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Introduction

Motivation and outline

The aim of this lecture is to understand how to change the variables in a
double integral.

We first recall the change of variable formula for integrals over real line.

Then we define a change of variables in R2 and examine how it transforms
simple domains.

Then we explore the effect of a linear transformation on the integral.

Finally we indicate the formula when the transformation is a general one.
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Introduction

Recall : Change of variable formula in R
Let f : R→ R is a continuous function.

Let g : [a, b]→ R is one-to-one function of class C1 with g′(x) 6= 0 for all
x ∈ [a, b]

Then with y = g(x), if g is increasing∫ b

a
f(g(x)) g′(x) dx =

∫ g(b)

g(a)
f(y) dy,

If g is decreasing,∫ b

a
f(g(x)) g′(x) dx = −

∫ g(b)

g(a)
f(y) dy.

One motivation is that the second integral is often easier to compute.

What is a two dimensional analogue?
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Change of variables

Change of variables

Let Ω be an open subset of R2.

A C1 function φ : Ω→ R2 is a change of variables in R2 if

φ is one-to -one function on Ω.

Jacobian Jφ(x) = detDφ(x) 6= 0 for every x ∈ Ω.

If φ is a change of variables in R2, then by Inverse Function theorem

arguments, the image φ(Ω) is open and the inverse function

φ−1 : φ(Ω)→ Ω is also C1. Thus φ is a diffeomorphism.

On the other hand, every diffeomorphism is a valid change of variables.
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Change of variables

Basic questions in change of variables

Let Ω be an open subset of R2, bounded and simple.

The boundary of Ω has Jordan content zero.

Let φ : Ω→ R2 be a C1 diffeomorphism.

Let f be a real valued integrable function on φ(Ω).

How to relate
∫
φ(Ω) f(y)dy to its integral over Ω?

Often the second integral is easier to compute.

Is φ(Ω) also a simple domain?
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Diffeomorphism of domains

Diffeomorphism of simple domains

Lemma

Let φ : U → R2 be a C1 diffeomorphism.

Let Ω be a bounded set with Ω ⊂ U .

Let φ restricted to interior of Ω be a diffeomorphism. Then

∂(φ(Ω)) = φ(∂(Ω)).

φ is Lipshitz if for some M > 0, ‖φ(x)− φ(y)‖ ≤M‖x− y‖.

Lemma

Let φ : U → R2 be a Lipschitz function.

Let D be a subset of measure zero in U .

Then φ(D) has measure zero.
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Diffeomorphism of domains

Diffeomorphism of simple domains

C1 functions are Lipschitz. Thus a diffeomorphism takes null sets (zero
measure sets) to null sets.

Lemma

Let φ : U → R2 be a C1 diffeomorphism.

Let Ω be a bounded simple set with Ω ⊂ U .

Then φ(Ω) is also bounded and simple.
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Linear Transformation

Linear transformations

Take φ to be a linear transformation T , from R2 to R2.

Then it is represented by a 2× 2 matrix. The transformation is

(
x
y

)
=

(
a b
c d

)(
u
v

)

The rectangle [0, 1]× [0, 1] in the
u-v plane is mapped to a
parallelogram in the x-y plane. The
sides of the parallelogram are given
by (a, c) and (b, d).

How to compute the area of this parallelogram?
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Linear Transformation

Example

Take a simple example of T(
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)
In this case, it is easy to compute the area of the parallelogram as the sum
of two right angled triangles : 2× (1/2) = 1.

This in fact is the determinant of T , which is in fact an orthogonal matrix.
(O orthogonal if OOt = OtO = I)

As orthogonal matrices preserve distances, they preserve the area.

The area of the image parallelogram is equal to the determinant of T , in
this case.
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Linear Transformation

Linear transformations

In the case of any general linear transformation also, one can prove that
the area of the image of the unit rectangle is equal to |determinant of T |.

To prove that, use the following Polar decomposition for T .

Lemma

Let T be a non-singular linear transformation from R2 to R2. Then

T = OP

for some orthogonal matrix O and a symmetric positive definite matrix P .

As TT t is symmetric positive definite, for some P , a symmetric positive
definite matrix, TT t = P 2.

Define O = TP−1. Then T = OP with O orthogonal and P symmetric
positive definite.
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Linear Transformation

Proof for a general T

T = OP with O orthogonal and P symmetric positive definite.

P can be diagonalized and hence P = O1D(O1)t for a diagonal matrix D,
with diagonal elements a1, a2.

Note that

|det(T )| = | det (D)| = |a1a2|.

As the eigenvalues of D are a1, a2, D transforms the unit square to the
rectangle [0, a1]× [0, a2] ( assuming positivity) and the image rectangle
area is |a1a2|.

By similar arguments, for any rectangle R,

area T (R) = | det (T )| (area R).
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Linear Transformation

Geometric meaning of the determinant

Thus the determinant is the factor by which the area of rectangles get
multiplied under the linear transformation.

