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The reductive Borel-Serre compactification Mrbs of a noncompact locally sym-
metric space M was introduced in [Z2] and has since played a fundamental role in
work on cohomology of arithmetic groups and locally symmetric spaces. This pa-
per is a survey of two aspects of its cohomology, motivic (when M has an algebraic
structure) and automorphic, and their interaction.

It is a well-known idea that when M is a locally symmetric variety Mrbs behaves
like a partial resolution of the singularities of the minimal (or Satake-Baily-Borel)
compactification M bb. Although Mrbs is not an algebraic variety, its cohomology
looks motivic: It carries a mixed Hodge structure [Z4], underlies a Voevodsky
motive [AZ], and is part of a mixed realization [N2]. In §2 we outline the approach
of [N2] to the mixed realization of H∗(Mrbs) based on Morel’s weight truncations
in categories of mixed sheaves constructed by Saito and on a comparison between
weight truncations and the weighted complexes of [GHM]. A special case of the
comparison puts a mixed realization on the cohomology of Mrbs. We also discuss
motivic results of Ayoub and Zucker [AZ] and Vaish [V].

The cohomology of Mrbs is also automorphic, in a precise sense: There are C∞

de Rham models for its cohomology and homology in terms of relative Lie algebra
cohomology of spaces of functions on the group (by specializing the main result of
[N1]). For homology we can further reduce to a space of automorphic forms [F1].
In §3 we review these results and describe some consequences drawn in [N3]. The
results in §3 work for any locally symmetric space, algebraic or not.

In §4 we describe a result of [N3] which exploits both the motivic and auto-
morphic results on Mrbs to show that the Chern classes of the natural topological
extensions to Mrbs of automorphic vector bundles on a locally symmetric variety
M behave as they would if Mrbs were an algebraic variety over k and automorphic
vector bundles extended algebraically to Mrbs.

Much of the interest in M and its compactifications comes from the hope of
relating the mixed motives appearing in the cohomology of M to the special val-
ues of L-functions (see e.g. [H]). It follows from the result described in §4 that
the summand of cohomology with trivial Hecke eigenvalues consists of mixed Tate
realizations. In [N4] we treat this summand using automorphic methods from [F2]
(see Remark 4); the RBS compactification plays an important role in this.

It should be obvious how much Steve Zucker’s work (both on locally symmetric
spaces and in Hodge theory) has influenced the matters discussed here and it is an
honour to contribute to this volume for him. My own interest in Steve’s “favorite
space” Mrbs was rekindled by a discussion with him at Banff in May 2008 where he
told me about [Z4]. I realized soon after that Morel’s work [Mo] gives a simple and
natural approach to such questions. The main result of [N2] was worked out during
a stay at the IAS Princeton in the Fall of 2008 and this later led to [NV, N3, V].
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I thank the referee for helpful comments.

1. Mixed realizations and Mrbs

After recalling the categories of mixed sheaves of relevance to us from Saito’s
[S1, S2, S3] and Morel’s method of weight truncations from [Mo], we sketch how
the cohomology Mrbs carries a natural mixed realization, following [N2]. We also
mention the motivic result of Ayoub-Zucker [AZ] and some further developments
due to Vaish [V].

1.1. Some categories of mixed sheaves. Let k be a number field in C and Var/k
the category of varieties (i.e. separated schemes of finite type) and morphisms
defined over k. The algebraic closure of k in C is denoted Q̄.

The cohomology of an algebraic variety over k carries extra structures: The
singular cohomology H∗(X(C),Q) with its increasing weight filtration W and de-
creasing Hodge filtration F on H∗(X(C),C) is a mixed Hodge structure. If X
is smooth the algebraic de Rham cohomology H∗(X,Ω•X/k) with its weight and

Hodge filtrations is a bifiltered k-vector space. For each prime l the l-adic etale
cohomology H∗(X ×k Q̄,Ql) is a continuous l-adic Gal(Q̄/k)-representation with a
Galois-stable filtration by Frobenius weights. There are comparison isomorphisms
H∗(X(C),Q)) ⊗ Ql ∼= H∗(X ×k Q̄,Ql) and H∗(X(C),C) ⊗ C ∼= H∗(X,Ω•X/k) ⊗k C
relating filtrations.

