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There are infinitely many prime numbers
Euclid’s Argument:
Let L = {p1,p2,...,pxr} be a finite list of primes.

N =pipap3...pp +1

This number cannot be divided by any or the primes in the list
L.

This implies either N is a prime itself or it is divisible by a
prime not in the list.

This implies there is at least 1 more prime.
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Fermat number

For n ={0,1,2,...}

F(n):=2%" +1

3,5,17,257,65537,4294967297,18446744073709551617, . ..

Any two Fermat numbers are relatively prime.
It means ged (F'(i), F(5)) = 1if i # j.
gcd (a,b) = ged (bya) = ged (a — b,b) if a > b



Exercise: Consider the number 2P — 1 where p is a prime. Show
that all its prime factors are greater than p.

Exercise: Consider any polynomial P(x). Show that the
sequence P(0), P(1),... cannot be only prime numbers.



Frustenberg’s proof: (Mercer’s note)

Notation: All integers conguuent to » mod m is denoted by
r 4+ mZ and they are called AP.

Example:

3+11Z={...,-30,-19,-8,3,14,25,36,...}
For m > 1, set of integers not divisible (ND) by m are as

(I14+mZ)J---U((m—1)+mZ).



Assertion 1: Intersection of two AP’s is either empty or infinite.



Assertion 1: Intersection of two AP’s is either empty or infinite.
Assertion 2: Finite intersection of finite unions of sets is also a
finite union of finite intersections of sets.

Example:

(AUBUC)N(DUE)N(FUG)=(ANDNF)U()U...
Proof: If pi,p2, ..., pr is the set of all primes then
{=1,1} = ND(p1) " ND(pz) ... N ND(px)

RHS is either empty or infinite!
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What about prime numbers ?

1+1+1+1+1+ L
2 3 5 7 11 o

We give a proof by Erdos.



Paul Erdés (Hungarian: 1913 ~1996)
FErds published around 1,500 mathematical papers during his
lifetime.
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Suppose

(pi’s are in increasing order) Then there must be a k such that
o0

> 5. <s

imhog1 Pi

Let Ps = p1,po,...,pr be called small primes and
Py := pr41, Pk+2, - - . be called big primes.
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For any natural number N we must have

Sy
ikl P 2

Let Ny be the number of integers < NN that is divisible by at
least one big prime.

Let N be the number of integers < N, that are divisible by
only small primes.

Clearly Ny + Ng = N.

We will show that for a suitable N, Ng 4+ Ny < N, a
contradiction.
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To estimate Ny, write n < N as n = ab®. a squarefree part and
a squared part.

Total choices number of for square free part is at most 2*.
Total number of choices for squared part is at most v/N.

This implies Ny < 2k/N.

For contradiction find N such that 2¥v/N < %



Issai Schur (1875-1941) was a
Russian mathematician who
worked in Germany. He was a
student of the great group
theorist Frobenius. Schur
worked in various areas and
proved many deep results in
representation theory.




Issai Schur (1875-1941) was a
Russian mathematician who
worked in Germany. He was a
student of the great group
theorist Frobenius. Schur
worked in various areas and
proved many deep results in
representation theory.

Let P(x) be a non-constant polynomial with integer coefficients.
Then {P(i) : i € N} has infinitely many prime divisors.

(see Lemma 3 in https://mast.queensu.ca/ murty/poly2.pdf)



Christian Elsholtz: Prime divisors of thin sequences, Amer.
Math. Monthly 119 (2012), 331-333
Let S := {s1,s2,...} CZ be a sequence of integers such that
No integer appears more than c times.
S has subexponential growth i.e. |s,| < 92/

2 0. (f: N> R)

where




Christian Elsholtz: Prime divisors of thin sequences, Amer.
Math. Monthly 119 (2012), 331-333
Let S := {s1,s2,...} CZ be a sequence of integers such that

No integer appears more than c times.

