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ARVIND N. NAIR

Abstract. The Lefschetz property and the nonvanishing result for cup prod-
ucts in the cohomology of congruence ball quotients proved in [6] are improved.

Introduction

Let E ⊂ C be an imaginary quadratic field and let (V, h) be a Hermitian space
with respect to E/Q of dimension n+ 1 ≥ 3 and signature (n, 1) over the reals. A
congruence subgroup Γ of G = SU(h) acts properly discontinuously on the unit ball
B in Cn and the quotient M = Γ\B is a noncompact algebraic variety. If W ⊂ V
is a subspace of dimension m+ 1 on which h is nondegenerate and indefinite, then
the standard embedding of H = SU(h|W ) in G gives an embedding of the m-ball
BH ⊂ B, and the quotient MH = Γ∩H\BH admits a morphism MH −→M which
is finite onto its image. Letting H∗(·) denote cohomology with complex coefficients,
we have:

Theorem 1. For each m < n, there exist subspaces W1, . . . ,Ws in V of dimension
m+ 1 such that the sum of pullback maps

Hi(M) −→
⊕

j
Hi(MHj

) (0.1)

is injective in degrees i < m and for i = m is injective on the interior cohomology
Hm

! (M) = im(Hm
c (M) → Hm(M)) (which includes the cuspidal cohomology) and

on the subspace Hm,0(M)⊕H0,m(M).

The first part of the statement improves [6, Theorem 0.1] by one degree, i.e. we
prove the injectivity on Hi(M) in degrees i < m instead of i < m− 1. The second
part (for i = m) is contained in [6], but was not stated there explicitly.

For g ∈ G(Q) let C∗g be the action in cohomology of the Hecke operator associated
with the double coset ΓgΓ ⊂ G(Q). The following improves [6, Theorem 3.21],
which assumes i+ j < n− 1:

Theorem 2. If α ∈ Hi(M) and β ∈ Hj(M) are nonzero and either i + j < n or
one of them lies in H∗! (M), then α · C∗g (β) 6= 0 for some g ∈ G(Q).

Theorems 1 and 2 seem to be the best one can do by geometric means: The
question of injectivity on the full cohomology in the case i = m > 1 or of nonvan-
ishing of the cup product in case i+ j = n seems to require arithmetic methods to
resolve, see Remarks 1.13 and 2.6. This is in contrast to the compact case [9].

The proof of Theorem 1 is a small variation on [6]: The Satake (or Baily-Borel or
minimal) compactification M∗ is projective and ∂M∗ = M∗−M consists of finitely

many cusps. The decomposition M �
� j
// M∗ ∂M∗? _ioo gives an exact sequence

0 −→ Hi
!(M) −→ Hi(M) −→ Hi(i∗Rj∗C)
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where the first term is interior cohomology and the third term is the cohomology
“at infinity”. (It can be identified with the cohomology of the Borel-Serre boundary
or with the cohomology of the link of ∂M∗.) The sequence is functorial for H ⊂ G
because MH → M extends to M∗H → M∗. Now Corollary 3.16 of [6] implies the
injectivity of (0.1) on the interior cohomology Hi

!(M) for i ≤ m. An elementary
argument (Prop. 1.8) using Kostant’s theorem [5] then deals with the cohomology
at infinity for i < m, proving the theorem. (We also use this argument to correct
a minor error in the proof of the Lefschetz property for toroidal compactifications
in [6, Theorem 3.17], cf. Remark 1.10.)

The proof of Theorem 2 uses similar arguments.
The writing of this note was prompted by the realization that if one is only

interested in restriction or products in the cohomology of M , as opposed to in
the cohomology of the toroidal compactification M , one does not need the full
strength of the results of [6]. In particular, Theorem 2.6 of [6], which canonically
realizes the intersection cohomology IH∗(M∗) of the minimal compactification as a
Hecke-summand of H∗(M), can be avoided for this problem. In fact, the toroidal
compactification can be completely dispensed with; the minimal compactification
and its intersection cohomology play the main role. (Theorem 2.6 of [6] remains
of independent interest and is indispensable to treat H∗(M) → H∗(MH), as in
loc. cit..) Rather than rework the arguments of [6] here to reflect this, we simply
use Cor. 3.16 of loc. cit. as discussed above. The approach using only the minimal
compactification will be used elsewhere to treat noncompact orthogonal Shimura
varieties, where the noncanonical nature of the toroidal compactification is an issue.

The reader is referred to the introduction of [6] for a discussion of earlier work by
many authors on Lefschetz properties for Shimura subvarieties of Shimura varieties.
We simply note here that the study of such properties was begun by Oda in [7] in
precisely the case of noncompact ball quotients at hand (for i = 1), and a key idea
used in [6] was adapted from the compact case treated by Venkataramana [9].

Bergeron and Clozel have given a different approach to Theorems 1 and 2 using
spectral methods. More precisely, they give a completely different approach to
injectivity on interior cohomology (i.e. our Theorem 1.1 below) and use a similar
argument at infinity (cf. the forthcoming revised version of the preprint [2]).