This leads to the notion (due to Deligne and Jannsen [J]) of a mixed realiza-
tion over k. This is a collection (HB , HdR, (Hl)l, I, (Il)l) where the Betti part
HB = (HQ,W on HQ, F on HC) is a Q-mixed Hodge structure, the de Rham part
HdR = (Hk,W, F ) is a bifiltered k-vector space, and for each prime l we have
Ql-vector space Hl with a continuous representation of Gal(Q̄/k) and a Galois-
stable filtration W . The map I : HQ ⊗Q C → Hk ⊗k C is an isomorphism
identifying the W and F filtrations, and for each l, Il : HQ ⊗Q Ql → Hl is an
isomorphism identifying the W filtrations. Mixed realizations over k form an
abelian category MRk and X 7→ H∗(X) = (H∗B(X),H∗dR(X/k), (H∗l (X))l) with
H∗B(X) = (H∗(X(C),Q),W, F ), H∗dR(X/k) = (H∗(X,Ω•X/k),W, F ), and H∗l (X) =

(H∗(X ×k Q̄,Ql),W ) defines a functor from smooth varieties to MRk. (We will
drop the data I, (Il)l from the notation when there is no ambiguity.)

Relative versions of mixed Hodge structures and mixed realizations have been
defined by M. Saito [S1, S2, S3]. The category MHM(X) of algebraic mixed Hodge
modules ([S1], especially §4) on a complex algebraic variety X is an abelian cate-
gory which for X = Spec(C) is the category of graded-polarizable rational mixed
Hodge structures and which for X smooth contains admissible variations of mixed
Hodge structure on X. The objects of MHM(X) are triples ((M,W,F ), (K,W ), α)
where (M,W,F ) is a bifiltered regular holonomic DX -module, (K,W ) is a filtered
algebraically constructible perverse QX -sheaf, and α : DR(M,W )→ (K,W )⊗C is
a filtered quasiisomorphism. These are subject to complicated inductively defined
conditions. (The theory rests, in the end, on [Z1] over curves.) Remembering only
the underlying perverse sheaf K defines a faithful exact functor rat to the cate-
gory P(X) of algebraically constructible perverse sheaves on X. This derives to a
functor rat : DbMHM(X) −→ Db

c(QX) to the derived category of complexes of QX -
sheaves with algebraically constructible cohomology sheaves (because Db(P(X)) is
equivalent to Db

c(QX) by [B]).



MOTIVIC AND AUTOMORPHIC ASPECTS OF THE RBS COMPACTIFICATION 3

For a k-variety X, the category M (X) of mixed realizations over X is an abelian
category defined in [S2, 1.8] and [S3, 1.1] by enriching mixed Hodge modules
on X(C): An object in M (X) consists of ((Mk,W, F ), (K,W ), (Kl,W )l, α, (αl)l)
where (Mk, F ) is a regular holonomic DX -module with finite increasing filtration
W , (K,W ) is a filtered perverse QX(C)-sheaf, and for each l, (Kl,W ) is a fil-
tered perverse l-adic sheaf on X, and α and αl are comparison isomorphisms.
We refer to [S3, 1.1] and [S2, 1.8] for more details. For X = Spec(k) we get
mixed realizations in MRk with graded-polarizable Betti part. Remembering
((Mk,W, F ) ⊗ C, (K,W ), α) gives a faithful exact functor M (X) → MHM(X(C))
and remembering only K gives a faithful exact functor For to perverse sheaves.
The induced functor

For : DbM (X) −→ Db
c(QX(C))

on derived categories factors through rat.
Both MHM(·) and M (·) are examples of theories of mixed sheaves in the sense of

