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Abstract. We prove the injectivity of Oda-type restriction maps for the cohomology of non-
compact congruence locally symmetric spaces. This includes results for restriction between (1)
congruence real hyperbolic manifolds, (2) congruence complex hyperbolic manifolds, and (3)
orthogonal Shimura varieties. These results generalize results for compact congruence mani-
folds by Bergeron-Clozel and Venkataramana. The proofs combine techniques of mixed Hodge
theory and methods involving automorphic forms.

0.1. Main results. Let G be a connected semisimple algebraic group over Q and X the sym-
metric space of G(R). We write G(R)nc for the product of the noncompact factors of G(R) and
dG for the (real) dimension of X.

For congruence subgroups Γ ⊂ G(Q) we consider the quotients MΓ = Γ\X and their coho-
mology groups Hi(MΓ) with complex coefficients. The direct limit

Hi(MG) := colimΓ Hi(MΓ)

is a G(Q)-module using pullback by the isomorphisms MgΓg−1 → MΓ induced by pullback by

g−1 on X.
For a semisimple subgroup H ⊂ G let ΓH = Γ ∩H(Q) and MH,ΓH = ΓH\XH . The totally

geodesic embedding XH ⊂ X induces a proper map MH,ΓH := ΓH\XH → MΓ. Pullback in
cohomology defines an H(Q)-equivariant map ι∗ : H∗(MG) → H∗(MH) and composing with
the action of G(Q) gives a map

Res : H∗(MG) −→ IGH H∗(MH).

The target of Res (defined in 1.4 below) is a certain induced module contained in the product∏
g∈G(Q)H

∗(MH), so that concretely we have that Res(α) 6= 0 if and only if ι∗(g−1 · α) 6= 0 for

some g ∈ G(Q), i.e. some Hecke translate of α restricts nontrivially to MH .

Theorem 1. Suppose that H ⊂ G are semisimple groups of the same Q-rank and that H(R)nc ⊂
G(R)nc is one of the embeddings

(1) SO(1, c) ⊂ SO(1, d) (the real hyperbolic case), with neither H nor G a triality form,
(2) SU(1,m) ⊂ SU(1, n) (the complex hyperbolic or ball quotient case), or
(3) SO(2,m) ⊂ SO(2, n) (the orthogonal Shimura variety case).

Then the map Res : H∗(MG) −→ IGH H∗(MH) is injective in degrees < dH/2 (and also in degree
i = dH/2 in the SO(1, c) ⊂ SO(1, d) case).

This automorphic Lefschetz property is well known if G is anisotropic (equivalently, MΓ is
compact): The injectivity in case (1) was proved in [BeC13] and in cases (2) and (3) it was
proved in [Ven01] in degrees i ≤ dH/2.

In the noncompact situation, case (1) can be proved by adapting [Ber03, BeC13] with some
care, and case (2) was proved in [Nai17b] (and [BeC17]), so that the most interesting new case
is (3). This includes, for example, the most basic orthogonal Shimura varieties arising from
quadratic forms over Q of signature (2, n) over R with n ≥ 4. The treatment of the ‘missing’
degree i = dH/2 in the noncompact SU(1, n) and SO(2, n) cases requires arithmetic information
and we leave it for another occasion.
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For the inclusion SO(1, n) ⊂ SU(1, n) we have the following, which is [BeC13, Theorem 1.7]
in the compact case. For i < n, the group Hi(MΓ) carries a pure Hodge structure of weight i
and Hi,0(MG) := colimΓ Hi,0(MΓ).

Theorem 2. Suppose that H ⊂ G are of the same Q-rank, H(R)nc ⊂ G(R)nc is SO(1, n) ⊂
SU(1, n), and H is not a triality form. Then Res : Hi,0(MG) −→ IGH H∗(MH) is injective in
degrees i ≤ n/2.

We will discuss the proofs in 0.3 below.

0.2. Some history. Restriction maps between congruence quotients have been studied by nu-
merous authors for almost forty years, starting with the pioneering work of Oda [Oda81]. We
refer the reader to the surveys [Ven10, Ber18] for discussion of this work and restrict ourselves
here to a brief review of the history of immediate relevance to us.

The first result of this type was proved by Oda [Oda81], who introduced the restriction
map Res and proved Theorem 1 for SU(1,m) ⊂ SU(1, n) in degree i = 1. Weissauer [Wei88]
then proved the Lefschetz property for SO(2, 2) ⊂ SO(2, 3) in degree i = 2. Arthur [Art89,
§9] raised the question of whether the nonprimitive cohomology of Shimura varieties can be
related to smaller Shimura varieties. Harris and Li [HL98] applied the Burger-Sarnak [BS91]
method to prove the Lefschetz property in degree i = 2 in the (compact) complex hyperbolic
and orthogonal Shimura variety cases, i.e. cases (2) and (3). They also conjectured injectivity
in degrees ≤ dH/2 in these cases and showed that in case (2) it would follow from Arthur’s
conjectures [Art89] on the discrete spectrum. They also asked (when dG = dH + 2 in cases (2)
and (3)) whether a linear combination of Hecke translates of the class of the divisor MH,Γ is
the class of an ample divisor. Venkataramana [Ven01] showed that this is true in cohomology
rather than on the level of cycles, i.e. a linear combination of translates of the cycle class in
H2(MΓ) is the hyperplane cohomology class in the Baily-Borel projective embedding, and used
this to prove the conjecture of [HL98], i.e. Theorem 1 in compact cases (2) and (3).

The automorphic approach of [HL98] was taken up by Bergeron and Clozel [Ber03, BeC05,
Ber06, BeC13], who made the remarkable discovery that Lefschetz properties hold for congru-
ence hyperbolic manifolds (i.e. case (1) of Theorem 1) even though there is no complex structure
available. This allows for a common approach to Lefschetz properties in different contexts, by
using the Burger-Sarnak method to reduce them to uniform (in the level Γ) bounds for the
nonzero eigenvalues of the Laplacian on forms on the smaller locally symmetric space. This
eigenvalue bound was then deduced in case (1) in [BeC13] from Arthur’s endoscopic classifica-
tion [Art13] of automorphic forms on orthogonal groups, completing the proof of Theorems 1
and 2 in the compact case.

In the noncompact case it is less clear what should be true, although the analogues for singular
varieties of the Lefschetz theorems in [GM88] are suggestive. Moreover, since the cohomology
of noncompact quotients is influenced by the behaviour of L-functions (for example, through
Eisenstein series constructions of cohomology), one expects that the question is more subtle,
and this is reflected by the omission of i = dH/2 in cases (2) and (3) for now. The complex
hyperbolic case of Theorem 1 was proved in [Nai17a, Nai17b, BeC17] and here we will prove the
rest of the theorem, with the orthogonal Shimura variety case being the main new result. In
fact, our proof shows that the Lefschetz property for congruence real hyperbolic groups arises
as a sort of local Lefschetz property at infinity for the noncompact orthogonal Shimura variety
case. We will comment on this further below.

