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Curve and path

Curve and path

Recall that a path in Rn is a continuous map c : [a, b]→ Rn.

A curve in Rn is the image of a path c in Rn.

Both the curve and path are denoted by the same symbol c.

• In R3, denote c(t) = (x(t), y(t), z(t)), for all t ∈ [a, b].

• The path c is continuous iff each component x, y, z is continuous.

• Similarly, c is a C1 path, if and only if each component is C1.
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Curve and path

Curve and path

• A path c is called closed if c(a) = c(b).

• A path c is called simple if c(t1) 6= c(t2) for any t1 6= t2 in [a, b] other
than t1 = a and t2 = b endpoints.

• If we write c(t) = x(t)i + y(t)j + z(t)k in vector notation, the tangent
vector to c(t) is c′(t),

c′(t) = x′(t)i + y′(t)j + z′(t)k.

• If a C1 curve c is such that c′(t) 6= 0 for all t ∈ [a, b], the curve is called
a regular or non-singular parametrized curve.
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Curve and path

Curves on plane

Let us consider the paths lying in R2, namely, Planar curves.

For a simple closed planar curve, we get a choice of direction- clockwise or
anti-clockwise.

Example . γ(θ) = (cos(θ), sin(θ)), θ ∈ [0, 2π]. This is a circle with
direction anti-clockwise.

Set γ1(θ) = (cos(θ),− sin(θ)), θ ∈ [0, 2π]. It is a circle with clockwise
direction.
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Curve and path

Examples of curves

• Let c(t) = (cos 2πt, sin 2πt) where 0 ≤ t ≤ 1. This is a simple closed C1

(actually smooth) curve.

• Let c(t) = (t, t2) where −1 ≤ t ≤ 5 is a simple curve but not closed.

• Let c(t) = (sin(2t), sin t) where −π ≤ t ≤ π. It traces out a figure 8. It
is not a simple but a closed C1 curve.

• Let c(t) = (t3, t) where −1 ≤ t ≤ 1 is a part of the graph of the function
y = x1/3. This is simple but not a closed curve. Though the function
y = x

1
3 is not smooth at origin, but this parametrization is regular!
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Curve and path

Different parametrizations of the same path

Example 1:
Let c1(t) = (cos t, sin t) for 0 ≤ t ≤ 2π and

c2(t) = (cos 2t, sin 2t) for 0 ≤ t ≤ π.

Then the paths are different as a function but the curves traversed are the
same.

Example 2:
Take the straight line segment between (0, 0, 0) and (1, 0, 0).

Here are three different ways of parametrizing it:

{t, 0, 0)}, {(t2, 0, 0)} and {(t3, 0, 0)},

where 0 ≤ t ≤ 1.
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Arc length of a curve

Arc length of a curve

We defined the length of the interval [a, b] as (b− a).

For a line segment connecting two vectors p and q, the length of the
segment is ‖p − q‖.

How to extend this definition to the concept of arclength of a curve?

• For a path c : [0, 1]→ Rn, let ∆t = t2 − t1 be very small and

∆s = ‖c(t2)− c(t1)‖ = ‖c′(t̂)(t2 − t1)‖

for some t̂ ∈ [t1, t2] by mean value theorem.
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Arc length of a curve

Arc length of a curve

• Total arc length ≈∑n
i=1 ‖c(ti+1)− c(ti)‖ =

∑n
i=1 ‖c′(t̂i))(ti+1 − ti)‖.

The limit of these Riemann sums as the length of the subintervals tends to
zero, if it exists, is the total arc length.
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Arc length of a curve

Arc length of a curve

Definition

A path c : [0, 1]→ Rn has finite arc length (rectifiable) if there is a
number L such that for every ε, there is a δ such that

|
n∑
i=1

‖c(ti+1)− c(ti)‖ − L| < ε

for each partition P with ‖P‖ < δ.

