
LEFSCHETZ PROPERTIES FOR
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Abstract. We prove a Lefschetz property for restriction of the cohomology of noncompact
congruence ball quotients to ball quotients of smaller dimension.

Introduction

Fix an imaginary quadratic number field E ⊂ C and a vector space V of dimension
n+ 1 ≥ 3 over E. Let h : V × V → E be a Hermitian form with respect to the conjugation
of E/Q such that h ⊗Q R is of signature (n, 1) on VR := V ⊗Q R ∼= Cn+1. A congruence
arithmetic group Γ in the isometry group SU(h) acts properly discontinuously on the unit
ball B in Cn and the quotient

M = Γ\B
is a quasiprojective variety defined over an abelian extension of E. The variety M contains
subvarieties of a similar kind: An E-rational subspace W ⊂ V of dimension m+ 1 on which
h is nondegenerate and indefinite gives a Q-subgroup H = SU(h|W ) ⊂ G. For ΓH = Γ∩H
we have a ball quotient MH = ΓH\BH where BH is the unit ball in Cm. There is a morphism
of varieties

MH −→M

which is finite onto a closed subvariety of codimension n −m. In particular, if dimW =
m+ 1 = n then MH →M is finite onto a divisor.

In [24] Oda proved an injectivity statement for restriction of cohomology in degree one to
subvarieties like MH . He showed that there are finitely many subspaces W1, . . . ,Ws of the
type above and with dimension 2 such that for Hi = SU(h|Wi), the direct sum of pullback
maps in degree one H1(M,Q) →

⊕
j H

1(MHj ,Q) to the s modular curves MH1 , . . . ,MHs

is injective. He raised the natural question of what happens in higher degrees; this is
(partially) answered by the following:

Theorem 0.1. There exist subspaces W1, . . . ,Ws in V of dimension n such that

H i(M,Q) −→
⊕

j
H i(MHj ,Q) (0.1)

is injective for i ≤ n− 3. More generally, for any m < n there are subspaces W1, . . . ,Ws of
dimension m+ 1 such that (0.1) is injective for i ≤ m− 2.

I do not know what happens in degrees n − 2 and n − 1, or degrees m − 1 and m in
the more general statement. (The theorem as stated does not quite cover Oda’s result if
n = 2, 3 but the method of proof does so.)

The theorem can be reformulated using Hecke correspondences. For g ∈ G(Q) one has
a finite correspondence (a, b) : Γ ∩ g−1Γg\B ⇒ M on M where a is the covering map and
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b is induced by translation by g on B. Write C∗g = a∗b
∗ : H i(M,Q) → H i(M,Q) for

the induced endomorphism. Fix an E-rational subspace U ⊂ V with h|U positive definite
and let W = U⊥, H = SU(h|W ) and MH = ΓH\BH . We show that for a nonzero class
α ∈ H i(M,Q) of degree i ≤ dimW − 2, there exists a g ∈ G(Q) such that C∗g (α) pulls back
nontrivially to MH (Thm 3.19). This implies the theorem above.

In the years since Oda’s result [24], there has been a lot of work on Lefschetz properties
(i.e. the injectivity of maps like (0.1)) for general arithmetic quotients, using both geometric
and automorphic techniques [21, 31, 9, 15, 30, 4, 6, 5, 7]. (One motivation was the general
conjecture of Langlands, Kottwitz, and Arthur on the Galois representations appearing
in the cohomology of Shimura varieties, which is now largely proven for many Shimura
varieties related to moduli problems, in particular, for those attached to unitary groups
of the type we consider, by comparing trace formulas.) The work on Lefschetz properties
following Oda’s [24] has generally been for compact quotients, or for compactly supported
(e.g. cuspidal) cohomology classes on noncompact quotients. (The exceptions to this rule
I am aware of are [31], [4, §6], [5, §9].) In particular, no generalization of Oda’s original
result was known.

For compact ball quotients (e.g. those arising from a Hermitian form with respect to an
imaginary quadratic extension E of a totally real field F which is of signature (n, 1) at one
real place of F and definite at the others), Venkataramana [30] proved the injectivity of
(0.1) in degrees i ≤ n− 1, confirming a conjecture of Harris and Li [15]. The essential point
is that a linear combination of the divisors MHi → M gives a particular ample class, the
hyperplane class in the canonical projective embedding of M . The Lefschetz property then
follows from the hard Lefschetz theorem for the cohomology of M .

In the proof of Theorem 0.1 we use this idea of [30] from the compact case and combine
it with the study of compactifications. The starting point is to note that if M∗ is the
minimal (i.e. Satake-Baily-Borel) compactification of M , which simply adds cusps, then
H i(M) = IH i(M∗) for i ≤ n− 1 where IH i(M∗) is the ith intersection cohomology group
([12, 13]). The variety M also has a canonical smooth compactification M which resolves
the singularities of M∗. Elementary arguments using the explicit geometry of M at infinity
(cf. §2), or the decomposition theorem of Beilinson-Bernstein-Deligne-Gabber [2], can be
used to show that there is a canonical and Hecke-equivariant decomposition

H∗(M) = IH∗(M∗)⊕ J∗

where IH∗(M∗) has its natural Hecke action (cf. Theorem 2.6 and the more detailed version
Theorem 3.5 in which we identify the other summands explicitly as induced modules). This
result is of some independent interest and should admit a generalization to all Shimura
varieties (cf. Remark 3.7). Using this decomposition, classes in H i(M) for i ≤ n− 1 can be
considered as classes on M in a canonical way. Theorem 0.1 is then proved by studying the
Hecke-invariants in the summands in this decomposition and adapting the methods of [30]
to the map H∗(M) → H∗(MH). There is also a Lefschetz property for the cohomology of
compactifications: There exist subspaces Wi of dimension m+ 1 so that the map

H i(M) −→
⊕

j
H i(MHj ,Q)

is injective in degrees i ≤ m (i.e. with no loss of degrees) (Theorem 3.17). Aside from one
simple analytic input, namely the semisimplicity of IH∗(M∗) as a Hecke-module (available
via its relation to L2 cohomology), the proofs of these results are entirely geometric (and
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elementary). We note that this analytic input (Prop. 3.8) is the only place where it is
necessary to assume that Γ is a congruence subgroup.

As in the compact case [30], the same methods give a nonvanishing result about cup
products in H∗(M,Q) (cf. Theorem 3.21): If α ∈ H i(MΓ), β ∈ Hj(MΓ) are such that
i + j ≤ n − 2 then α · C∗g (β) 6= 0 for some g ∈ G(Q). Once again, I do not know what
happens if the sum of degrees is n− 1 or n.

In [22] we study similar Lefschetz properties for a certain subspace of H∗(M) in a more
general setting, namely a locally symmetric “subvariety” of a general locally symmetric
variety. Using slightly different methods we prove a weaker version of Theorem 0.1 for
inclusions of the form SO(2, n− 1) ⊂ SO(2, n). (In fact, a generalization of the decompo-
sition theorem mentioned above to this setting (Remark 3.7) would allow the methods of
this paper to be extended to that situation also.)

Bergeron has informed me that forthcoming joint work of his with Clozel would prove the
spectral gap property (conjectured in [6]) for unitary groups, using the (expected) exten-
sion to unitary groups of Arthur’s endoscopic classification of automorphic representations
(analogously to [7] for orthogonal groups). This would allow the application of the Burger-
Sarnak method in the noncompact case by arguments sketched in [4, 5]. Presumably this
would yield the optimal version of the Lefschetz property.

Acknowledgements. I thank Najmuddin Fakhruddin and T. N. Venkataramana for helpful
conversations. I thank the referee for suggestions which have greatly helped to improve the
exposition, clarify some arguments, and led me to improve the results. The first version of
this paper was written in 2007 and it was revised while I was supported by a Swarnajayanti
Fellowship (DST/SF/05/2006).

1. Ball quotients and their natural compactifications

In this section we review the geometry (over the complex numbers) of the ball quotients
we treat and their compactifications, specifically the minimal (i.e. Satake-Baily-Borel)
compactification M∗Γ and the smooth (toroidal, or in this case, toric) compactification MΓ.
In doing so we are making the construction of [1] explicit in the case of ball quotients. The
special case n = 2 (Picard modular surfaces) is also treated in [11, §§1,5] and [20, §§1,2] and
shows the main geometric features. An elegant basis-free description of the general case
(i.e. n ≥ 2) is contained in [17, §4].

1.1. Arithmetic ball quotients. As in the introduction, E = Q(
√
d) ⊂ C is an imaginary

quadratic field with ring of integers OE , and V is an E-vector space of dimension n+1 ≥ 3.
Write λ 7→ λ̄ for the conjugation of E over Q (which is just complex conjugation since
E ⊂ C). Let h : V × V → E be a Hermitian form with respect to the conjugation, i.e.
nondegenerate bilinear form such that h(λv, µw) = λµ̄ h(v, w) and h(v, w) = h(w, v) for
v, w ∈ V . We assume that hR on VR := V ⊗Q R = V ⊗E C ∼= Cn+1 is of signature (n, 1).
Consider the semisimple Q-algebraic group

G = SU(h)

of isometries of (V, h) with determinant one. Thus for a Q-algebra A one has

G(A) = {g ∈ GL(V ⊗Q A) : h(gv, gw) = h(v, w) for v, w ∈ V⊗QA} ∩ SL(V⊗QA).

By results of Kneser (see [28, 10.1.6(iv)]), h is isotropic over Q, so that G has Q-rank one.
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By assumption, in a suitable basis for VR the form h is given by h(z, w) = −z0w̄0 +z1w̄1 +
· · · + znw̄n, so that G(R) ∼= SU(n, 1). The group G(R) acts transitively on the domain of
h-negative complex lines in VR

B :=
{
` ∈ P(VR)

∣∣h|` < 0
}

which is biholomorphic to the unit ball in Cn. The isotropy subgroup of any line ` ∈ B is a
maximal compact subgroup (isomorphic to S(U(n) × U(1))), so that B is the (Hermitian)
symmetric space of G(R). The projective space P(VR) ∼= CPn is homogeneous for G(C) =
SL(VR) ∼= SL(n+ 1,C) and the embedding B ↪→ P(VR) is G(R)-equivariant.

An OE-stable lattice L ⊂ V gives a subgroup StabG(Q)(L) = {γ ∈ G(Q) : γL ⊂ L}. For
an ideal a ⊂ OE we have the principal congruence subgroup

Γ(a) = { γ ∈ StabG(Q)(L)
∣∣ (γ − Id)L ⊂ aL }.

An arithmetic subgroup of G(Q) is one which is commensurable with StabG(Q)(L). For Γ
arithmetic, the quotient

MΓ = Γ\B
is a complex space. Let us assume that Γ is neat (i.e. the subgroup of C× generated by
eigenvalues of elements of Γ ⊂ GL(VR) is torsion-free), which can always be achieved by
intersecting with a subgroup Γ(a) for a with |OE/a| large enough. Then MΓ is a smooth
noncompact complex manifold.

1.2. Minimal compactification. Satake showed how to compactify MΓ using the embed-
ding B ⊂ P(VR). The boundary of B in this embedding consists of the h-isotropic lines in
VR. Let

B∗ = B t {E-rational h-isotropic lines in VR } .
The reduction theory for Γ on B gives a natural topology, the Satake topology, for which
the evident action of G(Q) on B∗ is continuous. The minimal compactification of M∗ is the
quotient

M∗Γ = Γ\B∗,
which is compact and Hausdorff. The boundary consists of finitely many points (“cusps”),
indexed (bijectively) by Γ-equivalence classes of E-rational h-isotropic lines. The assignment
` ↔ StabG(`) is a bijection between isotropic lines in B∗ and proper rational parabolic
subgroups. Thus the cusps of M∗Γ are also in bijection with Γ-conjugacy classes of rational
parabolics; choosing a parabolic P gives a bijection of the cusps with Γ\G(Q)/P (Q).

Let L denote the restriction of the tautological bundle of P(VR) to B. L is G(R)-
equivariant and so descends to a line bundle, denoted LΓ, on MΓ for each Γ. (It is easy to see
that L⊗n+1

Γ is the canonical bundle of MΓ.) The Baily-Borel theory shows that LΓ extends
to a line bundle LΓ on M∗Γ for which the graded algebra R∗ =

⊕
k≥0 Γ(M∗Γ,L

⊗k
Γ ) is finitely

generated and M∗Γ = Proj(R∗). This defines a canonical projective variety structure on M∗Γ
and hence a canonical quasi-projective structure on MΓ. The minimal compactification M∗Γ
is a normal variety with an isolated singularity at each cusp.

