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INTERNATIONAL COLLOQUIUM ON
ZETA-FUNCTIONS

BOMBAY, 14-21 FEBRUARY 1956

REPORT

Ax International Colloquium on Zeta-functions was held at the
Tata Institute of Fundamental Research, Bombay, on 14-21
February, 1956. The Colloquium was the first of its kind to be held
in India, and was attended by thirty-nine mathematicians, twenty
members and nineteen other participants, from nine countries:
France, West Germany, Hungary, India, Japan, the Netherlands,
Singapore, the United Kingdom and the United States.

The Colloquium was jointly sponsored, and financially supported,
by the International Mathematical Union, the Government of India
in the Ministry of Natural Resources and Scientific Research, the
Sir Dorabji Tata Trust, and the Tata Institute of Fundamental
Research. The proposal for the Colloquium was put forward by the
Tata Institute of Fundamental Research, and endorsed by the
National Committee for Mathematics in India, which acted as
the principal agency for executing the plan of the Colloquium,
and maintained close liaison between the sponsoring institutions.
The Tata Institute of Fundamental Research was the principal
host institution.

An Organizing Committee consisting of Professor K. Chandra-
sekharan (Chairman), Professor J. F. Koksma, Professor H. Maass,
Dr. K. G. Ramanathan, Professor A. Selberg, and Professor
C. L. Siegel, was appointed in April, 1955, to draw up the scientific
programme. Professors Koksma, Selberg and Siegel were nominated
to this Committee by the International Mathematical Union.

The topics for discussion in the Colloquium were set forth as
follows : (i) theory of zeta-functions for algebraic number fields,
including the classical theory of the Riemann zeta-function, and
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general problems about the zeros; (ii) A. Selberg’s investigations ;
(iii) zeta-functions in function fields and number fields, including
A. Weil’'s methods; (iv) modular functions and Dirichlet series,
Hecke’s operators, and quadratic forms.

It was the policy of the Organizing Committee to invite not
only acknowledged experts in these subjects, but also, wherever
possible, a few other distinguished mathematicians actively interest-
ed in closely related subjects. The Committee specially welcomed
the participation of younger mathematicians from inside India as
well as from abroad. It was decided that English should be the
language of the Colloquium.

The following sixteen mathematicians accepted invitations to
speak in the Colloquium :

Professor S. Bochner (Princeton), Professor K. Chandrasekharan
(Bombay), Professor S. Chowla (Boulder), Professor M. Deuring
(Gottingen), Professor M. Eichler (Miinster), Dr. M. Koecher
(Miinster), Professor H. Maass (Heidelberg), Professor A. G.
Postnikov (Moscow), Professor H. Petersson (Miinster), Dr. K. G.
Ramanathan (Bombay), Professor R. A. Rankin (Glasgow),
Dr. I. Satake (Tokyo), Professor A. Selberg (Princeton),
Professor C. L. Siegel (Gottingen), Professor P. Turan (Budapest),
and Professor N. G. Tchudakoff (Saratov).

Professors Postnikov and Tchudakoff could not attend the Collo-
quium; their papers, however, are published in the Proceedings.

Professor Y. V. Linnik (Leningrad), who was unable to accept the
invitation to attend the Colloquium, sent in a paper.

The following six mathematicians accepted invitations to attend
the Colloquium : Professor Y. Akizuki (Kyoto), Professor N. G.
de Bruijn (Amsterdam), Dr. R. C. Gunning (Princeton), Professor S.
Mandelbrojt (Paris), Professor S. Minakshisundaram (Waltair), and
Professor A. Oppenheim (Singapore).

With the approval of the Organizing Committee, nineteen other
research workers from India participated in the Colloquium.
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In accordance with the rules framed by the International Mathe-
matical Union, the Colloquium met in closed sessions. Abstracts of
most of the papers were received in advance, mimeographed, and
distributed to all the participants. Nineteen lectures were given.
Each lecture lasted fifty minutes, and was followed by a discussion.
Almost all the papers contained original contributions which were
for the first time announced in the Colloquium. The discussions
continued informally, and very fruitfully, outside the lecture room,
over a period of at least two weeks, since members of the Colloquium
were invited to attend the South Asian Conference on Mathematical
Education held at the same place in the following week.

The Council of the Tata Institute of Fundamental Research
gave a reception in honour of the members of the Colloquium on
Monday, 13 February, 1956. On behalf of the Council, and on
behalf of the Government of India, Dr. H. J. Bhabha, Director of
the Institute, welcomed the members of the Colloquium, the names
of some of whom, he said, “had already become part of the history
of mathematics.” He gave a brief description of the growth and
development of the Institute since its foundation in 1945, and
announced a tripartite agreement between the Government of
India, the Government of Bombay, and the Sir D. J. Tata Trust,
whereby the three parties “will jointly run the Institute in future,
with, of course, the Government of India having a major voice and
responsibility in running it.” He also announced that the Govern-
ment of India had recognized the Institute as “‘the national centre
for advanced study and fundamental research in nuclear science and
mathematics.” He then read out a special message sent for the
occasion by the Prime Minister, Jawaharlal Nehru. Dr. J. Matthai
spoke on behalf of the Sir Dorabji Tata Trust, and expressed the
interest of the Trust in the promotion of fundamental research.
Professor E. Bompiani, Secretary of the International Mathematical
Union, thanked the organizers for their initiative in bringing about
such an international meeting of mathematicians.
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The social programme during the Colloquium week included a
dinner by Dr. H. J. Bhabha on 14 February; a special performance
of classical Indian dances, Bharata Natyam and Manipuri, on
15 February; a special show of documentary films, produced by
the Films Division of the Government of India, on 16 February;
and a dinner at Juhu on 21 February.
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MEssAGE

I send my greetings and good wishes to the International
Colloquium on Zeta Functions and the South Asian Conference on
Mathematical Education which are being organised by the Tata Institute
of Fundamental Research in Bombay. This Institute has been recognised
by the Government of India as the national centre for advanced study
and fundamental research in mathematics and it is appropriate that it
should hold this colloquium and conference.

Mathematics is supposed to be a dull subject, but it is increasingly
recognised that it is of high importance in scientific developments today.
Indeed, mathematical research has widened the horizon of the human
mind tremenc{ous]y and has he[ped in the understanding, to some extent,
of nature and the physical world. It is a vehicle today of exact scientific
thought. India has had the good fortune in the past to produce some
very eminent mathematicians. | hope that the conferences that are being
held in Bombay will foster this intellectual activity in the higher spheres
of the mind and thus llelp in the progress of humanity.

Jawaharlal Nehru
New Delhi,
5th Fel)ruary, 1956.






A GENERALIZATION OF THE EPSTEIN ZETA
FUNCTION

By CARL LUDWIG SIEGEL
[Received December 14, 1955]

1. Let 8[z] be a non-degenerate even quadratic form of m vari-
ables with signature =, r and let @ be a vector such that Sg is
integral. Put d = (— 1) |81, the absolute value of the determi-
nant of 8. We define

Go= > D (pmaly () =1y>0, ()

B Z(mody)

g, = 1 for integral ¢ and g, = 0 for fractional g, and we introduce
the Dirichlet series

‘f’a(s):.‘]g + e'rri(n—f)/4 d—} z gpa ,y~1-—s(z__p)(r—-1—8)/2(2__p)m—1—s)/2’ (2)
P

the summation carried over all rational numbers p, where s =
o+ it, 0 >m/2 + 1 and z = £ + in denotes a parameter in the
upper half-plane. Moreover let

wd =t 21428 (s — p/2) Z
T{(s + 1 —mn)/2}T{(s + 1 —7)/2} 0<o<1

q(s) = oo ¥~'70 (0> m/2).

THEOREM 1. The function ¢,(s) is meromorphic.
Turorem 2. If S[z] is a stem-form, then
Pa(8) = 1272 q(s) By(m — 8).
In the special case n =r =1, @ = 0, 8[z] = 2x, x,, we obtain

T(1 — 8/2) L2 —s)
I(s/2) £(s)

q(s) = =1

b

This paper was presented to the International Colloquium on Zeta-functions
held at the Tata Institute of Fundamental Research, Bombay, on February
14-21, 1956.



2 C. L. SIEGEL

and 2 {(2s) ¢,(2s) becomes Epstein’s Zeta-function corresponding
to the definite binary quadratie form (o« — y2) (¢ — y2) of the
variables a, y.

2. Let P be a resl solution of PS~!' P =8, P = P’ > 0, and put

S';'PzK,S;P:L,fS-i-inP:zK+2L:R,

fg(z’ E’) = Z 6ﬁ(R[¥l+2’£’y)» (Q :E + (_l))

z

the summation carried over all integral z. Considered as a function
of a this theta series depends only on the residue class of @ modulo L
Denote by @, = 0, ..., g, a complete set of such classes.

Consider any modular substitution

xz + B
By = —5
yz + 8

v-(55)

and a8 — By = 1, and define

with the matrix

wy=((yz2+8) 'K + (yz+8)"'L)S ' w.
In the particular case y =0, we have a =8=+1, z;,=2 + a8 and
fg(zM’ 'Z)M) - em‘aﬂS[g] fga(zf 1;”) (3)

Let now y#0, zy=oaly+y 22, 2y=—25', 25=2+8/y,
R, =2z K +% L;then -

— R = (3, K+ 5 L)[S7 = R[S™"]+ (8/y) $7', | By | = d2i(—2,).

Replace 2 by 2y + g, where g runs over a complete system of
residues modulo y, and define ¢ = g + a, a/y = p, such that

folzw, w) = Z emeStdl z emi(Rylz gy~ 11+ 2w/ ey +a)
7 z

Rilz+gy ']+ 2wy +g) = Rz +qy ' + B wy] — Ry ' [wy].
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We obtain

Z eri(Ralz+av= 11+ 2 Ey +) = T =M J=4 5 ni2 5912 g iRy~ ] x
z
% Z e—miR,— gl +2niz’(gy— 1+ R~ hoy) .
z

Let b run over the class representatives g,, ..., and replace z
by — S(z + b). Moreover we introduce the abbreviations

: S - 2b'Sig+ $8[b))
By = by (M) = Z omily)(@sSlg-+al— 2’ Sig+a)+ 318D ’ )

¢g(mody)

v =v(M, z, w) = eriG+Y)TIE+E+8/y) IS~ 1w) ¢ — mir- M4,

Because of
— SR wyy = w,

— Ry wyyl=— B[S wl=((z +3/y) ' K + (2+8/y) ' L)[S~ " w]},
«8[g] —29'Sx+5b)+ 88z +b]=alS[g—23] —2b"S(g—=z8)+
+88[6]  (mod2y) (5)
we get the transformation formula
Fiow wa) = € d™H @ + /Y2 (G + 8120 D hyg fifz, w).  (6)
Defining the I-rowed matrix ’
G =G, 2)=ed™t (z+8[y)"? (Z+ 8[y)" (hy),
we write (6) in the form
S wy) = G fz, w) v, (1)
where f is the column of the I functions f,.

It follows from (4) and (5) that

hoy (M7Y) = hyy (M). 8)
To cover the special case y = 0, we define v =1 and
G (b by = erota 5, 5, = | 1 2 =200
o FE 10, ab (med )

Obviously (3) implies (7) and (8), in this case.
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3. The I functions f,(2, w) are linearly independent, considered as
Fourier series in w. Hence, for any two modular matrices M and
M,, we have the composition formula

GM M, z) = GM,, zy) G(M, 2) (10)
and, in particular,
E=QGM™, z,) (M, 2). (1)
Suppose again that y s~ 0; then
G(M", 2) = € A (2 — atfy)™2 By — afy)"? (hy( M)

and
(2 —afy) 2+ 8[y) =y 22,25 = — y72

In view of (8) it follows from (11) that the matrix d=*! ="k ,)

is unitary.
Putting
H(M,2) = e d7F (y") ™% (2 — a/y) "% (2 — a/y) "2 (hey( M), (12)

we obtain
H(M, zy) = Q(M, z).

We use this formula as a definition in case y = 0. With this
notation (10) can be replaced by

HMM,, zy) = HM, z,;) HM,, z).
Let h(M, z) be the first column of H(M, z), corresponding to
the subscript b = a, = 0; then
hMM,, 2y) = H(M, 2,) B(M,, 2). (13)
The integral modular substitutions are characterized by y = 0;
they constitute a subgroup A in the modular group I Because of

(4) and (9) the column A(M,, 2), as a function of 3, only depends
apon the left cosets of Ain I'. If

w9
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runs over a complete set of representatives of these cosets. then
MM, does the same, M being any fixed modular matrix. Let ¢(s) =
$(z, s) be the column of the I functions ¢,(s) in (2), correspanding
to a=a,...,a, and define

i(z’ 8) =$(z, S) .q(x+1—m)/2 ; (]4)
then

.lzf(Z, 8) = ZJ_L(MI, Z) (1]_1 ly 2 - alZ)(m—l—-s)ﬂ.

1"1

This Dirichlet series converges absolutely in the half-plane
o> m/2 + 1. Since

2M1F1—2M1—1=2i17|'yz—a—2, (15)
it follows from (13) that

f(sz 8) = H(M, zM) _‘)é(zs S)' (16)

4. The analytic continuation of $,4(s) into the whole s-plane follows
from the Fourier expansion with respect to the parameter z. Let the
real parts of u, v, u + v — 1 be positive and define

0

Jul2) = | (W +wpl(w — u)p e =) gy (yreal);  (17)
lul
then
* o _ 9 em’(v—y)lz ahty ol .
,,Zm =R E=b" =~ ,Te Z_m 9@)-

Choosing u =}{s +1 —71), v = %(s + 1 —n), we write more
explicitly j,(2) = j, (2, 8), and we get the expansion
g} 2l e ), (18)

24—k prtl-miz

M{is +1—n)}{is+1

where the summation extends over all rational numbers u = { S[a]
(mod 1) and

ful®) = D gue Ty (p=aly, (xy) =Ly >0). (19)

I<p<1
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¢

The latter Dirichlet series is of the well-known
type, and it has an Euler product decomposition

ful® = [ foua

The factor f, ,, = f, is obtained by restricting the summation in (19)
to the powers y — p¥(k = 0, 1, ...) of a prime number p.

‘ singular series ”’

Let p* be the p-adic denominator of §7!, and suppose that h
is an integer satisfying & + « <k < 2h. Substituting

z=y+p'z, ylmodp), z(mod ),

we have

S[z + a] = Sy + a] + 2p" 2’ S(y + a) (mod 2p").

Thercfore the contribution of any given y to the Gaussian sum
90 (p = aly, y = p¥) in (1) will be 0, if

S(y + @) £ 0 (mod p*~*).

Hence g,, = 0, if g is not p-adically integral. It follows in this
case that f,(s) is a polynomial in p~* of degree < 2«.

Now consider the remaining case that a is p-adically integral.
Then the condition
S(y + a) = 0 (mod p*~*)

implies p*~#=* | y 4- @, and this shows that g,,, as a function of g,
only depends upgn the residue class of @ (mod 2 pZ* =¥ Moreover
we see that

Yoo = P™ Yproer (K> 2x + 1).

It follows that
(l - qu's) fp,()g (8) = Epa (8)

a polynomial in p~¢ of degree < 2« + 2. Finally let 0 £ u
=+48[a] (mod 1), and let p* be the highest power of p dividing
2u. Suppose k > A + 2« + 2 and choose h = [4k + 1)];
then
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>k k—h—x>¥k—1)—k>0,
L+ 2h 4k —k+ A< 24+ A<E,
4 ™+ =k 4 =£ 0 (mod p*),
whence

Joa eI =0, (p= ofy,(a, y) =1, y =p").

a(mody)
Therefore the function f,,, (s) is a polynomial in p~* of degree

< A+ 2k + 3, in case u # 0.

5. For the primes p ' d the Gaussian sums g,, can be explicitly
evaluated in the usual way. If m is even, we denote by

x(k) = ((—:*1);/2'8') k=1,2,..)

the Kronecker symbol ; if m is odd and « # 0, we define

xu(k) _ (( - 1)i(ml—cl) [S]u*),

where »* is the discriminant of the field generated by 1/u. Then

. 2
(1 — x(p) p™*717%) Z pHmE=0 " (m even),
1 _pm—l—-23
— X
Tosa ) =1 T =) prv
fA/2] 21~
(Zpk(m 2y (p) ptn-D-e Z Km— 2;))
(m odd)

and correspondingly

{m even),

[ 1 — x(p) p"*7
_ | T X
fp,()g_ )= i 1___pm—l—2e

T:_pm—m (m Odd)
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Introducing the Dirichlet L-series

L(s) = Z L) = xfk) k™ (o> 1),

we obtain

L(s — m(2) . - | |
L(s + 1 —m(2) 1;[;[ (1- )7 Eo(8), (m cven),
oo (= {28 —m) (20)
1 —pnTiTE)! E 3
i2s+1—m) Ip_m[ (I1—p )71 Byy(s), (m 0dd),

and, in case u # 0,

F4(s)
L(s +1 —m/2) (m even), )
fua (8) = s (21)
m~l 28y —1
C(Z s—+ I—m) F(9) 1;;[ Y71, (moodd),

where F,, (s) is a finite Dirichlet series of the form

Fys) = Z k™ ¢ = 0®FEm?).
Eld%

The analytic continuation of j,(z, 8) into the whole s-plane follows
from the known properties of the confluent hypergeometric func-
tion. Define n* =n, r* =7 for u > 0 and n* =r, 7* =% for u < 0.
Because of (17), the function sin {7 (s + 1 — n*)} j,(2,8) (u #0) is
entire ; moreover

Julz, 8) = ( ™ )""2 'T{iG+1-n%}
[w] {%("*'*‘1—8)}
jolz, 8) = (2mn)™2=* D(s — m/2).

ju( - 8)!

By using simple estimates for the order of magnitude of j,(z, )
and L,(s — 3(m — 1)), as |u | —> o0, it follows from (18), (20), (21)
that the expansion (18) is valid in the whole s-plane and that
the functions sin ms ¢,(s) L(s + 1 —m/2) II (1 — p™ %) (m even),

pid
sin 7s ¢ (s) {(2s + 1 — m) H (1 — p™-1-2%) (m odd) are entire.

This accomplishes the proof of Theorem 1.
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6. Suppose now that S[z] is a stem form. Then S[a], (a=q,,...,q,)
is even only for @ =g, =0, and the term u = 0 appears only in
this case. Define

2d-—i ,n.a+1-—m/2

I{}(s +1—m} D} + 1 — 1}

ju(z: 8) = Ju(z: s)s

30 that
$af6) = a1 + 7™ 9(8)) + D fugle) I (2 8),
B
1) = Fe T —my TG T Ty T T ™ el
and put
($(s) — plm — 8) ™27 q(s)) VI = 5z, 5) = ,

_)g'g-—:w.

Because of (12), (14), (15), (16) the function w = wiz, s) of z is
invariant under the modular group. On the other hand,

Xg 7™V = g (1 —q(s) g(m — s)) +

§—m/2 F{%(n* + 1~ S)}
T{i(s + 1 —r%)}

+ > () ()

us0

— fualm — ) q(s) ) x

X ™2 T (2, m — 3).

This function is bounded in the fundamental domain of the
modular group, therefore the same holds for y, if o <m/2 — 1.
Since w is invariant, it follows that then y, is bounded throughout
the upper z-half plane.

Compute the Fourier coefficient

i
> j Xo €7 dE = 0,(n, ).
<
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9a(1 —gq(s) g(m —3)), (u=0)

e T 1= 0}
(fual®) (11 i —)

—Fuam=s)g(s) ) 7T (i, m ), (u 2 0)

and let n — 0; then
"2 Gy, m— 8) > (2m)*""2 T{m/2 — 8) # 0, (o < m/2 — 1).
It follows that c,(n, s) = 0, x = 0 and Theorem 2 is proved.

Furthermore we have the functional equations
a(s) g(m — 8) = 1,

ma—s {38 +1 —1r*

1} 4(6) i C
T(3* +1=5)} 1) Jualm —2) w0

Jua(8) = (@ ]u])

Using the expressions (20), (21) for fu,(s), fu(s) we can obtain
from (22) the functional equations for {(s), L(s), L,(s). Besides, a
tfunctional equation for the finite Dirichlet series f,,, is found.
It seems rather complicated to get the latter result in an-elementary
way, if p is a factor of d.

Tata Institute of Fundamental Research
Bombay



THEORY OF THE CHARACTERS OF NUMBER
SEMIGROUPS

By N. G. TCHUDAKOFF
[Received March 12, 1956]

1. Characters of number semigroups. It is known that non-
principal characters modulo & have a bounded sum-function.

Generalizing this terminology, we set up the following definitions.
Let & be a commutative semigroup, such that for every
x €@ we have

“=p1¢1 ...pazh, ‘pi E@, (7:= 1, cany A).

Here p,,...,p, are said to be basic elements, z, ..., x, are
non-negative integers. Every finite set of p, forms a system
of independent elements, i.e. « = 0 if and only if

Xy ="y = ... =2, =0,
The totality of all J; is said to be a basis of &.
A non-negative number N(a) is said to be a norm of «, if

1. N(ap) = N(a) N(B).
2. There are only a finite number of « €¢® with N(a) <=z.

By definition, the character y(«) of & is a homomorphism of
® into a set of complex numbers. y(a) is said to be normalized,
if |x(2) | =1. x(a) is said to be a finite homomorphism if the totality

of all values of y(a) is a finite set.

Let
He) = >  x(®), €,
1K N(@)e®

be a sum-function of x(«).

This paper was communicated by title to the International Colloquium on
Zeta-functions held at the Tata Institute of Fundamental Research, Bombay, on
February 14-21, 1956.
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A character y(a) is said to be a generalized Dirichlet’s character
(GD-character) if H(x) = O(1), as x—c0.

If a GD-character is a finite homomorphism, then it is said to
be a GD-finite homomorphism.

There are two classical examples of G*D-characters.

1. Non-principal Dirichlet’s characters modulo k.

2. The non-principal characters of cyclic semigroups.

There is a GD-character which does not belong to the last two
classes [7].

THEOREM 1. No GD-character exists for & with a finite basis
under the condition that N(o) is @ positive integer.

Proor. We write
2

Lis, x) = 2 x(@) (N @)™ = [ ] (1= x(po) (¥ ()™,
v=1

k=1

where A is the number of basic elements; the numbers N(a,)
(v=1,2,..) form an increasing sequence which tends to
infinity with ».

Let ;; be equal to Ig N (bi)/lg N(p;); E;;,(x) is a set of positive
integers n e [0, ] with ((§;; » +¥)) < 5»n~!, where ((«)) is the
smallest distance of « from any rational integer; P(z, ¢, j, y) is equal
to the number of elements of E(z, ¢, j, y), ¥ is a real number.

Parseval’s identity gives us

(2m)* |

For some system (¢, §, y) we have

+o

| (o + i)~ L(o + it) Pdt = j: | H(z) e~ 2%*dzx. (1)

—o0

4o

(2m)~? j _MHo+i)™ Lo +it) Fdt > 47% 1 Pla™ 4., ). (2)

If H(x) = O(1) then

j | H@) e dr < o=,
0
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From (1), (2) and (3) it follows that
42 P(e™L 1,4, y)< 1, aso—0;

this contradicts the known Chebyshev theorem on the approxi-
mation of real numbers.

For example, this theorem is applicable to the semigroup of all
entire ideals of every finite algebraic number field, including the
rational number field.

We state a generalization of Theorem 1 for @ with an infinite

basis.
THEOREM 2. Suppose that & satisfies the following conditions :

1. The number of basic elements p with N(p) <z is equal to
a(z) = O (g, x).

2. There are two basic elements P, and P; such that a, = O (exp,,v),
where a, is a partial denominator of the continued fraction

&y = lag ay, ... 1.
Then no GD-character exists for this &.

2. Q-theorems for H(x). We can estimate the upper bound of
H(x), as x — co. I shall give in this section brief statements of the

main theorems of this kind.

Put
ﬁij = lgN(pi)/lgN(Pj)= [ag, ay,...],

where @, is a partial denominator of the continued fraction for ;.

THEOREM 3. Let all p be real positive numbers; if o, = O (exp,, v),
then H(x) = Q(+/1g,x).
In this case we put N(p) = p.

Further, let & be some semigroup of entire ideals of the algebraic
number field of degree n; x(a) is the normalized character of an

ideal q.
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THEOREM 4. A. If the basis of ® contains N prime ideals,
where n < N, then
> () = Q(vig ).
1< N(a)<e?
B. If the basis of & contains an infinity of prime ideals, and

the number of prime ideals p € & with N(p) < z 1is equal to
m(x) = O (g, x), then

> x(@) =Qgay), 0<p<i.
1< N(a)<e®

3. Characters with dense bases. By definition, the basis is dense
in &, when there are only a finite number of basic elements p,
which do not belong to &.

I shall state a theorem on characters of this kind. Let & be
the totality of positive integers. Then we can prove the following
theorem [1].

TrEOREM 5. Let x(n) be a primitive character modulo k; p, ps,..., Py
are prime divisors of k, and h > 2. The complex numbers ay, ..., %,
are given in such a manner that |«;| = 1. The character x(p) is
defined to have the value a; or x(p) according as the prime p ts equal
to some p; or not. Then

H, x) = Q(va(lgz)™).
The proof of this theorem is based on Parseval’s identity for L(s, x).
REseEAROH ProBrEMS. I shall give a list of unsolved problems.

1. Let & be a semigroup of positive numbers « > 1 and satis-
fying the condition 1 of Theorem 2. If we turn down condition 2
of this theorem, does it remain right ?

2. Show that the totality of all positive integers does not possess
a GD-finite homomorphism.

3. Does a @D-finite homomorphism exist for a given semigroup
of positive integers apart from the classical Dirichlet’s characters §



CHARACTERS OF NUMBER SEMIGROUPS 15

4. Let & be a semigroup of positive integers, y(n) is such a
G D-character of & that the corresponding function L(s, x) is
an entire function. Prove that x(n) = y,(n)n*, where x,(n) is a
Dirichlet’s character, « is a real number.

5. Find a function L(s, x) for which the Riemann hypothesis
is right.
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ON THE ZEROS OF THE ZETA-FUNCTION OF
RIEMANN

By PAUL TURAN
[Received December 9, 1955]

1. More than a hundred years have passed since Riemann
published his fundamental work on prime numbers. Many inves-
tigations have been published to prove its audacious unproved
assertions, and still more to make clear the various questions
about the distribution of the zeros which were raised mainly by
number theory. These questions and investigations are contained,
by and large, in the following five groups.

I. To find possibly large domains in the critical strip 0 < ¢ < 1
(where the complex variable will be denoted by s = o 4-4t) which
are free of zeros (which will be always denoted by p = o, +it,).

II. Equivalent formulations of Riemann’s conjecture.
III. Distribution of the zeros on the line ¢ = .

IV. Estimation of the number of zeros in different domains of
the critical strip.

V. The connection between prime numbers and non-trivial
zeta-roots.

In this paper I shall deal exclusively with the fourth group of
these questions, which seems for number theory to be one of the
most important among the above groups. This started with the
theorem of Bohr-Landau according to which ‘ most > of the zeros
lie “ near *’ the line o = }. More exactly if N(7') denotes the number
of zeta-zeros in the parallelogram

0<o<l 0<t<T,
and N(a,T), for } < a <1, those in the parallelogram

This paper was presented to the International Colloquium on Zeta-functions
held at the Tata Institute of Fundamental Research, Bombay, on February
14-21, 1956.
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a<o<l 0<it<T,
then for any fixed « > } and 7' — + oo, we have

{V_(oc, T)

i — 0.

A decisive step was then taken by Carlson, who proved — with a
slight modification of Hoheisel — that

N(a, T) < ¢, T*4=9 log®T, (1.1)

where ¢,, and later ¢, ,..., denote numerical constants (except
when they depend on an e or 5 ; in this case the dependence will
always be explicitly stated). The point is of course that the
exponent 4a (1—a) is <1 for $ <« <1, and according to
Riemann-Mangoldt,

T T
— —_log — |
»N(T) - og 5| <y log 7. (1.2

The theorem of Carlson was considered for eight years only as a
probability-argument for the truth of Riemann’s hypothesis. In
1930 Hoheisel discovered its significance for the upper estimation
of p, ., — Py, the difference of consecutive primes. Before Hoheisel
a proof of the estimation

Prni1 — P <2 (1.3)

with a ¢ <1 was unimaginable without a proof of the fact that
{(8) # 0 in the half-plane o > ¢ . Hoheisel found that to prove
(1.3), besides (1.1), Littlewood’s theorem is sufficient, according to
which {(s) # 0 for

log log ¢

>1—c
? % logt

, t>c, (1.4)

Hoheisel’s # was very small; but his analysis showed that if (1.4)
is true with an arbitrarily large c¢;, then (1.3) holds for n > n, (¢)
with

O =4%+e (1.5)

with arbitrarily small € > 0. This result, incredible formerly, was
proved, using Vinogradoff’s estimations, by Tchudakoff in 1936.
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But Hoheisel’s analysis gave even more. This showed that if
instead of Carlson’s estimation (1.1), we have for } <a <1,
N(a, T) < ¢5 T~ Jog & T, (1.6)

then also the estimation

Pri1 = Pp < PolMoate (1.7)
holds with arbitrarily small € > 0 for n > n,(e). Carlson’s theorem
gave ¢; =4, and therefore Tchudakoff reached the value 3 + e.
Tchudakoff’s world-record lived only for a year; then Ingham
proved (1.6) with ¢y = 8/3 (and even with a little less ¢;-value) so
that his result, combined with Hoheisel’s, gave

9 =4

What is the smallest §-value one can hope for in this way ?
Owing to (1.2) and (1.6) we get easily

Cg > 2,
that is
?>%+e
Hence the sharpest inequality of this type is
N(a, T) < ¢g T*1=9 log&T. (1.8)

Theorems of Carlson’s type are often called in the literature
‘“ density-theorems ”’ ; the inequality (1.8), which is unproved
so far, is called the ‘‘ density-hypothesis . A discussion of this will
be the main subject of this paper; as we see, a proof of it would
imply the inequality

Dpy1 — P < pn*+'1 n > ”"0(5)’ (1.9)

which is essentially the fourth main problem of the analytical
theory of numbers.

2. It turned out in the papers of Linnik that the density-
theorems, in particular if generalized to the L -functions of Dirichlet,
are still more important for the theory of numbers than thought
after the discovery of Hoheisel. It is well known that Hardy and
Littlewood proved the Goldbach conjecture concerning the odd
integers, supposing that no L-function vanishes in the half-plane
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o > § — ¢, and also that after the first complete proof of Vinogradoff,
Linnik succeeded in obtaining a proof along the original Hardy-
Littlewood lines, but working with density-theorems. In a paper
dated 1936 in the Acta Szeged, Erdos and myself proved, by
supposing the truth of the extended Riemann-hypothesis, that
for all irrational w, the sequence

P, n=12..

(p, again the nth prime) is uniformly distributed mod 1. This
theorem is implicitly contained in Vinogradoff’s later work, which
uses different ideas and needs no supposition. Linnik succeeded
again in a proof based on density-theorems, without any hypothesis.
Particularly interesting, from our point of view, is the discussion of
Linnik’s results concerning the binary Goldbach problem. Let us
call Goldbach-numbers those even numbers which can be repre-
sented as sums of two primes. Since all numbers of the form 2p
are evidently Goldbach numbers, Ingham’s above-quoted result
gives that for all N > N, there are Goldbach numbers between
N and N + N°8, Now Linnik proved, by supposing the truth of
Riemann’s conjecture, that for arbitrarily small ¢ > 0, and for
all N > N,(¢), there are Goldbach-numbers between

N and N + log¥t< N ;

if he used instead of it only the density-hypothesis (1.8) with
¢y = 2, he could deduce the not essentially weaker result that
for all N > Ny(e) there are Goldbach-numbers between

N and N + log"+<N.

Using, however, instead of the estimation (1.8) the above-quoted
result of Ingham, which gives the estimation

N(a, T) < €,g T~ Jogb T for § <a <1, (2.1)
N(a, T) <) T =2E=D]ogd Tfor } <a <3F  (2.2)

Linnik’s method gives curiously enough only the existence of a
positive constant « between 0 and % so that for N > ¢,, there
is a Goldbach-number between



ZEROS OF THE ZETA-FUNCTION 21

N and N 4 N¥,

and the same holds in the case when we know (1.8) only with a
¢g > 2. The conclusion of these considerations is that the density
theorems can replace in many respects the Riemann-hypothesis
and the density-hypothesis (1.8) is among the density-theorems

not only the deepest, but essentially deeper. Practically the same
holds for the inequality

N(x, T) < cy5(€) THI+A=2), (2.3)

valid for § < « <1, T > 2; a proof of it would give besides (1.9)

also the fact that for N > Ny(e) there is a Goldbach-number
between

N and N + N-. (2.4)

3. What was the idea underlying the above theorems? This

can be described, somewhat differently from the usual, shortly as
follows.

Let f(s) be regular in the closed domain E with a rectifiable
G-boundary ; suppose f(s) does not vanish on @ and we denote
the number of its zeros (counted according to the multiplicity)
by N. Then according to Cauchy we have

1 '
N = PP Lm T (s) ds.
Now if ¢(s) is regular in E and k an arbitrary positive integer,
then Cauchy’s integral theorem gives at once

N=_1 J I (6) {1 = f(5) $(s) }* ds. (3.1)
27i J@ f
This is the basic formula. If we have on the boundary
ol <, (3.2)
f
then from (3.1) with £ = 2 follows the inequality
N <y | 11— fle) b P s (3.3)
27 J

We now apply (3.3) to the estimation of
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N(a,2T) — N(a, T), T > 20.

From the well-known representation

;%(8)—2—1—‘ <cplog (2 + |2)), (3.4)
p S—pi

t—tpi<2
it follows that for each integer n > 1 there is a 7, with
n< T, <n+ 1,
so that for
—1<0<K2, t=r1,
the inequality

N
5 ) <aulogr,

I

holds. From this and (3.4) we get easily for each n > 1 the existence
of a o, with

<o, <,

log 7,
so that the inequality

I%’ (8)| <cp5log® T (3.5)

holds on the non-intersecting closed broken-line consisting of the

segments
¢ =2, Tir-1 <I< T27]+1»

I = Tir)~-1 O[T =1 <o <2,

b =Tenin Opnya <o < 2,
of the vertical segments

0=0, T, <t <Thp1
[T]—1<n<[2T]1+1,
and of the horizontal ones
¢ = 7,,min (o,_; 0,) <o <max (g,_; 0,).
[T] <n<[2T].

We choose this line as &, and
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4 = > L)

8 3

n<y
where z = 2(T, «), will be determined later; this gives from
(3.3) and (3.5)
N(a, 27) — N(o, T) < 44 IogsT.j | C(s)z
@

nLx

‘ |ds|. (3.6)

If g(w) is regular for jw —w,| <7, (w = 4 + 1), then as is well
known,

1
lg(wo) [ < pow Lw_%w | g(w) [du dv.

Applying this at fixed s-values with

glw) =1 — {(w) 2, HY
n<z N
to the circles
1
lw—8l<5g—T: (3.7)

where s runs over the whole G-line, an easy elementary-geometrical
reflection gives at once from (3.6)

N(a, 2T) — N(a, T)<cl7log6Tj w)zp'( ) du dv,
@) =
where H is the domain swept by the circles (3.7). Thus
1
N(a, 2T) — N(a, T) < ¢,5log® T du x
J a—1/logT
27+2
_ ) P
X L'-z | 1 — f(u + w) ,,zq PR

From this a direct estimation of

L—gu+in > M0

n<z

2T+
Ju, T) = .[
T7—9
gives Carlson’s estimation (1.1); estimating J(u, T) by a convexity-
argument furnishes Ingham’s result.

4. What has been reached towards the density-hypothesis either
in the stronger form (1.8) or in the weaker form (2.3)? As to the
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first, nothing has been done. As to the second there is some progress.
(2.3) was proved by Ingham by supposing the truth of Lindelof’s
conjecture, according to which the inequality

[ (o + i) | < cpple) E° (4.1)
is valid for arbitrarily small e >0, ¢ >4 and ¢ > 1. I proved
in 1950 without any suppositions the inequality (2.3) for the a-
values near to 1, i.e. even for values for which (2.3) is the deepest.
The reason why all the density-theorems are the deepest for o =1

is clear; for « < % already Carlson’s inequality (1.1) gives (2.1)
and (2.2) gives for « < % even

N(a, T) < oy TOWU-3),

More exactly I proved —with an unpublished refinement— that
for a (small) ¢y, for

l—cy <a<1l, T>cy,
the estimation

N(a, T) < THI-e)+A-al14 €.2)

holds. The number-theoretical consequences of (4.2) are still not
quite clear to me. The methods I used in proving (4.2) were quite
different from those sketched in §3, and I was willing to think
their power is confined to the neighbourhood of the line ¢ = 1.
Therefore my next aim was to deduce with my methods Ingham’s
above-mentioned theorem, the inequality (2.3) supposing the truth
of Lindel6f’s conjecture. I succeeded in doing so in 1954.

Ingham’s method was essentially the same as mentioned previous-
ly. A sketch of my proof for (4.2), which will be a good preparation
for more sophisticated arguments later, runs as follows. We start
from the inequality
1 A(n) n gr-e gt

5 47—

o 1 . E— —_
l!n>f ns og § (8_1)l+1+ - (8-—-p)l+1

<ogg €717 l0g (2 4 [t]). (43)

Here A(n) denotes the usual Dirichlet-symbol; o > 1, ¢ > 2, [ an
integer > 2. Choosing oy, = gy(«) > 1 ‘““near” to 1, an easy upper
estimation of the square-integral
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J:L z:(f)t og .g‘ it

n=¢
(T large) gives that
> A®) 1o f‘.‘ (4.4)
n2é n f
is relatively “ small ’ on the segment { T ;t:<%2 T} , except an

T2(1—o)
log® T
of length about log 7', then also the union R of all E;-sets has a
measure < 121~ log=? T and if R is the complementary set of R

R,-set of measure < If 1 is restricted to an interval A

on our segment, then the functions (4.4) are small in R for each
permitted I-value. Dividing the segment into pieces

o =0,
l;: . - (4.5)
N N Ry R k.

[log® T1] [log® T

we call [; a “good” segment, or a “bad’ one, according as it con-
tains at least one point of B or not. Let us fix in each “good”

l;-segment an s-point belonging to R; then the above reasoning
gives that the number of the “bad ” I;-segments is “‘small”’ and the

i An) , | n
Z py logé—t

nz¢

quantities

(4.6)

are for the permitted I-values “small  if § is the index of a *‘ good ”
segment. The inequality (4.3) gives a possibility of transition
to zeta-roots ; since s — 1 is of order 7', the estimation (4.6) gives

that all
0= |3 e @

quantities are “ small . Let us call the strip L; :

Py I cpepyp it
T < T T g (4.8)
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a *“good” or a “bad’ one according as the segment I, is a “good”
or a ‘“bad” one. Since the number of the p’s in each L;-strip is
O(log T), the contribution of the “bad’ L-strips to
N(a, 2T) — N(a, T')
(and also to N(27) — N(T)) is
< Cgy T~ log=8 7. (4.9)
Hence if we can show that all zeros in ““ good ™ strips have a real
part
<o+ {201 —a)}ttt (4.10)
if only
a <1-—log=% 7T,
then (4.2) would easily follow. Let us fix an arbitrary ““ good ” L;-
strip. To deduce (4.10) for it, we remark first that the contribu-
tion of those p-zeros to U, for which [p —s;| > {2(1 — &) }*7, is
“small” if I lies between two multiples of log 7'. Suppose that
(4.10) were not true for our L;strip and « is sufficiently near
to 1, i.e. there were a
p¥ = o* + i t¥

zero in Lj such that

o* > o+ {2(1 — a}t, (4.11)
This would mean the remaining sum
p—3;
U* = &Y 4.12
pe 3 = pr (#12)

P
[ p—2j| <{2.1—ap/?

is “small”’, though some terms of it are very big, since Re s; = gy(a)
is only a little greater than 1 and the strip L; is “‘narrow ”. Choosing

§=exp|:{—2Ti-—f9%5—}m.(l+l)], (4.13)

U;* becomes the (I + 1)th power-sum of complex z,-numbers, where
neither the z,’s, nor their number depends on I. The integer [ is so
far indeterminate and the only restriction upon it is to lie between
two multiples of log 7. Now the main idea of the proof is the use of
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the second main theorem of my book, which asserts in a sharpenedt
form that having n complex &, &, ... , £, numbers with

1€l = &) > ... 2164l
and a positive integer m there is an integer I with

m+1<li4+1<m+n (4.14)
such that

n n
|&F .+ & > (m) |€ 1L (4.15)

It is easy to see that this estimation holds a fortiori if n is replaced
by N,, an upper bound of n. This lower estimation gives—using
the supposition (4.11)—already the required contradiction, if for
N, we can choose, e.g. the quantity

8{2(1 — )} log T + 4 log log T'. (4.16)
But owing to the sharp, known estimations of {(s) near to the line

o = 1, Jensen’s estimation gives (4.16) at once and this completes
the sketch of proof of (4.2).

As mentioned it was also possible to prove Ingham’s theorem
using these ideas. The only really new feature of the proof was that
the vertical line ¢ = g, was assumed “ far ” from the line o= 1.
Lindeléf’s conjecture was used, in a form seemingly quite different
from (4.1) ; the form used was that for any fixed « >},

lim N(«,T +1) — N(a, T)

T—+oo log T

=0. (4.17)

The equivalence of (4.1) and (4.17) was proved by Littlewood.

5. Recently I resumed once more the question of density-
hypothesis in the form (2.3). My proof for Ingham’s theorem (4.1)
gave me the impression that from the truth of Lindeldf’s hypothesis
a much stronger conclusion can be derived for N(«, 7') than the
density-hypothesis. This gave me the belief that on my way the
density-hypothesis can either be proved or at least derived from a
much weaker hypothesis. Time worked quicker than myself ; what

1+ In my book I had instead of 24 the greater constant 24¢® only. This sharper
estimation will be published in Acta Math. Hung. in & joint paper with Vera T. 8és,
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I can do at present is a deduction of the density-hypothesis in the
form (2.3) from a hypothesis (conjecture B or C below) which is
certainly weaker than Lindelof’s conjecture and whose proof seems
not to be hopeless. The new ideas would enable one to improve
Ingham’s estimation (2.1) without any supposition in a much
bigger neighbourhood of o =1 than (4.2) did; but we did not
investigate thoroughly these possibilities, playing double or quits.

6. Before turning to our theorem we analyse some assertions.
First we introduce

ConNgECTURE A. There is a g(x), which is positive, for x>0
monotonically increasing, with
lim g(z) =0 (6.1)
a=—>+0
and having the following property. Let a y with § < y < 1 be fized,
and denote by M (7, o) the number of the zeros of {(s) in the square

(r<)e—8<o<a(<l), [t—r[<82 (62
Then for T > cq5(y, 8) (> 3) the estimation
M7, ar) < 89(3) log = (6.3)

holds, independently of «,.

The truth of conjecture A would be a trivial consequence of the
truth of Lindelof’s conjecture in the form (4.17). It is obvious
that from the truth of conjecture A that of Lindeléf’s conjecture
does mnot follow, ie. conjecture A is definitely weaker than
Lindelof’s conjecture. As stated before, conjecture A can be proved
indeed at least in the case «; = 1. Nevertheless a general proof
of conjecture A, even instead of (6.3), e.g. with

ME(T’ “1) < 81/10 log T (6.4)

seems to be very difficult, so requiring conjecture A instead of
Lindelof’s conjecture I should not consider as an essential progress.
This opinion would be certainly still better founded if to an arbi-
trarily small § > 0, I could construct a function f;(s) representable
for ¢ > 4 by the convergent Dirichlet-series
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=S % (6.5)
f5(8) 4 e
with
4, 6.6
i < w, €>0, (6.6)
and such that for an infinity of squares
B<)y—0<o< (<), |t—7]<9/2
the number of zeros should be greater than
6 log 7,. (6.7)

My few superficial attempts were so far unsuccessful.

7. There were two reasons why the proof of conjecture A suc-
ceeded at least in the case «; = 1, with the aid of Jensen’s estima-
tion. The first of them is that the square (6.2) has in this case
from the right a “ big” zero-free neighbourhood (namely the
whole half-plane o > 1). Therefore it seems very favourable to
work with

CoNJECTURE B. There is a g(x) which is positive for x> 0,
monotonically increasing, with

lim g(x) = 0, (7.1)

z->+0
and having the following property. Let y with 3 <y <1 be fixed,
and suppose that {(s) does not vanish in o parallelogram

L <o, |-t <logTt (7.2)

with a = > 3. Then for 0 <8 < L (v —3) the number M (v, a)
of zeros of {(s) in the square

(%—;Y<)a2—-3<a< oy |t— 7| < 8/2, (7.3)

satisfies for T > cg5(y, 8) the inequality
M7, ap) < 8g(8) log 7, (7.4)
independently of a.
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That conjecture B is not stronger than conjecture A is trivial.
That a proof of conjecture B is much easier than that of conjec-
ture A will be clear on confronting the statement in (6.4) with the
fact that the proof of the inequality

My(7, o) < 1.26 8log = (7.5)

instead of (7.4) is very easy ; it needs only the three-circle theorem
and the usual Jensen’s formula. The constant 1.26 could have
been diminished, in particular when we are content to prove the
density-hypothesis for greater a-values only.

8. But we shall see that the truth of a still weaker conjecture
would be sufficient for the proof of (2.3). This is

ConsecTURE C. There is a g(x) which is positive for x > 0, mono-
tonically increasing, with
lim g(x) = 0, (8.1)

z=>+0
and having the following property. Let y with 3 < v <1 be fized
and suppose that {(s) does not vanish in a parallelogram
(y<)az<o<l, |[t—r|<logr (8.2)

with @ > 3. Then for 0 < 8 < 3 (y — %) the number M¥*(r, ay)
of the zeros of {(s) in the parallelogram!

(1}‘;"}’<)a3_58\/(g(8)) o<y |t—7] <8/2, (8.3)

satisfies for v > cyr(y, 8) the inequality

M*(7, 05) < 8 g(8) log = (8.4)
independently of o,.

The weakening of conjecture C compared with conjecture B
consists in replacing the square (7.3) by the thin parallelogram
(8.3). At present we can obtain for M;* (7, «z) no better estimation
than (7.4); it is very probable that a “more suitable” Jensen-
formula will furnish a simple proof of conjecture C. Since we shall

1(8.3) could have been still weakened.
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sketch in §§10-13 a proof of the theorem that ‘ T'he truth of the density-
hypothesis in its form (2.3) follows from hypothesis C°, this would
give a complete proof of the density-hypothesis in its (2.3)-form.

9. I think the most hopeful way to prove conjecture C is via
a suitable Jensen-formula. Are there any more possibilities
when this way is impassable? First it is not quite impossible that
by changing some details in my proof, even (7.5) will be sufficient
to prove (2.3). Further possibilities can be described as follows.
The usual Jensen-formula and the three-circle theorem give at once
that conjecture C follows from

CoxNgECTURE D. There is a g(x) which is for x> 0 positive,
monotonically increasing, with

lim g(z) = 0, (9.1)

z—>+0
and having the following property. Suppose that for } <a, <1
the zeta-function does not vanish in a parallellogram
oy <o <1l |[t—7|<log~ (9.2)

with a 7 > 3. Then we have for 0 <8 < 1/10, 7> cy(8), in the
parallelogram

g —28<o<a, |[t—7|<5, (9.3)
the inequality
[L(s)] < 7000, (9.4)
As to this conjecture D we remark that the weaker inequality
[£(s) ] <7%7°

in (9.3) can be proved easily using properly the three-circle theorem
and for «, =1 the whole conjecture D was proved by Hardy-
Littlewood even in a much stronger form. How could they succeed?
They started from the approximative Dirichlet-polynomial repre-
sentation of {(s) and applied the method of Weyl-sums. Thus one
way of proving conjecture D could be to find an approximative
Dirichlet-polynomial-representation of {(s) in the domain (9.3),
which moreover uses the fact that {(s) 0 in the parallelogram
(9.2). This way, though not quite hopeless, seems to be very difficult.
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But it is also not quite impossible that the above mentioned theorem
of Hardy-Littlewood can be deduced from the general theory of
functions, using about £ (s) only the fact that it possesses a quadratic
mean-value on each vertical line o =8, < 8 <1. In terms of
the well-known Lindelsf p(o)-function of a function f(s) regular for
o > } this question asks, does it follow or not from the fact that
this f(s) possesses moreover a quadratic mean-value along each
vertical line o = B and p(o) =0 for o> k(3 <« < 1), that the
graph of y = p(x) touches the z-axis at = «? In the affirmative
case this would give at once the proof of conjecture B. Finally a
possibility is given by sharpening the three-circle-theorem among
the Dirichlet-polynomials.

10. Finally we turn to the sketch of a proof of our theorem
announced in §8. In all my previous investigations I started from
inequalities valid for ¢ > 1. Now my starting inequality will be
valid for ¢ > %, which is a big advantage. Let ¢, be an arbitrarily
small positive number with ¢; < 1/1000, let

5= \;__;1 , (e 127 log 3/ < 1), (10.1)
further let « with
Vag<2(l—a)<1—g/4 (10.2)
be fixed. By the requirement
g =74 (10.3)
3 is uniquely determined ; let then
1
Ny(=N.() = —. (10.4)
1

Let T be large, and of the integer k> 6 we require at this
moment only
log T<kEN,<(1+12N,689(8)) log T = (1 + 129) log 7. (10.5)
Finally let s = o + it be restricted by
2
<l1— ———, T <t <2T. 10.6
F g <7 1 gt 100

Then our new starting inequality is
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A(n)R,
(n) sk(n) +
AN A=) Ll Ny (L4 7) n
+ Z { Ny(o )e”Nl“’")—e"'Nl(P—‘)}"
eMlp—8
; 2y Ny(p—9)
< Cgy() T~ EB=7 1og T, (10.7)

where for the Ry(n)-numbers we have the estimation

1
| Bi(m) | < N (10.8)
For the sum containing the primes a modification of the square-
integral treatment described in §4 leads to the following result.
Forming the strips

. .
7+ I <t<r4ITL
I [log* 7] [log® 7] (10.9)

0 <j <[T[log, T1},
with at most
TH1=) Jog=9 T (10.10)

exceptions of “bad’’ strips, all the further “ good ” L;-strips have
the property that there is a 7; in L; such that with

1 4
g =

-1 Y
" Log" ] (10.11)
2 <v <{flog® T]—2

and
8, =0,+17 (10.12)
the inequality
Z { PATET) eNinlo—38y5) __ g—Nyn(p—38y)) }k
2 Nl ’7(P — 3,9')

< cgoly) TOHTAHI= 0D loghB T (10.13)

holds.