0.3. On the proofs. We sketch the proofs of the main theorems and some intermediate results
proved along the way. There are, roughly speaking, three types of arguments involved:

(a) automorphic arguments (mainly the Burger-Sarnak method as in [HL98, Ber03, BeC13],
but also rank one residual Eisenstein cohomology)

(b) geometric arguments (using cycle classes as in [Ven01] and mixed Hodge theory and
compactifications as in [Nai17a, Nai17b])

(c) elementary arguments with Lie algebra cohomology (as in [Nai17b]).
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The proof of Theorem 1 in the different cases uses these ingredients differently: Case (1) uses
(a) and (c), case (2) uses (b) and (c), while case (3) uses (b) and (c) explicitly, but also (a)
through the use of case (1). The proof of Theorem 2 uses mainly (a) and (c), with some mild
input from (b).

A basic role is played by the minimal compactification MΓ ↪→ M∗Γ, which is the cusp com-
pactification of the (real or complex) hyperbolic manifold in cases (1) and (2) and the Satake-
Baily-Borel compactification in cases (2) and (3). This gives the basic exact sequence

0 // Hk
! (MG) // Hk(MG) // Hk(i∗j∗C) (0.1)

where the interior cohomology Hk
! (MG) is, by definition, the image of Hi

c(MG) := colimΓ Hi
c(MΓ)

in Hk(MG) and the third term is the boundary cohomology. The sequence (0.1) is functorial
for the inclusions H ⊂ G considered in Theorems 1 and 2 because MH,ΓH → MΓ extends to a
morphism M∗H,ΓH → M∗Γ of minimal compactifications. The obvious approach is to treat the
interior cohomology and the contribution from the boundary separately, and this is what we
do.

The Lefschetz property for interior cohomology is the following:

Theorem 3. (Theorem 4.1, Corollary 2.2) The map Res is injective on Hk
! (MG) for k ≤ dH/2

in cases (1) and (2) and for k < dH/2 in case (3).

The proof of this is different in the various cases. In the real hyperbolic case (1) we adapt
the Burger-Sarnak approach of [HL98, Ber03, BeC13] to the noncompact case. This is a more-
or-less straightforward matter of combining the method with well-known results about residual
Eisenstein cohomology, but since the literature on this is less than satisfactory we treat it in some
detail. In cases (2) and (3) when there is a complex structure available we adopt a different
approach based on some mixed Hodge theory. (The complex hyperbolic case was treated in
[Nai17a, Nai17b], but the approach here is slightly different.) Theorem 3 is then a corollary of
the following:

Theorem 4. (Theorem 2.1) The map Res is injective on GrWk Hk(M ∗
G) for k ≤ dH/2.

This result is deduced as a corollary of a general nonvanishing criterion (Theorem 2.11) for
the map Res : GrWi Hi(M ∗

G) → IGH GrWi Hi(M ∗
H) for a morphism between Shimura varieties,

given in terms of the compact dual. This generalizes the criterion of [Ven01] in the compact
case and has other applications (see Remark 2.14). The spirit of the proof of Theorem 2.11
is that given a functorial cohomology group, some Poincaré duality, and semisimplicity, the
averaging argument can be used to show that a linear combination of G(Q)-translates of the
cycle class of the subvariety gives the class of the compact dual of H. The necessary ingredients
are available thanks to some results in mixed Hodge theory (consequences of the weights and
purity package of [BBD, Sai90], reviewed in 2.1) and the theory of Chern classes of automorphic
vector bundles (results from [Mum77, GP02], reviewed in 2.2 and Appendix C). We remark
that the purely automorphic (i.e. Burger-Sarnak) method cannot be made to work easily for
interior cohomology in case (3) (see Remark 4.4 for details).

Having treated the interior cohomology we deal with the cohomology at infinity. In cases (1)
and (2) this is straightforward: Given the sequence (0.1) and the identification of the boundary
cohomology in terms of Lie algebra cohomology it reduces to an elementary computation with
Kostant’s theorem (as was already done in case (2) in [Nai17b]). The argument in case (3)
of orthogonal Shimura varieties is more delicate: The boundary of M∗Γ is more complicated,
containing modular curves as well as cusps, and it is no longer true that the restriction is
injective on the entire boundary cohomology. Instead, the argument is in two steps. First, one
extends injectivity from interior cohomology Hi

!(MG) to an intermediate subspace

Hi
!(MG) ⊂ GrWi Hi

c(M
1
G, j

1
∗C) ⊂ Hi(MG)

which takes into account some contributions from the one-dimensional boundary strata (see 6.1
for the notation). This is an elementary argument using Kostant’s theorem as in the rank one
cases. Next, one extends injectivity to all of Hi(MG) by taking into account contributions from
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the cusps. This reduces, using some arguments in which weights, purity, and the description of
the restriction to strata of the direct image sheaves in M∗Γ play a crucial role, to the Lefschetz
property for real hyperbolic manifolds for the subgroup SO(1, n− 1) which appears in the Levi
of SO(2, n) with respect to the corresponding subgroup SO(1,m−1) of SO(2,m), i.e. the result
from case (1), although with nontrivial coefficients. This completes the proof of Theorem 1.

0.4. Further remarks. The appearance of the Lefschetz property in the real hyperbolic case
as a local Lefschetz property at the cusp singularities for the orthogonal Shimura variety sug-
gests trying to reverse the logic and deduce the Lefschetz property in the real hyperbolic case
from purely geometric facts. It seems likely that this would follow from showing that a linear
combination of Hecke translates of the image of M∗H,ΓH → M∗Γ is ample, i.e. resolving the

question raised in [HL98]. Perhaps [Bor95] can be used profitably here.
Nonvanishing results for cup products in cohomology, which amount to injectivity of Res for

the diagonal embedding G ⊂ G×G, are known in the compact cases (see [Ven01, BeC13]) and
for noncompact complex hyperbolic cases (see [Nai17b]). The nonvanishing of cup products
in H∗! (MG) follows from the criterion of Theorem 2.11. The extension to H∗(MG) should be
possible using the arguments outlined here.

Finally, injectivity in degree i = dH/2 in the complex hyperbolic and orthogonal Shimura
variety cases remain to be resolved. The two cases are slightly different, since in the first we have

injectivity on H
dH/2
! (MG) but not on the boundary cohomology, while in the second case we

do not know injectivity on H
dH/2
! (MG). (For example, our result does not recover Weissauer’s

result [Wei88] in degree 2 for SO(2, 2) ⊂ SO(2, 3).) In both cases, the classes potentially in the
kernel of Res are constructed by residues of Eisenstein series, and their existence is caused by
the nonvanishing of an L-value, while their survival under Res is also related to an L-value. We
will consider this question in a sequel.

0.5. Contents. We end the introduction with a brief discussion of the contents of the paper.
Section 1 introduces the congruence quotients of interest and their minimal compactifica-

tions, recalls some well-known results on their local geometry and cohomology at infinity, and
introduces the restriction maps above in detail.

Section 2 discusses restriction between Shimura varieties. We show using some standard
mixed Hodge theory that there is a simple criterion for the injectivity of Res on the top weight
quotient of H∗(M ∗

G), and apply it to SU(1,m) ⊂ SU(1, n) and SO(2,m) ⊂ SO(2, n) to prove
injectivity on the top weight quotient and on interior cohomology in these cases.

Section 3 contains Lie algebra cohomology computations using Kostant’s theorem which are
necessary to treat boundary contributions in the various cases. These are explicit elementary
calculations with roots and weights.

