#### Lecture 4 : Line integrals

Mythily Ramaswamy NASI Senior Scientist, ICTS-TIFR, Bangalore, India

Summer School Vigyan Vidhushi Program, TIFR 5-16th July 2021

- **→** ∃ →

#### contents

#### Curve and path

2 Arc length of a curve

#### 3 Line integral

- Orientation of Curves
- 5 Parametrized surfaces
- 6 The tangent plane

< E

- - E

Recall that a path in  $\mathbb{R}^n$  is a continuous map  $\mathbf{c} : [a, b] \to \mathbb{R}^n$ .

A curve in  $\mathbb{R}^n$  is the image of a path c in  $\mathbb{R}^n$ .

Both the curve and path are denoted by the same symbol c.

- In  $\mathbb{R}^3$ , denote  $\mathbf{c}(t) = (x(t), y(t), z(t))$ , for all  $t \in [a, b]$ .
- The path c is continuous iff each component x, y, z is continuous.
- Similarly, c is a  $C^1$  path, if and only if each component is  $C^1$ .

(日) (四) (日) (日) (日)

## Curve and path

- A path c is called closed if c(a) = c(b).
- A path c is called simple if  $c(t_1) \neq c(t_2)$  for any  $t_1 \neq t_2$  in [a, b] other than  $t_1 = a$  and  $t_2 = b$  endpoints.
- If we write c(t) = x(t)i + y(t)j + z(t)k in vector notation, the tangent vector to c(t) is c'(t),

$$\mathbf{c}'(t) = x'(t)\mathbf{i} + y'(t)\mathbf{j} + z'(t)\mathbf{k}.$$

• If a  $C^1$  curve c is such that  $\mathbf{c}'(t) \neq 0$  for all  $t \in [a, b]$ , the curve is called a regular or non-singular parametrized curve.

イロト イポト イヨト イヨト 二日

# Curves on plane

Let us consider the paths lying in  $\mathbb{R}^2,$  namely, Planar curves.

For a simple closed planar curve, we get a choice of direction- clockwise or anti-clockwise.

**Example** .  $\gamma(\theta) = (\cos(\theta), \sin(\theta)), \ \theta \in [0, 2\pi]$ . This is a circle with direction anti-clockwise.

Set  $\gamma_1(\theta) = (\cos(\theta), -\sin(\theta))$ ,  $\theta \in [0, 2\pi]$ . It is a circle with clockwise direction.



• Let  $\mathbf{c}(t) = (\cos 2\pi t, \sin 2\pi t)$  where  $0 \le t \le 1$ . This is a simple closed  $C^1$  (actually smooth) curve.

• Let  $\mathbf{c}(t) = (t, t^2)$  where  $-1 \le t \le 5$  is a simple curve but not closed.

• Let  $\mathbf{c}(t) = (\sin(2t), \sin t)$  where  $-\pi \le t \le \pi$ . It traces out a figure 8. It is not a simple but a closed  $C^1$  curve.

• Let  $\mathbf{c}(t) = (t^3, t)$  where  $-1 \le t \le 1$  is a part of the graph of the function  $y = x^{1/3}$ . This is simple but not a closed curve. Though the function  $y = x^{\frac{1}{3}}$  is not smooth at origin, but this parametrization is regular!

イロト 不得下 イヨト イヨト 二日

# Different parametrizations of the same path

Example 1:

Let 
$$\mathbf{c}_1(t) = (\cos t, \sin t)$$
 for  $0 \le t \le 2\pi$  and

$$c_2(t) = (\cos 2t, \sin 2t)$$
 for  $0 \le t \le \pi$ .

Then the paths are different as a function but the curves traversed are the same.

#### Example 2:

Take the straight line segment between (0,0,0) and (1,0,0).

Here are three different ways of parametrizing it:

$$\{t,0,0)\}, \quad \{(t^2,0,0)\} \quad \text{and} \quad \{(t^3,0,0)\},$$

where  $0 \le t \le 1$ .

### Arc length of a curve

We defined the length of the interval [a, b] as (b - a).

For a line segment connecting two vectors  ${\bf p}$  and  ${\bf q},$  the length of the segment is  $\|{\bf p} - {\bf q}\|.$ 

How to extend this definition to the concept of arclength of a curve?