11. Next comes another new step, a simple reduction-process
which allows us to show that throwing away at most

T¥-og=° T (11.1)
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“good ” strips the remaining ““ very good *’ strips have the following
property. Denoting by p* = o;* + it* a zero in L; with the
greatest real part, let us call a p* an “ outstanding ” zero if [(s)

does not vanish in the domain

1
o>a* 4 Tog T7’ |t —t*| < [log T1. (11.2)
If A is an upper bound of the real parts of all ““ outstanding *’ zeros
then the property mentioned asserts that these ‘“ very good” strips

do not contain zeta-zeros lying in the half-plane

1
[log* 77
The significance of this reduction lies in the fact that the investiga-
> zeros by (10.13)—as we shall see—is
greatly enlightened by the use of (11.2). Hence if we succeed in
proving that

11

o>+ (11.3)

tion of the * outstanding

A< o+ 37, (11.4)
then it follows from (10.10) and (11.1) that

(“+3’7+[1 ]2T) <“+ T 4T] T)

< gy () T2HA=D]og—8 T, (11.5)
from which the theorem easily follows.
12. Hence we have only (11.4) to prove. Let L, be a ““good”
strip whose p,*-root is an ““outstanding ” one ; we fix this u. If
au* < o,

we have nothing to prove. Hence we may suppose

10 12
1 — > * 1 -+
( log T )“" >“(>2 Nl)’ (12.1)
and we have to show (10.13) leads then to a contradiction. We

apply (10.13) with j = u; for v we choose the index satisfying

g = —— _Vi_]:_
Y [log? T']

<o*<— (12.2)

LA
[log* 7]~
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Trivial estimations give that the contribution of the p-zeros on the
left of (10.13) with
[t, —t*] > [log T]
is negligible ; easy ones assure that also those of
4

o, < ‘Tn* TN |tp—'tu*| < [log T7]
1
and of
*_ 4 <o, <o¥+ 1
BTN T T eg
4+ L <|t, —t*|  <[log T
7Ny g[log T P [log 71
contribute
< log® T'|4%,
Hence
7Z = Z { eN1lo—sp) eile=su) e~ Nale—su) }k
P 2 n Nl (P - sv,u)
18 =82 < 4[N +1/n[log*T]
0/4‘—'4/N1<ﬂp<o‘”‘+1/[log‘1']
< 033(’7) { T-1/¥, + et 2n—(1+m)o,* }logl3T, (123)

taking in account (10.5), (12.2) and (10.13).

13. In order to obtain the required contradiction we shall
estimate Z from below, applying again the second main theorem
of my book quoted in (4.14)-(4.15). Z is the kth power-sum of
fixed complex numbers and also the number of terms is indepen-
dent of k, if the £’s are identified with the numbers

8 eﬂ-N1(P“3vp) — e—"lN1(P"3v/4)
Vi

29N, (p—s,)

We shall choose our k as the (I + 1) of the second main theorem.
We choose

e (13.1)

m = [l% log T:]. (13.2)
1

First we have to estimate N of this theorem in our case. The
domain of summation in Z is for T > ¢,,(y) increased on taking the
parallelogram
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1 5
¥_ 2 oo Ft oy (t—t¥< 2, 13.3
Oy NI\O'\C",‘ +N1 l #]<7)N1 ( )
To estimate the number of zeros in the domain (13.3) we apply

conjecture C with
k1 _ 10
O3 = O, +171a S—n—N—ls
Since by this choice, using (10.3) and (10.4),
58 \/{9(8)} = 5/N,,
(8.3) is indeed identical with (13.3), and thus the upper bound of the
number of zeros in Z is, for T > c44(n),

10 , 127
— nlog2T < —'log7, (13.4)
7N, N,

which we may choose as N of the second main theorem. (I + 1) lies

1
')’=%+1—V-1, ‘T=ty*.

between ﬁl; log T' and

1 1
~log T+ N = (1L+12x)1log T,
¥, og T + Nl( + 121) log

i.e. the only requirement for k is by this choice fulfilled. Thus

7> ( 12 7,’/]\71 )(12n/N1)108T
24 (1/N, +129/N,)
> T-02Nlog s/ max (£ |k, (13.5)

maxv I §V Ik

Since, as is easy to see taking the £,*, corresponding to p = P,
ma‘xv |§v Ik > %’
we get from (13.5) and (12.3)

%T—(12~q/Nl)Iog 8/n < 035(,’)) {T—I/Nl + Ttx+2n—(1+ n)o#‘} 10g13 Vi

This gives, taking T sufficiently large,
« + 29 + (129/N,) log 3/9
149 ’
from which (11.4) is an easy consequence and the sketch of the
proof of the theorem is finished.

*
o," <
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AN APPLICATION OF THE THEORY OF MATRICES
AND OF LOBATSCHEVSKIAN GEOMETRY TO THE
THEORY OF DIRICHLET’S REAL CHARACTERS

By Y. V. LINNIK
[Received March 12, 1956]

1. Many difficult problems of the analytical theory of Dirichlet
characters are not resolved up to the present. Several of these
problems concern the summation of the character values and the
distribution of these values on narrow intervals.

A survey of these problems and some theorems on the connections
between the different problems may be found in the paper [56]. One
of the most difficult of such problems is the problem of the least
quadratic non-residue. (I. M. Vinogradov, 1918).

Let D be an odd number, and x(n) a real non-principal
character (mod D); we shall call a number m such that y(m) = — 1
a non-residue (mod, D). Let N (D) be the least non-residue
amongst the numbers 1, 2,...,D —1; I. M. Vinogradov’s hypo-
thesis consists in the relation

1%1_131 hlll\:;n—mbw) = 0. (1.1)

This hypothesis is not completely proved so far* though there
are many reasons for the probable truth of it (see, for instance, [3]).
The hypothesis (1.1) is an easy consequence of the Riemann
hypothesis for L(s, x); one may prove even the following condi-
tional theorem.

This paper was communicated by title to the International Colloguium on

Zeta-functions held at the Tata Institute of Fundamental Research, Bombay, on
February 14-21, 1956.

* In the Duke Math. Journal, 21 (1954) appeared N. C. Ankeney’s paper

‘ Quadratic residues’’, where the author claims to prove (l.1) for primes

= — 1 (mod 4). Unluckily, his arguments are completely erroneous and give
no information about least non-residues (see K. A. Rodosski's review [6]).
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CoNDITIONAL THEOREM 1. Let (D) — oo be a monotonic (as
slowly increasing as we please) positive function. Form the series

L(s, x) = ;} x(n) n~%, x(n) being a real mon-principal character
=1
(mod D).n If the number of zeros of these L-series imside the

corresponding semi-circles

'8_1|<lfn(—11)))’ Res < 1, (1.2)

may be estimated as o(y(D)), then hypothesis (1.1) is true.

2. For the sums of the non-principal characters x(n) (mod D)
the following Vinogradov-Polya estimate™ is known:

Z x(n) = O(+/D.1n D) (2.1)

for all values of z.

This estimate enables us to study the distribution of the character
values on intervals of length exceeding +/D. In D. The behaviour
of the y(n) values on more narrow segments escapes all efforts so far.

Very little was added to the result of I. M. Vinogradov [8]:

. Ny (D) _ 1
1 min < .
et T D 2y e

(2.2)

As is well known, Dirichlet’s real characters x(n) are connected
with binary quadratic forms; therefore it is possible to study
them by means of these forms.

Such an approach is considered in the present report ; the theorems
obtained are essentially theorems in quadratic form theory, but some
of them are directly related to Dirichlet’s series and real characters.

We shall consider classical integral properly primitive (propriae
primitivae) binary quadratic forms ¢z, y) = aa® + 2bxy + cy?
with the determinant — D = b% — a ¢ < 0; the class number of these

t An equivalent of this inequality as well as Polya’s summation formula
were found recently in G. F. Voronoi's scientific diaries for the year 1907 (see [9]).



THEORY OF DIRICHLET’S REAL CHARACTERS 39

forms will be denoted by h (— D); the Lagrange reduced forms
will be those under the conditions

¢c>a>2b|, (2.3)
(the equality signs are allowed sometimes).
To each form ¢(z, y) = ax® 4 2bxy + cy* we make correspond the

integral matrix with trace zero:

b —
L=[c il (2.4)

so that
L? = — D, (2.5)

where D = ac — b% > 0 is the determinant of the matrix.

The classical theorem of C. L. Siegel holds :
Inh(—D)~4%InD, (2.6)
for D — co.
By means of the machinery of the matrices (2.4) it is possible to

prove a refinement of this theorem and to connect it with
Lobatschevskian geometry.

3. To each form $(x, y) = aa?® 4 2bxy + cy?, besides the matrix (2.4)
we make correspond the point (a, b, ¢) on the half - hyperboloid H :

ac —b% = D;a>0. (3.1)

Introducing the normed coordinates

8 . C b
VD' D' YD

Xy =

we obtain the normed hyperboloid H,:
& Xy — 22 = 1; 2, > 0. (3.2)

The hyperboloid H, may be considered as an interpretation of the
Lobatschevsky plane, with the points (x;, %,, 3), and the straight
lines, the hyperbolic sections of H, by the planes ax, + a,,
+ azxg = 0. If we are given a finitely connected figure S, on H,,
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with a piecewise smooth contour, then its Lobatschevsky area,
which will be denoted by A(S,), is numerically equal to the Eucli-
dean volume of the cone with the vertex (0, 0, 0) and base S,

The basic points (a, b, ¢) on H (with the reducibility conditions
(2.3) and the condition: g.c.d. (@, 2b, ¢) = 1 (greatest common di-
visor = 1)), are projected from (0, 0, 0) on the triangle A, c H,,.
This triangle is bounded by the Lobatschevsky straight lines:
2y — % =0;2, —2r; =0;2, + 22, =0, and has the angles

T 2
,E, O, A(AO) =§7T,

w3

The number of the projections of basic points (a, b, ¢) on A,
equals A(— D) and is governed by C. L. Siegel’s theorem (2.6).
One may prove a theorem on the asymptotic number of these
projections inside rather arbitrary subsets of A,.

Let a convex figure £ be given on the initial hyperboloid H,
with piecewise smooth contour and the projection X, on A,
completely situated inside A,,.

Let H(X) be the number of the basic integer points inside 3.
We are interested in the ratio
H(Z)
W—D)’
4. In what follows, « < 0.01 is a small positive constant. D

being given, we draw the Lobatschevsky straight line z, — A x, =0,
where A = (InD)2.

It cuts off the basic triangle A;, the quadrangle Gy(}); moreover
A(Ag) ~ A(Gy(})), for D — co.

THEOREM 2. Let D > 0be odd, and let there exist a prime p > 3
such that (— D[p) = 4 1. Let the figure X, the projection of  c H,
be situated completely inside Go(A). Let, moreover, the Lobatschevsky
area of 2, satisfy the condition
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A(Z) > (InD)~=. (4.1)
Then the following asymptotic relation holds :
H(E)— D) = ACHAB) (1 +7(p, D), (42)
where n(p, D) — 0 for a fized p and D — co.
As we have A(A;) = 27/9, we obtain

H(E) = ;- W~ D) A(S) (1 + 1(p, D)) (*3)

Thus we obtain a complement to C. L. Siegel’s theorem in terms
of Lobatschevskian geometry.

It should be remarked that we use an auxiliary arbitrary prime p
under the condition (— D/p) = + 1. Apparently the use of this
prime is not essential, it is a technical defect of the proof.

We must remark that Theorem 2 is not a direct consequence of
the Riemann hypothesis for L(s, x) with x = (— D/n); — D <0
being a fundamental discriminant. But if L(s, x) is known not
to have zeros for ¢ > 9/10, |¢t| < } (s = o + it), Theorem 2 can
be improved : instead of n(p, D) in (4.2) and (4.3) one can take
(D) — 0 for D — o0; no auxiliary prime p is needed then.

5. From formula (4.2), by a simple computation of area on the
Lobatschevsky plane, we can deduce the theorems immediately
connected with Dirichlet’s L-series.

Let h(—D, y4/D) be the number of properly primitive forms
(a, b, ¢) for which a < y4/D. Computing the area A(Z;) in (4.3)
we deduce

TaeoREM 3. For 0< y <1,y > (In D)~*and a fixed p, we have

h(= D, yv/D) = “YI(—D) (1 +7(p, D)), (5.1)

w

where n(p, D) — 0 for D — oo uniformly on y >(In D)~
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For 1<y < +/(4/3)we have
I —D, yv/D) = f(y) l(—D) (1 + n(», D)), (8.2)

where
J9) = 2 aro sin /(1= y™%) + 2L (1 -2 y/(1—y3)

For y > 4/ (4/3) we have (trivially)
k(—D, yv/ D) = h(—D).
Here y(p, D) — 0, for fized p and D — oo.
A part of Theorem 3 may be formulated in terms of L-series.

Let D < 0 be an odd fundamental discriminant and x(n)=
(— D/n) Kronecker’s character.

Let

o«

(—Djp) =+ 1;L(s, ) = > x(m)n~*;
n=1

L) L(s, X) = D @™ (s> 1),

n=1

THEOREM 4. For vy > (In D)™* we have

@, = va'L(l’ x) (L + n(p, D)), (5.3)

ngyv D

where n(p, D) — 0 for fixed p, D— oo uniformly on y > (In D)=

6. Relation (5.3) represents but a slight advance in the theory
of the real characters, but the method of the analytical arithmetic
of matrices (2.4) is also fit for more refined investigations. In parti-
cular, it gives some partial results on the hypothesis (1.1) for certain
progressions modulo 16.

The study of the behaviour of characters on narrow segments
of the type (1, z) for x = D*, ¢ > 0 small and fixed, is reduced
to the study of the distribution of the projections of integer points
inside the zero angle of the Lobatschevskian triangle A,.
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We will not formulate the results thus obtained, which are
cumbersome enough, except a theorem on the zeros of L(s, x),
though rather cumbersome also.

THEOREM 5. Let — D < 0 be an odd fundamental discrimi-
nant ; x(n) = (— D[n); K a large positive constant. Consider all
odd primes not exceeding K :

3,517 ..,p, < K. {6.1)

Let p > 0 be a small constant, and suppose for at least 100 p %, of
primes (6.1) we have the condition

(— Dlp;) = + 1. (6.2)
Then the series L(s, x) has no zeros in the domain
K
o>1—‘%(0_); b (K) > 18] > 1, (6.3)

where i, (K) and o(K) — oo for K —- 0.

7. The methods of proof of theorems slightly feebler than
those mentioned above (except Theorems 1 and 5) are exposed in
detail in the paper [4].

We shall sketch here the principal ideas of these methods.

For a given odd D > 0, we consider the matrices (2.4) satis-
fying the conditions of reducibility (2.3) and primitivity: g.c.d.
(@, 2b, ¢) = 1 (basic vector-matrices),

L,Ly ...,L,;h=h(—D); L?= — D. (7.1)
They form a part of the ring of the integral matrices (; 'g ) .

If A is any non-singular matrix and L' = ALA™?, then

tr (') = tr (L) = 0; L' = — D.

If the matrix L' is integral and basic, it must be one of the
matrices (7.1).
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If we have the equality b + L; = CA with an integer b =

b [(1) (1)} and integer matrices C' and A4, then b + L'; = b + ALA™!

= AC, so that L' = AL, A~! is an integer vector matrix. If ¢ is a
unimodular matrix, then eL’;e! is also an integer vector matrix;
it can be basic only for two particular values of ¢, ¢ = + .

The connection between inequivalent matrices in this sense
with the class number of the corresponding field (of any degree,
not only quadratic ones) was established by A. Hurwitz some
sixty years ago [1] and forms essentially the background of these
investigations.

Let (— D/p) = + 1; then it proves possible and expedient to
congider the equalities

L+ Ly =11y .. g Vi, (6=1,2,..., h), (7.2)

where II,; are integer matrices of determinant p, and ! an integer
under the condition

I + D = 0 (mod 0 p*).

The matrices II,; are so chosen in the “bundle” of matrices
unimodularly associated from the right hand side, that if

Q=1 Iy ... IL,,, (7.3)
then
Q'L Q=L
is a basic vector matrix.
The matrices ,; may be considered as operators generating the
Lobatschevskian motions on the hyperboloid H. The application

of these operators in a convenient way (see [4]) enables us to shift
L; into the given domain.

For the corresponding asymptotic computations some proba-
bility-theoretic limit theorems for Markoy chains are applied
(for analogous applications see the paper [2]).
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HARMONIC ANALYSIS AND DISCONTINUOUS
GROUPS IN WEAKLY SYMMETRIC RIEMANNIAN
SPACES WITH APPLICATIONS TO
DIRICHLET SERIES

By A. SELBERG
[Received May 2, 1956]

In THE following lectures we shall give a brief sketch of some
representative parts of certain investigations that have been under-
taken during the last five years. The center of these investigations
is a general relation which can be considered as a generalization of
the so-called Poisson summation formula (in one or more dimen-
sions). This relation we here refer to as the ¢ trace-formula.”

1. Let S be a Riemannian space, whose points we denote by x
and the (local) coordinates by !, 2%..., 2", with a positive
definite metric

ds? = Z g da* da’.

We shall assume the g;; to be analytic in the coordinates. Further
we assume that we have a locally compact group @ of isometries
of § (not necessarily the full group of isometries), whose elements
we denote by m, and that G acts transitively on § so that given x
and y in S, there exists an m € G such that z = my. We shall be
concerned with the linear operators on functions f(x) defined on 8,
which have the property that the operators are invariant under @,
or otherwise expressed, linear operators that commute with the
isometries m in G. We restrict ourselves here to the class of linear
operators that are differential operators of finite order, integral
operators of the form [ k(z, y) f(y) dy (where dy denotes the
5

invariant element of volume derived from the metric), or any

This is a summary of the results presented by the author to the International
Colloquium on Zeta-functions held at the Tata Institute of Fundamental Research,
Bombay, on February 14-21, 1956.
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finite combination (by addition or multiplication) of such. This
class evidently forms a ring.

Turning first to the integral operators, one observes that in
order that the operator

jk(x, ¥) f(w) dy

S

should be invariant, it is necessary and sufficient that the kernel
satisfy the relation

k(mz, my) = kiz, y), (L.1)

for allz, ¥ in S and all m in &. We shall refer to such a kernel as a
“ point-pair invariant”’. If we consider such a * point-pair invariant”’
k(z, y) as a function of one of the arguments, say x, keeping the
other point y fixed, we see that k(z, y) is invariant under the sub-
group of G that leaves y fixed. This subgroup we denote by Ry and
call it the rotation group of y. We express this property of k& by
saying that it has as a function of x rotational symmetry around
the point y. Let 2, be a chosen fixed point in .S and R® with elements
7® the rotation group of z,. R° is isomorphic to a compact (or
possibly finite) subgroup of the orthogonal group of n elements.

Norming the bi-invariant Haar measure on R so that [ dr® =1,
R
we can define for a funetion f(z) a symmetrized function

S5 2) = jf(r"x) ar; (1.2)

RO

flx; z,) clearly has rotational symmetry around the point z,.
Furthermore, if we have a function f(x ; x,) with rotational symmetry
around «,, we can define a point-pair invariant k(z, y) by the relation

k(x: y) =f(mx N xO)’ where my = Zy,

this definition is seen not to depend on the particular choice of m if
there is more than one m satisfying the relation my = x,. Therefore
the study of point pair invariants is equivalent to the study of
functions with rotational symmetry around some point z,.



HARMONIC ANALYSIS AND DISCONTINUOUS GROUPS 49

We observe also the following facts, before turning to the conside-
ration of differential operators. Because ( acts transitively on §, an
invariant operator, say L, of our class is completely characterized
by its action at one point, say ;. By this we mean that, introducing
the notation [Lf(z)],_,, to denote the value of the function Lf(x)
at the point # ==z, we can for an arbitrary point x, express
[Lf(x) .=z, by means of the relation

[Lf(®) Jymz, = [Lflma) T,

where m is a solution of mx, = ;. Conversely if we have an operator
& (not necessarily invariant), we can from its action at x,,
construct an invariant operator L by the relation

[Lf(x) ]a:==zu = [Z f(x) ]x=xo!

provided
[,?f(r"x) ]x-=xo = [Z f(x) ]xnxo’

for every element #° in the rotation group R° of w,. Finally if %
does not have this property we may define

[L f(x) ]a:=:v:0 = [Z flx; %) ]z=zo’

where f(x ; ;) is the symmetrized function of f around x, defined
by (1.2), because f(r’z) and f(z) have the same symmetrized function
around z,. If # is invariant then L = %Z.

Furthermore, one observes that an invariant operator applied
to a function with rotational symmetry around a point, gives a
function which again is rotationally symmetric around the same
point. Also an invariant operator applied to a point-pair invariant
as a function of say the first point, gives as result again a point-
pair invariant.

Consider now the clags of invariant differential operators of
finite order, and let for simplicity the local co-ordinates around z,
be chosen such that the matrix (g;) at « = #, is the identity matrix
E,. Let D be an invariant differential operator, its action at the
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point x = x, is identical to that of a differential operator D©® with
constant coefficients,

DO=3 i ( ) (695 ) (ax )in'

By the highest homogeneous part of D©® we mean the aggregate
of terms in the above sum, where «; . # 0and 4 + i3+ ... +1,
attains its maximal value; we denote this by D@, and write

where p, is a homogeneous polynomial. The rotation group R°
induces on the tangent space of 8 at x, a subgroup R of the ortho-
gonal group @,, and the polynomial pp(u,, %, ...,u,) is seen to
be invariant under this group R of orthogonal transformations.
Conversely, if we have a homogeneous polynomial p(x,...u,)
which is invariant under the group R, we may define an invariant
differential operator D, by the relation

[Dpf@)ecs, = [ 2 (0 g0+ ) F3%0 |

It should be observed that whereas P, =D, all one can say
about D,y — D is that it is an invariant operator of lower order

than D. One also easily shows that if p; and p, are two such homo-
geneous polynomials invariant under R, we have that Dy, p,—Dp, Dy,
is an operator of lower order than D, , . Using these facts, and a
well-known result by Hilbert which says that the polynomials p have
a finite basis of homogeneous polynomials p;, p,,...,p, 1 <1,
such that every homogeneous polynomial p can be written as a
polynomial (not necessarily in a unique way) of p,, ps,...,p;, with
constant coefficients, one obtains the result that Dpl, ng, ""Dpz
generate the ring of the invariant differential operators in the sense
that any invariant differential operator D can be written as a
finite expression



HARMONIC ANALYSIS AND DISCONTINUOUS GROUPS 51

D= Z 4,, ., DpDp..DE, (1.3)

where the 4’s are constants. Writing Dp‘, = D;fori =1,2,...,1, we
shall call Dy, D,, ..., D, a set of fundamental operators and we
may assume that it is so chosen that / is minimal.

The fundamental operators in general do not commute, and
as commutativity is essential for our later considerations, we
shall make an additional assumption about & and S, which will
imply commutativity (as we do not know, however, whether this
assumption is necessary for commutativity, we should note that

it is only the commutativity that is really necessary for the following
developments).

We assume that there is a fixed isometry u of S (possibly not in
@), such that uGu=! = @&, p® € @, and that for any pair of points
z and y in S, there exists an m in G for which ma = py and
my = uxr. We may call a space for which there is some group of
isometries G- with these properties (if that is the case then the
full group of all isometries will have these properties too) a
“ weakly symmetric ’ Riemannian space. This concept is more
general than E. Cartan’s concept of a symmetric space, as symmetric
implies weakly symmetric, whereas it can be shown by examples
that weakly symmetric does not imply symmetric.

Under this assumption we can prove that all the invariant opera-
tors commute. We first show that they commute when applied to
point-pair invariants k(z, y) considered as functions of the first
point . We first notice that if L is an invariant operator then so

is also L defined by
L@ = L") Lssa-

Also from our assumption about G follows that for any point-pair
invariant k(x, y) we have
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Denoting by a subscript the argument (z or y) that the operator
is to act on, we have
Lk(x, y) = Kz, y),

where k'(x, ¥) again is a point-pair invariant. Now we have

~

Lk, y) = Lkpy, po)
= [Lk(y, px)lysy = K'Y, p2) Loy
= k'(py, px) =K', y).

Thus

Lk(z, y) = L, k(z, y),

so that we may shift the operator from the first to the second argu-
ment by replacing it with L. If we now have two operators LX)
and L® we may write
LY IPkz, 9) = L I ko, y)
= I Lo, ) = I I ke, ),

(since the operators clearly may be interchanged when they act on
different arguments). Thus we have commutativity when our
operators are applied to point-pair invariants. Therefore we have
also commutativity if our operators are applied to a function with
rotational symmetry around a point, say x,. For a function without
rotational symmetry we notice that

[LD LD [@) ]y, = [LD LD f(e; 20) gy

where f(x;z;) is the function with rotational symmetry defined
by (1.2). From this follows

[LD LD f@)],c,, = [L® LY f(z) ],y

or what is the same

Lo @ f(x) = I® [ f(x),

that is, the operators commute.
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It can be shown that the operator L where the bar denotes
conjugation, is the formal adjoint of the operator L.

Returning to (1.3) we may now write

.D = .P (‘Dl’ D2, crey ‘Dl)’ (1.4)

where P is a polynomial with constant coefficients. It should be
noted that though our fundamental operators were chosen 8o that I
was minimal, there may sometimes still be algebraic relations
between them, so that the representation (1.4) may not necessarily
be unique. Further it can be shown that one can always choose a
set of fundamental operators with minimal [, such that each of
them is self-adjoint.

Now let f(x) be a function which is an eigenfunction of all our
fundamental operators D; so that

D, fl) = N f), i=1,2,..,1, (1.5)

where the ); are constants; because of (1.4)it will then be an eigen-
function of all the invariant differential operators, and in particular
of the Laplace operator derived from the metric, therefore f(x) will
be analytic in the coordinates. If we take a point z, such that f(z,)
7 0, and form f(z; x,) defined by (1.2), this will again satisfy the
equations (1.5) and will not vanish identically in x since f(z, ; %) =
Sf(x,) # 0. We now write

Sl ; xy) = f(@g) wx(@, %), (1.6)

where the subscript A is an abbreviation for the I-tuple (2, A,,..., &)
s0 that w,(@y, ) = 1. We call this the ‘“ normed ” eigenfunction
with rotational symmetry around z, and shall show that it is
unique, that is to say a function with rotational symmetry around
¥, which takes the value 1 at the point x, and which satisfies the
equations (1.5) is identical with w,(z, %,). To prove this we observe
that for such a function g(x), we have, because g(r) = g ; %,),



54 A. SELBERG

[(a)" () ()" ],

where D is an invariant differential operator depending only on
(v, vg,...,v,). Because of (1.4) and since g(x) satisfies the equations
(1.5) we thus get on using g(z,) = 1,

[() ()" (%) @ ] =P

where P is a polynomial depending only on (v, v,,..., »,). This
shows that all the partial derivatives of g(x) at the point z,
are uniquely determined by the I-tuple (A, A,,..., ;) and so since
g(x) is analytic in the coordinates, g(z) is unique, that is, it coincides
with w,(x, 7). We may from w, (r, z,) construct the point-pair
invariant w,(z, ¥) which will, because of the relation

DI w/\(xi 3/) = Dy wy (x’ ?/),

be a normed eigenfunction also in y with rotational symmetry
around the point 2. Therefore we must have

w,(z, y) = oy (¥, 2), (1.7)

where A denotes an I-tuple (7\1, XZ, vy 7«,) not necessarily identical
to the original one. w,(z, y) is now easily seen to be an cigenfunction
(considered as a function of x) of our whole class of invariant opera-
tors for the reason that

Lz w,(z, y)

because of the commutativity of L and the D, ¢ =1, 2,..., I,
again satisfies the equations (1.5), and furthermore it is again a
function with rotational symmetry around y, and differs therefore
only by a factor independent of x (and hence since the factor is a
point pair invariant it is independent of y also) from w,(z, y),
that is to say
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L, wy(z, y) = A w,(, y),
where A is a constant depending on L and the I-tuple A only.

We can now show that any function which satisfies the equations
(1.5) will be an eigenfunction of our class of invariant operators,
namely we have

[L f@)]gmz, = [L @ ; o) Lo,
= [L f(w,) o) (@, %0)]o=z,
= A f(y) w, (@ o) = A fiaty).
Since this holds for any point z,, we have
Lf@) = A f=),

and we see that the eigenvalue A does depend only on L and the
I-tuple A, but not on the particular function f(z).

Thus for an integral operator we may write

jk(x, 0 ) dy = B) f@), (L8)

)

where h(A) = h(A;, A,,..., A) depends on % and A only. In order
to get an expression for A(A) it is therefore enough to produce a

3

“ representative ”’ set of eigenfunctions, that is, one that exhausts
all the possibilities for the I-tuple (A,,..., &), that is, I-tuples for

which there really do exist functions satisfying the equations (1.5).

In a number of cases that are of particular interest for applica-
tions, such a set can be obtained from the following lemma :

Let T with elements ¢ be a subgroup of G which is simply transitive
on 8§, that is, such that the equation x = &x,, where x is any point
in 8 and x, a chosen fixed point, always has one and only one
group element ¢ as a solution. Further suppcse that we have a
continuous non-vanishing function ¢(f) on 7' that satisfies the
relation
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¢(t1t2) = ¢(t1) ¢’(t2),

for all ¢, and ¢, in 7. If we now define f(x) = f(ix;) = $(¢), where
try = z, then f(x) is an eigenfunction of our operators, because

L f@) = [Lftx) s, = () [L f(@)]oez, = [L f(2)]y =g, [(@).

If we have several such multiplicatively independent functions

é.(2), $5(t),....,0,.(t), then
$1"1(2) Po"(t) ... .5%(2)

will also be one (where, if T or what is the same S, is not simply
connected the exponents s;, 8,,...,5, have to be chosen such that
the resulting function is single-valued). It is of course not always
so that different choices of the x-tuple s,,...,s, necessarily lead
to different I-tuples A;,..., A, In many cases one gets all possibili-
ties for which eigenfunctions exist covered by this construction.

The nature of the set of possible A’s may differ from the
completely discrete set that would occur if 8 is compact,! to the
situation for many non-compact spaces where the set of all I-tuples
of complex numbers A, ..., A, which satisfy the possible algebraic
relations between the D;, ¢ = 1, 2, ..., I, does occur. Intermediary
situations can of course also occur. In the case when the set of all
I-tuples A of complex numbers satisfying the algebraic relations
between the D,’s does occur, it is easily shown that w,(z,y) as a
function of Ais an analytic function on the algebraic variety defined
by these relations, which is regular whenever all A;s are finite.

As an illustration we may for instance consider the space of n
by n positive definite symmetric matrices ¥ = (y,;) with the metric

ds* = o (Y~1dY Y-14Y)}

.1 Because we require our functions to be regular globally, if one admits ‘ local *’
eigenfunctions (that cannot be continued everywhere in S, or that by such continua-
tion would not be single-valued) the situation is different as shown by the
examples of the surface of a sphere or the periphery of a circle.

1 o here and in the following denotes the trace.
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where dY = (dy;), and the group G' may be taken as the group of
all non-singular real n by n matrices 4, the isometries being

Y>ATY A

(A’ is the transposed of A); finally the isometry u may be taken as
Y—7Y- 1

It is then easily established that all our requirements are satisfied.
The point-pair invariants are easily seen to be of the form that
k(Y,, Y,) is a symmetric function of the n eigenvalues of the matrix
Y, Y%, or if one prefers it, k(Y,, Y,) is a function of the =
arguments o( (¥, Y1), v=1, 2, ..., n. Conversely any such
function is a point-pair invariant.

A set of fundamental operators can be obtained as follows : let
2

Yij

d .
P denote the matrix (

symbol ; then the operators

Diza((Y_aiy) ) i=1,2,...,n (1.9)

), where §; ; is the Kronecker

are a set of fundamental operators, and they are algebraically
independent.

To obtain a representative set of eigenfunctions, consider the
subgroup of G formed by the  triangular” matrices T = (t)
with #; =0 for ¢ <j and ¢;> 0 for i =1, 2, ..., n. This group
acts simply transitive on our space, and for any complex n-tuple
8 = (8, 85, ..., 8,) the function

n

$u(T) = [ ] ta2erinrore (1.10)
i=1

is single-valued and continuous on this group and has the property

qsc(Tl) ¢3(T2) = ¢3 (Tl TZ)



58 A. SELBERG

Thus defining for ¥ = T'T"
S(Y) = ¢(T), (1.11)
this is an eigenfunction. One can show that
D; f(Y) = X (8) f(y)s

where A,(8) = XSy, Sg, ... » 8,) is & polynomial in the s; of degree @
which is symmetric in the s; and of the form

A(Sy, S, -or 5 8) = 8 + 8 + ... + 8, + terms of lower degree.

From this one sees that A, are a basis for the symmetric
polynomials of the s;, so that the s; are determined as roots of an
algebraic equation of nth degree whose coefficients are rational in
the A, so they are determined up to a permutation of the s;. From
this it follows that we may by suitable choice of the s; make the
A; any n-tuple of finite complex numbers. One also can show that

7\1-(81’ 8oy oee 5 Sp) = A(— 81, — Sy vy — 8,).
To find an expression for the A(A) defined in (1.8),

j kY, Y) f(Y)dY = h(A) f(¥

]
where dY is the invariant element of volume

Q}n(n 1)
ar T 7D EI Yij»
IRV
we may write
Y, Y)=kic(YY,™),s((YY,;71)?), ..., s((YY,71)*)),

and take Y, = K, the identity matrix so that f,(Y,) = 1; further
we may introduce the ¢;, ¢ > 4, in ¥ = T'T" as new coordinates in our

on(n+8)/4
space, the element of volume then becomes ————— ]__[ dt; and
tll t22 mn >3

the relation becomes
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2}n(n+3)Jk( o(TT"), a( (TT')?), ..., o( (TT")")) %

n
X Htﬁ‘m—i(nﬂ) H dty = h(A),
i=1 izj
where the integration is carried from 0 to oo over the f; and
from — oo to oo over the t; with i > j. For special forms of k these
integrations can be carried out explicitly, for instance if

(Y, ¥) = | YY7 | empotvr= =,

where the real part of B is positive, and the real part of 2s; + 2a >
Hn — 1) for s =1, 2, ..., n; the integral then becomes

n
2&n(n+s)j { exp ( — B z tﬁz) } I—I 200+ 2a—(n 12 I‘[ dt;,

iz

and splits into a product of

7L(n_2—|;i) simple integrals, each of which

is expressible in terms of Gamma functions.?

2. Let now I be a discrete subgroup of G which acts properly
discontinuous on the space S, and let there be given a representation
of " by unitary v by » matrices x(M), where we denote the elements
of " by M. Consider function vectors F(z), that are column vectors,
whose v components are scalar functions of the point , and which
furthermore satisfy the relation

F(Mx) = x(M) F(x), (2.1)

for allz in § and M in I'. Such a function F(z) is then of course fully
determined by its values on a fundamental domain &2 of I" in 8.
Applying one of the invariant integral operators to such a function
F(x) one sees that

jk(x, y) Fly) dy = j K@, y; x) Fly) dy,
S

§ For this special choice of k&, the resulting form of formula (1.8) has in the
meantime been derived by different means by H. Maass, Journal of the Indian
Math. Soc. 19 (1955), 1-24.
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where the kernel K is a matrix given by

K@,y x) = . x() ke, My). (2.2)
Mell

Considering now the Hilbert space defined by the inner product

(Fy, Fy) = j /@) Fye) do,
@D

where Fl’ is the conjugate transposed of F;, one sees easily that the
operator

j K@, y; x) Fly) dy (2.3)
(7

is normal since the adjoint operator has a kernel that is derived

from the right-hand side of (2.2) by replacing k(z, y) by %(x, y) =

k(y, ), and thus it commutes with the operator (2.3). The invariant
differential operators are also seen to be normal.

We have not up to now put any restrictions on our point-pair
invariants £(x, y), but always only assumed that the kernel and the
function that the operator acted on were such that the integral also
existed if absolute values were taken of the integrands.

It is now time to impose conditions that will enable us to make
definite statements about the absolute convergence of the series on
the right-hand side of (2.2) and also about the behavior of K(z, y; x).

We make the following assumptions :

k(z, y) should have a majorant,

ky(x, y) such that (a) [ k(, y) dy < oo, (b) ky(z, y) is of regular
growth ; that is to say, t]:ere should exist positive constants § and

A such that for all x and »,t

+ One can relax this, and permit kernels with, for instance, a singularity at
x = y by requiring (b’) to be fuifilled only if the smallest geodesic distance d(x, y)
exceeds some fixed number.
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ben<d | ke, (v)
cyy")<s
where d(y, y’) denotes the smallest geodesic distance between
y and y’. Under these assumptions the above series for K(z, y; y)
converges absolutely for x and y in 8, and uniformly if # and y
are in some compact subregion of 8.}

We also make the assumption that the fundamental domain @
of I' in § is compact. Then K(z, y; x) will be uniformly bounded
for x and y in & (and therefore also for all  and y in S). Therefore
also the expression

j j o (K@ y; %) K@ y; %)) de dy
D D

is finite (K’ denotes the conjugate transposed of the matrix K)
so that the integral operator is of the Hilbert-Schmidt class, and
the classical methods from the theory of integral equations can
be applied.

Consider now the functions F(x) satisfying (2.1) which are
eigenfunctions of our fundamental operators D; for ¢ =1, 2, ..., L.
We can then show from the preceding results about our integral
and differential operators, that there exist an orthonormal system
of eigenfunctions F(x), which is complete in our Hilbert space,
and such that if we write

for j =1, 2,..., I; the l-tuples X = (A}, A},..., X}) have no finite
point of accumulation in I-dimensional space. The complete-

ness in particular follows from the easily established fact that the
system of all admissible kernels K(x, y; x) is complete.

About the eigenvalues, the I-tuples X, one could at once make
statements based upon the fact that if the kernel of an integral

1 Thus in particular K (2, y ; x) is continuous if k (z, y) is.
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operator is Hermitian (which is the case if k(z, y) = k(y, )), the
eigenvalues h(X') must be real ; also, by looking at the differential
operators, if we have chosen the fundamental operators self-adjoint,
as one always can, the A; forj =1, 2,..., I have to be real, and for
the elliptic ones the sign of the eigenvalue is also given. In terms
of the corresponding normed rotationally symmetric eigenfunctions,
it follows that w; (@, ¥) = 0y, ®), and |w, (z, y)| < 1 for all
x and y in 8.

Formally we have the expansion of K(z, y; x) in terms of the
eigenfunctions F;,

2 X(M)k(z, My) = > h(N) i) F7'() 8 (2.5)

Mel”

The absolute convergence of the right-hand side and the equality
of the two sides could be proved under suitable additional
assumptions about k(z, y). However, since the eigenfunctions
themselves occur in (2.5), our attention here will instead centre
on the trace of the integral operators, where the eigenfunctions do
not anymore occur.

We may formally compute the trace of the integral operator in
two ways, namely on the one hand as

Z h(X), (2.6)

and on the other hand as

Ja(K(x, z; x)) do = Z

a(x(M)) jk(x, Mz) dex. (2.7)
P Mer

9

We leave aside for the moment the question whether the series
(2.6) is convergent or only summable in some sense and also the

§ This formula in the case x(}) identically 1, can be used for estimation of
the number of points My in large regions with rotational symmetry about the
point y.
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question whether the sum is actually equal to the expression (2.7),
and turn our attention first to the latter expression. Under our
assumption on & and k(z, y) the series on the right-hand side of
(2.7) actually is absolutely convergent, even when we take absolute
values under the integral signs.

We shall rearrange the series on the right-hand side of (2.7) by
combining the terms in a suitable way. For this purpose we introduce
some notations.

Two elements M; and M, in I' are said to be conjugate within
T if there exists My € I'such that M, = M, M,M;'; we call the
class of all elements in I' which are conjugate to a given M the
conjugate class of M in I', and denote it by the symbol {M}.
The subgroup of T' formed by the elements which commute with
M we call Ty, and denote its elements by N,,. Similarly we define
conjugacy within @, and denote by {m}, the class of all elements
in @ conjugate to an m in G. Clearly {M}. is contained in {M}g.
Also the subgroup of G formed by the elements of G which
commute with m we call G, and denote its elements by =,;
clearly I';, is contained in Gy,.

We now group together the terms on the right-hand side of (2.7),
where M belongs to the same conjugacy class in I'. The factor
o x(M) ) has the same value for all elements M belonging to the
same conjugacy class in I'. Therefore we consider the sum

z k(x, Mz) dx. (2.8)
Me(My)p 3

The terms here are of the form
‘[lc(x, MM, M, x)dx = jk(Mlx, My M, z) dx
@ @

= J k(x, M,z) de,
M9
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with M,9 denoting the image of 2 under the transformation M;.
Two M, give the same M7 MM, if and only if they differ on the
left by an element of 'y, . Thus the expression (2.8) becomes

I kE(x, M, z) de,
Dy

0

where the domain of integration is given by 9, = Z* M9,
MeT
T* indicating that the summation is carried over a complete set of

elements M such that no two differ on the left by an element of I'y, .
It is easily seen that 9, is actually a fundamental domain of the
discontinuous group Iy, in 8. Thus we may rewrite the right-hand
gide of (2.7) as

Z olx (M)) j k(x, Mz) d, (2.9)
{Mir Dy

where the summation is extended over one representative for each
conjugacy class in I'. We shall transform the expression

J k(x, M x) dx
91}1

still further. We introduce on G, with elements #, the Haar
measure dn, which is invariant with respect to multiplication on
the right. We construct some function p(xz) which is everywhere
on S real and non-negative, and for which

} p(nyx) dny =1, for allz in 8.

CM
This can be done by constructing first a function ¢(x) > 0, every-
where on S, for which the integral

J q(nyx) dny = g,(x)
QY
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exists and is positive for every « in 8. This can be done for instance
by defining

| 1P — d), forde) <1+ pta)

) =

1 0, for d(z) = 1 4 p(x),

where d(x) denotes the smallest geodesic distance from x to some
fixed point z,, and p(x) = mingyeey d(ny ). Then p(z) = q(x)/g,(x)
is seen to satisfy the above requirements. The group Iy, acting on

the right of @ is discontinuous and we may denote by G /Ty a
fundamental domain of I';; in @,; we then get

j k(x, Mx) dz
Dy

= I j k(x, Mx) p(nyx) de dn,y,
G @1”

= z “ J k(x, Mx) p(ngy Ny x) doe dny,

YueTM ¢yiTy g
M

= E(Nyx, M Ny ) p (ny Nyx) dz dny
Nyely au Ty Dy

= k(x, Mz) p(nyx) de dny,

L
Nyely oyiTy NM@M

= J k(x, M ) p (nyx) dx dny,
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where we repeatedly have used the fact that k(z, Mz) is invariant
under the group G, that the measure dn,, is right-invariant, that
the measure dz is invariant, and also that

Gu= 2 (Gullw) NyandS= > NyDy.
Nyel'm Nyelpyp

Writing now

dny = p(Gu/Ty),
GMiIT™M

this factor measures the volume of the fundamental domain of
Iy in G4, and does not in any way depend on k(z, y). For the other
factor we write

j bz, Mz) ple) de = g({ M }q),
S

and observe that this factor only depends on k(z, y) and on the
conjugacy class { M }, of M in G. Combining our results we may

now write
j o(K(@, % 1)) dz = > o(x (M) p(Gy/Ta) g{ M}g). (2.10)
9 {M}p

We now turn to the question ‘when and in what sense are the two
expressions (2.6) and (2.10) equal?” We can at first say that the
series (2.6) converges absolutely and is equal to (2.10) if k(x, y) can
be written in the form

J ky(x, 2) ky(y, 2) dz, (2.11)

where %, is a point-pair invariant satisfying our conditions (a) and
(b). From this we get next that the same conclusion holds if & can
be written in the form

j ki (x, 2) ky(2, y) dz, (2.11%)

S
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if k; and k, both satisfy the conditions (a) and (b), since (2.11’) can
be written as a linear combination of expressions of the form (2.11).

Introducing the notation, for ¢ > 0,

C,, for d(x, ¥) <e
(@, y) =
0, for d(z,y) > e,

where d(x, y) is the smallest geodesic distance between x and y, and
where C, is a constant depending on ¢, chosen such that

jnmm@=n
SN

(the integral clearly is independent of z), «(z, y) is a point-pair
invariant satisfying (a) and (b). Writing

¢w=jmmmmm@m
S
we have

lim 6,(A) = 1,

e—>0

and that for the X, in addition |§(X)| < L.}

Now let k(x. y) satisfy (a) and (b) and in addition be continuous ;
considering the class

ke(x’ ?/) = j K!(x, z) k(zs 3/) dz,
S

for 0 < € < 1, we get that the class k, satisfy our conditions (a) and
(b) uniformly, and that hm k.(x, y) = k(z, y), uniformly for x and

y in any compact subreglon of 8. Using this we can show that the
“ trace formula

> ) = > olx O0) pOulTu) 9({M}e)  (212)

% {M}p

+ With equality only if wxi(z, y) = 1.
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is valid if we give the left-hand side the interpretation

lim B(X) 6.(XY).

>0 Z (

In particular (2.12) holds whenever k satisfies (a) and (b) and is
continuous and the left-hand side of (2.12) converges absolutely.

Various types of sufficient conditions for absolute convergence
can be given,! for instance that K(x, y; x) have partial derivatives
up to the order [n/2] + 1, which, is the case if k(x, y) has partial
derivatives up to this order which are such that (2.2) can be
differentiated term by term and the resulting series converges
absolutely.

The trace formula (2.12) may be used on the one hand to investi-
gate the distribution of the l-tuples A* and on the other hand also
to investigate the distribution of the conjugate classes {M}, the
latter in the following sense : The conjugate classes in G can be
characterized by a certain number of numerical parameters and
so with each {M}; can be associated the numerical parameters
that characterize {M }q; it is the distribution of these numerical
parameters that can be investigated by means of (2.12).

We shall mention briefly a certain generalization of (2.12) which
is of interest in connection with the so-called Hecke-operator for
the classical modular group and their analogues.

Let us have given in connection with our group I' and the repre-
sentation y(M), a subset I'* of elements M* of G with the following
properties : The set I'* (it does not need to be a group) and the

1 Actually in the case of a particular G and S, the more convenient such
conditions are those that can be expressed in terms of #(A) only. This involves
expressing k(z, y) in the form _[h()\) w)(®@, ¥)dA where dA is a certain measure, and
seeing what properties of k() are sufficient to ensure that k(x, y) is continuous and
satisfies (a) and (b), then determining enough about the asymptotic distribution of
the At to see what additional condition should be imposed to ensure the absolute
convergence of T A(X).

13
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elements M *, are such that with M* the inverse M*~1! ig also in I'*¥,
further for M* in T'* and M in I" the element M*M is also in I'*,
and there should be a finite set of ‘left-representatives”” M,*, M,*,

...y, M * such that I'* = i M*T, or otherwise expressed, every M*
i=1

can in a unique way be represented as M, * M with M eI'. Further

let there be associated with each M* a v by » matrix y(M*) (not

necessarily unitary) such that y(M* M) = y(M*)x(M) for M* in T'*

and M in T, and such that

X(M*=1) = x(M*)'.

Defining now the operator 7'* by

T*F() = > x(M;*) F(M*1a), (2.13)
i=1
one establishes that 7™*F(x) again satisfies (2.1). T is seen to be
self-adjoint in our Hilbert space and further to commute with our
invariant integral operators (2.3) and with the fundamental diffe-
rential operators. Therefore our complete orthonormal system of
eigenfunctions F;(x) may be chosen such that they are also eigen-
functions of T'* ; writing then

T*F(x) = . F (),

it can be shown by multiplying the 7* with an operator of the form
(2.8), which gives us an integral operator with the kernel

¥y x) = 2 (% Ke, M%),

and computing the trace of this integral operator in a similar way
that

D RN Ny = > o(x(M*) (G Tare) ({M*}e), (214)

{M*}p

where the conjugacy classes { M*}. are defined by conjugacy with
respect to I' (that is 3, * and M,* belong to the same conjugacy class,
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if and only if there exists M eI' such that M;* = MM,* M™"),
and T’y is the subgroup of I' that commute with M*. What was
said about the validity of (2.12) also holds for (2.14).

If for some I-tuple A it happens that w,(», y) satisfies the
condition

j lwal, ¥)| dy < oo,
S

then one can show that w,(z, y) satisfies both our conditions (a)
and (b), and it can therefore be used as a k(z, y) in our trace formula.
Since it is seen that for the A(A) corresponding to w,(x, y) one
has h(A) = 0 for A # A, and

h(A) = j lwn @ 9) [ dy,
S

we get on the left-hand side of the formula (2.12) simply
N(A) k(A), where N(A) is the number of the I-tuples X' that are
equal to A. T conjecture, but have only so far been able to verify this
conjecture for special types of spaces, that in this case g {M}e'
= 0 for all M which do not belong to some compact subgroup of G
so that (as one easily establishes) the number of terms on the right-
hand side which are not zero is finite. This would imply that one
gets a finite expression for N(A). As will be indicated later this has
interesting applications to the problem of determining the number
of linearly independent regular analytic automorphic forms of a
given dimension, in one or more complex variables.}

We have so far assumed that the fundamental domain £ of our
group I is compact. If we relax this condition and only require
that D have finite volume, the situation changes somewhat. While
the kernel K(x, y; x) will behave as before as long as at least one

1 Of course the special g that is derived from wa(z, ¥).

1 Similar remarks apply to formula (2.14), which is of interest for the theory
of Hecke-operators, as applied to the analytic modular forms,



HARMONIC ANALYSIS AND DISCONTINUQUS GROUPS 71

of the points x and y is restricted to a compact subregion of 2
(or of 8 for that matter), the kernel may exhibit a singular behavior
as both points tend simultaneously towards the ‘ non-compact
boundary ” of 2, such that the integral

j j«:(K(aa,y; © K@ v %)) du dy (2.15)
D 9

does not exist. If, as it may happen for some x, the kernels K behave
well enough at the ““ non-compact boundary » for (2.15) to exist,
the situation is not significantly changed, the spectrum of I-tuples
A for which there are eigenfunctions F is still discrete and the
eigenfunctions are in our Hilbert space, and one may in specific
cases by showing special care with the transformations M that
leave some ‘‘ part ”’ of the *“ non-compact boundary ’ fixed (namely
by grouping together those that have the same I');), prove a trace
formula that is not essentially different in form from (2.12),
only that some terms on the right-hand side will no longer
correspond to a single conjugacy class { M}, but to an aggregate of
conjugacy classes.

