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Abstract. The Hecke invariants in the cohomology of the reductive Borel-Serre com-
pactification of a locally symmetric space are computed in terms of the compact dual
symmetric space. This is used to show that the Chern classes of the canonical topological
extensions of automorphic vector bundles to the reductive Borel-Serre compactification of
a Shimura variety have motivic properties in Hodge, de Rham, and Galois realizations.

The reductive Borel-Serre (RBS) compactification M of a noncompact arithmetic lo-
cally symmetric space M = Γ\D was introduced by Zucker [Z1] by modifying the earlier
construction of Borel and Serre. It has since played a central role in several important
developments related to automorphic forms and the cohomology of arithmetic groups, e.g.
the topological trace formula [GHM, GKM, GM] and the theory of L-modules and van-
ishing theorems [Sa1, Sa2]. When M is a connected Shimura variety (i.e. D is Hermitian
and Γ congruence), the RBS compactification interpolates between the two known algebraic
compactification methods: It has much milder singularities than the minimal compactifica-
tion of Baily-Borel [BB] and is canonical, unlike the smooth toroidal compactifications of
Mumford et al. [AMRT]. Although M is not an algebraic variety, it is motivic [AZ]. In
particular, its cohomology has a mixed Hodge structure, an algebraic de Rham k-structure,
and an l-adic Gal(k̄/k) representation for each l (cf. [Z3, N2, AZ], see §2 for a review; here
k is the number field of definition of M).

The main results here are the following:
(1) We compute the invariants and coinvariants in the cohomology of the RBS com-

pactification of an arithmetic locally symmetric space under its natural symmetries, the
Hecke correspondences. The invariants are canonically a direct summand isomorphic to the
cohomology of the compact dual (Theorem 1).

(2) When M is a Shimura variety we show that there is a good theory of Chern classes of
automorphic vector bundles on the RBS compactification. Automorphic vector bundles on
M extend naturally to topological vector bundles on M ([GT, Z2]) and their Chern classes
span the invariants in cohomology. We show (using (1)) that these topological Chern classes
look motivic, i.e. in Hodge, de Rham, and Galois realizations of H∗(M) they have the
properties one would expect if M were an algebraic variety over k and automorphic vector
bundles on M extended algebraically to M , respecting fields of rationality (Theorem 2).

In the rest of this introduction we state these two results precisely (0.1, 0.2), briefly
discuss their proofs and related results in the literature (0.3), and discuss what happens
for the minimal compactification (0.4), where analogues of (1) and (2) fail, but for rather
interesting reasons.

0.1. Invariants in cohomology. Let G be a connected reductive group over Q, K∞ ⊂
G(R) a maximal compact subgroup, AG the maximal Q-split torus in the centre of G, and
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A∞ = AG(R)0. We assume that AG is also the maximal R-split torus in the centre of G.
For a compact open subgroup K ⊂ G(Af ) the double coset space

MK = G(Q)\G(A)/K0
∞A∞K

is a finite union of locally symmetric spaces like Γ\D where D = G(R)0/K0
∞A∞ and

Γ ⊂ G(Q) is a congruence subgroup. The RBS construction applied to each component
gives a compact topological space MK in which MK is open and dense. The direct limit

H∗(M,C) = lim−→K
H∗(MK ,C)

is an admissible G(Af )-module, where g ∈ G(Af ) acts by pullback by the isomorphism

·g : MgKg−1 →MK induced by right translation by g.

The cohomology of the compact symmetric space Ď dual to D is naturally identified with
the ring of G(R)-invariant differential forms on G(R)/K0

∞A∞. Including invariant forms in
the C∞ de Rham model of [N1] gives a map

θ : H∗(Ď,C)→ H∗(M,C).

Using analytic methods from [F1], we show:

Theorem 1. The mapping θ : H∗(Ď,C) → H∗(M,C) is an isomorphism onto the G(Af )-
invariants and induces an isomorphism onto the G(Af )-coinvariants. In particular, the

invariants are naturally a direct summand in H∗(M,C).

0.2. Chern classes of automorphic vector bundles. Assume now that G (as in 0.1)
is part of a (motivic) Shimura datum (G,X), i.e. X is a G(R)-conjugacy class of ho-
momorphisms C× → G(R), and Deligne’s axioms hold (cf. 2.1). Then each component
of X = G(R)/K0

∞A∞ is a Hermitian symmetric domain. The Shimura variety at level
K ⊂ G(Af ) is

MK = G(Q)\X ×G(Af )/K = G(Q)\G(A)/K0
∞A∞K.

This is a quasiprojective complex variety with a canonical model over the reflex field E =
E(G,X) (cf. [BB, Mi]).

In this setting the homomorphism θ of Theorem 1 has another description. The compact
dual Ď is a flag variety for G(C), and any G(C)-homogeneous vector bundle V̌ on Ď gives an
automorphic vector bundle VK on MK . When MK is noncompact the underlying topological
vector bundle of VK extends naturally to a topological vector bundle VK on MK (see [GT,
9.2] or [Z2, 1.9]) and we consider the Chern classes

ci(VK) ∈ H2i(MK ,Q).

Then θ(ci(V̌ )) = (−1)ici(VK). (In the compact case this is essentially Hirzebruch propor-
tionality; in general it follows from results of Zucker [Z2], see 3.6.) Since the cohomology
of Ď is generated by Chern classes of homogeneous bundles, we see that θ is Betti rational.
(In contrast, when G = GL(n), θ is likely to be highly transcendental [B].)

The cohomology of MK has a mixed realization (in the sense of [D] or [J]): The Betti
cohomology H∗B(MK) = H∗(MK ,Q) is part of a mixed Hodge structure, there is an alge-

braic de Rham cohomology E-vector space H∗dR(MK/E) with a Hodge filtration F and a

comparison isomorphism H∗dR(MK/E)⊗E C = H∗(MK ,C), and for each prime l there is an

l-adic Gal(Q/E)-representation H∗l (MK) with a comparison isomorphism H∗B(MK)⊗QQl =

H∗l (MK). In each case the weights are like those of a complete variety. These structures are
recalled in detail in §2, following [N2, NV] or [AZ]. We then have:
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Theorem 2. The Chern classes ci(VK) ∈ H2i(MK ,Q) of canonical topological extensions
of automorphic vector bundles to the RBS compactification have the following properties:

(i) They are of type (i, i) in the mixed Hodge structure, i.e. ci(VK) belongs to F iH2i(MK ,C)∩
F iH2i(MK ,C).

(ii) If the homogeneous vector bundle V̌ is L-rational for E ⊂ L ⊂ C then the classes
cdRi (VK) := (2π

√
−1)i ci(VK) ∈ H2i(MK ,C) are de Rham L-rational and belong to F iH2i

dR(MK/L).

(iii) If the homogeneous vector bundle V̌ is L-rational for E ⊂ L ⊂ Q then for each l,
the action of Gal(Q/L) on ci(VK) ∈ H2i

l (MK) is by χ−il , where χl is the l-adic cyclotomic
character.

When MK is compact (i) is immediate from the algebraicity of automorphic vector bun-
dles ([BB, §10]), and (ii) and (iii) follow from Harris’s theory [H1] of canonical models for
automorphic vector bundles. When MK is noncompact, there is no a priori reason to expect
that the topologically defined Chern classes ci(VK) should have motivic properties. More
surprising perhaps is that the proof of these geometric properties uses the analytic input
of Theorem 1. The use of Hecke eigenvalues to characterize the Chern classes is the main
novelty here (see further remarks on the proof in 0.3).

Theorem 2 and the description of θ give (for the correct E-structure on Ď):

Corollary 1. θ gives an isomorphism of mixed realizations from H∗(Ď) onto the summand
of invariants in H∗(M).

A motivic version of the corollary should hold, i.e. the motive of MK from [AZ] should
have the motive of Ď as a direct summand characterized by Hecke invariance properties,
but this seems well out of reach even in the compact case. The problem of giving a motivic
meaning to VK in the noncompact case (e.g. by defining Chern classes in the cycle groups
of the motive of MK) seems quite interesting.

Theorem 2 can be used, together with methods of [N2], to show that the invariants

H∗c(M)G(Af ) of the cohomology of the Shimura variety is a mixed Tate realization.

0.3. On the proofs. When MK is compact (i.e. MK = MK) Theorem 1 follows from the
semisimplicity of H∗(M,C) as a G(Af )-module and the description of invariants in terms
of the constant representation, both of which follow from Matsushima’s formula (see 1.2).
In the noncompact case H∗(M,C) is not G(Af )-semisimple and does not satisfy Poincaré

duality. The proof of Theorem 1 uses the C∞ de Rham models for H∗(MK ,C) and its
Poincaré dual theory WdH∗(MK ,C) = HdimM−∗(MK ,C) from [N1], the fundamental results
of Franke [F1] relating cohomology and automorphic forms, and a filtration on the space of
automorphic forms from [F1, §6]. (The proof takes up §1; for an outline see 1.2. For the
relation to the computation of the coinvariants of H∗(MK) in [F2] see Remark 1.6.3.)

Theorem 2 is related to (and depends on) several results in the literature. The minimal
compactification M∗K , the RBS compactification p : MK → M∗K , and any smooth toroidal
compactification π : MΣ

K →M∗K are related by a commutative diagram (for ? = B, dR, l):

H∗?(M∗K)
π∗ //

p∗ ++

H∗?(MΣ
K)

H∗?(MK)
γ∗

33

(See [GT] for ? = B and §2 for an explanation using [NV, N2] or [AZ]). Mumford [Mu] (see
also Harris [H2]) showed that an automorphic vector bundle VK has a canonical extension
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V Σ
K to a vector bundle on MΣ

K and generalized Hirzebruch proportionality using the Chern
classes ck(V

Σ
K ). Goresky and Pardon [GP] showed that there are classes

cGPi (VK) ∈ H2i(M∗K ,C)

refining Mumford’s classes, i.e. π∗(cGPi (VK)) = ci(V Σ
K ) for any π : MΣ

K → M∗K . This is
remarkable, because VK need not admit an extension (not even topologically) as a vec-
tor bundle over M∗K ; we discuss these classes further in 0.4 below. Zucker [Z2] showed

that ci(VK) = p∗(cGPi (VK)), so that γ∗(ci(VK)) = ci(V Σ
K ). Theorem 2 then follows from

Theorem 1, results of Harris [H2] on the E-rationality of V̌ 7→ V Σ
K , and the following fact:

Proposition 1. The map γ∗ is injective on the invariants in H∗(MK).

Note that the splitting property provided by Theorem 1 is the key to proving the prop-
erties of ci(VK) in H2i(MK) and not simply in its top weight quotient GrW

2i H
2i(MK) =

γ∗(H2i(MK)).

0.4. Minimal compactification. What happens on the minimal compactification? For
intersection cohomology the answer is straightforward (see 4.1), so consider the cohomology
of M∗K . There is a surjection of mixed realizations

H∗(M∗K) −→ H∗(Ď)

taking cGPi (VK) to (−1)ici(V̌ ) (e.g. by Theorem 1). The Goresky-Pardon classes cGPi (VK)
are defined via Chern forms of certain explicit connections (from [H1]) and a patching
construction for connections, so that the relations between them, their Betti or de Rham
rationality properties, their Hodge types, and their Galois properties are all unclear. (See
[GP, 1.6] for these questions.) The lack of an automorphic description for H∗(M∗K ,C) makes

an approach like that for MK difficult.
In fact, the situation is subtle. The surjections above give a surjection

H∗(M∗)G(Af ) −→ H∗(Ď)

where H∗(M∗) := lim−→K
H∗(M∗K). In general, this is not an isomorphism and is not split

in mixed realizations: In the example G = Sp(6) one finds that H6(M∗)G(Af ) contains a
nontrivial extension of Q(−3) by Q(0). (The extension class can be computed in terms
of ζ(3) in the mixed Hodge realization. Similar examples exist for Sp(2g), g ≥ 3.) The
conjectural picture one gets is the following: The Goresky-Pardon construction gives a
natural splitting of H∗(M∗,C)G(Af ) → H∗(Ď,C) compatible with the Hodge filtration, but

there is no motivic splitting of H∗(M∗)G(Af ) → H∗(Ď). For a more detailed discussion of
the example and what we expect to be true in general see 4.3.