Section 4 considers the congruence real hyperbolic case and contains the proof of case (1) of
Theorem 1.

Section 5 considers the congruence complex hyperbolic case and contains the proofs of case
(2) of Theorem 1 and of Theorem 2.

Section 6 considers the case of orthogonal Shimura varieties. The results of Sections 2, 3,
and 4 are combined to prove the remaining case (3) of Theorem 1.

The three appendices contain some facts which are presumably well known but for which we
could not find appropriate references in the literature. Appendix A contains some facts about
L2 cohomology used in Sections 4 and 5. In fact, we only need a very special case of what is
proven (Proposition A.1 in the case SO(1, d) for d odd), but the facts recorded will be useful
elsewhere. Appendix B records some well-known facts about the construction of cohomology
classes via residual Eisenstein series, for use in Sections 4 and 5. Appendix C discusses Chern
classes of automorphic vector bundles, which are used in Section 2.

0.6. Acknowledgements. We thank N. Fakhruddin, D. Prasad, and T. N. Venkataramana
for helpful discussions and DAE for support under PIC 12-R&D-TFR-5.01-0500.
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1. Preliminaries

1.1. Congruence arithmetic quotients. The general setup we work in is as follows. Let
G be a semisimple algebraic group over Q, K the maximal compact subgroup of G(R), and
X = G(R)/K the symmetric space. For a congruence subgroup Γ ⊂ G(Q) the quotient

MΓ = Γ\X
is noncompact when G is Q-isotropic. The following three cases will be the main ones of interest
to us:

(i) G(R)nc = SO(1, d) for d ≥ 2, so thatX is real hyperbolic d-space andMΓ is a congruence
hyperbolic manifold

(ii) G(R)nc = SU(1, n) for n ≥ 2, so that X is the complex unit n-ball and MΓ is a
congruence ball quotient (or congruence complex hyperbolic manifold)

(iii) G(R)nc = SO(2, n) for n ≥ 3, so that

X = SO(2, n)/S(O(2)×O(n)) = SO0(2, n)/SO(2)× SO(n)

and MΓ is a Hermitian locally symmetric space which we will refer to, by an abuse of
terminology, as an orthogonal Shimura variety.

In cases (ii) and (iii) the symmetric space X has a Hermitian structure, so that MΓ is a smooth
complex manifold if Γ is small enough. We will also be interested in the general case when X
has a Hermitian structure; by an abuse of terminology we will then refer to MΓ as a Shimura
variety.

Example 1.1. The standard examples of congruence quotients of types (i)–(iii) are given by
quadratic or Hermitian spaces over Q or number fields. For example, if (V, q) is a quadratic
space over Q and qR has signature (1, d) then G = SO(q) gives an example of (i), while if the
signature is (2, n) then it gives an example of (iii). If the number of variables is at least ≥ 5
and qR is indefinite then G = SO(q) is necessarily Q-isotropic and MΓ is noncompact. More
generally, if n+ 2 is odd and ≥ 5 then the only examples of type (iii) are the obvious ones, i.e.
they come from quadratic forms. For n+ 2 even there are more complicated examples, e.g. for
d+ 1 = 8 there are triality forms of type (i).

Let G(R)c be the compact real form of G(R). The compact symmetric space dual to X is

Xc = G(R)c/K.

In the three cases above Xc is (i) the d-sphere, (ii) complex projective n-space Pn, and (iii) a
quadric in Pn+1. In all three cases there is a natural embedding X ⊂ Xc and the action of
G(R) extends to the closure of X in Xc: In cases (ii) and (iii) it is the familiar G(R)-equivariant
Borel embedding of X in the flag variety and in case (i) it is clear e.g. from the upper halfspace
model of hyperbolic space.

1.2. Minimal compactification. In all three cases above there is a canonical open immersion

j : MΓ ↪→M∗Γ

into a compact space which we will call the minimal compactification. For cases (i) and (ii) it
is the obvious cusp compactification and also coincides with the reductive Borel-Serre compact-
ification. For cases (ii) and (iii) and more generally, for any arithmetic quotient of a Hermitian
symmetric domain, it is the Satake-Baily-Borel compactification of MΓ as a projective variety,
and we will describe it in some more detail in this generality.

The closure of X in Xc decomposes as a disjoint union of boundary components, which are
(by definition) the maximal connected complex submanifolds of the closure. The stabilizer of
a proper (i.e. 6= X) boundary component is a product of maximal parabolic subgroups of the
simple factors of G(R), and the boundary component is called rational if the stabilizer is defined
over Q, in which case it is a maximal Q-parabolic of G. As a topological space, M∗Γ = Γ\X∗
where

X∗ =
⊔

F rational
F ⊂ Xc (1.1)



6 ARVIND NAIR AND ANKIT RAI

is the union of all rational boundary components of X, equipped with the Satake topology.
The action of G(Q) on X extends to a continuous action on X∗; the stabilizer of a rational
boundary component F is a maximal Q-parabolic subgroup (in which case F is proper, i.e.
F ⊂ X∗ − X) or G itself (the case F = X). The Baily-Borel theory [BB66] puts an analytic
structure on M∗Γ inducing the given holomorphic structure on each stratum, and this structure
is unique. Moreover, M∗Γ has a unique structure of projective algebraic variety compatible
with this analytic structure, and this gives a canonical quasiprojective structure on MΓ. The
decomposition (1.1) induces an algebraic stratification of M∗Γ.

Example 1.2. If G is isotropic and G(R)nc is isogenous to SU(1, n) the boundary components
are points and M∗Γ is the cusp compactification of the complex hyperbolic manifold.

Example 1.3. If G(R)nc is isogenous to SO(2, n) the boundary components have complex di-
mension one (i.e. they are upper half-planes) or zero (points). The natural filtration of X∗

induces a filtration by Zariski open subsets

MΓ ⊂M1
Γ ⊂M∗Γ,

with Z1
Γ = M1

Γ−MΓ a disjoint union of curves and Z0
Γ = M∗Γ−M1

Γ a finite set cusps.

The local geometry of the stratification of M∗Γ is closely tied to the structure of parabolic
subgroups, as we now review, see e.g. [BB66, §3], [AMRT, III.4.1–III.4.2], [LR91, 6.1], or [GP02,
7.1–7.3]; we will assume that the adjoint group Gad is Q-simple. Let P be a maximal rational
parabolic subgroup. The unipotent radical W is an extension 1 → U → W → V → 1 where
U is the centre of W and V is abelian. The action of A on the Lie algebra u = LieU(R) is by
the square of the positive (with respect to P ) generator χ of X∗(A), and the action on the Lie
algebra v = LieV (R) is by χ (if v 6= 0). The Levi quotient M = P/W has a decomposition
M = M`MhA where A ∼= Gm is the maximal Q-split central torus in M , M` and Mh commute,
(any lift of) Mh centralizes U , Mh contains no nontrivial connected Q-anisotropic subgroup,
and Mh(R) gives a Hermitian symmetric space, which is the rational boundary component
corresponding to P . (The relation with the “five-factor decomposition” of [AMRT, §4.1] is the
following: If P is the stabilizer of F and P = Gh(F )G`(F )M(F )V (F )U(F ) as in [AMRT, §4.1],
then W = W (F ), U = U(F ), V ∼= V (F ),M`

∼= G`(F )M(F ), and MhA ∼= Gh(F ).) Note that if
G is simply connected the same is true of the derived group of the Levi, so Mder = Mder

` ×Mh,
and hence Mh is also simply connected.