1.3. Stabilizer of a cusp. We will recall the structure of the stabilizer of a cusp. This is
a special case of the “five-factor decomposition” of [1, Chp. III]. The case of ball quotients
is discussed in a basis-free way in [17, 4.2], but we will give a more concrete description. If
n = 2 this is also contained in [11, §1] and [20, §1].
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The following notation is useful: For Q-subgroups J / H <G let ΓH := Γ ∩ H(R) and
ΓH/J := ΓH/ΓJ . (This could be slightly misleading in case H/J has a natural lift in G.)
Since Γ is neat these are torsion-free arithmetic subgroups of their respective groups.

Let ` ⊂ V be an isotropic line giving a cusp in B∗. The stabilizer P` = StabG(`) is a
Q-parabolic subgroup of G. Its unipotent radical W` is a Heisenberg group of dimension
2n− 1, i.e. it is an extension

1 −→ U` −→W` −→ V` −→ 1

where U` is the centre of W`, U` ∼= Ga, and V` = W`/U` is abelian with V`(R) ∼= R2n−2.
We write w`, u`, v` = w`/u` for the Lie algebras of the groups of real points. The adjoint
action of the Q-split centre A` ∼= Gm of P`/W` is by a character χ on v` which generates
the character group X∗(A`) ∼= Z, and the action is by χ2 on u`. The group P`/W` is an
almost-direct product M`A` where M` is the kernel of the adjoint action on u`, M`(R) is
compact, and any lift of M` in P` centralizes U`. By our neatness assumption ΓP` = ΓW`

and this is an extension
1 −→ ΓU` −→ ΓW`

−→ ΓV` −→ 1

with ΓU` and ΓV` free abelian of rank one and rank 2n− 2, respectively. The commutator
pairing

Ψ : ΓV` × ΓV` → ΓU`
(i.e. Ψ(γ1, γ2) = γ1γ2γ

−1
1 γ−1

2 ) is alternating and nondegenerate. Extending scalars to R
gives the Lie bracket ∧2v` → u`, which we note is also invariant under the natural action
of P`/W`

∼= M`A`.
Let us illustrate these facts in a matrix representation convenient for calculations. Fix

a nonzero vector e ∈ `. Choose an isotropic vector f with h(e, f) = 1, so that e and f span a

hyperbolic plane. There is an orthogonal Witt decomposition (V, h) =
(
Ee+Ef,

(
1

1

))
⊕

(V0, h|V0) where (V0, h|V0) is anisotropic (see e.g. [28, 7.9]). Replacing f by
√
d f and choos-

ing a basis v1, . . . , vn−1 for V0 in which h|V0 is diagonal gives an E-basis e, v1, . . . , vn−1, f
for V in which h is given by h(v, w) = tv̄Jw where

J =


√
d
−1

J0

−
√
d
−1

 (1.1)

for an anisotropic diagonal form J0 in n − 1 variables. In this matrix representation P` =
StabG(`) is the intersection of SU(h) with the upper triangular Borel subgroup in SL(V ).
The unipotent radical W` consists of matrices of the form1

√
d tb̄ ∗
In−1 b

1


and its centre U` consists of matrices of the form1 0 ∗

In−1 0
1

 .
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The group of matrices

tλ =

λ (λ−1λ̄) In−1

λ̄−1

 (1.2)

gives a torus T` = RE/QGm which is an almost-direct product of a Q-split torus Ã` (a lift
of A` in P`) and the norm one torus T 1

` := ker(Nm : RE/QGm → Gm). On the level of

Q-points Ã`(Q) = {tλ : λ ∈ Q×} =
{(

λ
1
λ−1

)
: λ ∈ Q×

}
. A lift M̃` of M` in P` is given

by the group of matrices

tµ

1
g0

1

 (g0 ∈ SU(J0), µ ∈ T 1
` ).

Thus M̃`Ã` is a Levi subgroup in P`.
The following fact will be used repeatedly in the sequel:

Lemma 1.1. The choice of e ∈ ` fixes an isomorphism of Q-algebraic groups

ξe : U` → Ga

such that ξλe = mNm(λ)−1 ◦ ξe where mα : Ga → Ga is multiplication by α ∈ Q×.

Proof. Complete e to an E-basis e, v1, . . . , vn−1, f in which h is given by (1.1). For a Q-
algebra A an element of U`(A) ⊂ SL(V ⊗Q A) in this basis is a matrix in SL(n+ 1, A⊗E)
with (1, n) entry in A. This defines an isomorphism ξA : U`(A) → A which may, a priori,
depend on the choice of f, v1, . . . , vn−1. Suppose that e′ = λ e ∈ ` (with λ ∈ E×) and f ′

is another isotropic vector such that h|Ee′+Ef ′ =
( √

d
−1

−
√
d
−1

)
in the basis e′, f ′. Then

e 7→ e′, f 7→ f ′ defines an isometry of hyperbolic planes (Ee+Ef, h) −→ (Ee+Ef ′, h). By
the Witt decomposition this extends to an isometry of (V, h), i.e. there is g ∈ SU(h)(Q)
restricting to the isometry Ee+Ef → Ee+Ef ′. Since ge = e′ = λe, we have g ∈ P (Q) and
in the matrix representation associated with e, v1, . . . , vn−1, f we can write g = w

(
1
g0

1

)
tλ

for w ∈W`(Q) and g0 ∈ SU(J0). Thus in the basis e′, v1, . . . , vn−1, f
′ the new isomorphism

ξ′A : U`(A) ∼= A is ξA ◦ Int(g−1) where g−1 = t−1
λ

(
1
g−1
0

1

)
w−1. Since t−1

λ

(
1 0 u
In−1 0

1

)
tλ =(

1 0 Nm(λ)−1u
In−1 0

1

)
we have ξ′A = mNm(λ)−1 ◦ ξA. (Changing the basis of V0 obviously has no

effect on the isomorphism U` ∼= Ga, so we have ignored it.) In particular ξA depends only
on e ∈ ` and not on how it is completed to a basis. The various ξA define the isomorphism
ξe : U` → Ga. �

Remark 1.2. In [17, 4.2] one finds a natural identification U`(R) =
√
−1 (¯̀R ⊗C `R) and

the Q-rational structure is given by
√
−1 (¯̀⊗E `). (Here ¯̀ means the same underlying

Q-vector space with the conjugate action of E.) The choice of e ∈ ` fixes the generator√
−1 (ē⊗ e) ∈ U(Q), and hence an isomorphism U`(Q) ∼= Q. This is the same as our ξe; the

dependence on e found above is clear in this description.
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1.4. Smooth compactification. The variety M∗Γ has a canonical desingularization

π : MΓ →M∗Γ

which is a smooth compactification of MΓ in which the exceptional divisor

DΓ := MΓ −MΓ =
⊔

`∈Γ\(B∗−B)

DΓ,`

is smooth and each component DΓ,` is a complex abelian variety. This is a special case
of the general construction of toroidal compactifications of Ash, Mumford, Rapoport, Tai
[1]. It will suffice for our purposes to have a natural description of a neighbourhood of the
divisor DΓ,` in the Hausdorff topology (equivalently, of its normal bundle) and to compute
the first Chern class of the normal bundle as a class in H2(DΓ,`,Z). We will describe the
construction of MΓ (as a complex manifold) in enough detail to make this computation in
1.5.

A basic role is played by the Siegel domain picture of B. A basis-independent treatment
for ball quotients for all n is recalled in [17, 4.2] and treatments of the case n = 2 (which
show the main features and are close to ours below) in [11, 1.3–1.6] and [20, §2]. We
recall this picture, leaving some minor details to be verified (as is easily done in the matrix
representation).

Let ` ⊂ V be an isotropic line, P` = StabG(`) and W`, U` etc. be as before. Consider the
domain in P(VR) given by:

B(`) := U`(C) · B = P(VR)− P(`⊥R ).

As in 1.3, choose a basis e, v1, . . . , vn−1, f in which e ∈ ` and h is given by a matrix of the
form (1.1). Then B(`) consists of lines spanned by vectors v ∈ V which in this basis have a
nontrivial f -component (equivalently, v ∈ V with h(e, v) 6= 0). The map

C× V0 −→ B(`) (1.3)

(z, w) 7→ C (ze+ w + f)

is then a biholomorphism. In the coordinates (z, w) the action of u ∈ U`(C) is by translation
by ξe(u) in the first coordinate (ξe as in Lemma 1.1). In these coordinates,

B ∼= {(z, w) ∈ C× V0 : 2
√
|d| Im(z) > h(w,w)}.

For t > 0 the domain

Bt ∼= {(z, w) ∈ C× V0 : 2
√
|d| Im(z) > h(w,w) + t}

is invariant under ΓP` = ΓW`
. A basic result of the reduction theory of Γ on B∗ is that for

t >> 0, the induced map

ΓW`
\Bt � � // MΓ

is injective with image a deleted neighborhood of the cusp of M∗Γ given by `. Thus to
compactify in the direction ` it is enough to contruct a partial compactification of ΓW`

\Bt.
Let de be the unique positive rational number such that ξe(ΓU`) = de Z where ξe : U`(Q) ∼=

Q is as in Lemma 1.1. Consider the diagram:

ΓU`\Bt � � // ΓU`\B(`) ' // (deZ\C)× V0
' // C× × V0
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where the second map is induced by (1.3) and the third map is induced by (z, w) 7→ (q =
exp(2πiz/de), w). In the coordinates (q, w) this realizes ΓU`\Bt as

ΓU`\Bt ∼= {(q, w) ∈ C× V0 : 0 < |q| < rw}

where rw depends on w (and on t, de)). Thus ΓU`\Bt is a punctured disc bundle with respect
to the projection to V0, the radius varying with w ∈ V0. Filling in the zero section and
dividing by ΓV` = ΓW`

/ΓU` defines a smooth partial compactification

ΓW`
\Bt � � // ΓW`

\Bt

in which the boundary added is the complex torus

DΓ,` = ΓW`
U`(C)\B(`) ∼= ΓV`\V0.

This defines the compactification in the direction of the cusp `. Repeating the construction
at each cusp defines the compactification MΓ as a compact complex manifold. The results
of [1, Ch. IV] prove that MΓ is naturally a smooth complex projective variety containing
MΓ as a Zariski-dense open subset and there is a unique projective morphism π : MΓ →M∗Γ
extending the identity.

Remark 1.3. Here is a slightly different description of the boundary divisor, closer to [1]. The
torus Gm = ΓU`\U`(C) acts on ΓW`

\B(`) making it a ΓU`\U`(C)-torsor over ΓW`
U`(C)\B(`).

Define
ΓW`
\B(`) := ΓW`

\B(`)×Gm A1.

The partial compactification of the deleted neighborhood defined above is then

ΓW`
\Bt = interior of the closure of ΓW`

\Bt in ΓW`
\B(`).

The projection ΓW`
\B(`) −→ ΓW`

U`(C)\B(`) then gives the natural identification DΓ,` =
ΓW`

U`(C)\B(`).

Remark 1.4. The action of W`(R)U`(C) on B(`) is simply transitive, so the choice of base-
point `0 ∈ B(`) gives an identification W`(R)U`(C) −→ B(`) by the orbit map w 7→ w`0.
With a basis e, vi, f chosen as above, there is a natural basepoint `0 = Cf ∈ B(`) (corre-
sponding to (0, 0) ∈ C× V0 under (1.3)). The orbit map then descends to an isomorphism

V`(R) −→ U`(C)\B(`)

which is (M`A`)(R)-equivariant for the conjugation action on V`(R) and the action via the
lift (M̃`Ã`)(R) on U`(C)\B(`). (This is easily checked in the matrix representation above.)
The map is also equivariant for the translation action of V`(R) on itself and the action on
U`(C)\B(`) induced by the action of W`(R), so that it gives an isomorphism

ΓV`\V`(R) −→ ΓW`
U`(C)\B(`) = DΓ,`

giving another description of DΓ,` (though without its complex structure).