[S2]. It then follows that there is a functorial formalism: For f : X → Y in Var/k
there are functors f∗, f

∗, f!, f
! between the derived categories DbMHM(X(C)) and

DbMHM(Y (C)) (resp. between DbM (X) and DbM (Y )) compatible under rat
(resp. under For) with the usual functors between Db

c(QX(C)) and Db
c(QY (C)), and

these satisfy all the usual identities. (See [S1] for MHM(·) and [S3, Theorem 1.2]
and [S2] for M (·).) Thus for K ∈ DbM (X) and aX : X → Spec(k) the structure
morphism, the object

Hi(aX∗K) ∈M (Spec(k)) (1)

gives a mixed realization with rational vector space underlying the Betti part given
by Hi(X,For(K)).

There is a unit object QM in M (Spec(k)) with For(QM ) = Q. For X ∈ Var/k
with structure morphism aX : X → Spec(k) the object QM

X = a∗XQM (“the con-
stant sheaf on X”) in DbM (X) has For(QM

X ) = QX(C). Taking Hi(aX∗QM
X ) gives

a mixed realization

Hi(X) := (Hi
B(X),Hi

dR(X/k), (Hi
l(X))l)

with Betti part Hi(X(C),Q) and this defines a functor Var/k → MRk extending
the earlier functor from smooth varieties. (Note that the underlying k-vector space
of H∗dR(X/k) will not usually be H∗(X,Ω•X/k) if X is singular.) Homology becomes

a mixed realization by duality and intersection cohomology becomes a mixed real-
ization using ICX = (j!∗QM

U [dimX])[−dimX] in (1) where j : U ↪→ X is an open
dense smooth subset. We denote it IH∗(X) = (IH∗B(X), IH∗dR(X), (IH∗l (X))l).

The Tate object is QM (1) = H2(P1) = (QB(1),QdR(1), (Ql(1))l), where QB(1)
is the usual Tate Hodge structure of weight −2 and Ql(1) is one-dimensional with
Galois action by the l-adic cyclotomic character χl : Gal(Q̄/k)→ Z∗l . For n ≥ 0 set
QM (n) = QM (1)⊗n and QM (−n) = QM (−1)⊗n. For an object K ∈M (X) we let
K(n) = K ⊗QM

X (n) where QM
X (n) = a∗XQM (n).

1.2. Truncation by weights. A beautiful idea of S. Morel [Mo] is to define trun-
cation functors using t-structures coming from the theory of weights. Morel’s con-
struction was originally for mixed l-adic complexes on schemes over finite fields,
but works mutatis mutandis in any reasonable category of sheaves in which one has
weight filtrations with the correct properties, in particular in any theory of mixed
sheaves in the sense of Saito [S2]. We work with M (·).



4 ARVIND NAIR

For a ∈ Z, Morel defines a t-structure (wD6a,wD>a) on DbM (X) as follows:
wD6a (resp. wD>a) is the full subcategory of complexes K such that Hi(K) ∈
M (X) has weights ≤ a for all i (resp. > a for all i). (1) This defines a t-structure
with heart wD6a ∩ wD>a = {0} and the corresponding truncation functors are
denoted w6a, w>a. These t-structures have many nice properties, in particular the
subcategories wD6a,wD>a are stable under translation and triangulated and the
truncation functors commute with translation.

If X =
⊔
S∈S S is a stratification of X by equidimensional varieties over k, and

d : S → Z∪ {±∞} is a function on the set of strata, then the standard machinery
of [BBD] allows us to glue the t-structures (wD6d(S),wD>d(S)) on DbM (S) for
S ∈ S to get a t-structure (wD6d,wD>d) on DbM (X). If iS : S ↪→ X is the
locally closed immersions of a stratum S ∈ S then a complex K belongs to wD6d

(resp. wD>d) if i∗SK ∈ wD6d(S) (resp. i!SK ∈ wD>d(S)) for all S ∈ S . The
associated truncation functors are denoted w6d, w>d.