I thank the referees for their comments and corrections.

1. Proof of Theorem 1

1.1. Direct limits and restriction maps. We briefly recall the setup of [6].

Fix E = Q(
√
d), (V, h), and G = SU(h) as in the introduction or [6, §1]. The

ball quotients MΓ = Γ\B for congruence Γ ⊂ G(Q) form an inverse system and one
takes the direct limit

Hi(M) = lim−→Γ
Hi(MΓ)

(with complex coefficients, cf. [6, §2.1]) over congruence subgroups. For H ⊂
G given by a m + 1-dimensional subspace W ⊂ V on which h is indefinite and
nondegenerate, we have a natural embedding H ⊂ G by letting H act trivially on
W⊥. This gives an embedding BH ⊂ B and morphisms MH,ΓH

→ MΓ for all Γ.
These give a restriction map

Res : Hi(M) −→ IGH Hi(MH)

where IGH is an exact induction functor from smooth H(Q)-modules to smooth
G(Q)-modules. Recall from [6, 3.1] that a G(Q)-module is smooth if every vector is
fixed by a congruence subgroup of G(Q). If U is a smooth H(Q)-module then the
induced module IGH U consists of functions f : G(Q) → U such that (1) f(gh) =
h−1 · f(g) and (2) f is left-invariant by a congruence subgroup of G(Q). Then
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IGH takes smooth modules to smooth modules and is right adjoint to restriction.
The map Res has the following concrete description: For α ∈ Hi(MΓ) we have
Res(α)(g) = (g· )∗α|MH,Γ′

H

where Γ′ = Γ ∩ g−1Γg and g· : MΓ′ → MΓ is induced

by translation by g on B. So Theorem 1 is implied by:

Theorem 1.1. The map Res : Hk(M)→ IGH Hk(MH) is injective in degrees k < m
and on the subspace Hm

! (M) in degree k = m.

Recall that the interior cohomology is Hk
! (MΓ) = im(Hk

c (MΓ) → Hk(MΓ)) and,
in the limit,

Hk
! (M) = im(Hk

c (M)→ Hk(M)).

Clearly the map Res above restricts to Res : Hi
!(M)→ IGH Hi

!(MH).

1.2. Cohomology at infinity. Recall (e.g. from [6, §1]) that B is identified with
the space of h-negative C-lines in VR and the Satake extension of B is

B∗ = B t {h-isotropic E-lines ` ⊂ V }.
The minimal (i.e. minimal Satake) compactification is M∗Γ = Γ\B∗; this is a com-
plex projective variety. There are complementary inclusions

MΓ
� � jΓ // M∗Γ ∂M∗Γ? _

iΓoo .

The cohomology at infinity at level Γ is

Hi(i∗ΓRjΓ∗C) =
⊕

`∈Γ\B∗−B

Hi(i∗Γ,`RjΓ∗C)

(with the obvious notation iΓ,` : {`} ↪→ M∗Γ) which can be nonzero for 1 ≤ i ≤
2n− 1, and we take the limit

Hi(L) := lim−→Γ
Hi(i∗ΓRjΓ∗C).

This is an induced module, described as follows: Choose a line ` ∈ B∗ − B and
let P` = StabG(`). Recall from [6, §1] that the unipotent radical W` of P` is
two-step unipotent with centre U` ∼= Ga and V` = W`/U` is abelian (in fact,
V` ∼= RE/QGn−1

a ). The Lie algebras of W`(R), U`(R), V`(R) are denoted w`, u`, v`
and their complexifications w`,C, u`,C, v`,C. The Lie algebra cohomology groups
Hi(w`,C) are P`-modules, via the action induced by the coadjoint action on the
complex ∧∗w∗`,C computing them. The action in cohomology factors through the

Levi quotient P`/W`. The same assertions hold for ∧iv∗`,C and ∧iu∗`,C.

Lemma 1.2. There is a natural isomorphism Hi(L) = IGP`
Hi(w`,C).

Proof. For the chosen isotropic line ` ∈ V the limit

T i` := lim−→Γ
Hi(i∗Γ,`RjΓ∗C)

is a P`(Q)-module in the obvious way. The link of the cusp {`} in M∗Γ is the nilman-
ifold Γ ∩W`(R)\W`(R) and the van Est theorem identifies its cohomology, using
the complex of invariant forms, with H∗(w`,C), and the P (Q)-action is induced by
the coadjoint action. This gives a P`(Q)-equivariant identification T i` = Hi(w`,C).
It follows formally from this, exactly as in the proof of [6, Lemma 3.3], that
Hi(L) = IGP`

Hi(w`,C). �

Lemma 1.3. There are natural short exact sequences

0 −→ u∗`,C ⊗ ∧k−2v∗`,C −→ ∧kv∗`,C −→ Hk(w`,C) −→ 0

for k < n and

0 −→ Hk(w`,C) −→ u∗`,C ⊗ ∧k−1v∗`,C −→ ∧k+1v∗`,C −→ 0
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for k ≥ n.