• For a path  $\mathbf{c}:[0,1] \to \mathbb{R}^n$ , let  $\Delta t = t_2 - t_1$  be very small and

$$\Delta s = \|\mathbf{c}(t_2) - \mathbf{c}(t_1)\| = \|\mathbf{c}'(\hat{t})(t_2 - t_1)\|$$

for some  $\hat{t} \in [t_1, t_2]$  by mean value theorem.

・ロト ・四ト ・ヨト ・ヨト

# Arc length of a curve

• Total arc length  $\approx \sum_{i=1}^n \|\mathbf{c}(t_{i+1}) - \mathbf{c}(t_i)\| = \sum_{i=1}^n \|\mathbf{c}'(\widehat{t}_i))(t_{i+1} - t_i)\|.$ 

The limit of these Riemann sums as the length of the subintervals tends to zero, if it exists, is the total arc length.



### Arc length of a curve

#### Definition

A path  $\mathbf{c}: [0,1] \to \mathbb{R}^n$  has finite arc length (rectifiable) if there is a number L such that for every  $\epsilon$ , there is a  $\delta$  such that

$$\sum_{i=1}^{n} \|\mathbf{c}(t_{i+1}) - \mathbf{c}(t_i)\| - L| < \epsilon$$

for each partition P with  $||P|| < \delta$ .

#### Theorem

If a path  $\mathbf{c}: [0,1] \to \mathbb{R}^n$  is  $C^1$ , then it is rectifiable and its total arc length is

$$L(\mathbf{c}) = \int_0^1 \|\mathbf{c}'(t)\| dt$$

불▶ 4 불▶ 불 ∽ Q C 15th July, 2021 10/23

イロト イポト イヨト イヨト

# Examples

• The curve c is the graph of a smooth function  $\phi: [a, b] \to \mathbb{R}$ .

Then at a point  $(t,\phi(t))$  on the curve, the tangent vector is  $(1,\phi'(t)).$  The length of the curve is

$$L(\mathbf{c}) = \int_0^1 \sqrt{1 + \phi'(t)^2} \, dt.$$

• The arc length of the circle  $x^2 + y^2 = a^2$ .

Parametrize the circle by  $\mathbf{c}(t) = (a\cos(t), a\sin(t)), t \in [0, 2\pi]$ . Then  $\mathbf{c}'(t) = (-a\sin(t), a\cos(t))$ . The arc length is

$$L = \int_0^{2\pi} a \, dt = 2\pi a.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

# Line integrals

#### Definition

Let a path  $\mathbf{c}: [0,1] \to \mathbb{R}^n$  be  $C^1$  and let  $f: \mathbb{R}^n \to \mathbb{R}$  be a continuous scalar field defined in a domain containing the curve  $\mathbf{c}$ . The line integral of f along  $\mathbf{c}$  is

$$\int_{\mathbf{c}} f \, ds = \int_0^1 f(\mathbf{c}(t)) \| \mathbf{c}'(t) \| \, dt$$

#### Definition

Let a path  $\mathbf{c}: [0,1] \to \mathbb{R}^n$  be  $C^1$  and let  $F: \mathbb{R}^n \to \mathbb{R}^n$  be a continuous vector field defined in a domain containing the curve  $\mathbf{c}$ . The line integral of F along  $\mathbf{c}$  is

$$\int_{\mathbf{c}} F \cdot d\mathbf{s} = \int_{0}^{1} F(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt$$

< □ > < □ > < □ > < □ > < □ > < □ >

Let  $\mathbf{c}: [a,b] \to \mathbb{R}^n$  be a non-singular path. (  $\mathbf{c}'(t) \neq 0$  for all  $t \in [a,b]$ .)

Suppose we now make a change of variables t = h(u), where h is C<sup>1</sup> diffeomorphism, from [α, β] to [a, b].

• Let 
$$\gamma(u) = \mathbf{c}(h(u))$$
 for  $u \in [\alpha, \beta]$ .

- Assume that the end points are mapped to end points under h.
- Then  $\gamma$  is called a reparametrization of c.
- Because h is a  $C^1$  diffeomorphism,  $\gamma$  is also a  $C^1$ curve.

< □ > < 同 > < 三 > < 三 >

# Arc length under reparametrization

- The arc length of a curve is independent of its parametrization.
- The line integral is also independent of the choice of parametrization. The line integral of a vector field  $\mathbf{F}$  along  $\gamma$  is given by

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{\alpha}^{\beta} \mathbf{F}(\gamma(u)) \cdot \gamma'(u) du = \int_{\alpha}^{\beta} \mathbf{F}(\mathbf{c}(h(u)) \cdot \mathbf{c}'(h(u)) h'(u) du,$$

where the last equality follows from the chain rule. Using the fact that h'(u)du = dt, we can change variables from u to t to get

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt = \int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}.$$

# Orientation of Curves

For given two points P and Q on  $\mathbb{R}^n$  and a path connecting them, when is the path traversed from P to Q or from Q to P?