There are two canonical functions S → Z ∪ {±∞} associated with any equidi-
mensional stratifed variety X =

⊔
S∈S S: The constant function d ≡ n = dimX

and the function dim defined by dim(S) := dimS. For the former, Morel [Mo]
proves the following remarkable formula: If j : U ↪→ X is the inclusion of an open
dense smooth subset then

w6nj∗QM
U [n] = j!∗QM

U [n]. (2)

So one recovers the intersection complex ICX = w6nj∗QM
U as a weight truncation.

In [NV] V. Vaish and I found that the glued t-structure given by the function
dim defined by dim(Si) = dimSi has particularly nice properties. (The interest
in dim came from Theorem 2 below, so we are inverting the chronology here.) In
particular, the following was proven:

Theorem 1. ([NV, Proposition 4.1.2]) Suppose that U is smooth of dimension
n, j : U ↪→ X is an open immersion as a Zariski-dense subset of an irreducible
variety, and π : Y → X is a proper morphism from Y smooth such that π|π−1(U) is

an isomorphism. Assume X is given a stratification such that j!QM
U [n], j∗QM

U [n],
and π∗QM

Y [n] are constructible. Then

w6dimj∗QM
U [n] = w6dimj!∗QM

U [n] = w6dimπ∗QM
Y [n]

in DbM (X).

Informally, this shows that the object ECX := w6dimj∗QM
U can be contructed

“from the inside” using j : U ↪→ X or “from the outside” using π : Y → X. This
defines a “cohomology theory” X 7→ EH∗(X) := H∗(X,w6dimj∗QM

U ) lying some-
where between the usual cohomology and intersection cohomology and enjoying a
number of pleasant formal properties established in [NV]. Among these properties
are ring structure and functoriality for certain morphisms. Whether there is more
topological content to the theory seems to be an interesting question.

1.3. Locally symmetric varieties. Let M be a locally symmetric variety and
n = dimCM . We work over the field of definition k of M , a number field in C,

1Contrast this with the property “K has weights ≤ a” (resp. “K has weights ≥ a”) of
[BBD, S1], which holds if and only if Hi(K) is of weights ≤ i+ a for all i (resp. of weights ≥ i+ a

for all i).
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which can be made quite explicit if M is a Shimura variety. We will not distinguish
notationally between the varieties over k and their complex points.

Consider the diagram

Mrbs

p��
M �
� j // M bb

where M bb is the minimal (or minimal Satake or Baily-Borel) compactification.
The main technical result of [N2] (Theorem 4.3.1 of loc. cit.) compared various
weight truncations w6dj∗QM

M with the pushforward of the weighted complexes of
Goresky-Harder-MacPherson [GHM]. This was done to prove that certain spectral
sequences appearing in work of Franke [F1] on Borel’s conjecture are spectral se-
quences of mixed realizations (the main result of [N2]). For the special case of the
dim truncation we get:

Theorem 2. There is a natural isomorphism For(w6dimj∗QM
M ) = p∗QMrbs .

Another special case of [N2] is the constant function n = dimM , when one gets

For(w6nj∗QM
M ) = p∗WCMrbs(QM )

where WCMrbs(QM ) is the (upper or lower) middle weighted cohomology complex
of [GHM]. By the main result of [GHM] p∗WCMrbs(QM ) = (j!∗QM [n])[−n], so this
reduces to Morel’s formula (2) (or could be deduced from it).

The proof of Theorem 2 uses several ingredients that had been around for some
time. The main technical problem is that one is comparing the functorial image
(under For) of a complex defined using a t-structure in DbM (M bb) to a complex
in Db

c(QMbb) where there is no similar t-structure available. The key point is to use
the local Hecke operator introduced by Looijenga in his proof of Zucker’s conjecture
and a splitting property in the derived category for its action on each of the objects.
For the weighted complexes the splitting property was proved in [GHM]. For weight
truncations w6dimj∗QM the splitting property is established in [N1] using results
of Looijenga and Rapoport [LR] and Jordan decomposition for endomorphisms in
the derived category.

