Lecture 4 : Line integrals

Mythily Ramaswamy
NASI Senior Scientist, ICTS-TIFR,
Bangalore, India

Summer School
Vigyan Vidhushi Program, TIFR 5-16th July 2021

contents

(1) Curve and path
(2) Arc length of a curve
(3) Line integral
(4) Orientation of Curves
(5) Parametrized surfaces
(6) The tangent plane

Curve and path

Recall that a path in \mathbb{R}^{n} is a continuous map $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{n}$.
A curve in \mathbb{R}^{n} is the image of a path \mathbf{c} in \mathbb{R}^{n}.

Both the curve and path are denoted by the same symbol c.

- In \mathbb{R}^{3}, denote $\mathbf{c}(t)=(x(t), y(t), z(t))$, for all $t \in[a, b]$.
- The path \mathbf{c} is continuous iff each component x, y, z is continuous.
- Similarly, \mathbf{c} is a C^{1} path, if and only if each component is C^{1}.

Curve and path

- A path \mathbf{c} is called closed if $\mathbf{c}(a)=\mathbf{c}(b)$.
- A path \mathbf{c} is called simple if $\mathbf{c}\left(t_{1}\right) \neq \mathbf{c}\left(t_{2}\right)$ for any $t_{1} \neq t_{2}$ in $[a, b]$ other than $t_{1}=a$ and $t_{2}=b$ endpoints.
- If we write $\mathbf{c}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ in vector notation, the tangent vector to $\mathbf{c}(t)$ is $\mathbf{c}^{\prime}(t)$,

$$
\mathbf{c}^{\prime}(t)=x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}+z^{\prime}(t) \mathbf{k}
$$

- If a C^{1} curve \mathbf{c} is such that $\mathbf{c}^{\prime}(t) \neq 0$ for all $t \in[a, b]$, the curve is called a regular or non-singular parametrized curve.

Curves on plane

Let us consider the paths lying in \mathbb{R}^{2}, namely, Planar curves.
For a simple closed planar curve, we get a choice of direction- clockwise or anti-clockwise.

Example . $\gamma(\theta)=(\cos (\theta), \sin (\theta)), \theta \in[0,2 \pi]$. This is a circle with direction anti-clockwise.

Set $\gamma_{1}(\theta)=(\cos (\theta),-\sin (\theta)), \theta \in[0,2 \pi]$. It is a circle with clockwise direction.

Examples of curves

- Let $\mathbf{c}(t)=(\cos 2 \pi t, \sin 2 \pi t)$ where $0 \leq t \leq 1$. This is a simple closed C^{1} (actually smooth) curve.
- Let $\mathbf{c}(t)=\left(t, t^{2}\right)$ where $-1 \leq t \leq 5$ is a simple curve but not closed.
- Let $\mathbf{c}(t)=(\sin (2 t), \sin t)$ where $-\pi \leq t \leq \pi$. It traces out a figure 8 . It is not a simple but a closed C^{1} curve.
- Let $\mathbf{c}(t)=\left(t^{3}, t\right)$ where $-1 \leq t \leq 1$ is a part of the graph of the function $y=x^{1 / 3}$. This is simple but not a closed curve. Though the function $y=x^{\frac{1}{3}}$ is not smooth at origin, but this parametrization is regular!

Different parametrizations of the same path

Example 1:

Let $\mathbf{c}_{1}(t)=(\cos t, \sin t)$ for $0 \leq t \leq 2 \pi$ and
$c_{2}(t)=(\cos 2 t, \sin 2 t)$ for $0 \leq t \leq \pi$.
Then the paths are different as a function but the curves traversed are the same.

Example 2:

Take the straight line segment between $(0,0,0)$ and $(1,0,0)$. Here are three different ways of parametrizing it:

$$
\{t, 0,0)\}, \quad\left\{\left(t^{2}, 0,0\right)\right\} \quad \text { and } \quad\left\{\left(t^{3}, 0,0\right)\right\}
$$

where $0 \leq t \leq 1$.

Arc length of a curve

We defined the length of the interval $[a, b]$ as $(b-a)$.
For a line segment connecting two vectors \mathbf{p} and \mathbf{q}, the length of the segment is $\|\mathbf{p}-\mathbf{q}\|$.

How to extend this definition to the concept of arclength of a curve?

