some i, 1 < i < r. Let ¢ be the largest integer,
1 <t < rsuchthat 8, = a. We set

Sa(€) = {mos 1ty - -+ S pr—1 = Salls, Sallts Salli+1s+ " » Sallr = @}

and we define s, (n) = {nl,--- ,n/_,} by

N

(note that 1 > -+ > ...
1

>
1
Case[ll (here m; = m;, 1 < i <t —1,m(= (Sapi> Saplit1)) = Miz1,1 <
i<r—1).

!
1

3.7 With notations and assumptions as in[3.6] we donet by (c,,n,) the
admissible weighted chain, where

€y = (sa(C)s ptr)s e = (Sa(ﬂ)’”;)

and n). in given as follows:

Let
I — 0, if case 1 holds
- t, if case 2 holds
For i > k, let y; = 5,(B;) (note that squi 1 = Sy, Safli)-

- m(Sapo, o), if case 1 holds
n;, if case 2 holds

_ {Z”i(ﬁiﬂ*)
y =

{i >k |y #Bi}
n.o=x+y

203 Then ) is given by
n.o=x+y
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3.8 Let (¢,n) be an admissible weighted chain. Further, let ¢ be not
simple. To (c,n), we attach a canonical (not necessarily admissible)
weighted chain (6(c), d(n)) with 6(c) simple, as follows: We preserve
the above notation for c. We do the construction using induction on

r(= (e)).

Starting point of induction Letc = {(r,w)},where x(w) is a divisor in
X(t),w = s, € R*, B non-simple. (We refer to this situation as X (w)
being a non-moving divisor in X(7)). Letn = (n;), where nj < m(=
my(w,7)). By induction on dim X(7), we may suppose that X(7) is of
least dimension such that X(7) has a non-moving divisor. Let 8 = Xc;a;.
then at least for one i with ¢; # 0, we have (7(1), ) < 0 (Lemma[2.3]).
Let t be at least for one i with ¢; # 0 such that (7(2),a;") < O (the
indexing of the simple roots being as in [Bl]). Denote a; by just a; by
just a. Let supnaw = 6,9 = s,0. Then y = s4(B). Further by our
assumption on dimX(7),y € S. Hence we obtain (8,a*) > 0, say
(B,a*) =r,and B =y + ra. We set

(6(c),6(n)) = {(6,¢,7); (P1, p2)}

where p; = nj, Py = nj + a with a = m,(6, w) (lemma 2.4).

Letnow €(c) > 1. Let ¢ = {uo, 1, ..., pr b, ptic1 = Sppin 1 < i < r.
We may suppose that 8; € S,1 < i < r. For, otherwise, if i is the
least integer such that 8; in non-simple we may work with (A(n), A(c)),
(where A(c) is the chain 6(uo, - - -, u;) followed by {g+1,- -+ , -}, and
use induction on #{#, 1 < ¢ < r : B,is non-simple}. Let us denote 3, by
just B. Let B = Zc¢;a;. Since (7(2),8*) < 0, we have (Lemma[2.3] for
at least one 7 with ¢; # 0, (7(2), @]") < 0. Let i be the least integer such
that ¢; # 0 and (7(1),a}) < 0. Let us denote a; by just a. Let ¢ = s,T.
We set 3.7)

6(c) = ¢,-6(n) = n,
3.9 Given a simple weighted chain (¢, n) (not necessarily admissible)
we set

Ven = F(n,) s F.(m)e/t

i i
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where ¢ = {4 = po,...tr}, n = {ng,....,n}, B = a;,1 <t <
r, and e, is the extermal weight vector associated to u, (Note that it
79 = Id < 11 < --- < 1, = pu is anu simple chain from Id to pu,

and 7, = sp7i,Bi € S,1 < i <r thene, = Fuv) ...F("')e, where

ﬁr ,BI
ni = my(ti—1,7;) @3D)

3.10 Let (c,n) be admissible. Let us denote the unequal values in
{7, ,r}byap,---,a;sothat 1 > a; >ay > --- > ay > 0. Let

my’

io, - , i, be defined by

0

. . j . . .

i0=0,iy=r,—=a,i;1+1<j<i
mj

We set
Den = {(ar, . as); (1igs -+ s 1i,) }

Definition 3.11. Let (c,n), (¢/,n') be two admissible weighted chains.
Let D, (c',n'), if s =t and a; = ayiy = ji, pi, = 7j, 0 <1 <'s

3.12 Given pu,7 € W,uu < 7, we shall label the chain in [ut] as in@
Let C = {all admissible weighted chains}, and C = C/.. Given x € C,
let

Sy ={(c,n) € C: (c,n) is a representative of x and c is simple}
Ny = {(¢,n) € C: (c,n) is a representative of x and ¢ in non-simple}

Let us define x;, € C as follows.

Case 1. S # ¢. We set

Xmin = (Eo’ﬂo)
where (¢, n,) is lexicographically the least in S ,.
Case 2. Sy # ¢. In this case we set

Xmin = (Eo’ﬂo)

where (¢, n,) is lexicographically the least in N,.
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313 Letxe C. Let xyn = (co»1y)- Define v, € V4 as follows:

Case 1. S, # ¢. We set

Vy =V
x = Vo

Case 2. S = ¢. We set

Va = Vé(cy).6(ng)

3.14 Letxe C. Let(c,n) bearepresentative of x. Letc = (o, - -+ , ).

We define 7, = u,, where is s is the largest integer such that n, # 0
(Note that 7, is well-defined).

Conjectures 3.15.

(1) {v., x € C} is an A-basis for V4
(2) {vy:w > 7,}is an A-basis for A, w

(3) Let B, denote {v,,x € C}, and By, Lusztig’s canonical basis for V4
([L2]]). The transition matrix from By to By is upper triangular.

4 The case G = SL (3)

4.1 For the rest of the paper we shall suppose that G = SL(3). Let
us denote that elements of W by {7;,¢;,i = 0,1,2,3,j = 1,2}, where
T = Id,Tl = §51,T2 = 82851,T3 = §18281,¢2 = §152. We shall label the
maximal chains in W with respect to teh reduced expression sys2s; of

wo ([B-WI).

42 Letd = (di,dy) and 1 = dyw; + djw,. We shall suppose that
dy,dr are both non-zero (If di = 0 for instance,then we work with
{Id, 57, 5152}, the set of minimal representatives of W,(= {s;,1d}) in
W). Also, for simplicity of notation, we shall denote d; by m and d, by
n.

239
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4.3 Given a pair (p,,7) such that X(p) is a divisor in X(7), let us
denote m, (¢, T) bu just m(e, 7). We have

m, if (¢,7) = (10.71), (¢1,72) Or (¢2,13)
m(e,7) = {m+n, if (¢,7) = (71,72) or (¢1,¢2)
n, if (¢, 7) = (10,¢1), (T1,¢2) or (12,73)

4.4 We shall denote an admissible weighted chain ¢ = (uo, i1, 42, 143),
n = (ny,np,n3), where if n; = 0, i being the least such integer, then ¢
is to be understood as the chain (vo, - - ,u;—1). For instance, if n3 = 0
and ny, ny are non-zero then ¢ = (g, u1,42). If ny = 0 = ny = n3, we
shall call ¢ a trivial chain consisting of just .

4.5 We have four types of admissible weighted chains given as fol-
lows.

ny > m
m+n = n

Type I: {(70,71,72,73), (n1,n2,n3) : 1 >

3|3
IN
\%

0}

(
Type IL: {(70,¢1,71,73), (n1,m2,m3) 1 1 = 54 < 22 > 2 > 0}
Type II: {(70,71,%2,73), (n1,m2,m3) 1 1 = 7L < 22 > 22 > 0}
Type IV: {(70, 1,92, 73), (n1,m2,m3) : 1 = 70 < ;2 > 2 > 0}

206 4.6 Given

Ay = ((nos 1, 2, 13), (1, 12,13)), Mg = ((Ao, A1, A2, 13)(p1, P2, P3))

in C, let use denote T (resp. —) by just a;(resp. b;). We
have A| ~ Ay, if

(1) a; = b;

(2) (a) a; = ap > az, o = A, or
(b) a1 > ay = az, 1 = Ay, or

(©) ai =ax = a3
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We note that if (a) holds, then 1, = 75 or ¢;, and the equivalence can
hold only between elements of either Type [l and [ or Type [ and [V]
repectively if (b) holds, then A; = 7 or ¢;, and the equivalence can
hold only between elements of either Type [ and [l or Type [ and [V]
respectively.

47 Letx e C. Let xyy = (c,n) @I2). Let ¢ = (uo, 1,12, ,143),

n = (ny,np,n3), and a;, 1 < i < 3 as above. Note that if in [4.3] Pal
holds, and uy = 72(resp.¢2), then (c,n) is of Type[ll (resp Type [V). If
B holds, and u = 71 (resp.p1), then (¢, n) is of Typelll (resp. type [V)).
If 2dholds, then (c, n) is of Typel[ll

4.8 With notation as in 7] the element v, € V4 (B.13) may be ex-
pressed explicity as

FUEME™e it ¢ isof Typel

| PETI R e s of Type I
e F§n3)F§nl+"2)F§n2)e, if ¢ isof Type Il
FYOFSIEMe,if ¢ s of Type IV

(note that v, is external <= n; is either 0 or = m;, where m; = m (u;—1,
;). We shall denote {v,, x € C} by By.

4.9 Lusztig’s canonical basis for V4. An element in V4 of the form
ng)Féq)FY)e,q = p+ror Féu)Fit)Fés)e,t > u +(§ will be referred to

as a Lusztig element or just a L-element. We have e # 0 <= r < m.

Let r < m; then F( e # 0 <= ¢ < r + n (using the relation

n(q.r
Z —(g—))(r— j)F(r J)F(J) F(‘I J))

a1+ar” 2

Let now, r < m, p+r < g < r + n; then FngFfe # 0 (by
U,(¢>))-theory since K (F§4)F§r)e) = v_“ng)Fgr)e (where a = m +

241
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g — 2r, and p < a). Thus an L-element of the form Ffp)ng)FY)e (resp.

Fé”)FY)Fés)e) is non-zero if and only if r < m, and ¢ < r + n (resp.
s < n,t < s+ m). Hence if B, denotes Lusztig’s canonical basis for
V4, then

Ffp)F q)Fgr)e,p~|—r<q<r~l—n,r<m, and
(
2

(here one notes that the if g = p+r, then F fp 'F é‘I)F fr)e =F ér) F Eq)F ép Je)
Let p,q,r,p',q',r € Z*. Let

,_ @) r<mptr<qg<rin and
(P d ) <np +7 <qg <V +m

where (p, g,r) is identified with (p’,¢',7),ifq=¢ =r+p,p =7,
r = p’ (note that L is an indexing set for By).

5 A bijection between L and C

Lemma 5.1. Let (p,q,r) in L be such thatr < m, p+r < q <r+n.
Further let -, -, 4 qf be all distinct. Then precisely one of the following
holds

> 1> 4 P
M1ze=>02>2020
@1z =>L>250

q=r ptr r
Q1= =2,mm=220

Proof. We first observe that under the hypothesis that =, 24 are dis-

n
tinct, the three cases are mutually exclusive. We now dlstlngu1sh the

following two cases.

Casel. . < - +n

This 1mphes that &= > Z_ In this case 2 i;
,%r’; > £ would 1mp1y p+2r P=(> 7)) > L which is not possible,
since g = p + r. Hence elther

q—r

< , necessarily; for
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-~ > 0, in which case (??) holds or

(b) 1> <L > L2 5 (g in which case @) holds.

n mm+n
I 4 p
Case.2. m = it =
Thus in this case (1)) holds.
O

52 Let(p,q,r)in Lbesuchthatr < m,p+r >¢q >r+n We 208
now define an element 6(p, g, r) in C. Let us denote 6(p,q,r) = (c,n),
where ¢ and n are given as follows.

(a) Let £, 2 2 be all distinct.

m’n’ n

We set

(10,71,72,73), if @ of (GEI) holds
(10, ¢1,72,73), if @ of (GI) holds
(t0,¢1,72,73), if @) of (EI) holds
(
(q
(¢

il

-

rq,p), if (O of (@GJ) holds
—rnp), if @) of (GI) holds
—rp+nr), if @ of (GI) holds

(b) Let £ = 2 = £,

Then @) of B.1] cannot hold, and the cases (1)) and @) of B.1] coin-
cide.

We set
¢ = (10,71,72,73),n = (1,4, p)

(c) Let £ = 2 5 L1,

n

Then (I)) of G-Il cannot hold, and () and (@) of 3.1] coincide. We set
¢ = (10,01.¢2.713),n=(q—r,p+r7)
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(d) Let £ = 2 L,

n m
This implies that ¢ = r + p. In this case @) of 5.1] cannot hold, and
@) are mutually exclusive. We set

C =

(70,71, 72,73), if (@ of [BEI holds
(70, ¢1,92,73) if @ of BRI holds

(r,q, p), if @ of B holds
n =
(g—r,p+rr), if @ of BI holds

r _ P _ ptr
(e) Let m ~ n n+tm’

This implies that -4~ = L — 2L Then all three cases of B.1]

m+n m n+m-*
coincide, and we set

¢ = (10, 71,72,73),n = (1,4, p)

209 Remark 5.3. We observe that in all of the cases @) through (@) above,
(c,n) is of type I, IT or IV. Also, if x = (c, n), then it is easily seen that

Xmin = (¢, 7).

Lemma5.4. Let (p',q',r') in Lbe suchthatr < n,p'+r < q <r'+m.

/ q/—r’ p/ .. . .
5 ulr;her, let =, *—="- be all distinct. Then precisely one of the following
olds.

)12 > >8>0

(3) 1> q —r > p +r

The proof is similar to that of Lemma[3.1l

5.5 Let(p',q,r)in Lbe such that /' < n,p’ +r < r + m. We now
define an element 8(p’, ¢’, ') in C. Let us denote 6(p’, ¢, r') = (¢, n’),
where ¢’ and n’ are given as follows.
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(a) Let & ol

m’
(t0, 1, ¢2,73), if (@) of B4 holds

d =X (to,71,¢2,73), if @ of B4 holds
(70,71,72,73) if @) of B4 holds
(r.q'.p") if (@) of B4 holds

n'=<(qd—r.rp), if @ of B4 holds
(¢ —r.p+r.r) if @) of B4 holds

(b) LetZ = =2 2 ' We set

= (To,901,902,7'3),2/ = (r',q’,p/)

(the discussion being as in[3.2] (B))

/

, / o
(c) LetL = L 59— We set

m

¢ = (v, 1,72 m)n = (¢ =1 p 1Y)

(d) Let %l = %’ In this case, (1) of 3.4l cannot hold and () and

m

@) of 3.4 are mutually exclusive.
We set

o (to,¢1,92,3), if (@ of B4 holds
B (t0,71,72,73), if @) of B4 holds

(e) Let = =
the thre

o , ’

_q-r Qi ; o ptr

= . Th}S 1.mphes that o = T— = m+n Then all
ses of 3.4] coincide and we set

r
m
ca

d = (ro,ti.t0,13),0 = (¢ — 1. p +7.7)

Remark 5.6. In all of the cases (@) through (@) above, (¢, n’) is of Type 210
L Il or IV. Also if y = (c/,n’), the ymin = (¢, n).
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5.7 Let

Ly={(p,gr)eL:r=mp+r<q<r+n}

L={{p.,¢d."YeL:¥<np +r<qd <+ +m}
An element (p’, ¢, ") in L, will be identified with the element (p, ¢, r)
inLy,if ' =p,p'=r,q =q=r+p=r+ p'. When this happens,
we shall expressitas (p’, ¢, ') ~ (p,q,r). Let @ be as in5.2 (resp. [5.3).
We observe that if (p’,q',7") ~ (p,q.r), then 8(p’,q',7') = 0(p,q,r).
To see this, let 8(p,q,r) = (c,n), Then since qT_r = £ only (d) or @)
of 3.2l can hold. If @) of 5.2  holds, then (@) of 5.3] also holds. We have
G2@E.53@)).

¢ = (10, 71,72,73),n = (1,4, p)
d = (ro.11,12,13),0" = (¢ =1, p" + 7.7 (= (r.q.p))

Thus (¢,n) = (¢,n').
Let that (d) of 3.21hold. We distinguish the following two cases.

I p
Casel. . > © .
This implies that 1 > £ > 4 > 2 > L2 >0 and1 > L— >

o " i i’ "
_Z:; > & > 0. Hence we get (3.2/(d). 5.3(d))

¢ = (10, 71,72,73),n = (1,4, p)
d = (ro,71,12,13),0 = (¢ =¥,/ + p,¥)(= (r,q,p))
Thus (¢, n) = (¢',n’)
Case2. 2 > +
This implies that 1 > 2 > 220 > Z > 0 and 1 > Z > L >
% > 0. Hence we get (5.2 (d), 5.2/(d)
c=(t0.01,02,13),n = (q—r,p+r.r)(=(r.q.p))
d = (r0,¢1,02,73),0" = (¥, 4, p)

Thus (¢, n) = (¢.n).
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In view of the discussion above we obtain amap 6 : L — C, which
induces a map 6 : L — C in a obvious way (as above, we identify an
element (p’, ¢, ") of Lwhere ¢ = p' + 1, ¥ <n,q <r + m, with the
element (v, 4, p')).

5.8 We now define a map Z :C —> L. Let x € C. Let xpi, = (c,n). 211
We distinguish the following cases. Let n = (a,b,c). ( We follow the
convention in 44

Case 1. (¢, n) is of Type L.
This implies 1 > £ > bm+n > cn > 0. We have b > ¢ (since

m
b 4
prel ) We set

J(x):{(c,b,a) ifb>a+c

(b—c,a+c,c) ifb<a+c

a b a b—a . a
(note that p > i = o= s and hence b > a + n, since . > 1.
Also ¢ = n, since £ > 1. Thus (¢, b,a) € Ly, (in the case b > a + ¢)

and (b — c,a + c,c) € L, (in the case b < a + ¢)).

Case 2. (c,n) is of Type II. This implies tht 1 > ¢ > % > & > 0. Then
(c,a+ b,b) € Ly, and we set

Y(x) = (a,a+ b,b)

Case 3. (c,n) is of Type III. This implies that 1 >
Then (c,a + b, b) € Ly, and we set

=

SIS

=

V
o

Slo

a
m

Y(x) = (a.a + b,b)

Case 4. (c, n) is of Type IV.
This implies that 1 > ¢ > -2 >

n+m
m

> 0. Then we set (as in case

<
m

7 (¢,b,a), ifb=a+c
(b—c,c+a,c), ifb<a+c
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(note that (c,b,a) € Ly, (if b = a + ¢) and (b — ¢,c +a, c) € Ly (if
b < a+ c)). Itis easily checked that Jo@ = Id; and 90@ = Idz. Thus

we obtain

Theorem 5.9. The map 6 : L — C is a bijection

6 An A-basis for V4
6.1 Forrebbz,seZt, weset

- s

_,—m
Where for m € Z, [m] = Vv leta = a;, d = a;, where a;; =
y—y—1 J J

Let

Foia = VEoFy — FoFa.
We have ([L1]),

FMFy = v ' FouFM™Y 4y ME FM

N 1 N— _ N
FaF((I/):V lF(]yvl 1Fa+a’+v NFG’/F((}! )F(l
Hence we obtain (using ()

(N—1)

N N
F(yl FaFa/:[N_l]F((I/)Fa"i‘FaF((I/)
M—1 M M
FoF o FOY = (M = 1F FM + FOF,

Lemma 6.2. Let «, @' be as above. For t,u,v € N, we have,

F{(It)F((;)F((lv) _ Zt: (t + v-— u> F((luf(tfj))FC(lert)F((ytlfj)

Jj=t—k J

—1.

)

2)
3)

“4)
®)

where k = min(u,t). This is proved by induction on t using @)-@)

above.
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6.3 Let B, be the canonical A-basis for V, as constructed in [L2]].
Then we have ([L3]]), By = B; U B,, where

= {F f éb Fia) ,(a,b,c) € L}
= {F'F

h/ F al)e, (d,b,c) e Ly}

(here we identify Féc/)Fib/)Féal)e, with Féc)Fib)Féa)e if (a,/b, c)/ ~ (fl’, v,
¢’)). Note that if (a’,b', ') € Ly, and b’ = ¢/ +d, then Féc )Fib )Fé") -

(@) p ) p(e)
FYVFY R,

6.4 Letxe C, xpin = (c,n), and n = a, b, c. We have {@X)

Fic) Féb)FEa)e, if (¢, n) if of Type I
- Fici F%ai:ngie, if (¢, n) if of Type I

F)'F """ Fy"e, if (c,n) if of Type III

FOFPVED e, if (c,n) if of Type IV

6.5 Let us take an indexing / of L such that

(1) If (p,q,r),(a,q,b) are in Ly with a > p, then (p,q,r) preceeds
(a,q,b).

) if (p',q',7),(d,q,b") are in Ly, with ' > p/, then (p', 4, 1) pre-
ceeds (d',q',b).

Then via the bijection ¢ : C — L, we obtain an indexing J of
C induced by . Let M be the matrix expressing the elements in By as
A-linear combinations of the elements in 8B, for the indexing J of By
(resp. I of B,)

Theorem 6.6. M is upper triangular with diagonal entries equal to 1.

Proof. Let x € C,Xmin = (c,n),n = (a,b,c). We may suppose that
¢ # 0; for if ¢ = 0, then v, € B, obviously. If (c,n) is of Type II or III,
then v, € B, clearly. We now distinguish the following two cases: O

249



214

250 V. Lakshmibai

Case 1. (¢, n) is of Type L.

We have v, = FEC)Féb)Fia)e. Hence, if b > a + ¢, then v, € By,. Let
then b < a + ¢. We have (Lemmal[6.2] with @ = a1,¢’ = as,t = c,u =
b,v = a),

=Y {c + cjl — b] eI plata ple=i, )
Jj=0

: b c
(Note that (c,n) being of Type I, we have 1 > & > 2= > © > 0.