Proof. Let π : MΓ →M∗Γ be the toroidal compactification at level Γ and

MΓ
� � j̄Γ // MΓ DΓ =

⊔
`∈Γ\B∗−BDΓ,`? _

īΓoo (1.1)

the decomposition into an open subset and the complement. (Here DΓ = MΓ−MΓ.)

Applying Rπ∗ to the standard distinguished triangle īΓ!ī
!
ΓC −→ C −→ Rj̄Γ∗C

+1−→
for (1.1) and taking stalks at the point {`} ∈ ∂M∗Γ gives a long exact sequence

· · · −→ Hk
DΓ,`

(MΓ)
adj−→ Hk(DΓ,`) −→ Hk(i∗Γ,`RjΓ∗C) −→ · · · (1.2)

Under the Thom isomorphism Hk
DΓ,`

(MΓ) ∼= Hk−2(DΓ,`)(−1), the map adj is simply

cupping with the first Chern class of the normal bundle. Since the conormal bundle
is ample this has the hard Lefschetz property (see [6, §2, Remark 2.4]), so that the
long exact sequence breaks up into short exact sequences. In [6, Lemma 3.3] we
gave P (Q)-equivariant identifications

lim−→Γ
Hk(DΓ,`) = ∧kv∗`,C

lim−→Γ
Hk
DΓ,`

(MΓ) = u∗`,C ⊗ ∧k−2v∗`,C.

Putting these two facts together gives the lemma. �

Remark 1.4. The sequence (1.2) is one of rational mixed Hodge structures by the
theory of mixed Hodge modules [8]. The fact that the short exact sequences in the
lemma come from geometry means that they are compatible with weights. Since
∧kv∗`,C = Hk(DΓ,`) and Hk

DΓ,`
(M) ∼= Hk−2(DΓ,`)(−1) are pure of weight k (because

DΓ is smooth and projective), we see that the cohomology at infinity Hk(L) is pure
of weight k if k < n and pure of weight k + 1 if k ≥ n.

Remark 1.5. The short exact sequences in the lemma can also be seen from the
Hochschild-Serre sequence for u`,C ⊂ w`,C which has E2 term Hp(v`,C,H

q(u`,C)) =
∧pv∗`,C⊗∧qu∗`,C and d2 differential induced by the Lie bracket u∗`,C ↪→ ∧2v∗`,C. Since
dim u`,C = 1 the spectral sequence degenerates at E3 and gives the lemma. The
relation with the geometric picture is given by [6, Lemma 1.6], which relates the
Chern class and the Lie bracket.

1.3. Proof of Theorem 1.1. Now suppose we are in the situation of §1.1. For
each level Γ this gives a morphism MH,ΓH

→ MΓ which extends to Satake com-
pactifications

M∗H,ΓH
−→M∗Γ

(see e.g. the description in §1 of [6]). This induces a morphism

Hk(i∗ΓRjΓ∗C) −→ Hk(i∗H,ΓH
RjH∗C)

where MH
� � jH,Γ

// M∗H,ΓH
∂M∗H? _

iH,ΓHoo . In the limit one has anH(Q)-equivariant

map Hk(L)→ Hk(LH), which gives (via Frobenius reciprocity) a G(Q)-map

Res∞ : Hk(L) −→ IGHHk(LH).

The proof of Theorem 1.1 is based on the following commutative diagram

0 // Hk
! (M) //

��

Hk(M) //

Res

��

Hk(L)

Res∞

��

0 // IGH Hk
! (MH) // IGH Hk(MH) // IGH Hk(LH)

(1.3)
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with exact rows. The first row comes from the long exact sequence · · · → Hk
c (MΓ)→

Hk(MΓ)→ Hk(i∗ΓRjΓ∗C)→ · · · and the second is similar.

Proposition 1.6. The map Res : Hk
! (M)→ IGH Hk

! (MH) is injective for k ≤ m.

Proof. This is a straighforward consequence of [6, Corollary 3.16]. First note that

GrWk Hk
c (M) = im(Hk

c (M)→ IHk(M∗)) = im(Hk
c (M)→ Hk(M))

where Hk(M) = lim−→Γ
Hk(MΓ) is the limit of cohomology of the toroidal compact-

ification. (The equality of the extreme terms is part of Deligne’s mixed Hodge
theory for open smooth varieties [3]. By the decomposition theorem [1, 8], the map

Hk
c (M)→ Hk(M) factors through IHk(M∗), so that the second equality holds.)
Now for all k one has a commutative diagram

GrWk Hk
c (M) �

�
//

��

Hk(M)

Res
��

GrWk Hk
c (MH) �

�
// Hk(MH)

By Proposition 3.15 of [6], if 0 6= α ∈ Hk(M) we have that Res(α) 6= 0 if α·en−m 6= 0
where e is the canonical Lefschetz class coming from the Baily-Borel projective
embedding of M∗Γ. Since GrWk Hk

c (M) = im(Hi
c(M) → IHi(M∗)) is stable under

·e and ·e has the hard Lefschetz property on IH∗(M∗), we conclude that Res is

injective on the subspace GrWk Hk
c (M) for k ≤ m.

