Lecture 4 : Line integrals

Mythily Ramaswamy
NASI Senior Scientist, ICTS-TIFR,
Bangalore, India

Summer School
Vigyan Vidhushi Program, TIFR
5-16th July 2021

Line integrals 15th July, 2021

1/23



@ Curve and path

© Arc length of a curve
© Line integral

@ Orientation of Curves
© Parametrized surfaces

@ The tangent plane

«O>» «F>r «=»r «=>» = A



Curve and path

Curve and path

Recall that a path in R™ is a continuous map ¢ : [a,b] — R™.

A curve in R™ is the image of a path ¢ in R™.

Both the curve and path are denoted by the same symbol c.

e In R3, denote c(t) = (z(t),y(t),2(t)), for all t € [a, b].
e The path c is continuous iff each component z, y, z is continuous.

e Similarly, c is a C! path, if and only if each component is C*.
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Curve and path

Curve and path

e A path c is called closed if c(a) = c(b).

e A path c is called simple if ¢(t1) # c(t2) for any t1 # to in [a, b] other
than t; = a and t9 = b endpoints.

o If we write c(t) = z(t)i + y(¢)j + z(¢)k in vector notation, the tangent
vector to c(t) is ¢/(t),

dt)=2"®)i+y )i+ 2 (t)k.

e If a C! curve c is such that ¢/(t) # 0 for all ¢ € [a, b], the curve is called
a regular or non-singular parametrized curve.
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Curve and path

Curves on plane

Let us consider the paths lying in R?, namely, Planar curves.

For a simple closed planar curve, we get a choice of direction- clockwise or
anti-clockwise.

Example . v(6) = (cos(0),sin(6)), 6 € [0, 2x]. This is a circle with
direction anti-clockwise.

Set 71(0) = (cos(0), —sin(#)), 6 € [0,27]. It is a circle with clockwise
direction.

[ pele
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Curve and path

Examples of curves

e Let c(t) = (cos 27t,sin 27t) where 0 <t < 1. This is a simple closed C!
(actually smooth) curve.

o Let c(t) = (t,t%) where —1 < ¢ < 5 is a simple curve but not closed.

o Let c(t) = (sin(2t),sint) where —m < ¢ < 7. It traces out a figure 8. It
is not a simple but a closed C! curve.

o Let c(t) = (#3,t) where —1 <t < 1 is a part of the graph of the function
y = x11/3. This is simple but not a closed curve. Though the function
1y = x3 is not smooth at origin, but this parametrization is regular!
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Curve and path

Different parametrizations of the same path

Example 1:
Let c1(t) = (cost,sint) for 0 < ¢ < 27 and

co(t) = (cos2t,sin2t) for 0 <t < .

Then the paths are different as a function but the curves traversed are the
same.

Example 2:
Take the straight line segment between (0,0,0) and (1,0,0).

Here are three different ways of parametrizing it:
{t,0,00}, {(#%,0,00} and {(t’,0,0)},

where 0 < ¢ < 1.
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Arc length of a curve

Arc length of a curve

We defined the length of the interval [a,b] as (b — a).

For a line segment connecting two vectors p and q, the length of the
segment is |[p — q|.

How to extend this definition to the concept of arclength of a curve?
e For a path c: [0,1] — R", let At = t2 —t; be very small and
As = [let2) —c(t)]| = @)tz —t)]

for some t € [t1,ts] by mean value theorem.

Line integrals 15th July, 2021

8/23



Arc length of a curve

Arc length of a curve

o Total arc length ~ 327, [le(tiv1) — c(t)| = X7y [I€/ () (tir — ).

The limit of these Riemann sums as the length of the subintervals tends to
zero, if it exists, is the total arc length.

S
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Arc length of a curve

Arc length of a curve

Definition
A path c: [0,1] — R"™ has finite arc length (rectifiable) if there is a
number L such that for every ¢, there is a ¢ such that

> le(tivn) — et = L < e
i=1

for each partition P with || P|| < 4.

| A

Theorem

If a path c : [0,1] — R™ is C!, then it is rectifiable and its total arc length
is

1
L) = /0 I dt

A\

Line integrals 15th July, 2021 10/23



Arc length of a curve

Examples

e The curve c is the graph of a smooth function ¢ : [a,b] — R.

Then at a point (¢, ¢(t)) on the curve, the tangent vector is (1, ¢'(¢)).
The length of the curve is

1
L(c) = /O V14 ¢/(t)? dt.

e The arc length of the circle 22 + y? = a?.

Parametrize the circle by c(t) = (acos(t),asin(t)), t € [0, 2x].
Then ¢/(t) = (—asin(t),acos(t)). The arc length is

27
L = / adt = 2ma.
0
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Line integral

Line integrals

Definition

Let a path c: [0,1] — R™ be C! and let f: R™ — R be a continuous
scalar field defined in a domain containing the curve c. The line integral of

f along c is
J#as = /f ) )] dt
Definition

Let a path c: [0,1] — R™ be C! and let F': R® — R" be a continuous
vector field defined in a domain containing the curve c. The line integral
of F along c is

| A\

/CF' ds = /01 F(c(t))-c(t) dt
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Line integral

Reparametrization

Let ¢ : [a,b] — R™ be a non-singular path. ( ¢/(t) # 0 for all ¢ € [a,b].)

@ Suppose we now make a change of variables ¢ = h(u), where h is C!
diffeomorphism, from [, §] to [a, b].

o Let y(u) = c(h(u)) for u € [a, B].
@ Assume that the end points are mapped to end points under h.
@ Then ~ is called a reparametrization of c.

@ Because h is a C'! diffeomorphism,  is also a C''curve.