Example 1.4. Let G = SO(q) for a quadratic form over Q of signature (2, n). Assume that G
has Q-rank two (this is automatic for n ≥ 6). The maximal proper Q-parabolics of G are the
stabilizers of isotropic subspaces in V , which are of dimension one or two. We have:

(1) If P is the stabilizer of an isotropic plane I ⊂ V the unipotent radical is a nontrivial

extension 1 → Ga → W → G2(n−2)
a → 1 and the Levi M is GL(2) × SO(I⊥/I). Here

MhA = GL(2) and M` = SO(I⊥/I) ∼= SO(n− 2) is anisotropic over R.
(2) If P is the stabilizer of an isotropic line I ⊂ V the unipotent radical is abelian W ∼= Gn−2

a

and the Levi is M ∼= Gm×SO(I⊥/I). Here Mh is trivial and M`
∼= SO(I⊥/I) has Q-rank

one and M`(R) = SO(1, n− 1).

The corresponding strata of M∗Γ are modular curves in case (1) and cusps in case (2).

Example 1.5. It can happen that Z1
Γ = ∅, e.g. for the Q-rank one inner form of Sp(4) =

Spin(2, 3) associated with an indefinite quaternion algebra D over Q and a rank two Hermitian
space over D with respect to the involution of D extending the nontrivial Galois action on

the maximal subfield of D (which is real quadratic). (This is the form denoted C
(2)
2,1 in [Tit65,

p. 57].) In this case the stabilizer of a cusp is the inner form D× of GL(2) and the boundary of
M∗Γ is a disjoint union of Shimura curves.

Example 1.6. Another example with Z1
Γ = ∅ is that of Hilbert modular surfaces, which are

forms of Spin(2, 2) ∼= SL(2)× SL(2) with Q-rank one.
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1.3. Direct limits. Let G be a semisimple Q-algebraic group and X = G(R)/K the symmetric
space and MΓ = Γ\X for congruence Γ. For Γ′ ⊂ Γ the covering map MΓ′ → MΓ gives
pullback maps in cohomology and compactly supported cohomology, so taking colimits over all
congruence subgroups we define

Hi(MG) := colimΓ Hi(MΓ)

Hi
c(MG) := colimΓ Hi

c(MΓ)

Hi
!(MG) := colimΓ Hi

!(MΓ)

(1.2)

where, as usual, Hi
!(MΓ) = im

(
Hi
c(MΓ)→ Hi(MΓ)

)
is the interior cohomology. All these are

smooth G(Q)-modules, in the sense that the stabilizer of a vector is a congruence subgroup. The
action of g ∈ G(Q) on Hi(MΓ) ⊂ Hi(MG) is given by pullback Hi(MΓ) → Hi(MgΓg−1) by the

isomorphism MgΓg−1 → MΓ induced by left translation by g−1 on the universal cover X. The
transition maps in the colimits are injective, and H∗(MΓ) can be recovered as the Γ-invariants
in H∗(MG). The same remarks apply to H∗c(MG) and H∗! (MG).

When the symmetric space X is Hermitian or G(R)nc is isogenous to SO(1, d), we also have
the minimal compactification M∗Γ as in 1.2, and we can define

Hi(M ∗
G) := colimΓ Hi(M∗Γ). (1.3)

This is a smooth G(Q)-module, and in the Hermitian case it carries a mixed (ind-)Hodge
structure. In particular, it has a weight filtration with weights ≤ i in degree i and the graded
pieces are

GrWj Hi(M ∗
G) = colimΓ GrWj Hi(M∗Γ)

by strictness of the weight filtration.
The inductive setup requires the use of nontrivial coefficients (at the boundary) to treat the

case of trivial coefficients. A finite-dimensional algebraic representation E of G(C) gives a local
system on MΓ which, for simplicity we continue to denote E, and we can consider H∗(MΓ, E),
the colimit

H∗(MG, E) = colimΓH∗(MΓ, E)

and similarly H∗c(MG, E) and H∗! (MG, E). For minimal compactifications jΓ : MΓ ↪→ M∗Γ, we
take the sheaf H0(jΓ∗E) (this is the ordinary, i.e. underived pushforward) and let

H∗(M ∗
G, E) := colimΓ H∗(M∗Γ,H

0(jΓ∗E)).

1.4. Restriction maps. Now suppose that H ⊂ G is an injective homomorphism of semisimple
Q-groups. Choosing (as we may) a maximal compact K in G(R) such that KH = K ∩ G(R)
is maximal compact, and letting ΓH = Γ ∩H(Q) and MH,ΓH = ΓH\H(R)/KH , we get a map
ι : MH,ΓH −→ MΓ which is well known to be proper. Thus there are induced pullback maps
Hi(MΓ)→ Hi(MH,ΓH ) and Hi

c(MΓ)→ Hi
c(MH,ΓH ) (the latter because MH,ΓH →MΓ is proper).

These are compatible under the natural maps H∗c(·) → H∗(·) forgetting supports and hence
induce Hi

!(MΓ)→ Hi
!(MH,ΓH ). In the limit over Γ we have H(Q)-equivariant maps

ι∗ : Hi
(c)(MG)→ Hi

(c)(MH)

in cohomology and compactly-supported cohomology. There are induced homomorphisms of
smooth G(Q)-modules

Res : Hi
(c)(MG) −→ IGH Hi

(c)(MH)

where IGH is an induction functor such that for a smooth H(Q)-module U , IGH U consists of
functions f : G(Q) → U such that (1) f(gh) = h−1 · f(g) and (2) f is left-invariant by a
congruence subgroup of G(Q), and the action of g ∈ G(Q) is by (g · f)(x) = f(g−1x). Then
IGH is exact, takes smooth modules to smooth modules and is right adjoint to restriction (these
facts are completely elementary, see [Nai17a, 3.1]). Explicitly, Res is given by

Res(α)(g) = ι∗(g−1 · α) = ι∗((g·)∗α).

Note that Res restricts to a map Res : Hi
!(MG)→ IGH Hi

!(MH) on interior cohomology.
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When both H and G give Hermitian symmetric spaces and K is chosen (as it may be) so that
the map H(R)/KH → G(R)/K is holomorphic, the map MH,ΓH →MΓ extends to a morphism
M∗H,ΓH → M∗Γ of varieties of minimal compactifications. This well-known general fact (cf.

[Sat80] or [Har89, 3.3]) is easily seen in our primary cases of interest using the description of
M∗Γ given in 1.2. Pullback induces an H(Q)-equivariant map Hi(M ∗

G)→ Hi(M ∗
H), which gives

a homomorphism of mixed Hodge structures

Res : Hi(M ∗
G) −→ IGH Hi(M ∗

H)

by adjunction. There is a similar mapping in the real hyperbolic cases where H(R)nc ⊂ G(R)nc

is SO(1, c) ⊂ SO(1, d) (up to isogeny) and in the ‘mixed’ case SO(1, n) ⊂ SU(1, n), coming
from the obvious extension of MH,ΓH →MΓ to minimal compactifications.

