Mumbai Math Circle TIFR and St. Xavier's College email: mumbaimathcircle (at) protonmail.com Current Webpage: www.math.tifr.res.in/˜ amitava/MMC

 200

Prime Numbers:

What are prime numbers?

 $2, 3, 5, 7, 11, 13, 17, 19, \ldots$

Prime Numbers:

What are prime numbers?

 $2, 3, 5, 7, 11, 13, 17, 19, \ldots$

 200

ヨート

How to check if a number is prime or not a prime ?

What are prime numbers?

 $2, 3, 5, 7, 11, 13, 17, 19, \ldots$

 200

How to check if a number is prime or not a prime ? How many prime numbers are there?

There are infinitely many prime numbers !

 \leftarrow \Box \rightarrow .

∢母

 \rightarrow

人名意米尔 Ε $\,$ Ε

 299

There are infinitely many prime numbers ! How to show this? Euclid's Argument:

 299

∍

э

4日)

Euclid A Greek mathematician, often referred to as the "founder of geometry". He was active in Alexandria during the reign of Ptolemy I (323–283 BC). His Elements is one of the most influential works in the history of mathematics for more than 2000 years.

つくい

Euclid A Greek mathematician, often referred to as the "founder of geometry". He was active in Alexandria during the reign of Ptolemy I (323–283 BC). His Elements is one of the most influential works in the history of mathematics for more than 2000 years.

"Euclid replied there is no royal road to geometry."

メロメ メ御 メメ きょくきょう 重 299

 $N = p_1p_2p_3 \ldots p_k + 1$

メロメ メ御 トメ 君 トメ 君 トッ

活

 299

$$
N=p_1p_2p_3\ldots p_k+1
$$

This number cannot be divided by any or the primes in the list L.

K ロ H K 御 H K 경 H K 경 H

 299

唾

$$
N=p_1p_2p_3\ldots p_k+1
$$

This number cannot be divided by any or the primes in the list L.

◀ @ ▶ .◀ 로 ▶ .◀ 로 ▶

 200

This implies either N is a prime itself or it is divisible by a prime not in the list.

$$
N=p_1p_2p_3\ldots p_k+1
$$

This number cannot be divided by any or the primes in the list L.

- イヨメ イヨメ

 200

This implies either N is a prime itself or it is divisible by a prime not in the list.

This implies there is at least 1 more prime.

Fermat number

For
$$
n = \{0, 1, 2, \ldots\}
$$

$$
F(n) := 2^{2^n} + 1
$$

$3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, \ldots$

$$
\mathbf{1} \cup \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \oplus
$$

Fermat number

For
$$
n = \{0, 1, 2, ...\}
$$

$$
F(n) := 2^{2^n} + 1
$$

 $3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, \ldots$

Fermat conjectured that all Fermat numbers are prime.

$$
\mathbf{1} \cup \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{
$$

Leonhard Euler in 1732 showed that

$$
F(5) = 2^{2^5} + 1 = 2^{32} + 1 = 4294967297 = 641 \times 6700417.
$$

《 ロ 》 《 御 》 《 君 》 《 君 》

 299

唾

Euler proved that every factor of $F(n)$ must have the form $k2^{n+1}+1$.

Leonhard Euler in 1732 showed that

$$
F(5) = 2^{2^5} + 1 = 2^{32} + 1 = 4294967297 = 641 \times 6700417.
$$

 299

唾

◀ ロ ▶ . ◀ @ ▶ . ◀ 듣 ▶ . ◀ 듣 ▶

Euler proved that every factor of $F(n)$ must have the form $k2^{n+1}+1$. Exercise: Prove it.

Pierre de Fermat (1607 1665) He is best known for his

Fermat's principle for light propagation and his Fermat's Last Theorem in number theory.

$$
a^n + b^n = c^n
$$

 \leftarrow

 290

Any two Fermat numbers are relatively prime. It means gcd $(F(i), F(j)) = 1$ if $i \neq j$.