- For a path $\mathbf{c}:[0,1] \rightarrow \mathbb{R}^{n}$, let $\Delta t=t_{2}-t_{1}$ be very small and

$$
\Delta s=\left\|\mathbf{c}\left(t_{2}\right)-\mathbf{c}\left(t_{1}\right)\right\|=\left\|\mathbf{c}^{\prime}(\widehat{t})\left(t_{2}-t_{1}\right)\right\|
$$

for some $\hat{t} \in\left[t_{1}, t_{2}\right]$ by mean value theorem.

Arc length of a curve

- Total arc length $\left.\approx \sum_{i=1}^{n}\left\|\mathbf{c}\left(t_{i+1}\right)-\mathbf{c}\left(t_{i}\right)\right\|=\sum_{i=1}^{n} \| \mathbf{c}^{\prime}\left(\widehat{t_{i}}\right)\right)\left(t_{i+1}-t_{i}\right) \|$.

The limit of these Riemann sums as the length of the subintervals tends to zero, if it exists, is the total arc length.

Arc length of a curve

Definition

A path $\mathbf{c}:[0,1] \rightarrow \mathbb{R}^{n}$ has finite arc length (rectifiable) if there is a number L such that for every ϵ, there is a δ such that

$$
\left|\sum_{i=1}^{n}\left\|\mathbf{c}\left(t_{i+1}\right)-\mathbf{c}\left(t_{i}\right)\right\|-L\right|<\epsilon
$$

for each partition P with $\|P\|<\delta$.

Theorem

If a path $\mathbf{c}:[0,1] \rightarrow \mathbb{R}^{n}$ is C^{1}, then it is rectifiable and its total arc length is

$$
L(\mathbf{c})=\int_{0}^{1}\left\|\mathbf{c}^{\prime}(t)\right\| d t
$$

Examples

- The curve \mathbf{c} is the graph of a smooth function $\phi:[a, b] \rightarrow \mathbb{R}$.

Then at a point $(t, \phi(t))$ on the curve, the tangent vector is $\left(1, \phi^{\prime}(t)\right)$. The length of the curve is

$$
L(\mathbf{c})=\int_{0}^{1} \sqrt{1+\phi^{\prime}(t)^{2}} d t
$$

- The arc length of the circle $x^{2}+y^{2}=a^{2}$.

Parametrize the circle by $\mathbf{c}(t)=(a \cos (t), a \sin (t)), t \in[0,2 \pi]$. Then $\mathbf{c}^{\prime}(t)=(-a \sin (t), a \cos (t))$. The arc length is

$$
L=\int_{0}^{2 \pi} a d t=2 \pi a
$$

Line integrals

Definition

Let a path $\mathbf{c}:[0,1] \rightarrow \mathbb{R}^{n}$ be C^{1} and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous scalar field defined in a domain containing the curve \mathbf{c}. The line integral of f along \mathbf{c} is

$$
\int_{\mathbf{c}} f d s=\int_{0}^{1} f(\mathbf{c}(t))\left\|\mathbf{c}^{\prime}(t)\right\| d t
$$

Definition

Let a path $\mathbf{c}:[0,1] \rightarrow \mathbb{R}^{n}$ be C^{1} and let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous vector field defined in a domain containing the curve \mathbf{c}. The line integral of F along \mathbf{c} is

$$
\int_{\mathbf{c}} F \cdot d \mathbf{s}=\int_{0}^{1} F(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t) d t
$$

Reparametrization

Let $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{n}$ be a non-singular path. ($\mathbf{c}^{\prime}(t) \neq 0$ for all $\left.t \in[a, b].\right)$

- Suppose we now make a change of variables $t=h(u)$, where h is \mathcal{C}^{1} diffeomorphism, from $[\alpha, \beta]$ to $[a, b]$.
- Let $\gamma(u)=\mathbf{c}(h(u))$ for $u \in[\alpha, \beta]$.
- Assume that the end points are mapped to end points under h.
- Then γ is called a reparametrization of \mathbf{c}.
- Because h is a C^{1} diffeomorphism, γ is also a C^{1} curve.

Arc length under reparametrization

- The arc length of a curve is independent of its parametrization.
- The line integral is also independent of the choice of parametrization.

The line integral of a vector field \mathbf{F} along γ is given by

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}=\int_{\alpha}^{\beta} \mathbf{F}(\gamma(u)) \cdot \gamma^{\prime}(u) d u=\int_{\alpha}^{\beta} \mathbf{F}\left(\mathbf{c}(h(u)) \cdot \mathbf{c}^{\prime}(h(u)) h^{\prime}(u) d u\right.
$$

where the last equality follows from the chain rule. Using the fact that $h^{\prime}(u) d u=d t$, we can change variables from u to t to get

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t) d t=\int_{\mathbf{c}} \mathbf{F} \cdot d \mathbf{s} .
$$

Orientation of Curves

For given two points P and Q on \mathbb{R}^{n} and a path connecting them, when is the path traversed from P to Q or from Q to P ?

