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There are infinitely many prime numbers

Euclid’s Argument:
Let L = {p1, p2, . . . , pk} be a finite list of primes.

N = p1p2p3 . . . pk + 1

This number cannot be divided by any or the primes in the list
L.
This implies either N is a prime itself or it is divisible by a
prime not in the list.
This implies there is at least 1 more prime.
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Fermat number

For n = {0, 1, 2, . . .}

F (n) := 22
n

+ 1

3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, . . .

Any two Fermat numbers are relatively prime.
It means gcd (F (i), F (j)) = 1 if i 6= j.
gcd (a, b) = gcd (b, a) = gcd (a− b, b) if a > b
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Exercise: Consider the number 2p − 1 where p is a prime. Show
that all its prime factors are greater than p.
Exercise: Consider any polynomial P (x). Show that the
sequence P (0), P (1), . . . cannot be only prime numbers.



Frustenberg’s proof: (Mercer’s note)
Notation: All integers conguuent to r mod m is denoted by
r +mZ and they are called AP.
Example:

3 + 11Z = {. . . ,−30,−19,−8, 3, 14, 25, 36, . . .}

For m > 1, set of integers not divisible (ND) by m are as

(1 +mZ) ∪ · · · ∪ ((m− 1) +mZ).



Assertion 1: Intersection of two AP’s is either empty or infinite.

Assertion 2: Finite intersection of finite unions of sets is also a
finite union of finite intersections of sets.
Example:

(A ∪B ∪ C) ∩ (D ∪ E) ∩ (F ∪G) = (A ∩D ∩ F ) ∪ () ∪ . . .

Proof: If p1, p2, . . . , pk is the set of all primes then

{−1, 1} = ND(p1) ∩ND(p2) . . . ∩ND(pk)

RHS is either empty or infinite!
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Paul Erdös (Hungarian: 1913 –1996)
Erds published around 1,500 mathematical papers during his
lifetime.
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p1
+
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+ · · · = M

(pi’s are in increasing order) Then there must be a k such that

∞∑
i=k+1

1

p i
<
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2

Let Ps = p1, p2, . . . , pk be called small primes and
Pb := pk+1, pk+2, . . . be called big primes.
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For any natural number N we must have

∞∑
i=k+1

N

p i

<
N

2

Let Nb be the number of integers ≤ N that is divisible by at
least one big prime.
Let Ns be the number of integers ≤ N , that are divisible by
only small primes.
Clearly Nb +Ns = N .
We will show that for a suitable N , Ns +Nb < N , a
contradiction.
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To estimate Ns, write n < N as n = ab2. a squarefree part and
a squared part.
Total choices number of for square free part is at most 2k.
Total number of choices for squared part is at most

√
N .

This implies Ns ≤ 2k
√
N .

For contradiction find N such that 2k
√
N < N
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Issai Schur (1875–1941) was a
Russian mathematician who
worked in Germany. He was a
student of the great group
theorist Frobenius. Schur
worked in various areas and
proved many deep results in
representation theory.

Let P (x) be a non-constant polynomial with integer coefficients.
Then {P (i) : i ∈ N} has infinitely many prime divisors.
(see Lemma 3 in https://mast.queensu.ca/˜murty/poly2.pdf)
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Christian Elsholtz: Prime divisors of thin sequences, Amer.
Math. Monthly 119 (2012), 331–333
Let S := {s1, s2, . . .} ⊂ Z be a sequence of integers such that

1 No integer appears more than c times.

2 S has subexponential growth i.e. |sn| < 22
f(n)

where
f(n)
log2 n

→ 0. (f : N→ R)

Theorem: If a set S is “almost” injective and of
sub-exponential growth (the above two conditions) then the set
of prime numbers PS that divide a member of S is infinite.
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The two conditions are clearly required. Suppose the first
condition does not hold. Then consider the sequence
S := {2, 4, 4, 8, 8, 8, 8, 16, . . .}.

If the second condition does not hold then the sequence {2i3j},
i, j ∈ N arranged in increasing order has f(n)

log2 n
∼ 1

2
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Without loss of generality assume f(n) is increasing.

Otherwise redefine it as g(n) := maxi≤n f(n).
Suppose PS = {p1, p2, . . . , pk}.
Then sn = εnp

α1
1 . . . pαk

k where εn = {−1, 0,+1} and αi ≥ 0
This implies

2α1+α2+···αk ≤ |sn| ≤ 22
f(n)

for s(n) 6= 0.