Now assume that H ⊂ G is such that the restriction of finite-dimensional representations
from G to H is multiplicity-free. The situations we will treat are well known to be of this type,
by classical branching laws e.g. [GW09, 8.1.1]). Choose Borel subgroups BH ⊂ B and maximal
tori TH ⊂ BH and T ⊂ B of H(C) and G(C), and for E with highest weight λ ∈ X∗(T ) let EH
be the unique summand of E|H(C) with highest weight λ|TH , where λ ∈ X∗(T ) is the highest
weight of E. The composition H∗(MG, E)→ H∗(MH , E|H)→ H∗(MH , EH) is H(Q)-invariant
and induces a restriction map

Res : H∗(MG, E) −→ H∗(MH , EH)

with coefficients. There are similar maps for H∗c(MG, E), H∗! (MG, E), and H∗(M ∗
G, E).

The use of Res for several different maps should cause no confusion as we will always specify
the domain when discussing injectivity results. We will also frequently write Hi(M ),Hi(M ∗)
etc. for Hi(MG),Hi(M ∗

G) etc., i.e. drop the subscript G when it is clear from context.

1.5. Higher direct images in the minimal compactification. We will use a well-known
description of the restriction of j∗QMΓ

to a stratum of M∗Γ in the case of Shimura varieties. (Here
by j∗ we mean the pushforward on the level of derived categories, i.e. Rj∗ in the old-fashioned
notation.)

To fix notation, let iS : S ↪→ M∗Γ be a stratum of the minimal compactification. Choose a
rational boundary component F � S and let P = MW be the stabilizer of F and M = MhMlA
as in 1.2. For the congruence subgroup Γ, let ΓW = Γ∩W (Q), ΓP = Γ∩ P (Q), ΓM = ΓP /ΓW ,
ΓM`

= ΓM ∩M`(Q), and ΓMh
= ΓM/ΓM`

. These are all neat arithmetic subgroups when Γ is
neat.

Proposition 1.7. For a stratum iS : S ↪→M∗Γ we have:
(1) There is a natural isomorphism in the derived category

i∗Sj∗QMΓ
=
⊕
k

Hk(i∗Sj∗QMΓ
)[−k] (1.4)

of sheaves on S = ΓMh
\F . The object Hk(i∗Sj∗QMΓ

) is the local system on S associated with the
representation of Mh on

Hk(i∗Sj∗QMΓ
)s ∼=

⊕
r+s=k

Hr(ΓM`
,Hs(w,Q)) (1.5)

for s ∈ S.
(2) The weight filtration on Hk(i∗Sj∗QMΓ

)s is split by the action of A on H∗(w,Q), i.e.

GrWi Hk(i∗Sj∗QMΓ
)s is identified with the subspace on which A acts by χ−i (where χ ∈ X∗(A) is

such that A acts on the centre u of w by χ2 and on v = w/u by χ, cf. 1.2).

The description (1.5) of cohomology sheaves can be found e.g. in [LR91, 5.6] or [GHM94,
22.8]. The weight filtration on Hk(i∗Sj∗QMΓ

)s comes from the theory of mixed Hodge modules
and the assertion in (2) is due to Looijenga and Rapoport [LR91, Proposition 5.6]. (The
analogue in the l-adic setting is in [Pin92].) The existence of the decomposition (1.4) in the
derived category can in fact be deduced from this, but instead one can use Theorem 2.9 of
Burgos-Wildeshaus [BuW04], which proves the direct sum decomposition (1.4) in the derived
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category of mixed Hodge modules and the identification of the graded in the context of Shimura
varieties. The isomorphism (1.4) and (1.5) are equivariant for the actions of (M`AW )(Q) on
both sides (which factor through (M`A)(Q)).

Remark 1.8. The real hyperbolic SO(1, d) case fits notationally into the above setup by taking
Mh = {e},M` = SO(d− 1), and then (1) remains true.

2. Restriction between Shimura varieties

In this section we assume that H and G both give rise to Shimura varieties, and consider
the restriction Res : GrWi Hi(M ∗

G) → IGH GrWi Hi(M ∗
H) on the top weight quotient. We prove a

criterion (Theorem 2.11 below) for the nonvanishing of this restriction involving the compact
dual symmetric space, which is the analogue of the criterion of [Ven01] in this situation. It
implies the following:

Theorem 2.1. If H(R)nc ⊂ G(R)nc is SU(1,m) ⊂ SU(1, n) or SO(2,m) ⊂ SO(2, n) then Res
is injective on GrWi Hi(M ∗

G) in degrees ≤ m.

The unitary case of this is contained in [Nai17a, Theorem 3.17], although the proof here is
slightly different (and more direct). As a corollary we get the following injectivity statements
for interior cohomology, of which the first was proved earlier in [Nai17a] (see also [BeC17]):

Corollary 2.2. If H(R)nc ⊂ G(R)nc is SU(1,m) ⊂ SU(1, n) then Res is injective on Hi
!(MG)

in degrees ≤ m.
If H(R)nc ⊂ G(R)nc is SO(2,m) ⊂ SO(2, n) then Res is injective on Hi

!(MG) in degrees ≤ m
if rkQ(H) ≤ 1 and in degrees ≤ m− 1 if rkQ(H) = 2.

2.1. Some cohomological facts. We will use some facts about the cohomology of (possibly)
singular varieties, summarized in Proposition 2.3 and Lemma 2.5 below.

Recall that by [Del74] the rational cohomology H∗(X) = H∗(X,Q) and homology H∗(X) =
H∗(X,Q) of a complex algebraic variety X carry rational mixed Hodge structures, in particular
they have weight filtrations. The theory of mixed Hodge modules ([Sai90], see especially §4
of loc. cit.) gives a relative version of mixed Hodge structures and allows for sheaf-theoretic
arguments, mirroring the situation in l-adic cohomology over finite fields [BBD]. Let X be an
irreducible complex variety of dimension d. Let QH

X be the canonical lift of QX to an object in the
derived category of mixed Hodge modules on X (i.e. QH

X = a∗XQH where aX : X → Spec(C) and
QH is the trivial Hodge structure). The rational cohomology, compactly supported cohomology,
homology, and Borel-Moore homology groups of X acquire mixed Hodge structures via

Hi(X) = Hi(X,QH
X), Hi

c(X) = Hi
c(X,QH

X),

Hi(X) = H−ic (X,DQH
X), HBM

i (X) = H−i(X,DQH
X)

(2.1)

where D is the Verdier duality functor, normalized so that DQH
X = QH

X [2d](d) if X is smooth.
When X is proper, which is the main case of interest to us, we have Hi(X) = Hi

c(X) and
Hi(X) = HBM

i (X). The weights are determined by the fact that QH
X has weights ≤ 0, so e.g.