Line integrals 15th July, 2021 13/23



Line integral

Arc length under reparametrization

e The arc length of a curve is independent of its parametrization.

e The line integral is also independent of the choice of parametrization.

The line integral of a vector field F along ~ is given by

B B
F.ds= F(v(w)) -7 (u)du = F(c(h(w)) - c'(h(uw))h (u)du,
/ | FO@) Y wau= [ Fethiw) - )

where the last equality follows from the chain rule. Using the fact that
h'(u)du = dt, we can change variables from u to ¢ to get

/F-ds—/abF(c(t))-c/(t)dt—/CF-ds.
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Orientation of Curves

Orientation of Curves

For given two points P and () on R™ and a path connecting them, when is
the path traversed from P to @ or from @) to P?

Since a path from P to ) is a mapping ¢ : [a,b] — R™ with c(a) = P and
c(b) = @Q, (or vice-versa), it allows us to determine the direction in which
the path is traversed. This direction of the path is called its Orientation.

If the reparametrization y(-) = c(h(:)) preserves the orientation of ¢, then

/Fds—/Fds

If the reparamtrization reverses the orientation, then

/Fds:—/Fds.
0% c
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Orientation of Curves

Work done along a curve

e In Physics, the work done by a particle on which a force F is applied, is
given by F.ds where ds is the displacement.

Example : Find the work done by the force field F' = (22 + y?)(i + j)
around the loop c(t) = (cost,sint), 0 < ¢t < 27.

Solution: The work done is given by

W = /F-ds

27
_ /0 Fle().< (1) dt

2w
= / (—sint 4 cost)dt
0

= (cost +sint)|2™ =0
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Parametrized surfaces

Surfaces : Definition

A curve is a one-dimensional object. Intuitively, this means that it is
possible to describe a curve using just one variable or parameter.

In order to describe a surface, we need two parameters.

Definition

Let ) be a path connected subset in R%. A parametrized surface is a
continuous function ® : Q — R3.

This definition is the analogue of parametrized curves in one dimension.
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Parametrized surfaces

Geometric parametrized surfaces

As with curves and paths, we will distinguish between the surface ® and
its image.

The image S = ®(D) will be called the geometric surface corresponding
to ®.

For a given (u,v) € D, ®(u,v) is a vector in R3 :
®(u,v) = (2(u,v),y(u,v), 2(u,v)),

where x, y and z are scalar functions on D.

The parametrized surface ® is smooth if the functions x, ¥y, z have
continuous partial derivatives in a open subset of R? containing €.
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Parametrized surfaces

Examples

Example 1: Graphs of real valued functions :

Let f(z,y) be a scalar function and let z = f(x,y), for all (z,y) € D,
where D is a path connected region in R?. Define the parametrized
surface ® by

®(u,v) = (u,v, f(u,v)), V(u,v) € D.
Example 2: Sphere of radius a, S = {(z,y,2) | 2® + y% + 22 = 1}.

Recall that using spherical coordinates we can represent it using the
following parametrization, ® : [0, 27] x [0, 7] — R3 defined as

®(u,v) = (acosusinv,asinusinv, acosv).
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Parametrized surfaces

Example 3: The graph of

2z = /22 + 4?2 can also be
parametrized. We use the idea that
at each value of z we get a circle of
radius z. We can describe the cone
as the parametrized surface

® :[0,00) x [0,27] — R? as
®(u,v) = (ucosv,usinv,u).

Example 4: Consider the cylinder, 22 + y2 = a?. Then this is
parametrized surface defined by ® : [0,27] x R — R? defined as
P (u,v) = (acosu,asinu,v).
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Parametrized surfaces

Surfaces of revolution around the z-axis

Example 5: If we have a parametrized curve on the z-y-plane

(0,y(u), z(u)) which we rotate around z-axis, we can parametrize it as
follows:

x=y(u)cosv, y=y(u)sinv, and z=z(u).

Here a < u < b if [a,b] is the domain of the curve, and 0 < v < 27.

We can parametrize a torus by taking
a circle in the y-z plane with center
(0,a,0) of radius b. This is given by
the curve (0,a + bcosu, bsinu).

) —2
Then the parametrization of the torus is then

®(u,v) = ((a+ bcosu) cosv, (a+ bcosu)sinv, bsinu) where 0 < u < 27
and 0 < v < 2.
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The tangent plane

Tangent vectors for a parametrized surface

Let ®(u,v) be a smooth parametrized surface. Fix the variable v, say
v = vp, to obtain a curve c(u,vp) :

c(u) = z(u,vo)i+ y(u, vo)j + z(u, vo)k.

Its tangent vector is given by

ox .0 . 0z
C/(UO) = ~—(uo,vo)i + *y(uo,vo).l + = (uo, vo)k.

ou ou ou
Define the partial derivative of a vector valued function as
0P
P, (up,v9) = %(uo,vo) = c(up).
Similarly, by fixing v and varying v, set
0P 0 0 0
P, (u0,v0) = (o, v0) = 5 (0, v0)i + 3 (o, v0)j + 5 (w0, vo)k.
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The tangent plane

The tangent plane

Fix a point on the surface, Py = (x0, Yo, 20) := ®(ug, vg) for some
(UO, 1)0) eD.

The two tangent vectors ®,,(ug, vg) and ®,(up,vp) at Py
define the tangent plane to the surface at F.

The normal to this plane at Py, n(ug, vg) = Py, (ug, vo) X Py (uo, vo).

Thus for a given point (zg, yo, 20) = ®(uo, vo) in R? the equation of the
tangent plane is given by

n(u[)vv()) : (x —20,Y —Yo,%2 — ZO) = 07

provided n # 0.
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The tangent plane
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