A parallelopiped Π, is the n dimensional analogue of a parallelogram, with
adjacent sides v1,v2, · · · ,vn, linearly independent vectors in Rn, is

Π = {x = c1v1 + c2v2 · · ·+ cnvn, 0 ≤ ci ≤ 1}

A rephrasing of our earlier results :

volume Π = |det T |

if T is the n× n matrix with columns as the vectors v1,v2, · · · ,vn,
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Linear Transformation

Change of variable formula for linear transformations

Theorem

Let T : R2 → R2 be a linear transformation.
Let Ω ⊂ R2 be a bounded simple set. Then

area(T (Ω)) = |detT | area(Ω).

Theorem

Let T be a nonsingular linear transformation. Let Ω ⊂ R2 be a bounded
simple set. If f : T (Ω)→ R is an integrable function, then

(i) (f ◦ T )|det T | is also integrable over Ω and

(ii) ∫
T (Ω)

f(y) dy =

∫
Ω
f(T (x)) |det T | dx.
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General transformation

Change of variables in R2

Let h : Ω→ R2 be a diffeomorphism

h(u, v) := (h1(u, v), h2(u, v)), ∀ (u, v) ∈ Ω.

We now want to make a general change of coordinates given by

x = h1(u, v), y = h2(u, v).

Can we compute the area of the image of a rectangle in the u-v plane?

Main idea : local replacement of a nonlinear relation by a linear one.

Recall that a local linear approximation of h : R2 → R2 at a point a ∈ Ω is
by its derivative Dh(a).

Dh(a)(z) ≈ h(a + z) − h(a)

in a neighborhood of a ∈ R2.
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General transformation

The area element for a change of coordinates

Let x = h1(u, v) and y = h2(u, v).

How does the area of a rectangle in the u-v plane change?

∆x = h1(u+∆u, v+∆v)−h1(u, v), ∆y = h2(u+∆u, v+∆v)−h2(u, v),

Using the chain rule for functions of two variables we see that

∆x ∼ ∂h1

∂u
∆u+

∂h1

∂v
∆v, ∆y ∼ ∂h2

∂u
∆u+

∂h2

∂v
∆v.

(
∆x
∆y

)
=

(
∂h1
∂u

∂h1
∂v

∂h2
∂u

∂h2
∂v

)(
∆u
∆v

)
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General transformation

The Jacobian

Recall that the matrix

J(h) =

(
∂h1
∂u

∂h1
∂v

∂h2
∂u

∂h2
∂v

)
is the derivative matrix at (u, v) for the function h = (h1, h2) : R2 → R2,
the Jacobian matrix.

In a neighborhood of the point (u0, v0), the function h and the function
J(h), behave very similarly.

They are the same upto the first order terms by Taylor’s theorem.

The area of a small rectangle changes by the (absolute value of)
determinant of J .
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General transformation

Theorem (Change of Variables Formula)

Suppose U is an open subset of R2 ,

h : U → R2 is a diffeomorphism.

Let Ω be a bounded simple set such that Ω ⊂ U .

If f : h(Ω)→ R is integrable on h(Ω), then

(i) (f ◦ h)|detJh| is also integrable over Ω and

(ii) ∫
h(Ω)

f(y) dy =

∫
Ω
f(h(u, v)) |det Jh| du dv.
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General transformation

Example Evaluate the integral∫∫
D

(x2 − y2)dxdy

where D is the square with vertices at (0, 0), (1,−1), (1, 1) and (2, 0).

Solution: Note D is the region in x− y plane bounded by lines y = x,
y + x = 0, x− y = 2 and y + x = 2.
Put

x = u+ v, y = u− v,
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General transformation

Then the rectangle

D∗ =
{

(u, v) ∈ R2 | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1
}

in the uv-plane gets mapped to D, in the xy-plane.
Further,

∂(x, y)

∂(u, v)
= det

( 1 1
1 −1

)
= −2.

∫ ∫
D

(x2 − y2) dxdy =

∫ ∫
D∗

(4uv)× 2 dudv

= 8

(∫ 1

0
udu

)(∫ 1

0
vdv

)
= 2.
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General transformation

Example

Let D be the region in the first quadrant of the xy-plane bounded by the
lines x+ y = 1

2 and x+ y = 1. Find
∫∫
D dA by transforming it to∫∫

D∗ dudv, where u = x+ y, v = y
x+y .

Solution: Put
x = u(1− v), y = uv.

Then the rectangle D∗ = {(u, v) ∈ R2 | 1

2
≤ u ≤ 1, 0 ≤ v ≤ 1}

in the uv-plane gets mapped to D in the xy-plane.
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General transformation

Further,
∂(x, y)

∂(u, v)
= det

( 1− v −u
v u

)
= u 6= 0.

Hence,

Area(D) =

∫ ∫
D
dA =

∫ ∫
D∗
|u|dudv

=

(∫ 1

1
2

u2

2
du

)(∫ 1

0
dv

)
=

3

4
.
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General transformation
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