Corollary 3. The cohomology of the RBS compactification is part of a mixed re-
alization, i.e. there is a mixed realization

H∗(Mrbs) = (H∗B(Mrbs),H∗dR(Mrbs/k), (H∗l (M
rbs))l)

in MRk with Betti part a mixed Hodge structure on H∗(Mrbs,Q).

Now we combine Theorems 1 and 2. Choose a smooth toroidal compactification
π : MΣ →M bb and consider the following diagram:

MΣ

π

��

γ

ss
Mrbs

p ''
M bb

(3)

Theorem 1 gives identities

w6dimj∗QM = w6dimj!∗QM = w6dimπ∗QMΣ . (4)
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The consequences are summarized in the following commutative diagram in M (Spec(k)):

H∗(MΣ)

H∗(Mrbs)
ρ
//

γ∗
22

IH∗(M bb)

ι

88

H∗(M bb)
p∗

bb π∗

FF

OO

(5)

The maps ρ and γ∗ are given by (4) and ι : IH∗(M bb) ↪→ H∗(MΣ) is given by any
homomorphism j!∗QM

MK
[n] → π∗QM

MΣ
K

[n] coming from the decomposition theorem

([S2, 6.10]). (That π∗ = γ∗ ◦ p∗ recovers the result of [GT] in rational cohomology.
Thus, although no γ extending the identity exists in (3), cohomologically it looks
like it does.) The morphisms other than ι are canonical and Hecke-equivariant in
the appropriate sense (e.g. for π∗, γ∗ one keeps in mind that a Hecke operator goes

from H∗(MΣ)→ H∗(MΣ′) for some Σ′).
We also have the following consequence of the formalism:

GrWi Hi(Mrbs) = im[Hi(Mrbs)→ IHi(M bb)] = im[Hi(Mrbs)→ Hi(MΣ)]

which is analogous to standard formulas in mixed Hodge theory.

1.4. Motivic results. The categories above depend on realizations. A more geo-
metric construction is Ayoub’s triangulated category of (etale) motivic sheaves,
which we denote here by DM(X); then DM(Spec(k)) = DMk is Voevodsky’s tri-
angulated category of motives over k. (See [A] for a survey of motivic sheaves;
DM(X) is the category DAet(X;Q) of loc. cit.) For a morphism f : X → Y in
Var/k there are functors f∗, f

∗, f!, f
! between DM(X) and DM(Y ) satisfying the

usual adjunctions.
The result of Ayoub and Zucker [AZ] gives an object EMbb in DM(M bb) which,

on pushforward to Spec(k), gives an object of DMk. Using the Betti realization con-
structed by Ayoub, this is shown to realize to RΓ(Mrbs,Q) =

⊕
k Hk(Mrbs,Q)[−k].

This shows that Mrbs is motivic in the sense of Voevodsky. Unfortunately, although
Huber has constructed a functor DMk → MRk, this is not quite enough to show
that H∗(Mrbs) is a mixed realization (i.e. Corollary 3) because some compatibilities
are unknown (see [N3, 2.5] or [AZ, 4.4, 4.9] for a discussion).

In [V] Vaish generalizes the approach to Mrbs using Morel’s truncation functor
w6dim to categories of motivic sheaves. He defines the truncation w6dim (denoted
w≤Id in loc. cit.) and develops its formalism in a very general motivic sheaf context,
including in positive characteristic. He also shows that w6dim agrees with the
relative Artin motive functor ω0 defined in [AZ] in characteristic zero. In particular,
this gives another approach to EMbb and clarifies the relation of ω0 with weights.
In addition to the formulas EMbb = w6dimj∗1M = w6dimπ∗1M in (4) which are in
[AZ] (where 1M ∈ DM(M) is the unit object over M , the analogue of the constant
sheaf), he is able to prove the relation with the intersection complex in (4) in the
motivic context, as we now explain. The notion of motivic intersection complex has
been defined by Wildeshaus [W1]. The object IMX in DM(X), when it exists, is
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unique up to isomorphism (but not up to unique isomorphism). It exists if X = M bb

[W2].