Remark 1.5. The theory of arithmetic compactifications of ball quotients (i.e. compactifi-
cation over E or abelian extensions) is contained in the general theory for Shimura varieties
developed in Pink’s thesis [26]. A finer theory over rings of integers (with some primes
depending on the level inverted) exists for n = 2 in Larsen’s thesis (cf. [3] for a summary).
We will not use étale cohomology or reduction to positive characteristic in the sequel so we
do not go into this.
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1.5. Chern class of the normal bundle of the boundary divisor. Fix an isotropic
line ` ⊂ V , let P` = StabG(`) and let W`, V`, U` etc. be as in 1.3. Next we compute the
Chern class of the normal bundle of DΓ,`, which lies in H2(DΓ,`,Z). Choose e ∈ `. Let
de be as above, i.e. the unique positive rational number such that ξe(ΓU`) = de Z. Let
Ψe := ξe ◦ Ψ : ΓV` × ΓV` → Q where Ψ is the commutator. Both de and Ψe depend on e,
but the alternating form

cΓ,` := − 1
de

Ψe : ΓV` × ΓV` → Z (1.4)

does not. (By Lemma 1.1, Ψλe = Nm(λ)−1Ψe and dλe = Nm(λ)−1de for λ ∈ E×.) Since
DΓ,` is a complex torus with fundamental group ΓV` , we have (cf. [18, p.17]):

H2(DΓ,`,Z) = Hom(∧2ΓV` ,Z) = ∧2Hom(ΓV` ,Z).

and so cΓ,` = − 1
de

Ψe gives an element of H2(DΓ,`,Z) independent of the choice of e ∈ `.

Lemma 1.6. The normal bundle of DΓ,` in MΓ has Chern class cΓ,`.

Proof. By construction, the normal bundle of DΓ,` in MΓ is naturally isomorphic to the
line bundle associated with the C×-torsor ΓW`

\B(`)→ DΓ,`. Here ΓW`
\B(`) is naturally a

ΓU`\U`(C)-torsor and becomes a C×-torsor using the isomorphisms

ΓU`\U`(C) ∼= deZ\C ∼= C×

(the first induced by ξe and the second by z 7→ q = exp(2πiz/de)). The torsor becomes
trivial when lifted to V0 = U`(C)\B(`) and a standard computation (cf. e.g. [18, I.2] or [26,
Lemma 3.19]) shows that the cohomology class of the ΓU`\U`(C)-torsor in H2(ΓV` ,ΓU`) =
Hom(∧2ΓV` ,ΓU`) is given by −Ψ. The isomorphism ΓU`\U`(C) ∼= C× induces ΓU` → Z by

ΓU`
ξe−→ de Z 1/de−→ Z, so that the lemma follows. �

Remark 1.7. Note that Ψe is positive definite on V0, so that the complex torus DΓ,` is
polarizable, i.e. is an abelian variety and its conormal bundle in MΓ is ample.

1.6. We note the behaviour of the constructions above with respect to change of level.
Let Γ′ ⊂ Γ be a subgroup of finite index. The finite morphism p : MΓ′ → MΓ extends
naturally to finite morphisms of both types of compactifications, namely to p : M∗Γ′ →M∗Γ
and p : MΓ′ → MΓ and restricts to p : DΓ′ → DΓ. (We will use the same notation for all
these maps as it will cause no confusion.)

An immediate consequence of Lemma 1.6 (with the notation there) is:

Lemma 1.8. For Γ′ ⊂ Γ of finite index we have cΓ′,` = 1
[ΓU` :Γ

′
U`

]
p∗(cΓ,`).

This lemma is also easy to see topologically: Locally in the Hausdorff topology near a
point of DΓ′,` the map p looks like the product of the self-map z 7→ z

[Γ′U`
:ΓU` ] of a unit disc

(in the “normal” or U`-directions) with the (restriction of) the étale map DΓ′,` → DΓ,`.
(This is clear from the Siegel domain picture (1.3).) Thus p : MΓ′ → MΓ ramifies along
the divisor at infinity, with local ramification index along DΓ,` given by [Γ′U` : ΓU` ]. This
implies that the normal bundles are related by p∗, up to taking a power [Γ′U` : ΓU` ].
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2. Cohomology of ball quotients and their compactifications

In this section we prove that the direct limit

H i(M) = lim−→Γ
H i(MΓ)

of cohomology groups of smooth compactifications has a canonical G(Q)-invariant decom-
position in which one summand is the direct limit

IH∗(M∗) = lim−→Γ
IH∗(M∗Γ)

of intersection cohomology of minimal compactifications and the other summands are ex-
plicitly described in terms of the boundary divisor DΓ (Theorem 2.6). This is proved using
a purely geometric statement (Prop. 2.2) which is a consequence of the decomposition the-
orem of [2], but for which we give an elementary proof. The direct limit here can be taken
over any family of arithmetic subgroups which is closed under G(Q)-conjugation and finite
intersections and whose intersection is the identity (see 2.2).

All varieties are complex algebraic varieties, all cohomology groups are singular cohomol-
ogy with complex coefficents and intersection cohomology is always of middle perversity.
The arguments work as well with mixed Hodge structures modulo keeping track of Tate
twists (and the references given below are adequate for this). If we choose models over a
number field it is also possible to work with étale cohomology (but the references we give
do not cover this situation).

2.1. Decomposition theorem. The decomposition theorem of [2] relates the intersection
cohomology of a (singular) variety to the cohomology of a resolution. There is no canonical
decomposition in general but in the situation at hand (a resolution of an isolated singularity
with smooth exceptional divisor), we will show that there is a way to fix a decomposition
with good properties. In this special situation, the required results reduce to the hard
Lefschetz theorem on the exceptional divisor, so we prove them directly in Prop. 2.2 and
then apply them to ball quotients in 2.3. In Remark 2.5 we comment on how these also
follow from the decomposition theorem of [2].

The following lemma gives a simple description of intersection cohomology in a very
special case. (For our purposes this may even be taken as the definition.)

Lemma 2.1. Let X be a normal variety of pure dimension n with isolated singularities and
let U be the smooth locus of X. Then there are natural isomorphisms

IH i+n(X) =

 H i+n(U) i < 0
im [Hn

c (U)→ Hn(U)] i = 0
H i+n
c (U) i > 0

compatible with duality.

Proof. This is elementary (e.g. it follows from [12, 6.1]). �

Proposition 2.2. Suppose that we have a diagram of complex algebraic varieties

Y

π

��

U � � j
// X

where
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- X is normal, projective, purely n-dimensional with isolated singularities
- U is the smooth locus of X
- Y is a smooth projective compactification of U dominating X
- Z := π−1(X − U) is a smooth divisor in Y .

Then there is a canonical decomposition

H i+n(Y ) = IH i+n(X) ⊕
{
H i+n(Z) i ≥ 0
H i+n
Z (Y ) i < 0

with the following properties: (1) The restriction H∗(Y )→ H∗(U) factors through the pro-
jection H∗(Y )→ IH∗(X). (2) The restriction H∗(Y )→ H∗(Z) has the obvious description
on the second summand, namely the identity on H i+n(Z) for i ≥ 0 and the adjunction map
H i+n
Z (Y ) → H i+n(Z) for i < 0. (3) The decomposition is compatible with Poincaré du-

ality in the sense that the pairing H i+n(Y ) × H−i+n(Y ) → C is the sum of the pairing
IH i+n(X)× IH−i+n(X)→ C and the pairing H i+n

Z (Y )×H−i+n(Z)→ C.

The existence of some decomposition as in the proposition is well-known (cf. e.g. [23])
or is easily deduced from the decomposition theorem of [2] (cf. Remark 2.1), but our aim
is to fix one (in fact, it is canonical) and we will need to use some information which comes
out of the proof. Before giving the proof we recall some standard facts.

Suppose that Z is a closed subset of a smooth compact n-dimensional variety Y (e.g. as
in the geometric setting of the proposition). We write H∗Z(Y ) for the relative cohomology
H∗(Y, Y−Z) and res : H∗(Y ) → H∗(Z) and adj : H∗Z(Y ) → H∗(Y ) for the natural maps.
We will use the cap product

H i
Z(Y )×Hj(Y ) ∩−→ Hj−i(Z)

and the cup product

H i
Z(Y )×Hj(Z) ·−→ H i+j

Z (Y )

which refine the usual products. (See [25, Appendix B] and the references therein.)

(1) By Poincaré-Lefschetz duality ([25, App. B, Theorem B.31]) cap product with the
fundamental class [Y ] ∈ H2n(Y ) gives an isomorphism

∩[Y ] : H i
Z(Y )→ H2n−i(Z)

for all i. Thus there is a nondegenerate duality pairing H i
Z(Y ) × H2n−i(Z) → C.

(This is the pairing referred to in (3) of the proposition. It is the same as the cup
product H i

Z(Y )×H2n−i(Z)→ H2n
Z (Y ) ∼= H2n(Y ) ∼= C.) res and adj are dual under

this pairing.
(2) Suppose Z is a closed subvariety of pure dimension d with irreducible components

Zi. Each component has a fundamental class [Zi] ∈ H2d(Z). Let

c :=
∑
i

(∩[Y ])−1([Zi]) ∈ H2n−2d
Z (Y ). (2.1)

When Z is smooth, c is the Thom class and cupping with c gives the Thom isomor-
phism

H i−2(n−d)(Z) ∼= H i
Z(Y ) (2.2)

for all i ([25, Theorem B.70]).
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(3) Suppose that d = n− 1, i.e. Z has codimension one. Under the mappings

H2
Z(Y )

adj−→ H2(Y ) res−→ H2(Z) (2.3)

the class c is mapped to the cohomology cycle class of Z in H2(Y ) and then to the
first Chern class of the normal bundle of Z in Y . (See the proof of [25, Theorem B.70]
for the relation of the Thom class and the Euler class of the normal bundle, which
in this case (real codimension two) is the same as the first Chern class. See [25, 2.6]
for a Hodge-theoretic version.)

We will use the same notation c for all three classes in (3), i.e. for the class in H2
Z(Y )

defined by (2.1) and also for its images in H2(Y ) and H2(Z). The precise meaning will
always be clear from the context.

Proof. Consider the diagram

· · · // H i+n−1(U) // H i+n
Z (Y )

adj
//

∼=
��

H i+n(Y ) //

res

��

H i+n(U) // · · ·

H i+n−2(Z) ·c // H i+n(Z)

(2.4)

The top row is the usual cohomology long exact sequence for the pair (Y, U). The left
vertical map is the (inverse) Thom isomorphism. The right vertical map is the restriction.
The bottom map is cupping with the first Chern class c ∈ H2(Z) of the normal bundle of
Z and makes the square commutative. Since Z is contracted to a finite set of points in X,
its conormal bundle in Y is ample (see [14]). Then c has the hard Lefschetz property on
H∗(Z), so that

·c : H i+n−2(Z) −→ H i+n(Z)
is injective for i ≤ 0 and an isomorphism for i = 0. The long exact sequence then gives a
short exact sequence for each i < 0:

0 −→ H i+n
Z (Y ) −→ H i+n(Y ) −→ H i+n(U) −→ 0. (2.5)

The (Poincaré) dual short exact sequences are:

0 −→ H i+n
c (U) −→ H i+n(Y ) −→ H i+n(Z) −→ 0 (2.6)

for i > 0. Notice that by the hard Lefschetz property and Thom isomorphism the cup
product

·ci : H−i+nZ (Y ) −→ H i+n(Z) (2.7)
is an isomorphism for i > 0. In the middle dimension (i.e. i = 0) we have dual short exact
sequences which are the rows of the following diagram:

0 // Hn
Z(Y ) // Hn(Y ) // im [Hn(Y )→ Hn(U)] // 0

0 // im [Hn
c (U)→ Hn(Y )] // Hn(Y ) // Hn(Z) // 0.

(2.8)

The composition Hn
Z(Y ) → Hn(Y ) → Hn(Z) in this diagram is an isomorphism (by the

Thom isomorphism and hard Lefschetz on Z for c), so that the restriction from Y to U
induces an isomorphism

im [Hn
c (U)→ Hn(Y )] −→ im [Hn(Y )→ Hn(U)].
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This map factors through im [Hn
c (U)→ Hn(U)] and induces isomorphisms

im [Hn
c (U)→ Hn(Y )] ∼= im [Hn

c (U)→ Hn(U)] ∼= im [Hn(Y )→ Hn(U)] (2.9)

since im [Hn
c (U) → Hn(U)] → im [Hn(Y ) → Hn(U)] is trivially injective. Note that via

these isomorphisms the duality pairing of im[Hn
c (U) → Hn(Y )] and im[Hn(Y ) → Hn(U)]

translates to the obvious self-duality of im [Hn
c (U) → Hn(U)]. Thus the short exact se-

quences in (2.8) split each other, once the identification Hn
Z(Y ) ∼= Hn(Z) has been made.

