GCD and Chinese Remainder Theorem

Amitava Bhattacharya

TIFR, Mumbai

2 Jan 2021

 \leftarrow

つくへ

Mumbai Math Circle is a collaboration of TIFR and St Xaviers College Mumbai.

 QQ

4日)

 299

≣

 \rightarrow

-b

Designed by Sukant Saran (www.sukantsaran.in)

There are infinitely many prime numbers

 299

4 0 3

 \rightarrow

$$
N=p_1p_2p_3\ldots p_k+1
$$

4 0 3

 \rightarrow

 299

$$
N=p_1p_2p_3\ldots p_k+1
$$

This number cannot be divided by any or the primes in the list L.

$$
N=p_1p_2p_3\ldots p_k+1
$$

This number cannot be divided by any or the primes in the list L.

- 4 重 8 - 4 重 8

 200

This implies either N is a prime itself or it is divisible by a prime not in the list.

 $N = p_1p_2p_3 \ldots p_k + 1$

This number cannot be divided by any or the primes in the list L.

This implies either N is a prime itself or it is divisible by a prime not in the list.

This implies there is at least 1 more prime.

Fermat number

For
$$
n = \{0, 1, 2, ...\}
$$

$$
F(n) := 2^{2^n} + 1
$$

$3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, \ldots$

Ε 299 ∢⊡ B.

Fermat number

For
$$
n = \{0, 1, 2, ...\}
$$

$$
F(n) := 2^{2^n} + 1
$$

$3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, \ldots$

つくい

Any two Fermat numbers are relatively prime. It means gcd $(F(i), F(j)) = 1$ if $i \neq j$.

Fermat number

For
$$
n = \{0, 1, 2, ...\}
$$

$$
F(n) := 2^{2^n} + 1
$$

$3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, \ldots$

Any two Fermat numbers are relatively prime. It means gcd $(F(i), F(j)) = 1$ if $i \neq j$. $\gcd(a, b) = \gcd(b, a) = \gcd(a - b, b)$ if $a > b$

Exercise: Consider the number $2^p - 1$ where p is a prime. Show that all its prime factors are greater than p. Exercise: Consider any polynomial $P(x)$. Show that the sequence $P(0), P(1), \ldots$ cannot be only prime numbers.

つくい

Frustenberg's proof: (Mercer's note) Notation: All integers conguuent to r mod m is denoted by $r + m\mathbb{Z}$ and they are called AP. Example:

$$
3 + 11\mathbb{Z} = \{\ldots, -30, -19, -8, 3, 14, 25, 36, \ldots\}
$$

For $m > 1$, set of integers not divisible (ND) by m are as

$$
(1+m\mathbb{Z})\cup\cdots\cup((m-1)+m\mathbb{Z}).
$$

 200

Assertion 1: Intersection of two AP's is either empty or infinite.

K ロ H K 御 H K 경 H K 경 H

Ε

 299

Assertion 1: Intersection of two AP's is either empty or infinite. Assertion 2: Finite intersection of finite unions of sets is also a finite union of finite intersections of sets. Example:

$$
(A \cup B \cup C) \cap (D \cup E) \cap (F \cup G) = (A \cap D \cap F) \cup () \cup ...
$$

Proof: If p_1, p_2, \ldots, p_k is the set of all primes then

$$
\{-1,1\} = ND(p_1) \cap ND(p_2) \dots \cap ND(p_k)
$$

Box

 200

RHS is either empty or infinite!

$$
\mathbb{N} := \{1, 2, 3, \ldots\}
$$

$$
1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \cdots \to \infty
$$

KD → K個 → K 星 → K 星 → 三星 → の Q (V)

$$
\mathbb{N} := \{1, 2, 3, \ldots\}
$$

$$
1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \cdots \to \infty
$$

メロト メタト メミト メミト

Ε

 299

What about prime numbers ?

$$
\mathbb{N} := \{1, 2, 3, \ldots\}
$$

$$
1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \cdots \to \infty
$$

What about prime numbers ?

$$
\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \dots = ?
$$

 \leftarrow \Box \rightarrow

 299

≣

≣

 \rightarrow

Ξ \mathbb{R}^n

We give a proof by Erdös.