 299

∍

 \leftarrow

一 一 三 トー

Any two Fermat numbers are relatively prime. It means gcd $(F(i), F(j)) = 1$ if $i \neq j$. $gcd(a, b) = gcd(b, a) = gcd(a - b, b)$ if $a > b$

 200

一本 三 下

Observe that

$$
(F(0) \times F(1) \times \cdots \times F(n-1)) \times F(n) = F(n+1) - 2
$$

Proof:

$$
\begin{aligned} \left(\prod_{k=0}^{n-1} F(k)\right) \times F(n) &= (F(n) - 2) \times F(n) \\ &= (2^{2^n} - 1)(2^{2^n} + 1) \\ &= 2^{2^{n+1}} - 1 \end{aligned}
$$

メロト メ御 トメ 君 トメ 君 トッ 君 $2Q$ Observe that

$$
(F(0) \times F(1) \times \cdots \times F(n-1)) \times F(n) = F(n+1) - 2
$$

Proof:

$$
\left(\prod_{k=0}^{n-1} F(k)\right) \times F(n) = (F(n) - 2) \times F(n)
$$

= $(2^{2^n} - 1)(2^{2^n} + 1)$
= $2^{2^{n+1}} - 1$

Suppose $n > m$, then

$$
gcd(F(m), F(n)) = gcd(F(m), 2) = 1
$$

 \leftarrow 12 \leftarrow 경계 重 299 ← ← 一つ \rightarrow 人名意米尔

Observe that

$$
(F(0) \times F(1) \times \cdots \times F(n-1)) \times F(n) = F(n+1) - 2
$$

Proof:

$$
\begin{aligned} \left(\prod_{k=0}^{n-1} F(k)\right) \times F(n) &= (F(n) - 2) \times F(n) \\ &= (2^{2^n} - 1)(2^{2^n} + 1) \\ &= 2^{2^{n+1}} - 1 \end{aligned}
$$

Suppose $n > m$, then

$$
gcd(F(m), F(n)) = gcd(F(m), 2) = 1
$$

÷,

 299

Thus, [e](#page-23-0)very $F(n)$ is a prime or it has a n[ew](#page-21-0) [pr](#page-23-0)[i](#page-19-0)[m](#page-20-0)e [fa](#page-0-0)[cto](#page-55-0)[r.](#page-0-0)

Exercise: Consider the number $2^p - 1$ where p is a prime. Show that all its prime factors are greater than p. Exercise: Consider any polynomial $P(x)$. Show that the sequence $P(0), P(1), \ldots$ cannot be only prime numbers.

つくい

$$
\mathbb{N} := \{1, 2, 3, \ldots\}
$$

What about $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots = ?$

イロト イ団ト イミト イミト ニヨー つくべ

$$
\mathbb{N} := \{1, 2, 3, \ldots\}
$$

What about $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots = ?$

$$
1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \to \infty
$$

Proof: We consider a simpler and smaller sum

$$
1 + \frac{1}{2} + (\frac{1}{4} + \frac{1}{4}) + (\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}) + (\frac{1}{16} + \dots) + (\frac{1}{32} + \dots) \dots () \dots
$$

 \leftarrow \Box \rightarrow \leftarrow Ε 299 ← ← 一つ 人名意利 化重火 \rightarrow

$$
\mathbb{N} := \{1, 2, 3, \ldots\}
$$

What about $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots = ?$

$$
1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \to \infty
$$

Proof: We consider a simpler and smaller sum

$$
1 + \frac{1}{2} + (\frac{1}{4} + \frac{1}{4}) + (\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}) + (\frac{1}{16} + \dots) + (\frac{1}{32} + \dots) \dots)
$$

$$
1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots \to \infty
$$

What about prime numbers ?

《 ロ 》 《 御 》 《 君 》 《 君 》

Ε

 299

What about prime numbers ?

$$
\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dots = ?
$$

 \leftarrow \Box \rightarrow .

◀ 冊 **B** ミトー ≣

×. \rightarrow 299

哇

We give a proof by Erdös.

Paul Erdös (Hungarian: 1913 –1996) Erds published around 1,500 mathematical papers during his lifetime.

Suppose

$$
\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} + \dots = M
$$

 (p_i) 's are in increasing order) Then there must be a k such that

$$
\sum_{i=k+1}^{\infty} \frac{1}{p_i} < \frac{1}{2}
$$

4 0 8

- 예정 > 예정

 \rightarrow

 $\,$ 唾 299

Suppose

$$
\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} + \dots = M
$$

 (p_i) 's are in increasing order) Then there must be a k such that

$$
\sum_{i=k+1}^{\infty} \frac{1}{p_i} < \frac{1}{2}
$$

 \leftarrow \Box \rightarrow

∢ 何 ▶ → ヨ ▶ → ヨ ▶

 200

Let $P_s = p_1, p_2, \ldots, p_k$ be called small primes and $P_b := p_{k+1}, p_{k+2}, \dots$ be called big primes.