If however x is such that (2.15) does not exist, there
are in general continuous spectra (which may even be multi-
dimensional) besides the discrete spectrum. In some of the
simpler cases, where these continuous spectra have been studied,
it is possible to remove them by replacing the kernel
K@, y; x) with a modified kernel which retains only
the eigenfunctions from the discrete spectrum and with
unchanged eigenvalues h(X), the computation of the trace
of this modified integral operator leads then to a trace
formula, which however besides terms of the type occurring
on the righthand side of (2.12) will contain terms of a
radically new nature.

3. We shall in the following give some explicit illustrations of
the formulas in the case of some simpler spaces § and groups @
satisfying our conditions.
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First we consider the case when S is the hyperbolic plane for

which we use the model represented by the upper complex half-
2 2

plane z ==z + ¢y, ¥ > 0, with the metric ds?® = do” + dy’ *;dy . Our

group G may be taken as the group formed by all motions

me — _—:: b where ad —bc =1, a, d, b, and ¢ real.t The Laplacian

cz
o2 o®

corresponding to the metric »?A = y2( .+ a_2> is the only
Y

o922
fundamental operator, and the point-pair invariants are seen to be

all of the form
— P
k(z,z’)=k(|z z‘).

vy’
A representative set of eigenfunctions is given by y* since
yz A ys = A ya
with A = — (1 — s). Writing s = % + ¢, we shall use for

convenience the r instead of the A as parameter. The connection
between k(z, 2’) and h(r) is given by the relations

o]

j K g = Qu), k(t):-lj 4 Qw)

) Vi—w ™) V=1’
Qe+ + 67— 2) = gtw), (3.)
0 1T
)= | g g =g | e an

Regarding now A(r) as the primary function, we see that if A(»)
satisfies the conditions’:

(1) A(r) = b(—7),
(2) A(r) is regular analytic in a strip |Im 7| < % + ¢, where e > 0,

and

_ § This is not the full group of isometries, since this also contains the elements
az + b .
= with ad —bc = — 1. However, we shall for simplicity assume that our
+
discontinuous group T has only true motions as elements.

§ The conditions (2) and (3) could be somewhat weakened,
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(3) A(r) = O((1 + |7 [2)~1~< in this strip;
then k will exist and satisfy our conditions (a) and (b).

The elements of @ can, as it is well known, be divided into four
types, of which the first consists only of the identity element, while
the others are respectively the hyperbolic, the elliptic and the
parabolic elements. For a hyperbolic element m there is always a
representative of the conjugacy class {m}y of the form z— pz,
where p is real and > 1. We call p the norm of m, and also the
norm of the hyperbolic conjugacy class {m}, and denote it by
N{m}, leaving the subscript G out. An elliptic element has always
one (and only one) fixed point in the space and represents a rotation
of the plane around this point, by an angle which we may count
positive in the counter-clockwise direction; we call this the rotation
angle of the elliptic element and also of the elliptic conjugacy class
in @ represented by the element. Finally if an element is parabolic
it belongs to one of the two parabolic conjugacy classes represented
by z —2 + 1 and z — 2z — 1 respectively.

In I'" we shall call a hyperbolic element P primitive, if it is not a
power with exponent > 1 of any other element in the group I,
correspondingly we say that the conjugacy class { P}y is primitive.
For the elliptic elements of I', those with the same fixed point form
a finite group generated by a single element, and the one that has
the smallest positive rotation angle we call primitive and denote it
by R and call the corresponding class a primitive elliptic conjugacy
class { R} inT'. Finally a parabolic element of I' which is not a power
with exponent > 1 of any other element in I', and which belongs to
the first of the two parabolic conjugacy classes in G, we call a primi-
tive parabolic element of I' and, denoting it by S, the corresponding
class {S}r a primitive parabolic class. It should be mentioned that
if the area of the fundamental domain & of I is finite, that is to say

A(@) = j dxyfy <,
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there are only a finite number of elliptic and primitive parabolic
conjugacy classes in I', and if & is compact there are no parabolic
ones. The primitive hyperbolic classes { P} on the other hand
are always present in infinite number.

Assuming first that 2 is compact, the trace formula takes the form

@0

2 h(r;) = A(D)v J r e h(r) dr +

e 4 e~ ™

—0

" o)) T I ) dr +

Msinkn/m | 1462~

(B} k=1 A

> (D)) log N{P
+2 Z k§=:1 (“N{g’}c)m _ (%V{lg})};k/z g(k log N{P}). (3.2)

{Pir
Here the r; are the values for which there is a solution of the equation

YV:AF(z) =AF(z), A= — (} + 1%

with F(z) in our Hilbert space ; since we count both values of r that
give the same A (and if A= — }, » = 0 with double multiplicity)
our formula actually represents twice the trace of the integral
operator. A(%2) is the area of the fundamental domain. m = m(R)
represents the order of the primitive elliptic element R, and the
summations X and X are taken over one representative from each

primitive elli};)tic anlél each primitive hyperbolic class respectively.
The r; have to be such that { + 72 is real and non-negative, so that
the r; are either real, or they are purely imaginary with absolute
value < 1.! The formula (3.2) can now on the one hand be used for
determining the asymptotic distribution of the 7,, and on the other
hand the asymptotic distribution of the norms of the primitive
hyperbolic classes in I'. Under our assumptions on A(r) all infinite
series occurring in (3.2) converge absolutely.

1 These latter could of course only occur in finite number, but one can show
that their number for suitable I' and x may become arbitrarily large, although it
can be shown to be less than a certain constant times v A(.@)
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(3.2) has a rather striking analogy to certain formulas that arise in
analytic number theory from the zeta -and L-functions of algebraic
number fields. This leads us to introduce the function defined by

Zets;x) = [ [ [] 1B —xP) @{P})y=*, (33

{PIp k=0
for real part of s > 1, when the product converges absolutely. E,
is here the v by v identity matrix, and | ... | denotes the determinant.

From (3.2) one can derive the following facts about this analytic
function of s :

(A). Zp(s; x)is an integral function of s of order 2, except in the
case when the genus of the fundamental domain 2 is zero, in this
case there may be a pole at s = 0 of order at most ».}

(B).  Zr(s; x) has “trivial” zeros at the integers — & for k& >0,
whose multiplicity can be explicitly given in terms of k, v, A(9D)
(or the genus of the fundamental domain if one prefers), and the
m(R), the orders of the primitive elliptic classes, and the traces
o(x'(R)) fori =1, 2,...m(R) — L. In the particular case that there
are no elliptic classes in I" one has that the multiplicity of the trivial
zero at — kis (2k + 1) (2p — 2), where p is the genus! (which is in
this case always > 1).

(C). Zp(s; x) satisfies a functional equation which relates the
value of Z (1 — s; %) to that of Z(s; x). The form of this functional
equation depends on the quantities v, 4(2), and the orders m(R) of
the primitive elliptic classes and the traces o(x¥(R)) for 1 =1, 2, ...,
m(R) — 1. In the particular case that there are no elliptic classes
in T' this functional equation has the form
8—3%

j vignodo ] (3.4)

0

Z(1—s8; X) = Z(s; x) exp { -v A4(2)

1 If one assumes the representation (M) to be irreducible, this pole only
oceurs for x(M) identically equal to 1, and is then a simple pole.

§ In this particular case p—1= ‘%-(%)2



76 A. SELBERG

(D). The zeros of Zp(s, x) which are not mentioned under (B), are
the numbers  + 7;, and have thus real part equal to }, with the
possible exception of a finite number of zeros that are real and lie
in the interval 0 < s < 1.

As one sees from (D) the analog of the Riemann hypothesis is
true for our Zp(s; x) with the slight modification that real zeros
may occur in the interval 0 < s < 1.

If we only require A (2) to be finite, there will, if & is not compact,
always be at least one primitive parabolic class {S}. If {8;}r
for ¢+ =1, 2, ..., k, are the different primitive parabolic classes in
I, the situation will depend on the matrices x(S;); if x(S;) has g,
eigenvalues equal to 1, we say that y is singular of degree u, with

respect to the class { S; }r, and singular of degree u = ﬁ w; with
i=1

respect to I'. If w = 0, that is if y is non-singular with respect
to I', the situation is only slightly altered from the compact case.
The spectrum is still discrete and in our trace-formula (3.2), will
occur on the right-hand side the new term

—29(0) > logll B, — x(S)Il. (3.5)

i=1

This new term does not essentially alter the statements (A), (B),
(C) and (D) about Z (s; x). If p > 1 however the situation is very
much altered, in that we have then for our eigenvalue problem,
besides the discrete spectrum, also a continuous spectrum of multi-
plicity p. As mentioned in the previous section we have then first
to investigate the eigenfunctions in the continuous spectra and
then to remove their contribution to the kernel K and develop a
trace formula for the modified kernel. As a description of the general
case is rather complicated, we shall here only briefly indicate the
results in the simplest case when there is only one parabolic class
{8} with respect to which x is singular, and further that x is
one dimensional, so that x(§8) = 1.
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We may assume for simplicity that one representative § of the
class {8}y is 82 =2 + 1. Forming for real part of s greater
than 1 the function

EGsix) = » x(D) (Im M2 = > ) -2
MeS]T MeS/T (3.6)

Moy b? +b

cz + 0’

where M € §/I" means that M runs over a complete set of elements
of I that do not differ by a power of § on the left, one establishes
that this series is absolutely convergent for o > 1, s = o + if.
Further one has

E(Mz,s; x) = x(M) Ez, 8; x),
for M in I, and
Y¥2AEz s; x) = — s(1 — 8) Bz, s; x).

It can then be proved that E(z, s; x) is a meromorphic function
of s in the whole s-plane, and that the poles are all in the region
o < 4, with the possible exception of a finite number of simple poles
which are real and lie in the interval } < s< 1; these poles are
independent of 2z, and E(z, s; x) may be written as a quotient
of two integral functions in s, each of which is at most of order
2 and where the denominator is independent of z. Further
E(z, s; x) satisfies a functional equation, which may be described
as follows :

We write for o > 1,

¢(8’X) WPS—'%) 2

F() ¢#0 0<d<ici

(3.7)

then one can show that ¢(s, x) is meromorphic in the whole s-plane
and regular for o > } with the possible exception of a finite number
of simple poles in the interval 3 < s < 1, and can be written as a
quotient of two integral functions at most of order 2. Further one
has the functional equation
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$(s, x) $(1 —s, x) = 1.7 (3.8)
Then the functional equation of E(z, s; x) is
E(z,8; x) = ¢(s, x) E(z, 1—8; x)- (3.9)

Forming now the kernel

H@E 25 x) =— | ho) Bz, } +ir;x) BE, % +ir; x)dr, (3.10)

Lyl
ge——8

one can show that the kernel

K*(z,2'; x) = K(z, 2'; x) — H(z,2"; x), (3.11)

where
K5 x) = D x(M) ke, M2),
MeT

has the property that it retains only the discrete spectrum (that is
all eigenfunctions which are not in our Hilbert space are annihilated
by the integral operator with kernel K*), and this is retained with
unchanged eigenvalues h(r;). The evaluation of the trace of this
modified integral operator then gives us a trace formula which
differs from the earlier in that on the right-hand side we have the
new terms

2]
’

o h(r)%(%wr,x)dr—% jk(r)%(l +ir) dr —
—2

8t 8

-0

log 2. g(0) + 4 (1 —¢(}, x) ) A(0). (3.12)
These new terms make a rather drastic change in the nature of
Z1(s, x), in particular Z(s; x) will have simple poles at s — — 1/2,
—3/2, — 5/2,...; because of the second term in (8.12), the last term
produces a simple pole at s = }if ¢(4, x) = — 1 (this pole may
however be cancelled by a zero if one or more of the r; equals zero),
8o that Z(s; x) is no longer an integral function. Furthermore in
addition to the non-trivial zeros at the points } + ¢r;, namely
wherever ¢(s, x) has a pole in the region ¢ < },Z(s, x) will have a

T Since the coefficients of the Dirichlet series of (3.7) are actually real, this
implies |§(§ + ir, x)| = 1.
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a zero of the same multiplicity. The functional equation is also
correspondingly modified in that besides simple factors also the
function ¢(s, x) oceurs in it.

In the general case one has a system of u series like (3.6), with
similar properties : when s is replaced by 1 — s, this system trans-
forms by a matrix ¢(s, x) whose elements are of a similar nature
as (3.7) ; the determinant of this matrix will essentially then play
the role that ¢(s, x) does in the former case.

In the 3-dimensional hyperbolic space, the situation is similar
but in some respects simpler. One can introduce also there a
Z(s; x)* which although it will be a function of order 3, has a
functional equation which is essentially simpler than in the case
of the hyperbolic plane. For general n-dimensional hyperbolic space
the explicit computations are somewhat complicated by the fact
that the groups I';, and &, now may not always be abelian when
M is different from the identity element; this complicates the form
of the trace formula, which however is always in a certain sense
simpler when # is odd than when = is even. The non-compact case
with finite volume of & can in all these cases be treated satisfactorily.

For groups acting simultaneously on the product of a finite
number of such spaces,® the situation can also be handled even

in the non-compact case as long as the
of & are point-like.

‘ non-compact boundaries ”’

For other higher dimensional spaces, as for instance the space of
positive definite, » by n symmetric matrices with determinant 1,
the situation, for n > 2, is not so simple. The continuous spectra that
may occur in the non-compact case at present cannot be handled
properly. One will also here try to obtain them by analytic continua-
tion of certain Dirichlet series, like we did for the hyperbolic plane;
only these Dirichlet series are more complicated and in the case of
spectra that have a dimension > 1, they are Dirichlet series in several

} Defined by a somewhat more complicated product than (3.3).
§ Like the so-called Hilbert group acting on a product of hyperbolic planes.
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variables. This problem of analytic continuation cannot be handled
at present, except for special groups that arise from arithmetio,
where one may be able to utilize this to effect the continuation.
As an example could be mentioned the case when n = 3 for the
above space, and the group I' is the group of 3 by 3 matrices with
determinant 1 and integral rational elements, and y identical to 1;
when one is led to consider the series
Lrls, ) = > (XY Xy (2 Y1 2),

X'Z=0
where the summation is carried over all pairs of column vectors
X and Z, with integral rational components which satisfy the
conditions X'X > 0, Z'Z > 0, X'Z = 0. The series converges
absolutely for ¢ > 1,0’ > 1, wheres = o + i, s' = o' + #t’. One
can in this case show that

(s —1) (—1) (s + ' —3/2) {(2s + 26'— 1) Ly(s, s"),

where {(2s + 2s’ — 1) is the ordinary Riemann zeta-function, is an
integral function in the two complex arguments s and s’. Further
if one writes

£p(s, 8') =a B D) D) T(s + 8" —3) 428 + 28" —1) Ly(s, §'),

then the function £5(s, s’) remains invariant by replacing (s, s’) by
any of the following pairs of complex arguments (s + s’ —1/2,1—s"),
1—s,84+8—1/2),(82—s—¢",8), (s, 8/2—s—¢)and (1 -5,
1 — 8), so that it has a larger number of functional equations than
the zeta-functions in one variable. It should be noted that the
group under which £5(s, s') is invariant is isomorphic to the per-
mutation group of 3 elements, as the three quantities 4s + 2s’— 3,
28" — 2s, — 48" — 25+ 3, undergo permutations. £5(1/2 4+ ¢t, 1/2 +4t")
is here connected with the two-dimensional continuous spectrum.
Besides this there is a denumerably infinite sequence of
Dirichlet series in one complex variable that are connected with
one-dimensional continuous spectra.

Similar Dirichlet series in up to (» — 1) complex variables, can be
defined for general n, by looking at the definite forms in (n — 1)
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variables that can be represented by the quadratic form with
matrix Y, then the (n — 2) forms that can be represented by the
(n — 1) form, and so on down to a form in one variable, and forming
a product of the determinants of the (n — 1), (n — 2), ..., 1 form raised
to complex exponents —s,_;, — §,_y, ..., — §; respectively, and sum-
ming over all such * descending ”’ series of forms that are inequiva-
lent in a certain sense. In the case n = 3 this would lead to a function
which differs only by a simple factor (which is independent of
Y) from {yp(s;, ;) as it was defined above. The general study of
these series has not yet been undertaken, but it is conceivable that
it may prove of value for the theory of quadratic forms.

4. We shall finally give some applications to more -classical
problems. We go back to the hyperbolic plane z =2 + iy, y > 0,
and add a third coordinate ¢, where we will identify ¢ and ¢ + 2.
On this space consisting now of points (z, ¢), we take the following

group G with elements m,, where m is a real matrix (Z db) with

determinant 1, and « a real number, and let it act on the space
(2, ¢) in the way that

az+b

P L ¢+arg(cz+d)+oc).

m.(e 8) = (
Further we define u such that
pz, ¢) = (— 2, — ).
One then establishes that the two differential forms

2 2
WY na dp—
y* 2y

have the property that they both are invariant under @, the first
one is also invariant under u whereas the second only changes sign.
We may therefore take for instance

g da® + dy? _dx)2
ds® = Z + (d«f; EZ;

2

A%
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as our invariant metric. We have two fundamental differential
operators in this case, namely % and the Laplacian derived from

the metric. The point-pair invariants are seen to be all functions
of the two real arguments

i d

|z —2'?

and ¢ — ¢’ +arg
EYZ

where (z, ¢) and (2’, ¢') are the two points.

If we now have a group I' which is discontinuous in the hyper-
bolic plane, it is seen that the group T obtained from I’ by, for each

Z: __::2 in T, counting both M = (Zfl)

:z’ :2) as different elements of ', has the
property that when T' acts on our space (2, ¢) in the way

transformation Mz =

and — M — (

Mz, ¢) = (:’::::Z, ¢ +arg (cz —l—d)),
the group I' is discontinuous in this space, and if the fundamental
domain Z in the hyperbolic plane of I' is compact, then so is the
fundamental domain & of f, and if 9 has finite area & has finite
volume. The converse is also true.

Similarly a representation y of I' can be extended to I’ by letting
both M and — M correspond to the same y as the transformation
MzinI'. There may however also be other representations y of T'
where the two elements M and — M correspond to different .

If we have such a representation y(M) of T' one now sees that
the eigenfunctions of our operators, because of the presence of

the fundamental operator 589_[) and the identification of (z, ¢) and

(2, ¢ + 27) must be of the form e~%*¢ times a function of the
point z, where k£ is an integer. The eigenfunctions F(z, ¢) which
satisfy the relation
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F(M(z, $)) = x(M) F(z, $)
can therefore be written in the form
F(z, $) = y*2 F(z) e~ %, 4.1)

and the former relation takes the form

F(Mz) = x(M) (cz + d)* F(z). (4.2)

Thus we see that we have the same type of transformation law as
(in the case of one-dimensional y) is known from the theory of the
analytic automorphic forms.!

Instead of studying the general eigenfunction, and the general
form of the trace-formula, which can be carried out without serious
difficulties, we shall here only study a particular type that is
associated with certain eigenfunctions with rotational symmetry
which have the property that they satisfy our conditions (a) and
(b) and so can be used as point-pair invariants in forming our
kernels K.

It can be established that

't (y y')*? —ik(¢—¢)

5952, = TG ) 4.3
for any integer k is an eigenfunction in (2, ¢) which is a point-pair
invariant in the two points (2, ¢) and (2’, ¢’) ; further that for k > 2
the conditions (a) and (b) are satisfied. As a consequence the integral
operator with the kernel

Kz 432,45 x) = Z X(M) oy {2, ¢; M, ¢)},  (4.4)
MeT
can be shown to have only eigenfunctions® of the form (4.1) where
F(z) is an analytic function of 2 regular in the interior of the upper
half plane and satisfying the condition that

T We get here only integral dimensions, k; if one wants to study arbitrary real
dimension, one has to give up the identification (¢, ¢) = (z, ¢ + 2m), also T has to
be defined in a different way.

§ That is corresponding to an eigenvalue different from zero,
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y'? F(2)

is uniformly bounded throughout this region, and every such
eigenfunction corresponds to the same eigenvalue given by

j g (& 632 ') 2 d(z, ¢)

s

where the integral is taken over our whole (2, )-space and d(z, ¢)
is the invariant element of volume. The trace-formula for this
particular kernel gives us then the number N, of regular analytic
forms F(z) satisfying (4.2)* as a finite expression depending on
k, v, the area A(9D) of the fundamental domain, the elliptic primitive
classes { R}r and the eigenvalues of the x’s that correspond to
them, and the primitive parabolic classes and the eigenvalues of
the x’s that correspond to them. The hyperbolic classes give no
contribution at all. For k& = 2 it is possible to obtain a similar result
by replacing w, with w, ( _(y_ﬁz__ )8 where 8 > 0, and in the
(2 —27)/2¢]
trace formula for this kernel letting 8 tend to zero.

If we consider the classical modular group I with elements (j Z),

where ad — bc =1, and a, d, b, ¢ are rational integers, and the
representation y identical to 1, Hecke has introduced certain opera-
tors T, for each positive integer » and studied their action on
the regular modular forms, in connection with his theory about
Dirichlet series with functional equations (of a certain type) and
Euler products.

These T, are of the type (2.13), associated with the set of trans-

formations M® = A (e b , where a, b, ¢, d are rational integers
.\/ n \C d
with ad — bc = n, in the way that 7'* was associated with the set

M#*. The generalized trace formula (2.14) gives then applied to the

i If D is not compact, but has finite area, the condition that yk/2 F(z) is
uniformly bounded, implies that we are only counting the so-called cusp-forms here,
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point-pair invariant eigenfunction w;, for %> 2,% the following
formula for the trace of the Hecke operator 7', acting on the space
of cusp-forms of dimension — k.

Ty =—1 D Hin—md) T

—2vn<m<3vn M —Mm
- Z B 4 5(ym) P -1 (g
dg\/'n

Here the H(d) denotes the number of inequivalent positive definite
forms ax® + bxy + cy* with 4ac — b2 = d, counted in the usual
way that a form equivalent to a(x® + y®) is counted with the
weight % and one equivalent to a(@® + xy + y?) with weight 1/3.
Further
m + i (4n — m?)¥
N = 2 .

8(x) is defined as 1 if x is an integer and zero otherwise, and X’
means that if d = 4/n the corresponding term is counted with
weight 3. For k = 2 one can again by a limit process arrive at a
similar formula which however will contain one new term, and
turns out (since there are no cusp forms of dimension — 2 for the
modular group, so that oy(7,) = 0), to be identical with the
so-called Kronecker class number relation. For k£ = 4, 6, 8, 10 and
14 there are again no cusp forms, so that the left-hand side of (4.5)
is zero, which gives five new class number relations, while for k=12,
for instance the left-hand side is identical to the number theoretical
function 7(n) of Ramanujan, so that one gets an explicit (admit-
tedly rather complicated) formula for this. While the results about
the number of regular analytic forms of a given dimension — k and,
representation x of ' are classical! and previously were derived
from the Riemann-Roch formula, the evaluation of the trace of

§ k will here be even, since with x identical to one there are no non-vanishing
functions satisfying (4.2), for k odd, since the left-hand side remains the same by
replacing M by — M whereas the right-hand side changes sign.

t Although as far as I know only the case of one-dimensional x occurs in the
literature.
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the Hecke operator has not yet been accomplished by other means.
From our point of view these expressions are finite elementary cases
of the general trace formulas (2.12) and (2.14).

It is of interest to note that the method sketched above carries
immediately over to the analytic automorphic forms in higher
dimensional spaces, as for instance a product space formed by a
finite number of hyperbolic planes or the general symplectic space,
which can all be handled in a similar way without any essential
difficulties occurring as long as the discontinuous group I' has
compact fundamental domain. For the symplectic space for instance,
one can introduce in a similar way as before a space (Z, ¢) and define
the group @ acting on the space with clements M, where the

AB)mmMzzmz+m«w+Dra

symplectic matrix M = ( oD

and we define
MAZ, ¢)= (M2, ¢+ arg|CZ + D| + a),
and as before
Wz, $) = (— 2, — ¢).

In this space again the point-pair invariant of the two points (Z, ¢)
and (Z*, ¢*) which has the form

&2 k2
_ 1Yl /2 | Y ¥ )
Z—7*| ’
2%

wi(Z, ¢’; Z*:¢*)

where Z = X -} ¢Y, is an eigenfunction for every integer t and for
k positive and large enough? it will again satisfy our requirements
(a) and (b).

We shall finally briefly indicate the most general result that we
at present can obtain along these lines. Let there be in our space S a
sequence of I-tuples A®, k = 1, 2, 3 ..., with the property that we
have the relation

1 If we consider the symplectic space of dimension n2 - n, thie takes place for
k>2n,
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Wy (@, Y) = (wym @,y ) )E

for all positive integers k, where as before w,(z, y) denotes the
eigenfunction in # that corresponds to the I-tuple A, and has rotational
symmetry around, the point y and is normed so as to take the value 1
for x = y. Further assume that for £ sufficiently large and positive,

j lowyw (&, ¥) | dy < oo;

S

then w,@fx, ¥) can be seen to satisfy bosh conditions (a) and
(b). If we now have a discontinuous group I' whose fundamental
domain is compact, with a representation by unitary matrices y,
in our space, and denote the number of eigenfunctions corresponding
to the eigenvalue AX? by N, then one can show that for £ sufficiently
large, N, is given by a finite expression,

N, = P, (k) + X & P, (k), (4.6)

where P is a polynomial and, the P, certain polynomials in general
of lower degree! and the ¢ are certain roots of unity, such that
if ¢; is the smallest positive integer for which e} =1, the
number g¢; divides the order of some element® in I' which is of
finite order.

The Institute for Advanced Study
Princeton, N. J., U.S.A.

t The only case when some of them can be of the same degree as P is when I'
contains other elements than the identity which commute with the whole group G.

§ Different from the identity.






THE ZETA-FUNCTIONS OF ALGEBRAIC CURVES
AND VARIETIES
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1. Let k be a field with a finite number ¢ of elements and K a
field of algebraic functions of one variable over k as field of con-
stants. The zeta function {(s,K) of K is defined by

s, K) = Na~* =[] —Np~), (1)
a »

where @ runs over all integral divisors, and p over all prime divisors
of K; the norm N denotes the number of residue classes modulo

q, ie.
Na — qdeg a.

The series and the product in (1) converge absolutely for Re s > 1.
{(s, K) is meromorphic; more precisely
1 1
{(s, K) = l_—_—_q—:k Iqu_:‘ ];1 (1—mgq™), (2)

where g denotes the genus of K,

PX)=]Ja-mX (3)
v=1

is a polynomial with rational integral coefficients, so that the
m,’s are integral algebraic numbers. [(s,K) satisfies the functional
equation

a9 (s, K) =~ {(1 — 5, K). )

(4), together with (2) and (3), is a consequence of the Riemann-Roch
theorem for the field K.
This paper was presented to the International Collogquium on Zeta-functions

held at the Tata Institute of Fundamental Research, Bombay, on February
14-21, 1956,
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If we assume an expression of the type (2) for {(s, K), the func-
tional equation (4) reduces to

T, Toyi1—, =4 v=012,..,2g, (6)
(if the or,’s are arranged in a suitable order).

{(s,K) has poles of order 1 at

=f:g‘q —0, 41,42
and
s,’=1+%”_i”, =0,+1,42
0gq
The zeros of {(s, K) are
_ _logm,  Zmv o i1, te,.... (6)

v

logg logg’
All zeros have the real part equal to }, or

lm | =+/¢. (7)
This analogue of the Riemann hypothesis has been proved by Hasse
for ¢ = 1 and by Weil for general g.

2. We introduce U = ¢~ * as an independent variable instead of ¢
and write Z(U, K) = {(s, K), so that (2) becomes

29
II@1—="0)

20K = T a =) @)

and (4) becomes

1
Z( —, K )= ' UX1-9Z K). !
(75 K)=av002@,80 (+)

From the definition (1) of {(s, K) one derives easily the following
power series for the logarithmic derivative of Z(U, K):

et

z N _
7 (U K) = ZN,U’ 1 (8
f=1



ZETA-FUNCTIONS OF ALGEBRAIC VARIETIES 91

where N, is the number of prime divisors of degree f in the extended
field K, = Kk, k; denoting the extension of degree f of k. The
radius of convergence of (8) is ¢~1.

Introducing (2’) into (8), we obtain formulae for the numbers N 1

29
Nf=q’+l—z'n'f,. (9)
vem]
3. Let C be a curve without singularities, defining K over k.
Then N, is the number of points of C' which are rational over k.
This remark leads to Weil's definition of the zeta function
{s,V) = Z(U,V) of an absolutely irreducible algebraic variety V
without singular points over k.

Let N, denote the number of points of V which are rational
over k,. Then {(s,V) = Z(U,V) is defined up to a constant factor

by
V4 <
20, V) = E N, U-' U =g, 1
z( V) 2 f; U=gq (10)

Weil stated the following conjectures, which are generalizations of
the theorems on curves outlined in § 1.

Let d be the dimension of V. Then the power series defining
Z(U,V) converges for |U| <q~% so that Z(U,V) is holomorphie
and nowhere zero in |U| <¢~% The constant factor in Zu, v
can be fixed by taking Z(0,V) = 1.

Z(U, V) is a rational function of U, which we write as the
quotient of two coprime polynomials in the form

ﬁ (1—-o,0)
ZU, V) ="=1______ .
n@a-gUu

Je=u

Z(U,V) satisfies a functional equation of the type

z(q_d% V) —cUZ(U, V), (11)
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with certain constants ¢ and y. This is equivalent to the following
set of equations

ai“N-l-l-i:qd’ 1;=1, 2:-“: N’ l

B Bu+1-; =¢ =12, .., M,

if the «’s and the B’s are arranged in a suitable order. Furthermore,
we must have of necessity

x=M—N and c¢= +q¥, (13)

(12)

so that the functional equation can be written more precisely in
the form

1 X X
z (qd_[_] V) — g U Z(U, V), (14)

the — sign being possible only if at least one of the numbers N and
M is odd.

Z(U, V) has poles of order 1 at U = 1 and U = ¢~%, which implies
that the radius of convergence of the power series (10) is equal to
¢~ % The other poles of Z(U, V), if there are any, are distributed
on the circles

[Ul=¢%|U|=¢7%...,|U|l=¢"“".
The zeros of Z(U, V), if there are any, are distributed on the circles
|U|=q " |U|=¢%" ..., |U|=q~®"VE

In other words, we must have

P,(U) Py(U) ... Pyy_,(U)

) 1
Py(U) Py(U) ... Pyy(D) (15)

Zu,v)=

where
B#
rn=]Ja-m,0)
y=1

is a polynomial with constant term equal to 1, whose inverse
roots have absolute values equal to ¢*%,

[, | =¢"% (16)
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and in particular
PyU)y=1-—U, Pyy(U)=1-—¢%U.
The equations (12) are equivalent to
B, =By ,p=12..,2d (18)
and
Ty T2, Byt 1=v =¢p=01,..,2dv=12,..,B, (19

where the inverse roots =,, of each P, are arranged in a suitable
order. (15)-(19) comprise all statements on Z(U, V) made hitherto.
For x we get
2
x=2 (=1 B, (20)
p==0
A further conjecture of Weil is that x is equal to the Euler-Poincaré
characteristic of V, i. e. the intersection number of the diagonal
of ¥V x V with itself.

For the number N, we deduce easily the relations

Bll
N, =ﬂ2i (— 1 Z .. (21)

(21) is equivalent to (15).

From (21) it follows that the numbers =,, are algebraic. We
state the conjecture that the polynomials P,(U) have rational
integral coefficients, in particular, that the numbers 7,, are
algebraic integers.

All these conjectures are true for d = 1. For general d,
Weil and Lang proved the convergence of (10) for |U| < ¢¢ so
that Z(U, V) exists and is holomorphic and different from zero in
|U|< g% The proof is based on an estimation formula for the
numbers N;: N; =¢™ + A;¢’~Y, where 4, is bounded in absolute
value by a positive constant A. For d =1, this estimation reduces
essentially to (7). The general proof is by induction on d, using (7)
at each step. Introducing N, =¢¥ + 4,¢’“~Y in (10), we get
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dlog[Z(U, V) (1—¢*U)]
Ao

= > 4@y,
f=1

and since this series, on account of |A4;| < 4, is convergent for
|U| < q~ @b we see that Z(U, V) has exactly one pole, of order
1, inside the circle |U | < ¢~@~ ¥, which confirms one point in the
above-mentioned conjectures. We mention two examples of
higher dimension treated by Weil.

Let V= @,, be the Grassmann variety of the r-dimensional
linear subspaces of the m-dimensional projective space over k.
V has the dimension d = (r + 1) (m —r). The numbers N, can

be computed ;
Nf = Kt 1r+1 (qf)»

where F,,(X), @ > b, denotes the polynomial

Xe_ ] Xa—l -1 Xa—b+1 —1
TX 1 XS T X1

Fob(X)

of degree d. This leads to

1
(1 —g* UyPon

Z(U’ Gm,r) =

pn=0

(22)

where
d
Fm+1,r+1(X) = Z Bzu X“r
u=0
and since obviously B, , = B, B, =1, the conjectures are
true for G, ,.
The other example is the variety V of dimension d, defined over

k by a single equation

gy + a2} + ... + a5 =0,a,#0,q,ink. (23)
In this case the numbers N, can be expressed by Gauss sums;
the result is

LI/(1 — C(a) D)=
ZU, V)=

(1 —aU) (1—¢U0)...(1 —¢* 1)’ (24)
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Here o denotes a system o, ..., a; of d + 1 residue classes
mod 1, satisfying
a,20mod 1, no,=0mod 1, ay+ ... + oy = 0 mod 1,
p(a) is the smallest integer for which
@ —1)a,=0mod1,v=0,1,...,d
holds, C(«) is the product of certain Gauss sums and
l C'(oc) | = q#(a)(d— vz

Two systems «, «' are called equivalent, if there exists an integer ¢
for which

o' =a¢modl, v=0,1,...,d
holds. The product in (24) is to be extended over a complete set of
inequivalent systems o, the number of which will be called 4.

This proves Weil’s conjecture for V, the numbers B, having the
following values

By, =1,By,,==0for2h +15%d—1, B;_, = Aifdiseven,

25
By, =1for2h £d — 1, B,_, = A+ 1, By,,, =0, if d is odd. (20)

Another case has been treated successfully by Taniyama, that of
certain singular Abelian varieties. We shall come back to this later.

4. We now proceed to the investigation of an absolutely irreducible
algebraic variety V without singular points, of dimension d, defined
over a finite algebraic number field k.

For a prime ideal p of & we denote by k, the residue class field
of k¥ modulo p.

The defining equations of V, considered as congruences modulo p,
define a variety ¥, over k. It is probably true, and it can be proved
for curves (Deuring) and for Abelian varieties (Shimura) that V, is
absolutely irreducible, without singular points and of dimension d
for almost all p.

The zeta function Z(U, V,) of such a ¥V, defines a set
BD,O’ “se y B”,Zd
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of integral numbers, the degrees of the polynomials P, comprising
Z(U, V,). Now the variety V, defined over the field of complex
numbers, is a topological manifold of dimension 2d. Weil states the
conjecture, that for almost all p, each B, ,, v =0, 1, ..., 2d, is equal
to the v-dimensional Betti number B, of V.

This is true for curves (d = 1), for it can be proved (Deuring)
that for a curve C the genus of the reduced curve C, is equal to the
genus of C for almost all p.

It is true also for the Grassmann variety @, , defined over k
according to the results of Ehresman on the Betti numbers of
Grassmann varieties.

Weil verified his conjecture for a variety V, defined over the
number field & by an equation

aorh + o2} + ... + o} =0, a;7#0.

For this purpose it is necessary to show that the Betti numbers
of the variety V have the values given in (25). This has been
done by Dolbeault.

A general proof of the conjecture in question (granted that the
conjectures in §3 are correct) would require an algebraic definition
of the Betti numbers of an algebraic variety, which is applicable
also to a variety defined over a field of prime characteristic. Such a
definition is still lacking, but we have an algebraic definition
for the Euler-Poincaré characteristic

24

x(V)=> (—1r B,
y=0

x(V) is defined as the intersection number with itself of the diagonal
of the product variety V x V. Now it should be possible to prove,
that for a variety V over a finite number field, x(¥) is equal to (V)
for almost all p, using Shimura’s reduction theory for algebraic
varieties. The conjectures in §3 granted, this would prove the
conjecture on the Betti numbers at least partly, namely for their
alternating sum.
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5. From now on, we shall assume the conjectures in §3 and §4
to be correct. In Z(U, V) we introduce the variable s by means of
U=Np~,

ie.
Us, Vo) =Z(Np~*, V,).

[ Tes v,
p

extended over all p, for which B, , = B,, is absolutely convergent for
Re s > 1, it therefore defines an analytic function (s, V) of s,
which is holomorphic and different from zero in Re s > 1. We call
(s, V) the zeta function of the variety V over k. Several examples
suggest that {(s, V) is meromorphic and that

;(d — 8, V)

s V)

can be expressed as a product of a finite number of ‘‘elementary

The product

factors, built up of exponentials and T'-functions.

For example, if V is the Grassmann variety @,,, over k, we have

2d
is, V)= 1_[ Cu(s — w/2)(~ D48y,

u=0
where {;(s) denotes the zeta function of the field k, the B,’s being
the Betti numbers of &

nre 1 particular, we have for the projective

space P¢ of dimension d over k,

d
4s, P4 = [ | tats — w).
u=0

Apart from this simple case, this conjecture (which, for curves, is
called Hasse’s conjecture) has been confirmed in the following cases:
I. (A. Weil): V is a curve defined over k by an equation
ax! +by* +¢ =0, a,b,c+# 0, numbers in k.

In the sequel we shall use the following abbreviation: if f(s) is the
L-function belonging to a Hecke character in a number field (in
particular, if f(s) is the zeta function of a number field), f*(s) shall
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denote the function which is obtained from f(s) by depriving its
Euler product of a finite number of its factors.

Now, if g is the genus of ¥, we have

29
Us, V) =1%6) e — D) | [ Z#6 — 4 x) 7
i=1
Here the x;’s are certain Hecke characters in cyclotomic exten-
sions of k.

II. V is a curve of genus 1 with complex multiplication
(singular elliptic curve). We then have (Deuring)

(s, V) = L¥ls) Lhels — 1) [L*s — & x) L*s - 3, X177, (26)
where x is a Hecke character of k.

This result has been generalized in two ways by Taniyama :

III. V is a curve of genus g. The endomorphism algebra of
the Jacobian J of C (which is an Abelian variety of dimension g)
is supposed to contain a number field of degree 2g, which then is
necessarily contained in the base field k. In this case one gets

2
Us, V) = 1) Dals — 1) | [ L% — 4 37, (27)
i=1
where the x,’s are Hecke characters of k.
IV. V is an Abelian variety of dimension g whose endo-
morphism algebra contains a number field of degree 2g (a subfield
of the base field k). Taniyama proved

2, -
L(s,V)={%() ¥ (s—9) 1—0[ I—_[ L* (s — 32, Xil,...,Xi,)(_l) 1, (28)

v=1 fy,.0siy
where the y;,...,xq, are Hecke characters of %.

Obviously, II1 and IV reduce to IL if g = 1.

The equations (26), (27), (28) suggest considering as the “true ”
zeta function in each case the function obtained by dropping the
*’g, that is, by introducing the full Euler product for each L-geries
occurring, because it is the resulting functions which satisfy
functional equations of the familiar type. In connection with this,
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one may ask the question, whether the conductors of the Hecke
characters occurring in (26), (27), (28) have a simple algebraic
meaning for the variety V.

In Cases I and II an answer is known. Consider first Case II
(Deuring):

Let K be the field of rational functions on the singular elliptic
curve V over k. If V reduces modulo p to an elliptic curve V,,
this reduction defines an extension of p to K, such that the residue
class field K, of K modulo p is elliptic with %, as its field of constants.
For a given p, there may exist among all curves birationally equi-
valent to V over k, one, V', which reduces to an elliptic V.

The extension of p to K obtained in this way does not depend
upon the choice of the curve V’. Consequently, {(s, V’,) is
defined independently of ¥’ as an invariant of the field K and it
shall be denoted by { (s, K, p). A prime p, for which no curve ¥’
birationally equivalent to ¥ over k reduces to an elliptic V’,, shall
be called irregular; in this case we put

1 1
C(s K p) = 1—-Np~*1—-Np'-*

If we then define the zeta function { (s, K) of the field K by
(oK)= ]t K p)
v

the product being extended over all primes p of &, it turns out that
we have

{6 K) =46 G — DL —4x) Lis— 017
with the same character x as in (26). In particular, the irregular
primes P are exactly the primes dividing the conductor f, of the
character x. The functional equation for {(s, K) is

(V)72 (s, K) = (— 1" (N f)~ @0 L(2 — s, k),

n = degree of k.
Case I has been treated by Hasse; the result is quite similar

to that in Case II.
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In all cases considered so far, {(s, V) has been expressed by
means of L- series. Of a quite different type are the results of Eichler,
who proved Hasse’s conjecture for certain curves (or function
fields of one variable) over an algebraic number field, which arise
from the theory of modular functions. In particular, his results
include elliptic curves, which are not singular.

6. One may replace the number field k by an algebraic function
field of one variable over a finite field of constants, the arithmetic
of such fields being very similar to that of number fields. Zeta
functions of curves over such fields have been investigated by
Lamprecht, with results similar to those in §5. These zeta
functions may of course be considered as zeta functions of
surfaces over finite fields.
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THE CONSTRUCTION OF AUTOMORPHIC FORMS
FROM THE DERIVATIVES OF A GIVEN FORM

By R. A. RANKIN
[Received December 26, 1956]

1. Let f(z) be a meromorphic automorphic form of real or complex
dimension — % belonging to the horocyclic [2] group I' (Fuchsian
group of the first kind, Grenzkreisgruppe), and furnished with a mul-
tiplier system v. We write this f(z) € {I‘, k, v}, and denote by ", for
integral r, the multiplier system which is the rth power of v. It is
probably well known that

kfz) f" (2) — (& + 1) {f' (2)}® € {T, 2k + 4, 0%}, (1)
and the object of this paper is to generalize this result by finding
all polynomials in the derivatives of f(z) which are automorphic
forms for I The results which we obtain hold also for more general
groups (see end of §4).

We denote by T the bilinear transformation

w— % + b
cz+d
and by # the half-plane Fz > 0. If f(z) € {T', k, v}, where I' is a

given horocyclic group, then
f(Tz) =v(T) (cz + ) f(2), (2)
for all T € I" and z € 5. For non-integral k, (cz + d)f denotes a
certain uniquely determined root (see, for example, [1]) of cz + d.

= Tz,

Throughout the paper we shall suppose that f(z) is a fixed auto-
morphic form belonging to {I‘, k, v} and that z € 5. Also, for any
T e I", we write

§=Sp—cz+d, A=, = (2} s (3)

This paper was presented to the International Colloquium on Zeta-funetions
held at 9t,he Tata Institute of Fundamental Research, Bombay, on February
14-21, 1956, .
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Then, by (2), for w = T%,
fw) = o(T)8%,,
fw) = v(T)S*2(f, + EAfo),
frw) = oM {fo 4+ 20k + DAL+ (k + DER fo},

and, in general,

1 0) = o) S (;L) (k4 —1)(k+7r—2)x ...x
" Xk+r—m)Xf,_,. (4)

We wish to find those polynomials P(fy, f1,..., fp) = P*(2) in f(2)
and its first » derivatives, which, for any T', ¥ and v, are auto-
morphic forms belonging to {T', k', v’} for some dimension —k’ and
multiplier system v’ depending on k£ and v respectively. A term
A f» fimr... f,* in a polynomial is said to be of degree r and
weight s if the non-negative integers «,, a;, ..., a, satisfy

o+ oy + o ... oy, =7, o + 205 + 3otz + ... + 1, = s.

When we transform from z to w by means of (4), each term

A{f@)}* {f' )} ... {f® (w)}o
of P*(w) will transform into an expression which is a polynomial
in A. If P*(z) € {I', ¥, v'}, the coefficients of positive powers of
A will cancel out between the different terms of P*(w), and so it
suffices to congider the contribution from the part of the expression
which is independent of A, namely

A{o(T)} B+ fofo fia . fon.

Accordingly &' = kr 4 2s, v = o', and each term of P*(z) must
be of the same degree r and weight s. For this reason it suffices to
consider polynomials in f(z) and its derivatives, for which each
term is of the same degree r and weight s ; we denote such a poly-
nomial by P, (...).

We define, for each non-negative integer r,

hr = ]z,r(z) . fr o Hr —H (w) = S-k-2r f(r)(w)

I £ 7! ) = aitg s O
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where w = T'z. Note that by = 0 if & = 0, for example.

Also, for each integer m > 2, let

‘)bm = 'l‘m (z) = (_1),”‘_1[ hl 2h2 3k3 (m - l)hm—l mhm
|

'l he hy hy ... Bom_s |-
0 ke R ... Pop_s B2
0 0 A .. B s hy_s |. (6)
o 0 0 hy by
0o o0 0 .. ko hy

THEOREM 1. Suppose that f(z) € {T', k, v} and that k is neither zero
nor a negative integer.

() If P, o(for fis oo > fo) € {T, 1k + 25, 0"}, then
Pr,a(fO’ fl’ ’fn) :for—‘ Qc(¢2’ ‘ﬁa’ tee '/’n)’
where Q, is a polynomial of weight s in Py, Y, ... , P,

(ii) Conversely, if @, is any such polynomial, then
Q, € (T, (k + 2)s, v},

nund an integer r < s can be chosen so that fif~* @, is a polynomial
P, inthe b (0 < i < n) and belongs to {T', rk + 2s, v"}; this remains
true for any v > s, but then each term in P, , is divisible by the form f.

This theorem shows that the functions ¢, together with f,
form a basis for all automorphic forms which are polynomials,
or rational functions, in f and its derivatives.

2. Proof of Theorem 1. We suppose that z is not a zero or a
pole of f(z). When k is not a non-positive integer, any polynomial
in fo, fi, .-« s [, 18 & polynomial in kg, &y, ..., k, and conversely; it is
more convenient to consider polynomials in the 4.
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Consider the formal power series

o) =D b, H@) = > Ha, (7)
r=0 r=0
where b, and H, are defined by (5). The equation (4) can be written as
Al‘ m
H, = Z N ) (8)

s0 that we have

m- 30 S IS hes ar

= & h(x).

Accordingly, if we write

K@) _ S, e H@ S -
T~ 2 Hw 2 O
we obtain
H@) _ z 4 M)
H () hiz)’
so that
C,=c, (m>2). (9)

These processes are justified whether the series converge or not,
as they can be replaced by arguments involving finite systems of
equations. Further, we have

W@ g ) = (@)

h(x)
8o that
o0 w o]
m—l T =1
G & Z h, o = z nh, "L,
m=1 r=0 n=1

Comparing coefficients of powers of "1, we obtain
23

z Cn hn—m = nhn (n > 1):

==l

and deduce that, for n > 1,
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e =(— l)n—l by~ by 2h, 3h3 nh,
kg by hy L
0 hO h]. hn—2
(10)
0 0 0 h,
0 0 0 h,
Thus, by (6),

61 =Mifhy, hg" Ca(2) =,(2) (n>2).

Further, the coefficients C,, are similar functions of the H,, and
it follows from (9) that

P, (2) €{T, n(k + 2), v"} (n>2),

since ¢, (z) is of degree n and weight »n in the A,. From this part (ii)
of the theorem follows.

To prove part (i) we suppose that

P, (for f1s oo [o) € {1, 7k + 28, v},
Write
P,(z) =P, hy",
so that Py(z) € {T, 2, 1}. Now ¢,(z) € {I, 2n, 1} for n > 2 and both
P,(z) and c,(z) are polynomials in the A,/h, for m > 1. Further
h,/hy occurs only to the first power and with coefficient » in
¢,(2). 1t follows that we can eliminate successively h,/hy, h,_,/hq,

cves ha[hy from P,(z) by using c,, ¢, ;...., ¢; and obtain finally
8 h m
Ps(z) = 2 (#) Poms
m=0 (Y

where p, €{T',2s — 2m, 1} and is a polynomial in the ¢, (z) for
2<k<n.

We now show that p,, vanishes identically for m > 0. For we
have, if w = T2, where T T, that
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m=0

Thus
$ fl m f1 m
pm{(h—%—) —('—) = 0. (11)
mz 1 kf 0 kf 0
This holds for all A = ¢/(cz + d). For fixed z € ## there are infinitely
many different values of A, corresponding to different 7 T,
and hence the coefficients of A, A2%,..., X on the left of (11) must
vanish identically. We thus have s linear equations in the s quanti-
ties py, py,..., p, with determinant 1, which is impossible unless
P =P = ... =p, =0.
Hence Py(z) = p, and so is a polynomialin the ¢,(z) for 2 <k < n.
It consists of terms of the form
B ¢,fsc,fe . e, P,
where
28, + 3B3+... + nB, = s,

and so P, , consists of terms of the form

B hy'=" hofa g . P,
from which the first part of the theorem follows.

If m > 3, ¢, is an algebraic function of i, and ;. For there is an
algebraic relation connecting the automorphic functions ¥/ and

‘/Jm/‘/’g‘pg (20 + 313 = m).

3. We now suppose that k is zero or a negative integer, and write

kE=1—N,
so that N is a positive integer. We assume further that z is not a
zero or pole of f(z) or f™M(2). Then hy=h, = ... =hy_, =0,

and we put
G =g =UTWN —r) 0<r<N), g¢,=0r>N), (12)

TN —7) 9w
G, = G, (w) = _“(U—WA;%!?")(V?L) (0 < r< N),
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Then we have, by (4),

B r (__ A)r—m

and we define G, for » > N by this relation. If

el

16 = S0 Gw= @,

r=0 r=0
we then deduce from (13), exactly as in § 2, that

G (x) = e g(x).

If we put
'@ _ S boar-1, F@) _ S B, a1
g@) & " 7 G Z "
we obtain
Bm = bm ('m’> 2)! (14)
and
by =(=1""1g,"™ g, 295 ... mg, =90 " bu(2), (15)
gO gl e gm—l
0 0 A
88y,

We now suppose that N > 3. Since the coeflicients B,, are
similar functions of the G,,, we deduce from (14) that

For values of r > N, where N > 1, we employ the functions
k, and proceed as in §2. We note, in the first place, that, by (8),

Fal 1) =hy =hy (2) € {T, k + 2N, v} = {T, 2 — &, v}.



110 1. A. RANKIN

If we put

h’(ﬂ’)) _ < m—1 H,(x) 0 m—1

then (9) holds and we have

o0 w

Z a1 i h, & = Z nh, €1,

m=0 r=N n=N

From this we obtain

n

Z O, hN-}-n—m = (N + ”’) hN+w

m=0

which gives, in particular, ¢y = N, so that, for n > 1,

n

Z Cin hN+n—m = nhN+n'

Mm=1

Thus
Cp = hN - Xm (z)t
where
Xm (z) - (_' l)m—l ! hN+1 2h’l\’+2 th+m
hN hN+1 hN+m—1
0 0 e hi\'+2
0 0 hN+1

(18)

(17)

and is, in fact, the i, function of §2 formed from Ay instead of h,.