Since a path from P to Q is a mapping  $\mathbf{c} : [a, b] \to \mathbb{R}^n$  with  $\mathbf{c}(a) = P$  and  $\mathbf{c}(b) = Q$ , (or vice-versa), it allows us to determine the direction in which the path is traversed. This direction of the path is called its Orientation.

If the reparametrization  $\gamma(\cdot)=\mathbf{c}(h(\cdot))$  preserves the orientation of  $\mathbf{c},$  then

$$\int_{\gamma} \mathbf{F} \mathbf{ds} = \int_{\mathbf{c}} \mathbf{F} \mathbf{ds}.$$

If the reparamtrization reverses the orientation, then

$$\int_{\gamma} \mathbf{F} \mathbf{ds} = -\int_{\mathbf{c}} \mathbf{F} \mathbf{ds}.$$

15th July, 2021 15 / 23

イロト イポト イヨト イヨト 二日

### Work done along a curve

• In Physics, the work done by a particle on which a force  $\mathbf{F}$  is applied, is given by  $\mathbf{F}.d\mathbf{s}$  where ds is the displacement.

**Example :** Find the work done by the force field  $F = (x^2 + y^2)(\mathbf{i} + \mathbf{j})$  around the loop  $\mathbf{c}(t) = (\cos t, \sin t), \ 0 \le t \le 2\pi$ .

Solution: The work done is given by

$$W = \int_{\mathbf{c}} F \cdot ds$$
  
= 
$$\int_{0}^{2\pi} F(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt$$
  
= 
$$\int_{0}^{2\pi} (-\sin t + \cos t) dt$$
  
= 
$$(\cos t + \sin t)|_{0}^{2\pi} = 0$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Surfaces : Definition

A curve is a one-dimensional object. Intuitively, this means that it is possible to describe a curve using just one variable or parameter.

In order to describe a surface, we need two parameters.

#### Definition

Let  $\Omega$  be a path connected subset in  $\mathbb{R}^2$ . A parametrized surface is a continuous function  $\Phi: \Omega \to \mathbb{R}^3$ .

This definition is the analogue of parametrized curves in one dimension.

< □ > < □ > < □ > < □ > < □ > < □ >

# Geometric parametrized surfaces

As with curves and paths, we will distinguish between the surface  $\Phi$  and its image.

The image  $S = \Phi(D)$  will be called the geometric surface corresponding to  $\Phi$ .

For a given  $(u,v)\in D$ ,  $\mathbf{\Phi}(u,v)$  is a vector in  $\mathbb{R}^3$  :

$$\mathbf{\Phi}(u,v) = (x(u,v), y(u,v), z(u,v)),$$

where x, y and z are scalar functions on D.

The parametrized surface  $\Phi$  is smooth if the functions x, y, z have continuous partial derivatives in a open subset of  $\mathbb{R}^2$  containing  $\Omega$ .

< 日 > < 同 > < 三 > < 三 >

# Examples

**Example 1:** Graphs of real valued functions : Let f(x, y) be a scalar function and let z = f(x, y), for all  $(x, y) \in D$ , where D is a path connected region in  $\mathbb{R}^2$ . Define the parametrized surface  $\Phi$  by

$$\Phi(u,v) = (u,v,f(u,v)), \quad \forall (u,v) \in D.$$

**Example 2:** Sphere of radius  $a, S = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$ . Recall that using spherical coordinates we can represent it using the following parametrization,  $\Phi : [0, 2\pi] \times [0, \pi] \rightarrow \mathbb{R}^3$  defined as

$$\mathbf{\Phi}(u,v) = (a\cos u \sin v, a\sin u \sin v, a\cos v).$$

イロト イポト イヨト イヨト 二日



**Example 3:** The graph of  $z = \sqrt{x^2 + y^2}$  can also be parametrized. We use the idea that at each value of z we get a circle of radius z. We can describe the cone as the parametrized surface  $\Phi : [0, \infty) \times [0, 2\pi] \rightarrow \mathbb{R}^3$  as  $\Phi(u, v) = (u \cos v, u \sin v, u)$ .