9f(n)

S has subexponential growth i.e. |s,| < 2 where

f(n) .
bg’;n —0. (f:N=R)
Theorem: If a set S is “almost” injective and of

sub-exponential growth (the above two conditions) then the set

of prime numbers Pg that divide a member of S is infinite.




The two conditions are clearly required. Suppose the first
condition does not hold. Then consider the sequence
S:=1{2,4,4,8,8,8,8,16,...}.



The two conditions are clearly required. Suppose the first
condition does not hold. Then consider the sequence
S:=1{2,4,4,8,8,8,8,16,...}.

If the second condition does not hold then the sequence {2¢37},
f(n) 1

~

logo n 2

1,7 € N arranged in increasing order has



Without loss of generality assume f(n) is increasing.



Without loss of generality assume f(n) is increasing.
Otherwise redefine it as g(n) := max;<y f(n).

Suppose Ps = {p1,pa, ..., Pk}-
Then s, = €,p]"* ...p.* where €, = {—1,0,+1} and o; > 0
This implies

goitaztag < ’371‘ < 22f(n)

for s(n) # 0.
20<o<art+as+-ap<2™for1<i<k
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N —c¢

#{ls()] #0and n < N} > =

logy(N — ¢) —logy(2¢) < k(f(N)+ 1) for all N.



N —c
2c

#{|s(n)| #0 and n < N} >

logy(N — ¢) —logy(2¢) < k(f(N)+ 1) for all N.

Divide both sides by log, N. Then LHS goes to 1 and RHS goes
to 0.



logy (N —¢)
logy N
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logy (N —¢)

—1 N —
logy N as >

and
f(N)
logy N

—0as N — .

This is a contradiction.
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What is GCD ?
“Greatest Common Divisor”

GCD(4,6) = 2,GCD(8,0) = 8, GCD(8,9) =

N =]]p%: M=]]»"
p p

GCD(N, M) H prin@p:Bp)-



LCM — Least Common Multiple
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LCM — Least Common Multiple

LCM(4,6) = 12, LCM(8,9) = 72, LCM(8,4) = 8, ...
N =]]r*; M=]]»™
p p
LCM(N, M) HpmaX<%ﬁp

Exercise: GCD(N, M) x LCM(M,N) = M x N.
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How to find GCD(N, M) ?

a|N and a | M implies a | (N + M) and a | (N — M).

This generalizes to a | N and a | M implies a | (zN + yM) for
all z,y € Z.
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This motivates us to consider the set

S(N,M) :={zN+yM : z,y € Z}.

Observations:
(A) 1f a € S then all multiples of a are also in S.

(B) There is a smallest positive number d in S.
(C)d|Nandd| M
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Proof of (C):

N=d.qg+r

(¢ quotient and r remainder)

r = N —dqg

N —q(aN +bM)
N(1—a)—gbM
= dN+bM

This implies r is also in the set S, but r is nonnegative and
strictly smaller than d. This implies r = 0



Proof of (C):

N=d.qg+r

(¢ quotient and r remainder)

r = N —dqg

N —q(aN +bM)
N(1—a)—gbM
= dN+bM

This implies r is also in the set S, but r is nonnegative and
strictly smaller than d. This implies 7 =0 and d | N and d | M.
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Let g = GCD(N, M). We will show that g = d.

d = aN+bM
= agq+ bgp
= g(aq+ bp)

This implies g | d. g < d.
Since d is smallest d = ¢



Bézout’s identity
GCD(N,M) = aN + bM for some a,b € Z.



Bézout’s identity

GCD(N,M) = aN + bM for some a,b € Z.

Exercise: Generalize this question for N1, No, N3, ..., Ni. Is it
true 7



Bézout’s identity

GCD(N,M) = aN + bM for some a,b € Z.

Exercise: Generalize this question for N1, No, N3, ..., Ni. Is it
true 7

This leads to an algorithm to compute GC'D.