Hence b > ¢, and min (¢,b) = ¢). Now on R.H.S of @), each term

(b—1) ~(a+c)
F2 Fl

anda+c¢ > b — 1+ 1(= b). (c,n) in C corresponds to the element
(b — ¢,a + c¢,c) in L (under the indexing J (resp. I) for C (resp. L)).
Also, it is clear that all the other terms (on the R. H.S. of @)) succeed
F gb_c)F EHC) F éc) (in the indexing I for B).

n .. .
Fé)elsmLz,smcelSc<n,a+c<m—|—c(asa>m),

Case 2. (c, n) is of Type IV.
The discussion is exactly similar to that of case[Il

Theorem 6.7. B, is an A-basis for V4.

Proof. This follows fro Theorem [6.6] since By is an A-basis for v4. 0O

7 Basis for quantum Demazure modules

71 Letx € C, Xmin = (c,n), n = (a1,az,a3). Let 7, be as in 314
Then 7, is given as follows. If a; = ap = a3 = 0, then 7, = Id. Let r
be the largest integer < 3 such that a, # 0.

(1) r = 1. This implies that ¢ is of Type I or IV. We have 7, =
T1(resp.¢y) if c is of Type I (resp. IV).

(2) r = 2. This implies that T, = 1, if cis of Type I or Il and 7, = ¢»,
if ¢ is of Type Il or IV

(3) r = 3. This implies that 7, = 73.
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Theorem 7.2. Let w € W. Let B,, = {vy : 7x < w}. Then B,, be an
A-basis for Vy, 4.

Proof. Let X(¢) be a moving divisor in X(w), moved, by @. Then we
see easily that
Vw,A = U;AVQD,A ()

where U, , is the A-submodule of U generated by F,,4 € Z*. For

w = 19(= Id), the result is clear. For w = 73, the result follows from
Theorem [6.7)

(1) Let w = 71. Then @) implies that {F ") e, r € ZT} generates V,, 4.
NowFY) = 0, for f > m. Hence{F eO\r\m}lsana

A-basis for V,, 4, while B,, is precisely {F /6.0 <1< mj
(2) Letw = ¢;. The proof is similar as in ().

(3) Letw = 1 and ¢ = 71. Then we have (in view of ()), {Féq)v,v €
B} generates V,, 4. We have Féq)Fgr)e = 0,if g > r + n @9).
Hence {F, (q)F (r )e r < m,q < r+n} generates V,, 4 as an A-module.

Now, if £ .= then F(Q)F( )e = v,, where x = ¢,n,c =

m+n’ b Rithd
(t0,71,72),n = (r,q); if m+n . then FEQ)Ff Ve = vy, where
x = (en)c = (to.p1.02).n = (q — 1,r) @A). Hence we see that
B,, generates V), 4. The linear independence of B,, follows Theorem
[6.7] (since B,, < By).

(4) Letw = ¢,. The proof is similar to that in @13).

8 Appendix
We have used the results of [IEI] mainly to prove that #C = dszd, (85).

We can get around proving #C = dim(V,;), by showing that #C = #{
standard Young tableaux on S L(3) of type (m,n)}. We can then prove
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the results of §6, §7 in the same spirit as in [[LS]. In this Appendix, we
establish a bijection between C and {standard Young tableaux on S L(3)
of type (m,n)}.

81 LetG = SL(3). Let Py = {Id, s1}, P, = {ld, s2}. Let us denote
the set of minimal representatives of Wp, (resp. Wp,) in W by @ =
{©1,07,03} (resp. A = {4;,42,43}). Then O (resp. A) is totally
ordered (under the Bruhat order > ). Let 03 > 6, > 61; 43 > A, > Aj.
Let X = {63,6,,0;,43,42,4;} We have a partial order > on X given as
follows. Lets x,y € X. The x > y, if either both x,y € ® (resp. A), and
X >y, or x (resp. y) € O(resp.A), and (x,y) # (01,43). A classical
standard Young tableau on G of type (m,n) can be noted as

TITI2  T1mT21T22 " " T2p
where 7 j(resp. 7o) € O (resp. A ) and
TN 2TR2 2T ip=2T212T0n 2 2Ty

Let Y = {standard Young tableaux of type (m,n)}

216 82 Letae Y,saya = 711 TiuT21 - - - T2n. We define the integers
Ta> Gas Pas Ua» tas Sq as follows.

rg = #{T1; 1 11j = 63}

Pa = #{T1j, T 1 Ty = 62, T = A3}
Ga — Ta = #{Tok - Tox = A3 or Ao}

Uy =Ty

la = Tq + Pa

Sa = qa —Ta

Note that r, = m, g, < ry +n, 1y + pa < qq — 14 + m. Note also that

[TPt]

Tas Pas qa (t€SP. Ug, 14, S4) completely determine “a”.
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83 Themapf:Y — C.

For a € Y, we define f(a) = (c,,n,) as follows. For simplicity of
notation let us drop off the suffix ‘@’ is in r, - - s Sas C4o 1. (We follow
the convention in [£.4)) while denoting a chain (g, Q)). We first observe
that

r q q—r p+2r—q p+r s t—s u+s t
m m+n n m ‘m+nnm+n m+n m+n’

are all < 1. We now distinguish the following cases.

Casel. 1 >
We set ¢

m—+n n

m
= (To,Tl,Tz,Ta)

>-L >L>90
n=

(r.q,p)

Case 2. - +n

q I qa—r r
Nowm+n>m<:> — > -

We divide this case into the following cases.

3~

Case2(a). | > =X > L2 > fracrm > 0.

This is equlvalent to

5

t u
1=>-= = —
n m+n m

=0

We set ¢ = (70, @1, ¢2,93),0 = (5,1,1).

Case 2(b). 1 > p” > fracg—rm>=L >0
This is equivalent to

>p+2r—q>q—r

r
m n m

We set ¢ = (10, ¢1,72,73),n = (p+2r—q,q — r,r)

q—r r p+r
Case Z(C) 1 2.7 Z 0 Z e 2 0 217
This is equivalent to
1> a-r.r.p 0
T on m - n

We set ¢ = (19, 71,92, 73),n = (g — 1,1, p)
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r q P
Case 3. m+n S m’ m+n < n
I 47" 9 P 17P
NOW’ m-i-n’> m n < m+n’ and m+n < n m <
q 2 . . q 2 . . .
s < 5 Hence in this case, we have 4 —n < s < - This implies

thatg <r+ p,ie,u+s<t.
We divide this case into the following subcases.

N t u
Case3(a). 1 = 5 > el 0
We set ¢ = (79, 901,¢2,T3), n=(stu)
_t s t—s S fed
Case 3(b). +n = .. Now — o2 e = 2 ; The condition
u+t t s 1—s S
u+s < tlmphes o < (for, otherwise), & p +n > =5 > 0=

HS_T(I_S) > =2 > 2 — y 4 5 > ¢, which is not true) Hence, either.

t—s u-+s Ky
> —

1> > = > 0(or) (1)
m m-+n n
1>t—s s u~|—s>0 )
m n m-+n
Now () is equivalent to
I Al B I )
m m-+n n

and we set ¢ = (10,71,72,73),0 = (p + 2r — q,q,q — r), if (D) holds.
Similarly, @) is equivalent to

r—s

V

> >

\Y

0

S|
S

m
and we set ¢ = (70,71, ¢3,73),n = (t — s, 5,u), if (@) holds.
218 84 Themapg:C — Y.

Let x € C, xmin = (¢,n),n = (a,b,c). Set g(x) = a, where r(=
ra),q(= qa), P(= pg) are given as follows.

(r q ) _ (a’ b, c) if (Q,Q) is of Type I
’ b,a+b,c) if (¢,n) is of Type Il
( yp
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(s,t,u) = (b,a+b,c), if (c,n) is of Type III
N (a,b,c), if (

(where, recall thatu = r, t = r + p, s = g — r). Itis easily checked that
gof = Idy, fof = Idz. Thus we obtain

Theorem 5. The map f : Y —> C is a bijection.
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An Appendix to Bases for Quantum Demazure
modules-I

Let g be symeetrizable Kac-Moody Lie algebra, and U be the quantized
enveloping of g as constructed by Drinfeld (cf [D]) and Jimbo (cf [J]).
This is an algebra over Q(v) (v being a parameter) which specializes ti
U(g) forv = 1, U(g) being the universal enveloping algebra of g. This
algebra has agenerators Ej, Fi, ki, 1 < i < n, which satisfy “the quantum
Chevalley and Serre relations”. Let U* be the Q(v)-sub algebra of U
generated by E;(respF;), 1 < i < n. LetA = Z[v,v"!] and U:‘—r be the

A-subalgebra of U generated by El.(r) (resp. F1), 1 <i < n,relZt,
(here E (r), F r) are the quantum divided powers of (cf [J])). Let A be a

dominalnt, inltegral weight and V), the associated simple U-module. Let
us fix a highest weight vector e in V; and denote V4 = Uac(= U, e).
Let W be the Weyl group of g. For w € W, let ¢,, be the corresponding
extremal weight vector in V; of wight w(1). Let V,, = UTe,, Viya =
U:{ew. In [La] (see also [LLS]), we proposed a conjecture (which we
recall below) towards the construction of an A-basis for V4 compatible
with {V,, 4, w € W}. This conjecture consists of two parts. The first part
givews a (conjectural) character formula for the U™ -module V,, in terms
of certain weighted chains in W. The second part gives a conjectural
A-basis B, for V4, compatible with {V,, sw € W}. We now state the
conjecture.

Part I 1,, an indexing set for B,

Let A = Zd;w;, w; being the fundamental weights.

Admissble weighted A-chains

Let ¢ = {uo, 11, - . -1y} be a A-chainin W, i.e., uipi—1, €(p;) = €(pi—1) +
1 (ifd, = 0 fort = iy,...,i,, then we shall work with w€, the set of
minimal representatives of Wy in W, Wy being the weyl group of the
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parabolic subgroup Q, where S g = ({ay, t = i1, ,is})).
222 Let ;1 = siu;, where 3; is some positive real root. Let (u;—1 (1), 8%) =
m;.
A 1. Definition. A 1 -chain ¢ is called simple if all B’s are simple.
A 2. Definition. m By a weighted A chain we shall mean (c,n) where
¢ ={pg, - ,p,}ischainand n = {ny,...,n,},n; € 2.

A 3. Definition.A weighted A-chain (c,n) is said to be admissible if
12> >2>0

r

Let (¢, n) be admissible. Let us denote the unequal values in { ZT‘Z,

Z—’}byal,---,assothatl >a >a > >a,=0. Letip-- -, i
be defined by

N
iO = Oeis = ra_j = at,itfl + 1 <]< i[.
m;
We set
Den = {(ar,...,as); (Higs - - i)}

A 4. Definition. Let (¢, n), (¢/,n/ ) be two admissible weighted A-chains.
Let D,y = {(a1,...,as); (1 - ,,u,v)} and Do,y = {( al,--- .a));
(Tjo»---»Tj)}. Wesay (c,n) ~ ( n),if s =t and @, = a, iy = j,
i, =Tj,l <t<s

Let C, = { all admissible weighted A-chains}, and I, = C,/ ~. Let
n € I, and let (¢, n) be as representative of 7. With notations as above,

we set
s

T(n) = pi,,v(m) = Z(az — ar1)Hi, (1)

t=0
where ap = 1 and a,1; = 0 (note that 7(r) and v(rr) depend only on 7
and not on the representative chosen). For w € W, let

Lw)={rel|w=1(n)}.

A 5. Conjecture.
charV,, = Z "M
rely(w)
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Part II: An A-basis for V4 compatible with {V,, 4, w €
w}

Let 7, (¢, n) etc. be as in Part I. To (c,n) there corressponds a canon-
ical (not necessarily admissible) weighted chain (6(c),(n)) with §(c)
simple (cf [La],3.8). Let 6(c) = {0 = 74,...,7,},n = {n1, - ,n},
B: = «@;,, 1 =t > r (note that 8,’s are simple). We set

VE’E _ Fl(nr) . Fl(lnl)eg

r

A 6. Conjecture. For each 7 € I, choose a representative (c,n) for 7. 223
Then {v., : w > 7(m)} is A-basis for V,, 4.

In [Lil], Littelmann proves Conjecture 1, and as a consequence gives
a Littlewood-Richardshon type “decomposition rule” for a symmetriz-
able KacMoody lie algebras g, and a “ restriction rule” for a Levi subal-
gebra L of g which we state below.

Let 6 be a dominant integral weight and let 7 € Iy. Let (¢,n) be a
representative of 7 and let D, be as above. Let us denote

A

p(r,0) = {Z(ak — a1 (0),0 <t s}

k=t

A 7. Definition. Let A, 0 be two dominant, integral weights. Let & €
Iy. Then 7 is said to be A-dominant if 2 + p(r,6) is contained in the
dominant Weyl chamber.

A 8. Definition. Let L be a Levi subalgebra of g, and let 7 € I;. Then
7 is said to be L-dominant if p(n, 1) is contained in the dominant Weyl
chamber of L.

Decomposition rule. ([Li]) Let A, u be two dominant integral weights.
Let I(A,u) = {m €1, | nis A — dominant}. Then

VidVi= & Vi
nel(A,u)
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Restriction rule. ([Li]) Let L be a Levi subalgebra of g . Let I(A,L) =
{m €I, : nis L-dominant}. Then

respVy = 6—) Uy (n)
nel(4,L)

(here, for an integral weight 6 contained in the dominant Weyl chamber
of L, Uy denotes the corresponding simple highest weight module of L)
In [Li], Littelmann introduces operators e, f, on I, (for @ simple),
and associates an oriented, colored (by the simples roots) graph G(V,)
with I, as the set of vertices, and 7 > 7’ if 7/ = f,(n). He conjectures
that G(V,) is the crystal graph of V, as constructed by Kashiwara ([K]).
Using the decomposition rule, Littlemann gives in a new (and
simple) proof of the Parthasarathy-Ranga Rao Varadarajan conjecture.
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Moduli Spaces of Abelian Surfaces with IsogenyH

Ch. Birkenhake and H. Lange

To M.S. Narasimhan and C.S Seshadri
on the occasion of their 60th birthdays

Let (X, L) be as polarized abelian surface or type (1,7). An isogeny
of type (1,n) is an isogeny of polarized abelian surfaces 7 : (X,L) —
(Y, P) such that P defines a principle polarization on Y. According
to [H-W] the coarse moduli space A, of such triplets (X, L,n) ex-
ists and is analytically isomorphic to the quotient of the Siegel upper
half space of degree 2 by the action of I' = {M € Sps(Z) : M =
(mj) with n|my,i = 1,2,3}. A, is a finite covering of themod-
ulinpsace of principally ploarixed abelina surface as well as of the mod-
uli space of polarized abelian surface of type (1,7). On the other hand,
the moduli space of polarized abelian surfaces with level n-structure is
as finite covering of Ay ). If for example » is a prime, the degrees of
these coverings are (n + 1)(n? + 1), (n + 1) and n(n — 1) respectively

The aim of the present papert is to give explicit algebraic descrip-
tions of the moduli spaces A, (see Theorem [3.1]) and A; 3 (see Theo-
rem[6.). An immediate consequence is that the moduli spaces Aj , and
Aj 3 are rational.

An essential ingredient of the proof is the fact that the moduli space
Ajn 1s canonically isomorphic to the moduli space C} of cyclic étale
n-fold coverings of curves of genus 2. This will be shown in Section
[l The second important tool is the fact that the composition of every
C — H in Cj with the hyperlliptic covering H — P is Galois with
the dihedral group D, as Galois group (see Section[2)). Finally we need
some results on duality of polarizations on abelian surfaces which we
compile in Section @l

We would like to thank W. Barth and W.D. Geyer for some valuable
discussions.

*Supported by DFG-contract La 318/4 and EC-contract SC1-0398-C(A)
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Moduli Spaces of Abelian Surfaces with Isogeny 263
1 Abelian Surface with an Isogeny of Type (1, )

In this section we show that there is a canonical isomorphism between
the moduli space of polarized abelian surfaces with isogeny of type
(I,n) and the moduli space of cyclic étale n-fold coverings of curves
of genus two.

Let X be an abelian surface over the field of complex numbers. Any
ample line bundle L on X defines a polarization on X. In the notation
we do not distinguish between the line bundle L and the corresponding
polarization. Denote by X = PicO(X) the dual abelian variety. The
polarization L determines an isogeny

b1 : x — X, xr—>t;';L®L_1

where t, : X — X is the translation map y map y + x. The kernel K (L) of
¢y is isomorphic to (Z/mZ x Z/n,Z)? for some positive integers 1, ny
with ny| ny. We call (n1, ny) the type of the polarization. Any polariza-
tion of type (n1,ny) is the n;-th power of a unique polarizations of type
(1, 32). Hence for moduli problems it suffices to consider polarizations
of type (1,n).

From now on let L be a line bundle defining a polarization of type
(1,n). An isogeny of type (1,n) is by definition an isogeny of polarized
abelian varieties 7 : (X, L) — (Y, P) whose kernel is cyclic of order n.
Necessarily Pm defines a principal polarization on Y and ker p is con-
tained in K(L). Conversely, according to [L-BJ] Cor. 6.3.5 any cyclic
subgroup of K(L) of order n defines an isogeny of type (1,n) of (X, L).
In particular, if n is a prime number, then (X, L) admits exactly n+ 1 iso-
genies of type (1,n). According to Exercise 8.4 the moduli space
A, of polarzed abelian sufaces with isgeny of type (1,n) exists and
is analytically isomorphic to the quotient of the Siegel upper half space
hy of degree 2 by the group {M € Sp4s(Z)|M = (m;;) with n|mj,i =
1,2,}.

In the sequel a curve of genus two means either a smooth projective
curve of genus 2 or a union of two elliptic curves intersecting transver-
sally at the origin. Note that such a union E| + E» is of arithmetic genus
2. Torelli’s Theorem implies that the moduli space of principally polar-
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ized abelian surfaces can be considered as a moduli space for curves of
genus two in this sense.

Let f : C — H be a cyclic étale covering of degree n of a curve
H of genus 2. According to Hurwitz’formula formular C has arithmetic
genus n + 1 . Every line bundle / € Pic’(H) of order n determines
such a cyclic étale covering f : C — H (for an explicit description of
the covering see Section ). Two such line bundles lead to the same
covering, if they generate the same group in PicO(H ). This implies that
the (coarse) moduli space C7 of cyclic étale n-fold coverings of curves
of genus two is a finite covering of the moduli space M, of curves of
genus two. In particular C} is an algebraic variety of dimension 3. The
moduli spaces A , and Cg are related as follows.

1.1 Propostion There is a canonical biholomorphic map A,y — C}

There seems to be no explicit construction of the moduli space C7 in
the literature. One could also interprete Proposition[I.Tlas a construction
of CJ. However it is not difficult to show its existence in a different way
and thus the proposition makes sense as stated.

Proof. Step I: The map A, — Cj. Letn : (X,L) — (¥, P) be an
isogeny of type (1,n). We may assume that 7*P ~ L as line bundles.
Since (Y, P) is a principally polarized abelian surface there is curve H
of genus 2 (in above sense) such that Y = J(H), the Jacobian pf H, and
P ~ Oy(H). Note that for H = E| + E, with elliptic curves E| and E»,
J(H) = Pic’(H) ~ E| x E,. By assumption C : 7~'H € |L|. The étale
covering 7 : X — Y is given by a line bundle / € PicO(Y) of order n and
the coverin |C : C — H corresponds to /|H. Since the restriction map
Pic’(¥) = Pic’(H) is an isomorphism, the line bundle /|H is of order
n and thus 7|C : C — H is an element of C.

Step II: The inverse map A, — CJ. Let f : C — H be a cyclic
¢tale covering in C7, associated to the line bundle /5 € Pic’(H). Via the
isomorphism Pic’(J(H)) = Pic’(H) the line bundle Iy extends to a
line bundle / € Pic’(J(H)) of order n. Let 7 : X — Y = J(H) denote
the cyclic étase n-fold covering associated to I. Then L = n*Oy(H)
defines a polarization of type (1,n), since K(L) is a finite group of order
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n* (by Riemann-Roch) and contains the cyclic group kerz of order .
Hence 7 : (X, L) — (Y,Oy(H)) is an element of A, ).

Obviously the maps Ay ,) — C; and C;, — A(y,) are inverse to
each other. Finally, extending the above construction to families of mor-
phisms of curves and abelian varieties one easily sees that the maps are
holomorphic.

2 Cycli Etale Coverings of Hyperelliptic Curves

Any curve H of genus 2 (in the sense of section 1) admits a natural
involution ¢ with quotient H /¢ of arithmetic genus 0. The aim of this
section is to show that for any finite cyclic étale covering f : C — H the
composition C — H — H/u is Galois and to compute its Galois group.
We prove the result in greated generality than actually needed, since this
makes no difference for the proof.

In this section a hyperelliptic curve means a complete, reduced, con-
nected curve admitting an involution whose quotient is of arithmetic
genus zero. Let H denote a hyperelliptic curve of arithmetic genus g
over k with hyperelliptic covering H — P. Suppose f : C — Hisa
cyclic étale covering of degree n > 2. We first show that the composed
map C — P is a Galois covering with the dihedral group D,, of order 2n
as Galois group.

Let¢: H — H denote the hyperelliptic involution and 7 : C — C an
automorphism generating the group Gal(C|H). There is a line bundle
L € Pic’(H) with L" ~ Oy such that C = Spec(A) with A := Oy @
L®---@®L""" and where the Oy-algebra structure of A is given by an
isomorphism o : Oy — L". Consider the pull back diagram

Spec(c* A) =c* C —'>C = SpecA
l X
H — H
Since (*L = L~!, the isomorphism ¢ induces isomorphisms

oy=(®Il;—)o*: LV —>L""
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forv = 0,...,n— 1 which yields an Oy-algebra isomorphism A — (*A.
Hence we may identify (*C = C and j : C — C is an automorphism.