Let us split the short exact sequences in (2.5), (2.6) above to get a decomposition of
H∗(Y ). (Of course, being sequences of vector spaces these are certainly split, but we want
to fix a splitting with good properties, so that in our application to ball quotients these will
have Hecke-equivariance properties.)

For i > 0 consider the diagram

H i+n(Z)

si

33
H−i+nZ (Y )·cioo

adj
// H−i+n(Y ) ·ci // H i+n(Y ) (2.10)

where si is defined by:
si := (·ci)−1 ◦ adj ◦ (·ci).

Here (·ci)−1 is the inverse of the hard Lefschetz isomorphism ·ci : H−i+nZ (Y ) → H i+n(Z).
The map si is a section of res, so it splits (2.6).

For i < 0 one takes the dual mapping to si, which is defined by the dual diagram

H i+n
Z (Y ) ·c−i // H−i+n(Z) H−i+n(Y )resoo H i+n(Y )·c−ioo

si

kk
(2.11)

and
si := (·c−i)−1 ◦ res ◦ (·c−i).

where (·c)−i inverts the hard Lefschetz isomorphism H i+n
Z (Y )→ H i+n(Z). This splits (2.5).

For i = 0 the same composition in (2.10), i.e. Hn(Z) ∼= Hn
Z(Y )→ Hn(Y ) splits the map

Hn(Y )→ Hn(Z) in the bottom row of (2.8) and so by duality we get a splitting of the top
row of (2.8). On the other hand (2.8) is also split by the composition Hn(Y ) → Hn(Z) ∼=
Hn
Z(Y ). That these two splittings of (2.8) agree follows from the fact that the isomorphism

Hn
Z(Y ) ∼= Hn(Z) is self-dual. We will denote the splitting by s0. Thus the decomposition

of Hn(Y ) is compatible with duality.
Using Lemma 2.1 we have produced a decomposition

H i+n(Y ) = IH i+n(X) ⊕
{
H i+n(Z) i ≥ 0
H i+n
Z (Y ) i < 0

as in the proposition. It remains to verify the properties claimed. The restriction H∗(Y )→
H∗(U) factors through the projection H∗(Y )→ IH∗(X) because the other summands are
in the image of H∗Z(Y ) → H∗(Y ) and hence vanish on restriction to U . The restriction
H∗(Y ) → H∗(Z) has the obvious description on the second summand. (If i ≥ 0 this map
is the identity on H i+n(Z) by construction. If i ≤ 0 this is also clear.) The compatibility
with Poincaré duality is straightforward. �

Remark 2.3. The second term in Hn(Y ) can be written as either Hn(Z) or Hn
Z(Y ) as

adj : Hn
Z(Y )→ Hn(Z) is a natural isomorphism.



14 ARVIND NAIR

Remark 2.4. In the situation of ball quotients of 1.4, where each component of Z = DΓ is
an explicitly given abelian variety and the class c = cΓ ∈ H2(DΓ) is given in terms of the
commutator (see 1.4), the hard Lefschetz property is elementary.

Remark 2.5. We indicate the relation of the proposition with the decomposition theorem,
which is proved in the étale setting over finite fields in [2, §5] and transferred to complex
varieties using the dictionary of [2, §6]. The facts mentioned in this remark will not be used
in the sequel so we do not give all details. (The reader familiar with [2] will easily supply
these, and this would give another proof of Prop. 2.2.)

If X is a variety and π : Y → X a resolution of singularities (so that Y is smooth and π
is a projective morphism) the decomposition theorem [2, Theorem 6.2.5, cf. also Theorem
5.4.5] gives an isomorphism

Rπ∗CY [n] ∼=
⊕
k

pHk(Rπ∗CY [n])[−k] (2.12)

in the derived category of constructible complexes of sheaves on X. Here pHk is the kth
perverse cohomology functor (for middle perversity). Assume the hypotheses of Proposition
2.2. (1) The summands can be explicitly computed as follows: Let ix : {x} ↪→ X for a
singular point x ∈ X − U and let Zx := π−1(x). The summands in (2.12) for k 6= 0 are
supported on the singular locus: There are natural isomorphisms

pHk(Rπ∗CY [n]) =

{⊕
x∈X−U ix∗H

k+n(Zx) k > 0⊕
x∈X−U ix∗H

k+n
Zx

(Y ) k < 0.
(2.13)

The k = 0 summand is canonically a direct sum
pH0(Rπ∗CY [n]) = j!∗CU [n]⊕

⊕
x∈X−U

ix∗H
n(Zx) (2.14)

where j!∗CU [n] is the intermediate extension (so that its ith hypercohomology gives IH i+n(X)).
Taking hypercohomology in (2.12) gives a decomposition of H i(Y,C) as in Prop. 2.2.

In general, there is no canonical isomorphism (2.12). In [10], Deligne showed how to
fix an isomorphism given a Lefschetz operator on Rπ∗CY [n], which, by definition, is a
homomorphism L : Rπ∗CY [n] → Rπ∗CY [n + 2] in the derived category such that Lk :
pH−k(Rπ∗CY [n]) → pHk(Rπ∗CY [n]) is an isomorphism for all k > 0. (Remember here
that we are using C-coefficients and ignoring Tate twists.) The Chern class of a line
bundle c1(L ) ∈ H2(Y,C) = HomDbc(CX)(C,C[2]) gives, by functoriality, an operator L :
Rπ∗CY [n] → Rπ∗CY [n + 2]. If L is relatively ample for π then, by the relative hard
Lefschetz theorem [2, Théorème 6.2.10], L is an example of a Lefschetz operator.

In fact, [10] gives more than one way to fix an isomorphism (2.12) using a Lefschetz
operator, but we will use the one of [10, §3], which has the following characterization:
Given an isomorphism (2.12) the Lefschetz operator L can be written as a sum of its
homogeneous components: L =

∑
k≤2 L

(k). (L(k) = 0 for k > 2 because perverse sheaves
form a t-structure.) Then there is a unique isomorphism in which

(adL(2))1−dL(d) = 0 (for d ≤ 1). (2.15)

(This is [10, Prop. 3.5].) This decomposition is self-dual with respect to Verdier duality
and has properties (1) and (2) in the proposition because it is sheaf-theoretic.

1In fact in this remark one may drop the assumption that the exceptional divisor is smooth; it is enough
to assume that it has simple normal crossings and smooth components.
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The decomposition of H∗(Y ) we have produced in Prop. 2.2 is the one given by [10, §3]
by using O(−Z) (which restricts on Z to the conormal bundle) as the relatively ample line
bundle (and then taking hypercohomology). This can be verified by first rephrasing the
decomposition of Prop. 2.2 in sheaf-theoretic terms and then checking that the relations of
[10, Prop. 3.5] hold for the Lefschetz operator given by c1(O(−Z)) = −c ∈ H2(Y ).

Note that taking stalks at a point x ∈ X−U in a decomposition (2.12) gives, by the base
change theorem for the proper morphism π, a decomposition

Hk+n(Zx) = Hk(Rπ∗CY [n])x =

{
Hk+n(Zx) k ≥ 0
Hk(j!∗CU [n])x ⊕Hk+n

Zx
(Y ) k < 0.

(2.16)

For the decomposition satisfying (2.15), this gives (for k < 0) the decomposition into prim-
itive and nonprimitive cohomology with respect to L, i.e. the first summand Hk(j!∗CU [n])x
is the primitive cohomology

ker(Hk+n(Zx) L−k // H−k+n(Zx))

(remember that dimZx = n − 1) and the other summand is L (Hk+n−2(Zx)). When L
comes from a line bundle L the homomorphism H∗(Zx) → H∗+2(Zx) is cupping with
c1(L )|Zx ∈ H2(Zx) and so these are the usual primitive and nonprimitive cohomology with
respect to the class c1(L )|Zx .

2.2. Direct limits in cohomology. We turn to the setting of ball quotients of §1.
For the rest of §2 we fix a family Σ of arithmetic subgroups of G(Q) which is closed

under finite intersections and G(Q)-conjugation, and such that ∩Γ∈ΣΓ = {e}. (The two
main examples we have in mind are the family of all arithmetic subgroups of G(Q) and the
family of all conguence subgroups of G(Q).) All arithmetic groups will be assumed to be in
Σ and the notation lim−→Γ

will mean a direct limit over Γ ∈ Σ.
For Γ′ ⊂ Γ there is a finite covering MΓ′ →MΓ. Consider the direct limit

H i(M) := lim−→Γ
H i(MΓ).

For g ∈ G(Q), left translation by g−1 on B descends to an isomorphism g−1· : MgΓg−1 →MΓ.
This defines an action of G(Q) on the direct limit H i(M) where g acts by pullback by
(g−1· )∗ : H i(MΓ)→ H i(MgΓg−1). (The inverse is required to make this a left action.) The
transition maps in this direct limit are injective. (If Γ′ ⊂ Γ is a normal subgroup of finite
index, then the covering p : MΓ′ → MΓ is Galois, so that p∗ : H i(MΓ) → H i(MΓ′)Γ is an
isomorphism.)

The variety M∗Γ is normal with isolated singularities, so by Lemma 2.1 we have:

IH i(M∗Γ) =

 H i(MΓ) i < n
im [Hn

c (MΓ)→ Hn(MΓ)] i = n
H i
c(MΓ) i > n.

(2.17)

The following general properties of intersection cohomology are evident in our situation
from this description:

(i) there is a nondegenerate pairing IH i(M∗Γ)× IH2n−i(M∗Γ)→ C
(ii) IH∗(M∗Γ) is a module over H∗(M∗Γ) and there are natural H∗(M∗Γ)-module maps

H∗(M∗Γ)→ IH∗(M∗Γ)→ H∗(MΓ)

(iii) for Γ′ ⊂ Γ of finite index there is a natural pullback IH i(M∗Γ)→ IH i(M∗Γ′)
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The pullback maps in (iii) are injective (as follows from the fact that for Γ′ ⊂ Γ normal
and of finite index we have H i(MΓ) = H i(MΓ′)Γ and H i

c(MΓ) = H i
c(MΓ′)Γ). Consider the

direct limit

IH i(M∗) := lim−→Γ
IH i(M∗Γ).

The isomorphism g−1· : MgΓg−1 → MΓ extends to an isomorphism g−1· : M∗gΓg−1 → M∗Γ.
This gives an action of G(Q) on IH i(M∗) where g acts by pullback by (g−1· )∗ : IH i(M∗Γ)→
IH i(M∗gΓg−1).

The direct limit of the cohomology of smooth compactifications is

H i(M) := lim−→Γ
H i(MΓ).

The transition maps are injective because for Γ′ ⊂ Γ a normal subgroup of finite index,
H i(MΓ′)Γ = H i(MΓ). (Indeed, for the projection p : MΓ′ → MΓ we have p!p

∗(α) =
α ∪ p!(1) = |Γ/Γ′|α. So the pullback p∗ is injective. Averaging over Γ/Γ′ gives a map
H i(MΓ′) → H i(MΓ) which splits p∗.) It follows that H i(MΓ) = H i(M)Γ for any Γ. The
isomorphism g−1· : MgΓg−1 → MΓ extends to an isomorphism g−1· : MgΓg−1 → MΓ and
pullback by these isomorphisms defines a G(Q) action on H i(M) by ring automorphisms.