Since a path from P to Q is a mapping $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{n}$ with $\mathbf{c}(a)=P$ and $\mathbf{c}(b)=Q$, (or vice-versa), it allows us to determine the direction in which the path is traversed. This direction of the path is called its Orientation.

If the reparametrization $\gamma(\cdot)=\mathbf{c}(h(\cdot))$ preserves the orientation of \mathbf{c}, then

$$
\int_{\gamma} \mathrm{Fds}=\int_{\mathbf{c}} \mathrm{Fds} .
$$

If the reparamtrization reverses the orientation, then

$$
\int_{\gamma} \mathbf{F d s}=-\int_{\mathbf{c}} \mathbf{F d s} .
$$

Work done along a curve

- In Physics, the work done by a particle on which a force \mathbf{F} is applied, is given by \mathbf{F}. $d \mathbf{s}$ where $d s$ is the displacement.

Example: Find the work done by the force field $F=\left(x^{2}+y^{2}\right)(\mathbf{i}+\mathbf{j})$ around the loop $\mathbf{c}(t)=(\cos t, \sin t), 0 \leq t \leq 2 \pi$.

Solution: The work done is given by

$$
\begin{aligned}
W & =\int_{\mathbf{c}} F \cdot d s \\
& =\int_{0}^{2 \pi} F(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}(-\sin t+\cos t) d t \\
& =\left.(\cos t+\sin t)\right|_{0} ^{2 \pi}=0
\end{aligned}
$$

Surfaces: Definition

A curve is a one-dimensional object. Intuitively, this means that it is possible to describe a curve using just one variable or parameter.

In order to describe a surface, we need two parameters.

Definition

Let Ω be a path connected subset in \mathbb{R}^{2}. A parametrized surface is a continuous function $\Phi: \Omega \rightarrow \mathbb{R}^{3}$.

This definition is the analogue of parametrized curves in one dimension.

Geometric parametrized surfaces

As with curves and paths, we will distinguish between the surface $\boldsymbol{\Phi}$ and its image.

The image $S=\boldsymbol{\Phi}(D)$ will be called the geometric surface corresponding to Φ.

For a given $(u, v) \in D, \boldsymbol{\Phi}(u, v)$ is a vector in \mathbb{R}^{3} :

$$
\mathbf{\Phi}(u, v)=(x(u, v), y(u, v), z(u, v)),
$$

where x, y and z are scalar functions on D.
The parametrized surface $\mathbf{\Phi}$ is smooth if the functions x, y, z have continuous partial derivatives in a open subset of \mathbb{R}^{2} containing Ω.

Examples

Example 1: Graphs of real valued functions :
Let $f(x, y)$ be a scalar function and let $z=f(x, y)$, for all $(x, y) \in D$, where D is a path connected region in \mathbb{R}^{2}. Define the parametrized surface $\boldsymbol{\Phi}$ by

$$
\mathbf{\Phi}(u, v)=(u, v, f(u, v)), \quad \forall(u, v) \in D .
$$

Example 2: Sphere of radius $a, S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$. Recall that using spherical coordinates we can represent it using the following parametrization, $\boldsymbol{\Phi}:[0,2 \pi] \times[0, \pi] \rightarrow \mathbb{R}^{3}$ defined as

$$
\mathbf{\Phi}(u, v)=(a \cos u \sin v, a \sin u \sin v, a \cos v)
$$

Example 3: The graph of $z=\sqrt{x^{2}+y^{2}}$ can also be parametrized. We use the idea that at each value of z we get a circle of radius z. We can describe the cone as the parametrized surface

$$
\begin{aligned}
& \mathbf{\Phi}:[0, \infty) \times[0,2 \pi] \rightarrow \mathbb{R}^{3} \text { as } \\
& \boldsymbol{\Phi}(u, v)=(u \cos v, u \sin v, u)
\end{aligned}
$$

Example 4: Consider the cylinder, $x^{2}+y^{2}=a^{2}$. Then this is parametrized surface defined by $\boldsymbol{\Phi}:[0,2 \pi] \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ defined as $\boldsymbol{\Phi}(u, v)=(a \cos u, a \sin u, v)$.