A different perspective, at least for Shimura varieties of Hodge type, comes from p-adic
Hodge theory in the recent work of Scholze and others (see [Sc1, Sc2]). For such Shimura

varieties, the limits MKp ∼ lim←−KpM
ad
KpKp,Cp and M∗Kp ∼ lim←−KpM

∗,ad
KpKp,Cp of the adic spaces

associated with the varietiesMKpKp andM∗KpKp are perfectoid. (HereKp ⊂ G(Apf ) is a fixed

tame level andKp ⊂ G(Qp) shrink to the identity.) There is a period map πHT : MKp → Ďad
Cp

to the (adic space of the) flag variety which extends to the minimal compactification at
infinite level, i.e. to

πHT : M∗Kp −→ Ďad
Cp ,
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and is G(Apf )-equivariant (for the trivial action on the target). (See [Sc2, Theorem 16.1]

or [Sc1, Theorem III.3.17] for a precise statement and proofs.) Automorphic vector bun-
dles are simply pulled back by πHT, hence extend to the limit M∗Kp . This would give a
beautiful explanation for the existence of Chern classes in the invariants in the cohomology
lim−→Kp

H∗(M∗KpKp ×E Q,Ql). The period map is transcendental, so that while the classes

will have the right Hodge-Tate properties, the splitting given by π∗HT need not be Galois-
equivariant. This fits with the picture above that there is a natural analytic splitting but
no motivic one.

0.5. The contents of the various sections are as follows: §1 recalls the necessary results
about automorphic forms and gives the proof of Theorem 1. §2 reviews the mixed realiza-
tions in the cohomology of the RBS compactification for Shimura varieties. §3 discusses
automorphic vector bundles and their canonical extensions and contains the proofs of Propo-
sition 1 and Theorem 2. §4 discusses the situation on other compactifications.

I thank N. Fakhruddin for helpful conversations and a suggestion (used in the proof of
Lemma 3.7.2). This work was partially supported by a Swarnajayanti Fellowship (DST/SF/05/2006
(2008-2013)).

1. (Co)Invariants in cohomology

In this section we prove Theorem 1.6.2, which implies Theorem 1 of the introduction.
We will write H∗(−) for singular cohomology with complex coefficients in this section.

1.1. Locally symmetric spaces and the compact dual. Fix a connected reductive Q-
group G and a maximal compact subgroup K∞ ⊂ G(R). We assume that the Q-split part
AG of the central torus of G is also the R-split part and set A∞ := AG(R)0. For K ⊂ G(Af )
a compact open subgroup let

MK = G(Q)\G(A)/A∞K
0
∞K.

Fix a component D of G(R)/K0
∞A∞. The set of double cosets StabG(Q)(D)\G(Af )/K is

finite (by strong approximation). If {gi} is a set of representatives then

MK =
⊔

i
Γi\D for Γi = StabG(Q)(D) ∩ giKg−1

i .

Thus for K small enough (e.g. neat in the sense of [P, 0.6]), MK is a finite disjoint union
of smooth locally symmetric spaces, compact if and only if G is Q-anisotropic.

Let G0 := Gder(R)0 and K0,∞ := K∞ ∩G0 = K0
∞ ∩G0; this is maximal compact in G0.

Then D is identified with the symmetric space G0/K0,∞ of G0 and for K small enough,

MK =
⊔
i Γi\D for Γi ⊂ Gder(Q). The compact dual symmetric space is

Ď = Gc0/K0,∞

where Gc0 is a compact real form of G0 containing K0,∞. Its cohomology is identified with
the ring of G0-invariant (equivalently, G(R)0-invariant) differential forms on D, or with the
G(R)-invariant differential forms on G(R)/K0

∞A∞.
The Lie algebras of G(R) and G0 are denoted g and g0, respectively.



6 ARVIND NAIR

1.2. Outline of the argument. First consider the compact case. The homomorphism
θ : H∗(Ď)→ H∗(M) is induced by the inclusion of the constant functions in all smooth K∞-
finite functions on G(Q)A∞\G(A). Matsushima’s formula gives a direct sum decomposition
as G(Af )-modules

H∗(M) = lim−→K
H∗(MK) =

⊕
π=πf⊗π∞

m(π)πf ⊗H∗(g,K0
∞A∞, π∞).

This is an algebraic direct sum, over irreducible π = πf ⊗π∞ appearing in the Hilbert space
direct sum decomposition of L2(G(Q)A∞\G(A)), and the multiplicities m(π) are finite. The
G(Af )-invariants come from the constant representation, for which the multiplicity is one,
so that the invariants are

H∗(M)G(Af ) = H∗(g,K0
∞A∞,C) = H∗(g0,K0,∞,C) = H∗(Ď).

Invariants and coinvariants are isomorphic because H∗(M) is G(Af )-semisimple.

In the noncompact case there is no replacement for Matsushima’s formula and H∗(M) is
not semisimple as a G(Af )-module. The C∞ de Rham model for the cohomology groups

H∗(MK) and for the Poincaré dual cohomology groups WdH∗(MK) = HdimRM−∗(MK) given
by [N1] is the following: There are (g,K∞)×G(Af )-modules B(G)1 ⊂ R(G)1 of functions
on G(Q)A∞\G(A) (defined in 1.4 below) such that

H∗(MK) = H∗(g,K0
∞A∞, B(G)K1 )

WdH∗(MK) = H∗(g,K0
∞A∞, R(G)K1 ). (1.2.1)

The space B(G)1 consists of functions bounded up to certain logarithmic terms, cf. 1.4.
The inclusions C ⊂ B(G)1 ⊂ R(G)1 induce G(Af )-maps

H∗(Ď) −→ H∗(M) −→WdH∗(M) = lim−→K
WdH∗(MK).

The fundamental result of Franke [F1] allows us to replace R(G)1 in (1.2.1) by a certain
subspace of automorphic forms FinΘR(G)1 (defined in 1.5). Franke’s method of filtering
spaces of automorphic forms by conditions on exponents allows to show that the subspace of
FinΘR(G)1 with the same Hecke eigenvalues as the trivial representation is exactly the con-
stants (see Theorem 1.5.1 for the precise statement). This allows us to show that H∗(Ď) is a
direct summand (as a Hecke-module) of WdH∗(M) and that there are no other Hecke-trivial
constituents. By duality we conclude that H∗(M) contains H∗(Ď) as a direct summand and
has no other Hecke-trivial constituents.

1.3. Notation. We fix G,AG, A∞,K∞, G0 as in 1.1 and a good maximal compact subgroup
K = K∞ ×

∏
pKp of G(A), so that G(A) = KP0(A) for any minimal parabolic subgroup

P0 ⊂ G. In addition, we will use the following notation in this section:
Fix a maximal Q-split torus A0 in G such that A0(R) is stable under the Cartan involution

of G(R) given by K∞. Let M0 be the centralizer of A0 in G; this is a minimal Levi subgroup.
For any standard Levi subgroup M ⊃M0 the split centre is a torus AM ⊂ A0 (so AM0 = A0)
and this gives the dual vector spaces aM = LieAM (R) and ǎM = X∗(M)⊗R = X∗(AM )⊗R.
Restriction of characters by M0 ⊂M gives an embedding ǎM ⊂ ǎ0. Restriction by AM ⊂ A0

gives a projection ǎ0 � ǎM inverse to ǎM ⊂ ǎ0. Similarly, for a standard Levi M , restriction
by M ⊂ G and AG ⊂ AM gives canonical direct sum decompositions aM = aG ⊕ aGM and
ǎM = ǎG ⊕ ǎGM . When M = M0 we write ǎ0 = ǎG ⊕ ǎG0 .
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The roots of A0 in G form a root system Φ0 in ǎ0; Φ0 spans ǎG0 . Fix a minimal parabolic
subgroup P0 ⊃ M0. This fixes positive roots Φ+

0 ⊂ Φ0, a system of simple roots ∆0 ⊂ Φ+
0 ,

a Weyl chamber ǎG+
0 and its closure ǎG+

0 , and a positive cone +ǎG0 and its closure +ǎG0 , and

we have ǎG+
0 ⊂+ǎG0 . We will also use the notation ǎ+

0 = ǎG + ǎG+
0 and +ǎ0 = ǎG + +ǎG0 .

The half-sum of roots in Φ0 is denoted ρ0; it belongs to ǎG+
0 . For any standard P , the

half-sum of roots of AM appearing in the nilradical of LieP (R) is denoted ρP ∈ ǎGM . An

element ν ∈ ǎG+
0 determines a standard parabolic P (ν) and standard Levi M(ν): The root

group of α ∈ Φ0 is contained in P (ν) if and only if (α, ν) ≥ 0. Then ν ∈ ǎM(ν).

For a standard Levi M let HM : AM (R)0 → aM be the logarithm map. Since M(A) =
M(A)1×AM (R)0 (where M(A)1 is the subgroup of g with |χ(g)|A = 1 for all χ ∈ X∗(M)) we
get a map HM : M(A)→ aM by composing with the projection. (When M = M0 we write
H0.) Let KM

∞ = K∞∩M(R). Then λ ∈ (ǎM )C defines a one-dimensional (m,KM
∞ )×M(Af )-

module CMλ by taking the multiples of the function m 7→ e〈λ,HM (m)〉 with the action of M(A)
by right translation.

We will use an induction functor IndGP from (p,KM
∞ )×P (Af )-modules to (g,K∞)×G(Af )-

modules. This is the functor used in [F1, §4] or [W, 3.3]; in particular it is normalized. (Our
main concern will be its effect at the finite places, where it is the usual normalized induction
of smooth representations.)

1.4. Spaces of functions on G(Q)\G(A). For t ∈ R let

A0(t) := {a ∈ A0(R)0 : 〈α,H0(a)〉 > t for all α ∈ ∆0}.

For a compact subset ω ⊂ P0(A) and t ∈ R define the adelic Siegel set

S = S(t, ω) = {pak : p ∈ ω, a ∈ A0(t), k ∈ K}.

We take t small enough and ω large enough so that by reduction theory we have (1) G(A) =
G(Q)S and (2) {γ ∈ G(Q) : γS∩S 6= ∅} is finite. Thus S is a coarse fundamental domain
for G(Q) in G(A). We use this to define certain (g,K∞)×G(Af )-modules of functions on
G(Q)\G(A) via growth conditions (following [F1, §2.1] or [W, §1]). Let ‖ · ‖ be a norm on
a0.

Let S(G) be the space of smooth K∞-finite functions of uniform moderate growth on
G(Q)\G(A). Recall that this means there exists N ∈ N such that for all X ∈ U(g), there
exists C such that for g = pak ∈ S,

|(Xf)(pak)| ≤ CeN‖H0(a)‖.

Let R(G) be the subspace of S(G) of functions satisfying the following condition: For all
X ∈ U(g), there exists C such that for any N ∈ Z and pak ∈ S,

|(Xf)(pak)| ≤ Ce〈2ρ0,H0(a)〉(1 + ‖H0(a)‖)N .