2.1 Proposition. The covering C — P is Galois with Gal(C|P,) = D,

Proof. If suffices to show jrj = 7—!. Accordings to [[EGAI], Th.9.1.4]
the automorphism 7 of C = Spec A corresponds to an Oy-algebra auto-
morphism 7 : A — A, namely

_ . 27
Z(ag,ai,...,an—1) = (ao,éay, ..., &" 1a,,_l) with & = exp <7> .

Similarly using [[EGAI], Cor. 9.1.9] the automorphism j of C corre-
sponds to the algebra automorphism j: A — A over (* defined by

j(a(),al, Ce ,an,l) = (0’0(610),0’,171(61”71), . ,0'1(611)).

We have to show that jz, j = #~!. But o, ,&" o, (a,) = £ Va,. This
implies the assertion. |

The dihedral group D, contains the involutions jr” forv =0,...,n — 1
and for even n also 4. These involutions correspond to double cover-
ings C — C, = C/jt" forv =0,...,n—land C — C' = C/72 for
even n. If C is smooth and irreducible we have for the genera gc/, and
gc’ of C, and C’

2.2 Proposition.
a) Foronodd: gc, = (g — 1)(n—1) forv=0,...,n— 1.

2
b) Forneven: (2—1)(g—1)<g, < in(g—1)forall0 <v<n—1
and g’ =5 + 1.

The proof is an application of the formula of Checvalley-Weil (see
[C-W])). We omit the details. The genus of C’ can be computed by
Hurwitz’ formula since C — C is étale.

2.3 Remark. Let H = E; + E> be a reducible curve of genus two as
in Section[Il The curve H is hyperelliptic with hyperelliptic involution
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¢ the multiplication by -1 on the each curve E;. The quotient P = H/1
consists of two copies of P; intersecting in one point. In this situation
Proposition 2.l can be seen also in the following way.

If for example the covering — H is nontrivial on each component
E;, then C consists of two elliptic curves F| and F; intersecting in n
points. We choose one of these points to be the origin of F; and F»>
the remaining intersection points are x. . .., (n — 1)x for some n-division
point x on F| and F;. The automorphism 7 : C — C defined as the
translation #, by x on each F; generates the group of covering transfor-
mations of C € H. The involution ¢ on H lifts to an involution j on C, the
multiplication by (-1) on each F;. Obviously jrj = ' ,s0 C — H/u
is a Galois covering with Galois group D,, => j, 7 >. As in the irre-
ducible case we consider the double coverings C — C, = C/jr” for
v=0,....,n—1and C — C' = C/77 for even n. Also here the result
of Proposition is valid: for example, if n is odd and the covering
C — H is nontrivial on each component, then C, consists of two copies
of Py intersection in —5— "H points, the i 1mages of kx fork = 0,. 1 .In
particular C, has arlthmetlcal genus “5—. The other cases can be worked
out in a similar way.

3 The Moduli Space A

Denote by ﬂo the open set in A; , corresponding to abelian surfaces
of type (1, n) Wlth and isogeny onto a Jacobian of a smooth curve of
genus 2. The aim of this section is to give a description of the moduli
space 5‘{(1),2. From this it is easy to see that A , is rational.

Let A, the modulo space of elliptic curves E together with a set of
four points of E of the form {+p, +p,}. Necessarily such a set does
not cotain any 2-division point of E. We write the elements of A; as
pairs (E, {£p1, £p>2}). The main result of this section is

3.1 Theorem. The moduli space ﬂ? , of polarized surfaces with an
isogeny of type (1,2) onto a Jacobian of a smooth curve of genus 2 is
canonically isomorphic to A;.
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3.2 Corollary. The moduli space A, 2y is rational.

Proof of Corollary 3.2] Via the j-invariant, U := C — {0, 1728} is the
moduli space of elliptic curves without nontirivial automorphisms. U
admits a universal elliptic curve p : & — U. Consider the quotient
p : &/(—1) — U by the action of (—1) on every fibre. And open set of

A\ can be identified with an open set of the relative symmetric product
S %(8/(—1)) over U. Every fibre of S %(8/(—1)) — U is isomorphic to
Py, 508 %(8/ (—1)) is a Pp-bundle over U. According to [G] Corollaire

1.2 the Brauer group of U is zero. Hence § %(8/ (—1)) is the projec-
tivization of a vector bundle on U and thus it is rational. m]

For the proof of Theorem 3. T we first describe the map ﬂ(()l 2~ Ay

Let (X, L, ) be an element in ﬂ(()l 2 and f : C — H the corresponding
étale double covering of a curve H of genus 2 according ot Proposition
[Tl As we say in the last section the automorphism group of C contains
the group D;. As above denote by 7 € D; the involution corresponding
to the covering C — H and j € D, a lifting of the hyperelliptic invo-
lution on H. Either from the proof of Proposition 2.2] or by considering
the ramification points of the 4-fold covering C — P; one easily sees
that the genera of the curves C/j and C/jr are 0 and 1. By eventually
interchanging the roles of j and jr we may assume that E = C/j is an
elliptic curve and C/jr = P;. In particular the curve C is hyperelliptic
and we have a commutative diagram

C——EFL

]

H—— P

We can choose the origin in E in such a way that (-1) is the involution
on E corresponding to the covering £ — P, so that the ramification
points of E — P are the 2-division points of E. From the commutative
diagram we see that the 4 ramification points py,...,ps € E of the
covering ¢ — E are different from the 2-division points of E. Since the
involutions j and T commute and 7 is a lifting of (-1) on E, the involution
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(-1) acts on the set {pi,..., ps}. Hence we may assume that p3 = —p,
and ps = —p>. Now define the map

e 5‘1(()1,2) — A, (X, L) — (E, {£p1, £p2}).

Since E and the set {+p, +py} can be given via algebraic equations
out of the covering C — H, the map ¢ is holomorphic and it remains to
show that it admits an inverse.

Let (E, {£p1,£p>2}) € A;. Note that E admits exactly four double
coverings ramified in +p; and =+ p», since the line bundle Og(p; + p2 +
(—=p1) + (—p2)) admits exactly 4 square roots in Pic>(E). They can be
given as follows: Let E be given by the equation y> = x(x—1)(x—a) and
choose as usual the origin to be the flex at infinity. Then the nontivial 2-
division points of E are (x,y) = (0,0), (1,0), (a,0). Write p; = (x;,y;)
for i = 1,2 and consider the double coverings D; — P,i = 0,...,3,
defined by the equations

Vg = x(x = D)(x = a)(x = x1)(x — x2)
y%zx(x—Xl (x — x2)

3= (x = 1)(x—x1)(x = x2)

3= (x —a)(x — x1)(x — x2)

Finally denote by C; the curve corresponding to the composition of the
function fields of E and D;. Then we have the following commutative
diagram

Ci—=D;

L

E——P

According to Abhyhankar’s lemma C; — E is not ramified over the
2-division points of E, hence Cy, ... C3 are exactly the four double cov-
erings of E ramified in +p; = (x1, £y;) and p» = (x, +y2). Moreover
Dy is of genus 2 and Dy, Dy, D3 are genus 1 and C;|P; is Galois with
Gal(C;|Py) = Dy =< jj;,7; > where j; and 7; are the involutions corre-
sponding to C; — E and C; — D, respectively. The third involution in
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Gal(C;|Py) is ji7;. The corresponding curves D} = C;/ji7; are given by
the equations respectively

zé = (x—x1)(x —x2)

2= (x—1)(x—a)(x—x)(x—x)
7 = x(x —a)(x — x1)(x — x2)

2 = x(x — 1)(x — x1)(x — x2)

Hence Cj is the only covering of E ramified in +p; and +p, admitting
an étale double covering of a curve of genus 2 in this way. So the data
(E,{+p1, £p>}) determine uniquely an element of C2, namely Cy —
Dy. Let (X, L, ) denote the corresponding element of &1[(1)’2 and define a
map

p: A = A, (E(pitp)}) — (X.Lo).

Obviously ¢ is holomorphic and inverse to . This completes the proof
of Theorem[3.1]

The above proof easily gives another description of the moduli space
ﬂ?a. Let H3(D;) denote the moduli space of isomorphism classes of
curves of geneus three given by the following equation

¥ = (@ =D —a) (=B~ ) (1)

with pairwise different ,8,y € C* — {1}. Every curve in Hz(D,) is
hypereliptic and its automorphism group contains D, = {x — +x,y —
+y} which explains the notation.

3.3 Proposition There is a canonical isomorphism ﬂ?l,z) ~ Hz(D»).

Proof. Let (x,L,7) € ﬂ?’z and C — H be the associated étale double
covering in C%. As we saw in the proof above the curve C is hyperel-
liptic. Moreover Aut(C) contains D, according to Proposition 2.1l It
is well known (see e.g. [I]) that every hyperelliptic curve C of genus
three with D, < Aut(C) admits an equation of the form (I). Hence the
assignment (X, L, p) — C gives a holomorphic map .?1(1)72 — H;3(Dy).
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For the inverse map suppose C € H3(D,) is given by an equation
(. The involution (x,y) — (—x, —y) induces the double covering C —
H, where H is given by the equation v’ = u(u—1)(u—a)(u—pB)(u—7y).
It is easy to see that C — H is an element of C% and the assignment

C — {C — H} defines a holomorphic map H3(D,) — C5 ~ ‘(ﬂ(()l,z)
0

which in inverse to the map ﬂ( 1)~ H;(D,) given above. ]

3.4Remark. LetU = {(a,8,y) € (C*—{1})? 1@ # B # v # a}. The
moduli space H3(D;) is birational to the quotient of U by a (nonlinear)
action of the group Z, x S4. As a consequence of Corollary [3.2] the
quotient U /Z, x Sy is rational, which seems not be known from Invariant
Theory.

4 Remarks on Duality on Polarized Abelian Sur-
faces

In this section we introduce the dual of a ploarization of an abelian sur-
face and compile some of its properties needed in the next section. The
results easily generalize to abelian varieties of arbitrary dimension.

Let (X, L) be a polarized abelian surface of type (1,d). Recall that
the polarization L induces an isogeny from X onto its dual ¢; : x —
X.x — *L® L. Its kernel K(L) is isomorphic to the group Z/dZ x
Z/dZ.

4.1 Proposition. There is a unique polarization L on X characterized
by the following two equivalent properties:

i gil=11 and i) ¢jpr =d - 1y
The polarization L is also of type (1,d).

Proof. The equivalence i) <= ii) follows from the equation Pori =
@r¢; ¢, since the polarization L and the isogeny ¢; determin each other
and gy = ¢ (see Section 2.4). The uniqueness of . follows from
ii) and again, since L and ¢ ; determine each other.
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For the existence of I note that gozl exists in Hom()? ,X) ® Q since
@1, is an isogeny. By [[L-Bl| Proposition 1.2.6 ¢ = dgozl : X — Xisan
isogeny. We have

Qyrr = Yory = gd = dy. (1)
According to Lemma 2.5.6 there exists a polarization L € Pic(X)
such that L¢ = ¢*L and hence
QurL = Pia = dpj.
Together with () this implies = ¢; and thus ¢;¢; = d-1x. Moreover
ii) implies that L is of type (1,d). O
In the next section we need the following example of a pair of dual
polarizations.

4.2 Example. Let E be an elliptic curve and Z the polarization on
E x E defined by the divisor E x {0} + {0} x E + A, where A denotes
the diagonal in E x E. If we identity as usual E = E via %0 (0)» then
we have for the dual polarization = on E x E

an

= Opxs(E x {0} + {0} x E + A),

where A denotes the antidiagonal in E x E. To see this note that = can be
written as Z = pyOg(0) + p5Og(0) + a*Og(0) where p; : E x E — E
are the projections and @ : E x E — E is the difference map a(x,y) =
x —y. Hence we have for oz : E X E - E X E

Q= = D190, (0)P1 + P2P0,(0)P2 + AP0, (0)@
(0 0y, (0 0y, (1 -1\ _(2 -l
\0 1 0 1 -1 1) \-1 2

Similarly, if ¥ denotes the polarization defined by the divisor E x {0} +

{0} x E + A, then gy = (% ;) This implies

(21 2 -1 3.1
PrP= =11 » 1 2 )= EXE-

272



Moduli Spaces of Abelian Surfaces with Isogeny 273
Since both polarizations are of type (1,3), Proposition 1] gives ¥ = E.

Let C be a smooth projective curve and (J, ®) its canonically prin-
cipally polarized Jacobian variety.

4.3 Proposition. For a morphism ¢ : C — X the following statements
are equivalent

i) (p*)*0 = L
ii) ¢«[C] = [L] in H*(X,Z).
Both conditions imply that ¢ is birational onto its image.

Here [C] denotes the fundamental class of C in H>(C, Z). Similarly
[L] denotes the first Chern class of L in H*(X, Z).

Proof. Identify J = J via @g. Condition i) is equivalent to

P = Per)xe = PF¢"
By the Universal Property of the Jacobian ¢ extends to a homomorphism
from J(C) to X also denoted by ¢. According to Corollary 11.4.2
the homorphisms ¢* : X — J(C) and ¢ : J(C) — X are related by
® = —¢*. Hence ¢; = ¢p.

Let 6(¢(C), L) and 6(L, L) denote the endomorphisms of X associ-
ated to the pairs (¢(C), L) and (L, L) induced by the intersetion product
(see [L-B] Section 5.4). Applying [L-B] Propositions 11.6.1 and 5.4.7
condition i) is equivalent to

_ (L?)
8(p(C).L) = —¢ppr = —¢ppr = —d - Ix = ——~1x = 6(L, L).
According to [[L-B]] Theorem 11.6.4 this is equivalent to [¢(C)] = [L].
Since L is of type (1,d) and hence primitive, i) as well as ii) imply that
¢ is birtional onto its image. Hence ¢, [C]| = [¢(C)]. i

S Abelian Surfaces of Type (1,3)

Recall that ﬂ(()l 3 © A(1,3) is the opemn subset corresponding to

abelian surfaces X of type (1,3) with an isogeny onto a Jacobian of
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a smooth curve of genus 2. In this section we derive some properties of

the elements of ?((()13) .

Letn : (X,L) — (Y,P) ~ (J(H),O(H)) be an element of ﬂ(()l 3
corresponding to the cyhclic ’etale 3-fold covering f : C — H of a
smooth curve H of geneus 2 (see Proposition[.I)). According to Propo-
sition 2] the Galois group of the composed covering C — H — P
is the dihedral group D3 generated by an involution j : C — C over
the hyperelliptic involution ¢ of H and a covering transformation 7 of
F : C — H. According to Proposition 2.2 the involutions j, jr, jr> are
elliptic. Denote by f, : C — E, = C/jr¥ the corresponding coverings.
The automorphisms j and 7 of C extend to automorphisms of the Jaco-
bian J(C) which we also denote by j and 7. For any point ¢ € C we
have an embedding

@ :C—J(C), p~—Oc(p—c).

Since the double coverings f, : C — E, are ramified, the pull back ho-
momorphism E, = Pic’(E,) — Pic’(C) = J(C) is an embedding (see
Proposition 11.4.3). We always consider the elliptic curves E, as
abelian subvarieties of J(C). Then the followind diagram commutes

C(—>J
\\ / (1)
(1+,7)

for v = 0,1,2 and any ¢ € C. Since 7(1 + jr) = (1 + j©'* 1)1, the
automorphismt of J(C) restritcs to isomorphisms

T:E, > E,

forve Z/3Z.

The curve C is containde in teh abelian surface X and generates X
as a group, since L = Ox(C) is simple. So the Universal Property of the
Jacobian yields a surjective homomorphism J(C) — X, the Kernel of
which is described by the following
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5.1 Proposition. 0 — E,, x E, Pt J(C) —» X — 0 is an exact
sequence of abelian varieties for v € z/3Z.

Here p; : E, x E, — E, denotes the i-th projection for i = 1,2.
Forthe proof of the proposition we need the following

5.2 Lemma. Fora general c € C either h°(O¢(2c + jc + jrc)) = 1 or
(0. (2¢ + je + jr?c)) = 1.

Proof. According to Castelnuovo’s inequality (see [ACGH] Exercies
C-1 p.366) C is not hyperelliptic. We indentify C with its image in
P3 under the canonical embedding. Assume h°(Oc¢(2¢ + jcjrc)) =
h2(Oc(2¢ + jejr*c)) = 2 forall ¢ € C. Denote P, = span(2c, jc, jc)
and P, = span(2c, jc, jr*c) in P3. According to the Geometric Riemann-
Roch Theorem (see [ACGH] p.12) the assumption is equivalent to

dimP, = dim P, = 2.

For any p € C denote by T,C that tangent of C at p in P3. Applying the
Geometric Riemann-Roch Theorem again, we obtain

4 — dimspan(T.C, T;.C) = h°(O.(2¢ + 2jc)) = h’(Og,(2m(c))) = 2.
Since h°(Oc(2¢+2jc)) = 2 by Clifford’s Theorem, dim span(7.C, T;.C) =
2. On the other hand, since a general ¢ € C is not a ramification
point of a trigonal pencil, we have h°(O.(2¢ + jc)) = 1 and thus dim
span(T.C, jc) = 2. Hence

P. = span(c, je,T.C) = span(c, jc,T;C) = Pje.
Similarly we obtain P, = P;.C. Since deg C = 6, this implies

P. N C = {2¢,2jc, jrc,7*c} and P.n C = {2¢,2jc, jr*c,7c}.

In particular P, = span(T.C,T;C) = P.. But then the plane P, con-
tains more than 6 points of C, a contradiction. |

275



237

276 Ch. Birkenhake and H. Lange

Proof of the Proposition. It suffice to prove the proposition for v = 0.

Step I: The map p; + 7p; is injective. According to Lemma 5.2 we
may assume h°(2¢ + jc + jrc) = 1 (if i°(2¢ + jc + jr*c) = 1, then
we work with v = 2 instead of v = 0). We have to determine the points
P, q € C satisfying the quation

(1 + j)Cl’c(p) + T(l + j)aj‘rzc(Q) = 0.

Here we use the fact that Eg = (1+ j)a.(C) = (1+ j)%zc (C) according
to diagram (). Since 4°(2c + jc + jrc) = 1, the above equation is
equivalent to teh following identityh of divisor on C.

p+jp+ 719+ Tjg =2+ jc+ jrc.

But the only solution are (p, ¢) € {(c,7%c), (c, jt’c), (je,7%c), (je, jr’c)},
all of which represent the point (0,0) € Ey x Eg = (1 + j)a.(C) x (1 +
J)a@j2.(C). Hence p; + 7p; is an injective homomorphism of abelian
varieties.

Step II: The sequence is exact at J(C). The homomorphism J(C) —
X fits into the following commutative diagram

Where Ny is the divisor norm map associated to f : C — H and g is
an isogeny of degree 3. Since the kernel of N consists of 3 connected
components,the kernel of J(C) — X is an abelian surface. Hence it
suffices to show that N¢(p; + 7p2)(E, x E,) = 0. But

Ny(1+jr") = (14 70) (1 + jr)
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= (4147 +j+ jr+ j17)

is the divisor norm map of the covering C — P; and hence is the zero
map. O

The Proposition implies that the images of E, x E, in J(C) coincide
for v = 0, 1, 2. Therefore it suffices to consider the case v = 0.

The automorphism 7 of J(C) is of order 3 and induces the identity
on J(H) . So by diagram (2)) it induces the indentity on X. Hence there
is an automorphism T of Ey x Eq of order 3 fitting into the following
commutative diagram

pi+Tp2
0——=Ey x E

|

pi+Tp2
0——=Ey x E

5.3 Lemma. T = (0 1)

1 -1

Proof. Since 7 is a covering transformation of the 3-fold covering f :
C — H, it satisfies the equation 727 + 1 = 0 on im (Ey x Eg) <
ker Ny < J(C). So in terms of matrices we have p; + 7p, = (1,7) =

(1,—1 — 7%). An immediate computation shows that 7 = <(1) :i) is
the only solution of the equation (1,7)T = 7(1, —1 — 72). m]
The automorhism 7" restricts to isomorphisms
Eo x {0} 5 {0} x Eg 5 AL E x {0}

where A denotes the diagonal in Eg x Eg. Hence p; + 7p, maps the
curves Eg x {0}, {0} x Ep and A onto Ey, E| and E, respectively.

5.4 Lemma. The canonical principal polarization ® on J(C) induces a
polarization E of type (1,3) on Ey x Eo which is invariant with respect
to the action of T. Moreover E = [Eg x {0} + {0} x Eo + Al is H*(Eq x
Eo,Z).
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Proof. The dual of the divisor norm map Ny is the pull back map f*
(see [L-B]] 11.4(2)). So dualizing diagram () above we get

Denote by P the canonical principal polarization of J(H). Since (f*)® =
3P and g is an isogeny of degreee 3, the induced polarization (*® on
X is of type (1,3). According to Proposition 3.1 and Proposi-
tion 12.1.3 (Ex x Ep,X) is a pair of complementary abelian subvari-
eties of J(C). Hence by Corollary 12.1.5 the induced polarization
E:= (p1 + mp2)*@®on Ey x Ej is also of type (1,3). moreover E is in-
variant under 7', since the polarization ® is invariant undert 7. It remains
to prove the last assertion.