It will also be necessary to consider the direct limit

H i(D) := lim−→Γ
H i(DΓ)

for 0 ≤ i ≤ 2n − 2 with pullbacks as transition maps. Similarly, we will need the direct
limit

H i
D(M) := lim−→Γ

H i
DΓ

(MΓ)

for 2 ≤ i ≤ 2n. Here the transition maps come from the morphism of pairs p : (MΓ′ ,MΓ′)→
(MΓ,MΓ) for Γ′ ⊂ Γ, since H i

DΓ
(MΓ) = H i(MΓ,MΓ). Both direct limits are G(Q)-modules

in an obvious way. It will be useful to know that in the limits H i(D), H i
D(M) the modules

at a finite stage can be recovered from the direct limit by taking invariants, i.e. that we
have

H i(D)Γ = H i(DΓ)

H i
D(M)Γ = H i

DΓ
(MΓ)

(For H i(D) one can argue as follows: If Γ′ ⊂ Γ is normal of finite index then taking
Γ-invariants in the long exact sequence

· · · −→ H i
c(MΓ′) −→ H i(MΓ′) −→ H i(DΓ′) −→ H i+1

c (MΓ′) −→ · · ·

must give the long exact sequence at level Γ (because H i(MΓ′)Γ = H i(MΓ) and H i
c(MΓ′)Γ =

H i
c(MΓ) as we have seen earlier). Thus H i(DΓ′)Γ = H i(DΓ). The proof for H i

DΓ′
(MΓ′)Γ =

H i
DΓ

(MΓ) is similar, using the dual sequence.)
Thus in each of the direct limits H∗(M), IH∗(M∗), H∗(M), H∗(D), and H∗D(M), the

groups at level Γ can be recovered by taking Γ-invariants, and these spaces of invariants are
finite-dimensional. (It follows that the G(Q)-action induces, in the space of Γ-invariants,
an action of the Hecke algebra at level Γ.)
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2.3. Decomposition of the direct limit H∗(M). For any neat Γ the results of 2.1 apply
to the situation

MΓ

��

MΓ
� � // M∗Γ

to give a decomposition

H i+n(MΓ) = IH i+n(M∗Γ) ⊕
{

H i+n(DΓ) i ≥ 0
H i+n
DΓ

(MΓ) i < 0. (2.18)

We then have:

Theorem 2.6. The decompositions (2.18) induce a G(Q)-invariant decomposition

H i+n(M) = IH i+n(M∗)
⊕ {

H i+n(D) i ≥ 0
H i+n

D (M) i < 0
(2.19)

in the limit over all arithmetic subgroups of G(Q) in Σ.

Proof. If Γ′ ⊂ Γ is of finite index there is a map of pairs

p : (MΓ′ ,MΓ′) −→ (MΓ,MΓ).

Each term in this decomposition at level Γ has a pullback p∗ to the corresponding term at
level Γ′, and these are compatible with the cohomology long exact sequences of the pairs
(by the naturality of the sequence). Our first task is to prove that the decompositions (2.18)
at different levels are compatible, so that we have a decomposition of the direct limit. In
this proof we will usually drop subscripts Γ,Γ′ etc. to lighten the notation. So we use the
notation M,D, c etc. and M

′
, D′, c′ etc. for objects at level Γ′.

Recall (from (2.3) and the remarks before the proof of Prop. 2.2) that the Chern class c
admits a refinement in H2

D(M) (and similarly for c′). Consider the diagram relating levels
Γ and Γ′:

H0(D′)
∼= //

(∗)

H2
D′(M

′) // H2(D′)

H0(D)
∼= //

OO

H2
D(M) //

p∗

OO

H2(D)

p∗

OO

(The horizontal maps in the square marked (∗) are Thom isomorphisms and it does not
commute.) The class c is the image of 1 ∈ H0(D) under the maps indicated (by (2.1),
(2.2)), and similarly for c′. By Lemma 1.8, for each component D′i of D′ we have the
relation p∗(c)|D′i = λi c

′|D′i in H2(D′) for some scalars λi ∈ Q×. By the diagram one has
the same relation

p∗(c)|D′i = λi c
′|D′i (2.20)

in H2
D′(M

′) for the refined classes.
To prove the compatibility of decompositions at levels Γ and Γ′ it is enough to check that

the splittings si, s′i defined in the proof of Prop. 2.2 (specifically by the diagrams (2.10) and
(2.11) at each level), are compatible under pullback by p. The case i = 0 is immediate from
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the naturality of the maps adj, adj′, so we are left with i 6= 0. First consider si for i > 0.
Consider the diagram relating the splittings at levels Γ′ and Γ:

H i+n(D′)

s′i

++

(1)

H−i+nD′ (M ′)
·c′i

oo

(2)

·c′i◦ adj′
// H i+n(M ′)

H i+n(D)

si

33

p∗

OO

H−i+nD (M)·cioo

p∗

OO

·ci◦ adj
// H i+n(M)

p∗

OO
(2.21)

The squares (1) and (2) do not commute in general because p∗(c) 6= c′. Nevertheless, the
outer square formed by si and s′i does commute, as we will now show. For this it will be
enough to concentrate attention on a single component of D, which we will continue to
denote by D. If D′1, . . . , D

′
r are the components of D′ lying over D then it is enough to

show that p∗ ◦ si = s′i ◦ (p|D′k)∗, i.e. that the diagram

H i+n(D′k)

s′i

++

(1)k

H−i+n
D′k

(M ′)
·c′i

oo

(2)k

·c′i◦ adj′
// H i+n(M ′)

H i+n(D)

si

33

OO

H−i+nD (M)·cioo

OO

·ci◦ adj
// H i+n(M)

OO
(2.22)

commutes for each k. Recall that we have the relation p∗(c)|D′k = λk c
′|D′k in H2

D′(M
′) =⊕

kH
2
D′k

(M ′) for some scalars λk ∈ Q× by (2.20). Thus (1)k commutes up to the scalar λik
in the sense that

p∗ ◦ (·ci) = λik (·c′i) ◦ p∗. (2.23)

The square (2)k also commutes up to the scalar λik. To see this consider the following
diagram:

H−i+n
D′k

(M ′)
·c′i◦ adj′

//

(2)k

H i+n(M ′)
res′ // H i+n(D′k)

H−i+nD (M)

OO

·ci◦ adj
// H i+n(M)

OO

res // H i+n(D)

OO
(2.24)

The outer square commutes up to λik, i.e.

p∗ ◦ res ◦ (·ci) ◦ adj = λik res
′ ◦ (·c′i) ◦ adj′ ◦ p∗.

Since res (resp. res′) is injective on the image of ci◦adj (resp. c′i◦adj′) (by hard Lefschetz)
and the square involving res, res′ commutes, this proves that (2)k commutes up to λik in
the sense that

p∗ ◦ (·ci) ◦ adj = λik (·c′i) ◦ adj′ ◦ p∗. (2.25)
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Thus both squares in (2.22) commute up to the same scalar λik. Since the horizontal maps
in (1)k are inverted to define si, s′i, these scalars cancel and the outer square (involving si, s′i)
in (2.22) commutes for each k. Hence the same is true in (2.21).

This proves that the splitting si for i > 0 is compatible with change of level. The case of
si for i < 0 is treated in exactly the same way using the diagram (2.11) and the property
(2.20) for c, c′, so we omit the argument.

Thus we have a decomposition of the direct limit H∗(M) as claimed. It remains to show
that it is G(Q)-invariant. If g−1· : MgΓg−1 →MΓ is the isomorphism induced by g ∈ G(Q)
then it relates the normal bundles, so that (g−1)∗(cΓ) = cgΓg−1 . (This also follows from the
expression in Lemma 1.6.) �

Remark 2.7. The proof of Theorem 2.6 works in a more general context than ball quotients.
Suppose that we are given a commutative diagram

Y ′

π′

��

p

��
==

==
==

=

U ′ �
�

//

�
��

>>
>>

>>
> X ′

q

��
==

==
==

= Y

π

��

U � � // X

(2.26)

where (π : Y → X,U,Z) and (π′ : Y ′ → X ′, U ′, Z ′) are as in Prop. 2.2, p, q are finite, and
the square marked � is Cartesian. We use c, c′ for the Chern classes of normal bundles of
Z,Z ′. Assume further that

(1) p|U ′=q|U ′ : U ′ → U is étale, p−1(Z) = Z ′ and p|Z′ is étale.
(2) for each component Z ′i of Z ′ there is a nonzero scalar λi such that

p∗(c)|Z′i = λi c
′|Z′i . (2.27)

(In the setting of ball quotients p : MΓ′ → MΓ, (2) holds by Lemma 1.8.) Then the proof
shows that the decompositions of H∗(Y ) and H∗(Y ′) produced in Prop. 2.2 are compatible
under p∗.

Remark 2.8. We explain why Theorem 2.6 (rather, the abstracted version of Remark 2.7)
holds from the point of view of the decomposition theorem of [2] (continuing Remark 2.5).
Once again, we leave some details to be checked by the reader familiar with [2]. In a
geometric setup π : Y → X as in Prop. 2.2 and given a Lefschetz operator we will always
use Deligne’s decomposition from Remark 2.5 in which the relations (2.15) hold.

If π : Y → X is as in Prop. 2.2 and L is a Lefschetz operator then replacing L by a
nonzero scalar multiple (e.g. if L comes from a line bundle L then one might replace L by
a power) does not change the decomposition because the relations (2.15) still hold. More
generally, if L1, L2 are Lefschetz operators satisfying

(∗) for each x ∈ X−U , L1|Ut{x} is a nonzero scalar multiple of L2|Ut{x}
then L1 and L2 give the same decomposition. (Indeed, if α1, α2 are the two isomorphisms
Rπ∗CY [n]→

⊕
k
pHk(Rπ∗CY [n])[−k] then A := α1 ◦ α−1

2 is a matrix (Aij) with

Aij : pHj(Rπ∗CY [n])[−j] −→ pH i(Rπ∗CY [n])[−i].
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Since A|Ut{x} = α1 ◦ α−1
2 |Ut{x} = id for any x ∈ X−U (because of (∗)), it follows from

(2.13) and (2.14) that Aij = 0 if i 6= j and Aii = id for i 6= 0. A00 respects the decomposition
(2.14) and is the identity on each summand. (For the summands supported on X−U this
follows from (∗), and A00|j!∗CU [n] ∈ End(j!∗CU [n]) is the functorial extension of A00|U = id.)
Thus A = id and α1 = α2.)

Now suppose we are in the situation of Remark 2.7, viz. a diagram (2.26) with the
properties mentioned there, including (2.27). The pullback in cohomology by p : Y ′ → Y
is induced by the canonical morphism of sheaves CY → p∗CY ′ or, applying Rπ∗, by the
morphism ρ in the following diagram:

Rπ∗CY [n]
ρ

//

α
��

q∗Rπ
′
∗CY ′ [n]

q∗α′

��⊕
k
pHk(Rπ∗CY [n])[−k]

⊕kpHk(ρ)[−k]
//
⊕

k
pHk(q∗Rπ′∗CY ′ [n])[−k]

(2.28)

The rest of the diagram is as follows: The line bundles O(−Z),O(−Z ′) give Lefschetz
operators L,L′ on Rπ∗CY [n] and Rπ′∗CY ′ [n], respectively, and hence isomorphisms α as in
the diagram and α′ : Rπ′∗CY ′ [n] → ⊕kpHk(Rπ′∗CY ′ [n])[−k]. Since q is finite, q∗ is t-exact
for the perverse t-structure, i.e. pHk ◦ q∗ = q∗ ◦ pHk, so that q∗α′ is as in the diagram. The
lower horizontal arrow is self-explanatory. We will show that the diagram commutes, which
implies Theorem 2.6.

There is a second Lefschetz operator L′′ on Rπ′∗CY ′ , given by p∗O(−Z) (which is rela-
tively ample for π′ since p is finite). By the previous paragraph, L′ and L′′ give the same
decomposition of Rπ′∗CY ′ [n] (they satisfy (∗) by assumption (2.27)), so we will replace L′

by L′′ in the discussion. By duality (using the smoothness of Y, Y ′ and finiteness of p), the
morphism CY → p∗CY ′ is split, i.e. there is a decomposition p∗CY ′ = CY ⊕ F and hence

q∗Rπ
′
∗CY ′ [n] = Rπ∗CY [n]⊕Rπ∗F [n].

The Lefschetz operator L′′, coming by pullback from Y , respects this decomposition and
agrees with L on the first summand. Thus on the first factor it is Deligne’s decomposition
for L, i.e. the two decompositions agree. So (2.28) commutes.

Note that in the decomposition (2.16) of H∗(Zx) these abstract considerations boil down
to the simple fact that the primitive cohomology and Lefschetz decomposition do not change
if the class c1(L ) is multiplied by a scalar.

3. Invariants, coinvariants, and restriction

In this section we first describe the “extra” summands in the decomposition of H∗(M)
in Theorem 2.6 as induced modules (Theorem 3.5). This is used to compute the G(Q)-
invariants and coinvariants in the direct limit (Prop. 3.11, Cor. 3.12). With these results in
hand we are able to adapt the methods of [30] to treat restriction maps, proving Lefschetz
properties (Theorems 3.17 and 3.19) and a cup product property (Thm 3.21).