We have
X?)LE{F) m(4 — k), ’Um} (m >2).

We also define, for N > 2,

d1=bl+cl=@+hii_1,
o hy
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8 =digohy =g, hy + Jo Py 11

:N(Nz_l){(N+l)f1fN+ (N—l)fofzvﬂ}, (18)

so that, by (8) and (13),
dye{T, 2,1}, 8,e{l, 4, 0%},
We accordingly have

TarorEM 2. The following polynomials in f(2) and its derivatives
are automorphic forms for 1.

G £/ and x,, for N>1,m > 2.
(i) &, for N > 2,
(i) ¢, for N>3 and 2<m < N.

We now show that the functions of Theorem 2 form a basis for
automorphic forms which are polynomials in f and, its derivatives.

Suppose that P,, is a polynomial in the derivatives of f(z) and
that P,, €{Il', vk + 2s, v"}. Then P,, is a polynomial in the

functions go, 91, .--> Oy—1> P> By 1o Byog 82y, and is a sum
of terms of the form

T = A G0 §1°1 .. Gy "V 1 hyPo "1\r+1'81 hN+an:

for 1< m < M, say, where the non-negative integers «,, B, satisfy

N—-1

n
Z %y =T, ZBV=7‘2, r=1r -+,
pu=0 v=0
N-1 n
z;u.oc,,=81, zvﬂ,=s2, 8 =8y 1 85 + Nry.
w=0 v=1

For different values of m, the integers r,, 7y, 8,, s, may differ. By
means of (15) and (17) we can express 7,, in terms of the functions

Yos hN’ h.N+1’ Xon (N> 1’ m = 2)’
gl(N>2)’ (ﬁm (N>3: 2<m<N),
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and obtain
Tm =G0 T hy* " B, (g1, by 1),
where R, is a polynomial in g, and hy , of degree s in g, and s,

in hy,,, its coefficients being polynomials in g,, ky, ¢, and yx,,
(m > 2). Since P,, €{I, rk + 2s, v"} we have, for all T €T, that

M M
P, = mzl Tm = mZ1 Jor " hy T R, (9, — Mgy, by, + Ahy),

where A is given by (3). Since A can take an infinity of different
values for each fixed z, this relation is an identity in A and so we
may substitute A = — hy_,/hy and obtain

M
Pr,s = Z gOrl—" thz—sl Rm (SZ/II'Nv O)

m=1
M
= Z gOrl_‘(’1 th.z—-sz—-sl 'Rm* (82)’
m=1
where R, * is a polynomial in §,, gy, Ay, ¢,, and x,,. Put
P =max (s —ry), ¢=max (s +8 —1),
so that
PLSs—1r, <8 (19)
We deduce

TurorEM 3. Suppose that f(z) € {I',k, v} and thatk =1 — N,
where N is a positive integer. If P, (fo, [1 - furn) €{T vk + 25, v"},
then for some integers p, q satisfying (19),

Po=g?hy " Q{90 by 825 bos bar o s b1 Xa» Xs» -+ » Xnb
where § 13 a polynomial in the variables indicated, not all of which need

be present, and is of degree r + p -+ q and weight gN + s in the f,,.

We note, in conclusion, that an alternative method of considering
the case k =1 — N, for N >2, is to apply Theorem 1 to 1/f which
is of dimension N — 1 > 1.
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4. Other determinantal expressions for automorphic forms can
be obtained. For example, if

Uy =Jf/T (b + 1), (20)
then it is easily verified from (4) that

U,= | % 4 4 e Uy,
U Uy Ug Up e

(21)
Up Upipy Upig oo Ugy

belongs to {T, (n + 1)(k +2n),v**'} for n =0, 1,2,.... In particular
Uy = by, Uy = k™% {ihy® — 24f5® + 34bo 4}

However the functions U,, unlike the i,, do not form a basis
together with f(z), for all automorphic forms which are polynomials
in f(z) and its derivatives. For example, {3 cannot be expressed in
terms of the U, and h,.

Also, if D, denotes the discriminant of the equation
up 2" -+ (?) ulx"‘l—{—(g)uzx”‘2+...+unzo, (22)

then D, € {T, 2(n — 1)(k + n), ¥**~2}. For example,
Dy = | 3u, 6u, 3Bu, O

0 3u, 6u, 3u,

3u, 6u, 3u, O

0 3u, 6u, 3u,

= 81(ug? Ug® + dug u,® — Guy u, uy ug -+ 4u® uy — 3u,® u,?)
= 324 hy~% (o + ¥*)-
These are particular cases of the result that any symmetric func-

tion of the roots «; (1 = 1, 2, ..., #) of (22), which is invariant when
@; is replaced by «; 4+ v, for any v, is an automorphic form for I,
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We can also consider automorphic forms constructed from
systems of functions f®(z), where f® € {T', k;, v;} for =0, 1,2,..., n.

Write
1 AW
- - [ & 2),
Y = [ ) (dz) foe
and put
Wn (f(i)lz) = Uoo Uo1 U2 --- Upp
Ug Uy Uyo oo Uy
(23)
Upg Uy Upg oo Uy,

Then it is easily verified that W, e {I', K, V}, where
K=nmn+1)4+ >k V=v,v ..09,
2,

For example,

2

Wl(f’ '/’2) = m-z) '/‘3:

where f©® = f, f®O = y,.

We note, in conclusion, that the results which we have obtained
hold more generally for any group for which A takes an infinity
of different values for each fixed z, i.e. for any group containing
infinitely many distinct points congruent to the point at infinity.
Even when there are only finitely many such distinet points,
partial results can be obtained ; for instance, if the weight of the
polynomial P, , is sufficiently small.

5. We conclude by giving some examples, where I' = I'(1), the
full modular group, and » =1. We denote by A(z) the modular
discriminant
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KX

24
A(z) — g2z l IT (1 —_ eZm’m)}

ne=]

and by G,(2) for even k& > 4, the Eisenstein series

0

Gk(z) =1 + oL, Z O‘k_l(n) eZ?ﬁ'ﬂZ,

n=1
where
2(— 1) E
O = —— e, o) = d".
By M2
d>0

We then find, from (1), or by considering i, that
4G,6," — 5G,2 = — 384072A,
6GsG," — TG, = 12,09672G,A.
Also, by taking f = A we find that
121 13 14y = 12AA" — 13A" — 472 G, A2, (24)
1(121)2 141 4, =91 (A" 1 36A%A"" 126 AA'A” = (2 m4)* G A%, (25)

It follows, in particular, that every meromorphic modular form
for I'(1) is a rational function of A, A’, A” and A”’. We also find that

(1212131 15! i, = — 66 (2m)* A* G2, (26)

and from this and the result for 4, we find the following differential
equation satisfied by A, namely
13A) +10A%A, A, — 24AA2A, — 2AA, + 3A2A2 =0, (27)

where A, denotes the rth derivative of A.

This differential equation is homogeneous. By expressing A in
terms of G, and G4, we can obtain from (24) and (25) an inhomo-

geneous differential equation satisfied by A which involves only A,
A, A, and A,
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A more curious result is obtained by taking f = 1/A and
evaluating hy = hyg. We find that

1 d\B1 {65520 }
Bl N 29948 A — . 28
A(zm'dz) A e 691 A= G (28)

Similarly,

81

for 8 = 4, 6, 8 and 10.
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SPHERICAL FUNCTIONS AND QUADRATIC FORMS

By HANS MAASS
[Received January 23, 1950]

INTRODUCTION. An analytical treatment of the problem of
representation of quadratic forms 7'[r] by a given positive form
S[r] seems to be possible in the following general shape: Let
8 = 8™ and T = T™ with m > n be positive real matrices of m
and n rows respectively. In the set of all real matrices X = Xtm™
having m rows and % columns, we denote by B a domain of
homogeneity, i.e. a subset which contains with X also XV, V = y®
being an arbitrary non-singular real matrix of » rows. Further let €
be a subset of the set of all reduced positive real matrices ¥ = Y™
in the sense of Minkowski, such that with ¥, € also contains 1Y, A
being an arbitrary positive real number. Then the number a,(B, §)
of all integral matrices @ = G™" which yield a representation

S[@El=¢8G=T, (1)
with Ge B, T €@, |T| =1t or at least the mean value
1
A4, s §) = - p s :
(8, 6) tZ,“’ (8,6) (2)

allows an asymptotic computation provided that B and § are
measurable in a certain sense.

A method which is fitted for an analogous problem in algebraic
number fields was developed by E. Hecke [2]. This method will
probably work also in our case. It is based on the approximation
of

$s;B,8)= D> a, (B,€)t™* (3)
Z{ ,

This paper was presented to the International Colloguium on Zeta-functions
held at the Tate Institute of Fundamental Research, Bombay, on February
14-21, 1956.
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by a finite or infinite linear combination of certain zeta functions,
i.e. by functions having a well-known behaviour on the strength
of a Dirichlet series development and a functional equation of
Riemannian type. We introduce S = Q'Q, @' =@ >0,

1, for Q"' Xe®B
f(X)= . (4)
0, otherwise,
and
1, for ¥ €,

0, for Y ¢ €, Y reduced;

yY) = (5)

g(Y [U]) = ¢(Y) for unimodular U.

Then we have obviously

$(s; 8, 6) = > QM ¢(S[6]) [S[G1]™, (6)
2]

the summation taken over a complete set of integral matrices G =
G™™ of rank n, such that each two do not differ by a unimodular
right factor. The approximation of ¢(s; B, €) amounts to one of
the functions f(X) and g(Y). Here we have to make use of the
angular characters of quadratic forms [5] in so far as it concerns
the function g(Y). The theory of these angular characters is at the
present sufficiently developed [6] only in the case n =2 so that
number-theoretical investigations of the desired kind are possible.
Provided that B is the full space of all real matrices X = X®»
of rank n, an asymptotic computation of 4, (B, €) with the method
I have in mind could be carried out indeed in the case n = 2
[7]. For the approximation of f(X) we need in the case n =1 the
spherical harmonics of m variables [1]. Apparently nobody has so far
observed the significance of the spherical harmonics for this number
theoretical problem.

The aim of this paper is to introduce a generalized class of
spherical functions which are useful for the approximation of f(X)
for arbitrary ». One obtains a reasonable theory if one replaces
the special but discontinuous functions f(X) by the class of all
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functions g(X) continuous in X'X > 0 which satisfy, just as
f(X), the relation of homogeneity

g(X V) = g(X) for non-singular ¥V = V®. (1)

Then we can ask for the uniform approximation of these functions
by elementary functions with a certain typical behaviour.
Applying Weierstrass’s well-known approximation theorem for
eontinuous functions to g(X), and using a certain positive hermitian
metric in the space of the functions g(X), we obtain by a
straight-forward conclusion the following result: Let X = (z,),
%I = (B_Z;)’A :Xé'% — (Xé%) and denote by o W) the
trace of the square matrix W. Then we can find a finite set of
polynomials u;(X) with the properties

Lou; (XV) = | Vi uy(X) for non-singular V = ym,

2. o(A?) uy(X) = XP wuy(X) with constant eigenvalues

Xforh=1,2,...,m, (8)
¢ 0!
3. bdd uy(X) = 0,
such that
}::(X) — D IX'X [T uy(X)|<e (9)
%)

for all X of rank #n, where ¢ denotes a given positive real number.

All functions of X we are taking into consideration depend only

upon the equivalence class XofX which consists of all matrices XV
with arbitrary real V = V® of determinant | ¥| = 1. Thus it is
obvious to introduce the Pliicker coordinates

fa = fncla,...an = lxa”vl’ (F.,V =1,2,..,n) (10)

of X. For brevity we shall call these coordinates also Pliicker
co-ordinates of X. We denote by ¢ the set of all £,’s. The first
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of the characteristic properties (8) says that w,(z) is representable
as an algebraic form in ¢ of degree 2i ;

u(X) = vy(é).
In particular we have
XX =2 &, (1)
where the sum must be extended over all « = (o, ay, ..., «,) with

<oy <..< o, Thus|X'X| ! uyX) defines a function on the

D &=

and it seems to be justified to speak of uy(x) as a generalized spheri-
cal function. However we have to observe that the Pliicker coordi-
nates are not independent so that u;(X) de facto is only defined on
the Grassmannian manifold represented by the £,’s.

sphere

The set of all differential operators o(A2*), (h = 1, 2,..., %) comple-
ted by o(X'0/0X) has a remarkable basic property which can be
described in the following way. We define a linear differential
operator Q as a polynomial in the elements of 3/0X with functions
of X as coefficients which have derivatives of arbitrary high order.
We call Q simply ‘invariant’ if Q is invariant relative to the group
of substitutions X — UXV where U =U"™ is an arbitrary ortho-
gonal matrix and|V = V™ an arbitrary non-singular one. Two
invariant linear operators are said to be equal if they are of the
same effect on all functions f(X) which are invariant relative to
X = XV, |V|=1. The invariant linear differential operators form
obviously a ring ®. We shall prove that R is generated by the

operators o (X’ a_)a?) . o(A®), (h—1,2,...,n). Thus the first two

of the conditions (8) say that u;(X) is a polynomial in the Pliicker
coordinates and also an eigenfunction of the ring R.

Qur further interest is now concentrated on the series
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b(s, 85 u,) = > w(QE) o(S[GY |8[611, (12)
q

w(X) being an arbitrary spherical function of degree 2kn and v(Y)
an arbitrary angular character. The sum must be extended over
the same set of matrices @ as in (6). Now the question arises
whether the functions (12) are zeta functions in the described sense,
i.e. whether these functions satisfy a functional equation which
expresses a simple transformation property relative to the substitu-
tion s —k%' —s with a suitable ¥’ > 0. Let »(¥) run over all
angular characters, then we obtain in ¢(s, S; u, v) a set of functions
which is supposed to be linear equivalent with the single series

HY, 85 0) = D w(Q G) e ™D, (Y =Y® >0),  (13)

@
(see [5]). At the present, this fact is provable only for n = 2.
W. Roelcke investigated this case by using Mellin’s integral-transfor-

mation [6]. In (13) @ runs over all integral matrices of the type
Gmm.,

We can probably expect that &(Y, S; ) has a simple transfor-
mation property relative to the substitution Y — ¥~1 if the
functions ¢(s, S ; u, v) satisfy a functional equation of Riemannian
type at all. In this respect we meet the following situation.
Applying Poisson summation method to the theta-series

HEY, 85 0) = D w(@(G + X)) e=mrsie+ D,
G
we obtain with regard to u(X V) = |V |* «(X) for
MY, S;u)=H0, Y, S; u),
the representation

19( Y,8; u) :|S I—n,/2 | Y l—-m/Z—k z u*(__ iQ—lG R—l) e—no(¥Y —18-1(a))
(&

(14)
withY = R'R, R=R' > 0and

u*(X) = j wX + T) e~ T"D [AT], (15)
T
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where T denotes the full space of all real matrices 7' = ™" = (¢,,)
and [dT] the product of all differentials dt,, [1]. According to

j e™IDdT]=1

z

one can state that w*(X) —u(X) is a polynomial in the elements of X
with a degree less than that of u(X) provided «(X) # 0. In general

however it is
u*(X) — u(X) # 0,

as examples show, and even #*(X) no algebraic form in the Pliicker
coordinates of X. Therefore it is also impossible to split off the
factor R~ !in u*(— ¢ Q-1 G R~!). If we assume however

o 0

it follows, as it was proved recently also by C. S. Herz [4],
w*(X) = w(X),

i.e. w(X) is an eigenfunction of Gauss integral-transformation (15).
Moreover it can be shown that (16) is not only sufficient but also
necessary for u(X) being an eigenfunction of this kind. Assuming
(18) we now obtain

w—iQ'GRT) =(— 1" Y[ u@ ' G),
and thus we see that (14) can be rewritten in the form
HY, Sy u) = (— 1 |72 | Y |~ 2 HT ", 87 w).  (17)

The relation of homogeneity (X V) = |V % u(X) effects a decom-
position of the differential equation (16) into the system

23,

0X’' 0X
A consequence of this is o(A®) w(X) = A® y(X) for A =1,2,..., %
with certain constant eigenvalues A®. In the case » = 1 our

supposition (18) does not go beyond (8). Thus the general
transformation formula (17) corresponds with the results of

(X) = 0. (18)
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Schoeneberg [8]. Maybe it is sufficient also in the case » > 1 to
take into consideration only those spherical functions u(x) which
are solutions of the Laplacian differential equation (16) in order
to approximate the functions defined by (4). Solutions of (18)
which also satisfy the relation of homogeneity are given by

u(x) = |L'X |*, (19)
L = L™ ™ being an arbitrary complex solution of L'L = 0, [3].

Now we assume the generalized spherical function #(X) to be
a non-constant eigenfunction of Gauss integral-transformation.
Further let »(Y) be a bounded angular character, i.e. we have

h
(o(yi) + A,,) o(Y) =0, forh =1,2,...,

oY (20)
(Y [U]) = «(Y) for unimodular U,
with the notation
Lforuy=v»
a a ) s
Y = (y;w)ﬁ a_Y = (euv 5_ )’ eyv = (21)
Y %, for p £ v.

A1 Ag, ..., A, are constant eigenvalues; in particular we have A, = 0.
It is easy to show that v*(Y) = v(¥Y ') also defines an angular
character which in general however belongs to another system of
eigenvalues A,. Since now rank X <n implies »(X) =0, it is
sufficient to extend the sum in

HY, 8 u) = D (@ G) eI, (22)
G

over all integral matrices G of rank n so that always S[G]> 0.
This is important because at present we can prove a functional
equation for ¢(s, S; u, v) only if the theta-series shows the behaviour
of a so-called cusp form. By means obtained in [5] we shall prove
that the function defined by the Dirichlet series (12) is an entire
function of s which satisfies the functional equation

EGdm + 2k —s, S;u,v) = (— 1" |S|7"2 (s, S~ u, v*), (23)
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where

€(s, 85w, v) = 7™ (s — By) T(s — By)...I'(s — B,,) (s, S; u, v), (24)
with certain constants B, B, ..., 8, which depend upon the eigen-
values Aj, A,,..., A, only. This is the main result of the present
paper.
1. Phicker coordinates. We denote by §,, the Kronecker symbol
and introduce
I, =I(a, 09, o0y 0) = (8,,), (p=12,...,mv=12,.,n), (25)
o, Og,..., &, being an arbitrary system of integers in the interval
from 1 to m, so that

I''X= @n,)s (v =1,2,..,n)

The Pliicker coordinates £, of X are given by
€ =buapay = ' X|. (26)

Any summation over « is to extend always over the full system of
& = (&g, Ugseees &) With 1 < oy < 0t <... < a, < m. 1If A, are the
Pliicker coordinates of L = L"™™ then we have as is well known

|L' X | = Z A, €, particularly | X' X | = Z 2,
We compute the effect of some differential operators on functions
of the type f(£) = f(..., &,...). First we state
— & =1 (X"1)1¢,. 27
X 0 &, (X' 1) € (27)

Denoting by A, the algebraic complement of z,, in |I', X |

we obtain indeed

st (o) = (Sbds) = ) D=L & 1) £

(27) yields in partlcular

x 2 e ¢, = £,E, E = unit matrix. (28)
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Consequently

, 9 af(¢) ‘
X e io=25 5—25 E. (29

Let L = L'"™™ = (l,) be a constant matrix of rank » and
(¢,,) = (X'L)~1, then it is

Z C‘Lp op av = Suv'
34

Differentiation yields

ag“"x l

b+ L, =0,
p Yov ud “xv
P,a

from which

—Z@M

follows. Thus we find

0 rra—1 0
aYiL(XL) '—(Za“x_p;lpa Zov) = (lea l(m pr )
= — (Lu) L' L),
particularly for L =1,
sy LX' 1) = = (I D)7 (X 1), (30

according to I’ I, = E. Applying the operator 8/6X’ to
d of(€) r -1
— = E I1(X'I s
aX f(f) . ag d( a) ga

o

we obtain

0 0 (‘f) ' -1 7 ’ -1 __
a—X;aXaZsﬁafﬁ( gaﬂuX)Iﬂme

—zf” @ X) (X1,

—z (I X)L (X 1) £ £, aagfag'
B
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Therefore
2 o9\ - O 0
- = = _— — N 31
(X pax) SO =2 Ba g gpfO OD
with
B =L XU, X) T I Ig(X' 1) 1 X! = B/, (32)

holds. The operators
o 0 2 2
x5z (¥ pp5x)

annihilate the same functions. From

a3\
X__) X) =X ] o
X( ax 5x) 9% aX'an X' =0,

follows, by left and right-hand multiplication with X’ and X
respectively, since X'X > 0, indeed, that

o 0

= == g(X)=0.

We compute the elements of the matrix
Eaﬁ = (fzf): (I": V= 1: 2, reey m)) (33)

as functions of the Plicker coordinates. Since I',J; = (8c,8,)
we obtain

fo = Z xp.p 'A'gp 8“037 Arn ch’ (34)

PO, T, K
with A?, in the significance already introduced. The replacement of
the ath row in | I', X | by (2, %o, ..-Z,,) leads obviously to X «,, 4
P

Thus we obtain

me, AL = 1" (otgy cvn s Cp1, s Kgyqsenns 0p) X |

p

= f%---%—1u%+1...“n-
Now we introduce the notation

E;—-)V = f"‘1---"‘0—1""‘a+ 1...%n or 0, (35)
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according as p = o, OF @ 7 Oy, &y, ... &,. SO We can rewrite (34) as

G = D E3 Bunp, 5 = D LR (36)
o, 7 p
According to the signification of the symbol £ ~” the sum in (36)
can be extended over all integers p from 1 to m. A special con-
sequence of (32) is also

o(x X2 2 s =o(x(x22) V5@

= B i i 37
gf . 56,7 (37)

with
£9 = ofB,0) = D & G (38)

The remaining formulae of this section apply to the special case
m=mn -+1. Now we note

ffx = Ny ng = 7];15 fuﬁ = 7],‘/\

a=(L...,c—Lx+1,...,m),B=(1,..., A =1, A+ 1,..,m).
It is easy to see that
ET T et 1m = B (= 1) Fet i 18,

Thus we obtain

KA o—>u p—>v
T)uv - z El...k—lx+l...m gl...A—lH—l...m
I

=> (8= 077, 8, 0 Bl = D4 m, 48, m, )
P

=3, 8,\(— )2 Z ne + 8, e +

P

+ 8, (— 1y F g, my 4 8,0 (— LMty
and

7)“=Z’72ﬁ=3dzn?+(m-2)mm-
14 p

Now we find for (37) the expression
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(XX o ) 10
((S9)(SE)+m-a(Snl)-

—(m—2)(2m58—m)}f(n)- (39)

2. Invariant differential operators. Let Q be a linear differential
operator, i.e. a polynomial in the elements of X, and let us assume
that the coefficients which are functions of X have derivatives of
arbitrary high order. Q as a polynomial in the elements of 9/8X
has a certain degree; this we call plainly the degree of Q. All
linear operators Q of degree < h constitute a module which we
denote by M,. Obviously M, cM;,,, for all A. The module of
all linear differential operators which is indentical with It = U I,
h

defines a non-commutative ring. It is easy to see that
Q Q = Q, Q) (mod M;,_y), (40)

provided that the product Q, Q, lies in IR,. The aim of the
following considerations is the determination of a basis for the
subring N of M consisting of all linear operators which are invariant
relative to the substitution

2 D ot
X UXV, = U=V withU'U =B, [V]#0. (41)

In the sequel we use the notation R, for the intersection % n M.

Let Q = F(X, 9/0X) be a given operator in,. We choose a
matrix 7' = T™m" with variable elements which are commutable
with those of X. Then we have in particular

F(UX,UT) = F(X,T)for U'U = E.

Thus, according to well-known theorems of the theory of algebraic
invariants, we see that F(X, T') is a polynomial in the elements of
X'T and T'T with functions of X'X as coefficients. Then there
exists also a representation
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F(X,T) = Z QX'X, T'T) H,(X'T),

@, being a polynomial in the elements of 7"7T and H, a polynomial
in the elements of X'7T. Now we observe the invariance of F(X, T)
relative to the substitutions X — XV, T — TV'~l. We set
V =V, V, with ¥, determined by (X'X)[V,] = £ and an arbitrary
orthogonal matrix V,. Using the notation W = (T"T) [V’';!] we
obtain

FX,T) = QB WIV,) B(Vy(Vi (Vo X TY) V).

The argument of H, is of course, since we are still moving in com-
mutative domains, with V', V' X'T V"1V, =V'X'T V'~ identical.

Because of (40) all products performed in F (X, 582 ) admit com-

mutations if we carry out the computations modulo IR,_,. So it
turns out

0= 3 05 () 1) 152)

X H,( Vl’( ys1 <V0 X2, )) Vl) (mod M,_,).

Applying (29) we see that

(W E gg) ) Viso =3 by SO B

Lo i )es

holds for an arbitrary function f(¢). Thus we obtain

B (vi(va (v x ) ) Vi) s@ =B o X 52 ) E) 5@
(o g

where %,(z) denotes a polynomial of 2. This leads to
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2f@) =3 & (B ((5555) Vo) 731

x (o X% )) 1O (mod My s9)). 42)

G,(E, W[V,]) represents a continuous function on the compact

group of all orthogonal matrices V,. Thus the mean value
My {G,(E, WV,)} = g,(W)

(in the sense of the theory of almost periodic functions) exists.

It is a polynomial in the elements of W which is invariant relative
to orthogonal substitutions :

g(WLV,]) = g,(W), (V) V= E).
Accordingly g,(W) is a symmetric polynomial in the characteristic
roots of W, thus a polynomial in o(W?), (h =1,2,..., n):
0(W) = B(o(W), o(W?), ..., o(W")).
With regard to the signification of W and V, we state easily
o(W* = o(X' XT' T).

If we compute the mean value with respect to ¥, on the right
hand side of (42) we obtain by means of the deduced relations

Qf(€) = Q* f(§) (mod M,_, f(§),
with

Q* = Z_p, ( , a(X’ng_(-, %{)h) h,( a(X’ aix)) (43)

It is obvious that this operation is invariant relative to the substi-
tutions (41).

In the sequel we shall identify invariant operations which have
the same effect on all functions of the kind f(£). Then we can
state- the following facts: To a given operator Q e R, there
exists an operator Q* € 9, of the special form (43) such that
Q—Q* eR;_;. Induction on A yields at once
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)
TaroREM 1. The invariant operators a( X’a%(-), a( X'X 5%—, ;X)
(h=1,2,...,n) form a basis for the ring R of all invariant linear

operalors.

Our argument shows moreover that we only need the basis

2 o 9\
1 t X ) o XX <. ) (k=1,2,..., t b
elements o( aX) a'( 5% aX) ( [2/2]) for the

representation of an invariant operator of degree h < 2n. Now it
is easy to see that the invariant operators

a a a Nk
Xw) (X_, ﬁ)) =12 ..,
°( ax)° aX'(XaX' (h=12m) (44

also generate #. We have

a a '\ h a a h
X — = . — X’
"( X’ (XaX') ) "(XaX' x> )

0 0 h
X'X o
”( oX' 5X )
(mod I, _,)-
Thus by induction on % we obtain

d (o 8 \'\
r(xd)
"( ax\ % )

d 9\
=o(xx % 2
”( ax ax)

7 9 3 8\t P
X'X,__),..., (XXW) : (X' )
+q"(°( aX 3X d X 0X d aX)

where g, denotes a certain polynomial. This proves the basis

property for the system (44). We determine yet a third basis for
the ring R.

THEOREM 2. IfA=X aiX - (X anv, ) then the invariant opery-

tors a'( X’ a—g—( ), o(A®) (b = 1, 2,..., n) form a basis for the ring N of

all tnvariant linear operators.
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In order to prove this we compute
e (5,2
+=1re((X,5) X0 )+ 3, £o(P)
Here P, are products of the form
(%) ((F5))" - (x52) " ((xx))"

and it happens at least once that one of the exponents g, v; is
greater than 1. Hence it is

P X 0 2R P X g /2R
=@ (X;5) B o =e((X55)) &

with certain products @, and R, which are also of the given form.
Now it follows in the first case (the second one can be treated
analogously)

? .. 0
= I__ I_ XI I
"( B oz X x X )

(X'Q R 2 X X X) (mod My,_,),

and therefore by means of (29)
’ ’ 1 ’
oP)f@) =o( X QB 2 ) o (X 2)
f

- (agc'R < X)

=o(x 2 £,q,) s
n

= @ (mod My_, ().

So we obtain
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) 2 \'y
oA £ =(— 1P 20( X 2 (X 2 ) ) F@) +
+Qo( X 2) 1O (mod M, £(8),

with a certain invariant operator Q, of degree at most 24 — 1 which
can be represented as a polynomial of the form

] 2\’
% =5 (o X 55 (X5p) )

2 9 \"\*! 8 )
(X (X55)) (% %))

The same is true for the operator

o( A — (— 1)"20()13_;(11 a_a_.x)')h—g,,a(x'a%).

So we see that

F(A) — (— 1)t 20(Xa_%, (X%,)’)h-i-

(o5 (2 5))

0 2 \\*! 2
£ ()™ o )
"( aX'( aX') A" ax
holds with a certain polynomial ¢,. Theorem 2 now is an easy
consequence of this,

3. Spherical functions. A polynomial #(X) shall be called a
spherical function of type (m, m) if the following conditions
are satisfied:

L w(XV)=wuX)for|V|=1,

2. u(X) is an eigenfunction of all invariant linear

differential operators, (45)
J 0

9 9 lwx) =0,

|ox ax | )
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The first condition says that «(X) is a polynomial in the Pliicker
coordinates £, of X:

u (X) = f(§).
The second condition is, aecording to Theorem 2, equivalent to
, 0
o X' 5% ) wX) = X s 116 =En () =knu(X) (40)

and
O,(A2h) u(X) — A(h) u(X) (h = 1, 2, veey n), (47)

E, XY, X3, ., X" being certain constants. Thus f(£) is an algebraic
form of degree k so k is a non-negative integer. In order to understand

the third condition we observe that | X’ X | a;, air is an invariant
linear operator. So we have also
XX 5 2w = v 49)

with a certain constant A. The third condition is obviously equi-
valent to A = 0.

Let us assume that the polynomial u(X) satisfies only the first
two but not the third of the conditions (45). Then it is obvious that
| X'X| is a divisor of u(X). We prove the existence of an integer
j>1 such that u;(X)=|X X|7 w(X) is still a polynomial which
satisfies also the third of the conditions (45); in other words u;(X)
represents a spherical function. First of all we observe that the
elements y, of the matrix ¥ =X'X can be considered as
constants with respect to the operator A. It is indeed

Ay“*=(z(w""a e 5%, ))z For Tor

= (Z xpp(sva smc Zar + Lok ava apA )) -

20
- ( Z (S;w 8‘,,‘ Xy + z, Tox pa SM))

= (ac'wc T+ Ty %) — (@, T + 2,y xM) =0,
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so that each function ¢(Y), in particular | X' X |, is commutable
with the operators o(A*). Therefore (46) and (47) imply

, 0 .
a'(X a—X) w(X) = (k — 2j) n uy(X),

o(A*) u(X) =M u(X) (h=12,...,n2),

consequently also

XX 2 2 X =y uX) (=123

0X' 9X|
with certain constants ). Now we deduce: If A, 7 0 then | X'X|
divides u,(X), i.e. uy(X) is a polynomial. If A, 4 0 the same
conclusion shows that w,(X) is a polynomial. So it turns out
that an integer j > 1 exists such that u;(X) is a polynomial but A;= 0.

We assert that a polynomial »(X) with the three properties

. wXV)= |V uX) for |V |0,

o 0
o'( s a% ) w(X) = 0, (49)
3. |X'X| is no divisor of u(X),

is already a spherical function. First we state that
o 0 o @
9 O N uXV)y= |V} ( 9 _) -
sz ox) "XV =1V ¥ o 335 ) w0 =0

is true for arbitrary non-singular V. Replacing X — XV -1,

we obtain
a(V o 9 V') wX) = 0.
X' 0X
This implies
20 ux)—o. (50)
0X'0X
According to Theorem 1 it turns out that 4(X) is an eigenfunction
of all invariant linear operators. The third of the conditions {45) is
a consequence of the fact that |X'X| does not divide u(X).

This proves our assertion,
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A special class of spherical functions is given by
w(X)=|L'X [ with L =L™» ['[,—0. (51)

We agsume that L is of rank n. Then at least one of the Pliicker
coordinates A, of L differs from 0. According to a well-known

formula we have
B = (2 M )"

an expression which is obviously not divisible by | X'X| = Z &.
a

So it is sufficient to prove that the algebraic forms (51) are solutions
of (50). This can be done in the following way. We set

X = (xuv) = (gl gZ"'gn)’ L = (luv) = (Il [2"' In)
and denote by e,, ey, ..., ¢, the columns of the m-rowed unit
matrix. Then we have

9 | X[F=k|LXFTM
oX

with
0

e V0130 |)

= (IL,(gl"');v—l eul:v-{—l"'gn)l)'

2

M= _—_
X

x| =(

For u 7 v we have
a .,
'ax_m IL (21 L_1 epgv+1 gn)l
- IL’(EI gu—l eogu+l gv'~1 epgv+1"'gn)l = O;

since two columns of this determinant are equal. For u —» we
have also

0 ;.
5o 1K@ Lo Lopr o Ta) [ = 0

o

since the elements of this determinant do not depend upon x, at
all. So we obtain
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2 2 -, B
X M= ( “ 3_:1:; [ 746 2Ry epEv+1---§n)i) =0,

and, it follows that

2 2 2 L

2 0 pxp—rl XpM

ax ax 1A =k g IV X
k(b — 1)L X MM + K| L X %M
— k(b — 1) |L'X -2 M' L.

Now it remains to show that L'L = ([’,[,) =0 implies M'M = 0.
First we form with a variable matrix Z = Z™" = (z,,) the product

28 = (3 20 E e Bomr € B 30 )

= ( IL'(& A gv—l 3/4 §v+1 . xn) I )'

Here 3;, 32, .--, 3 denote the columns of Z. We choose Z =M
and prove that in this case 3, is a linear combination of the
columns [, I, ..., [, of L. Then it turns out that L3, =0
and finally M'M = 0. We introduce L'y, = @, and denote by e*,,
e*;, ..., e*, the columns of the n-rowed unit matrix. Because of

Le,= z l,,e*, we now obtain indeed
Bv = (IL'(gl "'Ev—l eM gv+1 o gn) I)

= (\(al TR 1 N Z lup e*, 0,y an) )
4

- (z Lo 1 (01 e Oy €%, Gy g oen 1) I)

= D e Oy 1%, B ) [

Vice versa we shall prove that the conditions M’M = 0, which is
an identity in X, and rank L = » imply also L’'L =0, Based on
the deduced formulae we have
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MM = (Z [ L@y oot L Lrr o T I X
xl(al"'a,u—le*p a/t+l“'an)|)

Since rank L = n, a column §, exists which solves L' €, = Q,,
if Q, is given. So we can choose in particular £, = n*,. The
identical vanishing of M’'M now implies

[(e*1...e* L' [ue* . ...e%,)| =0,

thus [, [, = 0 or L' L = 0 as we asserted.

®*

The above argument also shows that |L’X | is a solution of
the system

a 0 B
- ' = 52
X' 0X [LXTE =0, (52)
if and only if either
k=0,1orrank L <nmorL'L =0, (53)

Without proof it may be mentioned that

k
9

X e @E) — (- 2yk | [/ X | e~ @D for 'L = 0.

By means of (31), (33), (36) it can be proved in the particular case
m = 3, n = 2 that the special function

w(X) = &3 613 =1 2 (54)

satisfies the differential equations

U( a a_aX) ) = 4wl U(X(X ’ ?)’) W X) = 2u(X),

a(x(x ai a%)')zu(X) — 8 u(X), ’5%, %{' wX) —0. (55)

Observing that in general the operators

2 a 0 \'\*
x %) o{x(x 2 2 =1,2,...,
“( ax) "( ( aX'aX))’(h L2, m)
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generate the ring of all invariant linear operators, this can be
proved easily with the given methods, we see that u(X) is a spheri-
cal function of type (3, 2). However, we have

G(aix, 5%) W X) = 2 (), Ty + Ty Tep) # 0. (56)
4. The approximation theorem. Let F(X) be a complex-valued
function defined and continuous in the domain X'X > 0. Let
M {F(UX)} denote the mean value of F(UX) relative to the com-
pact group of all orthogonal matrices U in the sense of the theory of
almost periodic functions. This mean value is a function of
X which is invariant relative to the substitutions X — UX
(U'U= E), therefore it depends only upon X'X. If F(X) is
invariant relative to the substitutions X — X V(| V | # 0) then the
mean value is obviously independent of X and therefore is a
constant.

For two complex-valued functions ¢(X) and (X), defined and
continuous in X'X > 0 with the transformation invariance
HXV) =V [F$X), $(XV)=|V[HX)for |V|#0, (57)
we define a scalar product by
(B(X), (X)) = M AU X) YU X) | X' X |7F}). (38)
It has the property of the translation invariance :
(HUX), f(UX)), = ($(X), $(X)), for U'U = E (59)
and determines a positive hermitian metric, i.e.
($(X), (X)), = 0 implios $(X) = 0.

This metric and Weierstrass’s approximation theorem for con-
tinuous functions are the essential means for the proof of the
following approximation theorem.

THEOREM 3. Let g(X) be a complex-valued function, defined and
continuous in X' X > 0, which is invariant relative to the substitutions
X — XV with |V |5 0. Then there exists a finite set of spherical
Sunctions uy(X) of degree 2in such that
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‘g(X) — Z IX'X [T uylX)| < e (60)
1,9

holds in the whole domain X' X > 0 where ¢ denotes a given positive
number,

According to the Weierstrass approximation theorem there exist
algebraic forms p,(X) of degree h(h =1, 2, ..., 2k) such that

‘g(X) - %m(X)] < (61)
h=0

for all X of the compact domain X'X = E. We introduce the
mean values

X)) =My {I’h(X V)}

relative to the compact group of all orthogonal matrices V. Obser-
ving that the compact domain defined by X'X = K is mapped
onto itself by the substitutions X — X V(V'V = E) and besides
also g(X V) = ¢g(X) is valid, we obtain from (61), by computing the
mean values,

, 2%
1g(X) — th(X)‘ <efor X'X =K. (62)
he=0

According to well-known theorems of the theory of algebraic
invariants, the algebraic form ¢,(X), being invariant relative to the
substitutions X — X V(V'V = E), is representable as an algebraic
form in the elements of the matrix XX':

(X)) = g*(XX").
This shows in particular that % is even if ¢,(X) # 0.

Let X be an arbitrary matrix of rank n. Then we can determine
a non-singular matrix B = R® such that

X'X = R'R.

Replacing X in (62) by X R~! and observing that g(X R~') = g(X)
we obtain
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E
‘g(X) — Z (X R~ 1Y) | < ¢, for X’ X > 0. (63)
A=0

It is obvious that
gea(X RB™Y) = g¥*(X B B'71 X') = g*(X (X' X)™! X7)
is independent of the choice of R, and thus represents a one-valued,
function of X. It is easy to see that
up(X) = | X' X P gop( XB™Y) = | X' X PP g*o(X(X' X)~1 X7)
is an algebraic form with the invariance property
wu (X V)= |V | u(X) for |V | 0. (64)

In place of (63) we obtain now
k

\g(X) — Z [ X' X |~ u(X)| < e for X' X > 0. (65)
h=0

The following considerations apply to the linear space consisting
of all algebraic forms of degree 2hn with the invariance property
(64). With %(X) also w(U X) belongs to this space, U being an
arbitrary orthogonal matrix. For an arbitrary subspace & which
also has these two properties we prove a lemma of which the appro-
ximation theorem is an easy consequence.

LemMma. Let & be a linear space of algebraic forms v(X) which
salisfy the tramsformation formula

WX V)=V o(X) for | V| 0. (66)
Assume that with v(X), & also contains v(UX), U being an arbitrary

orthogonal matrix. Further let k be a given integer > 0. Then there
exists a basis vy(X), vy(X),..., v,(X) in & such that

o(AY) v(X) = Ay v X) fori=1,2,..,8,j=1,2,.,k (67)
with non-negative real eigenvalues Ay

The proof will be based on induction on k. For k& = 0 our assertion
is only that & has a finite dimension. This is trivial. So we can assume
that the lemma is valid for a given value of k& (>0). Then we prove
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it for k41 in place of k. First of all we distribute the basis functions
v(X) into classes R, (v =1, 2,...,1) so that two functions v,(X)
have the same system of eigenvalues A, A,,..., A; if and only if
they belong to the same class. Let us assume perhaps v,(X) e &,
v=12,..,1). 8, denote the linear space generated by all
v;(X) € ®,. Then we have

Q =81 +£2+ + 21-
Let v(X) € & be an arbitrary eigenfunction of the operators o(A%)
(7=12,..,k:
o(A¥) o(X) = N o(X), (j =1, 2,..., k).

Then there exists a unique decomposition
l\
o X) = Z w(X) with w(X) € &,.
v=1

On account of
o(A¥)w, (X) = A; w(X), v=1,2, ..., 1)

it follows that
!

1
o(A%) o X) = > Ay w(X) = > hu(X),

y=] y=al
therefore

X w,(X) = A w,(X)

for all v and j. w/(X) # 0 implies
ij - A_] fOI' j = ]., 2, ey k.

This of course is impossible for two different v <Il. Thus only
one w,(X) differs from 0 and »(X) € &, is proved. Because of
the invariance properties of the operators o(A%) it is obvious
that with »(X) also »(UX) is an eigenfunction of the operators
o(A¥) (j=1,2,...,k) if U denotes an orthogonal matrix. »(X)
and v(UX) even belong to the same system of eigenvalues. This
proves that, with »(X), &, contains also »(UX). In other words,
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each subspace £, itself has the characteristic properties of .
So it suffices to consider the subspaces €, individually. Without
loss of generality we can identify such €, with &, i.e. we can assume

=X (=12 ...k) (68)

for all .

For a given orthogonal matrix U the mapping »(X) — v(UX)
defines a linear transformation of € into itself. Thus we have

vAUX) = > D U) 0(X), (p=1,2, ... 8),
v=1

with certain coefficients D, (U). We assume that the v,(X)’s form
an orthogonal and normalized basis, i.e.

(©(X), v,(X))as =8,

Because of the translation invariance of the scalar product the
v,(UX)'s are also orthogonal and normalized. This proves that

D(U) = (D,(U))

is a unitary matrix and it turns out that the function

FX,X*) = > v(X) 0,(X%) (69)

y=1
is invariant relative to the simultaneous substitutions
X>UX, X*5 UX* (U'U = E).

Here a general conclusion applied already by E. Hecke [8]
again gets importance. On the strength of the invariance property
of F(X, X*) we deduce now the differential equations for the
basis functions v,(X). It is well known that

U=(E+8) (E—8)" with 8 +8=0,

defines a parameter representation of the orthogonal matrices.
Since F(UX, UX*) is independent from U and so from §, the
partial derivatives of this function relative to the elements
8,,(p < o) of the matrix § vanish necessarily, i.e. we have
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ai FUX, UX* —o.

po

It suffices to discuss these conditions for S = 0. A development
into powers of § yields

U = E + 28 + higher powers of 8,

therefore

? 2 2
9 yx=22 X=2( 9
asﬂn asﬂv 8 z os po s’m xw)

= 2(8011 Z G[l pv)) fOI‘ S = 0
This leads in the case S =0 to
oF(X, X*
2 0,03 =23 0,5~ 1) T
aF(X X*)

+2Z(8‘m w— ou pv) a ”

_22 22 aF(X X*)
+22 waF(X X*) 22 - aF(X  X*)

= 0,
or, rewritten by means of the matrix calculus,
AFX, X*) 4+ A*F(X, X*)=0. (70)

Here A* denotes the operator which arises from A if we replace
X by X*. According to (69) we obtain

> Au(X) oK% + D 0(X) B¥0,(X¥) = 0. (11)

This shows, since the functionsv,(X) are independent, that relations
of the kind

Av(X) = D 0X)C,r (P=12....9), (12)

I
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with certain constant matrices C,, are valid. A and so all C,’s
are skew-symmetric:
c,, =— Oﬂu (73)

In (72) now we replace X by X* and also turn over to conjugate
complex expressions. By means of the relations, besides (72), which
we obtain in this way, (71) can be rewritten as follows:

> 0(X%) 0X) O + D, 0(X) 0,(X*) T, = 0.

by v By

This implies, according to the independence of the functions v (X),
Cp=—-0,=0,. (14)

Thus particularly the elements of C,, are pure imaginary numbers.

The repeated application of A to the basis functions v (X) yields
N o(X) = D v,(X) O

pv?

(75)
»w
with certain constant matrices C% which obviously satisfy the
relations
i o .
oh =3 0308, 0P =0,
I

By means of induction on j it is easy to see that
@ - oy
holds for all § > 1. This shows
0 = 2,08 0% =2 CRY > 0. (76)
4 [

Taking the trace we obtain from (75) with 24 in place of j
o(A%) v(X) = 2 v (X) ¢, (17)

un
where

c‘,-}z = 0(0‘,‘2;”) == a(C'(:f)) == c(,’lz
This is to say (¢9)) is a hermitian matrix. So we can find a unitary
matrix U which transforms (c®*+V

) into a diagonal matrix. We
express this fact in the form
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(€5 U = UG, Ay (78)
The functions of the new basis
(wi(X), wy(X), ..., w(X)) = (v(X), vo(X), ..., v( X)) U
now turn out to be eigenfunctions of the operator o(A%**2):
o(A%*+2) (X)) = X, w(X), (v=1,2,...,3). (79)
The relations
o(AD) o (X) = N oK), (F=1,2 ... kv =1,2,..,5)
of course can be carried over at once to the functions w, (X):
oA w(X)=Aw(X), (j=1,2,..,k;v=12,..35). (80)

Finally we have to observe that for an arbitrary system of complex

numbers z,, z,..., 2, the hermitian form
() — (23) &) 5
Zcmz z, = Z Oz, 2) z o(C)) 09 2, 2,)
#v Hyvyp
Z (C9 €D 2, 7) = Z (Z CO CW 2, 3 )
By, p

= z a(z O’(jz.zﬂ) (Z (0% z,) >0,
» “ v
so that in particular for j = k 41
X, >0,(v=12..3). (81)
By this our lemma is proved.

On the strength of the lemma, applied to the special case & = n,
one can see that a decomposition of the algebraic form wu,(X),
appearing in (65), into eigenfunctions wu,(X) of the operators
o(A®) (v = 1, 2,..., m) is possible :

uy, (X) = Z uy; (X).
j
As we have seen before, | X'X |™® wu,; (X) represents a spherical

function of the type (m, n) for a suitable exponent a > 0 which
may depend upon 4 and j. This completes the proof of Theorem 3.
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5. Theta series. The Gauss-transform u*(X) of a function u(X)
is defined by

w¥(X) = ju(X + T)e=™ "D [4T]. (82)
4
Here T denotes the full space of all real matrices T' = T™" = (¢ )
and [dT'] the product of all differentials dt,. We call u(X)
an eigenfunction of the Gauss-transformation if #(X) # 0 and
w*(X) = A u(X) holds. Assume that (X) is a polynomial different
from 0, then w*(X) is also one and according to

j e~ ™I'D [dT] =1,
&
we have

degree (u*(X) — u(X)) << degree u(X), (83)

80 that necessarily A =1 if %(X) is an eigenfunction.

In the sequel we denote by ¥ = Y™ a positive real matrix
having variable elements and by S = 8§ a positive matrix having
arbitrary but fixed chosen elements.

THEOREM 4. Let u(X) be a polynomial with the tnvariance property
WX V) = |V 2 w(X) for (V] #0, (84)

assume also that u(X) is an eigenfunction of the Gauss-transformation.
Further on we introduce @ by S = Q'Q, Q' = Q > 0. Then the thelu
series

N, 8; u) = Z WQG) e=¥SIEN, (85)

G
where @ has to run over all integral matrices of the type G™™,
satisfies the transformation formula
MY, 8 u) = (— L | 8|72 | Y ™22 (Y, 871 u). (86)
In order to prove this we develop the theta series
HX, Y, 83u) = > w(Q(G+ X)) e~mTSW@ran, (g7)
[£3

which is a periodic function of X, into a Fourier series. We obtain
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HE, Y, 83u) = > oG, ¥, 5 u) ¥t 8)
(2]
with
@, Y, S u) = ju(QX) ¢~ T SIXD~2niet@X) [1X ],
.4

X denoting the full X-space. In this integral we substitute X, =
QXR for X, R being determined by ¥ = R'R, " = R > 0. Using
(84) we find by a simple computation

#(G, ¥, 8;u)= | S|~ | ¥ |~™2~F y¥(— i Q=1 G R~1) e-mo =5~ (00,
u*(X) denoting the Gauss-transform of %(X). We can split off the
factor R~! from #*(—+¢Q~' @ R~Y) if and only if u*(X) = u(X).
In the case u*(X) # u(X), u*(X) is not even homogeneous as (83)
shows. In order to obtain a reasonable transformation formula

for our theta series it is necessary to assume w*(X) = u(X). Now
it is easy to state that

W@, Y, S u) = (=1 | S|~ | T |~m2-2 (@1 @) e—nmo¥ ~15-1[6D),
Thus we can carry over (88) with X = 0 and Y ! instead of ¥
immediately into (86), the asserted formula.

The question whether for spherical functions #(X), u*(X) = u(X)
always holds is to be answered in the negative. For instance in the
special case m = 3, n = 2 the spherical function

u(X) = g3 15
= &y Tg1 Bgp + X1p Tgy TFy — By Xy Xy gy — Ly Loy Ty T3z
we considered already, differs from »*(X). A simple computation
yields
1
w*(X) = w(X) + o (@13 g1 + 215 Tpp).

It is however remarkable that generally with »(X) also u*(X) is

an eigenfunction of the operators o(A%), (v =1, 2, ..., ), and that

with #(X), ‘ also annihilates #*(X). We formulate these

X’ aX
facts more precisely in
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THEOREM 5. If a polynomial u(X) satisfies the relations

la 9 | w(X) =0, o(A®) w(X) = A w(X), v=1,2,...,n), (89)

X’ 0X

then they are valid also for the Gauss-transform w*(X) of u(X).