Let Slog(G) be the space of functions in S(G) satisfying the following: There exists an
N ∈ N such that for all X ∈ U(g), there exists C such that for pak ∈ S,

|(Xf)(pak)| ≤ Ce〈ρ0,H0(a)〉(1 + ‖H0(a)‖)N .

Finally let B(G) be the space of functions in S(G) satisfying: ∃N ∈ N such that ∀X ∈
U(g) ∃C such that for pak ∈ S,

|(Xf)(pak)| ≤ C(1 + ‖H0(a)‖)N .
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In words, these are the functions which are bounded up to logarithmic factors, and have
similarly bounded U(g)-derivatives. The constants belong to B(G).

There are (g,K∞)×G(Af )-module inclusions

C ⊂ B(G) ⊂ Slog(G) ⊂ R(G) ⊂ S(G).

We will also consider the chain of inclusions

C ⊂ B(G)1 ⊂ Slog(G)1 ⊂ R(G)1 ⊂ S(G)1

of subspaces of functions which are A∞-invariant, i.e. descend to G(Q)A∞\G(A).

Remark 1.4.1. The relation to the spaces defined in [F1] is as follows:
S(G)1 is the space denoted S∞(G(Q)A∞\G(A)) in [F1];
R(G)1 is the space denoted Sρ−τ−log(G(Q)A∞\G(A)) in [F1] for τ = ρ0;
Slog(G)1 is the space denoted Slog(G(Q)A∞\G(A)) in [F1];
B(G)1 is the space denoted Sρ−τ+log(G(Q)A∞\G(A)) in [F1] for τ = −ρ0.

Franke’s spaces are defined using weighted L2 conditions whereas we have used weighted
boundedness conditions (as in [W], where S(G) and Slog(G) are defined). The equivalence
between the two types of conditions follows from the Sobolev-type estimate of Proposition
2 on p. 198 of [F1].

1.5. Automorphic forms. Fix a Cartan subalgebra h of gC containing a0 (hence contained
in (m0)C). This gives a root system Φ = Φ(h, gC) and Weyl group W = W (h, gC). Fix a
system of positive roots Φ+ ⊂ Φ = Φ(h, gC) compatible with Φ+

0 (i.e. if β ∈ Φ+ then
β|a0 ∈ Φ+

0 ∪ {0}). The half-sum of roots in Φ+ will be denoted ρh; so ρh|a0 = ρ0.

Recall that the Harish-Chandra isomorphism Z(g) ∼= S(h)W identifies infinitesimal char-
acters with the W -orbits in ȟ and ideals of finite codimension in Z(g) with finite W -invariant
sets in ȟ. For a finite W -invariant set Θ ⊂ ȟ with corresponding ideal IΘ and a (g,K∞)-
module V let

FinΘV := {v ∈ V : ∃n such that InΘ v = 0}.
Thus, for example, FinΘS(G) and FinΘR(G) are spaces of automorphic forms for G. The
direct sum of FinΘS(G) as Θ runs over W -orbits in ȟ is the space of all automorphic forms.

For a set of finite primes S containing all but finitely many finite primes let KS =∏
p∈S Kp. In the spherical Hecke algebra HS = ⊗p∈SHp, where Hp = H(G(Qp)//Kp) is

the convolution algebra of Kp-biinvariant smooth functions on G(Qp), we have the maximal
ideal IS annihilating the trivial representation. For an admissible G(Af )-module V one
considers the space of KS-spherical vectors killed by some power of IS :

V KS
IS

:= {v ∈ V KS : ∃n s.t. InSv = 0}

and the direct limit over all such S

VI := lim−→S
V KS
IS

is a direct summand of V . (For any KS ⊂ G(AS), V KSKS
has a decomposition according to

maximal ideals of HS . Taking a direct limit over KS and then over S gives a decomposition
of V in which VI is one summand.) For example, for the spaces of automorphic forms
considered above (which are G(Af )-admissible by the classical theorem of Harish-Chandra),
we have

FinΘR(G)KS1,IS
= {f ∈ FinΘR(G)KS1 : ∃n s.t. InSf = 0}
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and
FinΘR(G)1,I := lim−→S

FinΘR(G)KS1,IS
.

This is a direct summand of FinΘR(G)1.
Henceforth fix the W -orbit in ȟ:

Θ := W · ρh.
This orbit corresponds to the trivial character of Z(g), so that FinΘR(G)1,I contains the
constant functions.

Theorem 1.5.1. FinΘR(G)1,I is the space of constant functions.

Proof. We will use one of Franke’s filtrations on the space FinΘS(G)1, which we recall
following [F1, §6] or [W, 4.7, 6.4].

First we need an elementary construction. For the finite set Θ ⊂ ȟ define another finite

set Θ+ ⊂ ǎ+
0 as follows: For θ ∈ Θ and a standard Levi M let θM ∈ (ǎM )C be the restriction

to (aM )C. Considering Re(θM ) ∈ ǎM as an element of ǎ0, let Re(θM )+ ∈ ǎ+
0 be the closest

point to Re(θM ) in ǎ+
0 . (Here we have fixed an inner product on ǎ0 invariant under the

Weyl group of Φ0. The elements θM ∈ ǎM belong to ǎGM , so we could as well work in ǎG0
here.) Taking the union over M and θ ∈ Θ gives Θ+, i.e.:

Θ+ :=
⋃

M

{
Re(θM )+ : θ ∈ Θ

}
.

Note that Θ+ ⊂ ǎG+
0 . There is a natural way to filter Θ+. Let Θ0

+ be the set of maximal

elements in the standard ordering (viz. λ ≤ µ ⇐⇒ µ − λ ∈ +ǎ0). For p > 0 define Θp
+

inductively to be the set of maximal elements of Θ+ −Θ6p−1
+ and set Θ6p+ = Θ6p−1

+ ∪Θp
+.

Let f ∈ FinΘS(G)1. For each standard parabolic P the constant term of f along P admits
a Fourier expansion in terms of characters of aM (cf. [F1, §6]); the characters appearing
form a finite set

ExpP (f) ⊂ (ǎM )C ⊂ (ǎ0)C,

the P -exponents of f . (Since f is A∞-invariant these actually lie in (ǎGM )C ⊂ (ǎG0 )C.) They
are related to the infinitesimal character Θ by:

f ∈ FinΘS(G)1 and λ ∈ ExpP (f) =⇒ Re(λ)+ ∈ Θ+. (1.5.1)

Define a finite decreasing filtration

FinΘS(G)1 = F 0
S ) F 1

S ) F 2
S ) · · ·

by the following condition on exponents:

f ∈ F pS ⇐⇒ for all P and λ ∈ ExpP (f) we have Re(λ)+ ∈ Θ6p+ .

Franke ([F1, Theorem 14] or [W, 4.7]) describes the graded quotients of this filtration: The

graded piece F pS/F
p+1
S is isomorphic to a sum of induced modules

IndGP (ν)(C
M(ν)
ν ⊗ π) (1.5.2)

where ν ∈ Θp
+ and π is an automorphic representation on M(ν) with unitary central char-

acter appearing in L2. (The notation P (ν),M(ν) is as in 1.3. Here [F1, Thm 14] is applied

with τ =∞, i.e. τ ∈ ǎG+
0 sufficiently large. The colimit in loc. cit. is replaced with a direct

sum because Θ consists of regular elements of ȟ (see the proof of [F1, Thm 19.I]). Franke
gives a more detailed description of π which appear, but we will not need it here.)
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The following lemma says that FinΘR(G)1 as a subspace of FinΘS(G)1 is defined by a
condition on exponents:

Lemma 1.5.2. A function f ∈ FinΘS(G)1 belongs to FinΘR(G)1 if, and only if, for all
standard P ,

λ ∈ ExpP (f) =⇒ Re(λ) ∈ ρ0 −+ǎG0 . (1.5.3)

Proof. This follows easily from (a variant of) Theorem 15 of [F1], which is a refinement
of the square-integrability criterion of [L, Lemma 5.1]. Recall that in the notation of [F1],
R(G)1 is the space Sρ−τ−log(G(Q)A∞\G(A)) for τ = ρ0. Theorem 15 of [F1] says that if

τ ∈ ǎG+
0 then f ∈ FinΘS(G)1 belongs to FinΘSρ−τ+log if and only if Re(λ) ∈ τ −+ǎG0 for all

λ ∈ ExpP (f). The variant with “−log” in place of “+log” is the following: If τ ∈ ǎG+
0 ∩+ǎG0

then f ∈ FinΘS(G)1 belongs to FinΘSρ−τ−log if and only if any exponent λ ∈ ExpP (f)

satisfies Re(λ) ∈ (τ − ε) − +ǎG0 for some ε ∈ ǎG+
0 . (See the remarks after the proof of

Theorem 15 on p. 242 of [F1].) Since ρ0 ∈ ǎG+
0 ⊂ +ǎG0 this can be applied to R(G)1. The

condition that Re(λ) ∈ (ρ0 − ε)− +ǎG0 for some ε ∈ ǎG+
0 is clearly the same as (1.5.3). �

Now define a filtration (F p)p∈N of FinΘR(G)1 by

F p := F pS ∩ FinΘR(G)1.

The condition (1.5.3) is obviously compatible with the way the filtrations are defined, so that
the graded quotient F p/F p+1 is a sum of induced modules like (1.5.2) over those elements
ν ∈ Θp

+ which satisfy

ν ∈ ρ0 − +ǎG0 (1.5.4)

(cf. p. 242 of loc. cit.). Let FN be the last nonzero step of the filtration, corresponding to
ΘN

+ = {0}, which is FN = FinΘSlog(G)1. (By the geometrical lemma of Langlands (see e.g.

Lemma 1 on p. 232 of [F1]), Re(λ)+ = 0 implies Re(λ) ∈ −+ǎG0 (the negative of the closed

positive cone). So FN consists of automorphic forms all of whose exponents lie in −+ǎG0 .
This is precisely FinΘSlog(G)1 by [F1, Theorem 15] applied with τ = 0.)

To prove the theorem it suffices to prove:

(1) (F p/F p+1)I = F pI /F
p+1
I = {0} for p < N

(2) FNI is the space of constant functions.

We will use the following lemma, which will be proved later:

Lemma 1.5.3. Let P be a parabolic subgroup with Levi factor M , τ an irreducible unitary

(m,KM
∞ )×M(Af )-module and ν ∈ (ǎGM )C with Re(ν) ∈ ǎG+

M . If the induced representation

Π = IndGP (CMν ⊗ τ) has a constituent which is trivial at all but finitely many finite primes,
then Re(ν) = ρP .

To prove (1), note that each summand of F p/F p+1 is an induced module as in the lemma

for some ν ∈ Θp
+. By the lemma it makes no contribution to F pI /F

p+1
I unless ν = ρP for

some P . But this possibility is excluded by (1.5.4) since ρ0 − ρP ∈ +ǎG0 − +ǎG0 .
To prove (2) we use Franke’s description of FN = FinΘSlog(G)1 (see [F1, Theorem 13]).

The precise result does not matter for us, it is enough to note that this space is a direct
sum of modules of the form

Π =
(

Ind
G(A)
P (A) DF ⊗ π

)W (M)
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with notation as follows: P is a parabolic subgroup with Levi M , W (M) is a finite group
(acting via intertwining operators), π is an automorphic representation of M with unitary
central character appearing in the L2 discrete spectrum, F ⊂ iǎM is a finite set (depending
on Θ), and DF = ⊕λ∈FDλ is the space of distributions supported on F . For λ ∈ (ǎM )C the
space Dλ of distributions supported on λ is a (m,KM

∞ )×M(Af )-module in such a way that

it has a filtration (not of finite length) with graded quotients the modules CMλ defined above

in 1.3. If P 6= G the previous lemma implies that ΠKS
IS

= {0} for any S. If P = G then

Π = π is a discrete L2 automorphic representation of G appearing in L2
dis(G(Q)A∞\G(A))

and hence ΠKS
IS

= {0} unless Π is the space of constant functions. This completes the proof

of (2) and of the theorem. �

Proof of Lemma 1.5.3. Recall (cf. [L2, Lemma 1]) that the constituents of Π = IndGP (CMν ⊗τ)

are of the form π = ⊗pπp where for each p, πp is a constituent of Ind
G(Qp)
P (QP )ν ⊗ τp, and for

almost all p where τp is spherical, πp is the unique Kp-spherical constituent of Ind
G(Qp)
P (QP )ν⊗τp.