It suffices to prove the equation in the N’eron-Severi group. NS(E( x
E)) is a free abelian group generated by [Ep x {0}], [{0} x Eo], [A], and,
if Ey admits complex multiplication, also the class [I'] of the graph I of
an endomorphism y of Ey. Since = is invariant under 7" and T permutes
the curves Ep x {0}, {0} x Ej andA, we have

2 = a([Eo x {0}] + [{0} x Eo] + [A]) + b[T]

for some integers a, b.
Assume b # 0. Then necessarily [I'] is invariant with respect to the
action of 7. Since ({0} x Ep -I') = 1, this implies that also

1= (Eo x {0} -y) = (A-T).

on the other hand (Ep x {0} -T') = degy and (A -T') = number of fixed
points of y. But on an elliptic curve there is no automporphims with
exactly one fix point, a contradiction. So b = 0.
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Since the polarization = is type (1,3) and thus
6 = (2) = a*(Eo x {0} + {0} x Eg + A)? = 6a°,
this implies the assertion. O

If we identity J(C) and E x Ey with their dual abelian varieties, the
map (p1 + 7p2)” is a surjective homomorphism J(C) — Ey x Ey. The
composed map

aC:C&J(C)MonEO

is called the Abel-Prym map of the abelian subvariety Eox Ey of (J(C), ®).
Recall from Example 2] the = = [Ey x {0} + {0} x Eo + A] is the dual
polarization of E.

5.5 Lemma. a. : C — Ey x E is an embedding and it image a.(C)
defines the polarization E.

Proof. According to Corollary 11.4.2 we have a} = af(p1 +
Tp2) = —(p1+71p2) : EXE — J(C). Hence (af)*0® = (p1+1p2)*0® =
E. So Proposition 3] implies that a, is birational onto its image and
aex[C] = Z. It remains to show that a.(C) is smooth. But by the

adjunction formula p,(a.(C)) = (E—;) +1=4=p,(C). o

Recall that K(é) is the kernel of the isogeny ¢z : Egx Eq — Eox Ej.

According to Example 4.2 = = <? ;) and hence

[

K(E) = {(x,x) € Ey x Ey:3x =0}.

Consider the dual T of the automorphism 7 of E x E as an automorphism
of E x E. From Lemmal[5.3| we deduce that

S~ (0 1
= (54
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Moreover the polarization = is invariant under 7, i.e. T*E = =. This
follows for example from

0z =3¢z =3¢ 0. =3Tez'T = TeeT = ¢

Denote by Fix T the set of fixed points of T. We obviously have
FixT = K(Z) = {(x,x) € Eg x Eo : 3x = 0}.

This shows that K (Z) is the set of those points y if Eg x Eq, for which
the translation map ¢, commutes with 7'. This is the essential argument
in the proof of the following

5.6 Lemma. |Ey x {0} + {0} x Ey + A| is the unique linear system
defining the polarization Z on which induces the identity, i.e. T restricts
to an automorphims of every divisor in |Ey x {0} + {0} x Eo + A.

Proof. Let D any divisor defining the polarization Z. We first claim that
in 7*D = D, and the eigenvalue of the corresponding action on the
sections defining D is 1, then T induces the identity on the linear system
ID|. Forany y € K(2) = Fix(T) we have f*t;D = tyD = 1;D. The
Stone-vonNeumann Theorem implies that translating D by elements of
K (é) leads to a system of generators of the projective space |D|. So T
acts as the identity on the linear system |D|. This proves the claim.

In order to show that |[Eq x {0} + {0} x Ey + A| is the only linear
system defining = on which T acts as the identity, note first that T* (Eg x
{0}+{0} x Eg+A) = Egx {0} +{0} x Eg+A. Moreover the eigenvalue
of the corresponding action the section defining Ey x {0} + {0} x Eg+A
is 1. Any linear system on Ey x Ey defining Z contains a divisor of the
form ¥ (Eq x {0} 4+ {0} x Ey+A) for some z € E( x Ey. Since no group
of translations acts on the divisor Eyp x {0} + {0} x Ey + A itself, the
divisor £ (Eg x {0} 4+ {0} x Eo + A) is invariant under T if and only if
z€FixT = K(E). This completes the proof of the lemma. o

280



Moduli Spaces of Abelian Surfaces with Isogeny 281
5.7 Lemma.

a) For any c € C there exists a point y = y(C) € Ey x Eq uniquely
determined modulo K(Z) such that tja.(C) € |Eq x {0} + {0} x
Ey + A|.

b) The set {t;, .a.(C)|x € K(2)} does not depend on the choice of c.

Proof.

a) According to Lemma the divisor a.(C) is algebraically equiva-
lent to Eg x {0} + {0} x Ey + A. Hence there isay € Ey x Ey
such that the divisors #ja.(C) and Eg x {0} + {0} x Eq + A are lin-

early equivalent. The uniqueness of y modulo K (é) follows from the
definition of K(E).

b) Varying ¢ € C, the subset {rfa.(C)|c € C} of |[Eg x {0} + {0} x
E + A| depends continuously on ¢. On the other hand, the curves in
{tya.(C)|c € C} differ only by translations by elements of the finite
group K(Z). Hence the set {7, ,ac.(C)|x e K (2)} is independent of
the point c. |

6 The Moduli Space &’(‘()1 )

In this section we use the results of §3lin order to give an explicit de-

scription of the modulo space ﬂ?l 3)-

Let (X,L,n) be an element of ‘7((()1 3) with corresponding étale 3-

fold covering {C — H} € Cj. The hyperelliptic covering H — P,
lifts to an elliptic covering C — E. The elliptic curve E is uniquely
determined by C — E. The elliptic curve E uniquely determined by
C — H. Let E denote the polarization on £ x E defined by the divisor
E x {0}|{0} x E + A. According to Lemma [5.3] and 5.7] there is an
embedding C — e x E uniquely determined module translations by
element s of K(Z) whose image is contained in the linear system |E x
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{0} + {0} x E + A|. On the other hand, consider the automorphism

-1 -1
automorphism of C which coincides with the covering transformation
of C — H. Since Fix T = K(Z), this implies C 1 K(Z) = .

Let M denote the moduli space of pairs (E,C) with E an elliptic
curve and C a smooth curve in the linear system |E x {0} + {0} x E +A|
modulo translations by elements of K(Z) such that C n K(Z) = (.
Using level structures it is easy to see that M exists as a coarse mouli
space for this moduli problem.

Summing up we constructed a holomorphic map  : ﬂ(()l 3 M.

— Mis an isomorphism of algrbraic varieties.

T = ( 0 1 ) of E x E. According to Lemma [5.6] it restricts to an

6.1 Theorem. i : ﬂ(()lﬁ)
Proof. Tt remains to construct an inverse map. Let (E, C) € M. Accord-
ing to Lemma [3.6] the automorphism T of E x E acts on every curve of
the linear system. In particular T restricts to an automorphism 7 of C
which is of order 3, since C generates E x as ga group. Moreover 7 is
fixed point free, since C N Fix T = . So 7 induces an étale 3-fold cov-

ering C — H corresponding to an element (X, L, ) € &Zl(()m). It is easy

to see that the map M — ﬂ(()l 3 (E,C) — (X, L,n) is holomorphic and
inverse to . o

6.2 Corollary. Ay 3)is a rational variety.

Proof. Tt suffices to show that the open set M’ = {(E,C) e M : E
admits no nontrivial automorphisms} is rational.

The opent set U = C — {0, 1728} parametrizing elliptic curves with-
out nontrivial automorphisms admit a universal family & — U. Con-
sider the line bundle )gx,&(E x4 {r} + {1} X & + A) on the fibre
product p : & xy & — U where A denotes the relative antidiagonal.
According to Grauert’s Theorem p.Ogx ,&(E xy {0} + {0} xy E+ A)
is a vector bundle of rank 3 over U. The corresponding projective bun-
dle Py := P(p«Ogx,s(E xy {0} + {0} xy & + A)) parametrizes the
linear systems |E x {0} + {0} x E + A|. By construction M is an open
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subset of the quotient Pyy/K(E), where K(Z) acts as usual on the fibres
of Py — U. Since every vector bundle on U is trivial, Py ~ P2 xU
and Py/K(Z) ~ P?/(X/3Z x Z/3Z) x U, which is rational by Liiroth’s
theorem (see [G-H] p. 541). O
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Instantons and Parabolic Sheaves

M. Maruyama

Introduction

245 S. Donaldson [[I]] found a beautiful bijection between the set of marked
S U(r)-instantons and the set of couples of a rank-r vector bundle on
Pé and a trivialization on a fixed line. Then, based on a fixed line.
Then, based on Hulek’s result in [3]], he concluded that the moduli space
of marked S U(r)-instantons with fixed instanton number is connected.
Hulek’s result is, however, insufficient to deduce the connectedness. In
fact, a vector bundle E on Pé is said to be s-stable in Hulek’s sense if
H(PZ,E) = 0 and H'(P, E¥) = 0. Hulek [3] proved that the set of
s-stable vector bundles on P wit r(E) = r, ¢;(E) = O and c2(E) = n
is parametrized by an irreducible algebric set. There are vector bundles
on Pé that correspond to marked S U(r)-instatons but are not s-stable.
For example, if ¢;(E) < r(E), E cannot be s-stable and we have, on the
other hand, S U(r)-instantons with instanton number n < r.

In this article we shall show that we can regard the couple (E, H) of
a vector bundle £ on P%: and a trivialization s of E on a fixed line as a
parabolic stable vector bundle. Then, the connectedness of the moduli
space of marked S U (r)-instantons reduces to that of the moduli space of
parabolic stable sheaves. It is rather complicated but not hard to prove
the connectedness of the modulo space of parabolic stable sheaves. The
author hopes that he could prove in this way the connectedness of the
moduli space of marked S U (r)-instantons.

Notation. For a field k and integers m,n, M(m, n, k) denotes the set of
(m x n)-matrices over k and M (n, k) does the full matrix ring M(n, n, k),
If f:x — § is a morphism of schemes, E is coherent sheaf on X and
if s is a point (or, geromtric point) of S, then E(s) denotes the sheaf
E ®oy k(s). For a coherent sheaf F on a variety ¥, we denote the rank
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of F by r(F). Assuming Y to be smooth and quasi-projective, we can
define the i-th chern class ¢;(F) of F.

1 A result of Donaldson

246
We shall here reproduce briefly the main part of Donaldson’s Work [[]].
Fix a line ¢ in Pé. Let E be vector bundle of rank r on Pé wiht the
following properties:

E|t ~ O, (1.1.1)
c1(E) =0and c;(E) = n. (1.1.2)

(LTI) implies that E is u-semi-stable and hence ¢;(E) = n = 0. Since
the mu-semi-stability of E implies H°(P} ., E(—1)) = 0, we see that E
is the cohomology sheaf of monad

H®c Op2(—1) 2 K ®@c Op2 L L®c Op2(1),

where H, K and L are C-vector spaces of dimension n,2n + r and n,
respectively. s is represented by a (2n + r) x n matrix A whose entries
are linear forms on P%:. Fixing a system of homogeneous coordinates
(x:y:z) of P%, we may write

A - Axx + Ayy + AZZ7
where Ay, Ay, A, € M(2n + r,n,C). Similarly ¢ is represented by

B = Dyx + Byy + B,z
with By, BymB, € M(n,2n + r,C). The condition ts = 0 is equivalent
to B/A, = B)A, = BA, = 0, BA, — —B,A, = —B.A, and B,A, —
—B,A,. E is represented by such a monad uniquely up to the action of
GL(H) x GL(K) x GL(L).

We may assume that ¢ is defined by z = 0. Then E|( is trivial if and
only if det B,A, # 0. We can find bases of H, K and L so that B,A, = I,
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where [, is the identitiy matrix of degree n. Changing the basis of L, we

have
0

~ = 3
e
~
[
o

S 3 3

and

Then, setting

with @y, @ € M(n,C) and a € M(r,n, C), the equations ByA, = —B:A,
and B,A, = —B.A; imply B, = (—a3,a;,b) with b € M(n,r,C). The
last equation B;A,; = 0 means

1.2 [a,a2] + ba = 0.
On ¢ we have an exact sequence

0— O(—1) % OP* 5 0(1) — 0.
The restriction of our monad to £ is
Ot’(—])@n D"ud0, (@"0?2) @O{@r D0, 05(1)@"

and the trivialization of E|, comes from the last term of the middle. The
equivalence defined by the action of GL(H) x GL(K) x GL(L) induces
an action of the group

p~ b0 0
(p.| 0 p' 0],p)peGL(n,C),qeGL(r,C)
0 0 ¢

on the above normalized matrices. The action of ¢ is nothing but chang-
ing the trivializations of E|;.
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The condition that the above normalized couple(A, B) gives rise to
a vector bundle is the for every (1, u,v) € PZC,

A, + vay
AAx + Ay +vA, = | ul, +vay
va

is an injection of H to K and
ABy + uBy + uB; = (—ul, — vaz, Al, + vay, vb)
is a surjection of K to L. If v = 0, then these conditions are trivially

satisfied. Thus we have the following.

1.3 Proposition. The set {(E, h)|E has the properties (LTI) and (LT.2).
h is a trivilization of E|€} / ~ is in bijective correspondence with the
set of quadruples (a, @y, a, b) of matrices with the following properties

(L3, (C3.2) and (L33) modulo an action of GL(n, C):

ay,ay € M(n,C),a € M(r,n,C) and b € M(n,r,C), (1.3.1)
248
[a1, 2] + ba = 0, (1.3.2)
forall (A,u) € C?, (1.3.3)
AL, + ay
uly + a2
a

in injective and (—ul, —a, A, +ay, b) is surjective. Here p € GL(n, C)
sends (a1, @, a,b) to (pa1p~!, pasp~t,ap~!, pb).

Let us embed Pé into P3C as the plane defined by w = 0, where
(x :y:z:w)isasystem of homogeneous coordinates of P%. Now we
look at the vector bundle defines by a monad

H®c Ops(—1) 5 K ®c Ops 4, L®c Ops(1),
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and trivialized on ¢ = {z = w = 0}, ¢ and d are represented by

A=Ax+Ay+Az+A,w
B = Byx + Byy + B;z + B,w

with
I, 0 | @
Ar=10], A=|L] A=|ax], A/ =|&
0 0 a a

and

Bx = (091}15 0)7 By = (_In’ 050)5 BZ = (_CL,Z,al,b), BW = (d\Z’d\lab)

The condition dc¢ = 0 of the monad means

[a1, az] + ba = 0, (1.4.1)
[, d>] + ba = 0, (1.4.2)
[a1,d>] + [d1a2] + b + ba = 0. (1.4.3)

Let H = R + R; + R; + Ry be the algebra of quaternions over
R. Regarading C* as H?, bH acts on C* from left. Hence we have a
Jj-invariant real analytic map

m: Pl = {CN\{0}}/C* — S* =~ Py

A vector bundle E of rank r on P3Cis called an instanton bundle if it
comes from as S U(r)-instanton on S* , or equivalently if the following
conditions are satisfied:

there is and isomorphism A of E to j*(E“) such that the composition

J¥(fA~1). Ais equal to idg when we identify j*(j*(EV)V) with E,
(1.5.1)

E| (x)1s trivial for allx € sS4, (1.5.2)
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Ab instanton bundle E is the cohomology of a monad which appeared
in the above. The instanton structure of E provides this space K with a
Hermitian structure and an isomorphism of L to H' .

For A = (11, 42, 43, 44) € C*, we set

A(d) = A + Ay + A A3 + Ay
b(Ad) = Bxd; + ByAy + B A3 + By A4

Since A(2)* =' A(1) defines a linear map of K ~ K to H = L, we
have a linear map

A =AD)*DBA): K > LD L.
The quaternion algebra H acts on L @ L by
(u —v/—1lu (u v
(- =) 0 - )
Then the condition that
A(gA)(v) = gA(A)(v) forallge Hve K

is equivalent to the condition that (A, B) gives rise to an S U (r)-instanton
bundle.
Now the above condition can be written down in the form

—TAw 4+ Az
A(j(0,0,z,w)) = < a
0.0.200) = (L o
B ,(fzzz +tzww> B ( Bz + Byw )
I\ B.z+ Buw LAE A
that is, 250

'A,, = B, and 'A, = —B,,.

Thus we have d1 = —aj,d> = af,a = b* and b = —a*. On the
other hand, A(Q) is injective if and only if A(2)* is surjective. Thus our
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monad defines a vector bundle if and only if A(1)* is sujective. Thus
our monad defines a vector bundle if and only if A(A) is surjective for
all 2 € C*\{0}. (L33) implies that A(A) is surjectifve for 1 € C3\{0}
which gives our plane w = 0 and then so is A(gA). Since {g|qg € H, A €
C3\{0}} sweeps C*\{0}, (L3.3) is equivalent to the condition that A(1)
is surjective for all 1 € C*\{0}

Now the condition (I.4.2) is the adjoint of (L4 or and the
condition becomes

[a1, o] + [a2, @3] + bb* —a*a = 0.

Let M(SU(r),n) be the set of isomorphism classes of marked S U(r)-
instantons with instanton number n. M (S U(r),n) is the set of the iso-
morphism classes of teh couples (V, g) of an S U(r)-instanton V and an
element g of the fiber over northpole of the S U(r)-principle fiber bun-
dle where the instantion is defined. What we have seen in the above is
stated as follows.

1.6 Proposition. M(SU(r),n) is in bijective correspondence with the
U (n)-quotient of the set of quadruples {(a1,az,a,b)} of matrices with

the properties (L3.1), (I.3.2), (I.33) and

[a1, o] + a2, @5 ] + bb* —a*a = 0. (1.6.1)

Assume that G = GL(n, C) acts on CV with a fixed norm structure
such that U(n) does isometrically. Take a G-invariant subscheme W of
C" whose points are att stable. Let Wy be the set points that are nearest
to the origin in its G-orbit.

1.7 Proposition. W/G is isomorphic to Wy/U (n).

Let us look at the C-linear space V = M(n, C)x M(n, C)x M(r,nC) x
M (n, r,C) where GL(n, C) acts as in Proposition[[.3] ThenU (n) acts on
V isometrically with respect to the obvious norm of V. Let W be the
subscheme of V defined by and (.3.3). Then we have have the
following key results.

1.8 Lemma. [1, p. 458] A point (a1, az,a,b) in W is contained in W
if and only if it has the property (L6.1).
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1.9 Lemma. [1, Lemma]. W is contained in the set of stable points of
V with respect to the action of GL(n, C).
Therefore, we come to the main result of [1]].

1.10 Theorem. The set {(ay,az,a,b) | (1.3.1),(1.3.2) and (1.3.3) 251
are satisfied} /GL(n,C) is in bijective correspondence with the set
{(a1,2,a,b)|(1.3.1),(1.3.2) and (1.1.2). his atrivialization of E|}/ =

is isomorphic to the space M(SU(r),n) .

2 Parabolic sheaves

Let (x,0x(1), D) be a triple of a non-singular projective variety X over
an algebraically closed field k, an ample line bundle Ox(1) on X and an
effective Cartier divisor D on X. A coherent torsion free sheaf E is said
to be a parabolic sheaf if the following data are assigned to it:

afiltration 0 = F;;1 < F, < - € F; = E®o,Opby coherent subsheaves,
(2.1.1)
asystemof weights 0 < o) <ap < --- <, < 1. (2.1.2)

We denote the parabolic sheaf by (E, F, @x).
For a parabolic sheaf (E, F, @), we define

t
par — x(E(m)) = (E(=D)(m)) + Y aix(Fi/Fiy1(m)).
i=1

If E’ is a coherent shubsheaf of E with E/E’ torsion free,then we have
an induced parabolic structure. In fact, since E' ®o, Op can be regarded
as a subsheaf of E ®p, Op, we have a filtration 0 = F(/5+1 c Fg c
Fy, c --- C F; = E' ®o, Op such that F} = E' ®o, Op N F; for
some i. The weight @’ of F is defined to be a; with i = max{k|F’, =
E’ ®oy Op N Fk}.

2.2 Definition. A parabolic (E, F, @) is said to be stable if for every
coherent subsheaf E’ with E/E’ torsion free and with 1 < r(E’) < r(E)
and for all sufficiently large integers m, we have

par — x(E'(m))/r(E") < par — x(E(m))/r(E),
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where the parabolic structure of E’ is the induces from that of E.

Let S be a scheme of finite type over a universally Japanese ring
and now let (X,0x(1), D) be a triple of a smooth, projective, geometri-
cally integral scheme X over S, an S-ample line bundle Ox(1) on X an
effective relative Cartier divisor D on X over S.

2.3 Lemma. [f T is a locally noetherian S -scheme and of E is aT-flat
coherent sheaf on X x ;T such that for every geometric point t of T, E(t)
is torsion free, then E|p = E ®oy Op is flat over T .

Proof. For every point y of 7, E(y) is torsion free and D, is a Cartier
divisor on X,. Thus the natural homomorphism E(—D)(y) — E(y) is
injective. Then, since E is T-flat, E|p = E|E(—D) is T flat Q.E.D.

Let E be a coherent sheaf on X x ¢ T which satisfies the condition in
the above lemma. E is said to be a T-family of parabolic sheaves if the
following data are assigned to it:

a filtration 0 = F,.; € F, < --- < F| = E|p by coherent  (2.4.1)

subsheaves such that for 1 < i < 1, E|p/F; is flat over T,

asystemof weights 0 < o) < ap < - <, < 1. 2.4.2)

As in teh absolute case we denote by (E, Fy, @) the family of parabolic
sheaves. For T-families of parabolic sheaves (E, Fx,, ) and (E', F}, &),
they are said to he equivalent and we denote (E, Fy, ay) ~ (¢, Fl,, &) if
there is an invertible sheaf L on T such that E is isomorphic to E’ ®oy L,
the filtration F is equal to F, ®o, L under this isomorphism and if the

systems of weights are the same.
Fixing polynomials H(x), H;(x),...H,(x) and a system of weights
0<a < - <a; <1, weset

(E, Fy, ay)is aT — family of
parabolic sheaves with the
the properties (2.5.1) and /
(2.5.2)

par —X(H,Hy, @y )(T) = $ (E, Fy,ax)

for every geometrix pointy of 7 and 1 < i < 1,x(e(y)(m)) = (2.5.1)
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H(m) and x((E(y)/Fit1(y))(m)) = Hi(m),

for every geometric point y of T, (E(y), F«(y), ax) is stable. (2.5.2)

Obviously par—X(H, Hy, a) defines a contravariant functor of the cat-
egory (Sch /S) of locally notherian S -schemes to that of sets. Note that
for every geometric point s of S and every member

(E,Fy, ) € par — X(H, Hy, ) (),

we have
par — x(E(m)) = H(m) — ) &iH;(m),
i=1

where g; = @;41 — a; with ;11 = 1.
One of main results on parabolic stable sheaves is stated as follows.