In 3.1-3.3 the family Σ is either the family of arithmetic subgroups of a given group or the
family of congruence subgroups. From 3.4 onwards, Σ is the family of congruence subgroups,
i.e. all arithmetic subgroups are congruence and limits such as H∗(M), IH∗(M∗) etc. are
understood to be over the family of congruence subgroups.
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3.1. Induced modules. We need some elementary facts about duality and induction in a
slightly nonstandard context. This context allows us to work with Q-points of groups and
avoid the machinery of adeles; the reader should keep in mind that because of this in many
standard formulas below g gets replaced by g−1 (as we already saw in the discussion in 2.2).

Let H be a Q-algebraic group. A vector in an H(Q)-module is Σ-smooth if its stabilizer is
an arithmetic subgroup in Σ. An H(Q)-module V is Σ-smooth if every vector in V is smooth
and Σ-admissible if it is Σ-smooth and the space of invariants V Γ under any arithmetic
subgroup Γ ⊂ H(Q) in Σ is finite-dimensional. The contragredient V ∼ of a Σ-smooth
H(Q)-module V is the subspace of Σ-smooth vectors in the linear dual V ∗ = Hom(V,C)
with the action (tg)−1.

Lemma 3.1. Let V,W be Σ-smooth G(Q)-modules. Then

(i) HomG(Q)(V,W∼) = HomG(Q)(W,V ∼)
(ii) V ∼= (V ∼)∼ if V is Σ-admissible.

Proof. Let G(Q)Σ be the completion of G(Q) with respect to the uniform topology in which
a fundamental system of neighborhoods of the identity are given by arithmetic subgroups.
The closure ΓΣ in G(Q)Σ of an arithmetic group Γ ∈ Σ is profinite, hence compact. (These
give a fundamental system of neighborhoods for the topology on G(Q)Σ, which is locally
compact.) A Σ-smooth G(Q)-module V is canonically a module for G(Q)Σ. Thus for an
arithmetic group Γ ∈ Σ, one has a decomposition V = V Γ

Σ

⊕V ′ = V Γ⊕V ′ where V Γ
Σ

= V Γ

by density. It follows that (V Γ)∗ = (V ∗)Γ = (V ∼)Γ. (i) and (ii) follow directly from these
equalities. �

Let H be a subgroup of G. For a Σ-smooth H(Q)-module W the induced module IGH(W )
is the space of functions

IGH(W ) :=

f : G(Q)→W s.t.
f(gh) = h−1 · f(g) for h ∈ H(Q), g ∈ G(Q)
f is left-invariant under an arithmetic

subgroup of G(Q) in Σ


with the action of G(Q) by left translations, i.e. (g · f)(x) = f(g−1x). It is Σ-smooth.

Lemma 3.2. The functor IGH is right adjoint to restriction, i.e. there is Frobenius reci-
procity: For Σ-smooth modules V,W ,

HomG(Q)(V, I
G
H(W )) = HomH(Q)(V,W ).

It takes Σ-admissible modules to Σ-admissible modules if Γ\G(Q)/H(Q) is finite for all
Γ ∈ Σ (e.g. if H is a parabolic subgroup).

Proof. For the first part we follow the usual proof of Frobenius reciprocity: Evaluation at
the identity defines a map e : IGH(W ) → W . If Φ ∈ HomG(Q)(V, IGH(W )) then e ◦ Φ ∈
HomH(Q)(V,W ). The inverse map is defined by φ 7→ Φ where φ ∈ HomH(Q)(V,W ) defines
Φ : V → IGH(W ) by Φ(v)(g) = φ(g−1 · v). The second part follows in the usual way from
the finiteness of Γ\G(Q)/H(Q). �
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3.2. Decomposition and induced modules. We use the induced module construction
to identify the extra summands in Theorem 2.6 as G(Q)-modules. From now until the end
of the section we are in the situation of ball quotients of §1 and the notation fixed there
will be used freely.

Lemma 3.3. Fix an isotropic line ` ∈ B∗ and let P` = StabG(`), u`, v` be as in 1.3. Then
as G(Q)-modules

H i(D) = IGP`(∧
iv∗`,C)

and
H i

D(M) = IGP`(∧
i−2v∗`,C ⊗ u∗`,C)

where the actions on ∧iv∗`,C and ∧i−2v∗`,C ⊗ u∗`,C are induced by the coadjoint action.

Proof. The boundary divisor DΓ is a disjoint union of components indexed by Γ-equivalence
classes of isotropic lines:

DΓ =
⊔

λ∈Γ\(B∗−B)

DΓ,λ.

For an isotropic line λ, let
Riλ := lim−→Γ

H i(DΓ,λ).

This has an action of Pλ(Q) as follows: For q ∈ Pλ(Q) the isomorphism q−1· : DqΓq−1 → DΓ

takes DqΓq−1,` to DΓ,` and we let q ∈ Pλ(Q) act on the direct limit by (q−1·)∗ to get a left
action. We will first show that H i(D) ∼= IGP`(R

i
`) as G(Q)-modules and then compute Ri` as

a P`(Q)-module.
Frobenius reciprocity applied to the obvious P`(Q)-module map H i(D)→ Ri` by

α = (αΓ)Γ 7→ (αΓ|DΓ,`
)Γ

gives a G(Q)-module map
H i(D) −→ IGP`(R

i
`). (3.1)

We will use the following observations to prove that this is an isomorphism:
(1) For each Γ there is a natural identification

H i(DΓ,λ) = (Riλ)Γ∩Pλ . (3.2)

(Indeed, for Γ′ ⊂ Γ the morphism DΓ′,λ → DΓ,λ is a Galois covering with group
Γ′Vλ/ΓVλ , so that H i(DΓ′,λ)ΓVλ = H i(DΓ,λ). Since ΓUλ acts trivially,

H i(DΓ′,λ)Γ∩Pλ = H i(DΓ′,λ)ΓVλ = H i(DΓ,λ)

This gives (3.2).)
(2) If λ = g` then Pλ = gP`g

−1 and pullback by the isomorphism g· : Dg−1Γg,` → DΓ,λ

induces an isomorphism (g·)∗ : Riλ → Ri`. At level Γ this restricts to an isomorphism

(Riλ)Γ∩Pλ −→ (Ri`)
g−1Γg∩P` (3.3)

with inverse (g−1·)∗. This is compatible with (3.2) in the sense that

H i(DΓ,λ)
(g·)∗

//

��

H i(Dg−1Γg,`)

��

(Riλ)Γ∩Pλ
(g·)∗

// (Ri`)
g−1Γg∩P`

(3.4)
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commutes.
Fix a level Γ and choose representatives {gi}ri=1 for the double cosets Γ\G(Q)/P`(Q). The
isomorphism

IGP`(R
i
`)

Γ =
⊕

j
(Ri`)

g−1
j Γgj∩P`

is given by f 7→ (f(g1), . . . , f(gr)). Under (3.1) a class α ∈ H i(D)Γ maps to the element
with j-component (g−1

j · α)Γ|DΓ,`
= (gj ·)∗(α)|DΓ,`

(as in the proof of Frobenius reciprocity
in Lemma 3.2). Restricting to the gj-summand of

H i(D)Γ = H i(DΓ) =
⊕

j
H i(DΓ,gj`)

gives the composition in (3.4), which is an isomorphism with the summand (Ri`)
g−1
j Γgj∩P`

of IGP`(R
i
`)

Γ. Thus H i(D)Γ → IGP`(R
i
`)

Γ is an isomorphism for each Γ and (3.1) is an isomor-
phism.

Next we compute the P`(Q)-module Ri`. (Since eachDΓ,λ is an abelian variety, Riλ = ∧iR1
λ

so one has only to compute R1
` .) Let p ∈ P`(Q) and Γ′ ⊂ Γ∩ pΓp−1. The action of p on Ri`

is computed by comparing pullbacks by

e· : DΓ′,` → DΓ,`

p−1· : DΓ′,` → DΓ,`

Recall from the construction of MΓ described in §1.4 that there is a natural identification

DΓ,` = ΓW`
U`(C)\B(`)

and the morphism p−1· is induced by left translation by p−1 on U`(C)\B(`). The action of
elements of W`(Q) on Ri` is trivial (for u ∈ U`(Q) we have u−1· = e· and for elements of
V`(Q) this holds because the cohomology is computed by invariant forms). So the action is
one of P`(Q)/W`(Q) = (M`A`)(Q) and can be computed using any lift of M`A` in P , e.g.
the one denoted M̃`Ã` in 1.3 fixed by the choice of basis in loc. cit. Recall from Remark 1.4
that the basepoint in B(`) given by the basis gives an identification V`(R) → U`(C)\B(`)
which intertwines the conjugation action of (M`A`)(R) with the action of (M̃`Ã`)(R) on
U`(C)\B(`). Using the induced isomorphism ΓV`\V`(R) −→ ΓW`

U`(C)\B(`) we are reduced
to comparing, for p ∈ (M`A`)(Q), the two pullbacks

(e·)∗ : H i(Γ′V`\V`(R)) −→ H i(ΓV`\V`(R))

Ad(p−1)∗ : H i(Γ′V`\V`(R)) −→ H i(ΓV`\V`(R)).

The natural isomorphisms H i(ΓV`\V`(R)) = ∧iv∗`,C given (e.g.) by invariant differential
forms are compatible with change of level (i.e. so that (e·)∗ = id) and in this identification
Ad(p−1)∗ is the transpose of the action of p−1 on ∧iv`,C, i.e. the coadjoint action of p.

This completes the proof that H i(D) = IGP`(∧
iv∗`,C). Next consider H i

D(M). The argu-
ments above, mutatis mutandis, show that there is a natural G(Q)-isomorphism H i

D(M) =
IGP`(S

i
`) where

Si` := lim−→Γ
H i
DΓ,`

(MΓ).

(The analogue of (3.2) required follows from (3.2) by the Thom isomorphism.) So it remains
to prove that Si` = u∗`,C ⊗ ∧i−2v∗`,C as a P`(Q)-module. We first note that S∗` is (under cup
product) a free graded R∗` = ∧∗v∗`,C-module generated in degree two by S2

` . (Indeed, by
the Thom isomorphism (2.2) this is true at each level Γ.) So it suffices to produce a
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natural isomorphism S2
` = u∗`,C. The natural map S2

` → R2
` = ∧2v∗`,C is injective, because

H2
DΓ,`

(MΓ) ↪→ H2(DΓ,`) for all Γ. (The image of the natural generator of H2
DΓ,`

(MΓ) ∼=
H2n−2(DΓ,`) ∼= C [DΓ,`] is the Chern class of the normal bundle, which is nonzero.) On the
other hand dualizing the Lie bracket [ , ] : v`×v` → u` gives an injective map δ : u∗` ↪→ ∧2v∗` .
Choosing e ∈ ` fixes a generator xe ∈ u` and a dual generator x∗e ∈ u∗` . Then δ(x∗e) = Φe

(by definition, cf. 1.5). Thus the image of H2
DΓ,`

(MΓ) in H2(DΓ,`) ∼= ∧2v∗`,C, which has
dimension one, contains a multiple of Φe (namely, the Chern class −d−1

e Φe of loc. cit.)
and hence coincides with δ(u∗`,C) ⊂ ∧2v∗`,C. This gives a natural (and P (Q)-equivariant)
isomorphism S2

`
∼= u∗`,C. �

Lemma 3.4. The G(Q)-modules H i(D) and H2n−i
D (M) are contragredient to each other.

Proof. For each Γ there is the nondegenerate Poincaré-Lefschetz duality pairing H i(DΓ)×
H2n−i
DΓ

(MΓ)→ C which factors as the cup product H i(DΓ)×H2n−i
DΓ

→ H2n
DΓ

(MΓ) followed
by the natural isomorphisms H2n

DΓ
(MΓ) = H2n(MΓ) = C. (Here H2n(MΓ) = C is fixed

either by noting that MΓ, being an algebraic variety, is oriented (or explicitly as in 3.3
below).) In the limit this gives a pairing

H i(D)×H2n−i
D (M)→ C

to the trivial representation. (The isomorphism H2n(M) = C comes from compatibility of
orientations at different levels, either as in 3.3 below or because transition morphisms are
algebraic.) Taking Γ-invariants gives back the pairing at finite level. Thus for any Γ the
natural map H i(D)→ (H2n−i

D (M))∗ gives an isomorphism

H i(D)Γ = H i(DΓ) ∼= H2n−i
DΓ

(MΓ)∗ = (H2n−i
D (M)Γ)∗

= (H2n−i
D (M)∗)Γ = (H2n−i

D (M)∼)Γ.