(The component at p of CMν is the unramified character of AM (Qp) given by ν ∈ (ǎM )C,
which we continue to denote by ν.) Let p be such that τp is spherical. Then τp is the

spherical subquotient of Ind
M(Qp)
M0,p(Qp)χ where M0,p ⊂ M0 is a minimal Levi of G/Qp and

χ is an unramified character of M0,p, unitary on AM (Qp), and we may assume that χ is
dominant ([C]). Thus πp is a constituent of

Ind
G(Qp)
P (Qp)Ind

M(Qp)
M0,p(Qp)νχ = Ind

G(Qp)
M0(Qp)νχ.

We use the following fact: The unramified principal series representation Ind
G(Qp)
M0(Qp)λ has no

trivial constituent unless λ ∈ W0ρ0,p, in particular for dominant λ we must have λ = ρ0,p.
(Here W0 is the relative Weyl group. This fact follows easily from the structure of the
Jacquet module of the unramified principal series [C].) Thus νχ = ρ0,p and hence νχ|AM =
ρP . Since χ is unitary on AM (Qp) we have Re(ν) = ρP . �

1.6. Cohomology of the RBS compactification. To define the RBS compactification
of the quotient

MK = G(Q)\G(A)/K0
∞A∞K = StabG(Q)(D)\(D ×G(Af )/K)

we can either compactify each locally symmetric component (as in [Z1] or [GHM]) or else
define

MK = StabG(Q)(D)\(D ×G(Af )/K)

where D is the RBS bordification of D (see e.g. [GT, 1.3]). This is evidently compatible
with change-of-level and the direct limit

H∗(M) = lim−→K
H∗(MK).

has an action of G(Af ) where g ∈ G(Af ) acts by pullback by the isomorphism MgKg−1 →
MK induced by right translation by g on G(Af ). The Poincaré dual theory to the cohomol-

ogy of MK is the weighted cohomology group WdH∗(MK) of [GHM] corresponding to the
dualizing profile [GHM, §9]. This is defined via a complex of sheaves W dC(C) which is a
version of the dualizing complex on MK [GHM, §19], thus WdH∗(MK) ∼= HdimM−∗(MK).
The C∞ de Rham model of [N1] for these groups referred to earlier is:
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Proposition 1.6.1. For each K ⊂ G(Af ) there are natural isomorphisms

H∗(MK) = H∗(g,K0
∞A∞, B(G)K1 )

WdH∗(MK) = H∗(g,K0
∞A∞, R(G)K1 )

such that for g ∈ G(Af ) the pullback by MgKg−1 → MK is the map induced by right
translation by g on G(A) on function spaces.

Proof. For the first assertion take λ = 0 in Theorem 3.8 of [N1] and note that the weighted
complex W 0C(C) of [GHM] is quasiisomorphic to the constant sheaf CMK

(cf. [GHM, §19]).

The second assertion is the case λ = 2ρ0 in [N1, Theorem 3.8]. �

It follows from this description that one can also consider the direct limit

WdH∗(M) = lim−→K
WdH∗(MK)

which is a G(Af )-module. In the direct limits H∗(M) and WdH∗(M) the K-invariants give

back the groups H∗(MK) and WdH∗(MK), so that these direct limits are admissible. The
induced action of the Hecke algebra of K-biinvariant functions on H∗(MK) and WdH∗(MK)
is the familiar geometric action in terms of correspondences.

The inclusions C ⊂ B(G)1 ⊂ R(G)1 give rise to G(Af )-homomorphisms

H∗(Ď)→ H∗(M)→WdH∗(M)

in cohomology. (At a finite level K these translate, on relative Lie algebra complexes, to
the inclusion of G(R)-invariant forms on G(R)/K0

∞A∞ in spaces of differential forms on
MK .)

Theorem 1.6.2. The homomorphism θ : H∗(Ď)→ H∗(M) induces isomorphisms

H∗(Ď) ∼= H∗
(
M
)G(Af ) ∼= H∗

(
M
)
G(Af )

.

The homomorphism H∗(Ď)→WdH∗(M) induces isomorphisms

H∗(Ď) ∼= WdH∗
(
M
)G(Af ) ∼= WdH∗

(
M
)
G(Af )

.

Proof. It follows from results of Franke that the inclusion

FinΘR(G)1 ⊂ R(G)1

induces an isomorphism in (g,K0
∞A∞)-cohomology: Indeed, Theorem 16 on p. 246 of [F1]

applies because R(G)1 is Sρ−τ−log(G(Q)A∞\G(A)) for τ = ρ0 and ρ0 ∈ +ǎG0 ∩ ǎG+
0 , so

that the derived functors FiniΘ vanish on R(G)1. By (3) of Theorem 7 on p. 208 of [F1] we
deduce that FinΘR(G)1 ⊂ R(G)1 induces an isomorphism in cohomology.

For a set S of finite primes containing almost all primes we have (using Theorem 1.5.1):

WdH∗(M)KSIS = H∗(g,K0
∞A∞,FinΘR(G)KSIS )

= H∗(g,K0
∞A∞,C)

= H∗(Ď).
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Thus WdH∗(M)I = H∗(Ď) is a direct summand of WdH∗(M) and the complement contains
no almost-everywhere-trivial constituents, in particular neither invariants nor coinvariants.
This proves the assertions about WdH∗(M).

For H∗(M) we argue by duality: By the previous paragraph choosing a generator for
Hn(Ď) gives a G(Af )-invariant element in WdHn(M) (where n = dimMK = dim Ď) which

restricts to a generator of WdHn(−) on each connected component of MK at each level
K. This gives a linear form WdHn(MK) → C by summing the contributions from each
component of MK , and these give a G(Af )-invariant form WdHn(M) → C. Composing

with the cup product Hi(M) ×WdHn−i(M) → WdHn(M) gives a G(Af )-invariant pairing

identifying Hi(M) with the contragredient of WdHn−i(M). The theorem follows. �

Remark 1.6.3. In [F2, Cor. 3.5] Franke computes the invariants in H∗c(M) = lim−→K
H∗c(MK)

and the coinvariants in H∗(M) = lim−→K
H∗(MK) in terms of a certain open subset of the

compact dual. These are related to our spaces by maps

H∗c(M)G(Af ) → H∗(M)G(Af ) = H∗(Ď) = WdH∗(M)G(Af ) → H∗(M)G(Af ).

The computation of [F2] is based on the observation that the Eisenstein series which con-
tribute to the summand H∗(M)I of H∗(M) are those starting from the constant function on
a standard Levi (including G itself here) and evaluated at the half-sum of positive roots.
The fact that WdH∗(M) → H∗(M) corresponds to the inclusion R(G)1 ⊂ S(G)1 and that
this submodule is given, after passing to subspaces of automorphic forms, by the condi-
tion (1.5.3) on exponents means that these Eisenstein series do not influence the summand
WdH∗(M)I except for G itself. Thus we are left with the constants, which contribute H∗(Ď).

Remark 1.6.4. When MK has a complex structure there is an analogue of the theorem for
toroidal compactifications, cf. 4.2. The analogue of the theorem fails in an interesting way
for the minimal compactification, cf. 4.3.

2. Mixed realizations in the RBS compactification

In this section we review the mixed realizations in the cohomology of MK when MK

is a Shimura variety. Two approaches are possible. The first, contained in [N2, NV] and
outlined in 2.2–2.4, uses Morel’s weight truncations [Mo] in categories of mixed sheaves (in
the sense of Saito [S2, S3]) built out of mixed realizations. The second, due to Ayoub and
Zucker [AZ] and outlined in 2.5, depends on Ayoub’s theory of motivic sheaves and their
realizations. Because some compatibilities between various realizations remain unchecked
this second approach does not quite, at present, give a mixed realization, see 2.5 below.
Moreover, since we are only interested in realizations (and not motivic results), the first
approach is preferable: though elementary, it gives finer results.

2.1. Shimura varieties and compactifications. Let S = ResC/RGm and let w : Gm,R →
S be the canonical homomorphism. Let (G,X) be a motivic Shimura datum, i.e. a pair con-
sisting of a connected reductive Q-group G and a G(R)-conjugacy class of homomorphisms
h : S→ GR satisfying

(S1) The Hodge structure on g given by ad ◦ h is of type (−1, 1)+(0, 0)+(1,−1).
(S2) The automorphism Ad(h(

√
−1)) induces a Cartan involution on G0 = Gder(R)0 and

G0 has no compact factors defined over Q.
(S3) The weight homomorphism h ◦ w : Gm,R → GR is defined over Q.
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We will further assume that

(S4) The maximal Q-split torus AG of the centre of G is maximally R-split.

Thus G satisfies the conditions of §1 and we will use the notation fixed in 1.1. Under these
conditions the stabilizer in G(R) of a point is of the form K0

∞A∞ where (as in 1.1) K∞ is
a maximal compact of G(R) and A∞ = AG(R)0. The quotient

MK = G(Q)\X ×G(Af )/K = G(Q)\G(A)/K0
∞Kf

is the (complex points of) the Shimura variety at level K. By the theory of canonical
models of Shimura, Deligne, Borovoi, Milne, the varieties MK have models over a number
field E = E(G,X) ⊂ C independent of K (the reflex field), and the morphisms MK′ →MK

for K ′ ⊂ K are defined over E, so that the scheme

lim←−KMK

has a model over E. The action of G(Af ) on the scheme lim←−KMK by isomorphisms MK →
MgKg−1 is E-rational. (We will not distinguish notationally between the Shimura variety
over E and its complex points.)

We assume that Gder is isotropic, so that MK is noncompact. The compactifications of
interest to us are:

(1) The minimal (or minimal Satake or Baily-Borel) compactification:

M∗K = G(Q)\X∗ ×G(Af )/K

where X∗ =
⊔
D⊂X D

∗ for D∗ the union of the rational boundary components of D
with the Satake topology. This is a normal projective variety with a model over E
(the unique extension of the canonical model of MK , see [P, 12.3]). It has a natural
stratification defined over E in which the boundary strata are (up to finite covers)
themselves Shimura varieties ([P, 12.3]).

(2) The RBS compactification MK (defined earlier in 1.6). This is the union of the RBS
compactifications of each component of MK and it is easy to describe its strata.
For a rational parabolic subgroup P let LP = P/RuP be the Levi quotient and
MP =

⋂
χ:LP→Gm χ

2; then MP (R) contains any compact or arithmetic subgroup of

LP (R). Write MK =
⊔
i Γi\D for congruence subgroups Γi ⊂ G(Q). Then

Γi\D =
⊔

P
Γi,MP

\MP (R)/KP

where the union is over rational parabolic subgroups modulo Γi-conjugacy, and for
a rational parabolic subgroup P , Γi,MP

is the projection of Γi ∩P (R) to LP (R) and
KP is the projection of K ∩ P (R) to LP (R).