Theorem 4. (Vaish [V, Theorem 4.1.2]) If the motivic intersection complex IMX

exists, then w6dimIMX = EX . In particular, this holds for X = M bb.

This gives a diagram like (5) in DMk. (The outer triangle is in [AZ].)

Remark 1. Taken together, the results of [N2] (i.e. Theorem 2) and [V] give a
different approach to the main theorem of [AZ]. (The results of [NV] are not
required for this, they merely served as the model for the development in [V].)
Curiously, while the local Hecke operator plays a key role in our approach (in
the proof of Theorem 2), it is not explicitly present in [AZ]. On the other hand,
[AZ] uses explicit information about toroidal compactifications, which our approach
does not (although some use of them is hidden in our use of [LR]). The approach of
[N2, V] is simpler in that much of the burden of proof is shifted to a cohomological
setting.

Remark 2. The category Mgo(X) of objects of geometric origin is the smallest
full subcategory of M (X) closed under subquotients and containing the objects
Hi(f∗QM

Y )(n) for any projective morphism f : Y → X and all i, n ∈ Z. There is
a functor DM(X) −→ DbM (X) and it seems to be expected that this gives an
equivalence of the heart of the (conjectured) perverse t-structure on DM(X) with
Mgo(X).

2. Automorphic forms and Mrbs

The cohomology of the RBS compactification has an analytic interpretation in
terms of automorphic forms, thanks to results of [N1] and [F1]. We review this
and some of its consequences. The notation is as follows: G is a semisimple group
over Q, K ⊂ G(R) is a maximal compact subgroup, Γ ⊂ G(Q) is an arithmetic
subgroup, g is the Lie algebra of G(R) and U(g) it universal enveloping algebra.
The locally symmetric space M = Γ\G(R)/K is not assumed to have a complex
structure in this section.

2.1. The RBS compactification and automorphic forms. The de Rham the-
orem allows us to compute the cohomology of M as relative Lie algebra cohomology:

H∗(M,C) = H∗(g,K,C∞(Γ\G(R))).

Here C∞(Γ\G(R)) is the space of smooth and K-finite functions. We will define
certain (g,K)-submodules of C∞(Γ\G(R)) in terms of growth on Siegel sets and
use this to compute H∗(Mrbs,C).

Fix a minimal Q-parabolic P0 and a Levi subgroup M0 ⊂ P0, and let N0 be the
unipotent radical and A0 ⊂ M0 the maximal Q-split central torus in M0. Let ∆0

be the set of simple positive roots of A0 in P0 and ρ0 the half-sum of positive roots.
Recall that a Siegel set in G(R) = P0(R)K has the form S = ω · A0(t) ·K where
ω ⊂ (N0M0)(R) is a relatively compact subset and A0(t) = {a ∈ A0(R)0 : aα >
t for all α ∈ ∆0}. For ω large enough and t small enough there are finitely many
elements g1, . . . , gr ∈ G(Q) such that

⊔r
i=1 giS forms a coarse fundamental domain

for Γ, i.e.
⊔r
i=1 giS→ Γ\G(R) is surjective with finite fibres and bijective onto the

complement of a compact set. Fix a norm ‖ · ‖ on a0 = LieA0(R).
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Let B = B(Γ\G(R)) be the subspace of f ∈ C∞(Γ\G(R)) for which there exists
N ∈ N such that for all 1 ≤ i ≤ r and D ∈ U(g), there exists C > 0 such that

|Df(gipak)| ≤ C(1 + ‖ log(a)‖)N for pak ∈ S.

Informally, we say that f is “uniformly bounded up to logarithmic terms”.
Let R = R(Γ\G(R)) be the subspace of C∞(Γ\G(R)) of functions f such that

for D ∈ U(g) and 1 ≤ i ≤ r, and for all N ∈ N, there exists C > 0 such that

|Df(gipak)| ≤ C(1 + ‖ log(a)‖)−N · a2ρ0 for pak ∈ S.