Paul Erdös (Hungarian: 1913 –1996) Erds published around 1,500 mathematical papers during his lifetime.

Suppose

$$
\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} + \dots = M
$$

 (p_i) 's are in increasing order) Then there must be a k such that

$$
\sum_{i=k+1}^{\infty} \frac{1}{p_i} < \frac{1}{2}
$$

 \leftarrow \Box

- 예정 > 예정

 \rightarrow

 $\,$ 唾 299

Suppose

$$
\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} + \dots = M
$$

 (p_i) 's are in increasing order) Then there must be a k such that

$$
\sum_{i=k+1}^{\infty} \frac{1}{p_i} < \frac{1}{2}
$$

 \leftarrow \Box \rightarrow

∢ 何 ▶ → ヨ ▶ → ヨ ▶

 200

Let $P_s = p_1, p_2, \ldots, p_k$ be called small primes and $P_b := p_{k+1}, p_{k+2}, \dots$ be called big primes.

For any natural number N we must have

$$
\sum_{i=k+1}^{\infty} \frac{N}{p} \frac{k}{i} < \frac{N}{2}
$$

K ロ H K 御 H K 경 H K 경 H

重

 299

For any natural number N we must have

$$
\sum_{i=k+1}^{\infty} \frac{N}{p} \frac{k}{i} < \frac{N}{2}
$$

Let N_b be the number of integers $\leq N$ that is divisible by at least one big prime.

Let N_s be the number of integers $\leq N$, that are divisible by only small primes.

 Ω

④ 三 トー

Clearly $N_b + N_s = N$.

For any natural number N we must have

$$
\sum_{i=k+1}^{\infty} \frac{N}{p} \frac{k}{i} < \frac{N}{2}
$$

Let N_b be the number of integers $\leq N$ that is divisible by at least one big prime.

Let N_s be the number of integers $\leq N$, that are divisible by only small primes.

人名英格兰人姓氏

 200

Clearly $N_b + N_s = N$.

We will show that for a suitable $N, N_s + N_b < N$, a contradiction.

$$
N_b \le \sum_{i>k} \left\lfloor \frac{N}{p} \right\rfloor < \frac{N}{2}
$$

KD → K個 → K 星 → K 星 → 三星 → の Q (V)

$$
N_b \le \sum_{i>k} \left\lfloor \frac{N}{p} \right\rfloor < \frac{N}{2}
$$

To estimate N_s , write $n < N$ as $n = ab^2$. a squarefree part and a squared part.

 2990

 \rightarrow \equiv \rightarrow \rightarrow

Total choices number of for square free part is at most 2^k .

$$
N_b \le \sum_{i>k} \left\lfloor \frac{N}{p} \right\rfloor < \frac{N}{2}
$$

To estimate N_s , write $n < N$ as $n = ab^2$. a squarefree part and a squared part.

 200

Total choices number of for square free part is at most 2^k . Total number of choices for squared part is at most \sqrt{N} . This implies $N_s \leq 2^k \sqrt{N}$.

$$
N_b \le \sum_{i>k} \left\lfloor \frac{N}{p} \right\rfloor < \frac{N}{2}
$$

To estimate N_s , write $n < N$ as $n = ab^2$. a squarefree part and a squared part.

つくい

Total choices number of for square free part is at most 2^k . Total number of choices for squared part is at most \sqrt{N} . This implies $N_s \leq 2^k \sqrt{N}$. This implies $N_s \leq 2^N \sqrt{N}$.
For contradiction find N such that $2^k \sqrt{N} < \frac{N}{2}$.

Issai Schur (1875–1941) was a Russian mathematician who worked in Germany. He was a student of the great group theorist Frobenius. Schur worked in various areas and proved many deep results in representation theory.

つくい

Issai Schur (1875–1941) was a Russian mathematician who worked in Germany. He was a student of the great group theorist Frobenius. Schur worked in various areas and proved many deep results in representation theory.