For any natural number N we must have

$$
\sum_{i=k+1}^{\infty} \frac{N}{p} \frac{k}{i} < \frac{N}{2}
$$

《 ロ 》 《 御 》 《 君 》 《 君 》

重

 299

For any natural number N we must have

$$
\sum_{i=k+1}^{\infty} \frac{N}{p} \frac{k}{i} < \frac{N}{2}
$$

Let N_b be the number of integers $\leq N$ that is divisible by at least one big prime.

Let N_s be the number of integers $\leq N$, that are divisible by only small primes.

 Ω

④ 三 トー

Clearly $N_b + N_s = N$.

For any natural number N we must have

$$
\sum_{i=k+1}^{\infty} \frac{N}{p} \frac{k}{i} < \frac{N}{2}
$$

Let N_b be the number of integers $\leq N$ that is divisible by at least one big prime.

Let N_s be the number of integers $\leq N$, that are divisible by only small primes.

人名英格兰人姓氏

 200

Clearly $N_b + N_s = N$.

We will show that for a suitable $N, N_s + N_b < N$, a contradiction.

$$
N_b \le \sum_{i>k} \left\lfloor \frac{N}{p} \right\rfloor < \frac{N}{2}
$$

イロト イ団ト イミト イミト ニヨー つくべ

$$
N_b \le \sum_{i>k} \left\lfloor \frac{N}{p} \right\rfloor < \frac{N}{2}
$$

To estimate N_s , write $n < N$ as $n = ab^2$. a squarefree part and a squared part.

 2990

 \rightarrow \equiv \rightarrow \rightarrow

Total choices number of for square free part is at most 2^k .

$$
N_b \le \sum_{i>k} \left\lfloor \frac{N}{p} \right\rfloor < \frac{N}{2}
$$

To estimate N_s , write $n < N$ as $n = ab^2$. a squarefree part and a squared part.

 200

Total choices number of for square free part is at most 2^k . Total number of choices for squared part is at most \sqrt{N} . This implies $N_s \leq 2^k \sqrt{N}$.

$$
N_b \le \sum_{i>k} \left\lfloor \frac{N}{p} \right\rfloor < \frac{N}{2}
$$

To estimate N_s , write $n < N$ as $n = ab^2$. a squarefree part and a squared part.

つくい

Total choices number of for square free part is at most 2^k . Total number of choices for squared part is at most \sqrt{N} . This implies $N_s \leq 2^k \sqrt{N}$. This implies $N_s \leq 2^N \sqrt{N}$.
For contradiction find N such that $2^k \sqrt{N} < \frac{N}{2}$.

Issai Schur (1875–1941) was a Russian mathematician who worked in Germany. He was a student of the great group theorist Frobenius. Schur worked in various areas and proved many deep results in representation theory.

つくい

Issai Schur (1875–1941) was a Russian mathematician who worked in Germany. He was a student of the great group theorist Frobenius. Schur worked in various areas and proved many deep results in representation theory.

Let $P(x)$ be a non-constant polynomial with integer coefficients. Then $\{P(i): i \in \mathbb{N}\}\$ has infinitely many prime divisors. (see Lemma 3 in https://mast.queensu.ca/˜murty/poly2.pdf)

Christian Elsholtz: Prime divisors of thin sequences, Amer. Math. Monthly 119 (2012), 331–333 Let $S := \{s_1, s_2, \ldots\} \subset \mathbb{Z}$ be a sequence of integers such that

1 No integer appears more than c times.

2 *S* has subexponential growth i.e.
$$
|s_n| < 2^{2^{f(n)}}
$$
 where $\frac{f(n)}{\log_2 n} \to 0$. $(f : \mathbb{N} \to \mathbb{R})$

つくい

Christian Elsholtz: Prime divisors of thin sequences, Amer. Math. Monthly 119 (2012), 331–333 Let $S := \{s_1, s_2, \ldots\} \subset \mathbb{Z}$ be a sequence of integers such that

1 No integer appears more than c times.

2 S has subexponential growth i.e. $|s_n| < 2^{2^{f(n)}}$ where $\frac{f(n)}{\log_2 n} \to 0.$ $(f : \mathbb{N} \to \mathbb{R})$

Theorem: If a set S is "almost" injective and of sub-exponential growth (the above two conditions) then the set of prime numbers P_S that divide a member of S is infinite.

