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Euclid A Greek
mathematician, often referred
to as the “founder of
geometry”.
He was active in Alexandria
during the reign of Ptolemy I
(323–283 BC). His Elements is
one of the most influential
works in the history of
mathematics for more than
2000 years.

“Euclid replied there is no royal road to geometry.”
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Let L = {p1, p2, . . . , pk} be a list of primes.

N = p1p2p3 . . . pk + 1

This number cannot be divided by any or the primes in the list
L.
This implies either N is a prime itself or it is divisible by a
prime not in the list.
This implies there is at least 1 more prime.
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Fermat number

For n = {0, 1, 2, . . .}

F (n) := 22
n

+ 1

3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, . . .

Fermat conjectured that all Fermat numbers are prime.
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Leonhard Euler in 1732 showed that

F (5) = 22
5

+ 1 = 232 + 1 = 4294967297 = 641× 6700417.

Euler proved that every factor of F (n) must have the form
k2n+1 + 1.

Exercise: Prove it.
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Pierre de Fermat (1607
1665)
He is best known for his
Fermat’s principle for light
propagation and his Fermat’s
Last Theorem in number
theory.

an + bn = cn
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Observe that

(F (0)× F (1)× · · · × F (n− 1))× F (n) = F (n+ 1)− 2

Proof:

(

n−1∏
k=0

F (k))× F (n) = (F (n)− 2)× F (n)

= (22
n − 1)(22

n
+ 1)

= 22
n+1 − 1

Suppose n > m, then

gcd (F (m), F (n)) = gcd (F (m), 2) = 1

Thus, every F (n) is a prime or it has a new prime factor.
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Exercise: Consider the number 2p − 1 where p is a prime. Show
that all its prime factors are greater than p.
Exercise: Consider any polynomial P (x). Show that the
sequence P (0), P (1), . . . cannot be only prime numbers.
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Paul Erdös (Hungarian: 1913 –1996)
Erds published around 1,500 mathematical papers during his
lifetime.
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Let Ps = p1, p2, . . . , pk be called small primes and
Pb := pk+1, pk+2, . . . be called big primes.
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For any natural number N we must have
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i=k+1

N

p i

<
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Let Nb be the number of integers ≤ N that is divisible by at
least one big prime.
Let Ns be the number of integers ≤ N , that are divisible by
only small primes.
Clearly Nb +Ns = N .
We will show that for a suitable N , Ns +Nb < N , a
contradiction.
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To estimate Ns, write n < N as n = ab2. a squarefree part and
a squared part.
Total choices number of for square free part is at most 2k.
Total number of choices for squared part is at most

√
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This implies Ns ≤ 2k
√
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For contradiction find N such that 2k
√
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Issai Schur (1875–1941) was a
Russian mathematician who
worked in Germany. He was a
student of the great group
theorist Frobenius. Schur
worked in various areas and
proved many deep results in
representation theory.

Let P (x) be a non-constant polynomial with integer coefficients.
Then {P (i) : i ∈ N} has infinitely many prime divisors.
(see Lemma 3 in https://mast.queensu.ca/˜murty/poly2.pdf)
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Christian Elsholtz: Prime divisors of thin sequences, Amer.
Math. Monthly 119 (2012), 331–333
Let S := {s1, s2, . . .} ⊂ Z be a sequence of integers such that

1 No integer appears more than c times.

2 S has subexponential growth i.e. |sn| < 22
f(n)

where
f(n)
log2 n

→ 0. (f : N→ R)

Theorem: If a set S is “almost” injective and of
sub-exponential growth (the above two conditions) then the set
of prime numbers PS that divide a member of S is infinite.
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The two conditions are clearly required. Suppose the first
condition does not hold. Then consider the sequence
S := {2, 4, 4, 8, 8, 8, 8, 16, . . .}.

If the second condition does not hold then the sequence {2i3j},
i, j ∈ N arranged in increasing order has f(n)

log2 n
∼ 1

2
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Without loss of generality assume f(n) is increasing.

Otherwise redefine it as g(n) := maxi≤n f(n).
Suppose PS = {p1, p2, . . . , pk}.
Then sn = εnp

α1
1 . . . pαk

k where εn = {−1, 0,+1} and αi ≥ 0
This implies

2α1+α2+···αk ≤ |sn| ≤ 22
f(n)

for s(n) 6= 0.

⇒ 0 ≤ αi ≤ α1 + α2 + · · ·αk ≤ 2f(n) for 1 ≤ i ≤ k

.

#{|s(n)| 6= 0 and n ≤ N} ≤ (2f(N) + 1)k ≤ 2(f(N)+1)k.
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#{|s(n)| 6= 0 and n ≤ N} ≥ N − c
2c

N − c
2c

≤ 2k(f(N)+1)

log2(N − c)− log2(2c) ≤ k(f(N) + 1) for all N.

Divide both sides by log2N . Then LHS goes to 1 and RHS goes
to 0.
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Frustenberg’s proof: (Mercer’s note)
Notation: All integers congruent to r mod m is denoted by
r +mZ and they are called AP.
Example:

3 + 11Z = {. . . ,−30,−19,−8, 3, 14, 25, 36, . . .}

For m > 1, set of integers not divisible (ND) by m are as

(1 +mZ) ∪ · · · ∪ ((m− 1) +mZ).



Assertion 1: Intersection of two AP’s is either empty or infinite.

Assertion 2: Finite intersection of finite unions of sets is also a
finite union of finite intersections of sets.
Example:

(A ∪B ∪ C) ∩ (D ∪ E) ∩ (F ∪G) = (A ∩D ∩ F ) ∪ () ∪ . . .

Proof: If p1, p2, . . . , pk is the set of all primes then

{−1, 1} = ND(p1) ∩ND(p2) . . . ∩ND(pk)

RHS is either empty or infinite!
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