Let $P(x)$ be a non-constant polynomial with integer coefficients. Then $\{P(i): i \in \mathbb{N}\}\$ has infinitely many prime divisors. (see Lemma 3 in https://mast.queensu.ca/˜murty/poly2.pdf)

Christian Elsholtz: Prime divisors of thin sequences, Amer. Math. Monthly 119 (2012), 331–333 Let $S := \{s_1, s_2, \ldots\} \subset \mathbb{Z}$ be a sequence of integers such that

1 No integer appears more than c times.

2 *S* has subexponential growth i.e.
$$
|s_n| < 2^{2^{f(n)}}
$$
 where $\frac{f(n)}{\log_2 n} \to 0$. $(f : \mathbb{N} \to \mathbb{R})$

つくい

Christian Elsholtz: Prime divisors of thin sequences, Amer. Math. Monthly 119 (2012), 331–333 Let $S := \{s_1, s_2, \ldots\} \subset \mathbb{Z}$ be a sequence of integers such that

1 No integer appears more than c times.

2 S has subexponential growth i.e. $|s_n| < 2^{2^{f(n)}}$ where $\frac{f(n)}{\log_2 n} \to 0.$ $(f : \mathbb{N} \to \mathbb{R})$

Theorem: If a set S is "almost" injective and of sub-exponential growth (the above two conditions) then the set of prime numbers P_S that divide a member of S is infinite.

The two conditions are clearly required. Suppose the first condition does not hold. Then consider the sequence $S := \{2, 4, 4, 8, 8, 8, 8, 16, \ldots\}.$

人名意米尔

∍

 Ω

The two conditions are clearly required. Suppose the first condition does not hold. Then consider the sequence $S := \{2, 4, 4, 8, 8, 8, 8, 16, \ldots\}.$ If the second condition does not hold then the sequence $\{2^i3^j\}$, $i, j \in \mathbb{N}$ arranged in increasing order has $\frac{f(n)}{\log_2 n}$ ~ $\frac{1}{2}$ 2

つくへ

Without loss of generality assume $f(n)$ is increasing.

Without loss of generality assume $f(n)$ is increasing. Otherwise redefine it as $g(n) := \max_{i \leq n} f(n)$. Suppose $P_S = \{p_1, p_2, \ldots, p_k\}.$ Then $s_n = \epsilon_n p_1^{\alpha_1} \dots p_k^{\alpha_k}$ where $\epsilon_n = \{-1, 0, +1\}$ and $\alpha_i \ge 0$ This implies

$$
2^{\alpha_1 + \alpha_2 + \cdots + \alpha_k} \le |s_n| \le 2^{2^{f(n)}}
$$

for $s(n) \neq 0$.

.

$$
\Rightarrow 0 \le \alpha_i \le \alpha_1 + \alpha_2 + \dots + \alpha_k \le 2^{f(n)} \text{ for } 1 \le i \le k
$$

 $\#\{|s(n)| \neq 0 \text{ and } n \leq N\} \leq (2^{f(N)}+1)^k \leq 2^{(f(N)+1)k}.$

$$
\#\{|s(n)| \neq 0 \text{ and } n \leq N\} \geq \frac{N-c}{2c}
$$

KD → K個 → K 星 → K 星 → 三星 → の Q (V)

$$
\#\{|s(n)| \neq 0 \text{ and } n \leq N\} \geq \frac{N-c}{2c}
$$

$$
\frac{N-c}{2c} \le 2^{k(f(N)+1)}
$$

KD → K個 → K 星 → K 星 → 三星 → の Q (V)

$$
\#\{|s(n)| \neq 0 \text{ and } n \leq N\} \geq \frac{N-c}{2c}
$$

$$
\frac{N-c}{2c} \le 2^{k(f(N)+1)}
$$

 $\log_2(N-c) - \log_2(2c) \leq k(f(N) + 1)$ for all N.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

$$
\#\{|s(n)| \neq 0 \text{ and } n \leq N\} \geq \frac{N-c}{2c}
$$

$$
\frac{N-c}{2c} \le 2^{k(f(N)+1)}
$$

$$
\log_2(N - c) - \log_2(2c) \le k(f(N) + 1)
$$
 for all N.