⇒ 0 ≤ αi ≤ α1 + α2 + · · ·αk ≤ 2f(n) for 1 ≤ i ≤ k

.

#{|s(n)| 6= 0 and n ≤ N} ≤ (2f(N) + 1)k ≤ 2(f(N)+1)k.
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#{|s(n)| 6= 0 and n ≤ N} ≥ N − c
2c

N − c
2c

≤ 2k(f(N)+1)

log2(N − c)− log2(2c) ≤ k(f(N) + 1) for all N.

Divide both sides by log2N . Then LHS goes to 1 and RHS goes
to 0.
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log2(N − c)
log2N

→ 1 as N →∞

and
f(N)

log2N
→ 0 as N →∞.

This is a contradiction.
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What is GCD ?

“Greatest Common Divisor”

GCD(4, 6) = 2, GCD(8, 0) = 8, GCD(8, 9) = 1 . . .

N =
∏
p

pαp ; M =
∏
p

pβp

GCD(N,M) =
∏
p

pmin(αp,βp).
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LCM – Least Common Multiple

LCM(4, 6) = 12, LCM(8, 9) = 72, LCM(8, 4) = 8, . . .

N =
∏
p

pαp ; M =
∏
p

pβp

LCM(N,M) =
∏
p

pmax(αp,βp).

Exercise: GCD(N,M)× LCM(M,N) = M ×N .
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How to find GCD(N,M) ?

a | N and a |M implies a | (N +M) and a | (N −M).
This generalizes to a | N and a |M implies a | (xN + yM) for
all x, y ∈ Z.
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This motivates us to consider the set

S(N,M) := {xN + yM : x, y ∈ Z}.

Observations:
(A) 1f a ∈ S then all multiples of a are also in S.
(B) There is a smallest positive number d in S.
(C) d | N and d |M
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Proof of (C):

N = d.q + r

(q quotient and r remainder)

r = N − dq
= N − q(aN + bM)

= N(1− a)− qbM
= a′N + b′M

This implies r is also in the set S, but r is nonnegative and
strictly smaller than d. This implies r = 0 and d | N and d |M .
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Let g = GCD(N,M). We will show that g = d.

d = aN + bM

= agq + bgp

= g(aq + bp)

This implies g | d. g ≤ d.
Since d is smallest d = g
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Bézout’s identity
GCD(N,M) = aN + bM for some a, b ∈ Z.

Exercise: Generalize this question for N1, N2, N3, . . . , Nk. Is it
true ?
This leads to an algorithm to compute GCD.
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Euclid: (300 B.C.)
Input: N ≥M ≥ 0
Euclid (N,M)
1 if (M == 0)
2 then return N
3 else return Euclid (M,N mod M)



Input: X,Y

Set x, y, u, v := X,Y, Y,X;

do x > y → x, v := x− y, v + u

� y > x→ y, u := y − x, u+ v

od

print x+y
2 , u+v2



Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 22, . . .

F (n) = F (n− 1) + F (n− 2), for n ≥ 2.



Examples:
Exercise: Number of ordered ways to partition n into parts
greater than 1.
Exercise: Number of ordered ways to partition n into odd
parts.
Exercise: Number of sequences of length n, consisting of
0’s,1’s and 2’s such that 1 does not follow a 0.

(X is a Fibonacci number if one of 5X2 ± 4 a perfect square.)
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Assertion: If N ≥M ≥ 0 and the procedure Euclid(N,M) is
repeated (invoked) L times, then N ≥ F (L+ 2) and
M ≥ F (L+ 1). In particular if M ≤ F (L+ 1) then the
procedure is invoked at most L times.

Exercise: Use induction to prove the above statement.

Solutions for all the Fibonacci related Exercises will be provided
at a later date.
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Actual numerical algorithms are very “delicate” and require
great care.

Art of Computer Programming, Volume 2: Seminumerical
Algorithms by Donald Knuth
Page 333 – 379 (GCD algorithm) Page 346 Euclids Algorithm
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“I have corrected every error that alert readers detected in the
second edition (as well as some mistakes that, alas, nobody
noticed); and I have tried to avoid introducing new errors in the
new material. However, I suppose some defects still remain, and
I want to fix them as soon as possible. Therefore I will
cheerfully award $2.56 to the first finder of each technical,
typographical, or historical error. The webpage cited on page
(iv) contains a current listing of all corrections that have been
reported to me.”

– Donald Knuth







Congruence - Class of residues

x ≡ a mod n

Means n divides x− a.