If f ∈ B, g ∈ R then fg is L1 and this defines a (g,K)-invariant pairing of B and
R.

Let I be the ideal of the centre of U(g) killing the trivial representation. Then

AR = AR(Γ\G(R)) = {f ∈ R : Imf = 0 for some m}

is a (g,K)-module of automorphic forms. Specializing the main result of [N1] to
the cases λ = 0, λ = 2ρ0 gives:

Theorem 5. ([N1]) There are natural isomorphisms

H∗(Mrbs,C) = H∗(g,K,B)

and

HdimRM−∗(M
rbs,C) = H∗(g,K,R) = H∗(g,K,AR).

We remark that replacing R by the submodule of automorphic forms AR relies on
the difficult results of Franke [F1]. The map induced by B ⊂ R is the fundamental
class map H∗(Mrbs,C)→ HdimRM−∗(M

rbs,C).
The constant functions belong to B. The (g,K)-cohomology of the trivial repre-

sentation is the cohomology of the compact dual symmetric space X̂ of X = G/K,
so this gives a map

θ : H∗(X̂,C)→ H∗(Mrbs,C). (6)

In the compact case this is injective and is an isomorphism onto the Hecke invariants
by Matsushima’s formula, see [N3, 1.2]. Using Theorem 5 and structural results of
Franke on the space of automorphic forms, we prove in [N3, §1] that:

Theorem 6. ([N3]) The inclusion of the constant functions C ⊂ B induces an iso-

morphism of H∗(X̂,C) onto the algebra of Hecke-invariants and Hecke-coinvariants
in H∗(Mrbs,C).

Note that the algebra of invariants splits off as a direct summand. It is essential
here to first work with AR and compute the invariants in H∗(M

rbs,C) and then
use duality, because B cannot be replaced by a module of automorphic forms to
compute cohomology.

Remark 3. Another C∞ de Rham model for H∗(Mrbs,C) using Lp cohomology (for
large p) was found in [Z3]. It is not clear to me if Theorem 6 can be proven using
this model.
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2.2. Functoriality of RBS cohomology: A question. Suppose that ϕ : H → G
is a homomorphism of semisimple Q-groups with finite kernel. Let Γ ⊂ G(Q) be
arithmetic and ΓH := ϕ−1(Γ). Let XH ⊂ X be the embedding of symmetric spaces
induced by ϕ. For MH = ΓH\XH and M = Γ\X there is a proper map of locally
symmetric spaces

ϕ : MH −→M.

It is easy to give examples to show that this does not extend continuously to RBS
compactifications in general. (Morally the reason is clear: Two non-Γ-conjugate
parabolics in G might have preimages in H which are ΓH -conjugate. Then the cor-
responding stratum of Mrbs

H “does not know where to go” in Mrbs.) Nevertheless,
it is a consequence of Theorem 5 that there is a natural restriction map

H∗(Mrbs,C) −→ H∗(Mrbs
H ,C) (7)

because functions in B(Γ\G(R)) pull back to functions in B(ΓH\H(R)). In the
case where both MH and M are locally symmetric varieties, there is an extension
M bb
H → M bb, and this can be used (by the properties of ECX alluded to at the

end of 1.2) to show that (7) is Q-rational and even a homomorphism of mixed
realizations.

For general M and MH , the following topological explanation for (7), inspired
by [GT], suggests itself: Embed MH in the (MH × M)rbs = Mrbs

H × Mrbs by
x 7→ (x, ϕ(x)) and let M ′H be its closure. There are maps

Mrbs
H

p1←−M ′H
p2−→Mrbs

induced by the two projections. Are the fibres of p1 contractible? If so, the resulting
pullback map H∗(Mrbs,Z)→ H∗(Mrbs

H ,Z) should give (7).