Now consider the sequence

· · · −→ Hk−1(L) −→ Hk
c (M) −→ Hk(M) −→ · · ·

In degrees k ≤ n the first term is pure of weight k − 1 (by Lemma 1.3), so taking

GrWk gives an injection GrWk Hk
c (M) ↪→ Hk(M). Since Hk

! (M) is pure of weight k
(indeed, this follows from the definition because Hk

c (M) has weights ≤ k and Hk(M)
has weights ≥ k), it follows that

GrWk Hk
c (M) = Hk

! (M) for k ≤ n (1.4)

and the proposition follows. �

Remark 1.7. On Hm,0(M) ⊕ H0,m(M) injectivity follows from the criterion of [6,

Prop. 3.15] and the fact that the map Hm,0(M)→ Hm,0(M) is an isomorphism (by
mixed Hodge theory [3]).

Given Proposition 1.6 and the diagram (1.3), Theorem 1.1 follows from:

Proposition 1.8. The map Res∞ : Hk(L)→ IGH Hk(LH) is injective for k < m.

This is proved in §1.6, after recalling Kostant’s description of Hk(w`,C) in §1.4
and §1.5.

Proposition 1.8 also implies:

Corollary 1.9. If ` ⊂ W then the map Res : IGP (∧kv∗`,C) → IGH I
H
PH

(∧kv∗`,H,C) is
injective for k < m.

Proof. For k < m there is a commutative diagram (by Lemma 1.3)

0 // u∗`,C ⊗ ∧k−2v∗`,C
//

��

∧kv∗`,C //

��

Hk(w`,C) //

��

0

0 // IPPH
(u∗`,C ⊗ ∧k−2v∗`,H,C) // IPPH

(∧kv∗`,H,C) // IPPH
Hk(w`,H,C) // 0

(1.5)
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By Proposition 1.8 the third vertical map is injective for all k < m. An induction
on k gives that the first two vertical maps are injective for k < m. This proves the
corollary since IGP I

P
PH

= IGH I
H
PH

. �

Remark 1.10. This fixes a minor error in the proof of Theorem 3.17 of [6], the

injectivity of Res : Hi(M) → IGH Hi(MH) for i ≤ m. The proof there (correctly)
reduces the theorem to the statement that ∧i−2v∗`,C → IPPH

∧i−2 v∗`,H,C is injective

for i ≤ m. This follows from the corollary since i − 2 < m. (The error in [6] is
in the proof of the injectivity of ∧i−2v∗`,C → IPPH

∧i−2 v∗`,H,C: It occurs on the line

after formula (3.9) of loc. cit., where we assert that the exterior powers ∧i−2v∗`
are irreducible because v∗` is the standard representation of SU(J0). This is true,
but we actually need to look at v∗`,C = (v∗`,C)1,0 + (v∗`,C)0,1, which is a sum of two

irreducibles, and its exterior powers.)

1.4. Kostant’s theorem. We recall results of [5]. Fix a complex semisimple Lie
group GC, maximal torus T ⊂ GC and Borel subgroup B ⊃ T , and let ρ denote the
half-sum of positive roots and let W = W (T,GC) be the Weyl group of T in GC.
Let P = LN be the standard Levi decomposition of a standard parabolic subgroup
of GC and let n be the Lie algebra of N . The Weyl group of L is a subgroup
WL ⊂ W , and we let WP be the set of minimal length coset representatives of
WL\W . For each w ∈WP there is the associated set of positive roots

Φ(w) = {α ∈ Φ(T,GC) : α > 0, w−1α < 0}

which has cardinality `(w) (the length of w). For w ∈WP the weights w(ρ)−ρ are
dominant for L and distinct.

The Lie algebra cohomology H∗(n) = H∗(n,C) is the cohomology of ∧∗n∗ with
the Lie algebra differential. The natural P -module structure on ∧∗n∗ descends
to an L ∼= P/N -module structure in cohomology. For a dominant weight µ ∈
X∗(T ) let ELµ denote the irreducible finite-dimensional algebraic representation of
L with highest weight µ. Then by [5, Theorem 5.14] there is a multiplicity-free
decomposition of L-modules

Hk(n) =
⊕

w∈WP ,`(w)=k

ELw(ρ)−ρ. (1.6)

Kostant also identified a highest weight vector in each summand above. Let n−

be the nilradical of the Lie algebra of the parabolic subgroup opposite to P . The
Killing form gives isomorphisms n− ∼= n∗ and hence ∧in− ∼= ∧in∗. For w ∈ WP

choose a vector e−φ in the root space of −φ for each φ ∈ Φ(T,GC) and form

ew := ∧φ∈Φ(w)e−φ ∈ ∧`(w)n−. (1.7)