2.6 Theorem. (7] Assume that all the weights a1, ..., a; are rational
numbers. Then the functor par — X(H, Hy, @) has a coarse moduli
scheme My s (H, Hy, @) of locally of finite type over S. If S is a scheme
over of field of characteristic zero, then the coarse moduli scheme is
quasi-projective over S.

Now let us go back to the situation of the preceding section. We have
a fixed line ¢ in P%:, a torsion free, coherent sheaf E of rank r on P%: and
a trivialization of E|,. There is a bijective correspondence between the
set of trivilzations of E|, and the set

Te = {¢: Ele = Oc(r — 1)|H(¢) : H'(E|¢) = H(Oc(r — 1))}/ =

where =~ means isomorphism as quotient sheaves.

2.7 Lemma. Let E be a torsion free, coherent sheaf of rank r on Pé
such that E|¢ is a trivial vector bundle. For every element (¢ : E|; —
O¢(r — 1)) of TE, ker(¢p) is isomorohic to Op(—1)®~!

Proof. Since ker(y) is a vector bundle of rank » — 1 on the line ¢, it
is isomorphic to a direct sum O¢(a;) @ - - - @ O¢(a,—1) of line bundles.
Our condition on ¢ means that H'(¢, ker(¢)) = 0, Combining this and
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the fact that deg(ker(¢)) = 1 — r, we see thata; = -+ = a,_] = —1.
Q.E.D.

Fixing a system of weights a; = 1/3, aa = 1/2, every element ¢ of
Tk gives rise to a parabolic structure of E:

0=F3C Fy=ker(p) 2 O(—1)¥ 1 c F| = E|,.

2.8 Proposition. If E as in Lemma 27 Assume E has the properties
(LII) and (1.2, then the above parabolic sheaf is stable.

Proof. Set r = r(E). We know that

m—1)2 m— n
par — x(E(m))/r(E) = ( 21) +3( > D +1—;
(r—1)m (r+m)
+ 2r 3r

Pick a coherent subsheaf E’ of E with E/E’ torsion free and write
m2
par — x(E'(m))/r(E") = — T aim + ao.

Then we see | |
s t
ey b s (544)
a ﬂ()+2+dﬁ)2+3
<

where s + ¢t = r(E’) and 0 < 7 < 1. Thus if u(E’) < 0, then we have

—1 1
a; < +tg<—+1<1—-—
r

r(E’) 6r

and hence we obtain the desired inequality. We may assume therefore
that ¢; (E’) = 0. Since E/E’ is torsion free, E' is locally free in a neigh-
borhood of ¢ and E’|; is a subsheaf of E|,. Thus the triviality of E|,

7]
implies tha E’|; =~ O?V(E ) and hence E’ |¢ is not contained in F,. Since
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E'|¢/(F2 n E'|;) is subsheaf of F|/Fy =~ O(r — 1), it is of rank 1. We
have two cases.

Casel. F, nE'|; =0and r(E’) = 1. Then the length of the filtration
of E'|; is 1 and the weight is 1/3. Thus we see that

1 1
=l-=-<1-—=

+ 6 6r

a) =

N~
W | =

Case 2. Fp n E'|y # 0. In this case F), = F» n E[} is a subsheaf of
O (—1)®=1) and hence for m > 0,

x(F3(m)) < (r(E") = D)m.

On the other hand, since E’[;/F) is a subsheaf of O;(r — 1), we have
that for m > 0,

X(E'|¢/F5(m)) <m+r.
Combining these, we get

1 1 1 1

1
<sto- 1 T
NS T E) T aE) 6E) = 6

This completes our proof.

3 Connectedness of the moduli of instantons

Let us set
2
3
H(x)—%+g—l—r—n
H](X) =X—+r
Hy(x)=rx+r

1 1
— —and a» = —.
ay 3 and a» >
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For these invariants, we have the modulo space M (r,n) = M(H, Hy, @)
of parabolic stable sheaves on (Pg,Op2(1),£). There is an open sub-
scheme M (r,n) of M(r,n) consisting of (E, Fy, a,) with the properties

Elp = O and E|¢(r — 1), (3.1.1)

0

for the surjection ¢ : E|; — E|g/F2,H(¢

) is isomorphic. 3.1.2)

M(r,n) contains a slightly smaller open subscheme M(r, n), consisting
of locally free sheaves. What we have seen in the above is M(S U (r),n) =
M(r,n)o.

3.2 Proposition. M (r,n) is smooth and of pure dimension 2rn.

To prove this proposition we shall follow the way we used in [3]].
Let us start with the general setting in Theorem 2.6l Let X be the family
of the classes of parabolic stable sheaves on the fibres of X over X with
fixed invariants. For simplicity we assume that X is bounded (Proposi-
tion[32lis the case). If m is a sufficiently large integer and if (E, Fy, @)
is a representative of a member of X over a geometric point s of S, then
we have that

both E(—Dy)(m) and E(m) are generated by their global sections
and for all i > 0, H'(E(—Dy)(m)) = H'(E(m)) = 0, (3.3.1)

for 1 < j<tandi>0,H(F;/Fjs1(m)) =0and F;(m)is (3.3.2)

generated by its global sections.
Replacing every member
(E,Fy, ) € par — X(H,Hy, a4 )(T)

by (Ox(m) ®o, E,Ox(m) oy Fx, @), we may assume m = 0. Setting
N = dimH"(X(s), E) for a member (E, F,a) of X on a fiber X, over
s, fixing a free Og -module V of rank N and putting Vx = V ®o, Ox,
there is an open subscheme R of Q = Quotex IX/s such that for every
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algebraically closed field k,a k-valued point z of Q is in R(k) if and only
if the following conditions are satisfied:

For the universal quotient ¢ : Vx ®o, Og — E the induced (3.3.3)
the induced map H°(¢(2)) : V ®o, k(s) — H°(X,, E(Z))
is an isomorphism, wheresis the image ofzin S (k).

For every i > 0, H'(X(s), E(z)) = 0. (3.3.4)
E(z) is torsion free . (3.3.9)

We denote the restriction of £ to Xz = X x g R by the same E. Then,
by Lemma 23] we see that E|p, is flat over R. Let R, be the R-scheme
Quotg, p/X/R and let

E|DR ®0R ORt - El
be the universal quotent. Assume that we have a sequence
Ri—Rjy1 > -+ —>R —R

of scheme R; and a sequence of sheaves E s E JS E,E |p, such that
E; is R;-flat coherent sheaf on X, and that there is a surjection

E; ®oy, Or,—, — Eiy.

Set Rj_; to be Quotz /y, /p, and take the universal quotient
J
Ej ®0Ri OR_/'—I = Ej_] .

on R;_;. By induction on j we come to R; and we have a sequence of
surjections

E‘DR ®ox OR] — Et ®0Rr OR1 — s Ez ®()R2 OR] — E].
Setting

E = E@OR OR1
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F; = ker(E|p, ® OrOr, — E; ®0x, Or,)

we get an R-family of parabolic sheaves. There is an open subscheme
U of R, such that for every algebraically closed field k, a k-valued point
z of Ry is in U(k) if and only if (E(x), F«(2), @) is stable. We shall
denote the restriction of (E, Fy, @) to U by the same (E, Fy, ).

257 The S-group scheme G = GL(V) naturally acts on Q and R is G-
invariant. There is a canonical G-linearization on Z and hence G so
acts on R, that the natural morphism of R, to R is G-invaraiant. Then
E, carries a natural G-linearization. Tracing these procedure to Ry, we
come eventually to a G-action on U and a G-linearization of the family
(E, Fy, ay). Obviously the center G, ; of G acts trivially on U and we
have an action of G = G /Gm.s. We can show that there exists a geomeric
quotient of U by G. Then we see

The quotient U /G is the moduli scheme in Theorem 2.6l (3.4)
For a T-family of parabolic sheaves (E, F, @), we put
K,‘ = ker(E — E|Dr/F,')

and then we get a sequence of T-flat coherent subsheaves K, = E(—Dr)
C ks < --- < Ky © K| = E. For areal number «, there is an integer i
suchthat ]l <i<t+landa;,—; < @ — [a] < @;, where ap = a; — 1
and a;41 = 1. Then we set

Ea = Ki(*[a’]DT).

Thus we obtain a filtration {Ej },cr of E parametrized by real numbers
that has the following properties

E/E, isT — flat and if & < B, then E, 2 Eg. 3.5.1)

if £ is a sufficiently small positive real number, then E,_, = E,..
3.5.1)

For every real number @, we have E,4 = Eo(—Dr). (3.5.3)
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Ey=E. (3.5.4)
The length of the filtration for 0 < a < 1 if finite. (3.5.5)

Convesely, if E is a T-flat coherent sheaf on X7 such that for ev-
ery geometric point y of T, E(y) is torsion free that E has a filtration
parametrized by R with the above properties, then we have a T-family
of parabolic sheaves. Thus we may use the notation E, for a T- family
of parabolic sheaves (E, F, ).

3.6 Definition. Let E and E/, be T-familes of parabolic sheaves. A
homomorphism f : E — E of the undelying coherent sheaves is said to
be a homomorphism of paraboic sheaves if for all 0 < @ < 1, we have

f(Ey) C E.,.

Hom'™ (E,, E',) denotes the set of all homomorphisms of parabolic
sheaves of E, to E,.

If one notes that for a stable parabolic sheaf E, on a projective varai-
ety, a homomorphism of E, to itself is the multiplication by an element
of the ground field k or Hom™ (E,, E,) = k, then one can prove the
following lemma by the same argument as the proof of Lemma 6.1 in

(3.

3.7 Lemma. Let A be an artinian local ring with residuce field k
and let E, be a Spec(A)-family of parabolic sheaves. Assume that the
restriction E = E, ®u k to th closed fiber is stable. Then the natural
homomorphism A — Hom"™ (E,., E.) is an isomorphism.

Let us go back to the situation of (3.4). Replacing the role of Lemma
6.1 argument of Lemma 6.3 of [5] by the above lemma, we get a basic
result on the action of G in U.

3.8 Lemma. The action of G on U is free.
It is well-known that this lemma implies the following (see [5l],
Proposition 6.4).

3.9 Proposition. The natural morphismn : U — W = U /5 is a
principal fiber bundle with group G
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Now we come to our proof of Proposition 3.2

Proof of Proposition There is universal space U whose quotient
by the group G is M(r,n) = M(H, H,,a,) under the notatior before
Proposition Since our moduli space M(r,n) is open in M(r,n)
we have a = G-invariant open subsheme P of U which mapped onto
M(r,n). Tlanks to Proposition the natural quotient morphism x :
P — M(r,n) is a principal fiber bundle with group G and hence we
have only to show that P is smooth and has the right dimension. Put
X = Pé. Fix an integer m which satisfies the conditions (3.3.I) and
for our M(r,n). We set H[m](x) = H(x + m). Take a point E
of M(r,n)(C) and a C-vector space V of dimension N = H°(X, E(m)).
we have an surjection

0:V,=VQ®cOx — E(m).

Since the kernel K of 6 is locally free, Homp (K, E(m)) is the tangent
v
quence and an obstraction of the smoothness of Q at g isin H! (X, K¥ ®o,
E(m)). Since Extéx (E, E) is dual space of Homy, (E, E(—3)), it van-
ishes for stable £. We can apply the same argument as ion the proofs
of Propositions 6.7 and 6.9 in [5] to our situation and we see that Q is
smooth and of dimension

space of QO = Quot at the point ¢ that is given by the above se-

2rn — r* + N?

at the point g. P is a folber space over an open subscheme of Q whose
fibers are an open subscheme of Quoto?-ar Je/C consisting of surjections

Ogbr — Op(r—1)

such that the induced map of global sections in bijective. By Lemma2.7]
the space of obstructions for the smoothness of P over Q is
H'(€,0,(r)® =) = 0. Thus P is smooth over Q and hence so is over
Spec(C).  Moreover, the dimension of the fibers is equal to
dim H°(€,0,(r)®~1) = 2 — 1. Combining this and the above result
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on the dimension of Q, we see that dimP = 2rm + N*> — 1. Since
dimG = N? — 1, M(r,n) is of dimension 2rn at every point. ~ Q.E.D.

Base on Proposition and Hulek’s result stated in Introduction,
we can prove the following.

3.10 Theorem. M(r,n)g is connected.

Proof. Our proof is divided into several steps. We set as befor X to be
P2
C

(I) If r = 1, then M(r,n) is the moudli space of ideals with colenght
n which define O-dimentsional closed subshcemes in X\¢. It is
well known that this is irreducible [2]].

(I) Assume that r > 2. By Hulek’s result we see that
U(0) = {Es € M(r,n)o|H*(x,E) = H*(X,EY) = 0}

is irreducible. In fact, we have a surjective morphism of a PGL(r)-
bundle over Hulek’s parameter space of s-stable bundles to U(0).
Let us set

U(a) = {E4 € M(r,n)o| dim H*(X, E) = a},

Ua,b) = {E, € U(a)|E = OY" ® E\,E| # Ox D E}}.
Then U (a) is locally closed and U (a, b) is constructible in M(r, n)o.

(ITII) We shall compute the dimension of U(a, b). For an E, € U(a,b), 260

there is an extension
00 >E—J—0

because E is u-semi-stable and ¢ (E) = O[[6], Lemma 1.1]. We
have moreover that J|, =~ 0% is a direct summand of E and put
E = Ogb @® E;. Consider the exact sequence

000" E —J—0.
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For the double dual J' of J, we set T = J’/J and ¢ = dim H°(x, T).
Then we see
SXI%X(T, Ox) = le‘g)x(.], Ox)

and dim H°(x, Sxt(z)x(T, Ox)) = c. On the other hand, since
2 (.] v )
=n —c, JV is locally free and since H*(X,J") = 0, we have

dimH'(x,JV)=n—c— (r—a) +d,
where d = dim H°(X, J¥). Thus we see
dimExt), (OP“™") = dimH' (X, (JV)®* )+
dim H°(X, Exty, (J, Ox)®*0)

=(a—b){n— (r—a)+d}.

If we change free bases of O%“_b , then we obtain the same sheaf.
Hence if dim Ext(l)X(J, Ox) < a — b, then every extension of J

by Og?“*b contians Oy as a direct factor, which is not the case.
Therefore, we get

a—b<n—(r—a)+d or

n—r+b+d=0

The extensions of J by Og?“_b are now parametrized by a space of
dimension (a — b){n — (r — a) + d} and each point of the space is
contained in a subspace of dimension (a—b)? +dim Endg, (J) — 1
whose points parmetrize the same extension.

Let us fix a system of homogeneous coordinates (xq : x) of € and
identity J|, with the free sheaf (—Bl:f O¢e,. If we have a surjection

¢:J|e =@ _{O0¢; — O¢(r —a—1)

and if fi(xo,x1) = ¢(e1),..., frca(x0,x1) = @(er—4) are liearly
independent, then for general homogeneous forms gy, ..., g,—, of
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V)

degreea — land g,_441,..., g, of degree r — 1, we define a map
@ of @ of ®_ O, to O¢(r — 1) by

Plei) = gixy “ + x{f; 1

o(ej) = gj r—a+1<j<r
Choosing g; suitably, we obtain a surjective ¢ : @;_,Op; —
O¢(r — 1) which induces a bijection between the spaces of global
sections. Conversely, if we have a homomorphism ¢ of @;_, O,
to O¢(r — 1) such that iy = y(e1),...,h, = Y(e,) are linearly
independent. The we can write /; uniquely in the following way:

oyl r—a ap”
h; = hixo + xih,

where A (or, h;f) is of degree @ — 1 (or, r —a — 1, resp.). There is
a permutations o of {1, ...r} such that h:;(l), e ,h:;(r_a) are lin-
early independent. Thus, after a permutation of indices, the above
procedure produces ¢ from a homomorphism J|; — O¢(r—a—1)
which induces a bijection between the spaces of global sections.
We see therefore that the parabolic structures on E are parametr-
tized by a fiber space over the space of parabolic structures of J
whose fibres are a finite union of open subschemes of an affine
space of dimension 2ra — a?.

Every element of Endg, (E) induces an endomorphism of the space
H°(X, E) and hence gives rise to an element of Endg, (/). Let

End’(E) denote the subspace of Endg, (E) consisting of the ele-

ments which induce the identity on J. Then we have

dim End’ (E) > dim Endo, (E) — dim Endg, (/).
On the other hand, we see
Endo, (E) = Endo, (0¥”) ® Homg, (0%”, E)

@® Homo, (E1,0%") ® Endo, (E).
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Since dim H°(X, JV) = d, there is an exact sequence
0—-J -J—->G—0
with (GV)Y = Og?d. For a ¢ in
Homo, (G,09") = HO(x,00"“™"),

we have a member of End(E})

El—>J—G5% 0% L.

Thus dimEndp, (E1) = d(a — b) + 1. Therefore, we get the
following inequality

dimEnd’(E) > dimEndy, (E) — dim Endy, (J)

> b* + b(a — b) + ab + d(a — b) + 1 — dim Endo, (J)
=ab+ ad + 1 — dimEndop, (J)

There is a couple (A, J,) of a scheme A and an A-family J, of
parabolic sheaves which parametrizes all parabolic stable sheaves
Ji with rank r — a and ¢»(J) = n such that the restriction J|, is
trivial vector bundle and H°(X,J) = 0. We may assume that A
is reduces and quasi-finite over M(r — a,n), and hence dimA <
2n(r — a). By Proposition 2.8 the sheaf J defined in the step (III)
appears as the underlying sheaf of a parabolic sheaf parametrized
by Ji. For the underlying sheaf J of the family J,, we have a
resolution by a locally free sheaves

0— B} —» By—J—0.

Using this resolution and splitting out A into the direct sum of
suitable subschemes, we can construct a locally free sheaf C on A
such that for every point y of A, we have a natural isomorphism

C(y) = Exty, (J(»),0x).
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Note that C is not necessarily of constant rank. On D =
V((c¥)®4~?) we have a universal section Z of the sheaf g* (C®*~?),
where g : X x D — X X A is the natural projection. Let &; be the
projection of & to the i-the direct factor of C®*~?. The subset
Do{y € D|&1(),...,&—p(y) span a linear subspace of rank a —

b C(y)}

0— 0% — E — g*(J) =0,

where we denote g|Dy by g. Let H be the maximal open sub-
scheme of Dy where E is locally free. Set E=FE, |xsH @ O%ZH'
(II0) tells us

dimDy < 2n(r —a) + (a — b){n — (r — a) + d}.

Note here that d may depend on connected components of Dy.
Furthermore, by the result of (III) again, each point of H is con-
tained. in a subspace of dimension (a — b)? + dimEndp, (J) — 1
where E| parmetrizes the same extensions.

(VII) By breaking up H into the direct sum of suitable subschemes, we 263
may assume that g*(J)|¢x g has a constant trivialization and hence
s0 is E|¢x . By the result of (IV), the parabolic structure of g*(J)
provides us with a fiber space p : Z — H and a Z-family E, of
parabolic stable vector bundles such that (X, £,) parametrizes all
the parabolic stable sheaves contained in U(a, b) and that every
fiber of p is of dimension 2ra — a*>. Thus we see that

dimZ < 2n(r—a) + (a—b){n— (r —a) +d}+2ra—a2
=2nr —na —nb +ra+ rb —ab + ad — bd
Moreover, the conclusion of (V) shows that on the fiber of p, each
point is contained in a closed subsheme of dimension at least ab +

ad + 1 — dimEndp, (/) whose points define the same parabolic
sheaf.

(VIII) The family E, gives rise to a morphism of Z to M(r,n)y whose
image is exactly our U(a, b). Combining the results of (VI) and
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(VII) we get

dim U(a,b) < 2nr — na — nb + ra + rb — ab + ad — bd — (a — b)*
—dimEndy, (J) + 1 —ab — ad — 1 4+ dimEndp, (/)
=2nr—(n—r+aja—(n—r+b+db

Since for every member E, of U(a, b), the underlying sheaf E is
u-semi-stable, Riemann-Roch implies

n—r+a=dmH (X,E) > 0.
This and the inequality we obtained in (III) show that
dim U(a, b) < 2nr.

Replacing E by EV in the definition of U(a) and U(a, D), we de-
fine UY (a) and UY (a,b). Then, by the same argument as above
we come to a family (Z'mE’,) of the dual bundles of the mem-
bers of U (a,b). By taking the dual basis of the trivial sheaf
E'|¢x 7, we have an isomorphism E' |5z — E’|;xz. Combin-
ing this isomorphism and the parabolic structure of E’,, we obtain
a Z'-family E/*v of parabolic sheaves which parametrizes all the
members of UY (a, b). The dimension of U" (a, b) is the same as
U(a,b).

Assume that n > r. In this case we see that
M(r,n)o = U(0)( ( ) Ul b)) U ( U v, b)> :
a=1,b>0 a=1,b>0

By our result in (VIII) we see that if @ < 1, the both dim U(a, b)
and dim UV (a, b) are less than 2rn. On the other hand, we know
that U(0) is irreducible by [3]. This completes the proof of this
case.
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Assume that n < r . Then, Riemann-Roch implies that for every
member E, of M(r,n)y, we have dim®(X, E) > r — n. Thus we
see that

M(R,n)o = U(r—n) ( U U(a,b)> .

a>r—n,b=0

Asin (IX) if a > r — n, then dim U(a, b) < 2rn. This means that
it is sufficient to prive that U(r — n) is connected. For a member
E, of U(r — n), there is an exact sequence

00" >E—J—0.