Hi
c(X) has weights ≤ i and HBM

i (X) has weights ≥ −i.
We will also use the intersection complex ICHX = (j!∗QH

U [d])[−d] where j : U ↪→ X is the in-
clusion of an open dense smooth subset; this lifts the intersection complex ICX = (j!∗QU [d])[−d]
of X, and it is pure of weight 0. (Our notation is slightly different from [Sai90], where ICX(QH)
is used for j!∗QU [d].) Replacing QH

X by ICHX in (2.1) defines rational mixed Hodge structures

IHi(X), IHi
c(X), IHi(X), IHBM

i (X)

on the intersection cohomology, intersection cohomology with compact support, intersection
homology, and Borel-Moore intersection homology. When X is proper these are all pure and
the isomorphism DICHX = ICHX [2d](d) extending DQH

U = QH
U [2d](d) on any smooth open subset

U ⊂ X induces a duality isomorphism IHi(X) ∼= IH2d−i(X)(−d).
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Proposition 2.3. If f : X → Y is a morphism of varieties there are maps

f∗ : GrWi Hi(Y )→ GrWi Hi(X)

f∗ : W−iHi(X)→W−iHi(Y )
(2.2)

for each i satisfying

f∗(f
∗(α) ∩ β) = α ∩ f∗(β) for α ∈ GrWi Hi(Y ), β ∈W−jHj(X). (2.3)

If X is an irreducible proper variety of dimension d then
(1) Hi(X) has weights ≤ i, Hi(X) has weights ≥ −i, and the extreme weights are given by

GrWi Hi(X) = im
(
Hi(X)→ IHi(X)

)
W−jHj(X) = im (IHj(X)→ Hj(X)) .

(2.4)

for all i, j.
(2) If [X] ∈ H2d(X)(−d) is the fundamental class of X then

∩[X] : GrWi Hi(X) −→W−(2d−i)H2d−i(X)(−d) (2.5)

is an isomorphism for all i.
(3) If i : Z ↪→ X is an irreducible closed subvariety of codimension c the cycle class

ξX,Z := (∩[X])−1(i∗[Z]) ∈ GrW2cH2c(X)(c)

has the property that if α ∈ H2 dimZ(X) with i∗(α) = ξZ,pt then α · ξX,Z = ξX,pt.

Proof. The first statement is simply the functoriality of the weight filtration and the fact that
when homology is considered as a module over the cohomology ring using cap product, push-
forward in homology is a module over pullback in cohomology. (1) and (2) are contained in §4.5
of [Sai90], but for the reader’s convenience we outline the arguments.

For the standard cohomology functor H0 on mixed Hodge modules (which corresponds to the
perverse cohomology functor pH0 on sheaves), we have dual natural isomorphisms

GrWd Hd(QH
X) = ICHX [d]

W−dH
−d(DQH

X) = ICHX [d](d)
(2.6)

(see [Sai90, §4.5] for details). If X is proper then the dual statements (2.6) and the hypercoho-
mology spectral sequence imply that

GrWi Hi(X) = im
(
Hi(X)→ IHi(X)

)
W−jHj(X) = im (IHj(X)→ Hj(X))

(2.7)

as claimed in (1).
An irreducible variety X has a fundamental class in Borel-Moore homology

[X] ∈ HBM
2d (X)(−d) = H0(X, (DQH

X)[−2d](−d)) = Hom(QH
X , (DQH

X)[−2d](−d))

giving the fundamental class homomorphism QH
X → (DQH

X)[−2d](−d) which is an isomorphism
if X is smooth. By the identities (2.6) and standard facts about the t-structure and weights, it
factors as

QH
X −→ ICHX −→ (DICHX )[−2d](−d) −→ (DQH

X)[−2d](−d) (2.8)

where the first arrow is the unique extension of the identity morphism QU → QU on U and the
third arrow is its dual (up to a twist). The second is the Verdier duality isomorphism extending
QH
U = (DQH

U )[−2d](−d) and induces Poincaré duality isomorphisms

IHi
c(X) = Hi

c(X, IC
H
X ) ∼= Hi−2d

c (X,DICHX )(−d) = IH2d−i(X)(−d) = IH2d−i(X)∗(−d)

and

IHi(X) = Hi(X, ICHX ) ∼= Hi−2d(X,DICHX )(−d) = IHBM
2d−i(X)(−d),

and hence a nondegenerate pairing IHi(X) × IH2d−i
c (X) → Q(−d). The fundamental class

homomorphism induces the identity isomorphism GrWd Hd(QH
X) = W−dH

−d(DQH
X)(−d) from
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(2.6) (as indeed it must since it is the unique extension of QH
U [d] = DQH

U [d](d) on any smooth
open U ⊂ X.

Now assume that X is proper. Then the duality of the first and third arrows in (2.8) implies
that cap product with the fundamental class [X] induces an isomorphism

∩[X] : GrWi Hi(X)
'−→W2d−iH2d−i(X)(−d). (2.9)

This proves (2). For (3) note that if i∗(α) = ξZ,pt then [Z] ∩ i∗(α) = 1 so that

1 = i∗(i
∗(α) ∩ [Z]) = α ∩ i∗[Z] = [X] ∩ (α · (∩[X])−1(i∗[Z])) = [X] ∩ α · ξX,Z (2.10)

so that α · ξX,Z = (∩[X])−1(1) = ξX,pt. �

Remark 2.4. The assertion in (2) is related to some facts in classical mixed Hodge theory which
we will also use. If X is irreducible and proper and Y → X is a resolution of singularities then

GrWi Hi(X) = im
(
Hi(X)→ Hi(Y )

)
for all i by [Del74, Prop. 8.2.5]. This equivalent to (2.4) because the pullback factors as Hi(X)→
IHi(X) ↪→ Hi(Y ) for any inclusion IH∗(X) ⊂ H∗(Y ) coming from the decomposition theorem
[BBD, Sai90]. Since one also has

GrWi Hi
c(U) = im

(
Hi
c(U)→ IHi(X)

)
= im

(
Hi
c(U)→ Hi(Y )

)
,

one sees that GrWi Hi
c(U) ⊂ GrWi Hi(X) for all i.

The following purity lemma will be used later in Section 7:

Lemma 2.5. Let X be a normal complex variety of dimension d with U ⊂ X1 ⊂ X a filtration by
open subsets such that U is smooth and open dense in X1, Z1 = X1−U is smooth of dimension
one and, Z0 = X−X1 is smooth of dimension zero. Let j : U ↪→ X and i : Z0 ↪→ X be the
inclusions. Then Hi(i0∗j∗QH

U ) has weights ≤ i for i ≤ d − 2. If Z1 = ∅ then Hi(i0∗j∗QH
U ) has

weights ≤ i for i ≤ d− 1.

Proof. Write j = j0 ◦ j1 for j1 : U ↪→ X1 and j0 : X1 ↪→ X. Since ICX = τ<dj
0
∗ τ<d−1j

1
∗CU ,

it follows easily that ICX → j∗CU induces an isomorphism on cohomology sheaves in degrees
≤ d − 2. The same then holds for ICHX → j∗QH

U . On the other hand, by pointwise purity of
the intersection complex, Hi(ICHX )x has weights ≤ i in all degrees [BBD, Sai90]. This proves
the first assertion of the lemma. If Z1 = ∅ we have that ICX → j∗CU induces isomorphisms on
cohomology sheaves in degrees ≤ d− 1, and purity proves the second assertion. �

2.2. Invariants and the compact dual. We will assume from now on that G is semisimple
and X = G(R)/K is a Hermitian symmetric domain. In addition, we assume in this subsection
that G is simply connected. We return to the use of cohomology with complex coefficients and
ignore Tate twists.