Under the identification of n∗ with n− this form is closed and its cohomology class
is a highest weight vector for the summand ELw(ρ)−ρ in (1.6). (See [5, Theorem

5.14].) A lowest weight vector is given by ∧φ∈Φ(w)e−wL
0 (φ), where wL0 is the longest

element of WL ⊂W and we choose. (See [5, Remark 8.2].) In fact, taking the sum
of the L-submodules of ∧∗n− generated by the ew as w runs over WP gives (using
the identification ∧∗n∗ ∼= ∧∗n−) a canonical L-equivariant inclusion H∗(n) ⊂ ∧∗n∗
inducing the identity in cohomology and compatible with products (see [5, Theorem
5.7]).

1.5. We now make §1.4 explicit for the situation of relevance to us. So G = SU(h)
as in §1.1 and P` = StabG(`) for an h-isotropic E-line ` ⊂ V . This gives the
complex group GC = SL(VR) ∼= SL(n+ 1,C) and P`(C) is the parabolic stabilizing
the flag {0} ⊂ `R ⊂ `⊥R ⊂ VR of complex subspaces of dimension 0, 1, n − 1, n. We
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will be interested in w`,C-cohomology in degrees k < n. Before applying Kostant’s
results we summarize some facts about the structure of P` for use in §1.6 below.

Choose a nonzero vector e1 ∈ ` and choose an isotropic vector f ∈ V such that
U = Ee1+Ef is a hyperbolic plane in V . There is an orthogonal decomposition
V = U ⊥ V0 for a subspace V0 ⊂ V on which h is nondegenerate and anisotropic.
As in [6, §1.3], let en+1 =

√
d f and choose a basis e2, . . . , en of V0 in which h|V0 is

diagonal. In the basis e1, . . . , en+1 the form h is given by h(v, w) = tv̄Jw for

J =


√
d
−1

J0

−
√
d
−1

 (1.8)

where J0 is an anisotropic diagonal form in n − 1 variables and J̄0 = J0. This
gives an identification G = SU(J) in which the parabolic subgroup P` = StabG(`)
consists of the block-upper-triangular matrices of block size 1, n − 1, 1. A Levi
subgroup is given by

L` =

g =

λ1

g0

λn+1

 :
λ̄1λn+1 = 1
g0 ∈ U(J0)
det(g) = 1

 ⊂ RE/QGm ×U(J0)

and this contains the obvious subgroup SU(J0). (We will confuse the Levi quotient
and the Levi subgroup L` below as it will not matter.)

Now we apply Kostant’s theorem in §1.4 to the situation GC = G(C), P = P`(C),
and n = w`,C. The choice of basis e1, . . . , en+1 fixes an identification G(C) =
SL(VR) = SL(n+1,C). Fix the Borel B ⊂ G(C) of upper triangular matrices (with
respect to which P`(C) is standard) and the maximal torus of diagonal matrices

T = {t = diag(t1, . . . , tn+1) : t1 . . . tn+1 = 1}.

The Weyl group W = W (T,G(C)) is the symmetric group Sn+1 on n + 1 letters,
acting on T by permutations of the ti. A set of simple positive roots of T in G(C)
is given by

α1(t) = t1/t2, α2(t) = t2/t3, . . . , αn(t) = tn/tn+1

and W is generated by the n reflections s1, . . . , sn where si is the reflection in
αi = ti/ti+1, i.e. exchanges ti and ti+1. The Weyl group WL`

of the Levi L`(C)
is the symmetric group on n − 1 letters generated by s2, . . . , sn−1. The set WP`

of minimal length representatives for the cosets WL`
\W is easily listed: For each

k < n there are k + 1 elements of WP` of length k, namely:

wk,k = s1s2 · · · sk
wk,k−1 = s1s2 · · · sk−1sn

...

wk,1 = s1sn · · · sn−(k−2)

wk,0 = snsn−1 · · · sn−(k−1)

(1.9)

Note that since k < n there is always a gap in the indices, so that the “first part”
of the word wk,r (i.e. s1 · · · sr) and the “second part” (i.e. snsn−1 · · · sn−(k−r−1))
commute. (We will not need the elements of length k ≥ n, but we note that they

are {wL`
0 w2n−1−k,rw0 : 0 ≤ r ≤ 2n − 1 − k} where w0 (resp. wL`

0 ) is the longest
element of W (resp. of WL`

).)
The sets of positive roots Φ(w) are easily enumerated for the elements of WP`

with length < n: If wk,r = s1 . . . srsn . . . sn−(k−r−1) is a length k representative
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where 0 ≤ r ≤ k < n, then

Φ(wk,r) = Φ1(wk,r) t Φ2(wk,r) (1.10)

where

Φ1(wk,r) = {α1, α1 + α2, . . . , α1 + · · ·+ αr} (1.11)

Φ2(wk,r) = {αn−(k−r−1) + · · ·+ αn, . . . , αn−1 + αn, αn}. (1.12)

(By convention Φ2(wk,k) = Φ1(wk,0) = ∅.) Kostant’s theorem gives an L`-isotypic
decomposition

Hk(w`,C) =
⊕

0≤r≤k

EL`

wk,r(ρ)−ρ (1.13)

for k < n.