3. An Application: Chern classes

In [N3] we combined the results surveyed in §1 and §2 with results in the literature
due to several authors to prove that the Chern classes of automorphic vector bundles
on Mrbs have motivic properties in mixed realizations. The result is best formulated
in the setting of Shimura varieties, so we will only give an approximate statement,
referring to [N3] for details.

Recall the map defined in (6) above

θ : H∗(X̂,C)→ H∗(Mrbs,C)

for a general locally symmetric space using the C∞ de Rham model of Theorem 5
(or the Lp cohomology model of [Z3]). In general this map does not relate the
two rational structures (presumably irrational quantities like ζ(k)/πk for odd k are
involved when G = SL(n) thanks to Borel’s theorem).

When M is a locally symmetric variety, however, θ is Betti rational. This is
because θ has another description in terms of Chern classes of automorphic vector
bundles. Recall that X̂ = G(C)/Q where Q is a parabolic with Levi subgroup
the complexification KC of K. A finite-dimensional complex representation ρ :

K → GL(V ) gives an algebraic vector bundle V̂ on X̂. Restricting by the Borel

embedding X ⊂ X̂ and dividing by Γ gives an vector bundle V on M which has
a canonical algebraic structure. The underlying topological vector bundle of V
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extends naturally to a topological vector bundle V rbs on Mrbs (see [GT, 9.2] or
[Z3, 1.9]). Then θ satisfies

θ(ci(V̂ )) = (−1)ici(V
rbs).

In the compact case this is essentially Hirzebruch proportionality; in general it
follows from results of Zucker [Z3], see [N3, 3.6]. Since the rational cohomology of

X̂ is generated by Chern classes of homogeneous bundles, θ is rational.
Since H∗(Mrbs) has a mixed realization (Corollary 3), it is natural to ask if θ is

a homomorphism of mixed realizations. This amounts to asking if the topologically
defined classes ci(V rbs) have “motivic” properties. The following is an informal
version of the main result of [N3]; we refer to that paper for precise statements:

Theorem 7. The Chern classes of the topological extensions to Mrbs of automor-
phic vector bundles on M have the properties one would expect if Mrbs were an
algebraic variety over k and automorphic vector bundles extended algebraically over
Mrbs respecting fields of definition.

Thus for example, the Chern class ci(V rbs) belongs to the correct step of the
Hodge filtration on H2i(Mrbs,C), and if V is defined over L/k the action of
Gal(Q̄/L) on ci(V rbs), considered in etale cohomology via the comparison isomor-
phism, is via the ith power of the cyclotomic character χl.

The proof of this theorem combines Theorem 6 with results about automorphic
vector bundles on Shimura varieties and their canonical extensions to toroidal com-
pactifications due to Mumford and Harris, and also results due to Goresky-Pardon
and Zucker. As a corollary, for the correct de Rham k-structure on X̂ (see [N3]),
we have:

Corollary 8. The map θ : H∗(X̂) → H∗(Mrbs) given by θ(ck(V̂ )) = (−1)kck(V )
is a ring isomorphism of mixed realizations onto the Hecke-invariants in H∗(Mrbs).

This can be seen as a generalization of the classical Hirzebruch-Mumford pro-
portionality theorem [Mu] to Mrbs in mixed realizations. The construction of a
motivic θ (i.e in a context like 1.4) seems like an interesting problem.

Remark 4. The corollary can be used to show that the direct summand H∗(M)I
of generalized Hecke-invariants of the cohomology of H∗(M), i.e. the summand on
which the Hecke operators act with the same eigenvalues as in the trivial Hecke-
module, is mixed Tate in MRk (i.e. the graded pieces for the weight filtration are
sums of Tate objects). The extensions in this summand can further be analyzed
using methods of automorphic forms from [F2], see [N4].

Remark 5. A remarkable fact is that the analogue of the corollary is not true for
M bb due to the appearance of nontrivial mixed Tate extensions in H∗(M bb) (see
the remarks in [N3, 0.4,4.3] and [N4] and [L]).
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