Theorem

If a path c : [0, 1]→ Rn is C1, then it is rectifiable and its total arc length
is

L(c) =

∫ 1

0
‖c′(t)‖ dt
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Arc length of a curve

Examples

• The curve c is the graph of a smooth function φ : [a, b]→ R.

Then at a point (t, φ(t)) on the curve, the tangent vector is (1, φ′(t)).
The length of the curve is

L(c) =

∫ 1

0

√
1 + φ′(t)2 dt.

• The arc length of the circle x2 + y2 = a2.

Parametrize the circle by c(t) = (a cos(t), a sin(t)), t ∈ [0, 2π].
Then c′(t) = (−a sin(t), a cos(t)). The arc length is

L =

∫ 2π

0
a dt = 2πa.
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Line integral

Line integrals

Definition

Let a path c : [0, 1]→ Rn be C1 and let f : Rn → R be a continuous
scalar field defined in a domain containing the curve c. The line integral of
f along c is ∫

c
f ds =

∫ 1

0
f(c(t)) ‖c′(t)‖ dt

Definition

Let a path c : [0, 1]→ Rn be C1 and let F : Rn → Rn be a continuous
vector field defined in a domain containing the curve c. The line integral
of F along c is ∫

c
F · ds =

∫ 1

0
F (c(t)) · c′(t) dt
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Line integral

Reparametrization

Let c : [a, b]→ Rn be a non-singular path. ( c′(t) 6= 0 for all t ∈ [a, b].)

Suppose we now make a change of variables t = h(u), where h is C1
diffeomorphism, from [α, β] to [a, b].

Let γ(u) = c(h(u)) for u ∈ [α, β].

Assume that the end points are mapped to end points under h.

Then γ is called a reparametrization of c.

Because h is a C1 diffeomorphism, γ is also a C1curve.
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Line integral

Arc length under reparametrization

• The arc length of a curve is independent of its parametrization.

• The line integral is also independent of the choice of parametrization.

The line integral of a vector field F along γ is given by∫
γ

F · ds =

∫ β

α
F(γ(u)) · γ′(u)du =

∫ β

α
F(c(h(u)) · c′(h(u))h′(u)du,

where the last equality follows from the chain rule. Using the fact that
h′(u)du = dt, we can change variables from u to t to get∫

γ
F · ds =

∫ b

a
F(c(t)) · c′(t)dt =

∫
c
F · ds.
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Orientation of Curves

Orientation of Curves

For given two points P and Q on Rn and a path connecting them, when is
the path traversed from P to Q or from Q to P?

Since a path from P to Q is a mapping c : [a, b]→ Rn with c(a) = P and
c(b) = Q, (or vice-versa), it allows us to determine the direction in which
the path is traversed. This direction of the path is called its Orientation.

If the reparametrization γ(·) = c(h(·)) preserves the orientation of c, then∫
γ

Fds =

∫
c
Fds.

If the reparamtrization reverses the orientation, then∫
γ

Fds = −
∫
c
Fds.
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Orientation of Curves

Work done along a curve

• In Physics, the work done by a particle on which a force F is applied, is
given by F.ds where ds is the displacement.

Example : Find the work done by the force field F = (x2 + y2)(i + j)
around the loop c(t) = (cos t, sin t), 0 ≤ t ≤ 2π.

Solution: The work done is given by

W =

∫
c
F · ds

=

∫ 2π

0
F (c(t)).c′(t) dt

=

∫ 2π

0
(− sin t+ cos t)dt

= (cos t+ sin t)|2π0 = 0

Line integrals 15th July, 2021 16 / 23



Parametrized surfaces

Surfaces : Definition

A curve is a one-dimensional object. Intuitively, this means that it is
possible to describe a curve using just one variable or parameter.

In order to describe a surface, we need two parameters.

Definition

Let Ω be a path connected subset in R2. A parametrized surface is a
continuous function Φ : Ω→ R3.

This definition is the analogue of parametrized curves in one dimension.
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Parametrized surfaces

Geometric parametrized surfaces

As with curves and paths, we will distinguish between the surface Φ and
its image.