(To go from the first line to the second here we have used that (V Γ)∗ = (V ∗)Γ for a smooth
module V , as shown in the proof of Lemma 3.1.) This proves the lemma. �

Theorem 3.5. There is a G(Q)-invariant decomposition

H∗(M) = IH∗(M∗)⊕J ∗

where

J i+n :=
{
IGP (∧i+nv∗`,C) i ≥ 0
IGP (∧i+n−2v∗`,C ⊗ u∗`,C) i < 0.

The Poincaré duality pairing on H∗(M) is the direct sum of the Poincaré duality pairing on
IH∗(M∗) and the pairing J i+n ×J −i+n → C coming from Lemma 3.4. The restriction
H∗(M) → H∗(M) factors through the projection H∗(M) → IH∗(M∗) and the restriction
H∗(M)→ H∗(D) is the obvious map on the second summand.

Proof. This follows from Theorem 2.6 and Lemmas 3.3 and 3.4. �

Remark 3.6. The map ∧n−2v∗` ⊗ u∗` → ∧nv∗` induced by the map u∗` → ∧2v∗` dual to the
bracket is a P -equivariant isomorphism. Thus the summand for i = 0 is also described as
IGP (∧n−2v∗` ⊗ u∗` ).
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Remark 3.7. The theorem should admit a generalization to other Shimura varieties, but a
nonobvious one. The nonuniqueness of toroidal compactifications of general Shimura vari-
eties suggests looking at the direct limit H∗(M

tor
) = lim−→Γ

lim−→Σ
H∗(MΓ,Σ) where the inner

limit is over all data Σ which can be used to produce a smooth projective toroidal compact-
ification at level Γ. However, a decomposition theorem like the above is not likely to hold
for this direct limit: There is no G(Q)-homomorphism IH∗(M∗) → H∗(M

tor
). The solu-

tion is to consider a nonalgebraic compactification, namely the excentric Borel-Serre (eBS)
compactification, and its intersection cohomology. In [22] we treated a smaller nonalgebraic
compactification, the reductive Borel-Serre (rBS) compactification, using Hodge-theoretic
methods, some of which can be adapted to the eBS compactification. (In the special case of
ball quotients the eBS compactification is MΓ and the rBS compactification is M∗Γ. Another
simple case is that of Siegel threefolds, where the cohomology of the eBS compactification
is that of the Igusa compactification.) We will explore this elsewhere.

3.3. Orientations. We will fix G(Q)-invariant generators for IH2n(M∗) and H2n(M) using
the Baily-Borel bundle LΓ of 1.2. The description there shows that LΓ pulls back to LΓ′

under M∗Γ′ →M∗Γ so that
e := (c1(LΓ))Γ ∈ lim−→Γ

H2(M∗Γ)

defines a class in the direct limit. Moreover, (g−1·)∗(LΓ) = LgΓg−1 under the isomorphism
g−1· : M∗Γ → M∗gΓg−1 , so that e is G(Q)-invariant. We will use e also for the image in
IH2(M∗) or H2(M) as the exact meaning will always be clear from the context. The map
c1(L)k 7→ ek defines homomorphisms

H∗(P(VR))→ IH∗(M∗) (3.5)

H∗(P(VR))→ H∗(M). (3.6)

These are both injective. (For (3.6) this follows from the proportionality principle [19, Thm
3.2]: Since [MΓ] ∩ c1(LΓ)n ∼ [P(VR)] ∩ c1(L)n 6= 0 we see that en 6= 0. The injectivity of
(3.5) follows from that of (3.6) because the pullback H∗(M∗)→ H∗(M) factors through the
canonical homomorphism H∗(M∗)→ IH∗(M∗).) In particular,

or := en

fixes G(Q)-invariant generators for IH2n(M∗) and H2n(M) which we will also denote by
or.

3.4. Invariants and coinvariants. Theorem 3.5 lets us compute the invariants and coin-
variants of H∗(M). In the proof of the following proposition (and hence in the sequel) we
will need to restrict to congruence subgroups.

Proposition 3.8. The G(Q)-module IH∗(M∗) is semisimple and admissible. The invari-
ants (= coinvariants) are given by H∗(P(VR)) = C[e]/(en+1).

Proof. Zucker’s conjecture (proved by Looijenga [16] and Saper-Stern [27]) gives an isomor-
phism of intersection cohomology with L2 cohomology. Combining this with results of Borel
and Casselman [8] gives a natural isomorphism

IH∗(M∗) =
⊕

π=π∞⊗πf

mdis(π)πf ⊗H∗(g,K∞, π∞). (3.7)
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The notation is as follows: g is the Lie algebra of G(R), K∞ is a maximal compact subgroup,
π = π∞ ⊗ πf runs over automorphic representations appearing in the discrete spectrum
of L2(G(Q)\G(A)), and mdis(π) is the multiplicity of π in the discrete spectrum. This
isomorphism is equivariant for the action of G(Q) defined earlier on the left and the action
on the right induced by the inclusion of G(Q) in G(Af ). Admissibility now follows from
the finiteness of multiplicities and from the admissibility of πf . Semisimplicity follows from
the fact that by density of G(Q) in G(Af ) (which holds by strong approximation) the
modules πf are irreducible for G(Q). The G(Q)-invariants (=G(Af )-invariants) come from
the trivial representation (a discrete automorphic representation which is trivial at all finite
places is necessarily trivial by strong approximation), which has multiplicity one in the
discrete spectrum. Thus IH∗(M∗)G(Q) = H∗(g,K∞,C) = H∗(P(VR)).

For the coinvariants, note that since (3.7) is an algebraic direct sum it is enough to show
that each summand for πf nontrivial has no coinvariants. By Lemma 3.1(i), the coinvariants
of πf are the invariants of the contragredient as a G(Q)-module (i.e. in the sense of 3.1).
By strong approximation, the contragredient as a G(Q)-module of a G(Af )-module is its
G(Af )-contragredient. (Indeed, a vector in the linear dual fixed by a congruence group Γ is
fixed by K = Γ, which is an open subgroup of G(Af ) by strong approximation.) By density
of G(Q) in G(Af ) the contragredient has no invariants. �

Remark 3.9. In the special case of ball quotients the isomorphism of L2 and intersection
cohomology is elementary and was already proved in [32, §6]. Also, [8] uses Langlands’
difficult spectral decomposition of L2(Γ\G(R)), but there are much easier proofs of the
spectral decomposition available when the real rank is one.

Remark 3.10. The proof of this proposition is the only place where we have to restrict to
congruence subgroups. In particular, if this assumption could be removed here the results of
the paper would hold more generally for arithmetic groups. The necessary analytic results
do not seem to be available in a nonadelic context.

Proposition 3.11. The G(Q)-invariants and coinvariants in H∗(M) are given by

H∗(M)G(Q) = H∗(M)G(Q) = H∗(P(VR)) = C[e]/(en+1).

Proof. By Prop. 3.8 and Thm 3.5 we are reduced to considering the extra summands J ∗.
For 0 < i < 2n we have (using Lemmas 3.1, 3.2, and 3.4):

HomG(Q)(C, IGP (∧iv∗`,C)) = HomP (Q)(C,∧iv∗`,C)

= {0}
HomG(Q)(I

G
P (∧iv∗`,C),C) = HomG(Q)(C, IGP (∧2n−i−2v∗`,C ⊗ u∗`,C))

= HomP (Q)(C,∧2n−i−2v∗`,C ⊗ u∗`,C)

= {0}
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where we use the fact that (any lift of) A`(Q) acts by the character χa+2b on ∧av∗`,C⊗∧bu∗`,C.
Similarly, for 0 < i < 2n we have

HomG(Q)(C, IGP (∧i−2v∗`,C ⊗ u∗`,C)) = HomP (Q)(C,∧i−2v∗`,C ⊗ u∗`,C)

= {0}
HomG(Q)(I

G
P (∧i−2v∗`,C ⊗ u∗`,C),C) = HomG(Q)(C, IGP (∧2n−iv∗`,C))

= HomP (Q)(C,∧2n−iv∗`,C)

= {0}.
This proves the proposition. �

Corollary 3.12. There is a G(Q)-invariant decomposition

H∗(M) = H∗(P(VR))⊕K ∗

which is orthogonal with respect to Poincaré duality and in which K ∗ has neither invariants
nor coinvariants.

3.5. Subvarieties and special cycle classes. Fix a subspace W ⊂ V of dimension m+1
on which h restricts to a form with signature (m, 1). Then

H = SU(h|W ) ⊂ SU(h)

is a Q-subgroup of Q-rank one with symmetric space the m-ball

BH =
{
` ∈ P(WR)

∣∣h|` < 0
}

contained in B. For ΓH = Γ ∩H(R) and MH,ΓH = ΓH\BH we have a morphism

j : MH,ΓH →MΓ.

It is well-known (and can be seen easily from the Siegel domain picture in 1.4) that this
extends analytically (and hence, since all varieties involved are projective, algebraically) to
morphisms M∗H →M∗ and

j̄ : MH,ΓH →MΓ.

Both extensions are finite onto a closed subvariety of dimension m, i.e. the composition of
a finite morphism and a closed immersion.

The generators or ∈ H2n(MΓ) and orH ∈ H2m(MH,ΓH ) fixed in 3.3 give a Gysin map

j̄! : H∗(MH,ΓH )→ H∗+2(n−m)(MΓ)

with the property that

j̄!(j̄
∗(α) · β) = α · j̄!(β) (for α ∈ H∗(MΓ), β ∈ H∗(MH,ΓH )).

The special cycle class is

ξΓ := j̄!(1) ∈ H2c(MΓ) (c = n−m).

i.e. it is the class in H2c(MΓ) defined by the property

j̄
∗(α) = λorH ⇐⇒ ξΓ · α = λor for α ∈ H2m(MΓ).

Lemma 3.13. If Γ′ ⊂ Γ is normal of finite index, then 1
|Γ/Γ′|

∑
γ∈Γ/Γ′ γ

∗(ξΓ′) = ξΓ.

Proof. The averaged class is Γ-invariant, hence belongs to H2c(MΓ). But it also has the
defining property of ξΓ so it must be ξΓ. �
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The inclusion P(WR) ⊂ P(VR) gives a cycle class

[P(WR)] ∈ H2c(P(VR))

which we think of as a class in H2c(MΓ) ⊂ H2c(M) which is G(Q)-invariant (cf. Prop.
3.11). The following is the analogue of a key result of [30] (Theorem 1, proved in §3 of loc.
cit.) and the proof is much the same (given Prop. 3.11).

Proposition 3.14. The G(Q)-submodule of H2c(M) generated by ξΓ ∈ H2c(MΓ) has a
one-dimensional space of G(Q)-invariants spanned by [P(WR)].

Proof. Let L be the G(Q-module generated by ξΓ. Since the space of invariants in H2c(M)
has dimension one, it will suffice to show that L contains [P(WR)]. Write ξΓ = ξ0 + ξ1 with
respect to the decomposition of Cor. 3.12. Since ξ0 ∈ H2c(MΓ), it will suffice (by Poincaré
duality for P(VR)) to show that

ξ0 · β = [P(WR)] · β for all β ∈ H2c(P(VR)). (3.8)

Note that for β ∈ H2m(P(VR)), we have

ξΓ · β = ξ0 · β.
(Indeed, otherwise ξ1 · β = λβ or would define an invariant linear functional β 7→ λβ on
K 2c in Cor. 3.12. But K i has no coinvariants, so this must be zero.) On the other hand
there is a diagram

H i(P(VR)) //

��

H i(MΓ)

j̄∗

��

H i(P(WR)) // H i(MH,ΓH ).

where the horizontal maps were defined in (3.3). This diagram commutes, so that j̄∗(β) =
λorH for β ∈ H2m(P(VR)) implies that β · [P(WR)] = λor. So for every invariant class β,
we have

ξΓ · β = λor = β · [P(WR)].
This proves (3.8) and hence that ξ0 = [P(WR)]. �

3.6. Restriction maps and Lefschetz properties. We continue with the notation above,
i.e. W ⊂ V is a subspace on which h restricts indefinitely, and H = SU(h|W ) ⊂ G in the
natural embedding.