We will consider the G(Q)-module IHi(M ∗) := colimΓ IHi(M∗Γ) which is smooth and admis-
sible. Note that (2.4) gives an inclusion

GrW∗ H∗(M ∗) :=
⊕

i
GrWi Hi(M ∗) ⊂ IH∗(M ∗)

of G(Q)-modules.

Proposition 2.6. The G(Q)-modules GrW∗ H∗(M ∗) and IH∗(M ∗) are semisimple and the sum-
mand of invariants is given by

GrW∗ H∗(M ∗)G(Q) = IH∗(M ∗)G(Q) = H∗(Xc).

The embedding of H∗(Xc) in GrW∗ H∗(M ∗) is functorial: If H ⊂ G gives a complex submanifold
XH ⊂ X then the obvious diagram coming from Xc

H ⊂ Xc and M∗H,ΓH →M∗Γ commutes.
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Proof. There is a natural isomorphism

IH∗(M ∗) = H∗(g,K, L2
dis(G(Q)\G(A))) (2.11)

thanks to [Loo88, SS90] and [BoC83]. Here L2
dis is the L2 discrete spectrum; see [Nai17a, 3.8] for

a detailed discussion of (2.11). This proves the semisimplicity statements. The inclusion of the
constants in L2 functions induces an embedding of H∗(Xc) = H∗(g,K,C) in IH∗(M ∗). It follows
from (2.11) using strong approximation and the density of G(Q) in G(R) (weak approximation)
(see e.g. the proof of Proposition 3.8 in [Nai17a], which works verbatim here), that these are
all the invariants.

To show that the invariants are actually in GrW∗ H∗(M ∗) we will use Chern classes of auto-
morphic vector bundles [Mum77, GP02]. A finite-dimensional representation V of K gives a
homogenous bundle V c on Xc = G(R)c/K. Restricting by the Borel embedding X ⊂ Xc (see
1.1) and dividing by Γ gives a bundle VΓ on MΓ = Γ\X for any Γ. The bundle VΓ does not,
in general, extend to a vector bundle on M∗Γ (see Example 2.7 below for an important excep-

tion), but Goresky and Pardon [GP02] defined classes c∗k(VΓ) ∈ H2k(M∗Γ) which behave like the

Chern classes of a putative extension V ∗Γ to M∗Γ. The main property is that for π : MΣ
Γ →M∗Γ a

smooth toroidal desingularization [AMRT], the pullback π∗(c∗k(VΓ)) = ck(V
Σ

Γ ) is the Chern class

of Mumford’s canonical extension V Σ
Γ [Mum77, Har89]. It is a well-known consequence of Mum-

ford’s generalization of Hirzebruch proportionality that the classes ck(V
Σ

Γ ) generate a copy of
H∗(Xc) in H∗(MΣ

Γ ). More precisely, there is an injective homomorphism θ : H∗(Xc)→ H∗(MΣ
Γ )

such that θ(ck(V
c)) = (−1)kck(V

Σ
Γ ) for all k,V (see Lemma C.1 in Appendix C for a proof, fol-

lowing [Nai14, Lemma 3.7.2]). They are contained in GrW∗ H∗(M∗Γ) = im
(
H∗(M∗Γ)→ H∗(MΣ

Γ )
)

since π∗(c∗k(V )) = ck(V
Σ

Γ ) by [GP02]. Moreover, the compatibility of the construction for dif-
ferent Σ (see e.g. [Har89, 4.3.1]) shows that we have a well-defined embedding θ : H∗(Xc) →
GrW∗ H∗(M∗Γ).

It remains to show that the classes are G(Q)-invariant and the embedding is functorial. The
direct limit colimΣ,Γ H∗(MΣ

Γ ) over all pairs (Σ,Γ) where Σ is admissible for Γ is a G(Q)-module,

and contains GrW∗ H∗(M ∗) as a G(Q)-submodule. Standard properties of the canonical exten-
sions listed in [Har89, 4.3] show that the Chern classes are G(Q)-invariants in colimΣ,Γ H∗(MΣ

Γ ),

and hence in GrW∗ H∗(M ∗). Finally, functoriality follows from [Har89, 4.3.4] and the definition
of the map θ given in Lemma C.1. �

Example 2.7. The representation of K on the top exterior power of p, where g = k + p is the
Cartan decomposition given by K, gives a special automorphic bundle called the Baily-Borel
bundle. This extends as a line bundle L bb over M∗Γ and some power of L bb is the O(1) in the

Baily-Borel projective embedding (see [Mum77, Prop. 3.4(b)]). So L bb is ample and the Chern
class cbb1 := c∗1(L ) = c1(L bb) fixes a generator

(cbb1 )n ∈ GrW2nH2n(M ∗) = IH2n(M ∗) (2.12)

in top degree.

Example 2.8. If G(R)nc = SU(1, n) then Xc = SU(1+n)/S(U(1)×U(n)) ∼= Pn. So the invariant
part of GrW∗ H∗(M ∗) is C[cbb1 ]/((cbb1 )n+1). (See e.g. [Nai17a, 1.2] for an intrinsic description of
L bb.)

Example 2.9. If G(R)nc = Spin(2, n), the compact symmetric space dual to X is

Xc = Spin(2 + n)/Spin(2)×{±I} Spin(n) = SO(2 + n)/SO(2)×SO(n)

which is a quadric in Pn+1. The complex cohomology ring of quadrics is well known. Let E2 and
En be the vector bundles on Xc corresponding to the natural representations of SO(2)×SO(n)
of dimension 2 and n, respectively. When n is odd the complex cohomology is generated by
the Euler class (or first Chern class) c1 = c1(E2) ∈ H2(Xc), i.e. H∗(Xc) = C[c1]/(cn+1

1 ). When
n = 2d is even the complex cohomology of Xc is generated as a ring by c1 and the Euler class
cd = cd(En) ∈ Hn=2d(Xc), with the relations cn+1

1 = 0, c2
d = (−1)dc2d

1 and c1cd = 0.
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For later use we remark that if n = 2d ≥ 4 and Xc
a ⊂ Xc is the inclusion of quadrics

coming from SO(2, a) ⊂ SO(2, n) for a < n, then cd|Xc
a

= 0. (Indeed, 0 = (c1cd)|Xc
n−1

=

c1|Xc
n−1
· cd|Xc

n−1
= c1 · (cd|Xc

n−1
). Since c1· is injective on H∗(Xc

n−1) = C[c1]/(cn1 ) in degrees

< 2(n− 1) we must have cd|Xc
n−1

= 0 if d ≥ 2.)

2.3. Cycle classes and an injectivity criterion. We will prove a criterion for the nonvan-
ishing of Res between Shimura varieties and apply it to prove Theorem 2.1 and Corollary 2.2.
Since we are only interested in cohomology with complex coefficients we will ignore Tate twists
henceforth and write H∗(X) for H∗(X,C).

Suppose now that ι : M∗H,ΓH → M∗Γ is the extension to minimal compactifications of a

morphism of Shimura varieties (cf. 1.4), and let n = dimMΓ,m = dimMH,ΓH . Let

ξΓ := (∩[M∗Γ])−1(ι∗[M
∗
H,ΓH

]) ∈ GrW2(n−m)H
2(n−m)(M∗Γ)

be the cycle class defined earlier in Proposition 2.3, ignoring Tate twists and simplifying the
notation (in the notation of loc. cit. this would be ξM∗Γ,M

∗
H,ΓH

). It is easily checked that if

Γ′ ⊂ Γ is normal then ξΓ = |Γ/Γ′|−1
∑

γ∈Γ/Γ′ γ · ξΓ′ , where ξΓ′ = (∩[M∗Γ])−1(ι′∗([M
∗
H,Γ′H

])) for

ι′ : M∗H,Γ′H
→M∗Γ′ at level Γ′.