Euclid: (300 B.C.)
Input: N> M >0
Euclid (N, M)

1if (M ==0)
2 then return NV
3 else return Euclid (M, N mod M)



Input: XY
Set z,y,u,v =X, Y, Y, X;
do z>y—z,vi=r—y,v+u
U y>z—yu=y—z,u+v
od
print s v



Fibonacci numbers:

0,1,1,2,3,5,8,13,22, ...

Fn)=F(n—-1)+ F(n—2), forn>2.



Examples:

Exercise: Number of ordered ways to partition n into parts
greater than 1.

Exercise: Number of ordered ways to partition n into odd
parts.

Exercise: Number of sequences of length n, consisting of
0’s,1’s and 2’s such that 1 does not follow a 0.



Examples:

Exercise: Number of ordered ways to partition n into parts
greater than 1.

Exercise: Number of ordered ways to partition n into odd
parts.

Exercise: Number of sequences of length n, consisting of
0’s,1’s and 2’s such that 1 does not follow a 0.

(X is a Fibonacci number if one of 5X?2 + 4 a perfect square.)



Assertion: If N > M > 0 and the procedure Euclid(N, M) is
repeated (invoked) L times, then N > F(L + 2) and

M > F(L+1). In particular if M < F(L + 1) then the
procedure is invoked at most L times.



Assertion: If N > M > 0 and the procedure Euclid(N, M) is
repeated (invoked) L times, then N > F(L + 2) and

M > F(L+1). In particular if M < F(L + 1) then the
procedure is invoked at most L times.

Exercise: Use induction to prove the above statement.

Solutions for all the Fibonacci related Fxercises will be provided
at a later date.
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Actual numerical algorithms are very “delicate” and require
great care.

Art of Computer Programming, Volume 2: Seminumerical
Algorithms by Donald Knuth
Page 333 — 379 (GCD algorithm) Page 346 Euclids Algorithm




“I have corrected every error that alert readers detected in the
second edition (as well as some mistakes that, alas, nobody
noticed); and I have tried to avoid introducing new errors in the
new material. However, I suppose some defects still remain, and
I want to fix them as soon as possible. Therefore I will
cheerfully award $2.56 to the first finder of each technical,
typographical, or historical error. The webpage cited on page
(iv) contains a current listing of all corrections that have been

reported to me.”
— Donald Knuth
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Congruence - Class of residues

r=a modn

Means n divides z — a.



Congruence - Class of residues

r=a modn

Means n divides x — a.
The different equivalent classes can be represented by
0,1,2,...,n—1.
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Solve:
=1 mod8

z=1,9,17,25,...

x =8k + 1 where k € {0,1,2,...}



Solve:
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Solve:
22=1 mod 8

r=1,3,57911,13,15,...
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Properties of conguences.

a=b modn—>b=a modn

a=b modn,b=c modn=a=c modn

a=d modn,b=b modn=a+b=d +b modn



Exercise:
If a=b mod m and a = b mod n then



Exercise:
If a=b mod m and a = b mod n then

a=>b mod (lem(m,n))



Solve The following system of Equations:

= a1 mod n

= a9 mod ny

Given GCD(ny,n2) =1
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General case:
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Case: a1 = a9
General case:
Bézouts identity*:

ming + meonoe =1

Set = aymaonsg + asming
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Verification:
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Verification:

r = aijmong + asming
= ai(1 —myny) + agming

= a1+ (a2 —a1)ming



Verification:

r = aijmong + asming
= ai(1 —myny) + agming
= a1+ (az —a;)ming

This implies
T =a; mod ng



What about k such equations 7

Tz = a1 modmn
= a9 mod no
r = ap mod ng

Where the n}s are pairwise co-prime, (GCD(n;,n;) = 1)
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Let N = Hle n; and N; = %
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Let N = Hle n; and N; = %
Then we have
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Let N = Hle n; and N; = %
Then we have

Since GCD(N“TLZ) =1

k
=1

x = a;M;N; mod n; = a;(1 —m;n;) mod n; =a; mod n,.

This is true for all i € {1,2,...k}