There is a proper continuous map

p : MK →M∗K

extending the identity. (See [GHM, §22] for a description of p.)
(3) The toroidal compactifications MΣ

K (cf. [AMRT, H2, P]): For suitable data Σ this
is a smooth projective variety over E with an open immersion MK ↪→MΣ

K and the
complement of MK is a normal crossings divisor with smooth components. There
is a proper morphism

π : MΣ
K →M∗K

over E extending the identity.

We will return to these compactifications in 2.4.
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2.2. Mixed sheaves. Saito has defined and studied the notion of a theory of A-mixed
sheaves (A a field of characteristic zero) on varieties over a subfield k ⊂ C ([S2], see [S3, §1]
for a summary). Briefly, such a theory gives an A-linear abelian category M (X) for every
variety X/k with an A-linear faithful exact functor For to perverse A-sheaves on X(C),
satisfying a certain set of axioms listed in [S2, 1.1–1.6]. These include the existence of weight
filtrations for objects of M (X) and the semisimplicity of graded pieces, a contravariant
duality functor D : M (X) → M (X) with D2 = id, the existence of pullbacks by open
immersions and pushforward by affine morphisms, and the existence of a constant object
AM ∈ M (Spec(k)). Given this setup, Saito shows in [S2] (cf. [S3, Theorem 1.2] and the
remarks after it) that for a morphism f : X → Y there are four functors f∗, f∗, f

!, f! between
derived categories DbM (X) and DbM (Y ) having the appropriate adjointness properties
and compatible with the usual functors between Db

c(QX) and Db
c(AY ) under the functor

For : DbM (X) → Db
c(AX) induced by For. The duality functor extends to DbM (X) and

the expected properties, e.g. D ◦ f∗ = f ! ◦ D etc. hold. The notion of weights extends
to the objects of DbM (X) (see [S2, §6]) and the functors f∗, f!, f

∗, f ! have the correct
behaviour with respect to weights [S2, 6.7], so that there is a decomposition theorem [S2,
6.10]. For each variety X there is an object AM

X in DbM (X) with For(AM
X ) = AX ; in fact

AM
X = a∗XA

M for aX : X → Spec(k) the structure morphism.
The basic example is the theory of mixed Hodge modules [S1], which is a theory of Q-

mixed sheaves on varieties over C with M (X) = MHM(X(C)) and For = rat (i.e. taking
the underlying perverse sheaf of a mixed Hodge module).

The theory of Q-mixed sheaves we will use here is an enrichment of mixed Hodge modules
described in [S2, 1.8(iv-v)] or [S3, 1.1] for any subfield k ⊂ C. An object of M (X) is a
triple ((Mk, F,W ), (K,W ), (Kl,W )l) where

• (Mk, F ) is a filtered regular holonomic D-module on X/k with a finite increasing
filtration W on Mk ⊗ C
• (K,W ) is a perverse Q-complex on X(C)an with an increasing filtration W
• for each prime l, (Kl,W ) is a filtered perverse étale Ql-complex on X×kk̄ with a

continuous Gal(k̄/k)-action compatible with the action on X ×k k̄
such that the pair ((Mk⊗C, F,W ), (K,W )) is a mixed Hodge module on X(C), and we are
also given comparison isomorphisms relating (K,W )⊗Ql and (Kl,Wl) (see [S3, 1.1] or [S2,
1.8] for the precise description; note that the comparison isomorphisms are part of the data
of the object). The category M (Spec(k)) is essentially the category of mixed realizations
over k (cf. e.g. [D, J, Hu1]), except that we use the fixed embedding k ⊂ C rather than all
embeddings of k in C. Thus for a variety X/k and K ∈ DbM (X), the object

Hi(aX∗K) ∈M (Spec(k))

(aX : X → Spec(k) is the structure morphism) is a triple consisting of a Q-mixed Hodge
structure, a filtered vector space over k, and a family of l-adic Gal(k̄/k)-representations, all
related by comparison isomorphisms. In particular, for a variety X and K = QM

X this gives
the usual mixed realization on the cohomology:

H∗(X) := (H∗B(X),H∗dR(X/k), (H∗l (X))l)

=
(
(H∗(X(C)an,Q),W•, F

•), (H∗dR(X/k), F •), (H∗et(X ×k k̄,Ql)l
)
.

For X irreducible of dimension d, the intersection complex K = ICX(QM )[d] = j!∗QM
U [d]

where j : U ↪→ X is a smooth open subset belongs to M (X) (cf. e.g. [S2, §6]), so this gives
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a mixed realization on intersection cohomology:

IH∗(X) :=
(
(IH∗(X(C)an,Q),W•, F

•), (IH∗dR(X/k), F •), (IH∗et(X ×k k̄,Ql)l
)
.

When X is proper this is pure, i.e. GrW
j IHi(X) = 0 for j 6= i.

Henceforth, M ( · ) will stand for the theory of mixed sheaves fixed here.

2.3. Truncation by weights. Morel [Mo] found new t-structures in categories of mixed
sheaves. (The arguments in [Mo] are given for l-adic sheaves over a finite field but they
work in any theory of mixed sheaves with trivial changes.) Briefly, Morel shows that for
any a ∈ Z ∪ {±∞} the pair (wD6aM (X),wD>aM (X)) of full (and, in fact, triangulated)
subcategories defined by K ∈ wD6aM (X) ⇐⇒ Hi(K) ∈ M (X) has weights 6a (respec-
tively, K ∈ wD>aM (X) ⇐⇒ Hi(K) has weights > a) defines a t-structure on DbM (X).
The associated truncation functors are denoted w6a, w>a.

By a stratification of X we mean a partition X =
⊔r
i=0Xi into locally closed subva-

rieties with each Xd open in X −
⊔
i<dXj . Given a stratification of X by equidimen-

sional subvarieties, and any function a from the set of strata to Z ∪ {±∞}, gluing the t-
structures above along the strata using the theory of [BBD, §1.4] produces a new t-structure
(wD6aM (X),wD>aM (X)) onDbM (X) (cf. [Mo, §3]). ThusK ∈ wD6aM (X) (respectively,

K ∈ wD6aM (X)) iff i∗XkK ∈
wD6a(Xk)M (Xk) (respectively, i!XkK∈

wD6a(Xk)M (X)), where

iXk : Xk ↪→ X. We will be interested in the particular function dim defined (for any strat-
ification) by:

dim(S) := dimS.

The truncation functors of the glued t-structure are denoted w6dim and w>dim.

Proposition 2.3.1. Suppose that U is smooth of dimension n, j : U ↪→ X is an open
immersion as a Zariski-dense subset of an irreducible variety, and π : Y → X is a proper
morphism from Y smooth such that π|π−1(U) is an isomorphism. Assume X is given a

stratification such that j!QM
U [n], j∗QM

U [n], and π∗QM
Y [n] are constructible. Then

w6dimj∗QM
U [n] = w6dimj!∗QM

U [n] = w6dimπ∗QM
Y [n].

Proof. The equality of extreme terms is [NV, Proposition 4.1.2]. The first equality (also
noted in [NV]) follows by applying w6dim to Morel’s formula j!∗QM

U [n] = w6nj∗QM
U [n] ([Mo,

Theorem 3.1.4]). �

2.4. The RBS compactification as a weight truncation. Let j : MK ↪→ M∗K be the
inclusion. We work in the theory M (−) on varieties over the reflex field E outlined above
and with the canonical stratification of M∗K . Recall the compactifications in 2.1.

Proposition 2.4.1. There is a natural isomorphism

p∗QMK
= For(w6dimj∗QM

MK
)

in the derived category of constructible sheaves on M∗K .

Proof. This is a special case of [N2, Theorem 4.3.1] (see [N2, 4.6] for a discussion). [N2] is
written in the context of mixed Hodge modules, but as remarked there (Remark 4.3.7 of
loc. cit.) the proof works in any theory for which For factors through rat : DbMHM(X)→
Db
c(QX), in particular for M (−). �
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Thus the cohomology of MK carries a mixed realization

H∗(MK) =
(
H∗B(MK),H∗dR(MK), (H∗l (MK))l

)
:= H∗(aM∗K∗w6dimj∗Q

M
MK

) ∈M (Spec(E)).

Combining Propositions 2.4.1 and 2.3.1 gives identities

p∗QMK
= For(w6dimj∗QM

MK
) = For(w6dimj!∗QM

MK
[n][−n]) = For(w6dimπ∗QM

MΣ
K

).

The consequences of interest to us are summarized in the following commutative diagram
in M (Spec(E)):

H∗(MΣ
K)

H∗(MK) ρ
//

γ∗
22

IH∗(M∗K)

ι

99

H∗(M∗K)
p∗

aa π∗

FF

OO

(2.4.1)

Here ι : IH∗(M∗K) ↪→ H∗(MΣ
K) is given by any homomorphism j!∗QM

MK
[n] → π∗QM

MΣ
K

[n]

coming from the decomposition theorem ([BBD], [S1], [S2, 6.10]). The morphisms other
than ι are canonical and Hecke-equivariant in the appropriate sense (e.g. for π∗, γ∗ one

keeps in mind that a Hecke operator goes from H∗(MΣ
K)→ H∗(MΣ′

K ) for some Σ′).

Dualizing gives mixed realizations on the groups WdH∗(MK). The ring structure of
H∗(MK), the natural map H∗(MK)→WdH∗(MK), and the action of H∗(MK) on WdH∗(MK)
all respect mixed structures.

We will not use the following fact, but it is useful to keep it in mind:

Lemma 2.4.2. The weights of Hi(MK) are ≤ i. The top weight quotient is

GrW
i Hi(MK) = im(Hi(MK)→ IH∗(M∗K)) = im(Hi(MK)

γ∗→ Hi(MΣ
K)).

Dually, the weights of WdHi(MK) are ≥ i and the bottom weight piece is the image of the
map IHi(M∗K)→WdHi(MK) Poincaré dual to H∗(MK)→ IH∗(M∗K).

Proof. The constraint on weights and the equality of the extreme terms is proved in [N2,
Proposition 2.4.2(ii)] or [NV, Lemma 4.3.1]. Since ι is injective the second equality holds.
�

Remark 2.4.3. Goresky and Tai [GT] proved the existence of a map H∗(MK ,Z)→ H∗(MΣ
K ,Z)

factoring π∗ : H∗(M∗K ,Z)→ H∗(MΣ
K ,Z). This agrees (⊗Q) with γ∗.

2.5. Motivic approach. This approach uses the theory of motivic sheaves (see [A] and
the references there), unlike that of [N2, NV], which works with the more classical objects
in 2.2. It does not give the whole diagram (2.4.1) but gives the outer triangle, i.e. the
factorization π∗ = γ∗ ◦ p∗, modulo some compatibilities which have not been checked in the
literature. This factorization is enough for the proof of Theorem 2 in §3.

Theorem 4.1 of [AZ] gives an object EM∗K in Ayoub’s triangulated category DA(M∗K ,Q)

of (étale) motivic sheaves on M∗K which realizes (in Ayoub’s Betti realization) to p∗QMK
.

Ayoub’s theory of motivic sheaves has a formalism of six functors compatible with the
Betti realization, and over Spec(E) it gives Voevodsky’s triangulated category of mo-
tives over E (cf. [A] for a survey of the theory and specific references). So pushing
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EM∗K forward by MK∗ → Spec(E) gives a Voevodsky motive over E with Betti realiza-

tion RΓ(MK ,Q) ∼= ⊕iHi(MK ,Q)[−i]. Huber [Hu1, Hu2, Hu3] has constructed realization
functors from Voevodsky’s triangulated category to the derived category of mixed real-
izations, so that one also gets a mixed realization in this way. This would give a mixed
realization with Betti part H∗(MK ,Q) and the factorization π∗ = γ∗ ◦ p∗, except that the
compatibility of Huber’s Betti realization with Ayoub’s has not been checked (see Remarks
4.4 and 4.9 of [AZ].)