The proof is based on a general integral transformation which
can be considered as a generalization of the method of partial
integration. Now we denote by [dX] the exterior product of all
differentials dx,,. Let w, be the exterior product of all dx,, with
the exception of dz,,. We intend to choose the order of the factors
such that

[dX] =dz,,. w,,

holds. Weset Q = (w,,). Further on let & be an oriented compact
and measurable domain in the X-space with a measurable boundary
R. We carry over the orientation from & to . On these premisses
we prove the following

Lemma. Let A = A™ = (a,,) and B = B™ = (b,) be matrices

v
with functions of X as elements which have derivatives of sufficiently

high order. Then

j AA* B[dX]= j (B'A* A’Y[dX] +
o L]
k-1

S [ (A" AY(XQ — QX') Ai-1=* B (90)
v=0 ?’)i

holds for an arbitrary natural number k.
First of all we establish by means of Stokes’ integral-formula

)
AX % Baxy= ‘O'B
j X [dX] JA)LQB

o N

_J (B,(X a_if) A')' [dX] — nJ AB[dX]. (91)
(5

I

A straightforward computation yields indeed
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?
B
j AX . BldX]

z Byp Loo az

T0

2, aZ up Tpo b") [4X] *J ( > b, 55— Gy x,,.,) [dX]

poe 19 B POT o

(
(
(43 201, 0) -
l (> e x% 6 ) X1 - [ (2 b, 3, ) 421

£,0,7 ®»  PoT

b, ) [4X]

T0

(
_ 'C[ (Z by %o aZ aw,)’[dX] — ni (Z a, b,,,)[dX]

- AXQ’B—.[ (B'(X a_%)'A')'[dX] —nl A B[dX].

b ]
The analogous formula
v 0 Y\ .
4(x __) BldX
[ 4(x ;%) Bax
»
:JAQX’B —j(B’XE%A’) [dX]~nJAB[dX] (92)
N [t} ©
can be obtained from (91) in a simple manner by transposition.
Subtraction of (92) from (91) yields (90) in the special case k& = 1.

A general proof of (90) is now possible without difficulty by induec-
tion on k.

Now we choose A =¢(X)E, B=y(X)E and form the trace
of (90). At the same time we extend & to the full X-space which was
designed with ¥. By a suitable choice of $(X) we shall take care
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later that all limit processes remain legitimate, in particular also
that all boundary integrals vanish. Our lemma then yields

j $(X) o{ AF) (X) [4X] = j W(X) o(AF) §(X) [X].  (93)
T r

In
u*(T) = j w(T + X) e~ ™ XD [4X]
]

we substitute X, = X — 7' and then replace 7' by —47T'. So we obtain
for

w(T) = u*(—iT) e~ ™T'D
the representation
w(T) = ju(X) e~ X X) 2o X' ] X,
%
Since (X’ X) can be considered as a constant with respect to
the operator A it is sufficient to prove that
o A?) w(X) =X wX),(v=1,2,..,n).
Then these differential equations are also valid for »*(X) in place
of w(X). We set more precisely A = A,, and denote by A, the

operator which arises from A, by the substitution X — 7. It is
eagsy to see that

A'x e—21rio(X’T) — A"t e—2m‘o(X'T),

and by induction on %
A} = 2mioXT)  (\kyr g=2riotX'T)
This leads indeed to
(Alt:+l)l e-2m'o(X'T) — (A]tp A'a:)l e—2m’,c(X'T)
= A(Afy =D
= AL+1 g=2miaX'T),
Taking the trace, we obtain

o(AF) e~ 2moX'T) - cr(A;‘) g 2mio(X°T)
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In order to determine the effect of o(A) on w(7T) we apply (93)
to k=2, $(X)=u(X)e ™TD Y(X)= e XD So we get
finally

o(AZ) w(T) = Ju(X) ¢~ ™IE) | G(AP) o~ 2ridX T

u(X) e~ ED g(AB) ¢~ AT DX |

I

ey ey 8

e—2nia(X'T) O‘(AEV) u(X) e—na(X'X)[dX]

o j w(X) e XD 2oTDGX] = ), w(T),
4
the asserted relations. Tt is trivial that also the first of the differential
equations (89) can be carried over from «#(X) to »*(X). So
Theorem 5 is proved.

A characterization of the algebraic forms which are eigenfunctions
of the Gauss-transformation yields

THEOREM 6. The Qauss-transform u*(X) of an algebraic form
u(X) is identical with w(X) if and only if w(X) is a solution of the

. . . 0 0
Laplacian d tial ¢ —_ X)=0.
aplacian differential equation o (aX’ aX) w(X)

In this connection the fact that X is a rectangular matrix of an
arbitrary number of columns does not come into appearance. So we
can assume without loss of generality that n — 1. Let X = (z,),

then A = (:v,‘ 9 xv.?_) In the sequel we denote by %(X)
ox, 0z,

an algebraic form of degree ¥ which does not vanish identically.

1. Assume o (a‘axl a%() %(X) = 0. u(X) then represents an
ordinary spherical harmonic of m variables. Thus we have

o(A%) uw(X) = A u(X),
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and also, according to Theorem 5,
o(A?) u*(X) = A u*(X),

with a constant eigenvalue A,. We apply the well-known operator
identity

botay) = (D, ’a‘i‘,)z+(m_2)(zx" a%) _

v v

(52)(52) w
to u*(X). Let

k
u¥(X) = z h, (X) with &, (X) = u(X),
v=0

be the decomposition of 4*(X) into homogeneous terms such that
h,(X) has the degree v. Then we obtain

k

PAwRX) = D v+ m— 2) b(X),
therefore "=

A =vv+m—2)ifh(X) £ 0.

This happens for v =k, so that A, > v(v + m — 2) for v < k, which
proves u*(X) = u(X).

2. We apply the Gauss-transformation to the polynomial
u(X) = Z avlva...vmxil m;ﬂ "'xmvm‘

A first computation yields

]

@1y m)* = J J T EE A gy L L)L @+ L) by dy,

= j e~ (@, + )i dt

i=1 Y
o ¢

=11 ( 2. (Vi)x?‘i (e‘"‘2 185 dt)
i1 \ w0 \%/ ° J .

%+ Bi=r
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Obviously it suffices to define the summation on even ;. For

such B;
e——ntz tﬁi dt = ﬂ—(Bi'F 1)/2 P( ‘_3_"_;-_1)

é;—as

holds. Consequently

T Z ¥

L arm)k — ( ( i)I‘ i + ‘Bi—bx?‘i)

i ) I__I %820 \ % Bt !
ai+2Bi=v;

2 ) (I ) DB+ ) T+ )¢

K

i=1 o;8;>0 (

i+ 2Bi=»;
X Bt tBm)—im x’iﬁ o xm“m,

thus
y — , %
UHX) = D iy, @ 0,
= D bogay OB 83,7,
with
m
S &y + 2 Bl 19" + 2 Bm X
L Ol aal+2}91...dtm+2ﬂm % e %,

XD(B, + 3 ...T'(B,, + %) = rtoetBam)—mf2

Since %(X) is assumed to be an algebraic form of degree k& we
need only to consider those systems of numbers 8,, 8,, ... B,, for which

% 4 o, + 208, + ... + B,) =k

In particular we obtain, for a, 4 ... + o, =k —2,

m
1
b“x---“m = 471 z (“i + 2) (ai + 1) a“x‘--“i—l“i+2°‘i+1---“m'
i=1

Now #*(X) = u(X) implies

balaz_,,:xm = 0, fOI‘ “1 + Ot2 + cee +am = ll: —_— 2.
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These relations first mean that

17 az
72 UX)
i=1 ¢

= z (Z (“ + 2 (“1'—*“1) aal...ai_ldi+2ai+1...am)x%" x%“z“_wm‘xm = 0.
So Theorem 6 is proved.

6. Angular characters. In the space of all positive real matrices
Y =Y"™={(y,) we can develop a theory of invariant linear
differential operators analogously to that of the X-space. Since we
meet a rather simpler situation in the Y-space we need now only brief

considerations. Let 5%, = (6”,, 5,

as w=v or u#v. Q denotes a linear differential operator, i.e. a

) with e, =1 or } according

polynomial in the elements of % with functions of Y as coefficients.

We call Q = F( Y, %7 ) invariant if

F(Y[U], éa? [U'-l]) _ F( Y, a“af) for |U[£0  (95)

holds. Let % be again the module of all linear operators, I, the
module of all operators of degree < & and R the ring of all invariant
linear operators. (40) is still valid now.

)
TueorREM 7. The tnvariant operators o(Y éiy) h=12...,n)

AN
and likewise o(( Y %) ) , (h=1,2,..., n) form a basis for the ring

R of all tnvariant linear operators.

In order to prove this -theorem, which was first announced by
A. Selberg, we choose a symmetric matrix W = W™ with variable
elements. We assume that they are commutable with those of Y.

Let Q=F ( Y, % ) be invariant. Then we have with regard to (95)

F(Y, W)= F(E,(W[U'D V], (96)
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if Y[U,] = E and V an arbitrary orthogonal matrix. The right side
of (96) is a symmetric polynomial in the characteristic roots of
W[U’;1], consequently also representable as a polynomial in

o(WU TN =c(YWP =o((YW) ) (h=1,2,..., n).
Let
F(Y,W)=p(YW),...,o(YW)) =p(a(YW), ..., ((YW)')")

be such a representation. If Q is of degree k, we obtain on the
strength of (40)

mo 413 A
Ep(a(y %)a((y%) ) )(modam,,_ )

Our assertion now follows in the usual manner by induction on k.

Let Y, = Y~ Introducing d¥, = — ¥~ 'dY Y~ ! in

d¢=a(dya%,)¢=a(dyl%_l)¢,

where ¢ denotes an arbitrary function, we obtain

) gl )
oY ( ¥ia oY,

Thus the substitution ¥ — ¥ ~! maps the ring R of all invariant
linear operators into itself according to Theorem 7.

The space defined by ¥ > 0 can be considered as a Riemannian
space relative to the metric introduced by the differential form

ds®* =o(Y 1 dY)2
Let w denote the invariant volume element on the determinant

surface |Y|=1. Further let , be a fundamental domain in
Y > 0 relative to the group of transformations ¥ — Y[U] with
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unimodular U. For instance we can take for ¥, the domain of
all reduced positive ¥ in the sense of Minkowski. Let 8, denote
the intersection of {§, with the determinant surface | Y| = 1.

A function v(Y) shall be called an angular character if
1. »(Y)is holomorphic in ¥ > 0 and homogeneous of
degree 0,

2. v(Y) is an eigenfunction of the ring R of all
invariant linear operators,

3. v»(Y[u]) =v(Y) is valid for unimodular U,
4. w(Y) is square integrable over B, so that

'[ oY) v(Y) w exists.
By

In applications we replace the fourth condition first of all by the
sharper one saying that »(Y) is bounded. Since the metric introduced
in¥ > 0 and also the ring R are invariant relative to the substitu-
tionY — Y1, it is easy to see, that with v(¥) also v*(¥) = o(¥ 1)
represents an angular character. But in general v(Y) and »(Y*) be-
long to different eigenvalues. This may be mentioned without proof.

Here we note yet an integral formula, a generalization of the
Euler gamma-integral, which was proved already elsewhere [5]:

e—2no(1’Y) ’U( Y) l Y ls—(n+1)/2 [dY]
Y >0

= (2m) "™ (s — o)) T(5 — &) ... [(s — at,)) ™= DI y(T=1) | T'[~5. (98)

Here it is 7' = T™ > 0, v(Y) a bounded angular character, [dY]

= II dy,, and «;, a5, ..., a, a set of constants which are uniquely
%4

determined up to the order by the eigenvalues of »(Y). We have to
assume Re s > (n — 1)/2.

7. Zeta-functions. In the sequel u(X) denotes a spherical fune-
tion of type (m, n) and degree 2kn and v(Y) an angular character.
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We assume that »(Y) is bounded and #(X) a non-constant eigen-
function of the Gauss-transformation so that in particular & > 0.
The theta series (85) can be rewritten as

NY, 8; u) = Z a(T, 8; u) e~™FD, (99)
7>0
with
o(T, 8; u) = Z wWQG), (100)
S[G?=T

where the finite sum must be extended over all integral ¢ with
S[G]=T. Weintroduce y and ¥, by ¥ =yY,, y>0,|Y,| =1
and apply the Mellin transformation to the theta series, this being
considered as a function of y, i.e. we form the function

n(s; Yy, S; u) = J My Yy, S; u) g™ dy.
0

For brevity we set ¢, = n~t 2°"~1/% denote by {7} the class of all
with 7'(> 0) equivalent matrices T[U], where U denotes an arbi-
trary unimodular matrix, and by e(7') the number of units of 7.
We use §,, B,, w in the introduced meaning. In anology with a
computation carried out in [5] we obtain now

£o(83 S w, v)
=J n(s; ¥, 8; ) v(¥y) @
2y,
_ j jﬁ(yn, 8 w) o(¥,) gt dy w
By, 0O
= ¢, | Y, S;u)o(Y)| Y [~"tVE[1Y]
Sn
=, a(T, S; u) J e-—no(YT) Q)(Y) I YIB—(n+1)/2 [dY]
>0 ot

un
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_— z a(T S ’M) j e~ mo(¥ Tlu]) ,, )IY!'_("+1)/2 [dY], (101)
(T}

where U has to run over all unimodular matrices. The addition
of all integrals and the application of the integral-formula (98) yield

50(8; S; u, ’U)

. oT, Su)y {  _.wm o~(nt1)2
=20, > 4000 J ¢TI (V)| Y| [4Y]

{7} >0

= 72;1’ (2m )" =DM 7= D(s— o) T(s— aty) ... [(s— o) (s, S; u, v¥)

with

(T, 8; u) v*(T 1
B(s, S; u, v*) : —, v¥(T) =o(T77). (102)
{Z) ()T

The summation over the classes { 7'} can be replaced by a summa-
tion over T' e {f,. According to the signification of a(T', S; u) we get

o) — w(@ @) v*(S[G))
bo i) = 3, @ stenr v
S[@leFn

where & has to run over all integral matrices such that S[G]e,.
A set of matrices of this kind can be obtained by forming the
products G = G* U, where G* must run over a full set of integral
matrices of rank n, such that each two are not right-associated,
and U over a full set of units of S[G*] provided that G* is given.
Two matrices are called right-associated if they differ by a uni-
modular right factor only. Writing G*U in place of G we see that
the general term in (103) does not depend upon U, thus we obtain
finally, after writing again @ instead of G*,

e, ;0,09 = > WD Z LT (104)

G

where the sum must be extended over a full set of integral matrices
G of rank n, such that each two are not right-associated.
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A functional equation for the functions &(s, §; %, ») and
(s, S; u, v*) can be obtained by decomposing the integral
over g, in

£ (s, S;u,v) =c, j HNY, S w)v(Y) | Y P~"tD2[dY]  (105)
%n

into two parts corresponding to the decomposition of &, by
the determinant surface |¥|=1. We assume that , is invariant
relative to the substitution ¥ — Y. In that part of the integral
which must be extended over the intersection of ¥, with | Y| < 1
we substitute ¥ — ¥ ~! and apply the transformation formula.
Observing that | ¥ |~®*1/2[d Y] is invariant relative to the substitu-
tion ¥ — Y ~! we obtain the following representations

£o(s, S; u, v)

= c,,.\- HNY, S; u) o(Y) | Y -2 [dY] +
Yegy
1¥]>1
o | SOFL 810 vH(1) | T e (27
Yegy
1¥I>1
=c, J{ﬂ(Y, S;u) v(Y) | Y+

YeGn
1¥j=1

F(—1f" |87 HY, 875 u) v¥(Y) | X "+ Y |~ DR [4 Y],

All these expressions have first of all a meaning only if the real part
of s is sufficiently large. The last integral however represents, as
can be seen easily, an entire function of s. So the analytical con-
tinuation of ¢(s, S; u, v*) into the whole s-plane is performed. It is
obvious that ¢(s, S; u, v*) is an entire function of s. The integral-
representation of £y(s, S; u, v) yields directly

Ex(m2 + 2k — 5, ; u, 0) = (— 1) |87 £y(s, S5 u, 0%). (106)

The replacement of » by v* and consequently v* by v may carry
OVer a;, &g, ... &, into B, B,, ... B,. Introducing
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Vi —nn—1)/4 . *
f(S, S; u, ’U) = —E’ (2 77) 50(3: S: U, v )

we obtain finally the following result.

TuroREM 8. Let u(X) be a spherical function of type (m, n) and
degree 2kn, v(Y) an angular character. Assume that u(X) is a non-

constant eigenfunction of the Gauss-transformation and that v(Y) is
bounded. Then the Dirichlet series

wWQG) v (S[G])
8, S; u, v) = L
o 5 = 2 M
where the sum must be extended over a full set of integral matrices G
of rank n such that each two are not right-associated, represents an
entire function of s. It satisfies the functional equation

Em|2 + 2k — s, S; u, v) = (— 1" | 8|72 (s, 871 u, v¥)

where

£(s, S; u, v) =™ (s — By) T'(s — By) ... I'(s — B,) P(s, S; u, v)

with certain constants By, Py, ..., B, which depend only wupon the
eigenvalues of wv.
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MODULAR CORRESPONDENCES AND THEIR
REPRESENTATIONS

By MARTIN EICHLER
[Received November 21, 1955]

IntrODUCTION. In the works of Hecke, Petersson, Maass, and
other modern writers certain linear operators 7', have been used to
find relations between the coefficients of modular forms and of
corresponding Dirichlet series. Although this idea has already
brought rich success we have to bear in mind that the operators
T, are nothing but special representations of correspondences of
special algebraic varieties. So the theory of Hecke’s 7', is only
one section of a vast branch of number theory whose limits can
scarcely be surveyed today.

The correspondences which are represented by Hecke’s 7', are
the so-called modular correspondences. The latter are the principal
tool in the theory of complex multiplication. Moreover they have
been used in proving almost innumerably many eclass number
relations of definite binary quadratic forms.

Common to all these theories is the fact that the general concept
of a correspondeénce assumes definite shape as a connection between
certain subgroups of the modular group. This observation leads at
once to a vast generalization of modular correspondences. One has
only to replace the modular group by other appropriate groups.
Examples of such groups are the groups of units of an order of a
central simple algebra over an algebraic number field or of certain
quadratic forms. Thus the theory of modular correspondences
becomes in the first line a part of pure algebra and number theory,
while function theoretic aspects are shifted to the second.

This paper was presented to the International Colloquium on Zeta-functions
held at the Tata Institute of Fundamental Research, Bombay, on February
14-21, 1956.
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In this paper we wish to put forward this idea of modular cor-
respondences although we shall restrict ourselves to the very
special case of units in a quaternion algebra. The possibility of
generalizations and certain inherent difficulties will be pointed out
at the end. Even under these restricting assumptions there remain
enough of open questions, both of an elementary and a deeper
nature, the solutions of which promise many results and applica-
tions in number theory.

Our chief endeavour will be put to the task of determining the
traces of the representations of the 7',, and in some of the cases con-
sidered we have been successful. In these cases the traces turn out
as certain sums containing the class numbers of definite binary
quadratic forms. This fact gives, at the same time, an explanation
of the class number relations which were, up to now, barely connec-
ted with the rest of number theory. Knowing the traces of, and the
multiplicative relations discovered by Hecke between, the T,, they
are now fully determined, and so are the Fourier developments of
some modular forms (see the example in [6]).

1. The arithmetical and geometrical background. Let @ be an
indefinite quaternion algebra over the field of rational numbers and
¥ an order of rank 4 in Q. A left ideal m with respect to &
is defined by means of its p-adic extensions:

M=QnMynMn it 0..,m==,a,

where, for each rational prime p, ¥, is the p-adic extension of ¥,
and «, is a non-singular element of @,. Almost all «, have to be
units. All left ideals belong to a finite number 4 of classes. In many
cases which are the most interesting with respect to applications,
the class number A = 1.

We shall always make the assumption that the p-adic extensions
%, are either maximal orders of @, or isomorphic to the order of
matrices (au “12) with rational p-adic integers a;, and a, =

Q21 Bo2
0mod p. Orders of this kind have been called by the author
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orders of square-free level (Stufe), their arithmetical properties
have been sufficiently investigated as to working out the theory
in all details [6]. Especially the class number is A = 1. We shall
call ¢, the product of all p for which @, does not contain divisors of
zero, and g, the product of all the other primes dividing the diseri-
minant of €. The discriminant of T is then D =¢2q2.

Let K be real quadratic splitting field of k. The elements of Q
can be represented by two-rowed matrices with elements in K. A
special case of @ is the algebra of all two-rowed matrices with
rational coefficients, and a special case of ¥ is the order of all
two-rowed matrices with integral rational coefficients. The group of
units of norm 1 of this ¥ is the modular group.

Now let = be a complex variable with positive imaginary part.
To each unit e = (211 212) of T of norm 1 represented by a matrix
21 622
in K (we shall always identify elements of @ and their matrix re-
presentation) there corresponds a transformation of the complex
upper half-plane

611 T + 612- .
€91 T -+ €g

T—> €0T. (1)
These transformations form a representation of the group I of
units of & of norm 1 which is a faithful representation of the factor
group I'y =1 /{1, — 1} of the invariant subgroup formed by the
two elements 1 and — 1 in U. The starting point of all our con-
siderations is the fact that this group of transformations is properly
discontinuous in the upper half-plane. There exists a fundamental
domain bounded by a finite number of arcs of circles perpendicular
to the real axis. In the following the half plane will be considered as
the Poincaré model of the hyperbolic plane, circles perpendicular
to the real axis are the straight lines. Now the point sets (X means
the set theoretical union)

P= Z eor =107

sel’'g
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form a closed surface Sy which has even a hyperbolic metric
apart from the elliptic and parabolic vertices. The latter have to
be added in order to make Sg a closed surface, in case there are
any (only if @ contains divisors of zero).

The topological genus g of Sy can be calculated by means of the
residue at s =1 of the zeta function {(s) of T [11, 3]. Because

Us) = Lo(29) L2s— 1) | [ —p'=*) [ [ (1 + 2272,

Plgy ola,

where {y(s) is the zeta function of Riemann, this residue is

2

R=Z]]a-p] 0+ —IWDH p—1 ][ Je+y

plgy plgg Py plgy

(D is the discriminant of ¥). On the other hand one can show

that R is 1 ﬂD times the hyperbolic area F of Sy, therefore

H(p—l Hp—}—l).

plql lay

According to a well-known theorem of Gauss and Bonnet this

area is
1
=dnlg—1)+2 1—-),
Fetnlg—1+2m ) (1-2)

the sum to be extended over the vertices of a fundamental domain,
where n is the order of the vertex (n = oo for parabolic cusps).
There occur only vertices of orders 2, 3, and oo, the latter if and only
if @ contains divisors of zero. The numbers of elliptic vertices of
orders 2 and 3 have been calculated by R. Hull [12]in the case ¢, = 1;
his calculations can immediately be generalized by means of a former
paper of the author [7]. These numbers are

10-GOIC+(5)

1_[(1 — (_?3)) I (1 + (‘73» respectively.

»lyy Plgy
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The number of parabolic cusps is 0 if ¢, > 1, otherwise 2*, where « is
the number of prime divisors of ¢,. Comparison of both expressions
of F yields now

ATl GO (G)-

Fara
_%ﬂo_(:lﬂg))E(H(:p?)) +
+ 1—121;[(1)~ l)g(p+l) - l Znirfilzzl. (2)

In the case ¢, = 1 this formula has been proved by Hecke.

2. The modular correspondences. Let T, T’ be two orders of
rank 4 in @, and T* =% n T’ their intersection. The groups of
units of norm 1 of these orders will be denoted by U, I/, U*. U*is
a subgroup of finite index in both U, U’. The same is true for
the transformation groups Iy, I'g,, I'ge. Let

P&t=dz'1_‘1'€i" Py = ivae

=1 i=1
be the developments into left cosets.

Now Sz, can be considered as a covering surface of Sg of d
sheets by the definition that each point I'y. O 7 of Sy is covered
by the points I'qs O (g0 7) =IO (i =1, ..., d) of Sgz. One
easily checks that the topological requirements of a covering
surface are met. Ramifications are not excluded. Two points
Ige O (; 0 7), I'ga O (g, O 7) are equal if and only if there exists an
e* € 'y, such that ¢*¢ e;107 = 7. Thus 7 is a fixed point of
the substitution e =e* ¢ ;1. If 7 lies in the interior of the
upper half-plane, € has order 2 or 3, and, Sg, is ramified in I'zs O 7
of order 2 or 3. If 7is a parabolic cusp, € has order co, and Sg. is
ramified of order n, where # is the least exponent for which " € I's.
We make the convention once and for all that ramification points
of 8;. are to be counted with the multiplicity of the ramifications.
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Thus there lie exactly d = [I'y.: I'ge] points of Sg. over each point
of Ss:'.

Conversely I'y. O 7 is called the trace in Sg. of each of the points
I‘SI‘ O Ei‘ in Si‘-

Now the set-theoretical union of the traces P; in S; of all

points P* of Sq. covering a given point P’ in Sy is called the
geometrical correspondence of Sy to S3. We shall denote it by

d
Oy (P) = D P, (3)

i=1
This is a function whose arguments are points P’ of 8¢, and whose
values are finite sets of points in S;.

The only interesting case is T’ =»Tv~! with an element
veQ. Now I'y =vIyv~%, and the application of the substitution
representing v maps Sg onto Sy :

vOoP=vol'yor=T¢O0vor=P. 4)
The multiplication of (3) and (4) yields a function

d
O(P) = Cyg WO P)= > P, (5)

i=1

which is a (geometrical) correspondence of Sy to itself.

Functions of points of S; whose values are finite point sets in S,
howsoever they may be defined, can be added and multiplied by
the following definitions : for

di;
CuP) = D pb (k=1,2),
i=1

put

dl iy
O\ (P) +Co(P) = D pl + D P},

i=l =1

Ci(P). C(P) = 0, (p)).

=1
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As readily verified such functions form an associative ring with an
unity element, the latter being the identity mapping C(P) = P.

Especially the correspondences of Sg to itself defined above
generate an associative ring with unity element,.

Obviously every point P’ of Sy occurs among the P; on the
right hand side of (5) for some P on the left. Let P';,..., P’y be all
P for which a given point P’ occurs in the point sets C(P). Then

e
C*¥P)= » P 6
(P) Z ; (6)
is also a correspondence, the conjugate of C(P). C*(P’) can be
derived from Cg,. (P) as C(P) had been derived from Cgq(P);
therefore the number d’ is finite. The following equations

(Cy(P) + (Co(P)* = C* (P) 4 %3 (P)

7
(CL(P). Oy (P))* = 0% (P).C*,(P) N

show that forming the conjugate is an anti-automorphism of the
ring correspondences; it is called the anti-automorphism of Rosati.
Equation (7) holds whenever C(P) and C*(P) are finite point sets
defined for all P; the proof is elementary.

Let & be an order of square-free level (§1) and n & mnatural
number. Furthermore let ¥¥ be an integral right ideal for & of norm
n which is not divisible by a divisor of g. Such ideals are called
primitive. The left order of v T is T’ =»Tv~1. We now consider the
groups U, W =»Uvr~ L U¥=U NN of units of norm 1 of &, T’,
T* =T nT and the corresponding transformation groups I,
Iy =vlgv T If

d
Iy = Z | PO (8)

i=1

the correspondence of Sy to itself defined above is

d
Cfgo7)=Cpgwlgor) = Z Igevor. 9

i=1
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We now want to show that T ¢; » (¢ = 1,..., d) are all integral primi-
tive left ideals of norm =, and that they are all different from
each other. If T ¢;v =T ¢, v, ; g ' € I'y, and therefore ¢; ;! € Iy,
contrary to (8), unless ¢ =%. All ideals ¥ ¢; v correspond in a unique
manner to all ideals »(T ¢; ¥) v~ =» T ¢; =T’ v ¢;, both are integral,
primitive, and, of norm %n. It will be shown that the latter
exhaust all these ideals, if it is proved that each integral primitive
quaternion v' € T’ of norm » can be written in the form v =¢' v e,
e and ¢’ units of ¥’. This fact is well known in connection with the
theory of elementary divisors if &’ is the order of all two-rowed
matrices with rational integral coefficients. Under our more general
assumptions the proof can implicitly be found in the proof that
the ideal class number b =1 [4,5].

For the sake of brevity the reader is requested to content
himself with this remark.

Thus (9) can also be written as follows :
d
OC;07) = 0,1z 0 7) > Tg%0(lz0), (10)
i=1

where the v, represent a full system of integral primitive left
ideals Ty; of norm n. Therefore C, depends only on the number
n. (10) is the primitive modular correspondence associated with n.
If the v, represent all integral right ideals of norm 7, the sum on
the right in (10) is the (general) modular correspondence associated
with n; it will be written as 7T, and can be derived from C,

by means of 7, = £ C,,_,. In the following we shall only refer to
t2in
the definition (10) of modular correspondences which can even be

abbreviated
n
T,= r's v, (11)

the sum to be extended over the system v; representing all integral
left ideals T v, of norm n. The object of the preceding considerations
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was to connect the modular correspondences with geometric and
more general ideas.

The 7', are conjugate to themselves. Indeed, according to (10), to
a point T of the upper half-plane there correspond all points » O 7 of
the upper half-plane with » € T, n(v) = n. Because vv = n(v) = n,
to 07 there corresponds especially vO(FO7)=(@9)Oor =1
Since ¥ € E, n(p) = n,
T, = T*,, (12)
An essential feature of the theory of modular correspondences
is the equation
7,7T,=T,, (for(m,n)=1), (13)
and similar formulas which will be discussed later. If y;, v, represent
all integral ideals of norms m, n respectively,

T,(T50 7). ToTy0 1) = > Ty u% O (Tg O w);
.k

here the products y, v, represent all integral ideals of norm mmn,
which proves (13).

Let p be a prime not dividing ¢, g, (or the discriminant of ¥) and
m=p,n=p. Now

T)l507) T, {L507) = > Ty p%0Tz07),
1,k

where the u,, v, have the same meaning as above. ZTuy, are
integral ideals of norm p"*!. Because an integral ideal of prime
power norm is uniquely decomposable into prime factors if it is
primitive, there occur, among the Tpy, all integral primitive
right ideals of norm p’*! exactly once. But Tuw, may also be
imprimitive, which is the case if v, = fi; v}, v, €T, and then y; v, =
p v Since the number of integral left ideals T p; of norm p is
p + 1, there occur, among the T g, v, all ideals T, v'; of norm p™+*
(p + 1) times each. Therefore

Tpr . Tp = 0p1+1 + (P + 1) Tpr-—l’

2

(p+1) ’1’1’,_1 means Tyr—1 + T,/ + oo + T2 (p + 1 times).
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Evidently
Tpr+1 = Opr+1 + Tpr—la
therefore
T,T,=T,.,+p T?,_l. (14)
From (14) we can derive by induction on s [8],
min(r,s)
T, T,= z PT i (0401 02). (15)
t=0

For primes p dividing q, there exists exactly one integral ideal
of norm p", therefore

Tpr Tps = Tpr+v (.plql) (16)

For primes plg, multiplication rules analoguous to (15), (16) are
more complicated. However, for a given r there exists exactly
one integral ambiguous ideal 7% = T # of norm p". The modified
correspondence T’y defined by

ITgor) =Tygno(lz07), n(m) =p (17)

satisfies
Tgr Tga = Tgr+a’ (pIQ2) (18)

In his papers on the representation of modular correspondences
by modular forms, Hecke employed chiefly these modified
correspondences.

In the next paragraphs we shall study various representations of
the ring 1 generated by the modular correspondences. Every such
representation R(111) gives rise to a special zeta function

Lals) = D R(T,)n*
n=1

which is, more precisely expressed, a matrix whose elements are
certain Dirichlet series. The most simple representation is a one-
rowed one: R(T,) = d, (see (11)), the number of integral right ideals
of norm n. In this case {y(s) is the zeta function of T.
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In this connection the meaning of (13) is that {g(s) can be written
as an Euler product

L) =11 i‘, RT,) 7 = [ | Lrals),
» r=0 »

while (15), (16), (18) make certain statements on the nature of the
factors {p,(3).

The chief task in the following will be the determination of the
traces of the representations R(11), because the traces determine the
representations uniquely. For some R(m) the calculation of the
trace leads into topological considerations, for others the traces
are not yet known.

3. The representation of the modular correspondences as endo-
morphisms of the Betti groups. The geometrical origin of the
concept of a correspondence makes it clear that the property of an
r-dimensional chain +* of being contained in the boundary of an
(r + 1) dimensional chain +'+!is preserved by the modular corres-
pondences. In other words, the incidence relations

Bd(*Y) = > P i
)
for a simplicial dissection of Sy entail

BA(T,(#5) = D B Tlrh)-
k

Consequently 7', maps r-cycles onto r-cycles, and boundaries of
r-chains onto boundaries of r-chains. So the 7', are representable
by certain endomorphisms R’(7T,) of the rth homology groups
(which, in our case, coincide with the Betti groups), r =0, 1, 2.

Let
tr(T'n) = trace (RT(TH)) (19)

be the traces. Evidently
&(T,) = d,, (20)
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which is equal to the number of integral left ideals of ¥ of norm .
Equally

2(T,) =d,. (21)

t(T,) can be calculated by means of the Lefschetz fixed point
theorem [13]

tO(Tn) - tl(Tn) + tz(Tn) :f(Tn)’ (22)

where the right hand side is the number of fixed points of T',, that
is the number of points P of S; which have the property that at
least one point of the set 7',(P) is equal to P. These fixed points
have to be counted with a certain multiplicity which is defined as
follows. The mapping 7,(P) = T',(I'y O 7) = Z Ty O 7; is in general

a conformal mapping. In the neighbourhood of a fixed point
I'; O = we shall see in §4 that each of the mappings I's07—I'g O 7;
can be written in the form

7 =10 4 o(r — 7O+ gy(r — TNEFVE 4 e #£ 0, (23)

where 7 and 7, mean local uniformizing parameters, and where b is
the common denominator of all exponents occurring in (23). Now
the multiplicity of P as a fixed point is min (a, b).

With the multiplicities of fixed points defined in this way (22) is a
theorem on mappings of Sy onto itself which are conformal at
least in the vicinities of fixed points (the points themselves being
excepted). We shall give a simple proof under these assumptions.
However, the multiplicities can also be defined by purely topological
means, and (22) is a special case of a well-known topological theorem
of Lefschetz. As the rather lengthy original proof has not been re-
produced in elementary text books on topology the following proof
may be appreciated though it makes a superfluous assumption.

At first we cut up §; into a finite number of triangles 77, the
fixed points being among the vertices. The 7% can be assumed to
have the following three properties.
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1. The image 7,(2) consists of a number of simply connected
domains 75, bounded by Jordan curves without double points.
Consequently the images of the sides 7} of the 77 are open con-
tinuous curves. This property is ensured by placing vertices in
each ramification point with respect to Sy of the surface S3., and

by making the ¢ sufficiently small.

2. All the images of each vertex are situated in the interior of
gsome other triangle, except for the fixed points.

3. All images of all points of a 7% lie in such triangles 72 as

have no point in common with 72, except for those 72 which

contain a fixed point.

These three properties remain valid if the 72 are cut up into

i
smaller triangles, which will be necessary under certain conditions.

We start the proof of (22) by defining a linear mapping ¢, of the
r-chains 7} having the same effect on the r-cycles as 7',. If

T(7) = D T (24)
k

where the 77, are simply connected domains (r = 2), ares of curves
(r = 1), or points (r = 0), we put

$ulr) = S(Tu(7) = D $(7o), (25)
k

with an auxiliary function ¢ of arbitrary simply connected domain o®
on Sy, of curves o', or of points o®. The values of ¢ will be r-chains
on Sy consisting of linear combinations of the 7Z or their sides or
vertices.

The definition of ¢ differs according as o contains a fixed
point or not. At first we assume the second. ¢ is an additive
function:

$(o] + ob) = $(a7) + ¢(a3). (26)
In detail

$(o?) = % Z & 755 (27)

where ¢; is the number of vertices of 77 lying in o®,
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0, if o lies entirely inside of a 7, (28)

$(o") =

3(r)'+...4+7,"), if o' crosses one boundary once between two r%;

the meaning of 7,’,..., 7,/ is shown in Figure 1.
d’(”o) =13 (1'2,1 + "'2,2 + "'l?,s), (29)

where p; are the vertices of the triangle 7} in which o lies.
Of course, it has to be verified that (27)-(29) are consistent with
(26), which is almost trivial. The definition of ¢ is not applicable
if the boundary of o" passes through a vertex of a 7% our
definition will prove sufficient in later applications.

The function ¢ is commutative with the formation of the

boundary :
$(Bd(e") = Bd (¢(0")). (30)

Because of (26) it is sufficient to prove (30) in the following
cases: (a) r =2, 0> does not contain a vertex, and is contained in
one or the union of two % (b)r =2, o% contains exactly one
vertex; (¢) r =1, and conditions of Figure 1 are satisfied. In all
three cases (30) is readily verified.

We now prove the following lemma under the additional assump-
tion that o' does not meet a fixed point. Later we shall show
that this assumption can be dropped.
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Lemma 1. For a closed curve o' without double points, ¢(o')
is a cycle homotopic with ¢, if the 77 are sufficiently small.

Proor. We make the 77 so small that all 72 through which o
passes form a stripe without double points. The description of
$(o?) is more easily achieved by an example shown in Figure 2:

95(01) = % (P P,) + (P2P3) + o (P P) + (P'2P’3) + ..
+ (P'yPy) + (PP’ )+ (P’ Po) +(PoP'y) +(P'sPy) + ... ],

and the lemma becomes evident. The proof under the most general
conditions can be left to the reader.

Fie, 2

We now supplement the definition of ¢ under the condition that
the boundary of ¢” contains a fixed point P; this will be general
enough for our purposes. With respect to the additivity relation
(26) it will suffice to define ¢ for such ¢" as are contained in the
union of all the 2 having P as a vertex; this union is called the
star of P. Furthermore, with respect to (26), we can assume without
loss of generality, that of lies inside the star of P and that a o
has no other points in common with a 7; except P. Under these
conditions we put

WA =3 > g7, (31)

7

where ¢; is the number of sides of % originating from P which

pass through o®. Furthermore,
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¢(Ul) = 1‘("'},1 + ”'.%,2): (32)
1

where 7, are the sides originating from P of the 7} through

which o' passes. Lastly
$(P) = P. (33)

Again we have to prove that (31)-(33) are consistent with (26)
which is almost trivial. Moreover we have to verify (30) and to
ascertain that Lemma 1 remains valid if ¢ passes through P. Both
are quite easy and can be left to the reader.

The function ¢ being defined in all cases in which we want to
apply it, we now proceed to the proof of (22). From Lemma 1 and
(24), (25) follows immediately

T,(0") ~ ¢u(0) (34)

(~ means homologuous) for a l-cycle ¢’(r = 1) consisting of some
sides of the r2. The assumption of Lemma 1 that o' be without
double points can be dropped because ¢! could otherwise be pieced
together of curves without double points. (34) holds as well for
0-cycles (r = 0) which follows from (29), (33). Lastly (34) holds

for r = 2 in consequence of (27) and (31).

Because of (34) we may replace T, by ¢, in (22). Now ¢, is a
linear function operating in the spaces of linear combinations of the
2 of linear combinations of the sides of the 7%, and of linear

?. From (24), (25) and (30)

Ti»

combinations of the vertices of the =
follows that it has the property

$,(Bd(7})) = Bd(g, (7). (39)

(35) is the condition under which the Euler-Poincaré-Hopf formula
is applicable, stating that the left hand side of (22) is equal to that of

80(¢n) - 81(¢n) + 82(¢n) =f(Tn)1 (36)

where s'(¢,) is the trace of the linear transformation 7} —-¢,(7]).
The final proof of (22) or of equation (36), equivalent to (22), will
now consist of the calculation of the traces s'(¢,). Because of the
assumption 3, made at the beginning, we need only consider the
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effoct of ¢, on the simplices 77 belonging to the stars of the
fixed points.

In the neighbourhood of a fixed point P = 7° the mapping
7} — 7}, is effected by the function (23). This entails that the
star of P is mapped b times on a Riemann surface of a sheets
lying over the neighbourhood of P, the ramification (of order a)
being at P. If a >b, or a = b and |c¢] < 1, the image of the star of P
lies entirely inside of the star of P (case 1). If a > b or a =b and
|¢| > 1, the image of the star of P lies entirely outside the star of

P (case 2).

We treat the third case a =b, |¢| =1 first. The mapping is
approximately a rotation about P. We now subdivide the star of
P into sectors (the sides 7} of which need not be straight lines)
which are so fine that the images of each side =} falls into a sector
whose both sides differ from 7}. So we get s'(¢,) = b, s'($,) = 0,
s%(¢,) = 0 what concerns the star of P. The first term is explained
by the fact that P is mapped b times on P.

In both cases when the image of the boundary of the star of P
lies either completely inside or completely outside the star of P we
deform the mapping homotopically. A homotopic deformation leaves
the left hand side of (22) unchanged and therefore also the left hand
side of (36). If the 7} are small enough, the assumption 3. made at
the beginning remains valid after the deformation. We chose it in
such a way that almost all images 75 of all 77 are sectors with an
angle nearly 0 at P, and that they lie inside of 7% as far as the
immediate neighbourhood of P is concerned (see Figures 3 and 4).
Only a of the 73, with k # 1 are sectors of an angle nearly 27. This
is always possible if there are enough 72 in the star of P.

We now consider the first case (Figure 3). Because of (31) the
coefficient of 7% in ¢,(7%) is 0 or } according as 7% is a small or
a large sector. Hence the contribution of the neighbourhood of P
to s%(¢,) is @/3. Because of (32) the coefficient of a side i =12)
of 72 originating from P in the function ¢,(7} ;) is 0 or } according
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Fig, 3: a=3,b=2,
(The broken lines show the 77;.)

as ¢ # 1 or 1 = 1. Furthermore because of (28) for each side 7} of 77
opposite to P, ¢(7y) = O or 4 times the boundary of the star of P
minus the side 71 of 72 opposite to P according as 75 is small or
large. Hence the contribution of the neighbourhood of P to s'(¢,)
is (a + 2b)/3. Lastly ¢(P) =b. P, and for the other vertices 73, ; of
7%, ¢ ¢u(Th;) = § times the sum of the vertices of 7. Hence the
contribution of the neighbourhood of P to §%¢,)is b + $b. Conse-
quently the contribution of the neighbourhood of P to the left
hand side of (86) is b = min (a, b).

There remains now the second case to be treated (Figure 4). In
this case the large 73 are cut up into three parts as shown in
Figure 5. Using (26) we find the coefficient of =¥ in ¢,(7%) for a
large 7%, to be 1, For a small 7% it is again 0. So the contribu-
tion of the neighbourhood of P to &($,) is a.
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Fig, 4: a=2,b=3.
(The broken lines show the 77.)

The sides 7}; (j = 1, 2) of 7 originating in P are divided corres-
pondingly into two parts. Now (26), (32) and (28) show that the
coefficient of such a 7;; in ¢,(7}, ;) is 0 or } according as ¢ % 1 or
i = 1. The other sides of the 77 do not contribute to the trace.
The contribution of the former to s'(¢,) is b. Lastly the only
contribution to s%4¢,) is yielded by P, it is equal to b. So the contri-

bution of the neighbourhood of P to the left hand side of (36) is
a = min(a, b).

In all three cases the contribution of the neighbourhood of P to
the left hand side is equal to the multiplicity of P as a fixed point.
Taking the sum over all P completes the proof.
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Fia, 5

(The broken lines show but one 72, the dotted lines show how it is to be cut up into
three triangles,)

4. Continuation. Explicit values of #,(7,). Examples. Our next
task is to prove (23) and to determine the values of @ and b. If 7%is
not a fixed point of an 5 €'y the complex variable = is a local uni-
formizing parameter, and as 7, =v; O 7 with a certain real matrix v,
@ = b = 1. Thus the multiplicity of such a fixed point is 1.

If O 7% =1+° for an nely, and if 7° lies in the interior of the
complex upper half-plane, we have seen that 5 is of order e = 2 or 3.

Therefore A"19A = (g 2_1), where { is a primitive 2eth root of

unity and A is a complex two-rowed matrix. We introduce
7 =A"107%and find A"*9X 0 7' = (2. 7. Therefore a uniformizing
parameter is 7, small values of 7'¢ describing the neighbourhood of
7%. Now let 7° be a fixed point of the substitution v; occurring in
(11): »;0 7° = 7° Because of 50 7° = 7° we find
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v, =U+ Ty (37)
. . . . %0 v 0
with rational diagonal matrices U = ( 0 u)’ V= (0 v ) Therefore
! —_— ’/ u v ’
i=A"1y Ao =q—#l_v—€§-1'r,

and (23) holds with ¢ = b = 1. The multiplicity of 7° as a fixed
point is again 1.

Lastly let 7° be a parabolic cusp. This happens only if the algebra
Q contains divisors of 0. A local uniformizing paramter is e®74°7,
A a certain matrix with rational coefficients depending on +° and
the group. In this case detailed investigations are necessary, which
have been carried out for the type of groups I'y which are
considered in a former paper [7].

In the same paper the right hand side f(T',) of (22) has been
calculated. The essential point was the fact that, to each class
ev;e~! with a given »; having a fixed point in the complex upper
half-plane and all e e, there corresponds exactly one fixed point
P=T307%0f8;. Indeed,if ,07% = 1% ev,e?0(c07%) =c0 7"

If now 70 is also a fixed point of an nely, of order ¢ = 2 or 3, v,
and v;n = qv; (see (37)) would yield the same P =TIy 0 7% There-
fore we have to count only one substitution of the set v;4'(f = 0, ...,
¢ — 1). In the actual calculation we may take all these v,y counting
each with the multiplicity 1/e.

There is yet one other point to be observed. If n = m? with an
integral m, one of the v, in (11) defining 7', may be »; = m which
yields the unity mapping m O r = . For this mapping all points
are fixed points, and (22) is not applicable. We now write for (11)

dp?—1
Tor=Topy+ Ty Toaz= D Tavy Ty # T
i=1
T, is the unity mapping, and the traces of 7, as endomorphisms of
the Betiti groups are

tO(Tl) = t2(T1) =1, (T) =y,
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since the Oth and 2nd Betti groups have rank 1 and the 1st Betti
group has rank g = genus of S;.

The final result is [7]

tl(T)—2zt—-zH( {@‘_"‘M_}) x

tin 8,f gy

[T+ {2 M=

P p e((s* — 4 n)f~%)
ql 71‘- 1’
with
0, for 4/n20mod 1,
" n(p_l)n(p-l-l),for v/n=0mod 1, (39,)
plql DIty
ql 7& 19
or
B(T)=2>t— 2+ >t —
:IZ” télzzn
— (8 — 4:’)?/)f h((82 _ 4n)f_2)
Zf },';q;[ (1 + { }) e((sF— 4n)f"2)’ (383)
ql = la
with
0, for+/n3£0modl,
(39,)

ﬂ (p +1) — 2% |y/n], for 4/n = 0 mod,
plqa

%=1
For the understanding of these formulas the following explanations
are necessary : « is the number of (different) primes dividing g,.

The sums £ have to be extended over all integers s, f satisfying
5f

—2vn|<s<2|vn],0< f,(s2—4n)f"2=00r 1 mod 4.

h(d), e(d) mean the class number and half the number of automorphs
of primitive quadratic forms aa® 4 bry 4+ cy® of discriminant
d =b? — 4dac. Lastly
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{d} (g) , the Legendre symbol, if dp~2 =£ 0 or 1 mod 4,

p
1, ifdp=® = 0 or 1 mod 4.
The proof has only been carried out in the case ¢, =1 which
contains the chief difficulty. The generalization does not require
new thoughts.

If g = 0, the 1st Betti group consists of the element 0 only, and
t* (T,) = 0 for all n. This yields class number relations the most
simple of which is obtained by putting ¢; =g, =1:

2 _ —2 0, for 4/n=£ 0 mod 1,
Zh((s i _, S, 7= (10)

< (P —4n)f % v A v/n + 3%, for 4/n=0mod 1,

this is the classical class number relation of the 1st level (Stufe).
The genus can also be g = 0 if ¢; # 1, for example in the case ¢, = 6,
¢s = 1. The class number relations obtained in this way can certainly
not be proved by means of modular functions as (40) can. The
greatest number of the known class number relations may find a
natural explanation in this connection. However, it is doubtful if
this would find much interest.

5. The representation of the modular correspondences in the
module of differentials of the first kind. In this section we shall
study automorphic forms ¢(r), satisfying the functional equations

BB () s () () ene @

which are holomorphic throughout the complex upper half-plane.
This includes a holomorphic behaviour at the parabolic cusps, if
there are any. The holomorphic behaviour at a point ==7° is
defined as follows : let z be a local uniformizing parameter at 7°
z = 0 for r = 7°, then ¢(7) (dr/dz) is a holomorphic function in some
vicinity of z = 0. In the case of I'y being a subgroup of the modular
group the designation of such forms as cusp-forms has been widely

accepted.
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The functions invariant for the substitutions of I'; and having no
other singularities than poles form a field F of algebraic functions.
The Riemann surface of this field is ;. The expressions ¢() dr are
the differentials of the first kind of F. It is known that there exist
exactly g of them linearly independent.

Let ¢,(7), ..., ¢,(7) be a basis of the module of modular forms
having the properties mentioned above. Furthermore let 71, ..., 73,
be a homology basis of dimension 1 of the Riemann surface Sg (for
example a canonical dissection). Now the integrals

417 =, (42)

1

v

T

form the so-called Riemann matrix of F. It has g lines and 2g
columns. We shall make use of the well-known fact that the 2¢
by 2¢ matrix

w

P= (‘_"uv) (43)
v
(the bar means the complex conjugate) is non-singular.

After these preparations we come to the definition of a new re-
presentation R (T,) of the modular correspondences. Employing the
abbreviation used in (41) we can see immediately that X ¢(7) O v; is

. . i
again a modular form, if the v; are taken from (11) the choice of the
v; in the respective ideals ¥, being immaterial. Moreover, as

shown by Hecke, these functions are again holomorphic. Thus we
get a representation of the 7', which can be written as

$:(7) $1(7) 1\T
| = ‘ Po|oT =3 96s( )
¢y (T) ¢g (T) ¢g (T)

or more explicitly, with R,(T,) = (r,(T,)),

Ry(T,). ove (44

[ dn

2.7l T.) $.7) = 4() O T, = > $.(r) O

v=1 i=1i
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There is a close connection between the representations R, and
R'. We start from equation (44) and obtain

i dn
Z TM(Tn) J;‘l’y(T) dr = ; J. ( 17__|_BS:)‘);1 ‘?sﬂ (;::g‘) T,
2

G-

The right hand side can be written as

dn

ZJ.¢(%T+Bi)daiT+:3i

= Ny 8/ yr+8,
X

which is evidently equal to
bidr=3 | dunar sz
T,(r) i
with (r,(T,)) = RYT,). Thus we have proved
By(T,) (w,) = (w,) BY(T,).
Here we may substitute for all coefficients their complex con-

jugates; but we know that R'(7T,) has rational integral coefficients.
Using the abbreviation (43) we then get

(n) O 1
( : RI(T))P P. RU(T,), (45)

which shows that RY(T,) and <I§ = ) are equivalent, because P is
1

non-singular. For the trace t1(T,) = trace of RY(T,) (45) entails
tl(Tn) + tl(Tn) = tl(Tn)° (46)

In the case of I'; being a subgroup of the modular group, RB,(7,)
has real eigenvalues. Therefore R,(T,) ~ I_ZI(T,,), and then R,(T,)
can explicitly be calculated from RY(T,), using (46). We shall meet
an interesting example later (§7).
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6. Arithmetics of definite quaternion algebras. The following in-
vestigations serve as a preparation for further representations
of the modular correspondences which will be discussed in §7 and
§8. In this section @ is a definite quaternion algebra. The other
assumptions made in §1 on the orders ¥ in @ which we are going
to examine remain valid.