According to the type of J, U(r — n) is deivided into three sub-
schemes:

Vo = {Es € U(r — n)|Jis locally free, H*(X,J") = 0}
Vi = {E, € U(r — n)|Jis locally free, H*(X, J") # 0}
Vo = {Ey € U(r — n)|Jis locally free}.

For J of E, € Vp, we have that H*(X,JV) = 0, ¢;(JV) = 0,
c2(JY) =n,r(J¥) =nand J" is u-semi-stable. Hence Riemann-
Roch implies that Ext}‘)X(J, Ox) = H'(X,JV) = 0. Then Vj is
contained in U(r —n, r —n) or the undelying sheaf E of a member
of Vj is written in a form O%’*" @ J with J s-stable. Since these
J’s are parametrized by an irreducible variety, so are the members
of Vy. This proves the irreducibilty of V. Applying the argument
before (VIII) to the set {J¥|E, € V;}, we find that {J|E. € V}
is of dimension less the 2n%. Then the dimension of A in (VI) for
V, for V; is of dimension less the 21> and hence dim V| < 2nr. A
similar argument tells us that our remaining problem is to prove
that L = {J.|E,« € V,} is of dimension less than 2n?.

For the underlying sheaf J of a member J, of L, we set J to be
the double dulal of J. Since J is locally free in a neighborhood
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of ¢, the parabolic structure of J, induces of J'. J'/J is a tor-
sion sheaf supported by a 0-dimensional subscheme of X. L is
the disjoint union of Ly,...,L,, where L,, = {xy,...x;} be the
support of J'/J. If the length of the artinian module (J'/J),, is a;,
then there is a filtration 0 < T‘Ef) c---C Tl(i) = (J'/J)y such

that TJ@ / TJ(.iZ] =~ k(x;). Let J; () be the kernel of the sujection

J — Tl(l)/T](.Jlr)1 and Jj(. ) be the kernel ofJa}) /T](Jzrl Thus
WecandeﬁneaﬁltrationJ()c~cJ§)c--~cJ‘(ll) S

~ k(x;) and I /70D = k(xip)

(1)
J;” < J' such thatJ /JJJrl ~

)

and we see that Jék J. Since J(S_ll)( X;) is an n-dimensional

vector space, the surjection of J,gl Y to k(x;) is parametrized by

an (n — 1)-dimensional projective space. Since Tor?(k(xl-),k(xl-))
is isomorphic to k(x;)®?, the exact sequence

Tor (k(x;)), k(xi) = J§ (xi) = I\ (x1) = k(x;) = 0

shows us that dim Jj(.i) (x)) < dim Jj(.?l(xi) + 1. Therefore, sur-

jections of ]f.l) to k(x;) is parametrized by a projective space of
dimension less than or equal to n + j — 2, where O = Ox,,.
Fixing J,{J« € L,|(JY)Y =~ J'} is parametrized by a space of
dimemsion less than or equal to

k a;
=Y D n+j—-2)+2%

i=1j=1

k 2
a>  3a
=nm+z<j—%+2>.

On the other hand, the space {J, |/« € L,,} is of dimension 2n(n—
m). Therefore L, is of dimension at most 2n(n — m) + &,,. Now
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we have

2
@ 3a
2n(n—m)+6m=2n2—nm+2< S —ﬂ+2>

is non-negative and equal to O if and only if n = 1. If n = 1,

then both V() and V; are empty and V; is exactly {J = I, with I,

the ideal of a point x € X\¢}. There is a unique locally free sheaf

G, which is an extension of I, by O,. Finally we see that in this 266
case the set undelying sheaves of the members of U(r — n) is

{02 @ Glx e X\

which is parametrized by the irreducible variety X\¢. Q.E.D.

Now we come to the connectedness of the moduli space of marked
S U(r)-instantons.

3.11 Corollary.  The moduli space M(SU(r),n) of marked S U (r)-
instantons with instanton number n is connected.
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Numerically Effective line bundles which are not
ample

V. B. Mehta and S. Subramanian

1 Introduction

In [6], there is a construction of a line bundle on a complex projective 269
nonsingular variety which is ample on very propersubvariety but which

is nonnample on the ambient variety. The example is obtained as the
projective bundle associated to a “general” stable vector bundle of de-

gree zero on a compact Riemann surface of genus g > 2. Now,w e can
show by an an algebraic argument valid in any characteristic, the exis-
tence of a variety of dimension < 3 with a line bundle as above. The
details of the proof will appear elsewhere.

2

Let C be a complete nonsingular curve defined over an uncountable al-
gerbaically closed field (of any characteristic). Let M denote the mod-
uli space of stable bundles of rank r and gegree zero on C and M;* the
moduli of semistable bundles of rank r and degree zero. We assume
throught that the curve C is ordinary. We can show

2.1 Proposition. Let the characteristic of the ground field be positive
and F the frobenius morphism on C. There is a proper closed subset of
M such that for any stable bundle V in the complement of this closed
set, F*V is also stable.

Proof. We use Artin’s theorem on the algrbraisation of formal moduli
space for proving the above proposition. We have as a corollary to the
proof of Proposition 2.1).
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2.1.1 Corollary. Let C be an oridinary curve. Then the rational map
f 1 M}® — M’ induces by the Frobenius I' : C — C, is etale on an
open set, and in particular, dominant.

2.1.2 Corollary. Let C be an ordinary curve, For any positive integer
k, there is a nonempty open subset of M; such that for V in this open set,
F™V is stable for 1 < m < k.

Proof. We apply Proposition (Z.I) and Corollary (Z.I.T)) successively.
QE.D.
We have

2.2 Proposition.  Given a finite etale morphism p : C; — C, there
eixsts a proper closed subset of M’ such that any vector bundle in the
complement of this closed set remains stable on Cj.

We have

2.3 Proposition.  For a fixed positive ieteger k, there is a nonempty

open subset of M? such for any stable bundle V in this open set, there is

no nonzero homomorphism from a line bundle of degree zero to S*V.
Using the above results, we can show

2.4 Theorem. Let C be nonsigular ordinary curve of genus = 2 over
an uncountable algebrically closed field (of any characteristic). There
is a dense subset of M} such that for any stable bundle V in this dense
set, we have

1) FF(V)is stable for all K > 1.
2) For any separable finite morphism n : C — C,n*(V) is stable.
3) There is no nonzero homomorphism from a line bundle of degree zero

to the symmetric power S k(V) forany K = 1.

Remark. If C is a smooth curve defined over a finite field (of charac-
teristic p) then any continuous irreducible represenation p : n?lg (C) —
SL(r, Fp) of the algebraic fundamental group of C of rank r over the
finite field defines a stable vector bundle V on C such that F"*V ~ V
for some m < 1 (see [4]). Such a bundle V statisfies F**(V) is stable
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Numerically Effective line bundles which are not ample 313

for all K > 1. We can construct such representations for any curve C of
genus g > 2 when r is coprime to p, and for an ordinary curve C when
p divides r.

3

Let C be a nonsingular ordinary curve of genus > 2, and V a stable
vector bundle of rank 3 degree zero on C satisfying the conditions of
Theorem (Z.4) above. Let 7 : P(V) — C be the projective bundle
associated to V and L = Op(y)(1) the universal line bundle on P(V).
Then we have

3.1 Theorem. The line bundle L is ample on very proper subvariety of
P(V), but L is not ample on P(V).

Proof. We can check that L.C > 0 for any integral curve C, and that
L?. D > 0 for any irreducible divisor D. This implies that L|D is ample
on D. This shows that L is ample on divisors in P(V) and hence on any
proper subvariety of P(V). Also, L, is not ample on P(V). Q.E.D.

3.2 Remark. The case r = 2 is covered by the first part of Theorem
G.D.
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Moduli of logarithmic connections

Nitin Nitsure

The talk was based on the paper [N]] which will, appear elsewhere.
What follows is a summary of the results.

Let X be a non-singular projective variety, with S < X a divisor
with normal crossings. A logrithmic connection £ = (&, V) on X with
sigularity over S is a torsion free coherent sheaf & together with a C-
linear map V : & — Q;[logS] ® & satisfying the Leibniz rule and
having curvature zero, where Q}( [log S| is the sheaf of 1-forms on X
with logarithmic singularities over S. By a theorem of Deligne [DI,
a connection with curvature zero on a non-nonsigular quasi-projective
variety Y is regular if and only if given any Hironaka completion X of
Y (so that X is non-sigular projective and § = X — Y is a divisor with
normal crossings), the connection extends to a logrithmic connections
on X with singularity over §.

Carlos Simpson has constructed in [S] a moduli scheme for non-
singular connections (with zero curvature) on a projective variety. A
simple example (see [N]]) shows that a modulo scheme for regular con-
nections on a quasiprojective variety does note in general exist. There-
fore, we have to consider the moduli problem for loarithmic connections
on a projective variety.

The main difference between non-singular connections and logarith-
mic connections is that for logarithmic connections, we have to define
a notion of (semi)-stability, and restrict ourselves to these. We say that
a logarithmic connection is (semi-)stable, if usual inequality between
normalized Hilbert polynomials is satisfied for any V-invariant coher-
ent subsheaf. In the case of non-sigular connections on a projective
variety, the normalized Hilbert polynomial is always the same, so semi-
stability is automatically fullfilled. Followigng Simpson,s method, with
the extra feature of keeping track of (semi-)stability, we prove the exi-
tance of coarse moduli scheme for (S-equivalen classes of) semistable-
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logarithmic connections which have a given Hilbert polynomial. We
also show that the infinitesimal deformations of a locally free logarith-
mic connection E are parametrized by the first hypercohomology of the
logarithmic de Rham complex associated with End (E).

A given regular connection on a quasi-projective variety Y has in-
finitely many extensions as logarithmic connections on a given Hironaka
completion X of Y. A canonical choice of such an extension is given by
the fundamental construction of Deligne [D]], which gives a locally free
logarithmic extension. Using our description, we show that certain ex-
tensions of any given regular connections are rigid, that is, they have
no infinitesimal deformations which keep the underlying regular con-
nections fixed. The cirterion for this is that no two distinct eigenvalues
of the residue the logarithmic connection must differ by an integer. In
paticular, this shows that Deligne’s construction gives a rigid extension.
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The Borel-Weil theorem and the Feynman path
integral

Kiyosato Okamoto

Introduction

Let p and ¢ be the canonical mometum and coordinate of a particle. In
the operator method of quantization, corresponding ot p and g there are
operators, P, Q which in the coordinate representation have the form:

d
A:q’ P=—‘\/—1%.

The quantization means the correspondence between the Hamilto-
nian fucntion 4(p, ¢) and the Hamiltonian operator H = A(P, Q), where
a certain procedure for ordering noncommuting operator arguments P
and Q is assmed. The path integral quantization is the method to com-
pute the kernel function of the unitary operator exp(— /—1H).

Any mathematically strict definition of the path integral has not yet
given. In one tries to compute path integral in general one may en-
counter the difficulty of divergence of the path integral. Many examples,
however, show that the path integral is a very poweful tool to compute
the kernel function of the operator explicitly.

The purpose of this lecture is to explain what kinds of divergence we
have when we try to compute the path integral for complex polarizations
of a connected semisimple Lie group which contains a compact Cartan
subgroup and to show that we can regularize the path integral by the
process of “normal ordering” (cf. Chapter 13 in [10]). The details and
proofs of these results are given in the forthcoming paper [[7]].

Since a few in the audience do not seem to know about the Feyn-
man path integral I would like to start with explaining it form a point
of view of the theory of unitary representations, using the Heisenberg
group which is most deeply related with the quantum mechanics.
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276 The Feynman’s idea of the path integral can be easily and clearly
understood if one computes the path integral on the coadjoint orbits of

the Heisenberg group:

1 p r
G = 1 q|;p,g,reR
1

The Lie algebra of G is given by

0 a c
g= O b);a,b,ceR
0
The dual space of g is identified with
0
g* = &0 ;En,0€eR
o n 0

by the pairing
gxg*3(X,1) —> tr(AX) e R.

Any nontrivial coadjoint orbit is given by an element

0
=10 0 for some o # 0
o 0 0

Then the isotropy subgroup at A is given by

1 0 r
Gy, = 1 0);reRy,
1
and the Lie algebra of G, is
1 0 ¢
ay, = 0 O0f;ceR
0
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The Borel-Weil theorem and the Feynman path integral

We consider the real polarization:

0 a c
p= 0 O0];a,ceR
0

Then the analytic subgroup of G corresponding to p is given by

I p r
P = 1 0);p,reR
1

Clearly the Lie algebra homomorphism

0 a c

p3 0 0]— —v—1loce v—1R.
0

lifts to the unitary character &, :

L p
1

,
P> 0 |—>e’ﬁ”’eU(1).
1

319

Let Lg, denote the line bundle associated with &, over the homoge-
nous space G/P. Then the space C*(Lg, ) of all complex valued C*

-sections of Lg, ~can be identified with

{feC®(G);F(gp) =&1,(p) "' f(g) (¢€G.peP)}.

For any ¢ € G we define an operator 7, (g) on C*(Lg, ) : For f €

COO(chAg)
(7 (DN (x) = flg"'%) (xeG).

Let ?{/’fr be the Hilbert space of all square integrable sections of Lg,.

Then 7} is a unitary representation of G on H .
We put

1 0
1

0
M = q|:geR
1
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Then as is easily seen the product mapping M x P — G is a real
analytic isomorphism which is surjective. Let f € C*(Lg, ). Then,
since

r 1 pr

0 ):eﬁ(”f(g) for ¢ € G, 1 0]ep

1 1

f can be uniquely determined by its values on M. From this we obtain
the following onto-isometry:

7‘(}{0 9f»—>F€L2(R)

278 where
1 00
Flg)=f(| 1 q|) (geR).
1
0 a c
For any g = exp 0 b | € G, we define a unitary operater U/‘l’r(g)
0

on L*(R) such that the diagram below is commutative:
7‘(;0 ——L*(R)

nﬁ(, (g)i lUL (8)
H; — L*(R).

Then we have
1 0
(U} F)(q) = fleg™! 1
b
I —a —c+ %)\ (1

(-
1

— O
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The Borel-Weil theorem and the Feynman path integral 321

1 0 0 1 —a —c+%—aq
=f(| 1 q-b 1 0 )
1 1

_ edjla(—c‘+%—aq)F(q —b).

Now we show that the above unitary operator is obtained by the path
integral.

In the following, for the definition of the connection form 6, _, the
hamiltonian Hy and the action SoT v*a — Hydt in the general case the
audience may refer to the introduction of the paper [3].

We use the local coordinates ¢, p, r of g € G as follows:

o?

1 00 1 pr
Gog= 1 ¢ 10
1 1

Since the canonical 1-form @ is given by g~ 'dg, we have
0,, =< Ay, 0 >= tr(Ayg~'dg) = o(dr — pdq).

‘We choose 279
ap = —opdq.

Then

2r 2r
For Y € g, the hamiltonian Hy is given by

day,  —odp A dg

Hy = tr(d,g"'Yg) = o(ag — bp + ¢)

0

a
where Y = 0 . The action is given by

S 0

f y*a — Hydt = J {—op(t)q(t) — o(aqg — bp + c)}dt.
0 0
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We divide the time interval [0, 7] into N-equal small intervals [4 7, £

T N k7
* _ ®
Jo v *a — Hydt = Z J;IT)/ a — Hydt.
k=1Y"N

The physicists’ calculation rule asserts that one should take the “order-
ing”:

S qk + qk—1 T
Z{ O Pk— IQk_Qk 1) U(QT_bPk—1+C)N}-

This choice of the ordering can be mathematically formulated as
follows.
We take the paths: for ¢ € []%1 T, %T]

k—1 — Gi—
T)qk qk—1

q(t) = g1 + (1 — N TN

p(t) = pi—1,
q(0) = g, and ¢(T) = 4.

Then the action for the above path becomes
Z J {—op(t)q(t) — o(ag — bp + ¢)}dt

§ Gk + qr—1 T
=] {_O'Pk—l(CIk — 1) — o(a———— —bpr1 + C)N}
k=1

The Feynman path integral asserts that the transition amplitude be-
280 tween the point ¢ = g and the point ¢’ = gy is given by the kernel
function which is computed as follows:

Ky (q.q;T)

L dPo dpy—1
=i [ [T [ o g g

+ qk— T
xexp{\/ 0'2[ Pr—1(qr — Qk—l)(a%bpk—1+c)ﬁ]}
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The Borel-Weil theorem and the Feynman path integral 323

0 o0 N T
lim J J dqy - day_1 | [ 6(—qr + qur +bﬁ)
—®© —® k=1

N—0

& alg + qi—1) T
N BV L L S VY
e o

bT
= A}lrréc 6(—gn + qobT) exp {— vV—lo(aT (g0 + 7) + cT)}

abT?

= 6(—¢' + qbT) exp {— V—lo(aqT + + cT)} .

For F € C(R) we have

§° K)(q'.q:T)F(q)dq

, abT? ,
=exp{—V—lo aqT—T—I—cT F(q —bT)
= (U3, (exp TY)F)(q').

Thus the path integral gives our unitary operator.

In the above quantization, the hamiltonian function Hy(p, q) corre-
sponds to

d d
«/_1d—tUL(eXptY)|,:o =o(ag+c)— \/—lb%,

which is slightly different form

d d
Hy(—v—1—,q) = V—1b—).
v( a7 q) = olag+c+ dq)
This difference comes from the fact that we chose @, = —o pdg whereas

physicists usually take pdgq.

1 Coherent representation

281
In this section, we compute the path integral for unitary representations

realized by the Borel-Wiel theorem for the Heisenberg group. In other
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324 Kiyosato Okamoto

words, we compute the path integral for a complex polarization which is
called by physicists the path integral for a complex polarization which
is called by physicists the path integral for the coheretnt representation.
We shall show that the path integral, also in this case, gives unitary
operators of these representations.

The complexification G€ of G and g€ of g are given by

1 p r
GC = 1 ¢ql:p,qg.reC;,
1

0 a c

é=3
a
I
o
Sy

ca,b,ce C

(=)

we consider the complex polarization defined by

0 v—1b ¢
p= 0 bl;ab,ceC
0

We denote by P the complex analytic subgroup of G€ corresponding
to p. We put W = GP = GC. Then it is easy to see that Lie algebra
homomorphism

0 +—-1b ¢
P> 0 bl— —+v/—loceC
0

lifts uniquely to the holomorphic character &, :

1 V=1b c+ Y5152
P> 1 b s em VTt g %,

1

We denote by L, the holomorphic line bundle on GC/P associated
with the character &y, .
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The Borel-Weil theorem and the Feynman path integral 325

We denote by I'(Lg, ) the space of all holomorphic sections of L,

and by I'(C) the space of all holomorphic functions on C.
We use the coordinates of g € G:

282
V-1 gy v—l1
0 -5z 0 0 —@z r—s—lel2
g = exp 0 52 | €Xp 0 %Z
0 0
- V-1 1 V- v—I1_
1 -z M2 ey \zl2 F
8 4 8
= 1 iz 1 1z
1

where z € C,r e R.
We have the isomorphism

r (L%) 5 f e T(C)

where
RV Rl Y

We denotes by Fz(Lgﬁ(r) the Hilbert space of all square integrable

holomprphic sections of Lg, and by 2 <C led *"IZIZ)
For any g € G we define an operator 7" ™ (g) onI?(Lg, ) : For f €

r? (Lf,lg)
(nh (&)N)(x) = flg7'x) (xeG).
Then ”fl(, is a unitary representation of G on I'*(L, ). Since
2 _Ldz 2 dZdZ
[f@) wa, = | |7 T F(Z)| lo|——
G/Ga, C s
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f ‘F ’2 _‘7'H ‘ dZd—

where we denote by w, the canonical symplectic form on the coadjoint
orbit 0, = G/G,, and we put

326

—1
dzdz = dz A dz.

The above isomorphism gives an isometry of I*(L¢, ) onto I'*(C lo]
—%\Z|2).

283 As is easily seen I'?(C, %

follows that

e~ 7F") % {0} if and only if o > 0. If

I?(Lg, ) # {0} if and only if o > 0.

For the rest of the section we assume that o > 0.
Forany ¢ = exp(0 @ ¢ 0 b 0) € G, we define a uni-

tary operator U* (g) on I'?>(C, %e_%mz) such that the diagram below
is commutative:
2(Lg,,) —T2(C, e 5F)

i Ui ()

b (g)l
?(Lg,, ) —2(C, Le 31

Then we have (U/‘;r(g)F)(z)
| 1= V-l 2
—73 < 8
= flg™! I 1

1
e V-1,

1 2Z_8
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327

I = z=y) —g— (-
=1 1 3(z—7)
1
1Y ey P oy IR
X 1 _%’
1

o (= V=le=z *272)F(z—7),

Where y = b + +/—la.

It is well-known that UE is an irreducible unitary representation

of GonI?(C, &e 2 Y
Using the parametrization:

T P Gt Y N RV R P

2 - 8 <
8= 1 L 1 1z
1 1
we have

& —7d
0,, = tr(/lgg_ldg) = o(dr + \/—lzzéli),

Hy=0'<\/—1yz_yz~l—c>.

2
We choose a, = — rgzdz Then we have
d _ V- lodz A d—

2r 4

For fixed z,7 € C we define the paths: For r € []%1 T, %T]
Z2(t) = Zx—1,
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k—1 Zk — Zk—1
) =z t— T ,
) =z 1+< N > T/N
z(0) = zand z(T) = 7.