The image S = Φ(D) will be called the geometric surface corresponding
to Φ.

For a given (u, v) ∈ D, Φ(u, v) is a vector in R3 :

Φ(u, v) = (x(u, v), y(u, v), z(u, v)),

where x, y and z are scalar functions on D.

The parametrized surface Φ is smooth if the functions x, y, z have
continuous partial derivatives in a open subset of R2 containing Ω.
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Parametrized surfaces

Examples

Example 1: Graphs of real valued functions :
Let f(x, y) be a scalar function and let z = f(x, y), for all (x, y) ∈ D,
where D is a path connected region in R2. Define the parametrized
surface Φ by

Φ(u, v) = (u, v, f(u, v)), ∀ (u, v) ∈ D.

Example 2: Sphere of radius a, S = {(x, y, z) | x2 + y2 + z2 = 1}.
Recall that using spherical coordinates we can represent it using the
following parametrization, Φ : [0, 2π]× [0, π]→ R3 defined as

Φ(u, v) = (a cosu sin v, a sinu sin v, a cos v).
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Parametrized surfaces

Example 3: The graph of
z =

√
x2 + y2 can also be

parametrized. We use the idea that
at each value of z we get a circle of
radius z. We can describe the cone
as the parametrized surface
Φ : [0,∞)× [0, 2π]→ R3 as
Φ(u, v) = (u cos v, u sin v, u).

Example 4: Consider the cylinder, x2 + y2 = a2. Then this is
parametrized surface defined by Φ : [0, 2π]× R→ R3 defined as
Φ(u, v) = (a cosu, a sinu, v).
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Parametrized surfaces

Surfaces of revolution around the z-axis

Example 5: If we have a parametrized curve on the z-y-plane
(0, y(u), z(u)) which we rotate around z-axis, we can parametrize it as
follows:

x = y(u) cos v, y = y(u) sin v, and z = z(u).

Here a ≤ u ≤ b if [a, b] is the domain of the curve, and 0 ≤ v ≤ 2π.

−2
0

2 −2

0

2−1

0

1
We can parametrize a torus by taking
a circle in the y-z plane with center
(0, a, 0) of radius b. This is given by
the curve (0, a+ b cosu, b sinu).

Then the parametrization of the torus is then
Φ(u, v) = ((a+ b cosu) cos v, (a+ b cosu) sin v, b sinu) where 0 ≤ u ≤ 2π
and 0 ≤ v ≤ 2π.
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The tangent plane

Tangent vectors for a parametrized surface

Let Φ(u, v) be a smooth parametrized surface. Fix the variable v, say
v = v0, to obtain a curve c(u, v0) :

c(u) = x(u, v0)i + y(u, v0)j + z(u, v0)k.

Its tangent vector is given by

c′(u0) =
∂x

∂u
(u0, v0)i +

∂y

∂u
(u0, v0)j +

∂z

∂u
(u0, v0)k.

Define the partial derivative of a vector valued function as

Φu(u0, v0) =
∂Φ

∂u
(u0, v0) := c′(u0).

Similarly, by fixing u and varying v, set

Φv(u0, v0) =
∂Φ

∂v
(u0, v0) :=

∂x

∂v
(u0, v0)i +

∂y

∂v
(u0, v0)j +

∂z

∂v
(u0, v0)k.
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The tangent plane

The tangent plane

Fix a point on the surface, P0 = (x0, y0, z0) := Φ(u0, v0) for some
(u0, v0) ∈ D.

The two tangent vectors Φu(u0, v0) and Φv(u0, v0) at P0

define the tangent plane to the surface at P0.

The normal to this plane at P0, n(u0, v0) = Φu(u0, v0)×Φv(u0, v0).

Thus for a given point (x0, y0, z0) = Φ(u0, v0) in R3 the equation of the
tangent plane is given by

n(u0, v0) · (x− x0, y − y0, z − z0) = 0,

provided n 6= 0.
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The tangent plane
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