**Example 4:** Consider the cylinder,  $x^2 + y^2 = a^2$ . Then this is parametrized surface defined by  $\Phi : [0, 2\pi] \times \mathbb{R} \to \mathbb{R}^3$  defined as  $\Phi(u, v) = (a \cos u, a \sin u, v)$ .

# Surfaces of revolution around the z-axis

**Example 5:** If we have a parametrized curve on the *z*-*y*-plane (0, y(u), z(u)) which we rotate around *z*-axis, we can parametrize it as follows:

$$x = y(u) \cos v, \quad y = y(u) \sin v, \text{ and } z = z(u).$$

Here  $a \leq u \leq b$  if [a, b] is the domain of the curve, and  $0 \leq v \leq 2\pi$ .



We can parametrize a torus by taking a circle in the y-z plane with center (0, a, 0) of radius b. This is given by the curve  $(0, a + b \cos u, b \sin u)$ .

< □ > < □ > < □ > < □ > < □ > < □ >

Then the parametrization of the torus is then  $\Phi(u,v) = ((a+b\cos u)\cos v, (a+b\cos u)\sin v, b\sin u) \text{ where } 0 \le u \le 2\pi$  and  $0 \le v \le 2\pi$ .

The tangent plane

### Tangent vectors for a parametrized surface

Let  $\Phi(u, v)$  be a smooth parametrized surface. Fix the variable v, say  $v = v_0$ , to obtain a curve  $\mathbf{c}(u, v_0)$ :

$$\mathbf{c}(u) = x(u, v_0)\mathbf{i} + y(u, v_0)\mathbf{j} + z(u, v_0)\mathbf{k}.$$

Its tangent vector is given by

$$\mathbf{c}'(u_0) = \frac{\partial x}{\partial u}(u_0, v_0)\mathbf{i} + \frac{\partial y}{\partial u}(u_0, v_0)\mathbf{j} + \frac{\partial z}{\partial u}(u_0, v_0)\mathbf{k}.$$

Define the partial derivative of a vector valued function as

$$\mathbf{\Phi}_u(u_0, v_0) = \frac{\partial \mathbf{\Phi}}{\partial u}(u_0, v_0) := \mathbf{c}'(u_0).$$

Similarly, by fixing u and varying v, set

$$\Phi_{v}(u_{0}, v_{0}) = \frac{\partial \Phi}{\partial v}(u_{0}, v_{0}) := \frac{\partial x}{\partial v}(u_{0}, v_{0})\mathbf{i} + \frac{\partial y}{\partial v}(u_{0}, v_{0})\mathbf{j} + \frac{\partial z}{\partial v}(u_{0}, v_{0})\mathbf{k}.$$

#### The tangent plane

Fix a point on the surface,  $P_0=(x_0,y_0,z_0):= {\bf \Phi}(u_0,v_0)$  for some  $(u_0,v_0)\in D.$ 

The two tangent vectors  $\Phi_u(u_0, v_0)$  and  $\Phi_v(u_0, v_0)$  at  $P_0$  define the tangent plane to the surface at  $P_0$ .

The normal to this plane at  $P_0$ ,  $\mathbf{n}(u_0, v_0) = \mathbf{\Phi}_u(u_0, v_0) \times \mathbf{\Phi}_v(u_0, v_0)$ .

Thus for a given point  $(x_0, y_0, z_0) = \Phi(u_0, v_0)$  in  $\mathbb{R}^3$  the equation of the tangent plane is given by

$$\mathbf{n}(u_0, v_0) \cdot (x - x_0, y - y_0, z - z_0) = 0,$$

provided  $\mathbf{n} \neq 0$ .

イロト イポト イヨト イヨト 二日

- T.M. Apostol, *Calculus, Volumes 1 and 2*, 2nd ed., Wiley (2007).
- S.R. Ghorpade and B. V. Limaye, *A course in Multivariable Calculus and Analysis*, Springer UTM (2017).
- Patrick M. Fitzpatrick, Advanced Calculus, Pure and Applied Undergraduate Texts - 5, AMS, 2009.
- Moskowitz, Martin; Paliogiannis, Fotios, Functions of several real variables. World Scientific Publishing Co. Pte. Ltd., 2011.
- J.E Marsden, A. J. Tromba, A. Weinstein. *Basic Multivariable Calculus*, South Asian Edition, Springer (2017).

3

< □ > < 同 > < 三 > < 三 >