Surfaces of revolution around the z-axis

Example 5: If we have a parametrized curve on the $z-y$-plane $(0, y(u), z(u))$ which we rotate around z-axis, we can parametrize it as follows:

$$
x=y(u) \cos v, \quad y=y(u) \sin v, \quad \text { and } \quad z=z(u) .
$$

Here $a \leq u \leq b$ if $[a, b]$ is the domain of the curve, and $0 \leq v \leq 2 \pi$.

We can parametrize a torus by taking a circle in the $y-z$ plane with center $(0, a, 0)$ of radius b. This is given by the curve $(0, a+b \cos u, b \sin u)$.

Then the parametrization of the torus is then
$\boldsymbol{\Phi}(u, v)=((a+b \cos u) \cos v,(a+b \cos u) \sin v, b \sin u)$ where $0 \leq u \leq 2 \pi$ and $0 \leq v \leq 2 \pi$.

Tangent vectors for a parametrized surface

Let $\boldsymbol{\Phi}(u, v)$ be a smooth parametrized surface. Fix the variable v, say $v=v_{0}$, to obtain a curve $\mathbf{c}\left(u, v_{0}\right)$:

$$
\mathbf{c}(u)=x\left(u, v_{0}\right) \mathbf{i}+y\left(u, v_{0}\right) \mathbf{j}+z\left(u, v_{0}\right) \mathbf{k} .
$$

Its tangent vector is given by

$$
\mathbf{c}^{\prime}\left(u_{0}\right)=\frac{\partial x}{\partial u}\left(u_{0}, v_{0}\right) \mathbf{i}+\frac{\partial y}{\partial u}\left(u_{0}, v_{0}\right) \mathbf{j}+\frac{\partial z}{\partial u}\left(u_{0}, v_{0}\right) \mathbf{k} .
$$

Define the partial derivative of a vector valued function as

$$
\mathbf{\Phi}_{u}\left(u_{0}, v_{0}\right)=\frac{\partial \boldsymbol{\Phi}}{\partial u}\left(u_{0}, v_{0}\right):=\mathbf{c}^{\prime}\left(u_{0}\right)
$$

Similarly, by fixing u and varying v, set

$$
\mathbf{\Phi}_{v}\left(u_{0}, v_{0}\right)=\frac{\partial \boldsymbol{\Phi}}{\partial v}\left(u_{0}, v_{0}\right):=\frac{\partial x}{\partial v}\left(u_{0}, v_{0}\right) \mathbf{i}+\frac{\partial y}{\partial v}\left(u_{0}, v_{0}\right) \mathbf{j}+\frac{\partial z}{\partial v}\left(u_{0}, v_{0}\right) \mathbf{k} .
$$

The tangent plane

Fix a point on the surface, $P_{0}=\left(x_{0}, y_{0}, z_{0}\right):=\boldsymbol{\Phi}\left(u_{0}, v_{0}\right)$ for some $\left(u_{0}, v_{0}\right) \in D$.

The two tangent vectors $\mathbf{\Phi}_{u}\left(u_{0}, v_{0}\right)$ and $\mathbf{\Phi}_{v}\left(u_{0}, v_{0}\right)$ at P_{0} define the tangent plane to the surface at P_{0}.

The normal to this plane at $P_{0}, \mathbf{n}\left(u_{0}, v_{0}\right)=\mathbf{\Phi}_{u}\left(u_{0}, v_{0}\right) \times \mathbf{\Phi}_{v}\left(u_{0}, v_{0}\right)$.
Thus for a given point $\left(x_{0}, y_{0}, z_{0}\right)=\boldsymbol{\Phi}\left(u_{0}, v_{0}\right)$ in \mathbb{R}^{3} the equation of the tangent plane is given by

$$
\mathbf{n}\left(u_{0}, v_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

provided $\mathbf{n} \neq 0$.

直 T.M. Apostol, Calculus, Volumes 1 and 2, 2nd ed., Wiley (2007).
R.R. Ghorpade and B. V. Limaye, A course in Multivariable Calculus and Analysis, Springer UTM (2017).

Patrick M. Fitzpatrick, Advanced Calculus, Pure and Applied Undergraduate Texts - 5, AMS, 2009.

固 Moskowitz, Martin; Paliogiannis, Fotios, Functions of several real variables. World Scientific Publishing Co. Pte. Ltd., 2011.
(J.E Marsden, A. J. Tromba, A. Weinstein. Basic Multivariable Calculus, South Asian Edition, Springer (2017).