Remark 2.5.1. The mixed realizations coming from the two approaches described here could,
in principle, be different. Vaish [V] shows that given suitable realization functors (to derived
categories of mixed sheaves) on Ayoub’s category of motivic sheaves the two approaches
yield the same objects. Such realizations have recently been constructed by Ivorra [I]. (The
agreement of the Betti realization in [I] with the one used in [AZ] has not been checked, so
that one cannot combine [AZ] and [I] to get a mixed realization with Betti part H∗(MK ,Q).)

3. Chern classes of automorphic vector bundles

We continue in the setting of Shimura varieties of §2, i.e. (G,X) satisfies conditions
(S1)–(S4) of 2.1. We make the additional assumption that

Gder is simply connected.

Thus G0 = Gder(R), and the compact form Gc0, being a maximal compact subgroup of
Gder(C), is simply connected.

If H is a compact group (or an algebraic group over a subfield of C) the category of
finite-dimensional continuous (or rational) complex representations is denoted Rep(H).

3.1. Chern classes. For the reader’s convenience we summarize the properties of Chern
classes that we will use. For a clear discussion see [DMOS, I.1, pp. 19–22]. Let k ⊂ C.

Let QB(1) be the Tate Hodge structure, i.e. C with Q-strucrure (2π
√
−1)Q and Hodge

filtration F−1 = C, F 0 = 0. Let Ql(1) be Ql with the action of Gal(k̄/k) by the l-adic
cyclotomic character χl : Gal(k̄/k) → Q∗l for any prime l, and QdR(1) = k with the
filtration F−1 = k, F 0 = {0}. Thus (QB(1),QdR(1), (Ql(1))l) is the Tate object in mixed
realizations, i.e. the mixed realization H2(P1). For each i ∈ Z the comparison isomorphisms
QB(i)⊗Ql = Ql(i) (over k̄) and QB(i)⊗Q C = QdR(i)⊗k C give comparison isomorphisms

σl : H∗B(X)(i)⊗Ql → H∗l (X)(i)

σdR : H∗B(X)(i)⊗Q C→ H∗dR(X)(i)⊗k C

for any smooth variety X over k, where, as in 2.2, we have

(H∗B(X),H∗dR(X/k),H∗l (X)) =
(
H∗(X(C)an,Q),H∗dR(X/k),H∗et(X ×k k̄,Ql)

)
and H∗?(X)(i) = H∗?(X)⊗Q?(1)⊗i for ? = B, dR, l.

If X/k is smooth and complete and F is a vector bundle (i.e. locally free sheaf of
OX -modules) on X/k, there are classes:

cBi (F ) ∈ H2i
B(X)(i), cdRi (F ) ∈ H2i

dR(X/k)(i), cli(F ) ∈ H2i
l (X)(i)

and these are related under comparison isomorphisms, i.e. σdR(cBi (F )) = cdRi (F ) and
σl(c

B
i (F )) = cli(F ). The class cBi (F ) is of weight zero, cdRi (F ) belongs to F 0, and cli(F )

is Galois-invariant.
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For X/k,F as above there is also an underlying topological complex vector bundle F
(with sheaf of holomorphic sections F an) on the space X(C)an. This gives topological
Chern classes

ci(F ) ∈ H2i(X(C)an,Q) = H2i
B(X)

(see [MS, §14], we ignore the integral theory) where one chooses
√
−1 ∈ C to orient F . This

choice also fixes an isomorphism QB → QB(1), hence isomorphisms Ql → Ql(1) (over k̄) and
C→ QdR(1)⊗C. These induce isomorphisms H∗B(X)→ H∗B(X)(i), H∗l (X)(i) ∼= H∗l (X) (over
k̄, i.e. not Galois-equivariantly) and H∗dR(X/k)⊗ C = H∗dR(X/k)(i)⊗ C. The isomorphism

H∗B(X)→ H∗B(X)(i) maps ci(F ) to cBi (F ), so that one has:

σdR((2π
√
−1)ici(F )) = cdRi (F ) (3.1.1)

Gal(k̄/k) acts on σl(ci(F )) by χ−il . (3.1.2)

The first point is easily checked (see the diagram on p. 20 of [DMOS]). The second holds
because H∗l (X)(i) = H∗l (X)⊗ χil as Gal(k̄/k)-modules and cli(F ) is Galois invariant.

In any context, the Chern classes of a vector bundle depend only on its class in the
Grothendieck group of vector bundles, so that if two vector bundles have filtrations with
isomorphic gradeds then they have the same Chern classes.

The following remark will not be used below but it is useful to keep it in mind: If X/k is
an algebraic variety which is embeddable in a smooth variety, there is (by [Har] and [Gr])
a good theory of Chern classes in algebraic de Rham cohomology, i.e. for a vector bundle
F on X/k there are classes cdRi (F ) ∈ H2i

dR(X/k) which are related to the Chern classes of
the underlying topological vector bundle on X(C)an as in (3.1.1).

In the sequel we use the same notation for algebraic vector bundles and their underlying
topological vector bundles and suppress comparison isomorphisms from the notation (as in
the introduction).

3.2. Automorphic vector bundles. We summarize some standard facts (see e.g. [H1,
§3] or [Mi, Ch. III]) about the compact dual and automorphic vector bundles.

Fix a point h ∈ X. The stabilizer of h in G(R) is of the form K0
∞A∞ where K∞ ⊂ G(R)

is maximal compact. There is a unique maximal parabolic Ph of G(C) such that

(i) Ph ∩G0 = K0,∞ = K0
∞ ∩G0 and

(ii) the induced map G0/K0,∞ → G(C)/Ph is an open holomorphic immersion.

The inclusion Gc0 ⊂ G(C) induces an identification

Ď = Gc0/K0,∞ = G(C)/Ph

so that the compact dual is a G(C)-homogeneous space. The open immersion D ⊂ Ď in
(ii) extends to give the G(R)-equivariant Borel embedding:

β : X ↪→ Ď.

The functor V 7→ V̌ , where

V̌ = G(C)×Ph V = G(C)× V/(g, v) ∼ (gp, p−1 · v),

gives an equivalence of Rep(Ph) with the category of G(C)-homogeneous vector bundles on
Ď. A G(C)-homogeneous vector bundle V̌ on Ď gives an automorphic vector bundle (VK)K
on the Shimura variety where

VK = G(Q)\
(
β∗ V̌ ×G(Af )/K

)
.
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Then

V̌ 7→ (VK)K (3.2.1)

defines an exact tensor functor from G(C)-homogeneous vector bundles on Ď to G(Af )-
equivariant algebraic vector bundles on lim←−MK .

The compact dual Ď has a natural E-structure (see [H1, 3.1] or [Mi, III.1]). By one of
the main results of Harris’s [H1] (see also [Mi, III.5]) the functor (3.2.1) is E-rational, i.e.
takes a G(C)-homogeneous vector bundle on Ď with L-rational structure for L ⊃ E to an
L-rational vector bundle on the canonical model of MK .

3.3. For technical reasons we will need a slightly different construction of bundles on MK .
These come from the fact that MK =

⊔
i Γi\D where Γi ⊂ Gder(Q) (for K small enough).

Let P0,h := Ph ∩Gder. This is a parabolic subgroup of Gder with KC
0,∞ as a Levi subgroup,

and

Ď = G(C)/Ph ∼= Gder(C)/P0,h
∼= Gc0/K0,∞.

Given E ∈ Rep(K0,∞) one has the Gc0-homogeneous bundle Ě = Gc0×K0,∞E on Ď. This has
an algebraic structure by inflating E to a P0,h-module (i.e. by letting the unipotent radical of

P0,h act trivially) and using the identification Ě = Gder(C)×P0,h
E induced by the inclusion

Gc0 × E ⊂ Gder(C)× E. Restricting Ě to D (via β) and dividing by Γi ⊂ Gder(Q) for each
i defines a vector bundle EK on MK for K small enough, i.e. EK |Γi\D = (Γi\G0)×K0,∞ E.
This defines an exact tensor functor

E 7→ EK (3.3.1)

from Rep(K0,∞) to algebraic vector bundles on MK for K small enough.

Remark 3.3.1. For V ∈ Rep(Ph) the G(C)-homogeneous vector bundle V̌ on Ď as in 3.2 is
C∞ isomorphic to the bundle associated with E = V |K0,∞ by (3.3.1) under the map induced
by the inclusion Gc0×V ⊂ G(C)×V . Similar remarks clearly apply to the bundles on MK ,
so that an automorphic vector bundle on the Shimura variety (i.e. as in 3.2) is, at any finite
level, C∞ isomorphic to a bundle coming (by (3.3.1)) from a K0,∞-representation. (Con-
versely, a bundle coming from (3.3.1) is C∞ isomorphic to an automorphic vector bundle
on MK because the restriction functor Rep(Ph)→ Rep(K0,∞) is essentially surjective.)

Henceforth, to avoid confusion between the constructions of 3.2 and 3.3, we will usually
use the letters V, V̌ ,VK etc. for the former and the letters E, Ě ,EK etc. for the latter.
We will also avoid using the term automorphic vector bundle for the construction of 3.3,
reserving it for that of 3.2.

3.4. Toroidal canonical extensions. The vector bundles in 3.2, 3.3 admit canonical ex-
tensions to algebraic vector bundles toroidal compactifications.

Let MΣ
K be a smooth projective toroidal compactification in which the complement of

MK is a simple normal crossings divisor. The vector bundle EK (as in 3.3) defined by E ∈
Rep(K0,∞) has a canonical extension to an algebraic vector bundle E Σ

K on MΣ
K (Mumford’s

canonical extension [Mu]). Then

E 7→ E Σ
K (3.4.1)

defines an exact tensor functor from Rep(K0,∞) to algebraic vector bundles on MΣ
K . This is

compatible with changing the level K or refinement of Σ, i.e. if Σ′ refines Σ then E Σ
K pulls

back to E Σ′
K under the morphism MΣ′

K →MΣ
K extending the identity of MK , and if K ′ ⊂ K

then E Σ
K pulls back to E Σ

K′ under the covering MK′ →MK .
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Let MΣ
K be a smooth projective toroidal compactification in which the complement of

MK is a simple normal crossings divisor. An automorphic vector bundle VK defined as in
3.2 has an extension to a vector bundle V Σ

K on MΣ
K ([H2]). This defines a functor

V̌ 7→ V Σ
K (3.4.2)

from G(C)-homogeneous vector bundles on Ď to algebraic vector bundles on MΣ
K . This

is an exact tensor functor compatible with change of level and refinement of Σ. It is also
compatible with the G(Af )-action on the collection of all toroidal compactifications ([H2,

4.3]). When MΣ
K is defined over E the functor (3.4.2) is E-rational by a result of Harris

([H2, Theorem 4.2]), i.e. if V̌ is L-rational for L ⊃ E then so is V Σ
K .

Lemma 3.4.1. If V ∈ Rep(Ph) and E = V |K0,∞ ∈ Rep(K0,∞) then the bundles V Σ
K and

E Σ
K have the same Chern classes.

Proof. Filter V by Ph-stable subspaces such that the unipotent radical of Ph acts trivially
on the graded quotients. The sum of graded quotients carries a representation of the Levi
KC

0,∞Z(G) (here Z(G) is the centre of G) which restricts on KC
0,∞ to E. This gives a

filtration of VK by subbundles with the graded isomorphic to EK . Canonical extension is
exact so we get a filtration of V Σ

K with graded isomorphic to E Σ
K . It follows that they have

the same Chern classes. �

3.5. RBS canonical extensions. The underlying topological bundles of the constructions
in 3.2, 3.3 admit canonical extensions to topological vector bundles on the RBS compacti-
fication.