Remark 1.11. The decomposition (1.13) is the Hodge decomposition of the pure
Hodge structure on Hk(w`,C) coming from geometry (see Remark 1.4). For k < n
this holds because the former is multiplicity-free for L` with k + 1 summands and
the latter is preserved by L` and also has k + 1 summands. By duality the same
holds for k ≥ n. (It is easily checked that the summand EL`

wk,r(ρ)−ρ in (1.13) is the

(r, k − r) = (|Φ1(wk,r)|, |Φ2(wk,r)|) Hodge space.) In particular, the Hodge spaces
are irreducible representations of the Levi quotient.

1.6. Proof of Proposition 1.8. We now put ourselves in the setting of §1.1.
Thus we are given a subspace W ⊂ V of dimension m+ 1 on which h is indefinite
and nondegenerate and the corresponding embedding H = SU(h|W ) ⊂ SU(h) =
G. Fix an isotropic E-line ` ⊂ W so that H∗(L) = IGP`

H∗(w`,C) and H∗(LH) =

IGP`,H
H∗(w`,H,C).

Choose an E-basis e1, . . . , en+1 of V as in §1.5. We may assume that W is
spanned by e1, e2, . . . , em and en+1. (Indeed, in the choice of basis in §1.5 choose

f ∈ W , so that U = Ee1+Ef is a hyperbolic subspace of W and let en+1 =
√
d f .

Then W = U ⊥ W0 and V = U ⊥ V0 for h-definite spaces W0 ⊂ V0. Now
choose e2, . . . , em spanning W0 and extend to a basis for V0.) In the identification
V = E e1 ⊕ · · · ⊕ E en+1 we will consider the m+ 1-dimensional subspaces

Ws = (E e1 ⊕ · · · ⊕ E es)⊕ (E es+n−m+1 ⊕ · · · ⊕ E en+1)

for s = 1, . . . ,m. (So Wm = W .) For each of these one has a subgroup

Hs = SU(h|Ws) ⊂ G
using the standard embedding, i.e. Hs is the identity on W⊥s = E es+1 ⊕ · · · ⊕
E es+n−m. There are elements g1, . . . , gm = e ∈ SU(J0)(R) ⊂ L`(R) such that
Ws = gsWm = gsW and hence Hs = gsHg

−1
s . (For this note that over R we can

choose the basis of V0 so that J0 is the identity matrix. For 2 ≤ i, j ≤ n it is easy
to write an element of SU(J0)(R) sending ei to ej and ej to −ei, and which is the
identity on the other ek. Taking suitable products of such elements gives the gs.
Note that the determinant det(J0) ∈ Q×/NE/QE× is an obstruction to doing this
with gs ∈ L`(Q).)

For each 1 ≤ s ≤ m a maximal torus in Hs(C) = SL(Ws,R) is given by

THs
= {t ∈ T : ts+1 = · · · = ts+n−m = 1}.

A set of simple roots for THs
in Hs(C) is{

αHs
i = ti/ti+1

}
1≤i≤s−1

t
{
βHs := ts/ts+n−m+1

}
t
{
αHs
i = ti/ti+1

}
s+n−m+1≤i≤n

.

For each s the Weyl group WHs
∼= Sm+1 is generated by

sHs
1 , . . . , sHs

s−1, σ
Hs

β , sHs
s+n−m+1, . . . , s

Hs
n (1.14)
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where sHs
i = si exchanges ti and ti+1 and σHs

β exchanges ts and ts+n−m+1. For the

parabolic P`,Hs = StabHs(`) and its Levi L`,Hs as above, the subgroup WL`,Hs
∼=

Sm−1 is generated by the same set of transpositions omitting sHs
1 and sHs

n . The
set of minimal length coset representatives for WL`,Hs

\WHs is denoted WP`,Hs and
for each k < m there are k + 1 representatives of length k, enumerated as in §1.5.