The two conditions are clearly required. Suppose the first condition does not hold. Then consider the sequence $S := \{2, 4, 4, 8, 8, 8, 8, 16, \ldots\}.$

人名意米尔

∍

 Ω

The two conditions are clearly required. Suppose the first condition does not hold. Then consider the sequence $S := \{2, 4, 4, 8, 8, 8, 8, 16, \ldots\}.$ If the second condition does not hold then the sequence $\{2^i3^j\}$, $i, j \in \mathbb{N}$ arranged in increasing order has $\frac{f(n)}{\log_2 n}$ ~ $\frac{1}{2}$ 2

つくへ

Without loss of generality assume $f(n)$ is increasing.

Without loss of generality assume $f(n)$ is increasing. Otherwise redefine it as $g(n) := \max_{i \leq n} f(n)$. Suppose $P_S = \{p_1, p_2, \ldots, p_k\}.$ Then $s_n = \epsilon_n p_1^{\alpha_1} \dots p_k^{\alpha_k}$ where $\epsilon_n = \{-1, 0, +1\}$ and $\alpha_i \ge 0$ This implies

$$
2^{\alpha_1 + \alpha_2 + \cdots + \alpha_k} \le |s_n| \le 2^{2^{f(n)}}
$$

for $s(n) \neq 0$.

.

$$
\Rightarrow 0 \le \alpha_i \le \alpha_1 + \alpha_2 + \cdots + \alpha_k \le 2^{f(n)} \text{ for } 1 \le i \le k
$$

 $\#\{|s(n)| \neq 0 \text{ and } n \leq N\} \leq (2^{f(N)}+1)^k \leq 2^{(f(N)+1)k}.$

$$
\#\{|s(n)| \neq 0 \text{ and } n \leq N\} \geq \frac{N-c}{2c}
$$

イロト イ団ト イミト イミト ニヨー つくべ

$$
\#\{|s(n)| \neq 0 \text{ and } n \leq N\} \geq \frac{N-c}{2c}
$$

$$
\frac{N-c}{2c} \le 2^{k(f(N)+1)}
$$

イロト イ団ト イミト イミト ニヨー つくべ

$$
\#\{|s(n)| \neq 0 \text{ and } n \leq N\} \geq \frac{N-c}{2c}
$$

$$
\frac{N-c}{2c} \le 2^{k(f(N)+1)}
$$

 $\log_2(N-c) - \log_2(2c) \leq k(f(N) + 1)$ for all N.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

$$
\#\{|s(n)| \neq 0 \text{ and } n \leq N\} \geq \frac{N-c}{2c}
$$

$$
\frac{N-c}{2c} \le 2^{k(f(N)+1)}
$$

$$
\log_2(N - c) - \log_2(2c) \le k(f(N) + 1)
$$
 for all N.

Divide both sides by $\log_2 N$. Then LHS goes to 1 and RHS goes to 0.

$$
\frac{\log_2(N-c)}{\log_2 N} \to 1 \text{ as } N \to \infty
$$

and

$$
\frac{f(N)}{\log_2 N} \to 0 \text{ as } N \to \infty.
$$

$$
\frac{\log_2(N-c)}{\log_2 N} \to 1 \text{ as } N \to \infty
$$

and

$$
\frac{f(N)}{\log_2 N} \to 0 \text{ as } N \to \infty.
$$

メロメ メタメ メミメ メミメー

重

 299

This is a contradiction.

Frustenberg's proof: (Mercer's note) Notation: All integers congruent to $r \mod m$ is denoted by $r + m\mathbb{Z}$ and they are called AP. Example:

$$
3 + 11\mathbb{Z} = \{\ldots, -30, -19, -8, 3, 14, 25, 36, \ldots\}
$$

For $m > 1$, set of integers not divisible (ND) by m are as

$$
(1+m\mathbb{Z})\cup\cdots\cup((m-1)+m\mathbb{Z}).
$$

 200

Assertion 1: Intersection of two AP's is either empty or infinite.

《 ロ 》 《 御 》 《 君 》 《 君 》

Ε

 299

Assertion 1: Intersection of two AP's is either empty or infinite. Assertion 2: Finite intersection of finite unions of sets is also a finite union of finite intersections of sets. Example:

$$
(A \cup B \cup C) \cap (D \cup E) \cap (F \cup G) = (A \cap D \cap F) \cup () \cup ...
$$

Proof: If p_1, p_2, \ldots, p_k is the set of all primes then

$$
\{-1,1\} = ND(p_1) \cap ND(p_2) \dots \cap ND(p_k)
$$

Box

 200

RHS is either empty or infinite!