The chief features of definite quaternion algebras as compared
with indefinite ones are : (1) there exists but a finite number of units
in each order, (2) the class number of (left or right) ideals is in
general b > 1.

In a former paper[6] it has been proved that, for any two orders
%,, T, of the type described above having the same discriminant,
there exist always ideals 11 which are left ideals for ‘T, and right
ideals for T,: ¥, M = m T, = m. All ideals belonging in this way
to all orders of the same discriminant form a gruppoide G. In the
following we shall only deal with ideals of this G without further
mentioning it.

Let m,, ..., i, represent all classes of left ideals for T,. Then
m;yim(k =1, ..., k) represent all classes of left ideals for T,.
Brandt has introduced the following ideal number matrices (Anzahl-
matrizen [2, 6]) : P(n) = (py(n)), where py(n) is the number of
integral ideals of norm #n and of the form m;'m;p. The sums
% p; (n) are equal to the number d, of integral left ideals for T;
of norm n. We shall now generalize these matrices[8, Ch. IV, p.109]:

Let 7(p) be an inverse matrix representation of the multiplicative
group of all elements p 0 of @ :

r(po) = r(0) r(p). (47)
The elements of r(p) are homogeneous polynomials in the coordinates
of p with respect to some basis of . Therefore
r(tp) = " 7(p), (48)
with a natural number d(r), the degree of r. We shall only deal with
representations of even degree which have the property that
r(—1=r(l)=1 (49)
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Furthermore lot 4 €, ..., 4 ¢ be all units of I;, ¢; being half
their number.

If [, = mitmy p,(v = 1, ..., py(n)) are all integral left ideals for
3, of norm n in the kth class, we now define the generalized ideal
number matriz by

1 o pign
P (n) = “ = Z Z r(€ p,).

The number of rows of P,(n) is k times the number of rows of 7(p).
Because of (49), P,(n) is not changed if some of the €¥ are replaced
by — ®. (This is the reason why representations of even degree
are used only.) Forr(p) = 1 we get the former ideal number matri-
ces P;(n) = P(n).

Our first aim is to prove
P,(m) P,(n) = P,(mn), for (m,n)=1. (50)

Let [;, = m;'m; p, be all integral left ideals for T; of norm mn in
the kth class. As it is well known each [;, can uniquely be factorized
into two integral ideals of norms m, n respectively :

[, =mi'mp,=mimee myimro="0,1". (61

Of course, j, o and = depend on v. Conversely if we take an arbitrary
integral left ideal m;'m; o of norm m for ¥, and an arbitrary
left. ideal o~! ;! 1y, 7o of norm n for o™ §; o, the product is an
integral left ideal of norm mn for T;. o 'm; myro is obtained by
transformation by o from an integral left ideal m; ' 1, 7 of norm
n for ;. The elements o and 7 are determined by p, only up to
a unit € if T; and a unit &P of T, as left factors. Therefore we
write instead of (51), more clearly:

L, =mitm; @ o o7t my ' m, ) 7o (62)

We now arrange all ideals which have been mentioned in the
following schemes: In the first scheme S;, in the ith line and kth
column, we write down all matrices (1/e,)r(e¥ p,,) such that 8, has at
the place ik exactly e, p,(mn) entries. In the second scheme S, we
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write down similarly the matrices (1/e;)r(e o), and in the third S,
all matrices (1/e,)7(e® 7). After the definition of the S; we define
a product S, 8; as follows: for each j, all entries at the place ij of S,
are multiplied with all entries at the place jk of S;. These products

(/e ¢;) "'(f(xj) o) "(G&k) 7) = (l/e, &) r(f()uk) "'59) o)

are arranged at the place ik of a fourth scheme §,. Since = repre-
sents all integral left ideals m;'m, 7 of norm n of a certain class,
and since m; 'nyred? is an ideal of the same properties, the re¥
represent all these integrals ¢; times each. Now, by virtue of (52),
the elements 7¢ ¢ represent the left ideals m; 'm1, p, of norm mn of
this class, each of them ¢; times. Summing up all the entries at each
of the places in 8,..., S, 8; and S, become P, (mn), S, becomes
P,(m), 8; becomes P,(n), and the product of S, and S; becomes the
ordinary matrix product.

(50) is analogous to (13). There holds also a formula analogous
to (14) for primes p not dividing the discriminant of T :

P(p*) P(p) = P,(p**") + p™* 70 P,(p*Y), (83)

d(r) being the degree of the representation #(p). The proof is based
on the same principles as that of (50) and, on the other hand,
similar to the proof of (14). Firstly we have, just as in § 2,

P(pth) = PXp*+Y) + 0" Pp"7Y),

where P *(p°t1) is the matrix corresponding to P,(p**!) formed
with primitive ideals only. Secondly the factorization of a primi-
tive ideal [;, of norm p**! into factors of norm p*and p is unique.
However, if [;, is divisible by p, p 4 1 such factorisations are
possible. Therefore

P,(p®) P,(p) = P*(p**!) + (p + 1) p™ P,(p*~Y).

These two equations yield (53). Eventually, from (53) follows by
induction on #:

min(s,t)

Pr(]") Pr(pt) — Z p(1+d(r))v P,(p"H_Z"). (54)

vee ()



ON MODULAR CORRESPONDENCES 191

The trace of Py(n) = P(n) has been calculated in a former
paper [6]. The proof can easily be generalized, which will be done
in a later publication.

Here we only give the result

tH(Py(n))

2 _ 4n) f-2
:%le_l;[(l——{(i_Tn_L_})x
xl;[(l+{ 4n)f‘ })pf(s;n)i‘_((((:_:%ﬂn (55)

with

0, for /n 3£ 0 mod 1,
" 56)
¢ 1))nwm1—1 l)n 1) for +/n = 0 mod 1. (

Plgy Plg,
The meaning of the symbols in (55) is the same as in (38), and p,(s; n)
is the trace of #(p) for a quaternion p having the trace s and norm
n. As we shall see soon in a special case, {(r(p)) is a polynomial of
degree d(r)/2 in s? with coefficients depending on n. Some similarity
of (38) and (55) in the case r(p) =1 is obvious. It will lead to an
interesting application.

It may be remarked that the P,(n) form a special case of more
general matrices introduced by the author. These generate a semi-
simple ring. Therefore the knowledge of the trace allows the explicit
calculation of the P,(n) once a basis of the ring has been found.

We are specially interested in harmonic representations r(p) which
are defined as follows: let at first ry(p) = (: ’g) (e = a(p), ete.) be

a two-rowed represention in a quadratic splitting field. The coefli-
cients r,(p) of an arbitrary representation r(p) are homogeneous
polynomials in «, B, y, 8. Now r(p) is called harmonic if for all
¢ and k the following differential equations hold:

aZ rik(p) _ azrik(P) = 0. (57)
oo 08 0B ay
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The reason is that the polynomials 7;(p) become spherical harmonics
if the coordinates x,(p) of the representation of p by the Hamilton
quaternions are introduced :

p="2% 4+ 4% + T + 3%, (F=—144+44=0).

A special harmonic representation is given by the linear transfor-
mations which undergo the homogeneous polynomial of degree d
in two variables o; and o, when transformed into o’; = ao; + Boy,
o'y = yo, + 80, Its degree is d. We shall now calculate its

trace. It is
p,(S; /n) _ 2 (d ; 7‘) (;)“d—r-—usr—uﬁu ‘)/u,
U

the sum extended over all r, s for which the binomial coefficients

(d ;L— 7‘), (;) exist. HExpressing By by «8 and n as By = ad — n,

we obtain
pim =3, (157) () (1) -

r,u,t
Because the trace is not changed if (“ ’g
4

another matrix, and transformations are possible which give « an

) is transformed by

arbitrary preassigned value, p.(s; n) depends on n and s only.
Put»ting O =8 — o wWe get
sy m) = Z (d ; r) (;) (Z;) (r ; t) (—n)f (—1)~t? g?dv-2

which must be independent of «. Therefore only the terms with
% =d — 2¢{ can be # 0 and

ism=2> 0 (U () (3) (F25) e o9

r,u,l

For example, if d = 2, p,(s; n) = s* — n.

7. The representation of the modular correspondences in the
module of theta functions. The considerations of § 7 are applicable
only in the case of I'y being a subgroup of the modular group. The
assumption on I'y made throughout the paper mean in this case
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that the elements of I'y are of the form (Z g), a=b=" =d=
q

0 mod 1, g being a square-free integer. A special case has been treated
in [6]. The letter @ will denote a definite quaternion algebra,
while the algebra containing the group I'y will not occur explicitly.

Having defined P,(n) for each natural number n we define yet
P,(0) = 0 (= the zero matrix), if 7(p) # 1, and
1 .
P(0) = (ps(0)), pa(0) = o i) =1,
3

€, being as before the number of units of T,. Now we put
B(1) = > Pyn) ™. (59)

This is a matrix the coefficients of which are certain Fourier series
in 7. We are going to show that the functions defined by (59) yield
a representation of the 7', similar to that of § 6.

At first we have to mention a basic quality of these functions.

As in § 6, the representation ry(p) = (; B ) is introduced. Now

8
for each n, let p run over all quaternions such that w;y'my p is an
integral ideal of norm % of its class and let n = 0, 1, 2,.... Then the

coefficients of &,(r) are

Sulr) = Z Dl B, 7, 8) eFmimmRInmNas~py):
p

where the p;(«,B,y,8) are certain homogeneous polynomials in
«, B, v, 6, satisfying the differential equations (57), in case r(p)
is a harmonic representation. On the other hand, the ideal
m;'my p is integral if and only if p is contained in mi; ' m.
Therefore if uy, ..., u, is a basis of my'm,;, we may write
p=mr + ...+ pr, and a, B, y, 8 are homogeneous linear forms
in the r,. Now

Z&n{; (20 =By = :b%; gty + ot gt = Fylry 1)
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is a definite quadratic form with integral rational coefficients of
level (Stufe) ¢; ¢, So we may also write

+o
ﬁik("') = Z pi’c(rl’ vy 7'4) ezﬂiFik("l:-..,fA)r.
r,=—®

Special attention is due if r(p) = 1. Then, for each p # 0,
Pig (1 ..., 74) = l]e,, and by virtue of the definition above, this

equation stays valid forr, = ... =7, =0.

Both equations for $,(r) show that these functions are gene-
ralized theta functions, introduced by Hecke [10, §6]. They satisfy
the functional equations

a b\ _ (ad — be)ttin ar+b
%o (¢ 4) = Grare % (5

) = O (80)

for (Z’ Z) =1, ¢ =0mod g, g,.

Moreover they are holomorphic with the exception of the parabolic
cusps. However questions of holomorphy may be left aside until
later.

Hecke has shown that, for each modular form ¢(r) satistying
(60) of degree — 2 —d(r),
d

d
= (@ d; — b c;)! T4 (“- T+ b )
T — z = 2 U ¢
$(r)o T, ?S(T) O < (c:T + di)2+d(r) ¢+ d; ’

i=1
a; b,
o= (o 4)) (61)

is again a modular form of the same degree (v; as in (11)). Also
certain properties of holomorphy are preserved by the operator T',.
Here we only want to prove

()0 T, = n=1" P (n) F,(7), for (n,q,9,) = L. (62)

The meaning of (62) is that the modular correspondences can also
be represented in the module of (generalized) theta functions. In
this way, a connection between modular forms and arithmetics of
definite quaternion algebras is established.
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The proof of (62) is quite simple. As it is well known, under the
assumption that I'y is the subgroup of the modular group men-
tioned in (60), the »; constituting 7', in (11) can be chosen as
follows :

m.:(“ b),ac:n,a>0,0<b<c.
0c¢

Because of (13) and (15) on one side and (50) and (54) on the other,
we need prove (62) for n = p = a prime only. For a prime not
dividing ¢, g, we have

d(r)0 T, = Z P () (pt ) g2rivnr y = 4d0) ghwinelp),
n=0

where the term ¢*™™? ig to be cancelled if » is not divisible by p.
This is equal to

8.r) 0Ty = p4 > ((Pypn) +p'+9 Pfufp) ) e,

na=1
where P (n/p) =0 if » is not divisible by p. The right hand side is
equal to (62) with » = p, because of (50) and (53).

Until the end of §7, let 7(p) = 1. The series occurring in the
coefficients of §,(7) = J(r) are ordinary theta functions (up to a
constant factor 1/e,). They are holomorphic throughout the interior
of the upper half-plane. The difference of any two theta functions
vanishes at 7 =¢oco0 and is therefore holomorphic even at this
point in the sense of § 5. We can easily show that the difference
of two theta functions &,(7) — $y(r) with the same discriminant
of their respective quadratic forms is holomorphic in all parabolic
cusps. Indeed 7=2(J;(— 77 1) — Jy(— +71)) is a difference of theta
functions for the inverse quadratic forms, vanishing at — 77! =400

or 7 =0. Apparently any element (g’ 2) of the whole modular

group applied to this difference yields a difference of certain theta
series, vanishing at ¢7 +d = 0.

As has already been mentioned at the beginning of §6, the
sums over the rows of P(n) yield the same value, whichever row
it may be:
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h
2 DPix (n

k=]

These equations can also be written as

1
Pn) | | =4,
1

1
1

which shows that d, is an eigenvalue of P(n). A short calculation
shows now

(1 0 .0 1 —1 —1

11 o|lo 1 0
M‘IP(n)Mz[g” Ifj,(z;))},M: L oLl (83)

10 1 0 0 1J

where p(n) is a 1 by (b — 1) matrix and P'(n) a (b — 1) by (h —1)
matrix. The coefficients of the latter are p,(n) — p,,(n). Therefore

&I(n) — z P’(n) e21rim- (64)
n=0

is a matrix the coefficients of which are differences of ordinary
theta functions and therefore holomorphic modular forms of degree
—2. From (62) follows

¥ (r)o T, = P'(n) &(7). (65)

Because of (63), the trace of P’(n) is that of P(n) minus d,;
according to (55):

HP’(n)
(2 — am)f-2
=2 LI {57 ])

X[‘I(l_{ (s? —4n)f })h((82—4n)f—2)_zt_|_cw (66)

olgs e((sz —4 n)f—Z) tin
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with
0 for 4/n=£ 0 mod 1,
on = ilé IT (p —1) IT (p+ 1) for 4/n = 0 mod 1. (67)
Plgy pigs
Using (40) and comparing (66), (67) with (38,), (39,) one finds
2P’ (n)) = £ (T,), (88)

provided that g, is a prime and g, = 1. Now we have seen in (45)
that the representation R'(7',) is the sum of the representations
R,(T,) considered in §5 and the complex conjugate representa-
tion B,(T,). Petersson has shown that all eigenvalues of Ry(T,)
are real and that R,(T,) is completely reducible. Therefore By(T,)
is real, and (68) is equivalent to

t(P'(n)) =t(Ty), (nq1) =1. (69)
Because R,(T,) and P’(n) (for the latter see [6], see §5) is comp-
letely reducible, (69) entails that P’(n) and R;(T,) are equivalent
representations, and that all cusp-forms of degree —2 can be repre-
sented by differences of theta functions if, in the Fourier series, all
terms ¢, ¢>"*" with (n, ¢;) > 1 are cancelled. The latter restriction
can be seen to be unnecessary however, using an argument of
Hecke [10, §9]. This fact has been conjectured by Hecke in 1936.
The result may be considered as a satisfactory answer to the
difficult problem of explicitly describing a complete set of
linearly independent cusp-forms of degree — 2. The Poincaré series
are of little practical use since no method is known to determine
their Fourier development. The corresponding problem concerning
cusp-forms of degrees — 2 or of grades  primes seems to be far from
being solved.

In the case of ¢,9, being a product of different primes, the
connection between P’(n) and R;(7,) is more complicated.
However, even now certain conclusions are possible [7].

8. Representations of the correspondences connected with differen-
tials of higher degrees. As we have seen in § 5, the expressions
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é(+) dr are differentials of the field F of automorphic functions,
if ¢(r) is an automorphic form of degree — 2. The study of the
integrals (42) connected the representation R,(T,) of the T, in the
module of the cusp-forms of degree — 2 with the representation
RYT,) in the homology group of the underlying Riemann surface.
This connection led further to the determination of the trace of
Rl(Tn)'

Now we wish to investigate the representation R;(T,) of the T, in
the module of cusp-forms of degree — 2f. These are modular forms
satisfying (60) with f instead of 1 + }d(r), which are holomorphic in
the interior of the complex upper half-plane and vanish in the
parabolic cusps, if there are any. For such modular forms ¢(), the
expressions ¢(7) dr’ can be called differentials of degree f.

A similar procedure as in § 5 will lead us to certain (2f— 1)-
fold integrals and furthermore to a connection between the
representations R/(T,) and representations of the T, in certain
cohomology groups.

Incidentally, it would be natural to call such a differential holomor-
F
phicin 7 =0 if $(7) (?) is a holomorphic function of a local
2

uniformizing parameter z. It should be mentioned, however,
that the cusp-forms are generally not holomorphic at the parabolic

f
cusps. On the contrary, ¢(7) (Z—T) has here in general a pole
2

of order f—1. On the other hand, it is known that the T,
transform cusp-forms into cusp-forms, while everywhere holo-
morphic differentials of degree f are in general not transformed
into such differentials.

Let ¢(7) be a modular form of degree — 2f and holomorphic at
least in the interior of the complex upper half-plane. We want to
study the integral

1 _
O = gy | (7= P bl do (70

U



ON MODULAR CORRESPONDENCES 199

r being some arbitrarily preassigned point and 7 variable.
Evidently

(cr4d) 2 _(ar+b
(ad — bc)f_lq)<c T +d)

_ 1 (cr+d)¥?
(2f —2)! (ad — be)?

(ar"+0)/(cr*+d)

b 2f—2
T ) b
(ar+b)/(er-+d)
n 1 (cr+d)¥2 o ar + b 2f-2 P
(2f — 2)! (ad — by (cr-l—d_U) #(0) do.
(ar® +b)/(er*+d)

Using the assumption that ¢(o) is a modular form of degrec — 2f,

we substitute Za::: b for o in the second integral and obtain
T
(c‘r-l—d)zf‘zq)(a-r—{—b ab
=0
(ad — be)~* \er4+d (o (cd

=c(<zg); T) + O(7), (71)

where ¢ ((Z 3), 1-) =¢ (a; 7) is a certain polynomial of degree

2f—2 in 7. The significance of (71) is that ®(7) behaves similar
to a modular form of degree 2f — 2. Conversely, (2f — 1)-fold
differentiation of @(7) leads back to ¢(7), and (71) contains
the fact discovered by G. Bol [1] and further pursued by H.
Petersson [14] that the (2f — 1)-th derivative of a modular form
of degree 2f — 2 is a modular form of degree — 2f.

The polynomials c¢(a;7) in (71) satisfy a certain functional
equation. In order to state it we make the convention that, for any

polynomial p(r) of degree 2f — 2 in 7 and any matrix « = (‘:3)

d)2f—2

_ (c7 4+
p(r)0a=p(xO T)Wd—_—

—_ bc)f"l : (72)
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In this way, the polynomials of degree 2f —2 in = become the
elements of a certain representation module y11 of the group of
two-rowed matrices. Evidently this representation is just that
considered at the end of §6. From now on we need not mention
the argument = any more. The functional equation of the c¢(«)
in (71) is

o(aB) = ¢(«) OB+ c(B). (73)
For the proof, let

ab al bl a” bll
“:(cd)’ﬂz(cldl)’ “B=(c”d”)'
(71) yields

(C”’T + dﬂ)2f..2 (an . + b”
(a’// d// . b// C”)f—l G” T + d”

)= o(o B) + ()
~ o(@) 0 B + ¢(B) + ().

Equation (73) has a meaning quite apart from its origin. A
mapping o« — ¢(«) of I'y into the representation module 111 has been
called a cochain, and a cochain satisfying (73) is a closed cochain or a
cocycle. Special cocycles are the following coboundaries

6o(a) = ¢ O (¢ — 1),
¢ being a fixed element in m. The cocycles form a group C
and the coboundaries form a subgroup B. The factor group C/B
is the first cohomology group of I'y in m, its elements are called
cohomology classes.

Equation (71) states that, to a modular form of degree — 2f,
there corresponds a cocycle c¢(a). This cocycle depends yet on
the constant 7% in (70). A change of 7° would add a coboundary
to c(a). Therefore, to a ¢(7), there corresponds a cohomology class.
This correspondence has obviously the following properties: From

é1(1) —cy(a)
ba(7) = (@)
follows
[ Y11(7) + yada() = y164(@) + y56a(ar),

y, and y, constants.



ON MODULAR CORRESPONDENCES 201

The procedure can be generalized by integrating (70) over not
holomorphic modular forms ¢(r), however the singularities must
be such that no logarithmic terms can occur.

We now study the behaviour of ¢(«) under the correspondences T',.
Let v; be as in (11) and « an arbitrary element of I'y. Then

VoL = aIV]‘, o € F(}:, (74)

with j and «' depending on ¢ and «. The function

dn
¥(r)=D(r) 0 Ty = > ®(r) O,
i=1

. -2 . .
(017+d1) (I)(at7+bz) (75)

& (o dy — b; ¢t \gT+d;

satisfies the functional equation (71) with some ¢’(a; 7) if @(7) does.
Indeed, using (74), we obtain

dp
¥(1)0 o = Z (@(r) 0 &) Ov; = ¢'(a; 7) + ¥(7)
with =
o'(a) = Z (') Ov; = (@) O T, (76)

By (76), the T, are made endomorphisms of the first cohomology
group of 'y in the module 1. We have only to show that ¢'(«) is
closed if c(«) was closed, and that coboundaries are mapped onto
coboundaries. Indeed, if ¢(a) =cO (« — 1),

c'(a)=ZCO(a'——1)v]~ ZGO(V ®—v) (ZCOV@) (e —1).

1
In order to calculate ¢’'(a 8) we put similarly to (74)

viaB=oav;f=2a B v.
Now

c'(aB) ——20(01 )Ov = Z(C OB +c(B)) oy

—Z«ﬂﬁn+24m%
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= (D eron ) B+ B = (@) 0 +/(B)
where one has to bear in mind that j and k are functions of ¢ which
agsume all values from 1 to d,.

It is easy to verify that the endomorphisms of the cohomology
group defined by (76) are independent of the special choice of the v;;
the proof may be left to the reader.

We close with some remarks on the algebraic nature of the
cocycles.

(1). There exists but a finite number of linearly independent
cocycles. For I'y has a finite number of generators «,;, as, ..., and
because of (73), ¢c(«) is uniquely determined once c(ay), ... are given.

(2). If ¢(a) is a cocycle and € an element of I'y,
¢'(a) =c(e lae)oe™ =c(a) —c(e) O (@ — 1)
is also a cocyecle.

(3). If ¢(a) ~ 0 for all « in a subgroup I of I'; of finite index,
then ¢(a) ~ 0in I'y. For the proof, let

= > I'f. (77)
=1

Without loss of generality we may assume ¢(a’) = 0 for all «’ eI".

n

Now put ¢ = X ¢(B;). Then for an arbitrary « €I'; we have Bioa=
i=1

«' B, « €I, with j and o’ depending on ¢ and «. Furthermore

n

Z o(Bia) =cOa+ncla)= z o(a’ B;)

i=1 i=1

= D da) 0B+ D of) =o,
i=1 i=1
therefore

c(a)=;&co(a—l).
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(4). Let I" be a subgroup of finite index # in I'y and (77) be
the development into left cosets. For an element o € Iy, let
Bj« = o' B;, &’ €I". Then

n

1 1<,
=7 2> (d)ofy+o(Bro—a))~, 2 )0y

i= =
Therefore ¢(«) can already be calculated from the values taken in a
subgroup of finite index.

Proor: Because of (73)

1 ! —
" Z (o{a') O B; + ¢(B) O (1 — @)

=15 (a)0fy+clf) —clfdo )

n 1

- ;Z (e(o’B) — e(B) O o) = %Z (e(B; @) — o(B) © o) = c(o)
(5). The modular correspondences can also be represented by

the higher cohomology classes : for ay,..., @, € [y and »; a; ... «, =

n' =1,2,...,n, with jand «'y,..., &', € ['y depending on

&g 0y ¥y

i and o, ..., o, put
dn

(0, oo ) O Ty = Z c(&'yy-eey @) OV

i=1
Whether there is an application of these representations to modular
forms is yet an open question.

Two chief problems remain unsolved: the determination of a
form which yields a given cocycle ¢(a) = ¢(a;7) in (71); the
determination of the trace of the representation of 7', by the
cohomology classes.

9. Generalizations. The possibility of generalizations becomes
evident by merely summarizing some of the contents of this paper
in a slightly modified fashion. Let t be the group of all matrices

o= (:g) with real coefficients and determinant > 0 and £ the
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subgroup of all matrices (Z_ 2) Then the right cosets o & form

a variety § of dimension 2. § is mapped on the complex upper
half-plane by putting

T=aoi=a——/’f+b,
ct+d

t=q+—1

Evidently, = is the same for all « in the same coset « 8. Now I’ =TI'y
is a properly disecontinuous group of mappings e: « & — e « & of 8
on itself. Therefore the surface Sy, which may now be written S, is
the variety of double cosets I'a 2:

Sp = {[ «}.

Let » be an element of Y and IV =v»T'v~1, and assume that I"' and
I are both finite extensions of ['* =I'nI". Then Sp. ={I'* « 2}
is a covering variety of both 8 and Sp. = {I'« &}, consisting of
a finite number of sheets. Now the correspondence Cpp(Sr) is
defined as in §1. Furthermore there is a one-to-one mapping
Sy, «— 8y, defined by

IN'al=vIv1al«—>r.I"al=Tval.
In this way, correspondences of S to itself are defined.

The same procedure is possible if 1 is a more general topological
group, & a certain subgroup (e.g. & = unity element), and I'
another subgroup which is properly discontinuous in the variety
of right cosets « &. For a detailed investigation it is of course
necessary to have the elements of I' defined by some arithmetical
law. We may at first try to apply the theorem of Lefschetz as
in §3, which is possible if there exist isolated fixed points. Let
v be an element of the property stated above, and let « @ be a
fixed point of v : va® = a 8. This entails that a~ v x Q. So we
gee that fixed points can only exist if @ contains more than one
element. Furthermore, « & is an isolated fixed point, if all elements
B of t commutable with a~'va and connected with the unity
element are contained in £. This means that € must have some
property of maximality.
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The conditions for the existence of isolated fixed points are
satisfied in the following case. Let F' be the matrix of an indefinite
quadratic form with rational coefficients, which is in the field of
real numbers equivalent to af+ ...k, — af,., — ... — 25,
tis the group of all real matrices X satisfying X7 F X = F, I the
subgroup of all rational integral X, and & the normalizer of a
maximal compact subgroup of y. A proof may be published on
a later occasion. Whether the variety S defined in this way is
an algebraic variety or not is an open question. However, even
if 8p were not an algebraic variety, a problem analogous to
that of §5 arises: instead of algebraic differentials on S, which
may not exist, one can investigate the behaviour of the harmonic
integrals on S with respect to some appropriate Riemann
metrics on Sp.

It may even be worthwhile considering the correspondence if no
isolated fixed points exist. This is the case when v is the group
of all elements of norm > 0 of a central simple algebra over the
rational field, I' the group of units of an order T, and { the
normalizer of a maximal compact subgroup. The correspondences
are now linked with the left ideals for ¥ in the same way as
in the case of quaternion algebras. But if the algebra is of rank
> 4, the fixed points of a correspondence form certain varieties of
dimension > 1. So the theorem of Lefschetz is at least not
immediately applicable.
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GENERALIZATION OF ONE OF THE HILBERT
PROBLEMS

By A. G. POSTNIKOV

[Received March 12, 1956

1. Question of the hypertranscendency of the zeta-function.
Functions which do not satisfy any algebraic differential equation
are called hypertranscendent.

1t is common knowledge that the Riemann zeta function is hyper-
transcendent. A much more general theorem 1is proved in
A. Ostrowski’s studies (Math. Zeitschrift, Bd. 8, 1920):

THEOREM (Ostrowski). If the Dirichlet series
f8) = z a, e~ (s =0 + 1)

has a region of absolute convergence, and satisfies the algebraic
difference-differential equation

D(s, /¥ (s + h,,) =0,

where @ 15 a polynomial, and h,, are real numbers, then among the
exponents A, there are only a finite nmumber which are linearly
independent.

Since the zeta-function, and all the Dirichlet L-series as well,
have a region of absolute convergence and their basis of exponents
embraces all the logarithms of the prime numbers (except, at the
most, a finite number of them), these prime numbers being infinite
in number, they are hypertranscendent.

It is interesting to look into the question of the extension of this
theorem to functional relationships of a more general nature. Very
valuable information on this question is given by L. S. Pontrjagin’s

This paper was communicated by title to the International Colloquium on

Zeta-functions held at the Tata Institute of Fundamental Research, Bombay, on
February 14-21, 1956.
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theorem (published without proof in Comptes Rendus de L’ Academie
des Sciences, Paris, 196 (1933), 1201). We shall formulate a parti-
cular case of this theorem (as needed for our purposes).

THEOREM (Pontrjagin). If the almost periodic functions f;(t)
satisfy the system of differential equations

‘E:;l? =, (f; () £, ), i=1,2..1,

where ®, are functions which satisfy the Lipschitz condition in the
region of an r-dimensional space containing the closure of a set of
points of the type (fi(t), ... f,(t)), —© < t < o, then there cannot exist
among the cxponents of the functions an unlimited number which are
linearly independent.

It should be noted that since the almost periodic functions
are bounded, the region mentioned in formulating the theorem may
always be considered bounded.

The connection of this theorem with the Ostrowski theorem is
obvious: if the Dirichlet series Za, ¢~** has a region of absolute
convergence, then on any straight line o =0, in the region of
absolute convergence the function represented by the series is
almost periodic and the differential equation may be considered a
differential equation with regard to .

Since the exponents of the almost periodic functions (o, + i),
Loy + it),..., {7V (04 + @), oy > 1, include the logarithms of prime
numbers, these logarithms being linearly independent (this follows
from the theorem that an integer can be expressed as a product of
prime factors in one way only) and infinite in number, we get the
following

TrEOREM. A relation of the type

Yoy +it) _ g
dt

18 tmposstble on any of the straight lines o = oy > 1, where © is a
Function satisfying the Lipschitz condition over the region containing
the closure of the set of points

Uop + %)y, {7V (04 + it))
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(Loo -+ i), L(Gp + iheeer 107D (00 + it)).
A similar theorem will naturally be true for any L(s, x).

It should be noted, finally, that the Pontrjagin theorem is proved
by a method quite different from that of A. Ostrowski (its proof
involves the theory of continuous groups while the Ostrowski
theorem is proved by elementary means).

2. Generalizaticn of one of the Hilbert problems. At the Second
Mathematical Congress in Paris, D. Hilbert put forth the assump-
tion that the function

e = > %

n

does not satisfy any algebraic differential equation in partial
derivatives. The solution of this problem was given by D. D.
Morduchai-Boltovskoy (lzvestiya Warsawskovo Polytechnicheskovo

Instituta 1914, and Tohoku Math. J., 35, 19, 1932) and by A.
Ostrowski (Math. Zeitschrift, Bd. 8, 1920).

Let x be a character for the modulus m. Now we introduce the

function
_ Z x( S_) "
“ n

We shall call these functions Dirichlet L -series for the modulus m.

A. O. Gelfond suggested that the author prove a theorem which
would gencralize Hilbert’s assumption.

THEOREM. Let there be (various) Dirichlet L -series for the modulus
m. The relation

P+q ¢
0 (2,8, LoHE0N) 2o,

ox? 9s?
where @ is a polynomial, is vmpossible.

We shall call the system of ordinary Dirichlet series
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fil) = Z G ps) = i G ey — i 7;_»

n=1 n=1
differentially dependent, if there exists such a polynomial of s.
fi(8), ..., f,(8) and their derivatives, that
(s, /¢ (5)) =0.

The system of ordinary Dirichlet series will be called difference-
differentially dependent, if there exist such real numbers &, ,, and
such a polynomial @, that

O(s, f (s + Iy,,,.)) = 0.

We shall base our deductions on a number of lemmas belonging
to Ostrowski or obtained according to his scheme (see the cited
paper). We shall give proofs only when there is at least some
difference from Ostrowski’s paper.

Lezmma 1. (Ostrowski). If the Dirichlet series are difference-
differentially dependent, s can be excluded from the relation.

Lemma 2. (Ostrowski). If the Dirichlet series have a region of
absolute convergence and are difference-differentially dependent, they
are formally difference-differentially dependent (by formal dependency
is meant that if we carry out the above algebraic operations with the
Dirichlet series, we get a Dirichlet series in which all the coefficients
equal zero).

Lemma 3. (Ostrowski). If the system of ordinary Dirichlet

series
[*e] w0
N
2—1— -,f,(s)=2—
“~ n “ nt

18 differentially dependent, then if we leave in these series only terms
with prime denominators larger than a certain N, the following homo-
geneous relation will be true for the series f*,(s) oblained:

z)‘kvf*ﬁ")(s) = 0:

where Ay, are constants not all equal to zero.



GENERALIZATION OF A PROBLEM OF HILBERT 211

Let the relation with s excluded have the form
D(f(s)) =0.

acp\

Now we consider all the 570 1 | ey

Let the expansion of 3 f“)\ 10%s)

into the Dirichlet series begin with % Let A= mml =it
it
where j, ¢, are indices for which A is attained. We express fi(8) in

the form f(s) = Fy,(8) + Jum(8), where g,(s) = 2 %}‘. It is

n=m

obvious that if we choose m large enough, and put it in — mstead

f(t)

of f{(s), the expansion of F{(s) again begins with _‘;L‘

it

expand ®(f(s)) = O(FEAS) + g (s)) into Taylor series
0 = ®(f(s))

— O(FD(s) + Z a7 ¢

+§(ZZ)+6<222)+

Let us see what term the expansion of the expressions 1(Z X...),
}(ZXX...) into Dirichlet series will begin with. The second and
third derivatives of ® may begin even with unity, but the products
and degrees of g% (s) must begin at least with 1/m®. Hence, expan-
sions of the expressions $ (X X...), }(Z X X...) must begin at least
with 1/m?%.

Now we

. oy @ (— log m)
Consider z 3 f(‘) w)(,,) 99.(s). 9¥(s) begins with _Lmsg_l and
o0 A, - . :
37}7) F;(c::, ® with ?Z Thus the junior term mf;. will be
2 Aau‘M i1 m(— log m)'s
(Am)®

Two cases are possible :
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(1) For all primes p beyond a certain stage,

Z Ajutu ajyp( —log pYr =0;
u

(2) There is an infinite sequence of prime numbers, such that
for the p of this sequence,

Z Aj",u %, p(— log p)» # 0.
“

For the first case the lemma is proved, since the following relation-
ship is true:

S Ao =0
“

In the second case, we take m == p and p > A, so that p*> > A p,
and hence the term different from zero,
ZA].",“ % p(— log p)fu
(Ap)
cannot interfere with the terms originating from the expressions
}(EZ..), $(EZX...). Since the left part of the expansion into
Taylor series cquals zero, this term, in order to be cancelled,
must interfere with the terms ®(F{)(s)). But the denominators of
O(FP)(s)) contain only the powers of numbers less than p. Therefore
A, =II N;, where N; < p — 1. This is a contradiction. Hence the
case is impossible, and the lemma is proved.

Lemma 4 (Ostrowski). Let I and q be positive integers; ky, ..., k,
are pairwise unequal real numbers. The equation (with regard to A)

Z ¢ Vet =0

G=Oed
t=1,..,4
(not all c;; are equal to zero) has & finite number of real roots.

LEmma 5 (A. G. Postnikov). The Dirichlet L-scries
< x()
L(S, x) = Zl F:

Jor a given modulus m, are difference-differentially independent.
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Assume the contrary. We write

Let = > X0 1
n=1

,nh, nt

(and consider this a separate Dirichlet series in the relationship
of Lemma 3).

According to Lemma 3 the relation
1 v,
z A]'“v#r,,, Xju (p) p:}‘t (— 10g p) n o= ()

should be true for all p beginning with a certain one and with

(— logy=

not all 4; ., being equal to zero. The coefficients of will

V“ T

phra
be certain linear forms of the characters. All these coefficients
must be equal to zero. Let a certain coefficient for a certain prime

P be not equal to zero. Consider the expression
— 1 ,
2, Ay 2,(0) - (~ log p

on a progression for the modulus m containing p. The coefficients
will be constant and since according to the Dirichlet theorem there
is an infinity of prime numbers in the progression, we come to a
contradiction with Lemma 4.

Hence there is at least one non-trivial (not all 4;, = 0) relation

D 4, %, @) =0
fulfilled for all sufficiently large p.

Let the reduced system of residues for the modulus m be Bi=1,...
Bsm) Since according to the Dirichlet theorem the prime numbers
are distributed over all the progressions ma + 1, (I, m)= 1, we have
the following system of equations :

z 4; %, (B)=0,i=1,2,... §(m).
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But it is clear that the determinant

xiB) ... X1(/9¢(m))

A=
Xéim) (By) - Xeé(m) (13¢(m)) '

(x, i the principal character) differs from zero. Indeed, if it is
multiplied by a conjugate transposed, we get, due to the orthogo-
nality of the characters,

[A 2 = AA®" = $(m)¥™ + 0.
Hence, from the system of equations
D A%, (B) =0, i=1,2,...4(m)
we conclude that all 4; = 0.

This contradiction proves the lemma.

It should be noted that the statement of the lemma can be referred
to the L-series of the fields of algebraic numbers,

Now, making use of the method pointed out by Hilbert, we can
prove the above theorem.

Proor. Suppose there exists the relation

+
@(x’ 8’ ap qL(x’ 8’ X) ) = Oo
0x? 0s?

According to a lemma which may be proved in a similar manner
to Lemma 1, it may be assumed that the relation contains neither
2z nor ¢, i.e. is of the form

+
q,( or e Lz, s, x)) =0

ox? o0s?

From the relation

. 0 Lz, s, x) —L

—1
ax (x’s ’X)
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we then get
“®
(x i) Lz, s, x) = L(x, s — p, )
ox

(the powers of x;— are understood symbolically).
x

Using these formulas we can successively express the derivatives
of L(z, s, x) with respect to # through shifted L(z, s, x):

o L, s, 1
_—(ax“—X) = ;“L(.’E, § — u, X) +CF’“__1L(Q;, §—p + 1’ X) +

+ ... +C#,1 L(x, s —1, X)a

where the ¢, are rational functions of . In exactly the same
manner we can write the reverse relations

L L@, s x) ' L=, s, x)
L(x, s — p, x) =a* = F T T Vuwu—1 T a1 +
ol(z, s,
+ ves + y"’l __(7%_x).

Differentiating these formulas A times with respect to s, we get
ot L(w, s, x) _ 13" Lx,s —p, x)

AL, s —p+1,x) n

~ dx+ s x+ st + 8st
4 e 6,5 3_‘_{4(%;: L’X),
O st}
+ oo+ Vun aiJr—“"Aaf(;sz, X)'

These formulas correspond as reverse formulas to each other.
p+¢ p+g
Substituting oLz, s, x) in® (a L(z, s, x)
0x? 95" ox? 9s?
these formulas and removing the denominators, we get the relation

p(x M)=o
3 sA - )

) according to

0.

where P is a polynomial.
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* L(z, s — p, x)
P

member, otherwise it would follow from the reverse formulas that

+
all the coefficients in @ (w ' X)
ox? ox?

The polynomial P must contain at least one

) are identically equal

to zero.

*L(x, 8 — p, x)
s
of x — 1, and assuming z =1, we get a difference-differential
dependence between the L-series which according to Lemma 5
is impossible. [It is impossible for only the free term @Q(z)|,_; to
be left with x = 1 because it follows from Q(x)|,_, = 0 that Q(x) is
iL(x,;SA_ Hs X)) is a

Dividing P (x, ) by the greatest possible power

a multiple of # — 1, i.e. the expression P (x,
multiple of a still higher power of (x — 1)].

Thus the theorem is proved.

Institute of Mathematics
U.S.8.R. Academy of Sciences
Moscow



ON DIRICHET L-SERIES WITH THE CHARACTER
MODULUS EQUAL TO THE POWER OF A PRIME
NUMBER

By A. G. POSTNIKOV
[Received March 12, 1956}

1. Analogue of the logarithmic series for the index. It is a well-
known fact that the definition and properties of the index are
analogous to those of the logarithmic function. We shall now give
for the index an analogue of the classical logarithmic series

2 3
log(l + ) = & —% 1 % — . (2| < D).

LemMa 1. Let p be a prime > 2, n a natural number, and ind,x
denote the index of x with the base g.

Let n # ap’ —v, where (,p) =1, f=1,2,.., 0<v<f— L
There exists a polynomial with integer coefficients (not depending on ¢)

f) =u +ayu® + ... +a,_, w1,

where a,_ | Z= O(mod p*~ ') and the natural A, (Ap) = 1 (depending
on g) such that

ind, (1 + pu) = A(p — 1) f(u) mod (p"~! (p — 1)).

If n=op’—v, (¢, p) =1, 0 < v < f— 1, then the polynomial f(u)
has the degree n + v and a,,, = 0 (mod p"~1).

Proor. It is known that in the multiplicative group of the
reduced residue system for the modulus p™ the classes which are
comparable with 1 for the modulus p form a cyclic subgroup p of
order p"~! generated, for instance, by 1 + p.

This paper was communicated by title to the International Colloquium on
Zeta-functions held at the Tata Institute of Fundamental Research, Bombay, on
February 14-21, 1956.
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ind, (1 + p)

Obviously, all ind, (1 + p) are multiples of p — 1 and I
p —_—

is mutually prime with p.
We consider a field of rational p-adic numbers R,.

The series

2 3
pU ——(—I-’;—) +(% — .. =log(l + pu)

converges for any p-adic integer w.

Besides
log[(L + puy) (1 + puz)] = log(1 + puy) + log(1 + puy).
If n # ap’ — v, 0 < v < f— 1, then the polynomial
(pu)"~*
n —

2
F* (1 +pu)=pu—%—u)—{—... +(—1)"__—1—

possesses the property
PR +pw) (1 + pug) ] = F* (1 + puy) + F,¥(1 + puy) (mod p*).
If n = ap’ — v, 0 <v <f — 1, then this property can be guaranteed
only for the polynomial

¥,

ntv-—

Adpw) —pu— PO @
2 n—1

et Epu)'iﬂ
+ oo+ (=1 Wi

For the polynomial

F.*(1 +pu) _
P

2 n—2 ,,n—1
% — Z% o (=1

F,(1+ pu) = —

(and respectively for ﬁ_‘n +vt1 (1 4 pu)) the following congruence
will be fulfilled

F,[(1 +puy) (1 +2u,)] = F, (1 +pu) + F, (1 + puy) (mod p*~?).
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Each coefficient F,(1 + pu) (and respectively F, +yy1(1 4+ pu)) can
be substituted for the modulus p”~! by a rational integer. Let
k =p k', where (£, p)=1.

Let x, be the solution of the congruence k'z, =1 (mod p"*¥+7).
We denote a; = (— 1)¥72 p¥~1=7 2. Then, since , E;_, (mod p"~¥+7),
we get

(_ 1)k+1pk-—l—f z, = (_ l)k+1 pk—l—-r]i:7 (modp”‘l),
that is

ko

p 1
@, = (— 1! 7 (mod p™~1).

Obviously a, = 1. It should be noted also that @, _, £ 0 (mod p"~1).
If w <k <n +v, then we assume a, = 0. The coefficient of w"**
can also be substituted for the modulus p*~! by an integer, and
a,,,3= 0(mod p"~1). We denote

f) =w+a,u* + ... +a,_ur?,
fw)=F,(1 +pu) (modp*?).

If p # 2, then the coefficients a,, as,..., a,_, are sure to be multiples
of p because k — 1 — r >1. Hence

F(l+p)=1 (mod p),
Fy(14+p)50 (mod p).
Therefore it follows that the congruence

B (E2) 2 AR, +9) (mod )
is solvable. Let A be its root. Since F, (1 4 p)=£0(mod p),

and, i‘w) =£0, (A, p)=1.
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When s =0, ..., p"~1, we have
s ind, (1 4 p)
p—1
or, owing to the multiplicative properties of both sides,

PR LC ) < AR +pY) (mod g,

=AsF, (1 +p) (modp"?)

But (1 + p)* runs through the entire subgroup . Therefore, for
any u,

ind, (1 +pu) _

A f(u) (modp"~).
p—1

Hence the result.’
LeMMma 2. Letl < a < p — 1 be the root of the congruence aa’ =1
(mod p"~1). Then, for any integer u,
ind, (@ + pu) =ind,a + A(p — 1)f(a'u) (mod p"~!(p — 1)).
Indeed
ind, (@ 4+ pu) =ind; @ 4-ind, (1 + pa'w) (mod p"~!(p — 1)).

Applying Lemma 2 we get what was required.

2. Estimation of the sum of characters for a modulus equal to the
power of a prime number. According to the lemma proved above,
when D = p" we may consider the sum of characters a trigonometric
sum with a polynomial and apply the well-known estimations of
I. M. Vinogradov to it.

By C with subscripts we denote positive constants.

THEOREM 1. Let x(k) be a character for the modulus p"! of a
power not lower than p"~! (in this case this is a criterion of the
character being primitive for the modulus p"). Forl > p® and n >n,,

N+il-1

X( k) l < eCondl ogn)? pcl /nllogn -G /nslogn'
k=N
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Proor. As we know,
x(k) = e2mimfindghi(p—1)p" =1},

In view of the requirement for a character (m, p) =1,

| N+l—1 P |Ngt+ig—1
Z Z > xla+pu))
k=N a=11 y=N,
where ¢/p < I, < I/p + 1.
N+i-1 p Ngtlg—1
! Z X(/c)l = Z e2mimAf@u)ph—1
l k=N a=11 y=N,
L
- Z z e2mim{f(@'(u+ Ng—1)pn=1} |
8=1|y=1

The major coefficient in f(a'(w 4 N, — 1)), both when n # ap’ —»
and when n = ap’ —v, since (m, p) =1, (A, p)=1, a® 1 £ 0

(mod p"1), is of the form 1“, where 1 + [log n/log p] » p> 1.
p

I. M. Vinogradov’s estimation of trigonometric sums with poly-
nomials (I. M. Vinogradov: ‘“Upper bound of the modulus of a
trigonometric sum”, Selected works, Moscow, p. 389) may be applied
to the internal sum. We apply the estimation for the major coefficient.

We get: If n # ap/ — v,

la
e2mmAf(a'(u+ Ng  )ipt—1 < (S(n -2 ) )f(n— 2)log{12(n— 2)(n—1)/7} X

u=1
< l}‘ — {(8(n—2)¥/r]log[12(n— 2)(n—1)/+]} ~ 1

where = can be determined from the conditions
r=1,whenl, < p* <%
p* =17, when p* <,

It will suffice to consider the case where p™ > [, because the
sum is periodic (with period p"). The value of 7 is smallest
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when I, = p"~'and p =1, ie. when 7 = 1/(n — 1). Therefore, for
pn/(ﬂ—Z) < la < p”_l,

| Ja

z e2rimAf(@(u+Ny_1)pn—1| < oConllogn)® ltll ~C)y/nllogn_

Uu=1
Since l, < I/p + 1 and p/(n — 2) < 1, we have for p* < I < p",
N4l-1
x(k)’ < eC’(,n(logn)8 p(l /p)l-cllnslogn
k=N
= glonlogm)* 4,C,(nllogn)—1 l;-o,(n‘logn)-l_
If n=ap’—v,

s

Z e2rimAf(a'(ut+Ng_1)/pn—1 ' < 8(n+v— 1)}('n+v—1)101{12(n+v—1)(n+v))/r} X

T3

« - {3(n +v—13/sJlogl12(n +v — D(n+v—2)fel ~ 1,
a

where t can be determined from the conditions
=1, when [, <p*<I1,
p*=17, when p*<I,.
Since v < n, we find again (with other constants C; and C,;) that for

LI ph,
N+i-1

x(]‘;)‘ < eC’.)Vt(logn)s= pc1lﬂslogn - ¢ /n’logn.
F=N
If I > p", the only “dangerous” place is p" < I < p" 4 p%. Then

N+i—-1

x(k)‘ < p? < eConllogn® p,Cy/nlogn L= Cainlogn)

k=N
< e(}on(logn)” pclln"logn ll—C,/n"logn forn > Ny

Thus Theorem 1 is proved.

3. Application to the theory of L-series for a modulus equal to
the power a prime number. The estimation of Theorem 1 can
be employed in our special case to improve the estimations of the
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modulus of the L-series on a real straight line in the critical strip.
We denote in all cases D = p™. x denotes the primitive character

for the modulus p*.

22021~

THEOREM 2. If n — oo, and n? > logp > Cynt (log n), then if

1
log¥@+h p’ 1t < Cy,

|L(s, x)| < log¥/@+D D,

. 1
Proor. We denote D, = p4(4 is a constant), y = L@@ D

z x(k) % x(k)
k) Dy<k<2D;—1
L 8, — XL_ + 8 Di€k<su du . D1k 1
(8 x) k<2ZD‘—1 7 Wl (2D1)‘
2D,
1 eCon(logn)’ Cy/nPlogn ul—c‘lln"logn ‘
LE0I< > e+ 18] j P s +
k<2D;—1 2D,
D <k<z2D IX(k)i
1 1
TP epy |
D { Con(logn)? . Cy/nllogn du +
< > + e P 7 T=7F Cyfndiogn
2D

1
+ ec'on(logn)a pclln'logn D{—Cl/n:’logn-

. . 1
It is clear that with n >n,, y < —————. Therefore
258 log n

0

Dy 2 3] du
IL(S, X)l < _y_l + 2Conllogn) pclln ogn j u1+0’1—_/2"3|°3” +
2D,

+ 6C(,n(logﬂ)2 pc‘l/n“logn D;—(Jllzn“logn

< -_D_‘i' + nd 10g n eC‘,,n(logn)‘ pcl/nslogn p—ACII‘Zn"lOG'n +

+ g Cuntlogn)® pClln”logn p—AC,/2nslogn.
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DAvin , 2 "
[L(s, x)| € = + elantiogn® j—(4/2-1)Cy/nlogn
Y

Since log p > O, n*(log n), on taking a sufficiently large A,
we get
gCantlogn)® p—(Al2—1)C’1/n”logn =0 (1).