Then the action becomes

JT {laz(r)z(r) —V-lo ( V1720 ;

¥ ﬁT {%Uz@z(z) ﬁg<ﬁiz() VoI )}
T
N

V=1yE(D) + c) } dt

2
= UZ BZk—l(Zk — Zk—1) — (%/Zk—l — Z(Zk + 1) + V-le ) ]

The following lemma can be easily proved.

Lemma 1. We have the following formula for cy, c; € C.
exXpo < —= —Z+c 7 —c
¢ on p Sl + {52+ 7| 52 2
= expO'{z” (% + Cl> —2cs (% + C1> } .

Using this lemma, we can compute the path integral explicitly
285 as follows:

Ky (Z,zT)
. f J odzidz, odzy_1din—1
N—®© Jo 2

. J f odzidz, odzy_1dzy—1
e llm PEREY PEEEY 2

N—w Jc T

v _
1 Z T T
xexp{O'Z <§Zk 2+ 2 1(21( 7—)+Zk—l_>

N _
X exp {O’Z [%Zk—l(zk — Zk—1) — (%zk—l — %(Zk + zk—1) + \/jlc) %]}

k=1
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yT
+o(zy — ZO)ZTV - \/—10‘CT}

. J J' odzidzy odzy_1dzy—
— lim | -
1 _vyT yT
X exp {0' (§Z0|2 - ZO;_N + Zog—N>
1

N 1 2 — Tk 7’T ’7T
+0’Z —§|Zk71| + Zk—1 2 TN +Zk71ﬁ

k=4

yT
+o(zy — ZO);TV - \/10’CT}

—( lim J J odzndz - odiv-1diy-i
N—x Jo c 2 2
1 _ T yT
X exp {0' <§zo| ~ 5y + Z()2N>

Lo - (zz T Kz T
_— > _ 2 2717 )
+0'( |z2| +22<2 2N>+22<2+ N N

Z T T
+O’2<——|Zk 1| + Zi— 1<Ek—;—N>+Zk 1§N>

k=4

yT
+ o(zy — ZO)ZTV - \/—10‘CT}

repeating the above procedure,

. 1
= lim exp{a‘( |z0]” + 2w <2+ 2) 1z (2+2

(20

2

yT
2N

+0'< zo—T+(10— N)_—T+—T(_ +9T) }

2N 4N 4N
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1, (7 3T z T
- - o)) (2 ) - Voder
exp{0'< 2|z| +z <2+ 2) y <2+ ) c

0 a c
Thus for any ¥ = 0 b |eg, wehave
0

odzdz
KY(Z,z:T)F
| R nFE)

_ f odzdz
N 2w

- ~2(z —yT) + =Z3T
{a( Sl2l"+ 52z =9T) + 527
1
—Z|y|2T2— \/—lcT)}F(Z)

1 1
= exp {0' (Ez'?T — 4—1])/\2T2 — \/—lcT> } F(Z —vT)

= (Uﬁg(exp TY)F)(Z).

2 Borel-Weil theorem

In this section, we consider unitary representations realized by the Borel-
Weil theorem for semisimple Lie groups.

Let G be a connected semisimple Lie group such that there exists
a complexification G with 7;(G®) = {1} and such that rank G =
dim 7,7 a maximal torus of G. Let K be a maximal compact subgroup
of G which contains 7, and f the Lie algebra of K. Note that G can
be realized as a matrix group. We denote the conjugation of G¢ with
respect to G, and that of g€ with respect to g, both by - Let g and b be

287 the Lie algebras of G and T. We denote complexifications of g and b by

g€ and b€, respectively. Then HC is a Cartan subalgebra of qoC.

Let A denote the set of all nonzero roots and A™ the set of all positive
roots. Then we have root space decomposition

gC :bC+ Zga.

aeA
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Define
nt = Z ot b=0pC+n".

aceAt

Let N, N~, Band T be the analytic subgroups corresponding to n™, n~, b,
and hC, respectively.
We fix an integral form A on hC. Then

EN:T — U(1), exp H — M)

define a unitary character of 7 And &5 extends uniquely to a holomo-
prhic one-dimensional representation of B:

En:B=T°N~ — C*,  expH-n — WD,

Let L, be the holomorphic line bundle over G¢/B associated to the
holomorphic one-dimensional representation &4 of B. We denote by
Ly the restriction of L, to the open submanifold G/T of G€/B:

G¢ GBC G*
G/T - GB/B——=G®/B
and
LA—— I\
G/T“— G°/B.

Then we can indentify the space of all holomorphic sections of Ly with
T(Ly) = {f LGB ™ C; f(xb) = éx(b)"' f(x),x € GB,b € B} .
Let a be a representation of G on I'(L, ) defined by
aa(g)f(x) = f(g7'x) forge G,xe GBand f e T(Ly).
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For any f € ['(La) we define 288

AP = | 17(e)Pas
G
where dg is the Haar measure on G. We put

[a(La) = {f e T(La); [|f]] < +o0}.

Then the Borel-Weil theorem asserts that (75, 2(Ly)) is an irreducible
unitary representations of G (Bott [1]], Kostant [8] and Harish-Chandra
[21] (3] [4D).

For the moment we assume that G is noncompact.

We fix a Cartan decomposition of g:

g="%t+p.

We denote complexification of f and p by € and fp€, respectively. Let
A and A, denote the set of all compact roots and noncompact roots,
respectively.

Now we assume that I';(Ls) # 0. Then there exists an ordering
in the dual space of hr = ih so that every positive noncompact root
os larger than every compact positive root. The ordering determines
sets of compact positive roots A} and noncompact positive roots A, .
Furthermore A satisfies the following two conditions:

(A,a)y=0 foraeAl,
(N+p,ay<0 foraeAS,

where p = % Y went @. Then there exists a unique element  in I'(Ly )
which satisfies the following conditions:

an(h)yn = Ex(h)yn forheT,
dra(X)yn =0  forXen™,

Yale) =1,
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where dmp is the complexfication of the differential representation of
7. One can show that /4 is an element of I'(Ly ). We normalize dg so
that §;, | a ()| 2dg = 1.

Define D to be an open subset nt which satisfies exp D- B = GB N NB,
where exp is the exponential map of n* onto N:

~

exp: nt N
U V)
D exp D.
For each @ € A, we choose an E,, of g% such that 289
B(Ey, E_,) =1

and
Eoz - E—m \% _I(Ea + E—a) € Qu,

where B(, -) is the Killing form of ¢ and g, = ¥+ \/—1p, the compact
real form of €. Note that

T —E_, foraceA,
“ | E., foraeA,

We put m = dimn* and introduce holomorphic coordinate on n* and
n~ by

TGN TI+, (Za)aeA+ — 7 = Z ZQEQ,

acAt
m _
C" —>n7, (W<l>(leA+ > W = Z weE_o
acAt
We put
n; = exp Z ZoEq € N,
aceAt
n,, = exp Z WoE_o €N,
aceAt
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Let I'(D) be the space of all holomorphic functions on D. The following
correspondence gives an isomorphism of I'(Ly ) into I'(D):

®:T(Ly) —I(D), f+—F

where
F(z) = f(n;) forze D.

We put Ha = @(I'2(La)). Let us denote by Ux (g) the representation of
G on Hjy such that the diagram

|) (LA) — FH\
ﬂA(g)J( lUA(g)

|) (LA) —FH\

is commutative for all g € G.
We normalize the invariant measure ¢ onG/T such that

Lf(g)dg= L/T (Lf(gh)dh) du(sT) forany f € CZ(G),

where dh is the Haar measure on 7 such that ST dh =1.
We denote the measure on D also by p which is induced by the
complex analytic isomorphism:

¢:D— G/T.

By the definition of D, ¢(D) is open dense in G/T. For any x € NTCN~
we denote the N—, T¢— and N~-component by n(x), h(x) and n~(x),
respectively. Then, for any f € I'(La),g € G and h € T we have

[f(gm)| = [f(g)l and |£n(R(gh))| = [én(h(g))]-

This shows that |f(g)| and |£x(h(g))| can be regraded as functions on
G/T.
We put
In(2) = lea(h(e(2)))| 2.
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Then we have

f f()Pdg = f £ (8)Pdu(sT)
G G/T

N L |F(2)|*Ia(2)du(z).

We define
(D) = {F e (D),

F|| < 400},

where

I1F1P = | IF@P At
In case that G is compact, we remark in the above that

G=K, GB-G® D=n", g=t p=0,
A=A, A=, TaLp) =T(La),

and I'(La) # {0} if and only if A is dominant.
For the rest of this paper we assume that I';(La) # {0}.
Suppose that G is noncompact. We put

We denote by K€, P, and P_ be the analytic subgroups of G€ corre-
sponding to f€,p, and p_, respectively. Then there is a unique open
subset Q of p, such that GB = GKCP_ = expQKCP_. We put
W = P, KCP_. Then ¢ is uniquely extended to a holomorphic func-
tion on W

Henceforth, throughout the paper, the discussions are valid for the 291
compact case as well as for the noncompact case.

Define a scalar function K on GB x GB by

Ka(g1,82) = ¥al(gr81).

Then K (-, g,), with g» fixed, can be regarded as an elemetn of I';(Ly ).

335



336 Kiyosato Okamoto

We define a scalar function K on D x D by
KA(Z/,Z”> = V(A(I’lzl,ﬁz//).

Note that K (z/,Z") is holomorphic in the first variable and anti-holomor-
phic in the second and that it can be regarded, with n,» fixed, as an ele-
ment of Hp.

Now we define operators K, and Kx on I';(L,) and H, by

FAN) = | Kal' FF e’ for f ETalla)
and
(KAF)(Z") = L Kn(Z\7)F(Z)In(Z)du(?) for F e Hy,

where dg’ is the Haar measure on G. Then we have the following com-
mutative diagram:
[o(La) — Ha

3 Jxs

2 (La) — Ha.

The important fact which we use in the next section is that K is the
indentity operator.

3 Path Integrals

We keep the notation of the previous section.

In [3]], we tried to compute path integrals for the complex polariza-
tion of SU(1,1) and SU(2) and we encountered the curcial difficulty
of divergence of the path integrals. In [6], by taking the operator or-
dering into account and the regularizing the path integrals by use of the
explicit form of the integrand, we computed path integrals and proved
that the path integral gives the kernel fucntion of the irreducible unitary

292 representation of SU(1,1) and SU(2). In [7]], we gave an idea how to
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regularize the path integrals for complex polarizations of any connected
semisimple Lie group G which contains a comnpact Cartan subgroup 7
and showed, along this idea, that the path integral gives the kernel func-
tion of the irreducible unitary representation of G realized by Borel-Wiel
theory.

Our idea is, in a sense, nothing but to reularize the path integral
using “normal ordering” (cf. Chapter 13 in [[10]) and can be explined as
follows.

Put 1 = v/—1A. We extend A to an element of the dual space of g
which vanishes on the orthgonal complement of I in g with respect to
the killing form. Then for any element Y of the Lie algebra of G, the
Hamiltonian on the flag manifold G/T is defined by

Hy(g) = (Ad*(g)4.Y)
= V—1A(Ad(g7")Y).

Since the path integral of this Hamiltonian is divergent we regularize it
by replacing

o V—1Hy(3) _ ,A(H(Ad(g™)Y))
= én(exp(H(Ad(g™)Y)))
by
En(h(exp(Ad(g™)Y))),
whereH and & denote the projection operators:
H:nt +0¢ + fnm —1C,
h:expn’exp H¢ expn. — exp p¢ = 1€,

Remark 1. For simplicity we assume that G is realized by a linear
group. For any X € g€, we decompose X = X, + Xo + X_, where
X, e nt, Xg € H€ and x_ € n~. We define the “normal ordering” : : by

the rule such that the elements in n* appear in teh left, the elements in
bHC in the middle and the elements in n~ in the right. Then we have

texp(Xy + Xo + X—) 1= exp X_ exp Xp exp x_.
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For any X € g€ we define &4 (exp X) = ¢*X). Then the above regular-
ization means that we replace

§A<6Xp(X+ + Xo + X_))

by
En(exp x—)&a(exp Xo)éa (exp X-).

Before we start computing path integrals on the flag manifold G/T we
prepare several lemmas.

Lemma 2. For any g € NB we decompose it as
g = ngn,;t where n;eN,n, e N ,te TC.

Suppose that g € G N NB. Then we can express w in terms of z and 7
which we denote w by w(z,z). And we have

Ka(z,2) = Ex(1¥t) and JA(z) = Ka(z,2) L.

For any z € D, we put g(z,2) = ”Zn;(z,z)'

Let d denote the exterior derivative on D. We decompose it as d =
0 4 0, where @ and @ are holomorphic part and and anti-holomorphic
part of d, respectively.

Define
0= A(g 'dg) = Aln,,'n_ ' onen,)) + A dr),
where g = n;n,, t € G. And we choose

a = /l(n__lnz_lanzn;).

For any Y € fg, the Hamiltonian functions is given by
Hy(g) = (Ad*(g)4,Y) = (Ad*(g(z.2))4.Y),
where g = g(z,2) € G.
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If we decompose g = n;n, t € G n NB as in Lemmal[2] then we can
show that

A(n;_lnz_lanzn;)

—A((er") 7 o(er*))
= —0log Ka(z,2).

It follows that @ = —\/—101og KA (z,2).
Now we consider the Hamiltonian part of the action. Let

Kw(Z) = KA(Z, V_V)

and regard it as an element of Hy.
For any X € g©, we decompose itas X = X, +H+X_ with X e nT 294
and H € hC. Then we put H(X) = H.

Lemma 3. Forany X € q© and g = n.n,;t € G n NB, using the above
notation, we have

En(h(expeX)) = én(expeH (X)) + O(e)?

and
(Un(expX)Kz)(z) = Kz(z)én(h(g™" expeXg)),

for sufficiently small e. We put zo = z and zy = Z’. First we compute
the path integrals without Hamiltonians. Taking the same paths as in
[3]], we generalize Propositions 6.1 and 6.2 in [3]] as follows:

JD(Z,Z) exp <ﬁLT y*a)

N—1 %T
= Jim '”L H du(zi) exp ( J 510gKA(Z(f),Zk—1)>

D 1 ST

N—1 N _
. KA (2> Zk—1)
= lim f du(z;) ex log ——MMMMM—
N—wJp  Jp H (z) exp (,;1 S Kao1.2-1)

N—1 N _

. Ka (2, Zk—1)

= lim J f du(z;) ex —_—

N—xJp Jp H i) p,l_[l K (zk—1,2k-1)
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N— N
:A}i_r)réof j Ja(zo U Alzi)dp(zi H A2k 1)
= JAKA(Z,2),
where we used Lemma[2l and the fact that K is the identity operator.
Next, for any Y € g, we quantize the Hamiltonian Hy by choosing
the following ordering:

2= Zks 2> Zh—1I- (Cp»

In [5]] we proposed to compute the path integral in the following way:
T
[Deew (V=T [ ya - mvieza)
. Ka(ze 1)
= lim du(z;) ex log
NHOOJ JH i p(Z KAZk Ka(ze—1,2-1)

X exp (Z A(Ad(g(zk,zh—1))~ 1Y)§> .

k=1

However this integral diverges. Therefore we replace
- T _ -
MAdE@E-)) TN — £, (exp H(ﬁAd(g(Zk,Zk—l)) %)

by
En(h(exp(y; Ad(g(at 1)) 7). ()

Then our path integral, which generalizes the path integral given in [6],
becomes

N
A}l_rllﬁf fJA 20 HJA zi)du(z;) H ZYMZp—1)
x fA(h(eXp(N Ad(g(zxz—1) "))
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By Lemmal[3l we see that

B i T _
Ka(Z,2)én(h(8(2,2") " exp 1 Y2(2,7"))
is extended to the function

T
NG exp(—ﬁY)nz/)

defined on D x D which is holomorphic in z’ and anti-holomorphic in
"
z.
To proceed further, we need the following

Lemmad. ForanyX egandg',g" € GB,
| ontuzg un (s exp X0 10 @)

=Lm@wwwm@mawwa

Applying this lemma to the path integral by taking X, g” and g’ in Lemma
Hlas —%Y , eXp (%Y ) ng, and ng,_, for each k, respectively, we see that the
path integral equals

Ja(2)Ya(nZ exp(=TY)ny)
= Ja (Z)WA(GXP(_TY)nZ’s ﬁz)-

Furthermore, we have 296

L Jn(2)Ka(exp(=TY)n.,nz)F(2)du(z) = (Un(exp(TY))F)(<)

for any F € H,y.
Thus we have obtained the following theorem.

Theorem. For any Y € g, choosing the ordering (Cy) and taking the
regularzation (C), the path integral of the Hamiltonian Hy gives the
kernel function of the operator Up (exp(TY)).

Remark 2. In case that G is compact,the theorem is valid for any
Y € g€, because Lemma B holds for any X € g€ in this case.
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Geometric Super-rigidity
Yum-Tong siuf

Introduction

A more descriptive title for this talk should be: “The superrigidity of
Margulis as a consequence of the nonlinear Matsushima vanishing the-
orem”. What is presented in this talk is the culmination of an investiga-
tion in the theoey of geometric superrigidity which Sai-Kee-Yeung and
I started about two years ago.

We first used the method of averaging and invariants to obtain Boch-
ner type formulas which yield geometrix superrigidity for the Grass-
mannians and some other cases. Finally we obtained a general Bochner
type formula which includes the usual formulas of Bochner, Kodaira,
Matsushima, and Corlette as well as those obtained by averaging so that
all cases of geometric superrigidity in its most general form can be de-
rived from such a general Bochner type formula I would like to point out
that, for the difficult cases such as those with a Grassmannian of rank at
least two as domain and a Riemannian manifold wity nonpositive sec-
tional curvature as target, the formula form the Matsushima vanishing
theorem does not yield geometric supperigidity. For those difficult cases
one needs the cases of the general Bochner type formula motivated by
the method of averaging and invariants. Even with the other simpler
cases for which the formula from the Matsushima vanishing theorem
yields geometric superrigidity, to get the result with only the assump-
tion of nonnegative sectional curvature for the target manifold instead
of the stronger assumption of nonnegative curvature operator condition,
one needs the use of an averaging argument.

*Partially supported by a grant from the National Science Foundation
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Geometric superrigidity means the Archimedian case of Margulis’s
superrigidity [?] formulated geometrically by assuming the target man-
ifold to be only a Riemannian manifold with nonpositive curvature con-
dition instead of locally symmetric. The complex case of Mostow’s
strong rigidity theorem [Mos] is a consequence of the nonlinear version
of Kodaira’s vanishing theorem which yields a stronger result requiring
only the target manifold to be suitably nonpositively curved rather than
locally symmetric [Sil]. It turns out that in the same way the Archime-
dian case of Margulis’s superrigidity is a consequence of the nonlinear
version of Matsushima’s vanishing theorem for the first Betti number
[Mat]. Again the result is stronger in that the target manifold is required
only to be suitably nonpositively curved instead of locally symmetric.
Moreover, this approach provides a common platform for Margulis’s
supperrigidity for the case of rank at least two and the recentsuppe-
rigiduty result of Corlette [Col] for the hyperbolic spaces of the quater-
nions and the Cayley numbers. The reason for the such vanishing theo-
rem is the holonomy group which explians why supperigidity works for
rank at least two as well as the hyperbolic spaces of quaternions and the
Cayley numbers. The curvature R(X, Y) as an element of the Lie alge-
bra of End(T)) generates the Lie algebra of the holonomy group. The
minimum condition is that the holonomy group is O(n) which simply
says that R(X, Y) is skew-symmetric. To get a useful vanishing theorem
one needs an additional condition to remove a term involving only the
curvature of the domain manifold. The Kéhler case is the same as the
holonomy group being U(n). Then R(X, Y) is C-linear as an element of
End(T,,). This additional condition enables one to obtain the Kodaira
vanishing theorem for negative line bundles. Other holonomy groups
help yield vanishing theorems for geometric superrgidity. One can also
get vanishing theorems for some of the special holonomy groups.

The approach to geometric superrigidity as the nonlinear version of
Matsushima’s vanishing theorem is motivated by a remark which E. Cal-
abi made privately to me during the Arbeitstagung of 1981 when I deliv-
ered a lecture on the newly discovered approach to the complex case of
Mostow’s strong rigidity as the nonlinear version of Kodaira’s vanish-
ing theorem. Calabi remarked that there is another vanishing theorem,
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namely Matsushima’s which one should look at. He also remarked that
Kodaira’s vanishing theorem involves the curvature tensor quadratically
[Call. Actually the early rigidity result of A. Weil [W] already depends
on Calabi’s idea of integrating the square of the curvature p. 316]
and this early rigidity result launched the theory of strong rigidity and
superrigidity. ¢From this point of view it is not surprising that super-
rdidity cane be approached from Matsushima’s vanishing theorem. We
state first here the final result we obtained.

Theorem 1. Let M be a compact locally symmetric irreducible Rie-
manninan manifold of nonpositive curvature whose universal cover is
not the real or complex hypebolic space. Let N be a Riemannian man-
ifold whose complexified sectional curvature is nonpositive. If f is a
nonconstant harmonic map from M to N, then the map from the univer-
sal cover of M to that of N induced by f is a totally geodesic isometric
embedding.
Here nonpositive complexified sectional curvature means that

RN(V.W;V,W) <0

for any complexified tangent vectors V, W at any xeN, where R" is the
curvature tensor of N. In this talk we follow the convention in Ma-
tusushima’s paper [Mat] that R;j;; is negative for a negative curvture
tensor [[Mat], p. 314, line 6].

Theorem 2. In Theorem[llwhen the rank of M is at least two, one can
replace the curvature condition of N by the weaker condition that the
Riemananian sectional curvature of N is nonpositive.