Divide both sides by $\log_2 N$. Then LHS goes to 1 and RHS goes to 0.

$$
\frac{\log_2(N-c)}{\log_2 N} \to 1 \text{ as } N \to \infty
$$

and

$$
\frac{f(N)}{\log_2 N} \to 0 \text{ as } N \to \infty.
$$

$$
\frac{\log_2(N-c)}{\log_2 N} \to 1 \text{ as } N \to \infty
$$

and

$$
\frac{f(N)}{\log_2 N} \to 0 \text{ as } N \to \infty.
$$

メロメ メタメ メミメ メミメー

重

 299

This is a contradiction.

What is GCD ?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q*

What is GCD ? "Greatest Common Divisor"

 $GCD(4, 6) = 2, GCD(8, 0) = 8, GCD(8, 9) = 1...$

What is GCD ? "Greatest Common Divisor"

$$
GCD(4,6) = 2, GCD(8,0) = 8, GCD(8,9) = 1...
$$

$$
N=\prod_{p}p^{\alpha_p};\;M=\prod_{p}p^{\beta_p}
$$

メロト メタト メミト メミト 重 299 What is GCD ? "Greatest Common Divisor"

$$
GCD(4,6) = 2, GCD(8,0) = 8, GCD(8,9) = 1...
$$

$$
N = \prod_{p} p^{\alpha_p}; \ M = \prod_{p} p^{\beta_p}
$$

$$
GCD(N, M) = \prod_{p} p^{\min(\alpha_p, \beta_p)}.
$$

メロメ メ御 トメ 君 トメ 君 トッ

重 Ω

LCM – Least Common Multiple

$$
LCM(4,6) = 12, LCM(8,9) = 72, LCM(8,4) = 8, \dots
$$

$$
N = \prod_{p} p^{\alpha_p}; \ M = \prod_{p} p^{\beta_p}
$$

$$
LCM(N, M) = \prod_{p} p^{\max(\alpha_p, \beta_p)}.
$$

メロト メタト メミト メミト

Ε

 LCM – Least Common Multiple

$$
LCM(4,6) = 12, LCM(8,9) = 72, LCM(8,4) = 8, \dots
$$

$$
N = \prod_{p} p^{\alpha_p}; \ M = \prod_{p} p^{\beta_p}
$$

$$
LCM(N, M) = \prod_{p} p^{\max(\alpha_p, \beta_p)}.
$$

 \leftarrow \Box \rightarrow

∢ 何 ▶

- 大唐 8 - 大唐 8 -

 299

唾

Exercise: $GCD(N, M) \times LCM(M, N) = M \times N$.

How to find $GCD(N, M)$?

Ε

 \mathbf{p}

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣

How to find $GCD(N, M)$? $a \mid N$ and $a \mid M$ implies $a \mid (N + M)$ and $a \mid (N - M)$.

 299

≣

人名意米尔

Þ

∢⊡

How to find $GCD(N, M)$? $a \mid N$ and $a \mid M$ implies $a \mid (N + M)$ and $a \mid (N - M)$. This generalizes to $a \mid N$ and $a \mid M$ implies $a \mid (xN + yM)$ for all $x, y \in \mathbb{Z}$.

 200

- イ 戸 ト - イ

$$
S(N, M) := \{ xN + yM : x, y \in \mathbb{Z} \}.
$$

メロメ メ御メ メ君メ メ君メー

重

$$
S(N, M) := \{ xN + yM : x, y \in \mathbb{Z} \}.
$$

Observations: (A) 1f $a \in S$ then all multiples of a are also in S.

$$
S(N, M) := \{ xN + yM : x, y \in \mathbb{Z} \}.
$$

Observations:

(A) 1f $a \in S$ then all multiples of a are also in S. (B) There is a smallest positive number d in S.

$$
S(N, M) := \{ xN + yM : x, y \in \mathbb{Z} \}.
$$

 Ω

ヨート

Observations:

(A) 1f $a \in S$ then all multiples of a are also in S. (B) There is a smallest positive number d in S. (C) $d | N$ and $d | M$

メロメ メ御 トメ 君 トメ 君 トッ 重 $2Q$

$$
N = d.q + r
$$

 $(q \text{ quotient and } r \text{ remainder})$

$$
r = N - dq
$$

= N - q(aN + bM)
= N(1 - a) - qbM
= a'N + b'M

メロト メタト メミト メ

Ε

경제

$$
N = d.q + r
$$

 $(q \text{ quotient and } r \text{ remainder})$

$$
r = N - dq
$$

= N - q(aN + bM)
= N(1 - a) - qbM
= a'N + b'M

This implies r is also in the set S , but r is nonnegative and strictly smaller than d.