Since n?*! > log D, n > log!@tD D,
D4AY" < D Ay[logi@+Dd D — pAatesd _ (1).

Consequently
|L(8, X) i £ ]./y = logQ/(CH-l) D.

Hence the absence of zeros of the L-series on a section of the
real axis in the critical strip can be deduced in the usual manner.

TeEOREM 3. Let D=p", and x, be a primitive (non-real)! character
for the modulus p™ and n > log p > C, n*(log n)3, n > n,. L(s, x) has
Cs
log?©@+1) D log log D

no zeros in the region |t| < Cg, 0 > 1 —

Proor. Let 8 + iy be a zero of L(s, x) with |y| < C5. We shall
consider that it lies in the upper semiplane. We consider the points
1

8o =0, + ity and §'y = oy + 20y, where 1 + log 0TI <oy<2,

while o, will be selected more accurately afterwards.

1
We circumscribe circles of radius r = 0g@@ T around s, and &',.
1

Both circles lie in the region o > 1 — iog@ @I I’ (8] < 204 + 1.
Employing Theorem 2 we make the estimations.

In the circle |8 — s} < 7,

L(s, x) ! 1

! C,log?@+h p — < Cglog D log? D.
L(so,x)< o8 nZln%< s 08 00—1<080gD

t Ed. JIMS.
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In the circle |8, — 8y’ | < 7,

L(s, x*
L('SO’ X2)

=]
< 0, log?e+ D Z L«o < ¢OsloglogD
n

n=1

Applying Lemma B, p. 49, Titchmarsh ¢« The Theory of the
Riemann Zeta- Function”, we get :

_ReL'(Uo + 2.7:')’, );)
L{oyg + 1y, X*)
1

< Cp10g%@*D Dloglog D,

and ifﬁ > Gy — W)‘—Z): then
_ReL(otivx) Crplogo@+np — L
L(U’o‘l"’f'}/,x) oo_ﬁ
1

Let B> oy — STog@ @ We write a well-known inequality

_ 380 _ ypeLlootiviy) p Llo+2iy X))

- T >0.
{(00) Lioy + iy, x) L(oo + 23y, %%
Since, with oy— 1, — Elog 1 , we have — '(00) a ,
{oo) op—1 log) o —1

where, with a sufficiently small difference o, — 1, @ can be made
sufficiently close to 1. We get

3a + 50,410g¥9* D Dloglog D — 4

oy —1

1
- B>
%= F> 3a/4(oy — 1) + (5/4) C14log?@+V Dloglog D’

1-fg> : QMGFT (o0 —1),
3a/4(o, — 1) + (5/4) O\, log YDloglog D

_g> 1 —(3/4)a + (5/4) Cyy(gy — 1)10g¥Q+D Dloglog D
3a/4(og — 1) + (5/4) C1olog?@+D Dloglog D

Oy —

We put

1

= (5/4), 0y =1 .
@ = (5/4), o + 40 C,, log?@+D D loglog D
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Then
S 1/32
(155/4) Cy1og?@+D Dloglog D

1
" 12400,,10g%@+ D Dloglog D

1-8

1
21log?@+D p’
1 1
1— — _—
> 21og¥@+D D 40C,,log¥ 9+ Dioglog D
> Cs .
logQ/@+D) Dlog log D

Let B<o,— We again obtain

Thus the theorem is proved.

In writing this paper the author was kindly assisted by
N. M. Korobov and Y. V. Linnik.

Institute of Mathematics
U.S.8.R. Academy of Sciences
Moscow



QUADRATIC FORMS OVER INVOLUTORIAL
DIVISION ALGEBRAS

By K. G. RAMANATHAN

[Received April 24, 1956]

1. Introduction. In 1924 Hasse proved a fundamental theorem
concerning quadratic forms over algebraic number fields, namely
that two quadratic forms with coefficients in an algebraic number
field " are equivalent if and only if they are so in every completion
A, of A" by valuations of 2. He also discussed the problem of
representing quadratic forms by quadratic forms. These results
were later extended, by Witt, to the case where J¢ is an algebraic
function field of one variable over a finite field of constants. Recently
Siegel discussed the theory of quadratic forms with coefficients
in an involutorial simple algebra over an algebraic number field.
It seems therefore of interest to study systematically the arithmetic
and analytic theory of quadratic forms over involutorial algebras.

In this paper we extend the results of Hasse and Witt to quadratic
forms with coefficients in an involutorial division algebra 2 whose
centre X is either an algebraic number field or an algebraic function
field of one variable over a finite field of constants and of charac-
teristic # 2. If @ is a division algebra and the involution leaves
the centre & fixed, then by the results of Albert and Witt, 2 is either
commutative or is a quaternion division algebra. By extending
A to XA, the extended algebra 9, splits for almost all p and 9, is
isomorphic to the algebra of two rowed square matrices with elements
in )",. If the involution in & does not fix ", and X' is the subfield
of A fixed by the involution, we extend X"y to A"y, and then the
extended algebra is either simple or semi-simple. In the first case,
because of a theorem of Jacobson, 2, is isomorphic to the algebra

This paper was presented to the International Colloquium on Zeta-functions

held at the Tata Institute of Fundamental Research, Bombay, on February
14-21, 1956.
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of square matrices over X g,. In the second case 9, is the direct
sum of two reciprocal simple algebras. This splitting of 2, leads
to the study of bilinear forms. In order to deal with all these cases
we study in §3 quadratic and bilinear forms with coefficients in
an algebra of appropriate type and whose centre is an arbitrary
field of characteristic = 2. We discuss equivalence of and represent-
ability by forms over these algebras. Ananalogue of Witt’s theorem
is proved. For later use we study the so-called multiplicative
equivalence and multiplicative representation. The theory of skew
symmetric forms is discussed but only over a quaternion division
algebra whose centre is ',. The reason for this restriction is
that the analogue of Hasse’s theorem seems, in general, to
be false.

In a future paper we shall study orthogonal groups and unit
groups associated with quadratic forms over these algebras.

2. Notations. % and %, will stand for arbitrary fields of charac-
teristic 2. ¢ and X, will stand for an algebraic number
field or an algebraic function field of one variable over a finite
field of characteristic £ 2. % * will denote the group of non-zero
elements of J¢°, and " *2 the groups of squares of elements of 4 *.
For two algebras o7 and & over X", & x # will denote the tensor
product algebra. A matrix D = (dy,) with dy; = 0 if k s£1 will be
called a diagonal matrix and denoted by D = [d,, ..., d,]. For an
element £ in an algebra &7, |£| will denote the reduced norm. If
& is an algebra, I, (o) will denote the algebra of # rowed matrices
over &Z. z, y, z will denote column vectors,  the unit matrix and
O the null matrix of order evident from the context. €, y will stand
for 4+ 1.

3. Algebras over arbitrary fields. Let & be a division algebra
of rank m? over its centre & which is an infinite field of characteristic

# 2. Let 2 have an involution @ — a o0 that

o~

=a,a+b=;+3,ab=l;;,/\azxa, (1)

SR
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where a and b are in @ and A € . Since on & the involution is an
automorphism, let %, be the fixed field of this automorphism.
Then (F : &F,) = 1 or 2. The involution is said to be of the first or
second kind according as (¥ : &) =1 or 2. In the second case
there cxists an element 6 in & such that

§=—9, 2)
and &F = F, (0).

An element ¢ of 2 is said to be symmetric or skew with regard to
the involution ~ according as

§=¢E6=—¢ (3)
In case of involutions of the second kind, there exist ¢ = m?
elements ¢,, ..., 8 in &, which are symmetric and which form a

base of 2 over &#. For every w € & therefore

w=iaisi+ezbisi, (4)

where a; and b; are in &. In particular, if w = w,

w = z a; 8;. (5)

t
i=1
Let M = (a;;) be an element of M, (2). We can extend the
involution in 2 to M, by defining

~

M = (a). (6)

If, on the other hand, M — M* is an involution of IR,(D) which
has on & the same effect as ~, then because IR, is a simple algebra,
there exists a ¢ in IR, such that

M*=C-'MC, O=eC. 1)
A matrix S in I, is said to be symmetric or skew-symmetric

under(¥*) if 8% = 8 or 8* = — § respectively. Using (7), it follows
that T = C8 satisfies

T=4T. (8)
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Let 8§ and T be two n rowed matrices over 2 and let 8* = ¢ §
and T* = 5T. They are said to be multiplicatively equivalent if
there exists a non-singular V with elements in &2 and an element
a € &, such that

V*SV =aT. (9

This means that e = 2. Using (7) we get
V(C8) V =aCT). (10)

Conversely (10) implies (9). If @ = 1 we say that S and T are
equivalent, denoted 8 ~ 7. Obviously equivalence of matrices as
well as multiplicative equivalence are equivalence relations. We
can therefore put symmetric and skew matrices into classes of
equivalent or multiplicatively equivalent elements.

Let 8 = (s;;) be an n-rowed square matrix over 2 and let S=e8.
LI

Let 2z = be a column vector of » rows of indeterminates

Zp

which can take values in £. Then

Sxl=Z8x= ) #;8;%;
-

is called the associated form of the matrix S. If ¢ = 1, the form is
said to be a quadratic form, otherwise a skew-symmetric form. If
q € 2, and § = €q, and there is a vector x with elements in 2 such
that ¥ Sx = ¢, we say that 8 represents q. If ¢ = 0 and z is not
the zero vector we say that the representation is non-trivial. If S
is also non-singular we say that S[x] is a zero form. Clearly equivalent
matrices represent the same set of elements of &. If § is non-singular,
and S[z] = 0 has only the trivial solution = 0, then S[x] is said
to be a definite form.

In the case of involutions of the first kind Albert has proved that
9 has exponent one or two. If & is non-commutative, then because
of the results of Hasse and Witt, it follows that if the centre of @
is &, then Z is a quaternion division algebra. For our purposes we
shall study the following situation. If 2 is an involutional algebra
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of the first kind, then 2 is either a division algebra or a quaternion
algebra not necessarily a division algebra. In the latter case @ is
isomorphic to the two rowed matrix algebra. Thus in the second
case let & be the cyclic algebra of rank 4 over % with a basis
1, wy, wy, wy satisfying

w%=a,w§:ﬁ,w1w2=——w2w1=w3, (11)
«, B being in & and 1 is the unit element of 2. Every £ in 2 has
the form
E=xy + 2, 00, + Ty wy + T3 wy.

x; € F and let zdenote the conjugate

Z=w0 —xlwl _‘xzwz '-—&33(.03.
Then || = §E= £¢ =22 — ax? — Bai + « Bat is the reduced norm
of £, 2 is a division algebra if and only if |£] = 0 means § = 0.

2 has the well-known 2-rowed matrix representation

10 1 0 01 01
(12)
The field #(+/a) is obviously a splitting field for 9. Every element ¢

in #F(va)isof theformt =a +by/ o, a,b e F. Let i =a —b+/ «.
Every quaternion ¢ has the form

=4 =(3; #) (13)

This representation is faithful and absolutely irreducible. Also

7=J M@y I

where J = ( _é g), and |¢| = | M(g)|, the determinant of M(g).

Using the above representation, it can be proved that for 7' in
M(D),

1T =17,
and that |T] e &#.
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3.1. Let £ be an involutorial algebra with & as centre and
satisfying the above conditions if the involution is of the first kind.
We now prove

THEOREM 1. Let S be a non-singular n rowed matrix over 9,
8 =e8. There exists then a non-singular V such that

Vs V=9 =[a,.., o]

where ay, ..., a, are in D and are not divisors of zero.

PROOF Let S = (“kl) 8O tha!t Oy = € ;lk' Put

— { %11 q
8= (q R )
where ¢ is a column of » — 1 elements. Suppose |a);| 7 0 so that
ay; is not a divisor of zero. By the principle of completion of

squares we have
g — (% 0 ) 1 a;'q
0o 8 0 E )

We can now use induction and apply the theorem to 8,. We have
therefore only to prove that, by a non-singular transformation, we
can make the first diagonal element not a divisor of zero.

If for some 4, 1 < ¢ < 7, «; i3 not a divisor of zero, we may put
V to be the matrix which interchanges the first and ith rows of
a matrix. Then S[V] will have a; for first diagonal element.

Suppose «; are all divisors of zero. Since |S]| £ 0, there exists
an element a; in the i-th row which is not a divisor of zero. We
may assume without loss in generality that o, is not a divisor of
zero. We can therefore deal with a 2-rowed matrix 7',

T:(eo,‘3 5)

where « and y are divisors of zero and B is not a divisor of zero

mn 2. Let u € & be chosen so that ; + € p is not a divisor of zero.
This can be done, for if the involution is of the first kind and
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e=1, weput u = 1, whereas if e = — 1, we put p = w;. If on
the other hand the involution is of the second kind, we put p = 6
or 1 according as e = — 1 or 1. Lot ¢ be a variable element of %,

to be chosen later and put

_( 1 tBu
V= (tﬁ“# 0 )
V is obviously non-singular. Let T[V] = (:‘ :) Then

mo=atipten) +Ep By p (14)

Since & is an infinite field, we choose ¢ € &, such that | «,| # 0.
a, is invertible and our theorem is demonstrated.

We remark that Theorem 1 can be extended even to the case
where S has rank r < n.

Note that Theorem 1 is false if the involution is of the first kind,
e = — 1 and Z is commutative.

3.2. Before proving the important Theorem 2 we shall prove a
lemma concerning binary quadratic forms over quaternion algebrag
of the first kind.

Lemma 1. Let 8 = [§;, &] be a symmetric non-singular matrix
over a quaternion algebra 9. Let a, b be elements of 2 not boih
zero. There exists a two rowed matrix P, such that

[ 8[P] =85,
a a
'P(b) =():
with 1 + o’ not & divisor of zero.

Proor. We use the method of Siegel. Since S = 8 we see that
¢, and &, are in . Put

P=(_gea)
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where
— fl 52 - t2 — 2t
“hare P T e

and ¢t € & to be suitably chosen. Obviously S[P] = 8. Now «’
isgiven by @’ = aa + B & b. Substituting for « and 8 from (15)
we see that since & is infinite, £ € & can be so chosen that
(£ & + 17| # 0 and 1 + a' is invertible.

(15)

We are now ready to prove the following analogue of a theorem
of Witt.

THEOREM 2. Let S and T be two non-singular symmetric n-rowed
matrices over &. Let also

8,0 T, 0
s~(o's,) 7~(o"7.)

where S, and T are equivalent r-rowed matrices. Then S, and T, are
equivalent if and only if 8 and T are equivalent.

Proor. It is enough to prove the “if’ part of the theorem. We
may also assume that §; = 7';. Since by Theorem 1 we may diago-
nalize the matrices, it is evidently enough to prove the theorem

S~(€s‘3>’T~(€T‘3)-

Let P = (?y) z), where « is a column of n — 1 elements of 9.

when

P is a matrix over & and satisfies S[P] = 7. This means that
pEP+YSy =6,
péz+yS L=0, (16)
céx+LS,L="T,

Suppose now that & is a division algebra. Since p € 9, cither
p + lorp — 1 is different from zero. Letu =p 4+ 1 # 0. Put

Q=L—yu'Z (17)
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Because of conditions (17), it follows that

So [Q] =T 0s
and the theorem is proved in this case.

So let 2 be a quaternion algebra with divisors of zero. Let S,
and T'; be both in the diagonal form. Suppose p is not a divisor of
zero and let p be the first diagonal element of S;,. Let g be the first
element of the column y. Choose the matrix @ in such a way that

§0 _ (€0
(0 #) @1 = (0 .u)’
and Q(g) = (5,,)W1th 1+ p’ not a divisor of zero. This is
possible by Lemma 1. Let

(@0
Pl - ( 0 En—2) P.
Then S[P,] = T and P, has the first diagonal element p’ such that
P’ + 1 is not a divisor of zero. We can now proceed in exactly the
same way as before,

Suppose now p is a divisor of zero. Since | P| 0, at least one
element of y satisfies the condition in Lemma 1. We may assume
that the first element of y satisfies this condition. We can apply
Lemma 1 again and complete the proof.

We remark that Theorems 1 and 2 are still true if 2 is a non-
commutative division algebra of infinite rank over &#. § and T
may be symmetric or skew symmetric.

From now on until the end of this section we only assume that &
is an involutorial division algebra with % as centre, and of finite
rank over the centre.

Let S be an n-rowed matrix, non-singular and S=c8. Suppose
it is indefinite; that is, there exists a vector x 7 0 such that S[x] = 0.
Completing z into a non-singular matrix ¥, we have
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st =(14)

It is easy to see that by completing squares we may even choose V
in such a way that

S[V]=('g ?5‘1 ) (18)

01
7= (10)
Doing this again with 8, we obtain, after finitely many steps,
the matrix

where

0 E,
S~|+E o
00

0
01, (19)
T

where T is a definite matrix, and E, is the unit matrix of
order r. Obviously
r< nf2.

From Theorem 2 the integer r is determined uniquely by the equi-
valence class of §. 7 is called the index of S. Furthermore T is
determined uniquely by S. The integer » and the matrix 7' are
invariants for equivalence.

Let S and T be two matrices of n and m(< n) rows respectively.

Also let S = e S, T—e T, and S non-singular. We say that S
represents T in @ if there exists a matrix C of n rows and m
columns and of rank m such that

S[C]=T.
If T is non-singular, the condition on the rank of C is unnecessary.

If T =0, the null matrix of order m, we see by completion of
squares that

0 E,0
SN j:EmOO ’
0 0 8,
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which shows that m < r. Hence S cannot represent non-trivially
the null matrix of order > r.

Let S—e S and 8 non-singular. Let S[x] be a zero form. We may
take § in the diagonal form. Let

n

> Faz=0 (20)

i=1
be a non-trivial representation of zero by S. Let x; # 0. Let

teD,i=ct. Put

Y1 =2 (1 + ),
Yi=a;(1 —2), ¢>1,
where A € 9 is to be suitably chosen. Then, because of (20),
n
Z Y0 4 = 2(A Ty ay % + Ty a2 A).
i=1
Since %, a,z, # 0, put

A= (%, a,2,)" /4.

Then % _17, a; y; = t. This shows that for every ¢ in 2, with = et,

i1

S[y] =t has a solution. We can now prove the following general

THEOREM 3. Let S — €S, |8| #0, and let 8 have n rows. If S
represents the zero matrixz of order 1 non-trivially, then S represents

non-trivially every matriz T of order | with T=eT.
Proor. C(learly, by Theorem 2,
I<r< n/2.

We shall therefore use induction on!. If I =1, then the considera-
tions above show that the theorem is proved. Let therefore I > 1,
and the theorem be proved for all matrices of order [ — 1 instead of 1.
Let T be a matrix of order I. Then we may take

(o)
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where £ #£0. (We assume that 7' is not the zero matrix of
order I). Let

01
+10 0

o 8
Then S, represents the zero matrix of order » — 1 > 1 — 1 non-
trivially. Let « be a column of 2 rows such that

01
[ +1 0] [x] =1,

and let Y be a matrix of # — 1 rows, and I — 1 columns, and rank
1 — 1, such that

S~

SI[YI] = Tl'
This exists by the induction hypothesis. Put
z 0 ]
oY)
Then C has rank [, and S[C]=7. Our theorem is proved.

o-|

It must be noted that the converse of the theorem is false;
that is, that S may represent all 7’ £ O but not 7' = O of order 1.
Clearly this can happen only when !> r.

We now define the so-called multiplicative representation. Let
8=8"=¢e8,and T =T™=¢eT,n >m. 8 is said to represent T
multiplicatively if there is a € = C™™ with elements in & and of
rank m, and an element ¢ # 0 in &, such that

S[C]1=:tT.
This means that ! S represents 7'. If | T'| # 0, then we find that
there exists a 7' such that
7 0
o7

3.3. We now consider bilinear forms. Let 2 be a division algebra
with & as centre. Let 2~! be the reciprocal algebra. Let &/ be
the semi-simple algebra

S~t[

A =D+ D,
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constituted by the direct sum of 2 and 2~1. For any element a € 2
let @ denote the unique element into which a goes by the anti-auto-

morphism between 2 and 2. Similarly for be 971, beD-1.
Denote the generic element o in 2/ by

-[32)

a€D,be D!, Denote by « the element

~ 30]
*“loal

It is then easy to see that o—> « is an involution of &. « is said

to be symmetric or skew according as « = « or « = — «. Thus

[a O] [a O]
o= o |sora= ~ |
0a 0—a

Consider now the matrix algebra 9,(#)= . By a suitable
choice of base elements we may write any element M of & in
the form

(PO
M= [ 00l
P e My(2D), @ € M,(D~Y). Let P = (py,), @=(g;), and define M by

60]
oP}

~

where Q = (qNIk), P = (5,,,). Then M — I is an involution of &
which extends the involution in &/. We define symmetric and skew

elements in the same way as before. If S € & and §=¢8,
then § has the form

| 8| # 0 means | P| # 0.
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Let z = ( ;) be a column of 2n rows, x and y each having »

rows, with  having elements in & and y € 2-!. We call S[z] the
bilinear form of 8. Obviously
%P Y 0

28z = ~ o~ |
0 eyPx

Let m < n and .sa—!,,m denote the module over &/ of matrices
with #» rows and m columns. By proper choice of base elements
we write any C in oAy B8

40
0=[OBL

A being a matrix of n rows and m columns over 2 and B similarly

defined over 2~1. Denote by ¢ the matrix

~ [(BoO
04

then O is an element of the module ,,. Also C— C is an

isomorphic mapping of .s?,,m on .sz_/m,, If Te o, and T=eT,

we say that S represents 7' if thereis a C in .97,,,,, with

C8C=T.
If | T| = 0, we insist that 4 and B, the components of C, have rank
Obviously if § 0o y th
m. viously —[O e_ﬂ s = 0 EKT , then
QM P=N. (1)

If m = n, we say that S and T are equivalent. In case |7 | + 0, we
see from the theory of linear equations in division rings that (21)
always has a solution. In particular

THEOREM 4. Any two bilinear non-singular symmetric forms are
equivalent.
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In the case m = 1 and t = 0 we see that (21) has a solution

5 (2] =s
q
p # 0,9 # 0. Completing p and ¢ to non-singular matrices we get
L
S ~ 0~ y
OelL
where
0e0
L=]e0 0|, (22)
001L
and
l=e¢e+ %

is the decomposition of the unit element of & into a sum of ortho-
gonal idempotents. This shows that S can represent the null matrix
of order m, where

m< nf2.
m is the index of 8 and 7/2 is the best possible value of m.

The canonical form for a symmetric bilinear matrix is

PO
8= ~ |
o3
where
[[0eEO
eE O O] wnodd,
P=110 0 e (23)
i 0 eE] n even.
l el O
Denote by W the matrix
E 0
w=" 2,
0 —¢e¢E

E being the matrix of order n. Then W is in the centre of &7, and
if § is skew symmetric, then W8 is symmetric. This shows that it is
enough to study symmetric bilinear forms.
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3.4. Let &/, be the simple algebra of 3.1 and 3.2 or the semi-
simple algebra of 3.3. Let IR,(«7,) be the algebra of s-rowed square
matrices over &, The involution in &, can be extended to & and
one can study symmetric, skew symmetric and bilinear forms in &/
in exactly the same way, and all the foregoing theorems can be
extended easily to M, ().

4. Symmetric forms over number and function fields. Hereafter
2 will be a division algebra of rank m? over 2#. We shall assume
that 2 is non-commutative.

We consider first the case where £ has an involution of the first
kind. 2 is thus a non-commutative quaternion division algebra
over . Let it be defined by (11). Let S[z] be a symmetric non-
degenerate n-rowed quadratic form over &. Because of Theorem 1
we may take § to be in the diagonal form. Also since for ¢ € 2,

13 +'E e A, it follows that if #; = a;) + @;; w; + ... +2;3 w4, then
S[z] = z aahy — axf — Bajy + afaj), (24)
i=1

which is a quadratic form over " in the 4n variables ;.

Let p be a prime divisor of a valuation of %', and X', the
complete field under this valuation. Put 9, =2 x ,. Then
9, is a matrix algebra for almost all p. Let p be a finite prime.
Then K, is a p-adic field or a field of formal power series. By the
results of Hasse-Witt every element in £", is a norm of an element
in 9,. Thus

S[x] =b,

b e, is always solvable if b # 0, and if b = 0, then n > 1, provided
9, is a division algebra. We therefore have, if 2" is a function field,

THEOREM 5. A quadratic form S[x] over & represents every element
b#£0in 2. Ifin addition n > 1, it represents zero also non-trivially.

In the case of the function field we can solve the equivalence
problem also. For let § and 7' be symmetric and non-singular over
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9. For equivalence, it is necessary that § and 7' have the same
number of rows. We assert that this is sufficient. For let S =
[$15e-58.), T = [t,..., t,]. There is then =« with elements in £

such that
S[z] =t,.

Completing z to a non-singular matrix we have
60 ]
s [ 08 )

t, 0
0T
S ~T. Hence n is the only invariant for equivalence. Thus

Put T = [ ] Then if we use induction, then 8; ~ 7', and so

THEOREM 6. If X is an algebraic function field of one variable
over a finite field of comstants, then every non-singular symmetric
matrix over D, ¢ quaternion division algebra over X, is equivalent to
the n-rowed unit matrix.

Let now X be a number field. The above considerations hold
good if p is a finite prime or an infinite prime where 2 is unramified.
Let p,, be a real infinite prime spot of X" so that 4", is the real
field and 2, the algebra of real quaternions. Let J,_(S) denote the
number of negative ones among a,, @y, ..., @, in (24). Then J, (S)
is an invariant for equivalence in &, . J peo (8) is called the signature
of S at p,,. Obviously

0<J, (8) < n. (25)
Let Peo1s --- Pt be all the real infinite prime spots of ¢ at which &
is ramified and {J ptm,(S )} the system of signatures of 8. If forbe 2, b
denotes the conjugate of b in J¢',_,, then using Hasse’s theory, we get

THEOREM 7. S[x] represents b € X if and only if it does so in
every 9,. This is equivalent to
Jpoi®) <n—14f b >0
>1  ifb<o0]’
1<J,, S)<n-—1, b =0,

forl=1..,L
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We can now solve the problem of equivalence. For p finite or
9, unramified at p,,, the only invariant for equivalence is #, the
numbers of rows. If however 2,  is ramified at ), then » and
Jy.(8) are invariants. If S and T are symmetric, non-degenerate,
and are equivalent over &, then they have the same number n
of rows, and

Tou) = Tof{T), 1=1,...,1t (26)

The converse is also true. For let § and 7' bave same number
of rows and satisfy (26). It is easy to see that there exists an
a € X with the properties

>0if Jpw(S) =0,
7} <0 3 ) =n, (27)
arbitrary, 0 < J,_(8) <n.

By Theorem 7, § and T both represent . Hence
AL a 0
s~[05,)7~[on,)
But 8, and 7', satisfy conditions similar to those of 8 and 7" with
n — 1 instead of n. Using induction we get

THEOREM 8. Two non-singular symmetric mairices S and T are
equivalent in D if and only if they are so in every D,. An equi-
valence class of symmetric matrices is completely determined by the
invariants n and {Jpwl(S)}, l=1,...,¢ These can be assigned
arbitrarily satisfying only (25).

It is now trivial to extend Theorem 7 to representations of
symmetric matrices. For instance § can represent the null matrix
of order r only if

r< mlin (Vyei(8), 1 — J, (). (28)

In order to study multiplicative equivalence we proceed thus.
We study only the number field case, the other being trivial. At a
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finite prime spot of X" or at an infinite prime spot of ¢ where 2 is
unramified, » is the only invariant for multiplicative equivalence.
If 9 is ramified at P, then clearly § and T are multiplicatively
equivalent over D, _ if and only if

Ty (8) =T, (T) or J, (T) =n—J,_(8).

Since there exist in X~ elements with presoribed signs at the infinite
prime spots we have the main theorem for multiplicative equivalence.

THEOREM 9. A complete system of tnvariants for multiplicative
equivalance are » and |n — 2vaz(s) Li=1,..,¢t

We can now solve also the problem of multiplicative represen-
tation.

Let 8 = § be non-singular symmetric, and 7® = T be non-
singular and n > m. If S represents T multiplicatively, then there
exists 7', such that

gt TO )

07,

for some ¢ € X;. In the case of function fields the problem presents
no difficulty. In the case when X" is an algebraic number field, we
have only to study the infinite prime spots ..y, ... P, 8t which @
is ramified.

Obviously the conditions are

0<J, (8)—J, (T)< n —m,
or
0<Jy (8)+Jy (T)—m < n —m.

The existence of elements in ¢ with prescribed signs at real
infinite prime spots proves

TurorEM 10. 8 represents T multiplicatively if and only if
it does so at every D, P a prime spot of KA.

Here we assumed that T' is non-singular. It is easy to carry over
to the case where 7' is not non-singular.
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We now define a form £ 8 2, § symmetric non-singular, to be
definite if and only if it is definite in the sense of §3 at every infinite
prime spot of #". Thus ¥ 8« = 0 should imply = 0 in every 2, _.
This means that " is tofally real and & is ramified at all X", .
Hence 2 is a totally definite quaternion algebra over a totally
real centre.

S[z] is said to be totally positive if it is totally definite and
S[x]> 0 for everyx # 0in 9, .

4.1. We now consider involutorial algebras of the second kind.
The results here have been obtained already by Landherr in case
A" is a number field by using the theory of Lie algebras. Our consi-
derations here are simple and apply even to the function field case.

Let 2 be an involutorial division algebra of the second kind
over X" and let "), be the fixed field of the involution. 2 may be
commutative also. Let 6 be chosen as in (2). Put 6% =pu € X,
Let p be a prime divisor of a valuation of X7, and ", the com-
plete field. Put P, =P x H'y, and A", = A" x A 'y,. We consider
two cases (1) A, is a field and (2) X", is a direct sum of two fields.

Consider now the first case, so that 2, is an involutorial simple
algebra over J7",. It is known, by a theorem of Jacobson, that Dy is
isomorphic to the algebra of n by n matrices over #",. Let M be an
element in 9, so that M = (ay,), @, € #,. If one takes the regular
representation of ", over X, then a € X, is represented by
a matrix

= [22)

Denote by a* the conjugate of a over A’y,. Then

{ /\-——vJ

=l AL

where A, v € #,. Let us denote by M* the matrix (a*y). Then
M — M* is an involution in &, over A,. An element M in 2, is
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said to be symmetric if M * = M. Note that M is a hermitian matrix
in the ordinary sense. We shall find a connection between this
involution and the one got by extending the involution in & to 2,.

In order to do this we study the regular representation of & over
X o Every element « in 9 is represented by a matrix of 2m? rows
of elements in 2#";. We denote this matrix also by «. We use in 2,
the same basis over A, as @ over ). Thus « is a matrix of 2m?®
rows over X ,. 2, being isomorphic to IR,(H",) we see that by a
proper change of basis we may write
x

x =1y y~ (30)

~

[ 3

~
where y is a matrix of 2m? rows over 4, and « is anm rowed

matrix with elements «;; of the form (29). Note that o is the matrix

representing « in the irreducible representation of 2 over .
Define a* by

y (31)

o* being defined already. Then « — o* is an involution in the
matrix of regular representations. Therefore there exists § in 2,
such, that

~

o =28"1a*, (32)
where 8% = + 8. We may choose 8% =8 in view of the property
of 6. & being in P, we have
8

)

and so using (31) and (32) we see that if « is symmetric in &, then

S=y

Ga)* =5« (33)
8 ; is & hermitian matrix in the usual sense of the word. We call
d « the p component of «.
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The equivalence class of « in 9, is determined by the set of

elements ,é\(g o'c\) B, where B e 2, and is not a divisor of zero.
If p is a finite prime spot, clearly the only invariant for equivalence

at p is
1, = (12L),

the norm residue symbol.

Suppose now ¢ is a number field, and p,, is a real infinite prime
spot of Xy such that X", is the complex number field. The p,

component of « =« in 2 is the m-rowed hermitian matrix

('3 a'c\). If & # 0, the signature of the matrix 8 « which we denote
Jy, (®) is an invariant for equivalence in &, . We call J,_ («) the
signature of a at ,,. This is the only invariant for equivalence in
2, . Also

0<Jy, (x) <m. (34)

If Py oo Puo, be the finite number of real infinite prime spots
of Ay at which )", is a field, then « has the system of signatures
{/p,{®)}. We shall now prove

Pooi

THEOREM 11. There exist clements x i & with preassigned
signatures.

Proor. It is to be noted at the outset that these signatures
satisfy (34). If m = 1, then « € /"), and the signature is zero or one
means that x at that prime spot is positive or negative. The theorem
above would in that case be equivalent to showing that elements
in X, exist with prescribed signs at ‘infinity’. The existence of
such elements is well known.

Let H be a symmetric element in 9, and let H* denote its P, ,th
component, where K, is the complex number field. H® is an
m-rowed hermitian matrix. If @ € &, then a®” H® is again

hermitian, a being the conjugate of a. By (5) every symmetric
element H of 2 has the form
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H=qa H +..+aH, |=md (35)

H,, ..., H, being a base of symmetric elements of 2 over # and
ay, ... a;in A", Let f be the degree of " over I', the rational number
field. Then

t< f,

where Py, ..., Py are the real infinite prime spots of ", for which
Ay, is a field.

Let wy, ..., w; be a base of oy/T', so that w in A", can be uniquely

S
X
=]

Put a, in (35) in the above form

f
a«:=2%"% i=1,...,1 (36)
i=1

The p,,bth component of H is given by

i f
H<">=Zzaﬁw§“>ﬂgﬂ>, p=1,..,1 (37)
i=1j=1

written in the form

ayel. H® = (h{) is an m rowed hermitian matrix. We shall
show that the a;; can be chosen in I in such a way that the H® has
signature e, g,, where

e, +g.=m, 0<e, <m (38)

Now (37) is a system of tm? linear equations in the fm? variables
a;;, 80 that if the HW, ..., H® are arbitrarily given hermitian m-rowed
matrices, there is always a real solution if ¢t < f. If ¢ = f, then if
H®Y ..., HY are not all zero, there is also a real solution since
the determinant of the system of equations is not zero. Thus (37)
has always a non-trivial real solution, provided H®, ..., H® are
not all zero.
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(n) *
Let H® = (f Q‘*‘))’ where P® is hermitian with e, rows, and
@™ hermitian with g, rows. Also let

P® >0, @Q®<o. (39)

Then H™ has precisely the signature e, g,. For every H®, ..., H®
satisfying (39) there is a real solution of (37). Let W be the space
of all solutions of (37) satisfying (39). This space W is an open
convex subset of the Euclidean space of m?f dimensions formed by
a;’s. Thus there is a set of rational numbers a,; for which the H*
defined by (37) satisfy (39). H® £ 0. This proves our theorem.

We now consider the second case where J¢', is a direct sum of
two fields e’y and €X4",. 9, is then a direct sum of two simple
algebras &/, and &, with centres e2f", and ¢, respectively.
Also &/, is a matrix algebra of rank (m/s)® over a division algebra
2, of rank s* over e, Similarly &7, over 9,, and it is to be noted
that 2, and 9, are reciprocal division algebras. By a suitable choice
of basis elements of Z,, every element « in 2, may be written

_ ({40
*= OB)’
Aesd,, Beo,. Define a*by
B* 0
M* = (0 A*)’ (40)

where B* = (b,). B = (by), b,; € D, and by, € @, which corresponds
to by by the anti-isomorphism of 2, and 2,. Similarly for 4*.
Then « — «* is an involution in &, with 2", as fixed field.

By taking the regular representation of 2 over J¢°, we again get

0 «
Proceeding as before we get for a symmetric « in & the p component

~
~ o 0 ~ ~y .
o= ~ ), a and ay being m-rowed square matrices over .
2
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§ @ which equals (3 c:)*. This is the matrix of a symmetric bilinear
form over 2,. Note that here

dp-_—(M): 1. (41)
p

Let 8 be a symmetric, non-singular, n-rowed matrix over 2. Let
8 be equivalent to the diagonal matrix [«, ..., a,]. If p is a prime

divisor of J¢;, we denote by A the diagonal matrix whose diagonal
elements are § defined in (32) and later. We call A § the p component
of §. Also put

dw=(ﬁ%;@).

Then d, = 1, if ', is not a field. If P is a finite prime, then » and
d, are the only invariants for equivalence. In particular, since

nd,=1, (42)
p

the only invariants for equivalence in 2, in case X  is a function
field, are n and the d,’s. The d,’s have only to satisfy (42). From
the properties of the norm symbol it is obvious that d,’s can be
fixed arbitrarily.

We now assume that J¢" is a number field. The same considerations
hold if p is a finite prime divisor, or ", is not a field. If however
X, isa field, then J,,_(8), defined as the number of negative eigen-
values of the p,, component of S, is an invariant for equivalence in

Dy, We callJ, (S) the signature of S at p,,. Also
0<J, (S) < mn. (43)
If A is the auxiliary matrix at 2, , then
d, = (M) = (— 1)) ( M) (44)
pO po

In view of Theorem 10 the only invariants for equivalence are
n, d, and {J,_(S)},i=1, ..., ¢, and they can be assigned arbitrarily
so0 long as they satisfy (42) and (43).
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The details regarding representation, multiplicative equivalence,
and multiplicative representation can all be fixed up easily.

A form, or equivalently a symmetric matrix, is said to be definite
if at every infinite prime spot of X" the  component of Sis a
definite hermitian matrix. It follows therefore that J¢° is totally
real and that X must be fotally complex. Hence 6% is a totally
negative number of .

5. Skew symmetric forms. In the last section we had studied
the problem of equivalence of quadratic forms by assuming that
the involution in IR,(2) is the one that is extended from 2. If
we want to study the problem of equivalance under any involution
of I, it is necessary — as is evident from (10) — to study not
merely quadratic forms but also alternating or skew forms, skew
with regard to the involution in &. This presents no difficulty in
case 9 has an involution of the second kind. For if § and 7' are
two skew symmetric (with regard to the extended involution)
n-rowed matrices over &, and

V8v=r,
then we put 8; =88, T, =0 T, where 0 is defined by (2). Then
V8 V=",

and 51 = 8, i’l = T,. Conversely if 8, and T, are equivalent, then
so are S and 7. Thus in case of involutions of the second kind the
problems can be reduced to the case of symmetric matrices.

This is no longer true if & is a quaternion division algebra with
an involution of the first kind. We shall consider the case of a
quaternion division algebra &, whose centre is the completion at a
finite prime divisor of #". We denote this by &". If we take the
divigion algebra defined in (11), then an element z is skew if

E=a, 0, + ... + a3 w,,

and then |{|= —afa —alB +aiap.



QUADRATIC FORMS 253

Let S and T be two non-singular skew symmetric matrices over
2. If they are equivalent, then because of (13), |S|/|T'| € A *2.
We shall now prove

TeEEOREM 12. The complete system of invariants for equivalence
of skew symmetric matrices are n, the number of rows and the coset of
H*[A*2 to which the reduced norm belongs.

The proof depends on several lemmas and we prove them below.

LeMMa 2. Ife = —wcmdgz — &, then the equation ;wx=§
has a solution x in D if and only if |w|[| €| € A ™*2.

Proor. Let w| =12 |}, t € X *. By the theorems of Hasse
and Witt, there exists a {in @ with [{| =f. Put ¢, = [ £{ Then
€] = |w|, so that it is enough to prove the above lemma in case
lw| =[€]|. Since w and ¢ are both skew symmetric, there
exists x € 2 such that 2~ lwz = ¢ This may be written Twx = pé,
where p = |x|. It is therefore enough to prove the lemma in case
£ =p w for some p € K.

Consider now the quadratic extension £ '(w). It is separable
over J", since ) has characteristic # 2. Since w? e ", we see

that for any A in J(w), its conjugate over X" is precisely X If
a € X is norm of A in X (w), then

Ao =0 w.

Thus if p € X is norm in X (w)/5 , our contention is established.
Suppose it is not a norm. It is then easy to see that there exists
a p € X", which is not norm of an element in X (w)/", such that

’Xw)\=yw,

for some A in . Now p = p p/p. By local classfield theory, u/p is a
norm in X (w)/#" and our assertion in Lemma 2 is proved.

COROLLARY. A binary form T ¢, % + Y & y represents zero non-
trivially if and only if | €, €3] € H™*2,
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We now prove
Lemma 3. Every quaternary form represents zero non-trivially.

Proor. If 8 =[§,..., £] is a quaternary form, then since the
skew elements of & form a vector space of dimension 3 over ¢,
there is a non-trivial relation

Zti £ =0,

t;€ A . But there exists ; € & such that by Lemma 2, T, &z, = ¢, ¢,
This proves the contention.

Lemma 4. Two binary matrices S and T are equivalent of and only
if1SIT| e,

Proor. If [ S| e o *2 then |T| € A ** and then by corollary to
Lemma 2, § represents zero non-trivially. Using (18) we have

01
s~(_) o)~T

Suppose now that | S| ¢ K *2, LetSN(fl 0 )’ T~(‘f3 0 ) By
0 & 0 ¢

Lemma 3 there exists a non-trivial relation
b€ 4 o FE € =0,

¢, and ¢, cannot both be zero, for then it would mean that 7' repre-
sents zero non-trivially and | T'| € K*2. Similarly ¢,, ¢, are not both
zero. Thus there is a § € &, which both § and T represent. Hence

s~(se) 7~(0a)

Thus |&]/| €| € X *2, and Lemma 2 shows that Lemma 4 is true.

Lemma 5. A ternary matriz S = (£, &, &;] represents zero non-
trivially if and only if there exists a ¢ € 2 with

E=-¢
{l‘fl £ 63 1ILE] € A ¥,
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Proor. If 8[x] = 0is a non-trivial representation, then at least
one of z,, x,, 25, is not zero. Let x, £ 0. This means that [§,, &]
represents £,. Thus [£,, &] is equivalent to [£,, £ ] and our conten-
tion is proved with ¢, instead of £.

Let the conditions above be satisfied. Then by Lemma 4, [£,, £;]
is equivalent to [£,, £]. Our Lemma is thereby proved.

In order to prove Theorem 11 we use induction on n. If n =1,
then Lemma 2 proves the theorem. Let n > 1 and the theorem be
proved for #n — 1 instead of ». In view of Lemma 4 we may take

n > 2. Take § and T in diagonal forms. Then § and T, because of
Lemma 3, represent ¢, the first diagonal element of 7. Thus

s~(o5,) 7~(o m,)

Therefore |8,|/|T,| € X *%. Induction hypothesis applies to
8, and 7T, and our theorem is established.

The results concerning representations can be easily worked out.

Let us now consider the ordinary algebra of real quaternions,
where X" is the real number field. Since jw| > 0, it follows that for
any two skew elements w, w’' in &, there exists x € 2 with

Twr=uw'.

Therefore the canonical form for a skew symmetric matrix is

0K 0
[—E’ 0 0], if » is odd,
00 ¢
(45)
0 E o
[—-E O]’ if n is even,
1 being one of the basis elements of & over ¢ P = — i

It is very interesting to study the orthogonal group of the matrices
in (45). They are generalizations of the symplectic group.



256 K. G. RAMANATHAN

Let 2 be a quaternion algebra over the real number field
which is not a division algebra. Every element « in 9 is a two-

rowed matrix
( cd )
o s

a, b, ¢, d in H. Then « is given by
a=J1a'J, (46)

01

where J =( 1 0

). If o is skew, that is % = — a, then Jo = o

18 a symmetric two-rowed matrix. o’ denotes the transposed matrix.

If « and B are skew symmetric in 9, then Ju = «; and JB =8,
are symmetric ordinary two-rowed matrices. So « and B are equi-
valent in @ if and only if «; and B, are equivalent in %,(K). Put now

a=—J, B=J.

Then |a| = |B|, but they are not equivalent. This shows that
Theorem 12 is false in case & is not a division algebra.
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ON THE COMPACTIFICATION OF THE SIEGEL
SPACE

By ICHIRO SATAKE
[Received April 2, 1956]

InTrRODUCTION. Let J#, be the generalized upper half-plane of
dimension v = } n(n + 1) and M, be Siegel’s modular group of
degree n operating on 5,. Our purpose is to obtain a suitable
compactification of the quotient space ¥, = M,\ 7,.

Introducing the notion of V-manifold, which is a generalization
of the notion of ordinary complex analytic manifold, I have proved
in my former paper [3] that in case n =2, ¥", can be completed to

a compact V-manifold 72. ¥, has a structure as follows :
Vo=V Q30 W 0 Wy, oV,

Wi Wie ¥, denoting the V-manifold of dimension 2, 1, 0
consisting of the points at infinity which correspond to the matrices

% 00 % © 0 00
Then #', = #", v #,, U ¥, has a structure like a fibre space

with base space —V_l = %", U ¥, the base space and the fibres being

* ok
symbolically written as { 1, [ o * ], [ OO Oo], respectively.

both homeomorphic to c (Riemann sphere). I have also conjectured
that 7, , may be embeddable in a projective space as an algebraic
subvariety. In this respect I was informed recently that W. L.
Baily proved this conjecture by a method similar to that of
Kodaira®, proving the existence of a positive definite complex line
bundle on ¥,

This paper was presented to the International Colloquium on Zeta-functions
held at the Tata Institute of Fundamental Research, Bombay, on February
14-21, 1956.

1K. Kodaira: On Kéhler varieties of restricted type, Proc. of Nat. Acad
Sci. 40 (1954). See also W. L. Baily, On the quotient of an analytic manifold by a
group of analytic homeomorphisms, tbid.
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But this procedure of compactification makes use of Minkowski’s
reduction theory of quadratic forms in its detail, which is parti-
cularly simple in case n ==2. It becomes very complicated for
n > 2, mainly because of the fact that the number of conditions for
reduced forms is strictly larger than v =} n(n + 1) in case n > 2.
On the other hand, Siegel [5] gives a method of compactification
of the fundamental region F, of M, for general » > 2. But it is
difficult to decide whether his method gives rise to a compactifi-
cation of 7", as a V-manifold or not.

There is, however, still another possibility of compactification
which is much simpler and seems to be more useful for the theory
of modular forms. Namely, as I stated above, W, ; has a structure
like a fibre space. Let us shrink the fibres to the corresponding

points on the base space ¥",. Then from v, 5 we obtain a compact
space ¥, ¥ =¥, U ¥ U ¥; the topological structure of ¥7,* is
uniquely determined, since the fibres are compact. Though this
¥, * is no longer a V-manifold, we can define quite easily an
analytic structure on #7,* in a certain sense.

In the present paper, I shall give a direct construction of the
corresponding compactification ¥7,* for general n. In §1 we shall
recall the definition of V-manifold and give a general concept of
automorphic forms on a V-manifold. Then, considering ¥", as a
V-manifold, we define the faisceau /% of germs of modular
forms of weight m on ¥7,. In §2 we shall construct the com-
pactified space

V¥ =0 21U U P,

n

using some lemmas on Siegel’s reduction theory, which are generali-
zations of those given in [3]. In §3 we shall define the faisceau
2M* of germs of modular forms of weight m on ¥°,*, combining
all @ (0 <r <mn). The definition depends essentially on the
generalization of the operator @, introduced by Siegel [4],
to the local modular forms. This can be done by analysing
the properties of Fourier coefficients of the local modular forms
(Theorem 2) and also by the result of Koecher [2]. Then, in
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particular, &/®*, which may be called the faisceau of germs of
holomorphic functions on ¥, *, defines the analytic structure of 77, *.
1 do not here intend to investigate the properties of this analytic
space ¥ ,* any further. So it is still an open problem whether
this ¥°,* can be embedded in a projective space or not.

NoraTions. Matrices are denoted by capital roman letters and
vectors by small german letters. Z = X + 1Y denotes always a
complex matrix with real part X and imaginary part Y. The
components of matrices or vectors are denoted by the corres-
ponding small roman letters; thus y,, denotes the (k, I)-compo-
nent of ¥, and in case Y is symmetric, we put y, = y;,. & and 0
denote respectively the unit matrix and the zero matrix (or
vector) of various types. For a symmetric matrix ¥ we use the
notation Y[Q] = 'QYQ, 'Q denoting the transposed of Q.
| A| denotes the determinant of a square matrix 4.

1. Faisceau of germs of automorphic forms on a V-manifold. We
shall first recall the notion of (complex analytic) V-manifold,
which is a generalization of the notion of ordinary complex analytic
manifold [3]. Let ¥ be a connected Hausdorff space. We mean
by a local wuniformizing system (abbreviated in the following as
Lu.s.) {[7, @, ¢} for an open set U C ¥", a collection of the following
objects:

: a domain in the complex n-space C*,

: a finite group of (complex) analytic automorphisms of U,

e Q@

: a continuous map from U onto U such that $0Oo=¢ for
all 0 € @, inducing a homeomorphism from the quotient
space A\ T onto U.

Let {U G, ¢}, {U’ &, ¢’} be Lu. .8. for U, U’ respectively, and let
U c U’. By an injection A from {U G, qS} into {U' &, ¢'} we mean
a (complex) analytic isomorphism A from U onto an open subdomain
of U’, such that for any o € G there exists o' € & satisfying the
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relation A0 o =o' O A, and that ¢ = ¢’ O A. Then ¢’ is uniquely deter-
mined by ¢, and the correspondence ¢— ¢’ is an isomorphism from G

onto a subgroup of & consisting of those ¢’ € @ such that ¢'(A( U )=
D). Clearly for any ¢’ € G', u = o’ O XA becomes also an injection
from {ﬁ , @, ¢} into {CT ,/ @', ¢'}; it can be proved conversely that
any injection yu from {[7, G, ¢} into {(7 ', &, ¢'} is given in this form
with some ¢’ € G“. In particular, all the injections from {ﬁ, G, ¢}
into itself are given by o € G.

Now ¥ is called a V-manifold (with a defining family ), if
there exists a family §§ of l.u.s. for open sets in ¥ satisfying the
following conditions.

(I). Let {ﬁ, G, ¢}, {(7’, G, ¢’} € § be Lus. for U, U’ res-
pectively, and let U C U’. Then there exists an injection A from
{ﬁ , G, ¢} into {5' ', &, ¢'}. (Ais uniquely determined up to ¢’ € G
in the above sense.)

(IL). The open sets U for which there exist l.u.s. {ﬁ » @, ¢}in F
form a basis of open sets in ¥".