For a bundle EK on MK coming from a K0,∞-representation (as in 3.3) there is a natural

topological vector bundle EK on the RBS compactification MK extending EK . This is
described in [GT, 9.2] or [Z2, 1.10] and is easily described stratumwise. In the notation
of 2.1(2), the restriction of EK to the P -boundary stratum of the component Γi\D is the
vector bundle

Ei,P = (Γi,P \MP (R))×KP E,

i.e. the extension EK is obtained by gluing the various Ei,P together (see [GT, 9.2]). The
construction gives an exact tensor functor from Rep(K0,∞) to topological vector bundles

on MK .
For an automorphic vector bundle VK as in 3.2 defined by V ∈ Rep(Ph) let E = V |K0,∞

and define:

VK = EK . (3.5.1)

Then V 7→ VK defines an exact tensor functor from Rep(Ph) to vector bundles on MK

(which factors through the earlier functor).

Remark 3.5.1. The definition (3.5.1) ignores the algebraic structure of VK . Since MK is
motivic, it is interesting to ask what sort of algebraic/motivic object on MK we should
associate with V ∈ Rep(Ph). As a first approximation, one can ask for Chern classes in the
cycle groups of the motive of MK refining the ck(VK).
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3.6. Chern classes and the homomorphism θ. We now show that

θ(ci(V̌ )) = (−1)ici(VK) (in H∗(MK ,Q)) (3.6.1)

for a homogeneous bundle V̌ . We will use the natural connections on homogeneous bundles,
which descend to bundles on quotients.

Recall that the Chern-Weil theory (see [MS, Appendix C]) gives a C∞ way of computing
the Chern classes of a complex vector bundle F on a smooth manifold Y , at least in
H2i(Y,C), as follows: Given a Hermitian connection ∇ in F , one has the curvature form
Ω which is a smooth 2-form on Y with values in End(F ). The Chern forms ci(F,∇)
are closed forms given by applying the natural conjugation-invariant polynomial functions
End(F ) → C. Thus ci(F,∇) = Pi(Ω) where Pi is the ith symmetric function of the
eigenvalues of an endomorphism. Then the image of ci(F ) ∈ H2i(Y,Q) in H∗(Y,C) is
the class of 1

(2π
√
−1)i

ci(F,∇).

Let (E, τ) ∈ Rep(K0,∞). Then g0 (the Lie algebra of G0) and End(E) are k0,∞-modules
under ad|k0,∞ and ad ◦ dτ respectively. The G0-invariant connections in the vector bundle
G0 ×K0,∞ E are given by k0,∞-module homomorphisms

g0 → End(E)

which extend dτ : k0,∞ → End(E). (See [GP, Proposition 5.3]: As in [GP, 5.2], we identify
End(E)-valued forms on D with End(E)-valued forms on G0 which are basic (i.e. K0,∞-
equivariant and k0,∞-horizontal). A connection is determined by its End(E)-valued 1-form,
which in the case of a G0-invariant connection reduces to a mapping g0 → End(E) with the
properties above.) The Cartan decomposition of g0 gives a projection θ0 : g0 → k0,∞ and
the G0-invariant connection given by

dτ ◦ θ0 : g0 → End(E)

is called the Nomizu connection and denoted∇Nom. The curvature 2-form of∇Nom is theG0-
invariant differential form given at the identity by Ω0(X,Y ) = −dτ([(1−θ0)(X), (1−θ0)(Y )])
where X,Y ∈ g. (See [GP, Proposition 5.3, Example 5.5.1]). The Chern forms of ∇Nom are
G0-invariant differential forms on D (see [GP, Proposition 5.3]). The Nomizu connection
descends to one on EK which will also be denoted ∇Nom.

Lemma 3.6.1. Let E ∈ Rep(K0,∞), EK the associated vector bundle on MK (as in 3.3),

and EK the canonical extension to the RBS compactification (as in 3.5). In the isomorphism

H∗(MK ,C) = H∗(g,K0
∞A∞, B(G)K1 )

(of Proposition 1.6.1) the invariant differential form 1
(2π
√
−1)k

ck(EK ,∇Nom) represents the

kth Chern class of EK .

Proof. This is essentially proved in [Z2], but for the Lp cohomology model there. The same
proof (minus the last step) works in our context; we sketch it for the reader’s convenience.

In [Z2, §4], Zucker shows how to represent Chern classes of vector bundles on a stratified
space like MK using a choice of control data, i.e. how to do Chern-Weil theory in a stratified
setting. The class (2π

√
−1)kck(EK) is represented by the Chern form ck(EK ,∇ctrl) of a

controlled connection ∇ctrl, which is a controlled differential form on MK (Theorem 4.3.5
of loc. cit.). Lemma 5.4.2(i) of loc. cit. shows that such controlled differential forms are
bounded, hence belong to the relative Lie algebra complex computing the cohomology
of B(G)K1 . On the other hand, Proposition 5.4.3 of loc. cit. shows that the difference
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ω = ck(EK ,∇ctrl) − ck(EK ,∇Nom) is bounded, and by standard formulas (cf. (4.3.4.1) of
loc. cit.), ω = dηk for a bounded differential form ηk. Thus ck(EK ,∇ctrl) and ck(EK ,∇Nom)
represent the same class in the cohomology of B(G)K1 . �

Lemma 3.6.2. For E ∈ Rep(K0,∞), θ(ck(Ě )) = (−1)kck(EK).

Proof. This is essentially Hirzebruch’s original observation (see [Mu, p. 263]). The Gc0-

invariant connections in the bundle Ě = Gc0 ×K0,∞ E are given (as above, using [GP,
5.2, 5.3]) by k0,∞-module homomorphisms gc0 → End(E) extending dτ . As before, dτ

composed with the projection gc0 → k0,∞ gives a canonical connection ∇̌Nom. The curvature

2-forms Ω̌0 and Ω0 of ∇̌Nom and ∇Nom satisfy β∗(Ω̌0) = −Ω0 where β : D ↪→ Ď and hence
ck(Ě , ∇̌Nom) = (−1)kck(EK ,∇Nom) as invariant differential forms. �

This proves (3.6.1), since for a G(C)-homogeneous bundle V̌ we have

ck(V̌ ) = ck(Ě ) = (−1)kck(EK) = (−1)kck(VK).

by Remark 3.3.1 and the definition (3.5.1).

3.7. Proof of Proposition 1. Recall the map γ∗ : H∗(MK)→ H∗(MΣ
K) from 2.4 and the

diagram (2.4.1). We shall show that there is a commutative diagram

H∗(MΣ
K ,Q)

H∗(Ď,Q)

θΣ 33

θ ++
H∗(MK ,Q)

γ∗

OO
(3.7.1)

with θΣ injective. This will prove Proposition 1.

Lemma 3.7.1. For E ∈ Rep(K0,∞), γ∗(ck(EK)) = ck(E
Σ
K ).

Proof. This could be proved using Lemma 3.6.1 and simple arguments from [Mu], but
we will use [GP, Z2] instead. According to the main result of [GP], there are classes
cGPk (EK) ∈ H2k(M∗K ,C) such that π∗(cGPk (EK)) = ck(E

Σ
K ). By [Z2], p∗(cGPk (EK)) = ck(EK).

Thus γ∗(ck(EK)) = π∗(cGPk (EK)) = ck(E
Σ
K ). �

Lemma 3.7.2. There is an injective ring homomorphism

θΣ : H∗(Ď,Q) −→ H∗(MΣ
K ,Q)

with θΣ(ck(Ě )) = (−1)kck(E
Σ
K ) for E ∈ Rep(K0,∞).

Proof. Following a suggestion of N. Fakhruddin we will use K-theory to prove this. Let
K0(−) denote the topological K-theory of a space and ch : K0(−) → H∗(−,Q) the Chern
character homomorphism. We write R(H) for the representation ring of a compact group
or an algebraic group over a subfield of C, i.e. R(H) is the Grothendieck group of Rep(H).

We first show that the ring homomorphism

R(K0,∞) −→ H∗(MΣ
K ,Q) (3.7.2)

defined by E 7→ ch(E Σ
K ) and extended Q-linearly defines a ring homomorphism

κ : K0(Ď)⊗Q −→ H∗(MΣ
K ,Q). (3.7.3)
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(Here EK is the bundle as in 3.3 and E Σ
K is the construction in (3.4.1). That κ is a ring

homomorphism follows from the compatibility of canonical extension with tensor product
[H2, 4.2] and the fact that the Chern character is one.) Since Ď = Gc0/K0,∞ with Gc0 simply

connected and K0,∞ ⊂ Gc0 is a subgroup of maximal rank, the construction E 7→ Ě gives
an isomorphism

R(K0,∞)⊗R(Gc0) Z −→ K0(Ď) (3.7.4)

where Z is a R(Gc0)-module via the dimension homomorphism (by [Pi, Theorem 3]). Since
the left-hand side is the quotient of R(K0,∞) by the ideal generated by ker(dim : R(Gc0)→ Z)
and ch is a ring homomorphism, it suffices to check that ch(E Σ

K ) = dimE if E is a Gc0-
representation. Since the degree zero term of the Chern character of a bundle is its rank,
it suffices to check that ck(E

Σ
K ) = 0 for k > 0 for such E. By Lemma 3.7.1, ck(E

Σ
K ) =

γ∗(ck(EK)), so it is enough to show that ck(EK) vanishes in H∗(MK ,C) for k > 0. By
Lemma 3.6.1 ck(EK) is represented (up to (2π

√
−1)k) by the kth Chern form of the Nomizu

connection ∇Nom. But if E is a Gc0-representation the curvature 2-form of ∇Nom vanishes
identically (see e.g. [GP, Proposition 5.3]), hence so do its Chern forms for k > 0. Thus
ck(E

Σ
K ) = 0 for k > 0, ch(E Σ

K ) = dimE, and we have κ as in (3.7.3).

Since Ď is a flag variety it has only even-degree cohomology so the Chern character gives
an isomorphism ch : K0(Ď)⊗Q→ H∗(Ď,Q) (cf. [AH, 2.4]). Now define

θΣ := κ ◦ ch−1 ◦ σ
where σ : H∗(Ď,Q) → H∗(Ď,Q) is defined by σ(α) = (−1)deg(α)/2α. (Since H∗(Ď,Q) is
concentrated in even degrees this makes sense and σ is a ring homomorphism.) Note that
θΣ(σ(ch(Ě )) = ch(E Σ

K ), from which it follows that θΣ(ck(Ě )) = (−1)kck(E
Σ
K ). This implies

that θΣ is injective (i.e. nonzero) in top degree 2n = 2 dimCD: Choose a nonzero monomial
ck1(Ě1) · · · ckr(Ěr) with

∑
i ki = n; it spans H2n(Ď,Q). Then∫

MΣ
K

θΣ(ck1(Ě1) · · · ckr(Ěr)) = (−1)n · C ·
∫
Ď
ck1(Ě1) · · · ckr(Ěr) 6= 0

where C is a nonzero constant. (This is Mumford’s version of proportionality [Mu, Theorem
3.2]; it also follows from the equality of Chern forms in Lemma 3.6.2 and a computation on
MK , since γ∗ is an isomorphism in top degree. The constant C is the volume of MK .) It
follows that θΣ is injective: For nonzero α ∈ Hi(Ď) choose β ∈ H2n−i(Ď) such that α ·β 6= 0.
Then 0 6= θΣ(α · β) = θΣ(α) · θΣ(β), so that θΣ(α) 6= 0. �

The commutativity of (3.7.1) follows from the previous two lemmas, Lemma 3.6.2, and
the surjectivity of (3.7.4). Proposition 1 follows.