The different equivalent classes can be represented by
0, 1, 2, . . . , n− 1.
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Solve:
x = 1 mod 8

x = 1, 9, 17, 25, . . .

x = 8k + 1 where k ∈ {0, 1, 2, . . .}
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x = 1 mod 8

x = 1, 9, 17, 25, . . .

x = 8k + 1 where k ∈ {0, 1, 2, . . .}



Solve:
x = 1 mod 8

x = 1, 9, 17, 25, . . .

x = 8k + 1 where k ∈ {0, 1, 2, . . .}



Solve:
x2 = 1 mod 8

x = 1, 3, 5, 7, 9, 11, 13, 15, . . .



Solve:
x2 = 1 mod 8

x = 1, 3, 5, 7, 9, 11, 13, 15, . . .



Properties of conguences.

a = b mod n→ b = a mod n

a = b mod n, b = c mod n⇒ a = c mod n

a = a′ mod n, b = b′ mod n⇒ a+ b = a′ + b′ mod n



Properties of conguences.

a = b mod n→ b = a mod n

a = b mod n, b = c mod n⇒ a = c mod n

a = a′ mod n, b = b′ mod n⇒ a+ b = a′ + b′ mod n



Properties of conguences.

a = b mod n→ b = a mod n

a = b mod n, b = c mod n⇒ a = c mod n

a = a′ mod n, b = b′ mod n⇒ a+ b = a′ + b′ mod n



Exercise:
If a = b mod m and a = b mod n then

a = b mod (lcm(m,n))



Exercise:
If a = b mod m and a = b mod n then

a = b mod (lcm(m,n))



Solve The following system of Equations:

x = a1 mod n1

x = a2 mod n2

Given GCD(n1, n2) = 1



Case: a1 = a2

General case:
Bézouts identity‘:

m1n1 +m2n2 = 1

Set x = a1m2n2 + a2m1n1



Case: a1 = a2
General case:

Bézouts identity‘:

m1n1 +m2n2 = 1

Set x = a1m2n2 + a2m1n1



Case: a1 = a2
General case:
Bézouts identity‘:

m1n1 +m2n2 = 1

Set x = a1m2n2 + a2m1n1



Case: a1 = a2
General case:
Bézouts identity‘:

m1n1 +m2n2 = 1

Set x = a1m2n2 + a2m1n1



Verification:

x = a1m2n2 + a2m1n1

= a1(1−m1n1) + a2m1n1

= a1 + (a2 − a1)m1n1

This implies
x = a1 mod n1



Verification:

x = a1m2n2 + a2m1n1

= a1(1−m1n1) + a2m1n1

= a1 + (a2 − a1)m1n1

This implies
x = a1 mod n1



Verification:

x = a1m2n2 + a2m1n1

= a1(1−m1n1) + a2m1n1

= a1 + (a2 − a1)m1n1

This implies
x = a1 mod n1



Verification:

x = a1m2n2 + a2m1n1

= a1(1−m1n1) + a2m1n1

= a1 + (a2 − a1)m1n1

This implies
x = a1 mod n1



What about k such equations ?

x = a1 mod n1

x = a2 mod n2
...

x = ak mod nk

Where the n′is are pairwise co-prime, (GCD(ni, nj) = 1)



Let N =
∏k
i=1 ni and Ni = N

ni
.

Then we have
MiNi +mini = 1

Since GCD(Ni, ni) = 1

x =
k∑
i=1

aiMiNi

x = aiMiNi mod ni = ai(1−mini) mod ni = ai mod ni.

This is true for all i ∈ {1, 2, . . . k}



Let N =
∏k
i=1 ni and Ni = N

ni
.

Then we have
MiNi +mini = 1
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x = aiMiNi mod ni = ai(1−mini) mod ni = ai mod ni.

This is true for all i ∈ {1, 2, . . . k}



Let N =
∏k
i=1 ni and Ni = N

ni
.

Then we have
MiNi +mini = 1

Since GCD(Ni, ni) = 1

x =

k∑
i=1

aiMiNi

x = aiMiNi mod ni = ai(1−mini) mod ni = ai mod ni.

This is true for all i ∈ {1, 2, . . . k}



Let N =
∏k
i=1 ni and Ni = N

ni
.

Then we have
MiNi +mini = 1

Since GCD(Ni, ni) = 1

x =

k∑
i=1

aiMiNi

x = aiMiNi mod ni = ai(1−mini) mod ni = ai mod ni.

This is true for all i ∈ {1, 2, . . . k}