Two families §, &’ of L.u.s. are said to be equivalent if § u F’
satisfies condition (I); equivalent families are regarded as defining
one and the same V-manifold structure of ¥". We shall fix in the
following a defining family & once for all.

Now let us give the definition of automorphic forms on a V-mani-
fold ¥". Suppose that for each injection A: {ﬁ , G, ¢} — {(7 L&, ¢}
in condition (I), there is given a function u, on U satisfying the
following conditions:

(i). u, is holomorphic and # 0 on g
@). If x: {U, & ¢} — {0, &, ¢'}, and X: {T", &, ¢} —

{5’”, G", "} are injections in (I), we have

Uyor(B) = up(A(B)) un(B), for B e U, (1)
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the composed map A’O A being an injection: {ﬁ, G, ¢} — {U",
G’ 4"}

Then, in particular, we have for ¢, + € @ (which can be considered
as injections from {ﬁ, G, ¢} onto itself)

UsarB) = u,(7(P)) ©(P), ()

and also if A: {ﬁ, G, ¢} — {[7’, @', ¢'} is an injection, and ¢ € @
o’ € @' are such that A0 ¢ = o' O A, we have

~ oy U (A(D
w(o@®) = u(7) 0P, @
%,(P)
An important example of such a system {u,} is given by (a power
of) the Jacobian J,.

For {ff , G, ¢} € §, we denote by Ay the module of automorphic
forms on U with respect to {u,} (o0 € @), i.e. the module of holomor-
phic functions fon U satisfying the conditions

Fle®) =F@ w@™ foroeq. (4

Next, let {(7, G, ¢}, {(7’, G, ¢'} be Lu.s. in § for U, U’, respec-

tively, U C U’ and X be an injection {(7, G, ¢} — {ﬁ’, &, ¢'}.

Then forf' e Ag we have by (3), (4), f(B) = (A(P)) up(p) € Ay and
the correspondence

F=F=Fonu (6)

is uniquely determined by {5, G, ¢} and {f]", &', ¢'}, indepen-
dently of the choice of the injection A. This correspondence defines
a canonical homomorphism from Ay’ into Ag, which is an isomor-
phism into, and satisfies the transitivity condition for composed
injections by (1). Hence the system of modules {4} ({ﬁ, G, ¢}
€ §§) together with the canonical homorphism (5) defines a faisceau
& on ¥, which we call the faisceau of germs of automorphic Jorms
with respect to {u,} on ¥".1

t We can also construct an analogue of a complex line bundle on ¥~ corres-
ponding to the system {u)}.
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Let f be a section of @/ on an open set U, in ¥", Then for each
{ﬁ , G, ¢} € § such that #(U) C U,, there corresponds uniquely
an f € Ag, and the system of these f € Ay satisfies the following
condition. Namely, if A is an injection: {ﬁ, G, ¢} — {(7 &, ¢’}
these being l.u.s. in § such that ¢(U) C ¢'(U’') C U,, and if f, f’
are the corresponding elements of Ay, Ag., respectively, thenf~=
(f/ 0 A) u,. Conversely, any system of f € Ag ({ﬁ, G ¢} € g,

¢(U~) C U,) satisfying this consistency condition defines a section
f ofef on U, uniquely. In this sense, we call a section of & on U, a
(local) automorphic form on U, with respect to {u,}. In particular,
for u, = 1, we have the faisceau &/, of germs of holomorphic funec-
tions on ¥ and as a section of &, a holomorphic function on an open

subset of ¥,

Two systems {u,}, {u,} are said to be equivalent, if there is a
function vy for each {ﬁ @, ¢} € §, which is holomorphic and # 0

on ﬁ, and such that

. vy AMP -~

ws@) =) TP forp e 0 (©
vy (P)

The faisceau of germs of automorphic forms corresponding to equi-

valent systems are mutually isomorphic and so the corresponding

automorphic forms on ¥ are essentially the same.

Now we consider the Siegel space as a special case of the
V-manifold. Let 5, be the generalized upper half-plane of
dimension v = } n(n + 1), i.e. the space of all complex symmetric
matrices Z = X + 1Y of degree n with the imaginary parts ¥ >0,
and M, be Siegel’s modular group of degree n operating on £,
as follows:

o(2)=(AZ+B) CZ+D)" for o=(§ p) e Myand Ze £, (1)

Then the quotient space ¥, = M,\3#, becomes a V-manifold of

n

dimension v in the following way. Let pe¥", and P = Z° € 5#, be
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such that ¢,(Z°% =p, ¢, denoting the canonical map %, — ¥,
=M\, Let G be the isotropy subgroup of M, at Z° and U
be a connected (open) neighbourhood of Z° such that o (ﬁ) =0
for 0 € & and o(U) n ﬁ=¢for o ¢ G. Then it can be shown
easily that {ﬁ, G, ¢,} becomes a lus, for U =¢,(0) and that
the family § of all these {(7 , &, $,} defines a V-manifold structure
on v,

Next, let {ﬁ, G, ¢,}, {ﬁ’, G', ¢,} be lus. in § such that
$.(0) C ¢, (U’). Then every injection A: {(7, &, an}—)-{ﬁ’, &', .}
is given by some modular transformation. Let m be a fixed even

integer. In case Ais given by o = (g g) € M,, we put

u(Z) = |CZ + D|~™ (8)

The system {u,} thus defined satisfies clearly the conditions (i),
(ii). The faisceau &/ corresponding to {u,} is called the faiscean
of germs of modular forms of weight m on ¥",. Then by what we
mentioned above it follows that for any section f of &/ on an open
set U™ in ¥, there exists uniquely a holomorphic function 7on
¢t (U™) satisfying the relation

fe(2) =Fzy0z+ Dy, 9)
AB

CD

call f the local modular form of weight m on ¢! (U™) corresponding
to f.

for o = ( ) eM,, Zep;  (UM). We denote f = fo¢, and

2. Construction of the compactified space ¥,*. We shall construct
in this section the compactification ¥, * of ¥, in joining ¥, (0 < r
<n—1)to ¥, (¥y={P}: one point). For that purpose, let
us denote by F, Siegel’s fundamental region of M, in ,':

T See Siegel [4], §2.
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namely F, is the set of all Z=X +1Y €, X = (zy), ¥ = (4u)
satisfying the following conditions :

(I) abs |CZ+D|>1,
{C, D} running over a complete system of inequivalent coprime
symmetric pairs of matrices.

(II) Y is reduced in the sense of Minkowski, namely
Y[gk]>yk (1<k<n)’
Yers1 20 (I<k<n-—1),

g
&= [ : | running over all integral vectors such that g; (k <¢ < n)

In
are coprime.

(III) —3<ay<: A<k lI<n).

It is known that these infinite number of conditions are not inde-
pendent, but are equivalent to some finite number of conditions
suitably chosen among them. The matrices Z €, satisfying these
conditions are called reduced in the sense of Siegel.

Let U™ be an open subset of ¥, (0 < r < %) and K be a positive
number. We denote by ¥® (U®, K) the set of all

%12y, }7'
such that
(i) Z € F,, (hence Z, € F,)
(li) ¢r (ZI) € U(r),
(iii) g, , > K.
In case r = 0 or = n, we drop the condition (ii) or (iii), respectively,
which is meaningless in the corresponding case. We put
v (U, K) =, (T (U9, K).
Now we define 7, * as a set-theoretical direct sum as follows

YV X=F WUV iU .o U (10)
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Let p € ¥, and U® be an open neighbourhood of p in #7,. Then
we define a neighbourhood of p in ¥#7,* as follows
V(U Ky= U V" (U K). (11)
r<rsn
THEOREM 1. ¥, ¥ becomes a compact Hausdorff space, on taking
the V¥(U™, K) as a complete system of neighbourhoods of p € ¥, in
v,*. Here U runs over a complete system of neighbourhoods of p
in ¥, and K runs over a sequence divergent to co.

For the proof (as well as for the need in the subsequent section)
we give here some lemmas.

LEmMA 1. Let ﬁgp be a bounded set in F,. Then we can find
Zy Zy,

Zy
tf it satisfies the following conditions:

K > 0 such that Z = ( ) €, 18 reduced in the sense of Siegel

(*) 2, € TP,

(**) Yr41 > K,

M Y[gl]l >y (r+1<k<n),
Y41 =0 (r+1<k<n-—1),

B
Jor any integral vector g = [ :

In
(I —¥< <A<k <nr+1<Ii<n).

with g, (k < © < n) coprime.

Proor. What we have to show is that, taking K sufficiently
large (depending only on ﬁf,"’), the conditions (*), (**), (II'), (IIT')
imply the conditions (1), (II), (III).

(I) We can take {C, D} in the following form

— (G 0Y (Do 0 #)
0=(o*0) (¢ *)2=(3"5)(e %) o»
{C,, Dy} being a coprime symmetric pair of matrices of degree s

(1<s<n), [Cyl #0and @ an (n, s)-matrix such that (Q *) is
unimodular. Then putting
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So=X[Q1+C5' Dy, To=TYI[Q]
we have
abs |CZ + D| = abs |CyZ [@Q] + D,|
= abs [Cy| abs |8, + ¢T,|.
Asabs |Cy| > 1, abs |8, + ¢Ty| > |T,!, we have
abs |CZ + D| > |Ty| = | Y [@]|. (13)

Here we can assume furthermore that Y [@Q] is reduced in the sense
of Minkowski.

Put
q
Q@=(qr-- Q) q5= ( q;m) %; —
Then we have

Y[Rl = Y[q] ... Y[q,]
Y[q]l=7Y,[q"] +2'q}" Y12 q° + Yo [ 7], (14)

¢, being a constant > 0 depending only on s. Now from (IT') it
follows, in particular, that

~%<w<% Q<k<rri<i<m), (1)

namely Y, is in some bounded set and that Y, is reduced in the
sense of Minkowski. Hence if q{® 7 0, we have by (**)

Y [6®] > ¥y > K. (16)

If gf® = 0, then {® 5 0 and we have by (*¥)
3
¥lg] =, [qf] > 5 > 22 an

Hence if {® 5 0 for some j, it follows from (13)-—(17) that (*),
(**), (II') imply (I), taking K sufficiently large.

If g®=0,(1<j<s), then s <r and we may assume that
{C, D} is of the form



COMPACTIFICATION OF THE SIEGEL SPACE 269

0= (3:3). 0~ (2:3).

{C1, D,} being a coprime symmetric pair of matrices of degree r.
Then we have by (*)

abs |CZ + D|=abs |C, Z, + D;| > 1.
Hence (1) is again satisfied.
(II) We have only to consider the conditions
Ygl >y 1<Ek<7)

with
a®
8 = (Qf)) %; ” P #£0,

for all the other conditions in (II) are contained in (*) and (I1’). But
since we have

Y[g] =Y, [g{"] + 2°gi" Y12 [gi®] + Y[,

and (Y,, Y;5) is bounded by (*), (II'), the above conditions
follow from (*), (**¥), (II') by taking K sufficiently large.

(III) is clearly contained in (*) and (III'), g.e.d.
Now let M™ be the subgroup of M, consisting of all

_ (4,0 _ (B, 0
(AB .thA_(O E)’B_(O 0) ( )
g = , W1
cD 0=(010)D=(D10 C, D,
0 0 0 E)
(18)
and N be the subgroup of M, consisting of all
U= (E Um)}r : unimodular,
o= (ES (‘UO ) with 0 Us/jn—r (19)
0F ou-)p 0 8, }r

S = ( 910 8,)jn — : symmetric.
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The operationsof ce M or R on Z = (Zl gm) €3, are given as
2
follows :
Z) (4, —0,(Z)0)Z
. 7 (‘71( 1 1 1(Z1) C) Zyg ), 20
Ul Z,— (22, + D) O [Z) B0

N:%Z—Z[U]+8
- (Z1 ZoUp + 2, Uy + Sy )_(21)
Z3[Us] +'UsZ1s Uy +'Us2 213 Uy + Z)[Uyp] + 8,

We denote by @ the group composed of M™ and . Then it can
be seen easily that N is a normal subgroup of @ so that

G =M"RN, M® 1 N = {E}. (22)

LeMMA 2. Let U®, K be as above and let W be a bounded set in
H, x C0 = {(Z,, Z,)} such that (Z,, Zy) € W implies ¢, (Z,)
€ UM, Then there exists a positive definite symmetric matriz Y3 of

degree n — r such that for any Z = ( Z 212) with (Z,, Z5) € W,
2

Zy =Xy + 1Yy Y, > Y2, we have o(Z) € V™ (U, K) with some
ge.

ProoF. We may assume that U® is relatively compact in #”, and

K is sufficiently large so that we can apply Lemma 1 to 17‘0" =

¢ 1 (U) n F,. Then the matrices in V®(U®, K) are characterized
by the conditions (*), (**), (II'), (III'). On the other hand, it

follows by the condition on W that for any Z = (Zl gm) with
2

(Z,, Z,,) e W, there exists o, € M, such that Z'; = 0y(Z,) € ﬁ},”.
Let ¢ be the corresponding transformation in M®™ and let Z' =

(Z 1 2'12) = o(Z). Since W is bounded, the number of such o, €
2

M, is also bounded. Hence for any given YY > 0, we can find
Y3 > 0 such that, for the above Z, Z’, ¥, > Y implies ¥’, >
Y. Hence we may assume from the beginning that (Z,, Zy)eW
implies Z, e U{.



COMPACTIFICATION OF THE SIEGEL SPACE 271

Now by Minkowski’s reduction theory it is clear that for any
Z €3, there exists o € N such that Z’' = o (Z) satisfies the

conditions (II'), (IIT"). For Z = (Z1 glz) such that (Z;, Z,,)

2
€ W, we have here Z', = Z, € UQ, i.e. (*), and

y’r+1 =Y [gr+1]’

_ ‘g(l)

Gr+1 (g@)
?/'r+1 = Yl [Q“’] +2 tg(l) Y12 g(z) + Y2 [9(2)]

=Y, [gP+ Y'Yy, P+ (Y, — Y71 [Yy,) [Q(z)]-

Since ¢® 5= 0, we have y',,; > K, i.e. (¥¥), for ¥, > Y9, taking

Y3 such that ¥ > Y71 [Y,,] + KE for all (Z, Zy,) € W, qe.d.

) being an integral vector with g® coprime. Hence

By Lemma 1 it follows also that if K is sufficiently large
V™ (UM, K) has the following property : if Z € V™ (U®, K) and
o(Z) (0 € M,) is reduced, then o €®. On the other hand, by
the argument in the first half of the above proof, we can assume

that W has the following properties : if (Z,, Z,,) € W, then Z
e UY and also if (Z;, Zy)eW and Z, = o)(Z,) (o, €M,) is
reduced, then (Z,, Z,,) € W. Hence from the above proof we
also obtain the following refinement of Lemma 2.

Lemma 2. The assumplions being as in Lemma 2 there exists
Y9 > 0 of degree n — r such that if Z = (Z1 glz), (Z,, Z,5) € 7,
Z, =X, +1Y,, Y, > Y2 and o(Z) (c € M,) is 2reduced, then o €®
and o(Z) € V™ (UP, K).

In the following we shall denote by v (I/IN/', Y9) the set of all
Z = (Zl 212) € #, such that (Z,, Zy) € W, Zy = Xy +i¥n

2
Y, > Y3

Now let us prove Theorem 1. To prove that the system of
neighbourhoods { V* (U®, K)} defines a Hausdorff topology on ¥°¥,,
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it will be sufficient to show that for any V*(U®, K) there exists
some V*(U®, K') such that any p’ € V* (U™, K’) has a
neighbourhood in our sense contained in V* (U®, K) X; for all the
other conditions are quite obvious.

Let U™ be a relatively compact, open neighbourhood of p in ¥,
and let U® be a bounded open set in #, such that 0o c e
7L (UD), UP =¢71 (U n F,. Let L be an upper bound of
y, for Z, € UM, y, denoting the (r, r)-component of the imaginary
part of Z,. Put

Wr,n = {(Zv Zy); Z, € [7(1), Zyp = (2 + tyn)
—l<ay<l,—L<yy<L(l1<k<r,r+1<l<n)}.

Then, W = ﬁ’,’n satisfying the condition of Lemma 2, we can find
Y9 > 0 of degree » — r such that V (ﬁ’,’n, Y9) has the property
described in Lemma 2’. Then for V,, =4, (v ('ﬁ’,’,,, YJ)) we have

$: (V,) 0 F, € V™ (U, K), (23)
Ou the other hand, we have by the definition

ye (U, k') cV (W,, T3 (24)

’
for some K’, ..

~

We define similarly W,,, V,,, K',, forr <7 <n and put
Vg =U®, K’ =max K',,. Then any p’e V* (U?, K') has a

r<rEn
neighbourhood in our sense contained in V* (U®, K). In fact, let

p’' €¥,. Then by (24)p'e V") (U", K')C V,, and V*(V,,, K)
is a neighbourhood of p’ in our sense. Since by (23), V"’)(V,.,., K)
C V™ (UM, K) for ¢ < r* < n, we have V* (V,r, K) CV* (U, K).
This proves our statement.

To prove the compactness of ¥",* it will be enough to show that
any sequence {p,} from ¥, has a cluster point in ¥",*. Let Z, =
@ + ), $u(Z,) =p,, Z, €F,. Then, for some r, 0 <r <=, {y*}
is bounded and {y{?,} is not bounded ; this means in case r = 0 that
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{y?"} is not bounded and in case r = n that {#?} is bounded. Then,

) 7()

denoting Z, = (Zl gé_ﬁ), {Z¢"} is bounded and so has a sub-
sequence convergent to some Z$ €5#,. Then it is clear that {p,} has
a subsequence convergent in our topology to p = ¢,(Z?) € ¥,.

It should be noted that our topology of ¥ ,* induces on ¥/,
(0 < r < n) the pre-assigned topology, i.e. the topology as a quotient
space M, \5#,, and that ¥ * =%, 0 ¥ ,_; U ..U ¥, (0 <7r<n)
can be considered as a sub-space of V,*.

3. Faisceau &/"* of germs of modular forms of weight m on ¥, *.
Let m be a fixed even integer and let &/ be the faisceau of
germs of modular forms of weight m on ¥°, defined in §1. We shall
define in this section the faisceau &/™* of germs of modular forms
of weight m on ¥7,*, combining the faisceau &%) (0 < r < n).

Let U bean openset « ¢ in ¥, *andlet U= U U@, UM =
ros<r<n

Ua¥,, U £¢. Let ry< r < n and W be a bounded open set
in o, x C"=" guch that (Z;, Z;,) € W implies ¢,(Z;) € U®. Then,
{$:(Z,); (Zy, Zyy) € ﬁ’} being relatively compact in ¥, it follows
from Lemma 2 that there exists Y3 > 0 of degree n — r such that
Ze (W, YY), ie Z= (Zl 212), (Zy, Zup) €W, Zy = X, +iT,,
Y, > Y3, implies ¢,(Z) e U™. ZzLet £, be a section of ™ on U™ and
f. =/, O ¢, be the corresponding local modular form of weight m on

dH(U™). Thenﬁ, is defined on V(W, Y9) and since f, is invariant
under the translation:

Zy— Zg + 8,

f: has a Fourier expansion in V(W, Y3) of the following form
falZ) = Z oy (Zy, Zyy) e ImBR(TeZy), (25)
T,
T, running over all half-integral symmetric matrices of degree n — »

and ap(Z;, Z;5) denoting a holomorphic function on W depending
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on T,. This series converges absolutely in V(I/~V, Y9) and uniformly
absolutely in any bounded set in V(W, ¥9).

Now the open set W can be taken arbitrarily under the condi-
tions that it is bounded and that (Z,, Z,,) € W implies ¢,(Z,) € U®.
If W, W are two open sets in #, x C'®~" of the described type

and if olz(ﬁ) C W’ with some o € ©, 0,9 denoting the transformation
of the space o, x C®" = {(Z,, Z,;)} induced by o €@, then
by (20), (21) it follows that for any Y3’ > 0 we can find ¥ > 0 such
that o( V(W, ¥2)) C V(W’, Y¥). Hence by the uniqueness of the
Fourier expansions we can extend ap(Z;, Z;3) to a holomorphie
function on ¢ L(UM) x C'™". Then we obtain by (9), (20), (21) the
following properties of a, :

ap(Zy; Zny + S1e) = 0p(Zy, Zyy), (26)
g, ( By, Zig+ 2y Usg) =0g (B, Brg) €280 TGl + 20 w2 (27)

aTa[tUﬂ(Zv Zys) = ap(Zy, 23 Uy), (28)

ar(01(Zy), (4, — 0:(Z,) C1) Zyy) = ag(Zy, Zyy) |C1 Z, + D, ™ X
X 62"isP(Tn((01Z1+Dx)-lcl)lznl), (29)

8,2, U, being any integral (r, n — r)-matrices, U, being any uni-

modular matrices of degree n — r and o = ( gl gl) e M,.
1

By (26) ag (Z,, Zi3) can be expressed by Fourier series as follows
“T,(Zp Zy) = z bTu,T,(Zl) €2 Tayy) (30)
TIZ

T, running over all integral (r, n — r)-matrices and by 7 (Z,)
denoting a holomorphic function on ¢;7}(U®). By (27), (28) it
follows that by 4, satisfies the following properties:

bT1,+2U“1',,T,(Z1) = bTu,T,(Zl) 2SI Zy(Upal +*T1sZ, Usy) (31)

bTutUmTz[tUg](Zl) = an,T,(Zl)’ (32)
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We call an integral (r, n — r)-matrix 7T, a rational maultiple of T,,
if there exists a rational (r, n — r)-matrix Py such that Ty, =P, T,
We denote by {7',} the set of all integral (r, n — r)-matrices which
are rational multiples of 7',.

THEOREM 2. Let 1 <r < n. If T, 3 0, we have ar,(Zy, Znyg) =0
(constant zero). Also if Ty > 0 and T, € {T,}, we have by, Z1)=0.

Proor. Since (30) is absolutely convergent it follows that for
any fixed T, T, the following subseries of (30) is absolutely
convergent

z bT1,+2UuTg,T,(Z1) e2miSPA(Tyg+2U 3 T2,
Uy

=bp, 1,(Z) €2miSp(tT14Z1,) Z 20iSY(TaZylUsql 4 P13 2, Usy + 2T 220 0s),
Uy
U,, running over all integral (r, » — r)-matrices. Hence, if
br,r, (Z,) # 0, the series
e27i8p(T13Z:5) Z e2wiBP(Z, Tyt Uy +1U14(Zy Ty + 221, Ty)) (33)
Ull

is absolutely convergent.

Let U, be especially of the form

Wi2=1(g,0...0),

g being any integral (n — r)-vector. Then the series

z €= 2n(hy Tylal-+69)

8
is convergent, ‘b denoting the first row vector of ¥, Ty, + 2Y,, T,.
But since y, > 0, this is possible only if 7, >0 and T,[g] =0
implies ‘bg = 0. This proves already the first half of the theorem.
Therefore assume that 7', > 0. Then T,[g] =0 is equivalent to
Ty9=0. Now if T, ¢ =0, we have

tBQ = 12 Y1) T12@ + 2W1r415 -+ Y10) T2 g
= Y11+ » Y1r) T12 §-
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Since Y, can vary in some open set in the space of matrices of
degree 7, b = 0 is equivalent to T, g = 0. Therefore T';, must be a
rational multiple of T',. This completes the proof.

Conversely, it is clear that if 7', > 0 and T, € {T,} the series
(33) is absolutely convergent. Let us denote by {{T,}} the set
of all T, = 2U,T,, U,, being any integral (r, » — r)-matrices.
Then the factor modale {T';}/{{T;}} is finite; we denote by T'¢)
(1 <v < y(T,)) a complete system of representatives of {7} modulo
{{T2}}. Then we have easily the following

CoroLLARY 1. For a fixed Ty > 0, the module of all holomorphic
functions ap(Z,, Zp) on ¢7UP) x C'®=" satisfying the condi-
tions (26), (27) is generated by the series (33) corresponding to T
(1 <v <u(T;)) over the ring of all holomorphic functions on ¢;{(UM).

CoroLLARY 2. For Ty = 0, ay(Z,, Z,,) is independent of Z,,.

Denoting '?,(Zl) = 0y(Zy, Zng), f, 18 a local modular form of weight
m on ¢, H(UD).

The first half of Corollary 2 follows from the fact that in
cage T'y = 0, {0} consists of only the zero matrix. The second half
of Corollary 2 follows easily from (29).

In case r = 0, a, are constants satisfying the relation
Grty) = G- (39)

Then by the method of Koecher [2, Satz 2] it follows again that
ap=0for T 2 0, provided n > 2. But in caser = 0, n = 1 this
does not hold in general. In this case, we assume this property,
namely we assume that

@

Fie) = D a et (35)
=0
which is of course equivalent to the condition that E is bounded in

W {po}, K). We call such a section f, on U™ bounded. In case
r = 0, Corollaries 1, 2 hold trivially.
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Lemma 3. The Fourier series (25) converges uniformly absolutely
n V(W, Y3 + ¢ E) for any e> 0.
Proor. Since this series converges uniformly absolutely for
(Zy, Zg) € W, Zy =i (Y3 + % e E), we have
(ag, (Zy, Zys) | e BTt ieE) L I,
with some L > 0. Hence for Z e (ﬁ’, Y3 4 €E) we have
(@1, (Zy, Zyg) ?mSH T | L L g~ e80Ty,
Thus the convergent series

L e—ncSpTz
Ty20

(36)

gives a majorant for the absolute value series of (25) in ﬁ(ﬁ’, Yy +
el), which proves the uniform convergence of the latter series.

By Theorem 2, Corollary 2, and Lemma 3, we have the follow-
ing result.

TueoreEM 3. Let U be an open set #¢ m ¥ *, U= U U®,

rp<r<n
U =Un ¥, U™ %¢. Letry< r < n. Then for any section f, of
L™ on U™, which is bounded in case n= 1, there corresponds uniquely
a section f, of LD on U® as follows. Namely, let W be a bounded open

set in H, X CO=N ={(Z,, Zy,)} such that (Z,, Zyy) € W implies ¢,(Z,)
& U™ and let T, YY) be the set of all Z — (Z1 Zm) with (Zy, Zy)

2
€W, Zy =X, +iY, ¥y > YO, Y3 being o sufficiently large positive
definite symmetric matriz of degree n — r such that Z e I7(W~, YY) im-
plies ¢,(Z) € UM, Then fr=f. O ¢, has a uniformly absolutely con-
vergent Fourier expansion of the form

2y = 3 ag,(Zy, Z,g) T (37)
Tg>0

N I7(W~’, Y3), ag,(Z,, Z,;) being a resiriction to W of a uniquely deter-
mined holomorphic function on ¢;}(U®) x C'*=" and, in particular,
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ay(Zy, Zyp) =fr(zl) =fr O $(Z,). (38)
Under the circumstances of Theorem 3, we denote
Q7 (fa) =1, (39)

and call f,, f, related by the operator ®.

CoROLLARY 1. The assumpiions being as in Theorem 3, let r < r' < n.

Then

. le Z’12 r’
Z= ( VA )%n —
and let W’ be a bounded open set in J#, x C'®*=") — {(Z'), Z'},)}

such that (Z',, Z';;) € W’ implies ¢,.(Z",) € U™, We take W’ and
Y9 > 0 of degree n — #’ such that V(#’, ¥'9) VW, YY). Let

Proor. Put

A2y = 3 ap, (@, 2yy) risemis (41)
Ty >0

be the corresponding Fourier expansion of f;, in 17(117", Y'9). Then,
denoting @} (f,) = f,, fy =1 O ¢,, we have by definition
a(Z'y, Z's2) =y (Z). (42)
By (37), (41) we have
gy (Z'y, Z'y5) 75N = Z ar, (Zy, Zyy) 30 T5D),
7= (7
In particular, for Ty’ = 0, we have

-7.;’ (Z'y) = Z Gy, (Zy, Zy5) o2mSp(T'yZy)

Ty (gwn g)

v (L D\ W
Zl_( Z”z)%"'“"' ’

Denoting
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we can put ar, (Z,, Z,;) = ap. (Z,, Z'y;). Then we have

£ (Z") = Z gy (Zy, Z'15) 702D, (43)
7,30
with
%(zl’ Z”12) = 6y (Zy, le) = fr (Z,), (44)

for any Z’; such that (Z',, Z',,) € W’ with some Z'y5. Since W’ can
be taken arbitrarily under the condition V(ﬁ”, YY) c V(I’T’, YY),
(43), (44) holds in some V(W”, Y"}). Thus f, is bounded in casc
r =1 and ®I(f,) =f,. qed.

CorROLLARY 2. The notations being as tn Theorem 3, let Z, =

) 70, ~ o~
(Zl Zl%) be a sequence in V (W, Y9) such that Z{ — Z3, ZY =

zy
XP 4+ iYP, Y — 0. Then we have
lim f, () = f, (29). (45)
=300

ProoF. Since (37) converges uniformly in V (ﬁ’, Y9), the limit
can be calculated term by term. Then (45) follows easily from the
fact that a;, (Z,, Z,;) are bounded in W and

lim | e2mS(T3Z,*) | = lim e—2mSHT¥, )
y—>0 y—>00
0 for7,>0,T,+#0,
|1 for T, = 0. qe.d.

Now foranopenset U = U UOCY *,UD=Un ¥, U™ #¢,
reSt<n
let

I* = (fu Jae1r oo fro) (46)

be a set of sections f, of &% on U® (r, < r < n), which are related
to each other by the operator ®. We denote by A%;* the set of all
such f*. Then A{;* becomes a module with respect to the
addition defined by

S*+g* = + gu Joe1 Gnops ooes fr‘, + g’o) (47)
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for f* = (fn’ fn—l’ trea fr.,)’ g* = (gm Gn-1> =+ gro) EA%‘,)U*'

By Theorem 3 and its Corollary 1 it follows that A{*, is
isomorphic to AY)ym in case n > 2 or in case n =ry = 1 and is
isormorphic to the submodule of AP ;a) consisting of all bounded
sections of AL on UM in case n = 1, 7y = 0.

Moreover we can define the multiplication by

f* g* = (fn Gn> fn—l In—1> > fro gro) (48)

for f* € AQY*, g* € A y*, where the product f*g* e A®, . .;*. In
particular, A§%* U forms a ring and all 4%;* become Af)*-
modules. Putting

f*®@) = f(p) forpeU®, (49)

f*¥ =l fo-v -0 fr) € A{y* can be considered as a function on U,
which. is continuous by Corollary 2 of Theorem 3. In this sense,
we call f* € AJ)* a holomorphic function on U.

Now the system of modules { A%, *} (U C #7,*) together with the
restriction maps define clearly a faisceau on ¥",*, which we call
the faisceau of germs of modular forms of weight m on ¥, * and
denote by &/®*. In particular, &/{"* is the faisceau of germs of
holomorphic functions on #°,*, which defines the analytic structure
of ¥ *.

It will not be hard to prove that the analytic space ¥",* thus
defined becomes an ““ espace analytique général ” in the sense of
H. Cartan [1], i.e. #7,* is locally isomorphic to & normal analytic
subvariety in C*. Also it will be possible to prove that &/™* is co-
herent as a faisceau of &{™*-modules. But we do not enter here
into these problems any more.
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GAMMA FACTORS IN FUNCTIONAL EQUATIONS

By 8. BOCHNER
[Received December 28, 1955]

Ix a so-called functional equation for a zeta-function pertaining
to an algebraic field or a modular set-up, the Dirichlet series
occurring is multiplied by a function A(s) of the complex variable
s = o + ¢r which introduces itself each time by some (multiple
Euler -) integral of the form

A(s) M) _ je—(x,u R(t)*d Q(¢), Sy
ml)’ J

and which each time, by an appropriate computation, turns out
to be a product

N

I_[ L0 8 + qm)

me=]
in which p,, are positive rational numbers, and ¢, are complex
numbers. After replacing A(s) by A(rs) for a suitable positive
integer 7, the numbers p,, may be assumed to be positive integers
themselves, and after applying now the classical formula

m—1

I‘(pw):O’pexp[Dpw]ﬁ I‘(w+ ———), w =238 +q/p,

m=1 p

to each factor, the total product becomes

Ae® n I'(s —a,), (2)
m=1
where
A > 0, a = real number, a,, = complex number. (3)

This is a summary of a paper presented to the International Colloquium
on Zeta-functions held at the Tata Institute of Fundamental Research, Bombay,
on February 14-21, 1966. The paper has been published in Proc. Nat, Acad. Sci.
(U.B.A.) 42 (1956), 86-89.
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We are going to give a criterion by which a function A(s) which
satisfies a relation (1) is indeed of the form (2). The integral (1)
which we will envisage will be rather general, and will very amply
include all the particular cases known. But ours will be a pure
existence theorem, and none of the particular computations are in
any way superseded by it.

We assume that x = (r,,...,%;), ¢ = ({, ..., %) are points in
some real Euclidean E;, k¥ > 1, and (z, ¢) is the value 2, ¢, + ... +
7, t,. The point set P is an arbitrary open subset of E, : (t), and
Q(4) is a positive set function which is defined on every Borel set
A of P whose closure in E, is a compact subset of P and which is
countably additive on any such compactifiable subset. The function
R(t) is a (non-homogeneous) polynomial of some (unprescribed) degree
in (), ..., %), and is positive on P. The functions A(z), u(x) are
defined real-valued and infinitely differentiable (actually the infinite
differentiability would follow from the other assumptions put
together) over a neighbourhood & of K, : (x) no matter how small,
and they are positive on G. The complex variable s ranges over some
right half-plane

o > oy (4)
and
'u(x) — 6]ogp(x).a’ R(t)' — plogR().e
for real values of the logarithms, and A(s) is holomorphic in (4).
We also assume that for
zin G, sin (3), (5)
we have
| e Rey 1200)) < =, ©®)
P
uniformly for # in &, which implies that the integral (1) is holomor-
phic in (4), and the over-all assumption is that in (4) the equality
(1) holds.

TuEOREM. Such a function A(s) is indeed of the form (2), (3).

Princeton University
Princeton N. J., U. 8. A.



ON RIEMANN’S FUNCTIONAL EQUATION

By S. BOCHNER and K. CHANDRASEKHARAN
[Received November 1, 1955]

GIVEN THE sequences

0< A< <... <A, —> 00, (1)
and

O<py < pp <o < pyy =+ 00, (2)
and a number 8 > 0, we call the triplet {5, A,, p,} a label. Ifsisa

complex variable, 8 = o + ir, we speak of a solution of the func-
tional equation

742 T(s/2) d(s) = m~O=V2T{(8 — 8)/2} $(d — 9), 3)
pertaining to the label {3, A,, u,}, if there exists

(i) a Dirichlet series

Ho) =2 5% ()

with arbitrary complex coefficients {a,}, not all zero, which con-
verges absolutely for o > «, for some finite « > 0, and

(ii) a Dirichlet series
o0

o) = >

7 (8)
T B

with arbitrary complex coefficients {b,}, not all zero, which con-
verges absolutely for ¢ > B, for some finite § > 0, and

(iii) & bounded, closed set § in the s-plane, such that if B is its
exterior, then both § and R are symmetric relative to the line

This is an abstract of a paper presented to the International Colloquium on
Zeta-functions held at the Tata Institute of Fundamental Research, Bombay, on
February 14-21, 1956, and published in the Annals of Math, 63 (1956), 336-360.



286 S. BOCHNER and K. CHANDRASEKHARAN

0=20/2, —0 < T< + o0,

and there exists in R a holomorphic function y(s) which in a right
half-plane coincides with

x1(8) = =42 I'(s/2) ¢(s), (6)
and in a left half-plane coincides with
X2(8) = n~ OB T{(S — s5)/2} (5 — ), (7)
and for which
lim y(oc 4+ ¢7) =0, (8)
|r|—>o

uniformly in every bounded interval o, < 0 < 05, — 0 < 6y < 0y
< + oo. Such a pair of functions {¢(s), ¥(s)} will be called a
solution of the functional equation (3), pertaining to the label
{8, A, pp}. Our object is to show that the number of (linearly
independent) solutions of equation (3) depends on the modular
density (a concept which we define presently) of the given
sequences A,, u,.

If {A,} is given as in (1), then the ‘lower density’ of {A,} is defined
by D, = lim inf n/A, and the ‘upper density’ by D* = lim sup =/A,.
If D, = D= D, then D is the ‘density’ of {A,}. The analytic
density of {A,} is the smallest number D(A) such that if one can
analytically continue the sum function of the series Xc, e~**, for
arbitrary complex ¢,, through a gap of width exceeding D(A) into
the entire half-plane left of the axis of convergence, then one can
so continue it all over the plane. The ‘modular density’ of {A,} is
defined to be d, = max (D(A), D,).

We shall show that, in general, if {u,} is of finite modular density,
then the number of linearly independent solutions of the functional
equation is at most equal to the minimum namber of A,’s that
lie in any interval of length greater than d,. The functional equation
mmplies the inequality d, d, > 1, and if there exists an integer k such
that d,, d, < k + 1, then the equation has at most & linearly inde-
pendent solutions. Furthermore, if d, = d, = 1, and the coefficients
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{b,} are suitably limited in magnitude (e.g. bounded), the functional
equation implies that A, , — A,= 1, for every n, so that there can be
at most one solution. On the other hand, if d, =dy =1 and g, ,
— g = 1 for n > n,, then, of necessity, we have A, = n or n — 1/2;
#, =n or n —1/2; and 6 =1 or 3; and the only solutions that can
occur are those known, namely {(s), (2* — 1) {(s), (21~* — 1) {(s) and
2*~1L(s — 1). Finally, if in a solution we have p,, , —p, =1 for
n >mg, and in the sequence {b,} there are at most finitely many
different terms, then & = 1, u, =, a, = a, ., for a certain positive
. k-1 2mqn
integer &, A, = n/k, and b, = on a, cos 5

Princeton University, Princeton N. J., U. 8. A.
and
Tata Institute of Fundamental Research, Bombay






ON THE HECKE OPERATORS FOR MODULAR
FORMS OF DEGREE n

By M. KOECHER
[Received January 10, 1956]

THE FOLLOWING essay is a collection of the most important results
of an operator theory of modular forms of degree n. Essentially
this theory is a generalization of the Hecke operators, going
further than the initial work of H. Maass and M. Sugawara, a
generalization which is mainly based on the complex multiplication
of Abelian functions of » variables. The main difference between
this theory and the classical one of Hecke consists in the fact that
we consider an infinite number of equivalent groups instead of the
modular group alone (equivalent in so far as none of these groups
has any properties which may induce us to prefer it to the others).
Those groups appear as unit-groups of skew-symmetric matrioes.
In relation to them one has to define C-modules of automorphic
forms and finally one introduces, as a generalization of the Hecke
operators, operators between two of these modules.

As the unit-groups of skew-symmetric matrices are generally
not subgroups of the symplectic group of degree n, there are two
possibilities for the generalization intended here. Firstly, it is
possible to transform all the groups into subgroups of the symplectic
group by passing over to conjugated groups. In this case, the
so-called symplectic one, the writing and nomenclature is compara-
tively complicated, but on the other hand, one is able to use all the
results of Siegel’s theory. Secondly, one can formulate this theory
directly by means of the unit-groups, but is then forced to rewrite
the results of symplectic geometry etc. a little, which is possible
without any difficulty. For the second case we will now put down
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the most important results, which can be easily concluded from the
symplectic case [1]. In the cited work there can be found other
references to the literature.

A matrix 4 of m rows and n columns is denoted by A™™,
and A™™ is equivalent to A(n). A’ means the transposed matrix
of A, and | 4 | the determinant. A matrix A is called integral, if all
the elements are rational integral numbers. A non-singular matrix
A™ is called elementary-divisor-matriz (ED-matrix) if A is integral,
is of diagonal form, and if for the diagonal elements a,, a,, ..., a,,
the relation a; |a , for k = 1, 2, ..., n — 1 is satisfied. It is known
that there exist two unimodular matrices U and V for every non-
singular integral matrix, so that UAV is ED-matrix. We define for
every quadratic matrix H of » rows and columns a matrix H* of
double the number of rows and columns by

(|
* _
i = [ —H 0 ] ’
If Q® = — @' is an integral non-singular matrix, one considers

the group of the integral matrices U, which satisfy the equation
U'QU = Q, i.e. the group of the units of ¢. As it is possible
to find for every skew-symmetric matrix @ a unimodular matrix V
so that V'QV = H* and H is an ED-matrix, we can confine
our study of the wunit-groups to the special matrices of the form
@ = H*. The set of the units of H*, that means the set consisting
of all the integral matrices L with L'H* L = H*, forms the group
M(H), which may be looked upon as a generalization of the
modular group of degree n, M(E). For n = 1 all the M(H) coincide
with the classical modular group; for n > 1, M(H,) = M(H,) is
equivalent to H, = hH,. Two of these groups are commensurable.
The M(H)’s have some interesting properties, of which only one
shall be mentioned here, namely that they can be generated by a
finite number of elements, the order of each of them being a divisor
of 12.

The part played by the modular group in the case n = 1 is per-
formed by the M(H)’s after the generalization of the Hecke
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operators. Given two E.D-matrices H and &, one has to look upon
the integral solution R of the equation

R'H*R = G* (1)
as the generalization of the transformation matrices. This equation
is solvable by an integral R only if @ = HK, and K an integral
diagonal matrix. If G = HK is valid, weshall write H | G (H divides
G) and in the following we shall always assume that this relation
is satisfied. If R is a solution of (1), then LRN satisfies (1) too, if L
and N are respectively chosen out of M(H) and M(@).

Let P(H) be the set of complex matrices Z™ which satisfy the
equation HZ = Z'H, and, putting Z = X 4 1Y, for which HY is
the matrix of a positive-definite quadratic form. Then Z being an
element of P(H) implies

A B}
CD
a mapping from P(G) onto P(H), if R satisfies (1). For each function
F(Z), defined on P(H), a given rational integral number k and any
solution R of (1), R being subdivided in the scheme (Z), we define

fIR =f(Z2£)R = |CZ + D" f (R (Z)).

Z— (AZ + B)(CZ + D)~ = R(Z), R =

(2)

By reason of (2), f/R is defined on P(G). One easily verifies that
FI(RS) = f|R|S,

provided that S'G*S = F*. A function defined on P(H) is

called holomorphic, if the function g(W) = f(H W), W = HZ =

W' = (wy), is holomorphic as a function in the =n{n + 1)/2

variables w,. Naturally f/R is holomorphic in P(@), if f is holo-
morphic in P(H).

Now the automorphic functions belonging to M (H) are defined by
the following properties :

(1) f(Z) holomorphic on P(H),
(2) f/L= f for every L of M(H).
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By these functions a C-module (H,k) is formed. It can be
verified that for n > 1 these functions are bounded in the
fandamental region of M(H) -— a fact, which must, however,
be postulated for » = 1— and that the module (H, k) possesses a
finite basis.

Now we will define the generalization 7'(H, G) of the Hecke
operators. If H and G = HK are two ED-matrices, as before,
f(Z) an element of (H, k), we put :

fITH, & = fIR, (3)
R

the sum being taken over a complete system of inequivalent
solutions R of (1). Two solutions of (1) are called equivalent,
if they can be transformed into each other by left hand-multi-
plication with an element of M(H). Because f/L = f, T(H,G)
does not depend on the selection of the matrices B within a system
of equivalent matrices. One proves that the sum (3) is finite, and
that f/T(H,G) belongs to (G, k). Therefore we get a mapping

T(H, &)
(H, k) ———> (G, k). @)

Analogously one puts for g of (@, k),
gIT* (@ H) = > fIR™, (5)
R

the sum being taken here over a complete system of inequi-
valent solutions R of (1), inequivalent as regards right-hand
multiplication with elements of M(G). One verifies that
T* (G, H)
(G, k) ——> (&, k). (6)
Thus a connection is given by 7' and T* between the different
modules (H, k).

Now it is the task of the operator theory to examine the relations
between the different operators 7' and 7'* for different arguments.
The following two important theorems can be deduced :
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THEOREM 1. For H, G, F ED-matrices and H|/G/F we have
TH,Q) TG, F)=TH, F), THF,G) T*&, H) = T*(F,H),
provided that |H=1 G| and | @~ F | are relatively prime.

TaEOREM 2. For H, G, Gy ED-matrices and H|G; (j=1, 2)
we have

T*(Gy, H) T(H, G;) = T(G,, H' G, G;) T*H™' G, G,, Gy),
provided that |H~'G, | and |H™1G,| are relatively prime.

One could think of composing the operators T' and 7' in such
a way as to get an operator mapping a given module into itself,
in order to come to a ocloser contact with the classical theory.
This is indeed possible by defining, for an integral diagonal matrix K,

Sy(K) = T(H, HK) T*(HK, H).

Then Sz(K) maps the module (H, k) into itself and from
Theorems 1 and 2 follows

SH(Kl)SH(Kz) = SH(KI Kz)x

provided that K,, K, are integral diagonal matrices with
relatively prime determinants. As for » =1, the operators 7' and
T* are identical, S coincides in this case with the square of the
corresponding Hecke operator. But this composition of the two
operators does not yet seem suitable at this point of the develop-
ment, one will rather try to find relations between the operators 7'
(respectively 7™) alone.

Analogously to the symplectic case an inner product (f, g) between
two forms f and g from (H, k) can be defined, which possesses the
characteristic properties of a definite Hermitean metric. This defini-
tion shall not be given here. But by this product it is possible to
prove that for g out of (&, k), and f out of (H, k), the following
equation is valid :

(fITH, @),9) =c (H, G). (f, 9/T* (& H)),

where ¢(H,G) is known. One can verify that by forming the direct
product of the modules (H, k), it is possible to formulate the results
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of the operator theory more simply. For this purpose all the ED-
matrices H are enumerated in some way, and then the direct
product of the (H;, k)’s is formed. An element of this product can
be looked upon as a vector of infinite dimension

We also write
) = (f(Z; H)),

which is to signify that f(Z; H) from (H, k) is that component of (f)
which is numbered by H. For such form-vectors (f) = (f(Z); H)
and ED-matrices K, two operators T(K) and T*(K) are defined as
follows :

(f)/T(K) = QHK™). f(Z; HK~")|T(HK™*, H)),

(F)T*K) = (f(Z; HK)/T* (HK, H)),
with
1, if A is an ED-matrix,
0, otherwise.

8(A)={

Because of (4) and (6), (f)/T(K)and (f)/T*(K) are again form-
vectors. From Theorems 1 and 2 it follows immediately that
T(K, K,) = T(K,) T(K,), T*(K, K,) = T*K,) T*(Ky),
T(K,) T*(K,) = T*(K,) T(K,),
provided that the K;’s are ED-matrices with relatively prime
determinants.

Further we can now formulate some more results concerning
the operators T'(K) and T*(K). If the K;s are two diagonal
matrices, only the last component of each of them being a
positive integral number different from 1, the following equation
can be verified :

T(K,) T(Ky) = Y T(D™' K, K,) V(D), (8)
D

after norming the T'(H,@)’s suitably. The sum is to be taken over
all the ED-matrices D, for which D/K;, and V(D) is a simple per-
mutation operator. (8) is the exact analogue of Hecke's theorem.
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After norming the operators T(H,G) and T*(@, H) suitably,
one can introduce an inner product for the form-vectors (f) and (g)
in a quite natural way. By this definition a subspace of the direct
product of the modulus {(H, k) becomes a Hilbert space (k). In (k)
the operators 7(K) and T*(K) have a bounded norm, and it is possi-
ble to norm the T'(H, G’s in such a way that there appear only
constant additional factors in the above multiplication formulae.
Besides this 7'(K) and T*(K) are adjoint in (k), so that the following
relation exists :

(FYT(K), (9)) = ((f), (9)/ T*K)).

REFERENCE

1. M. KomcaEr: Zur Operatorentheorie der Modulformen =-ten
Grades, Math. Annalen, 130 (1956), 351-385.

University of Miinster
West Germany
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Ix the theory of the * fonctions zétafuchsiennes ”’ developed by
Poincaré and, in other regards by Ritter, some progress may be
attained if a non-trivial representation of the given fuchsian group
I is explicitly known. Such a representation arises from a simple
algebraic construction by which there corresponds to each (2, 2)-
. 3] , & (n, n)-matrix D(S) = (dy(8)), where n > 1
is a preassigned integer, so that D(S, 8;) = D(S,) D(8,) | D(S)|
= |8#**=1 holds, when 8, §,, S, are any given complex
(2, 2)-matrices. The representation of I' thus defined turns out to
be irreducible, as is easily seen in the case of I' containing para-
bolic substitutions.

matrix § = [

Now, if r denotes a fixed complex number, v a system of multipliers
of dimension — (r —n + 1) attached to I', we consider vectors f(r)
with components fi(7) (j =1, 2, ...,n), all analytic functions of
the complex variable 7 in the upper half-plane, so that

fln) = oL (7 + 8 D), (L7 = L) - i g Ler);

here, f is to be treated as a column. Besides, f has to fulfil certain

additional conditions of regularity corresponding to those of the
scalar automorphic forms.

The general facts which are to be established in the theory of
these vectors f(r) concern their expansions in power series of the
different locally uniformizing variables, their connexion to vectors

This is & surumary of a paper presented to the International Colloquium on
Zeta-functions held at the Tata Institute of Fundamental Research, Bombay,
on February 14-21, 1956.
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composed by scalar automorphic forms of different dimensions, the
effect of a certain differential operator on a scalar automorphic form
of dimension — (r — n 4+ 1), the Wronskian of a vector f(r), the
linear independence of its components — all that combined with the

transformation of f(7) by a real § = [Z' 3] of determinant 1.

When r is real and |v| is always = 1, a scalar product of two
vectors f(r), g(v) belonging to the same “class” {I‘, -7, n} may
be defined by a certain integral over the fundamental domain of
T. In the linear manifold K consisting of the integral vectors of
that class vanishing in all the cusps of I', the scalar product
induces a linear hermitian but not always positive definite
metrization.

Whenever r > n 4 1, |¢| = 1, Poincaré’s series are absolutely
convergent, and each vector f(r) of a corresponding class—integer
or not—admits a representation as a finite linear combination of
Poincaré’s series. From that it follows that the metrization mentioned
above is closed, i.e. a vector of K which is orthogonal to all vectors
of K vanishes identically.

In the special case I' = modular group I';, integral vectors f(r)
belonging to a real r > 0 and to a system of multipliers » of modulus
1 are connected, by means of Mellin’s integral, to vectors of
Dirichlet’s series which represent meromorphic functions with at
most a finite number of simple poles, and which satisfy a functional
equation of the type of Riemann’s {(s). If  is an integer and v = 1,
then, from the general transformation named above, a theory of
operators of Hecke’s type arises, leading to results which are, in
some regards, but, not throughout, similar to those of the theory
of scalar modular forms.
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