$$
N = d.q + r
$$

 $(q \text{ quotient and } r \text{ remainder})$

$$
r = N - dq
$$

= N - q(aN + bM)
= N(1 - a) - qbM
= a'N + b'M

This implies r is also in the set S , but r is nonnegative and strictly smaller than d. This implies $r = 0$

$$
N = d.q + r
$$

 $(q \text{ quotient and } r \text{ remainder})$

$$
r = N - dq
$$

= N - q(aN + bM)
= N(1 - a) - qbM
= a'N + b'M

This implies r is also in the set S , but r is nonnegative and strictly smaller than d. This implies $r = 0$ and $d | N$ and $d | M$.

Ε

◀ @ ▶ .◀ 로 ▶ .◀ 로 ▶

 \leftarrow \Box \rightarrow

$$
d = aN + bM
$$

= agq + bgp
= g(aq + bp)

 \leftarrow \Box \rightarrow

Ε

K @ ▶ K 로 ▶ K 로 ▶

$$
d = aN + bM
$$

= agq + bgp
= g(aq + bp)

4日)

人名意利 化重火

Þ

 299

唾

This implies $g \mid d$.

$$
d = aN + bM
$$

= agq + bgp
= g(aq + bp)

This implies $g \mid d$. $g \leq d$.

$$
d = aN + bM
$$

= agq + bgp
= g(aq + bp)

 299

Ε

 \rightarrow

君 わしも

∢⊡

哇

This implies $g \mid d.$ $g \leq d.$ Since d is smallest $d = q$

Bézout's identity $GCD(N, M) = aN + bM$ for some $a, b \in \mathbb{Z}$.

 299

≣

э

Þ

Ξ D.

4 0 3

Bézout's identity

 $GCD(N, M) = aN + bM$ for some $a, b \in \mathbb{Z}$. Exercise: Generalize this question for $N_1, N_2, N_3, \ldots, N_k$. Is it true ?

 \leftarrow

つくへ

Bézout's identity

 $GCD(N, M) = aN + bM$ for some $a, b \in \mathbb{Z}$. Exercise: Generalize this question for $N_1, N_2, N_3, \ldots, N_k$. Is it true ?

 200

This leads to an algorithm to compute GCD.

Euclid: (300 B.C.) Input: $N \geq M \geq 0$ $Euclid(N, M)$ 1 if $(M == 0)$ 2 then return N 3 else return Euclid (M, N mod M)

 \leftarrow

∍

Ξ \mathbb{R}^n

Input: X, Y

Set
$$
x, y, u, v := X, Y, Y, X;
$$

\ndo $x > y \rightarrow x, v := x - y, v + u$
\n \Box $y > x \rightarrow y, u := y - x, u + v$
\nod
\nprint $\frac{x+y}{2}, \frac{u+v}{2}$

メロト メ御 トメ 君 トメ 君 トッ 君 \mathcal{O} Fibonacci numbers:

 $0, 1, 1, 2, 3, 5, 8, 13, 22, \ldots$

$$
F(n) = F(n-1) + F(n-2), \text{ for } n \ge 2.
$$

メロメ メ御 トメ 君 トメ 君 トッ 重 299
Examples:

Exercise: Number of ordered ways to partition n into parts greater than 1.

Exercise: Number of ordered ways to partition n into odd parts.

Exercise: Number of sequences of length n , consisting of 0's,1's and 2's such that 1 does not follow a 0.

Box

 Ω

Examples:

Exercise: Number of ordered ways to partition n into parts greater than 1.

Exercise: Number of ordered ways to partition n into odd parts.

Exercise: Number of sequences of length n , consisting of 0's,1's and 2's such that 1 does not follow a 0.

(X is a Fibonacci number if one of $5X^2 \pm 4$ a perfect square.)

Assertion: If $N \geq M \geq 0$ and the procedure *Euclid*(*N, M*) is repeated (invoked) L times, then $N \geq F(L+2)$ and $M \geq F(L+1)$. In particular if $M \leq F(L+1)$ then the procedure is invoked at most L times.