Now suppose that k < m and wk,r ∈WP` is a minimal length coset representative
as in §1.5, for some 0 ≤ r ≤ k. The roots in Φ(wk,r) are sums of simple roots in

{α1, . . . , αr} t {αn−(k−r)+1, . . . , αn}. (1.15)

Consider the subgroup Hr+1 above, i.e. Hs for s = r + 1. On THr+1
one has

αi|THr+1
= α

Hr+1

i for i ≤ r and for i ≥ r+ n−m+ 2, i.e. i > r+ n−m+ 1. Since

k < m, we have n− (k − r) + 1 = n− k + r + 1 > n−m+ r + 1. So we have that

αi|THr+1
= α

Hr+1

i if αi appears in (1.15). (1.16)

(Of course, if k is small there will be other Hs with this property too.)
Now consider the irreducible summand of Hk(w`,C) in (1.13) corresponding to

wk,r for some 0 ≤ r ≤ k < m. A highest weight vector is given by

ewk,r
= ∧φ∈Φ(wk,r)e−φ

where we have chosen a root vector e−φ for each absolute root. For each s, every
root space of Hs is also a root space of G, so we will choose the same vector
eHs

−φ := e−φ to span it. Recall that wk,r = s1 · · · srsnsn−1 · · · sn−(k−r−1). Let

w
Hr+1

k,r := s
Hr+1

1 · · · sHr+1
r sHr+1

n s
Hr+1

n−1 · · · s
Hr+1

n−(k−r−1).

This obviously belongs to WP`,Hr+1 and has length k. (Note that since k < m we
have n− (k− r− 1) > n−m+ r+ 1 and so if s = r+ 1 this is ≥ s+ n−m+ 1, so

that the reflection σHs

β in (1.14) does not appear.) The corresponding summand of

Hk(w`,Hr+1
) has highest weight vector e

Hr+1

w
Hr+1
k,r

. With this notation, one has:

Lemma 1.12. For k < m and 0 ≤ r ≤ k the restriction of ewk,r
∈ Hk(w`,C) to

w`,Hr+1,C is e
Hr+1

w
Hr+1
k,r

∈ Hk(w`,Hr+1,C).

Proof. Under the identification given by Killing forms, for a root φ of Hr+1, the

restriction of e−φ to w∗`,Hr+1,C is e
Hr+1

−φ . The lemma then follows from (1.16). �

We will now finish the proof of Proposition 1.8 by showing that

Hk(w`,C) −→ IP`

P`,H
Hk(w`,H,C)

is injective for k < m. (This suffices by Lemma 1.2.) The W`(Q)-action on

Hk(w`,C) is trivial, so that this map factors through
(
IP`

P`,H
Hk(w`,H,C)

)W`(Q)

=

IL`

L`,H
Hk(w`,H,C), i.e. we consider the map of L`(Q)-modules

Hk(w`,C) −→ IL`

L`,H
Hk(w`,H,C). (1.17)

Now since Hk(w`,C) is an algebraic representation of L`(C), and L`(Q) is Zariski-
dense in L`(C), the kernel of (1.17) is an L`(C)-submodule. Since the decomposition
into irreducibles (1.13) is L`-isotypic, it is enough to prove that (1.17) is nonzero
on each irreducible summand for k < m, i.e. to show that for each such summand
the restriction to w`,H′,C for some conjugate H ′ of H is nonzero. This follows from

the lemma: For the summand EL`

wk,r(ρ)−ρ and H ′ = Hr+1 = gr+1Hg
−1
r+1 the highest

weight vector ewk,r
is nonzero on restriction to w`,Hr+1,C. �
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This completes the proof of Proposition 1.8 and proves Theorem 1.1.

Remark 1.13. When i = m there are, in general, classes in Hm(M) (recall that the
dimension of M is n > m) which restrict nontrivially to the boundary. Constructing
such classes is a nontrivial problem since they are necessarily square-integrable, and
therefore, since m < n, residual. (For some explicit examples when n = 2 and i = 1,
i.e. noncuspidal square-integrable classes on Picard modular surfaces which survive
at infinity, see §3.3 of Harder’s paper [4].) By weights, Res∞ = 0 in degree i = m
(cf. Remark 1.4), so the question of whether these classes survive under Res is a
global problem and cannot be treated locally on a compactification by geometric
methods.

2. Proof of Theorem 2

2.1. Cup products. Recall from [6, 3.7] that the cup product gives a map

Cup : Hi(M)⊗Hj(M) −→ IG×G∆G Hi+j(M)

where ∆G is the diagonal copy of G in G×G. (This was denoted Res in loc. cit..)
Theorem 2 of the introduction is implied by:

Theorem 2.1. If i+ j < n and 0 6= α⊗β ∈ Hi(M)⊗Hj(M) then Cup(α⊗β) 6= 0.
If i+ j = n and 0 6= α⊗ β ∈ Hi

!(M)⊗Hj(M) then Cup(α⊗ β) 6= 0.

This will follow from two propositions which will be proved below.

Proposition 2.2. If i+j ≤ n and 0 6= α⊗β ∈ Hi
!(M)⊗Hj(M) then Cup(α⊗β) 6= 0.

Proof. Restricting the cup product on H∗(M) gives a map

Cup : GrWi Hi
c(M)⊗Hj(M) −→ IG×G∆G GrWi+jH

i+j
c (M).