When the universal cover of M is bounded symmetric domain of
rank at least two, Theorem [I] was proved by Mok [Moll. When the
universal cover of M is the hyperbolic space of the quaternions and
the Cayley numbers, Corlette’s result differs from Theorem [1] only in
that Corlette’s result requires the stronger curvature condition that the
quadratic form (£7) nglgl’fg"’ be nonpositive for skew-symmetric
(&)

Theorem 3. In Theorems[lland[2let X be the universal cover of M and
" be the fundamental group of M. Then the conclusions of Theoremsl
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and 2 remain true when the harmonic map f from M to N is replaced
by a I'-equivariant harmonic map f from X to N.

Remark. With the existence result for equivariant harmonic maps cor-
responding to the results of Eells-Sampson [[E-S]|, Theorem[Blimplies the
following Archimedian case of the superrigidity theorem of Marugulis
[?]: For lattices I' and I extends to a homomorphism from G to G,
when G is noncompact simple of rank at least two and I" is cocompact.
The general Archimedian case of the superrigidity theorem of Margulis
would follow from the corresponding generalization of Theorem[3l In
order not to distract from the key points of our arguments, we will not
discuss such generalizations in this talk. Also we will focus only on
Theorems [Thnd P because the modifications in the proofs of Theorems
M and2lneeded to get Theorem 3] are straightforward.

An Earlier Approach of Averaging

After Corlette [Coll obtained the superrigidity for the case of the hyper-
bolic spaces of the quaternions and the Cayley numbers, Sai-Kee Yeung
and I started to try to undersatand how Corlette’s result could be fitted in
a more complete global picture of geometric superrigidity. Corelette’s
method is to generalize the method of the nonlinear d0-Bochner for-
mula for the complex strong rigidity by replacing the Kéhler form used
there by the invariant 4-form in the case of the quaternionic hyperbolic
space. That 4-form corresponds to the once on the quaternionic projec-
tive space whose restriction to a quaternionic line is its standard volume
form. Later Gromov [G] introduced the method of foliated harmonic
maps so that Corlette’s result could be proved by applying the nonlinear
00-Bochner formula to the leaves. In his proof of the case of Theo-
reml]] when the universal cover of M is a bounded symmetric domain
of rank at least two, Mok remarked that, according to Gromov,
one should be able to develop the foliation technique of Gromov to
extend Mok’s proof to many Riemannian symmetric manifolds of the
noncompact type with rank at least two by considering families of to-
tally geodesic Hermitian symmetric submanifolds of rank at least two.
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The earlier approach Sai-Kee Yeung and I adopted was motivated
by Gromov’s work on foliated harmonic maps. We started out by con-
sidering a totally geodesic Hermitian suymmetric submanifold o of the
universal cover X of M. We look at the nonlinear dd-Bochner formula
applied to the restriction of the Hermitian-symmetric submanifold o- and
the average over all such submanifolds under the action of the automor-
phism group of X.

More precisely, we let X be the quotient of a Lie group G by a max-
imum compact subgroup K and let I' be the fundamental group of M.
Choose a suitable subgroup H of G so that H/(A n K) is a bounded
symmetric domain of complex dimension at least two. We pull back the
harmonic map f : M — N to a map f from G/K to N and, for every
k is K, apply the nonlinear d0-Bochner technique developed in [[Si],
[Sal]] to the restriction of f to k - (H/(H n K)). Since the image of
k- (H/(H n K)) in I'\X is noncompact, one has to introduce a method
a averaging over k to handle the step of integration by parts. As a re-
sult of averaging over k the integrand of the gradient square term of the
differential of the map f in the formula is an averaged expression of the
Hessian of f.

The difficult step in this approach is to determine under what condi-
tion this averaged expression of the Hessian of f is positive definite in
the case of a harmonic map. It turns out that in some cases when we use
only one single subgroup H of G this averaging expression in general is
not positive definite for harmonic maps. To overcome this difficulty we
choose two subgroups H; and H, instead of a single H and we sum the
d0-Bochner formulas for the two subgroups. For example, this is done
in the case of SO(p, q)/S (O(p) x O(q)) forp > 2andg > 2 (v = 1,2)
and the sum of the two averaged expressions of the Hessian of f turns
out to be positive definite for harmonic maps for this case.

In Cartan’s classification of Riemannian symmetric manifolds, be-
sides the ten exceptional ones there are only the following four series
which are not Hermitian symmetric:SO(p,q)/S(O(p) x O(q)),
Sp(p.q)/Sp(p) x Splq), sU(k)/SO(k), and SU*(2n)/S p(n). We ex-
plicitly verified that for these four series the averaged expression of the
Hessian of the Hessian of f is positive definite in the case of a harmonic
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map so that both Theorem [I]and Theorem 2 hold for these four series.

The method of verification is to use scalar invariants from the rep-
resentation of compact groups and Cramer’s rule. More precisely, let
V be a finite-dimensional vector space over R with an inner product
< -+ >. Let K be a compact subgroup of the special orthogonal
group S O(V) with respect to the inner product. Let S be an element
of V& To compute the average Sge ke S, we first enumerate all the
one-dimensional K-invariant subspaces R (1 < k < k) of V®* so that
Sgekg S = Zle ¢l for some constants ¢,. By taking the inner prod-
uct of this equation with /5, we have the system of linear equations
Zf: 16 < I, In >=< §,Ipn > from which we can use Cramer’s rule
to solve for the constants c,.

For such verification it does not matter whether one uses the original
Riemannian symmetric space or its compact dual and we will use its
compact dual in the following description of the verification.

For the case of G = SO(p,q) and K = S(O(p) x O(q)) for p >
2 and ¢ > 2 we use the two subgroups H; = SO(p,2) and H, =
S0O(2,q) of G so that Hj/(H; n K) is a bounded symmetric domain of
rank two. The tangent space of G/K is given by a p x ¢ matrix and
we denote the second partial derivative of the map f with the (a,)"
entry and the (y,5)" entry by fosys. (Similar notations are also used
for the description of the other three seres without further explanation.)
Then the avearaged expression @, of the Hessian of f for the subgroup 304
Hy =S0(p,2)is

1 2
(I)O'] = ) (faﬁaﬁfyéyé + ( q) faﬂaﬁfyﬁy&

(¢—1)(g+2

2
- f aB,y,Bf ad,yd _f aﬂ,yﬁf aB,yd + Z]f aﬁ,yﬁf ad,yPs )

where the summation convention of summing over repeated indices is
used. Moreover, = )(D(,l +—— q(q 7y Py is positive definite when min(p, q)
= 3. The expression @, (and also similar expressions lates) is given
only up to a positive constant depending on the total measure of th com-

pact group K.
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For the case of G = Sp(p,q) and K = Sp(p) x S p(q), the totally
geodesic Hermitian symmetric submanifold used is S U(p+q)/s(U(p) x
c

D
U(q)). The tangent space of G/K is the set of < D 6). Before we

. o . (C D
average, we lift the expression with arguments in DT to an ex-

pression with arguments in a general (p+¢) x (p X ¢) matrix W = (wy;)
2

of
(9wa,»8%
8j(ﬁ)1(j)6mf = CaiCg;f, where J@)=p+aand J(p +a) = —a
with J(_,); meaning —0g;.

The averaged expression of the Hessian of f is

so that with the notation &nﬁﬂ—j f = we have the symmetry

3p 2 —
Tfaiafyjy_j - (P + 2)|fm'E‘ - (2]7 + l)faili_jfa(Jj)m

forg = 1 and is

(p+q+ ZPCI)faiEfﬂjﬂ_j -1+ p)faia_jfﬁﬁ
—(V+ D fogilgja; — P+ 4+ 209) foigifsjai
—2+p+ D aigilsamy

for ¢ > 1 and is positive definite when min(p, ¢) > 1 and max(p,q) =
2.

For the case of G = SL(k,R) and K = SO(k), we let n be the
largest integer with 2n < k. The totally geodesic Hermitian symmetric
submanifold used is S p(n)/U(n). The tangent space of G/K is the set
of all symmetric matrices of order k with zero trace.

The averaged expression of the Hessian of f is equal to

4 4
JoB.p S — H—zfaﬁ,yﬁfauw — JapyoSapys + H—zfaﬁ,yéfay,ﬂy

which is nonnegative for k > 4.

For the case of G = SU(2n) and K = S p(n), the Hermitian sym-
metric submaifold is S O(2n)/U(n). The tangent space of G/K is given
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by the set of all (x,Y) of the form (X,Y) = (A — D, B + C) with the
(2n) x (2n) matrix <12, g) skew-Hermitian and tracesless. Befor we
average, we lift the second derivative of f, via the map Z = (z 0/3) =

C D
the Lie algebra of SU(2n) so that the symmetries f, 75~ = —fgasy and

A B — ,
( > — (A — D,B + C) to the second jet fopsy = 81056%]” on

Trpy7@sy = Japsy hold, where as earlier J(«) = n+aand J(n + a) =
—a. The averaged expression of the Hessian of f is
2 2
Jopgalyssy = 1 Sepralesoy — Japysleaey — T Jamys sasy

which is nonnegative for n > 3.

In the above approach by averaging, the natural curvature condition
for the target manifold is the nonnegativity of the complexified sectional
curvature. One can also consider the curvature term obtained by aver-
aging and argue by the number of invariants that the target manifold
needs only to satisfy the weaker condition of the nonnegativity of the
sectional curvature in the case of the domain manifold of rank at least
two. Mok came up with the the idea that to get directly the weaker con-
dition of nonnegative sectional curvature for the target manifold, one
can restrict the harmonic map to totally geodesic flat submanifolds of
the domain manifold and average the usual nonlinear Bochner formula
there instead of the nonlinear d0-Bochner formula.

Though this averaging method theoretically can also be applied to
the ten exceptional cases of Riemannian symmetric manifolds which are
not Hermitian symmetric, explicit computation becomes cumbersome
for them. We then changed our approach and used instead the nonlinear
Matsushima vanishing theorem in our investigations of the ten excep-
tional cases. The use of the nonlinear Matsushima vanishing theorem
in the exceptional cases is the most natural approach. In the course of
our investigation involving both the Bochner type formula from aver-
aging and those from the Matsushima vanishing theorem we came to a
much better understanding of the nature of such vanishing theorems. We
could formulate such vanishing theorems in a general setting. The most
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general case of geometric superrigidity is then a consequence of such
a general nonlinear vanishing theorem. Both the d0-Bochner vanishing
theorem and the Matsushim vanishing theorem are special cases of teh
vanishing theorem for the general setting. It also gives a very short and
elegant proof of the original Matsushima vanishing theorem.

Matsushima’s Vanishing Theorem

Matsushima’s theorem states that the first Betti number of a compact
complex manifold is zero if its universal cover is an irreducible bounded
symmetric domain of rank at least two.

One step of Matsushima’s original proof is the verification of the
positivity of a certain quadratic form

(£7) = b(g) Y, (€1) + D RunjeI€™,

LJ i, k.l

where b(g) is a constant depending on and explicitly computable from
the Lie algebra g of the Hermitian symmetric manifold and Rj; is the
curvature tensor of the Hermitian symmetric manifold. The verification
makes use of the computations by Calabi-Vesentini and Borel on the
eigenvalues of the quadratic form given by the curvature tensor acting
on the symmetric 2-tensors of a Hermitian symmetric manifold.

Mostow’s strong rigidity theorem (for the case of simple groups)
says that if G and G” are noncompact simple groups not equal to PS L
(2,R)and I’ € G and I" < G’ are lattices, then any isomorphism can
be extended to an isomorphishm from G to G’. For the case of bounded
symmetric domains and cocompact lattices we can state it as follows.
Let D and D’ be irreducible bounded symmetric domains of complex
dimension at least two and let M and M’ be respectively smooth compact
quotients of D and D’. If M and M’ are of the same homotopy type, then
M and M’ are biholomorphic (or anti-biholomorphic).

The vanishing theorem of Kodaira for a negative line bundle L over a
compact Kédhler manifold M of complex dimension n > 2 can be proved
as follows. We do it for the vanishing of H'(M, L) becaucse that is the
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case we need. Suppose ¢ is an L-valued harmonic (0, 1)-form on M. Let
w be a Kihler form of M. Then

0= [ VETER(VTEn B n = Inelf - [ (Rige)
M M

implies that & vanishes, where R, is the curvature of L.

The nonlinear version of Kodaira’s vanishing theorem is as follows.
Let M and N be compact Kihler manifolds and f : M — N be a har-
monic map which is a homotopy equivalence. Use Of instead of £&. We
get

0= J V—=100(V=ThgBf* A OfF) A "2 = ||DOf|?
M
- | ®V@raroran.
M

Suitable nonpositive curvature property of N implies that either 0 f or of
vanishes. Such a curvature property is satisfied by irreducible bounded
symmetric domains of complex dimension at least two. This nonlin-
ear version implies the complex case pf Mostow’s strong rigidity the-
orem,because the theorem of Eells-Sampson implies the existence of a
harmonic map in the homotopy class of continuous maps from a com-
pact Riemannian manifold to a nonpositively curved Riemannian mani-
fold. Moreover, the target manifold is assumed to satisfy only a curva-
ture condtion instead of being locally symmetric.

The complex case of strong rigidity corresponds to the vanishing
of the first cohomology wiht coefficient in a coherent analytic sheaf.
The real analog corresponds to the vanishing of the first cohomology
with coefficient in the constant sheaf. So we should look at the van-
ishing of the first Betti number. On the other hand holomorphic means
0 = 0. Its real analog should mean d = 0 which means parallelism. The
pullback of the metric tensor being parallel means isometry after renor-
malization. This consideration gives the motivation that the nonlinear
version of Matsushima’s vanishing theorem for the first Betti number
would yield the Archimedian case of Margulis’s superrigidity theorem
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with the assumption on the target manifold weakened from local sym-
metry to suitable nonpositive curvature.

The reason for geometric superrigidity turns out be the holonomy
group. the curvature R(X, Y) as an element of the Lie algebra of End(7)
generates the Lie algebra of the holonomy group. The minimum condi-
tion is O(n) which simply says that R(X, Y) is skew-symmetric. The
Kihler case is the same as the holonomy group being U(n). Then
R(X,Y) is C-linear as an element of End(T). It is the same as saying
that Ryp;; = O for 1 < alpha, < n and i, j running through 1,--- ,n
and 1, - - - , 7. The condition is equivalent to R By5 being symmetric in «
and vy by the Bianchi identity

R 0.

opys T Raysp T Rogpy =

Vahishing Theorems from 4-Tensors

A vanishing theorem is the result of a 4-tensor Q satisfying the following
conditions. This 4-tensor Q; jx; should be skew-symmetric in i and j and
symmetric in (i, j) and (k, [). Moreover, the following three conditions
should be satisfied:

(i) The quadratic form Zi ikl 0, jklfﬂfﬂ‘ is positive definite on all trace-
less &Y.

(i) <A(,-X),R(-,-,,Y) >=0forall X, Y.
(ii1) Q is parallel.
Once one has such a 4-tensor Q, one applies integration by parts to
J OQijuVifiVifi
M

for any harmonic f to show that f is zero. Here V denotes covariant
differentiation. We can do this for the linear as well as the nonlinear
version of the vanishing theorem. As and example let us look at Ko-
daira’s vanishing theorem. The 4-tensor is

Qaﬁy,(_s = 6as0py — Oapdys-
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Note that this Q is simply the curvature tensor for the manifold of con-
satant holomorphic curvature with the sign of the second term reversed.
Then

Qi€ = 0,5,56"°E = Zf“éf‘lé (Z ‘faa) (W) - 2@55‘75
@ 5

,0

is positive definite. Moreover,
QijuiRijin = Qo5,5R 5,5 = Regon — Rsgpn = 0-

In the case of a harmonic 1-form f, the formula is simply
f QiiVifiVifi = —f Qijk1 f1ViV j fi
M M
1
=3 jM Qi fi [Vir V)] fi
1
=3 JM QijkifiRijknfn = 0.

Note that this gives a proof of Matsushima’s vanishing theorem when
we consider a harmonic form f;, because the conditions on Q imply that
fi is parallel and there is no nonzero parallel 1-form otherwise there is a
deR-ham decomposition of the universal cover. In the case of a compact
K4 hler manifold (without using any line bundle or any map) applied to
a harmonic (1,0)-form f, the formula gives 0pfa = 0 for all @ and B,
which is the same as saying that any harmonic (1, 0)-form on a compact
Kihler manifold is holomorphic. When this is applied to a harmonic 1-
form with values in a line bundle, we have another term in the formula
represented by the curvature of the line bundle.

Suppose the holonomy group is not U(n). Then Berger’s theorem 309
forces then manifold to be locally symmetric except for the so-called
exceptional holonomy groups. Assume that we have a compact locally
symmetric manifold. Let Ky be the curvature tensor of constant curva-
ture 1 given by

(Ko)ijui = 06 ji — 6it ji..
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We are going to use Q = coKp + R for some suitable constant cg. The
condition Q;jkR;jxn = 0 simply says that —2coR;jjn + R;juRijmn = 0.
The factor Ry;j;, in the first term is simply equal to the negative of the
Ricci curvature (Ric), according to the convention in Matsushima’s pa-
per [Mat]. The second term R;jx;R;jxs is a symmetric 2-tensor which is
parallel. Now every parallel symmetric 2-tensor is a constant multiple of
the Kronecker delta, otherwise any proper eigenspace at a point would
give rise to a deRham decomposition of the manifold. So we know that
co exists. We can determine the actual value of ¢y by contracting the
indices h and I. We getc) = — < R,R > / < R, Ky >. Consider now
the integration by parts of

JM(COKO + R)ijuVifiVf.

The question now is the positive definiteness of the quadratic form
& (coKo + R)ijué"é"

on traceless &, which is the same as

£ coZ N2+ > Rijuseh, ()

i,j.k,l

We now look at the nonlinear version. From [V;, V] f; we get an ex-
pression involving the curvature tensor of the target manifold. So

J QijuVifiVifi :J ikt fiViVjfk
M M
1
=5 | s Ren s 111

To simplify notations we write (f*R);j; = Ry fAfEfE fP. So our
final formula is

1
f (coKo + R)ijklviflvjfk = EJ < coKy + R, f*RN >
M M
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It is simple and straightforward to verify that ¢g > b(g). From the work
of Kaneyuki-Nagano we can conclude that the quadratic form )
is positive definite.

The Term Involving the Curvature of the Target Manifold. We have
to worry about the sign of the term involving the curvature of the target
manifold SM < coKo + R, f*RY >. We have to determine conditions
on R" so that this term is nonpositive. We need only consider pointwise
nonpositivity. Fix a point Py of the domain manifold M. Let C be the
vector space of all 4-tensors T;j; which satisfies the following three
symmetry conditions: (I)Tijkl = —1 jikl, (2) Tijkl = Tklij’ and (3) Tijkl +
Tixsj+ Tijr = 0. In other words, C is the vector space of all 4-tensors of
curvature type. Let H denote the isotropy subgroup at that point. From
the known results on the decomposition into irreducible representations
of the representation of H on the skew-symmetric 2-tensors, we know
that there are two, three, or four independent linear scalar H-invariants
for elements of C.

Consider first the case when there are only two independent linear
scalar H-invariants given by inner products with the H-invariant ele-
ments /;; and Ilf,.kl of Csothat I = Ky and < I,I'’ >= 0. In our
argument we can use either the complexified sectional curvature or the
usual Riemannian sectional curvature (or even the analogously defined
quaternionic or Cayley number sectional curvature). The arguments are
strictly analogous. Let us assume that the rank of the domain manifold
is at least two and consider the case of the usual Riemannian sectional
curvature. Fix any 2-plane E in the tangent space of M at Py so that the
Riemannian sectional curvature Sect(R, E) of R for E is zero. Consider
the following expression Sge  Sect(f *RN, g-E). This expression is equal
toa (< f*RN,I > +d < f*RV,I' >) for some real constants a and a’
depending on E. On the other hand, the integrand < coKy + R, f*R >
is of the form b (< f*RV,I > +b' < f*RN,I' >) for some rea 1 con-
stants b and b’. Since both expressions vanish for f equal to the identity
map, we conclude that ¥’ = a’. To compute a and @', we use K as the
test value to replace f*R". The value b is given by

b< Ky, Ky >=cyp <Ky, Ky >+ <R,Ky >
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and the value of a is given by
a < Ky, Ky >= SeCt(K(),E).

Since ¢p = — < R,R > / < R,Ky > it follows from Schwarz’s in-
equality and the nonpositivity of < R, Ky > that b is nonnegative. From
Sect(Ko, E) = 1 we conclude that (coKo + R);ju(f*RY);ju is equal to

— <R, Ky>"'(<KyKy><RR>— <R Ky>?)
J Sect(f*RN, g - E).
gek
311 We have thus the final formula

jM(COKO + R)ijuVifiVfi

= — <R Ky>"'(<KypKy><RR>—<R,Ky>?

([, 7).
PeM geHp

where Ep is a 2-plane in the tangent space of M at P at which tthe Riem-
manian sectional curvature of M is zero and Hp is the isotropy group
at P. So we have the geometric superrigidity result that any harmonic
map from such a compact locally symmetric manifold to a Riemannian
manifold with nonpositive Riemannian sectional curvature is a totally
geodesic isometric embedding.

The case of three or four independent linear scalar H-invariants oc-
curs only in the case of Hermitian or quaternionic symmetric spaces
or the case of Grassamanians. Let us illustrate the technique by look-
ing at the Hermitian symmetric case. Let K¢ denote the curvature ten-
sor of constant holomorphic sectional curvature. Instead of using Q =
coKo + R, one uses Q = A(Ky — K¢) + u(coKc + R) for some suitable
constants. This method of using a suitable linear combination is parallel

1 1

to the choice of the suitable constants =) =D in the expression
[ﬁdbgl + ﬁq’@ in the earlier approach of averaging.
Details of the methods and results described above will be in a paper

to appear elsewhere.
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