The pullback maps j∗ and j̄
∗ are compatible with change of level and so define H(Q)-

module maps j∗ : H i(M)→ H i(MH) and j̄∗ : H i(M)→ H i(MH). By Frobenius reciprocity
one has G(Q)-module maps

Res : H i(M) −→ IGH(H i(MH))

Res : H i(M) −→ IGH(H i(MH))

given concretely by

Res(α)(g) = j∗(g−1 · α) = j∗((g·)∗(α))

Res(α)(g) = j̄
∗(g−1 · α) = j̄

∗((g·)∗(α))

(cf. the proof of Lemma 3.2 and the definition of the G(Q)-actions in 2.2). (Res is the map
considered in [30], except that in loc. cit. it is taken to have image in

∏
g∈G(Q)H

i(MH), of
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which IGH(H i(MH)) is naturally a subspace.) These maps are evidently compatible under
restriction of cohomology from compactifications to open ball quotients.

Proposition 3.15. For α ∈ H i(M), if Res(α) = 0 then α · [P(WR)] = 0.

Proof. This is the analogue of [30, Thm 2], and the proof is essentially that in [30, 4.3].
Let α ∈ H i(MΓ) ⊂ H i(M) with Res(α) = 0. Let g ∈ G(Q) and choose a subgroup Γ′ ⊂
Γ∩ g−1Γg of finite index which is normal in Γ. Let p : MΓ′ →MΓ be the projection, which
is a Galois cover with group Γ/Γ′. Let γ1, . . . , γr be coset representatives for the subgroup
ΓH/Γ′H in Γ/Γ′. Then p−1(j(MH,ΓH )) =

⊔
i γi ·j(MH,Γ′H

). i.e. the preimage of j(MH,ΓH ) in
MΓ′ is the disjoint union of translates of j(MH,Γ′H

) by the coset representatives. (Here the
same symbol j is used for maps at levels Γ and Γ′.) Then p−1(j̄(MH,ΓH )) =

⋃
i γi·j̄(MH,Γ′H

),
where we continue to use p for MΓ′ →MΓ. Now for α ∈ H i(MΓ), (γ−1

i )∗g∗(α) ∈ H i(MΓ′),
so that if Res(α) = 0 then (gγ−1

i )∗(α) = (γ−1
i )∗g∗(α) restricts to zero on j̄(MH,Γ′H

) for each
i, i.e.

j̄
∗((γ−1

i )∗g∗(α)) = 0

for each i. By definition of the cycle class ξΓ′ , this implies

0 = (γ−1
i )∗g∗(α) · ξΓ′ = g∗(α) · γ∗i (ξΓ′)

(since G(Q) acts by automorphisms of the cup product on H∗(M)). Summing over i and
using Lemma 3.13 we get

0 = g∗(α) · ξΓ = α · (g−1)∗(ξΓ) = 0 for all g ∈ G(Q).

Taking a linear combination as in Prop. 3.14 gives α · [P(WR)] = 0. �

The canonical decomposition of Theorem 3.5 gives an inclusion IH i(M∗) ⊂ H i(M).

Corollary 3.16. If W has dimension m+1 then Res is injective on the subspace IH i(M∗) ⊂
H i(M) for i ≤ m.

Proof. The class [P(WR)] is a nonzero multiple of en−m where e (as defined in 3.3) has the
hard Lefschetz property on IH∗(M∗) (by [2]). (In fact, in our situation, the hard Lefschetz
property can be checked directly using (3.7) and the description of e in terms of the Killing
form.) In particular, ·en−m is injective in degrees ≤ m. �

For the cohomology of compactifications we have:

Theorem 3.17. If W has dimension m+ 1 then

Res : H i(M) −→ IGH(H i(MH))

is injective for i ≤ m.

Proof. Let ` ⊂ W be isotropic. In degrees i ≤ m the pullback map j̄
∗ : H i(MΓ) →

H i(MH,ΓH ) is given on the extra summand indexed by ` by the natural map

H i
DΓ,`

(MΓ) −→ H i
DH,ΓH,`

(MH,ΓH )

induced by the inclusion of pairs

(MH,ΓH ,MH,ΓH−DH,ΓH ,`) ⊂ (MΓ,MΓ−DΓ,`).
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In the limit these give an H(Q)-module map H i
D(M) −→ H i

DH
(MH). The associated

G(Q)-map
H i

D(M) −→ IGH(H i
DH

(MH))

is the restriction of Res to the summand H i
D(M). By Cor. 3.16 it suffices to show that this

map is injective for i ≤ m. Using the induced module descriptions of H i
D(M) and H i

DH
(MH)

(Lemma 3.3), the fact that IGH I
H
P`,H

= IGP`,H = IGP` I
P`
P`,H

, and the fact that u`,H = u`, we are
reduced to showing that

∧i−2v∗` −→ IP`P`,H (∧i−2v∗`,H) (3.9)

(induced by v`,H ⊂ v`) is injective for i ≤ m. Notice that ∧iv` is irreducible as a M̃`-
module, and hence as a P -module. (In the notation of 1.3, the subgroup SU(J0) ⊂ M̃` acts
on v` by its standard representation, so that the exterior powers are already irreducible
for this subgroup.) So (3.9) is injective if it is nonzero. But (3.9) comes by Frobenius
reciprocity from the P`,H(Q)-mapping ∧i−2v∗` → ∧i−2v∗`,H , which is obviously nonzero if
i− 2 ≤ dim v`,H = 2m. �

Remark 3.18. In the compact case, when m = n−1, a linear combination of Hecke translates
of the cycle class ξΓ is the class of an ample divisor, namely the class [P(WR)] ∈ H2(MΓ)
(by Prop. 3.14, i.e. Theorem 1 of [30]). I do not know if this is true in the noncompact
case. (The projection of ξΓ to the extra summand in degree 2 is the class of DH,ΓH in
H2(DΓ), which can be Hecke-averaged to produce an ample class in DΓ. The projection of
ξΓ to IH2(M∗Γ) can be Hecke-averaged to produce the class [P(WR)] (by Prop. 3.14).) The
desired consequence is in any case available (Theorem 3.17).

For the cohomology of the open ball quotient we have the following result, which implies
Theorem 0.1 (as reformulated in the introduction using Hecke correspondences):

Theorem 3.19. If W has dimension m+ 1 then

Res : H i(M) −→ IGH(H i(MH))

is injective for i ≤ m− 2.

Proof. Since H i(M)→ H i(M) is surjective for i ≤ n− 1 (by (2.5)) and factors through the
projection H i(M)→ IH i(M∗), it suffices (by Cor. 3.16) to show that for 0 6= α ∈ IH i(M∗)
the class Res(α) survives under restriction IGH(H i(MH)) → IGH(H i(MH)) to the open ball
quotient if i ≤ m−2. For this we shall use the class eH ∈ H2(MH) as in 3.3. It is clear from
the definition there that j̄∗(e) = eH . Now cupping with eH has the hard Lefschetz property
on IH∗(MH) while it acts by zero on the extra summands in the canonical decomposition
of H∗(MH) given by Theorem 3.5 because the class eH is pulled back from M∗H . For
α ∈ IH i(M∗) with i ≤ m− 2, there is a g ∈ G(Q) such that

0 6= Res(e · α)(g) ∼ eH · Res(α)(g).

(We have used the invariance of e; here ∼ means up to a nonzero constant). Hence Res(α)
has a nonzero projection to the summand IGH(IH i(M∗H)). But IH i(M∗H) = H i(MH) since
i ≤ m− 2, so Res(α) survives in IGH(H i(MH)). �

Remark 3.20. The argument shows that if m = n − 1, Res is injective on the subspace
e ·H i−2(M) for i = n− 2, n− 1.
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3.7. Cup products. The decomposition of H∗(M) is not compatible with cup product
(intersection cohomology does not in general have a ring structure, neither is there an
obvious ring structure on the extra summands). Nevertheless, we can use the same methods
to prove a nonvanishing statement for cup products in H∗(M) by looking at the diagonal
subgroup ∆G ⊂ G×G.

Pullback by the diagonal embedding MΓ −→MΓ ×MΓ gives, as earlier, a map

Res : H∗(M)⊗H∗(M) −→ IG×G∆G (H∗(M))

related to the cup product by

Res(α⊗ β)(g, h) = (g·)∗(α) · (h·)∗(α) = (h−1g)∗(α) · β
for α, β ∈ H∗(M). Similarly, the diagonal embedding MΓ −→MΓ ×MΓ defines a map

Res : H∗(M)⊗H∗(M) −→ IG×G∆G (H∗(M))

related to the cup product in H∗(M). There is an analogue of Prop. 3.15, namely that
Res(α⊗β) 6= 0 if (α⊗β)·[∆P(VR)] 6= 0. (Briefly, the (G×G)(Q)-invariants in H∗(M)⊗H∗(M)
are H∗(P(VR)) ⊗ H∗(P(VR)). The proof of Prop. 3.14 can be repeated to show that the
cycle class of the diagonal in MΓ ×MΓ generates a (G × G)(Q)-module with a space of
invariants spanned by the class [∆P(VR)]. The proof of Prop. 3.15 then goes through with
only notational changes.)

Theorem 3.21. If α ∈ H i(M), β ∈ Hj(M) with i + j ≤ n − 2 then there exists g ∈ G(Q)
such that g(α) · β 6= 0.

Proof. This amounts to showing that Res(α ⊗ β) 6= 0 for α, β as in the theorem. We will
argue as in [30, p. 251] (substituting the analogue of Prop. 3.15 for Thm 2 of loc. cit.) for
the map Res and use the same trick as earlier to deduce the result for Res(α⊗ β).

The class of the diagonal ∆P(VR) ⊂ P(VR) × P(VR) is a sum [∆P(VR)] =
∑

k L
k ⊗ Ln−k

where L = c1(L), and L 7→ e under the embedding of H∗(P(VR)) in H∗(M). So for
α ∈ H i(M), β ∈ Hj(M),

α⊗ β · [∆P(VR)] =
∑

k
α · ek ⊗ β · en−k.

Now e has the hard Lefschetz property on the summand IH∗(M∗), so if α, β ∈ IH∗(M∗)
then α · ek 6= 0 if i + k ≤ n and β · en−k 6= 0 if j + n − k ≤ n. If i + j ≤ n choosing k = j
satisfies both these conditions, so that α⊗ β · [∆P(VR)] 6= 0. By the analogue of Prop. 3.15,
Res(α⊗β) 6= 0. Thus if α ∈ IH i(M∗), β ∈ IHj(M∗) and i+ j ≤ n we have Res(α⊗β) 6= 0.

Now suppose that i + j ≤ n − 2. Applying the previous argument to e2 · α ⊗ β where
e2 := e ⊗ 1 + 1 ⊗ e gives that 0 6= Res(e2 · α ⊗ β) ∼ e · Res(α ⊗ β). Since e· is zero on the
terms in H∗(M) supported at infinity, Res(α⊗ β) 6= 0 in H∗(M). �
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[24] Takayuki Oda, A note on the Albanese variety of an arithmetic quotient of the complex hyperball, J.
Fac. Sci. Univ. Tokyo 28 (1981), 481–486.

[25] C. Peters and J. Steenbrink, Mixed Hodge structures, Ergeb. der Math. 52, Springer-Verlag (2008).
[26] R. Pink, Arithmetical compactification of mixed Shimura varieties, Bonner Math. Schriften 209 (1990).
[27] L. Saper and M. Stern, L2 cohomology of arithmetic varieties, Ann. of Math. 139 (1990), 1–69.
[28] W. Scharlau, Quadratic and Hermitian Forms, Grund. der math. Wiss. 270, Springer-Verlag (1985).
[29] T. N. Venkataramana, Abelianness of Mumford-Tate groups associated to some unitary groups, Com-

positio Math. 122 (2000), 223–242.
[30] T. N. Venkataramana, Cohomology of compact locally symmetric spaces, Compositio Math. 125 (2001),

221–253.
[31] R. Weissauer, Differentialformen zu Untergruppen der Siegelschen Modulgruppe zweiten Grades, J.

Reine Angew. math. 391 (1988), 100–156.
[32] S. Zucker, L2 cohomology of warped products and arithmetic groups, Invent. Math. 70 (1982), 169–218.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Co-
laba, Mumbai 400005, India

E-mail address: arvind@math.tifr.res.in