3.8. Proof of Theorem 2. We work in the category M (Spec(E)) of mixed realizations
from 2.2. The action of the Hecke algebra ofK-biinvariant functions onG(Af ) on H∗(M)K =

H∗(MK) respects all structures, i.e. is an action in M (Spec(E)). (The action on H∗(MK)
in M (Spec(E)) is induced by an action by cohomological correspondences on the object
w6dimj∗QM

MK
, see [Mo, 5.1]. By naturality of the isomorphism in Proposition 2.4.1, it agrees

with the action by cohomological correspondences on p∗QMK
, which induces the action of

the Hecke algebra on H∗(MK) discussed after Proposition 1.6.1.) The direct summand of
invariants can be projected out using an element of the unramified Hecke algebra outside
a finite set of finite places, so it is a direct summand in the category M (Spec(E)). For a
G(C)-homogeneous bundle V̌ given by V ∈ Rep(Ph) and the automorphic vector bundle
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VK , let Ě and EK be the bundles on Ď and MK associated with E = V |K0,∞ (as in 3.3).

Since VK = EK (by definition, cf. 3.5), we have

γ∗(ck(VK)) = γ∗(ck(EK)) = ck(E
Σ
K ) = ck(V

Σ
K )

by Lemmas 3.7.1 and 3.4.1. Since γ∗ is injective on the direct summand of invariants, the
class ck(VK) has the same properties in realizations as its lift ck(V

Σ
K ). The properties (i)-

(iii) in Theorem 2 then follow from general properties of Chern classes ((3.1.1) and (3.1.2))
and the rationality of the functor V̌ 7→ V Σ

K due to Harris noted after (3.4.2) of 3.4. �

4. Remarks on other compactifications

We make some remarks on analogues of the main results for other compactifications. For
toroidal compactifications or for the intersection cohomology of the minimal compactifica-
tion there are straightforward analogues of the main results, which we state first in 4.1, 4.2.
For the cohomology of the minimal compactification the situation is rather more interest-
ing, and we discuss what we expect to hold in 4.3. (Since our main purpose is to sketch a
conjectural picture we will not give complete proofs in the discussion in 4.3.) The setting
is that of §3, i.e. (G,X) satisfies (S1)–(S4) of 2.1 and Gder is assumed simply connected.

4.1. Minimal compactification (intersection cohomology).

Proposition 4.1.1. The invariants (and coinvariants) of the mixed realization IH∗(M∗K)

are isomorphic to H∗(Ď), given by the composition

H∗(Ď)
θ−→ H∗(MK)

ρ−→ IH∗(M∗K),

where ρ : H∗(MK)→ IH∗(M∗K) is as in the diagram (2.4.1).

Proof. A version of Matsushima’s formula for IH∗(M∗K ,C) gives a natural isomorphism

IH∗(M∗,C) = lim−→K
IH∗(M∗K) =

⊕
π=πf⊗π∞

mdis(π)πf ⊗H∗(g,K0
∞A∞, π∞)

where the (algebraic) direct sum is over π appearing in the L2 discrete spectrum of G, and
mdis(π) is the multiplicity. (See e.g. [Mo2, Theorems 2.1, 2.2].) It follows that invariants
and coinvariants agree and are isomorphic to H∗(Ď,C). The homomorphism ρ : H∗(MK)→
IH∗(M∗K) maps invariants into invariants. Since γ∗ = ι ◦ ρ is injective on the invariants, so
is ρ. Hence ρ ◦ θ is an isomorphism onto the invariants. The proposition then follows from
Theorem 2. �

Remark 4.1.2. This can be used, with the methods of [N2], to prove that H∗c(M)G(Af ) of
H∗c(M), which is proved to be a direct summand in [F2], is a mixed Tate realization.

4.2. Toroidal compactifications. There is an analogue of Theorem 1 for toroidal com-
pactifications, which we will state without proof. (The analogue of Theorem 2 is immediate
from [H1, H2].) Let

H∗(Mtor) := lim−→K
lim−→Σ

H∗(MΣ
K).

Here the first (i.e. inner) limit is over all Σ adapted to K (see [H2, 2.5] or [P, §6]) and the
second is over all compact open subgroups K. This is a smooth, but not usually admissible,
module for G(Af ), and an (infinite-dimensional) mixed realization over E. Properties of
canonical extensions verified in [H2, §4] and Lemma 3.7.2 give an injective homomorphism
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θtor : H∗(Ď)→ H∗(Mtor). The G(Af )-module H∗(Mtor) is not semisimple, but nevertheless
one has:

Theorem 4.2.1. The homomorphism θtor : H∗(Ď)→ H∗(Mtor) induces isomorphisms

H∗(Ď) ∼= H∗(Mtor)G(Af ) ∼= H∗(Mtor)G(Af ).

The proof involves studying the graded pieces of the filtration of H∗(Mtor) coming from
the decomposition theorem ([BBD, S1] and [S2] for mixed realizations) and the perverse
filtration of the direct image of the constant object by the morphisms MΣ

K → M∗K . The
(co)invariants come from the subquotient IH∗(M∗) = lim−→K

IH∗(M∗K), which contributes

H∗(Ď) (by 4.1), and the other constituents of H∗(Mtor) make no contribution.

4.3. Minimal compactification (cohomology). We will consider the mixed realization

H∗(M∗) := lim−→K
H∗(M∗K) ∈M (Spec(E))

on which G(Af ) acts. The classes cGPk (VK) belong to the subring H∗(M∗)G(Af ) of invariants.
For each K, Theorem 1, together with [GP], gives a surjection

H∗(M∗K) −→ H∗(Ď) (4.3.1)

in mixed realizations. (Indeed, the composition of H∗(M∗K) → H∗(MK) → H∗(Ď) is sur-

jective since it takes the class cGPk (VK) to (−1)kck(V̌ ).) (1) This is compatible with limits,
giving a surjection

H∗(M∗) −→ H∗(Ď) (4.3.2)

which is already surjective on the subring of invariants (which contains the classes cGPk (VK)).

In fact H∗(Ď) is the top weight quotient of H∗(M∗)G(Af ) (e.g. by Lemma 2.4.2). Theorems
1 and 2 suggest the following question:

Does H∗(M∗) → H∗(Ď) split naturally (in particular, G(Af )-equivariantly) in the
category of mixed realizations?

The answer, perhaps surprisingly, is no. The first case showing this is the Siegel modular
variety of degree 3.

Example 4.3.1. Let G = Sp(6). The compact dual Ď is the space of totally isotropic 3-
planes in Q6 and has even Betti numbers 1, 1, 1, 2, 1, 1, 1. A Q-basis for H∗(Ď) is given by
1, c1, c

2
1, . . . , c

6
1 and c3, where ci ∈ H2i(Ď) is the ith Chern class of the tautological bundle.

Each basis element of degree 2k gives a summand Q(−k) ⊂ H2k(Ď).
By strong approximation, MK = Γ\Sp(6,R)/U(3) where Γ = K ∩Sp(6,Q). The bound-

ary M∗K−MK is a union of minimal compactifications of quotients like Γ′\Sp(4,R)/U(2),
Γ′ ⊂ Sp(4,Q), with pairwise intersections certain (compactified) modular curves. It follows
that H5(M∗K−MK) = 0, and the long exact sequence

· · · → Hk
c (MK)→ Hk(M∗K)→ Hk(M∗K−MK)→ · · ·

1This improves [GP, Theorem 16.4], where the authors prove that the subalgebra of H∗(M∗K) generated
by the classes cGPk (VK) surjects onto H∗(Ď) but excluded the cases where G0 is isogenous to SO(2, 2n). In
fact, the use of Theorem 1 is unnecessary and an argument using L2/intersection cohomology as in 16.6 of
loc. cit. is enough to prove (4.3.2).
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implies that H6
c(MK) ↪→ H6(M∗K) for all K. Thus H6

c(M) ↪→ H6(M∗) and this gives an
inclusion of mixed realizations

H6
c(M)G(Af ) ⊂ H6(M∗)G(Af ).

The mixed realization H6
c(M)G(Af ) has the following properties:

(1) It is mixed Tate: There is a short exact sequence

0→ Q(0)→ H6
c(M)G(Af ) → Q(−3)→ 0. (4.3.3)

The top weight piece is the image of H6
c(M)G(Af ) in IH6(M∗)G(Af ) and under the

identification IH6(M∗)G(Af ) = H6(Ď) it is the summand spanned by c3. Thus the

map H6
c(M)G(Af ) → Q(−3) is the restriction of (4.3.2). The sequence comes with a

canonical splitting sC over C.
(2) The class of the extension H6

c(M)G(Af ) in rational mixed Hodge structures, i.e. in

Ext1
Q-MHS(Q(−3),Q(0)) = C/(2π

√
−1)3Q.

is a nonzero real multiple of ζ(3), in particular it is nonzero.

Here (1) follows from results of [F2] and [N2]. The splitting in (1) comes from a particular
Eisenstein series; the computation in (2) comes from an understanding of its residues at a
particular point. (1) and (2) will be discussed in detail in a sequel to [N2] in preparation.

In particular, (4.3.3), and therefore H∗(M∗)G(Af ) → H∗(Ď), is nonsplit. Similar examples
can be found in all Sp(2g), g ≥ 3, involving quantities like ζ(k) for k odd, and in other
Shimura varieties.

In this example H∗(M∗K ,C) → H∗(Ď,C) is canonically split. Working at full level K =

Sp(6, Ẑ), we have that

MK = Sp(6,Z)\Sp(6,R)/U(3) = A3

is the moduli space of principally polarized abelian threefolds. Combining a result of Franke
[F2, Cor. 3.5] with one of Hain [Ha, Theorem 1] we have H∗c(M)G(Af ) = H∗c(A3). Hain [Ha]
also shows that H∗(A∗3) contains Q[λ]/(λ7) where λ is first Chern class of the Hodge bundle
on A3. A splitting H∗(Ď,C) → H∗(A∗3) is defined by c1 7→ λ and c3 7→ sC(c3) where
sC is the splitting in (1) above. One can check that this defines a ring homomorphism
H∗(Ď,C) → H∗(A∗3,C) and also that λ (respectively, sC(c3)) is cGP1 (respectively, cGP3 ) of
the Hodge bundle. (The Hodge bundle is the automorphic vector bundle associated with
the tautological bundle on Ď.)

Returning to the general situation one can formulate a conjectural picture:

(1) The homomorphism H∗(M∗,C)→ H∗(Ď,C) has a canonical splitting respecting the
Hodge filtration. It is given by the Goresky-Pardon construction, i.e. by ck(Ě ) 7→
(−1)kcGPk (EK).

(2) For G = Sp(2g) the surjection of mixed realizations H∗(M∗)G(Af ) → H∗(Ď) is split
over the summand Q(−k) of H2k(Ď), k ≤ g, given by the kth Chern class of the
tautological bundle if and only if k = 1 or k is even.

I expect that the methods used in the example above (based on [F2, N2]) can be used to
produce a splitting as in (1) and to verify the analogue of (2) in rational mixed Hodge
structures.

As noted in 0.4, Scholze’s p-adic Hodge-Tate map would give an approach to an analytic
splitting, analogous to (1), but in the p-adic analytic world.
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4.4. Satake compactifications. For a general locally symmetric space (i.e. not necessar-
ily Hermitian), it seems reasonable to expect that the Hecke-invariants in the cohomology
of any Satake compactification contains a copy of the cohomology of the compact dual,
i.e. there should be well-defined Chern classes lifting to ck(VK) under pullback to the RBS
compactification and these should generate a copy of H∗(Ď,C).
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