医毛囊 医牙骨下

Assertion: If $N \geq M \geq 0$ and the procedure *Euclid*(*N, M*) is repeated (invoked) L times, then $N \geq F(L+2)$ and $M \geq F(L+1)$. In particular if $M \leq F(L+1)$ then the procedure is invoked at most L times. Exercise: Use induction to prove the above statement.

Solutions for all the Fibonacci related Exercises will be provided at a later date.

つくい

Actual numerical algorithms are very "delicate" and require great care.

 \leftarrow \Box \rightarrow

Ε

重きす 경제

Þ

Actual numerical algorithms are very "delicate" and require great care.

Art of Computer Programming, Volume 2: Seminumerical Algorithms by Donald Knuth

Actual numerical algorithms are very "delicate" and require great care.

Art of Computer Programming, Volume 2: Seminumerical Algorithms by Donald Knuth Page 333 – 379 (GCD algorithm) Page 346 Euclids Algorithm

つくい

"I have corrected every error that alert readers detected in the second edition (as well as some mistakes that, alas, nobody noticed); and I have tried to avoid introducing new errors in the new material. However, I suppose some defects still remain, and I want to fix them as soon as possible. Therefore I will cheerfully award \$2.56 to the first finder of each technical, typographical, or historical error. The webpage cited on page (iv) contains a current listing of all corrections that have been reported to me."

– Donald Knuth

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 299

432 **DONALD E. KNUTH COMPUTER SCIENCE DEPARTMENT** DATE 29 Oct 2008 STANFORD UNIVERSITY $0x5$ 1.00 DEPOSIT TO THE ACCOUNT OF $10M_1$ $10/256$ as **HEXADECIMAL DOLLARS** θ **BANK OF SAN SERRIFFE**
Thirty Point, Calssa Inferiore
http://www-cs-faculty.stanford.edu.ca/~knuth/boss.html $F16.135$ MEMO

Congruence - Class of residues

 $x \equiv a \mod n$

◆ロト ◆伊ト

Ε

人名意利 化重火

 299

Means *n* divides $x - a$.

Congruence - Class of residues

 $x \equiv a \mod n$

4日)

頂(下) ∍ 200

Means *n* divides $x - a$. The different equivalent classes can be represented by $0, 1, 2, \ldots, n-1.$

$x=1 \mod 8$

$$
x = 1 \mod 8
$$

$$
x = 1, 9, 17, 25, \dots
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『 코 │ ◆ 9 Q Q ↓

$$
x=1\mod 8
$$

$$
x = 1, 9, 17, 25, \dots
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『 코 │ ◆ 9 Q Q ↓

$$
x = 8k + 1
$$
 where $k \in \{0, 1, 2, \ldots\}$

$x^2 = 1 \mod 8$

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ め ۹ Q Q

$$
x^2 = 1 \mod 8
$$

$$
x = 1, 3, 5, 7, 9, 11, 13, 15, \dots
$$

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ め ۹ Q Q

Properties of conguences.

$$
a = b \mod n \to b = a \mod n
$$

 \leftarrow \Box

∢母

 \rightarrow \sim 4.1 \mathbf{F} . ×.

€

Ε

경제

Properties of conguences.

$$
a = b \mod n \to b = a \mod n
$$

$$
a = b \mod n, b = c \mod n \Rightarrow a = c \mod n
$$

 \leftarrow \Box

∢母

 \rightarrow \sim 4.1 \mathbf{F} . ×.

€

Ε

경제

Properties of conguences.

$$
a = b \mod n \to b = a \mod n
$$

$$
a = b \mod n, b = c \mod n \Rightarrow a = c \mod n
$$

$$
a = a' \mod n, \ b = b' \mod n \Rightarrow a + b = a' + b' \mod n
$$

メロメ メ御 トメ 君 トメ 君 トッ 活 299 Exercise: If $a = b \mod m$ and $a = b \mod n$ then

メロメ メタメ メミメ メミメー

重

Exercise: If $a = b \mod m$ and $a = b \mod n$ then

$$
a = b \mod (lcm(m, n))
$$

$$
\mathbf{1} \oplus \mathbf{
$$

Solve The following system of Equations:

 $x = a_1 \mod n_1$ $x = a_2 \mod n_2$

 \leftarrow

重きす 경제 唾 299

Given $GCD(n_1, n_2) = 1$

Case: $a_1 = a_2$

K ロ K K (個) X K 第 X K モ X ミ ヨー の Q Q V

Case: $a_1 = a_2$ General case:

K ロ > K 個 > K 星 > K 星 > 「星」 の Q Q ^

Case: $a_1 = a_2$ General case: Bézouts identity':

$$
m_1 n_1 + m_2 n_2 = 1
$$

$$
\mathbf{A} \sqcup \mathbf{B} \rightarrow \mathbf{A} \sqsubseteq \mathbf{B} \rightarrow \mathbf{A} \sqsubseteq \mathbf{B} \rightarrow \mathbf{B} \sqsubseteq \mathbf{B} \rightarrow \mathbf{B} \mathbf{A} \mathbf{A} \mathbf{B}
$$

Case: $a_1 = a_2$ General case: Bézouts identity':

$$
m_1 n_1 + m_2 n_2 = 1
$$

Set $x = a_1m_2n_2 + a_2m_1n_1$

$$
\mathbf{1} \cup \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \oplus
$$

$$
x = a_1 m_2 n_2 + a_2 m_1 n_1
$$

$$
A\Box A\rightarrow A\Box B\rightarrow A\Box A\rightarrow A\Box B\rightarrow A\Box B\rightarrow A\Box A\rightarrow A\rightarrow A\Box A\rightarrow
$$

$$
x = a_1 m_2 n_2 + a_2 m_1 n_1
$$

= $a_1 (1 - m_1 n_1) + a_2 m_1 n_1$

メロメ メタメ メミメ メミメー

重

$$
x = a_1 m_2 n_2 + a_2 m_1 n_1
$$

= $a_1 (1 - m_1 n_1) + a_2 m_1 n_1$
= $a_1 + (a_2 - a_1) m_1 n_1$

メロメ メタメ メミメ メミメー 重 299

$$
x = a_1 m_2 n_2 + a_2 m_1 n_1
$$

= $a_1 (1 - m_1 n_1) + a_2 m_1 n_1$
= $a_1 + (a_2 - a_1) m_1 n_1$

This implies

 $x = a_1 \mod n_1$

 \leftarrow \Box

∢母

あいも言わせ

경계 Ε

What about k such equations ?

$$
x = a_1 \mod n_1
$$

\n
$$
x = a_2 \mod n_2
$$

\n
$$
\vdots
$$

\n
$$
x = a_k \mod n_k
$$

4 0 8

- ⊀ 伊 ▶ . ∢ 重 ▶ . ∢ 重 ▶

唾

 299

Where the n_i 's are pairwise co-prime, $(GCD(n_i, n_j) = 1)$

Let
$$
N = \prod_{i=1}^{k} n_i
$$
 and $N_i = \frac{N}{n_i}$.
Then we have

 $M_iN_i + m_i n_i = 1$

- K □ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ - '콜' - 9 9 0 0

Let
$$
N = \prod_{i=1}^{k} n_i
$$
 and $N_i = \frac{N}{n_i}$.
Then we have

$$
M_i N_i + m_i n_i = 1
$$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X / 경

 2990

Since $GCD(N_i, n_i) = 1$

Let
$$
N = \prod_{i=1}^{k} n_i
$$
 and $N_i = \frac{N}{n_i}$.
Then we have

$$
M_i N_i + m_i n_i = 1
$$

Since $GCD(N_i, n_i) = 1$

$$
x = \sum_{i=1}^{k} a_i M_i N_i
$$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X / 경 299

Let
$$
N = \prod_{i=1}^{k} n_i
$$
 and $N_i = \frac{N}{n_i}$.
Then we have

$$
M_i N_i + m_i n_i = 1
$$

Since $GCD(N_i, n_i) = 1$

$$
x = \sum_{i=1}^{k} a_i M_i N_i
$$

 $x = a_i M_i N_i \mod n_i = a_i (1 - m_i n_i) \mod n_i = a_i \mod n_i.$ This is true for all $i \in \{1, 2, \ldots k\}$