By the same argument used in the proof of Theorem 3.21 of [6], one has that if

0 6= α⊗β ∈ GrWi Hi
c(M)⊗Hj(M) with i+ j ≤ n, then Cup(α⊗β) 6= 0. By (1.4) we

are done since Hj(M) � Hj(M) for j < n (this is because Hj(M) is pure of weight
j for j < n and by mixed Hodge theory [3] the pure weight part of the cohomology
of a smooth variety comes from any smooth compactification). (The case j = n of
the proposition is true trivially.) �

The cup product in the cohomology of the link induces a map

Cup∞ : Hi(L)⊗Hj(L) −→ IG×G∆G Hi+j(L).

The following will be proved in §2.2 below.

Proposition 2.3. If i+ j < n then Cup∞ is injective on Hi(L)⊗Hj(L).

Theorem 2.1 now follows by considering the commutative diagram

0 // Hi
!(M)⊗Hj(M) //

��

Hi(M)⊗Hj(M)
r×id

//

Cup

��

Hi(L)⊗Hj(M)
id×r��

Hi(L)⊗Hj(L)
Cup∞��

0 // IG×G∆G Hk
! (M) // IG×G∆G Hk(M) // IG×G∆G Hk(L)

(2.1)

with exact rows. Suppose 0 6= α⊗β ∈ Hi(M)⊗Hj(M) with i+j < n. By Proposition
2.2 we may assume that r(α) ⊗ β 6= 0 in Hi(L) ⊗ Hj(M). By Proposition 2.3 we

may assume that r(α) ⊗ r(β) = 0, hence r(α) ⊗ β ∈ Hi(L) ⊗ Hj
! (M), and hence

α⊗ β ∈ Hi(M)⊗Hj
! (M). By Proposition 2.2, Cup(α⊗ β) = ±Cup(β ⊗ α) 6= 0.
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2.2. Proof of Proposition 2.3. We will use Kostant’s theorem to prove that

Hi(w`,C)⊗Hj(w`,C) −→ IP`×P`

∆P`
Hi+j(w`,C)

is injective if i+ j < n. This implies Proposition 2.3 since Hi(L) = IGP`
Hi(w`,C).

The decomposition of Hi(w`,C)⊗Hj(w`,C) is L`×L`-isotypic, so it is enough to

show that the cup product Hi(w`,C)⊗Hj(w`,C)→ IP`×P`

∆P`
Hi+j(w`,C) is nonzero on

each irreducible summand if i+ j < n. Let

EL`

wi,r(ρ)−ρ ⊗ E
L`

wj,s(ρ)−ρ

be one such. (The notation is as in §1.5.) The product is induced by the exterior
product in ∧∗w∗`,C ∼= ∧∗w

−
`,C.

The longest element wL0 of WL`
⊂ W is the permutation which acts on T by

leaving t1, tn+1 fixed and by ti 7→ tn+2−i for 2 ≤ i ≤ n. Then:

wL0 (α1 + · · ·+ αa) = α1 + · · ·+ αn−a for 1 ≤ a < n (2.2)

wL0 (αn−b+1 + · · ·+ αn) = αb+1 + · · ·+ αn for 1 ≤ b < n. (2.3)

Lemma 2.4. If i+ j < n then Φ(wi,r) ∩ wL0 (Φ(wj,s)) = ∅.

Proof. Recall that Φ(wi,r) = Φ1(wi,r) t Φ2(wi,r) as in §1.5, and similarly for wj,s.
Note that since i + j = r + (i − r) + s + (j − s) we have that r + s < n and
(i−r)+(j−s) < n. The fact that r+s < n implies that Φ1(wi,r)∩wL0 (Φ1(wj,s)) = ∅
by (2.2). Similarly, (i− r) + (j − s) < n implies that Φ2(wi,r) ∩ wL0 (Φ2(wj,s)) = ∅
by (2.3). Furthermore, Φ1(wi,r) ∩ wL0 Φ2(wj,s) = ∅ since by (2.3) any element of
wL0 Φ2(wj,s) involves αn, while no element of Φ1(wi,r) does so. Similarly, Φ2(wi,r)∩
wL0 Φ1(wj,s) = ∅ using (2.2). The lemma follows. �

Recall that the lowest weight vector in EL`

wj,s(ρ)−ρ is f := ∧φ∈Φ(wj,s)e−wL
0 (φ) ∈

∧jw−`,C. By the lemma ewi,r ∧ f 6= 0 in ∧i+jw−`,C. It follows that ewi,r · f 6= 0 in
cohomology.

This proves the proposition and completes the proof of Theorem 2.1.

Remark 2.5. By the isomorphism Hn,0(M) ∼= Hn,0(M) of Remark 1.7, if 0 6= α⊗β ∈
Hi(M)⊗Hn−i(M) and α, β are both holomorphic (or both anti-holomorphic) then
Cup(α⊗ β) 6= 0.

Remark 2.6. If i+j = n then the cup product Hi(L)⊗Hj(L)→ Hi+j=n(L) vanishes
by weights (the source has weight i + j = n and the target has weight n + 1, see
Remark 1.4). So improving Theorem 2.1 would require a global argument. However,
I expect Theorem 2.1 is optimal.
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