We will also consider the closed immersion ιc : Xc
H → Xc, which gives the cycle class

ξXc
H

:= (∩[Xc])−1(ιc∗[X
c
H ])

which is nonzero since Xc
H is a subvariety of the algebraic variety Xc.

Proposition 2.10. The G(Q)-submodule of IH∗(M ∗) generated by ξΓ contains the cycle class

ξXc
H
∈ H2(n−m)(Xc) of Xc

H in Xc.

Proof. The G(Q)-submodule V ⊂ GrW2(n−m)H
2(n−m)(M ∗) ⊂ IH2(n−m)(M ∗) generated by ξΓ

admits a decomposition V = V 0 ⊕ V 1 where V 1 has no invariants or coinvariants and V 0 is
contained in the summand of invariants H2(n−m)(Xc) ⊂ GrW2mH2m(M∗Γ). Write ξΓ = ξ0

Γ + ξ1
Γ

with ξiΓ ∈ V i. Since V 1 has no coinvariants, ξ0
Γ · α = ξΓ · α for any α ∈ H2m(Xc), so that

[M∗Γ] ∩ (ξ0
Γ · α) = [M∗Γ] ∩ (ξΓ · α)

= [M∗Γ] ∩ ξΓ ∩ α
= ι∗[M

∗
H,ΓH

] ∩ α
= ι∗([M

∗
H,ΓH

] ∩ ι∗(α))

(2.13)

On the other hand,

[Xc] ∩ (ξXc
H
· α) = [Xc] ∩ ξXc

H
∩ α

= ιc∗[X
c
H ] ∩ α

= ιc∗([X
c
H ] ∩ ιc∗(α)).

(2.14)

Now the pullbacks ιc∗ and ι∗ are compatible, while under the isomorphism H2n(Xc) ∼= GrW2nH2n(M∗Γ)

the two nonzero linear forms [M∗Γ]∩ : GrW2nH2n(M∗Γ) → H0(M∗Γ) = C and [Xc]∩ : H2n(Xc) →
H0(Xc) = C are necessarily proportional, and the same holds for M∗H,ΓH and Xc

H . It follows

from (2.13) and (2.14) that for α ∈ H2m(Xc), we have

[Xc] ∩ (ξ0
Γ · α) ∼ [Xc] ∩ (ξXc

H
· α)

where ∼ means up to a fixed nonzero constant independent of α. Thus ξ0
Γ · α ∼ ξXc

H
· α for any

α and so ξ0
Γ ∼ ξXc

H
by Poincaré duality for Xc. �

Theorem 2.11. If α ∈ GrWi Hi(M ∗) and Res(α) = 0 then α · ξXc
H

= 0.

Proof. Suppose that α ∈ GrWi Hi(M∗Γ) ⊂ GrWi Hi(M ∗) is such that Res(α) = 0. Let g ∈ G(Q)
and choose Γ′ normal in Γ with Γ′ ⊂ Γ∩ g−1Γg. Let γ1, . . . , γr be the representatives for cosets
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of Γ′ in Γ, let p : M∗Γ′ → M∗Γ, and let ι′ : M∗H,Γ′H
→ M∗Γ′ be the natural map at level Γ′. Then

we have
p−1(ι(M∗H,ΓH )) =

⋃
i

γi · ι′(M∗H,Γ′H ).

If Res(α) = 0 for α ∈ GrWi Hi(M∗Γ) then (gγ−1
i )∗α = (γ−1

i )∗g∗α restricts to zero on ι′(M∗H,Γ′H
)

for each i, i.e. ι′∗((γ−1
i )∗g∗(α)) = 0 for each i. Using (2.3) we have

0 = ι′∗

(
ι′∗((γ−1

i )∗g∗α) ∩ [M∗H,Γ′H ]

)
= (γ−1

i )∗g∗α ∩ ι′∗([M∗H,Γ′H ])

= [M∗Γ′ ] ∩
(
(γ−1
i )∗g∗α · ξΓ′

)
= [M∗Γ′ ] ∩ (g∗α · γ∗i ξΓ′) .

(2.15)

By (2) of Proposition 2.3 we have that g∗α · γ∗i ξΓ′ = 0. Summing over Γ/Γ′ gives that

0 = g∗α · ξΓ = α · (g−1)∗ξΓ.

Since this holds for all g ∈ G(Q), Proposition 2.10 implies that α · ξXc
H

= 0. �

Proof of Theorem 2.1. In the SU(1,m) ⊂ SU(1, n) case Xc = Pn, so that ξXc
H
∼ (cbb1 )n−m,

where cbb1 is the first Chern class of the ample Baily-Borel line bundle in (2.12). So ·cbb1 is

injective in degrees < n on
⊕

i GrWi Hi(M∗Γ) ⊂ IH∗(M∗Γ) because of the hard Lefschetz prop-
erty for intersection cohomology [BBD, Sai90]), and hence ·ξXc

H
is injective in degrees i ≤ m.

Theorem 2.11 implies the injectivity of Res in degrees ≤ m.
In the SO(2,m) ⊂ SO(2, n) case the previous argument can be applied to the simply

connected covers H̃ ⊂ G̃. Now we claim ξXc
H
∼ (cbb1 )n−m. If n 6= 2m this is clear since

GrW2(n−m)H
2(n−m)(M∗Γ) = C (cbb1 )n−m, while if n = 2m then it holds because cm|Xc

H
= 0 (see

Example 2.9). It follows that ·ξXc
H

is injective on
⊕

i GrWi Hi(M∗Γ) in degrees ≤ m because of

the hard Lefschetz property of cbb1 · on IH∗(M∗Γ). Theorem 2.11 implies the injectivity of Res in
degrees ≤ m. �

Proof of Corollary 2.2. The complex hyperbolic case follows easily from the observation that

Hk
! (MΓ) = GrWk Hk

c (MΓ) for k ≤ n
(see the proof of [Nai17b, Proposition 1.6]) and the fact that GrWk Hk

c (MΓ) ⊂ GrWk Hk(M∗Γ) for
all k (Remark 2.4).

Now consider the orthogonal case. First note that

Hi
!(MΓ) = im

(
Hi
c(MΓ)→ IHi(M∗Γ)

)
= GrWi Hi

c(MΓ) for i ≤ n− 1. (2.16)

The first equality holds because IHi(M∗Γ) → Hi(MΓ) is injective for i ≤ n − 1 (and an isomor-
phism for i ≤ n − 2) because the boundary has dimension one, and the second holds because
GrWi Hi

c(MΓ) ↪→ IHi(M∗Γ) for all i (see Remark 2.4). On the other hand,

GrWi Hi
c(MΓ) ⊂ GrWi Hi(M∗Γ)

for all i (by Remark 2.4 again). Thus Hi
!(M ) ⊂ GrWi Hi(M ∗) for i ≤ n − 1 and similarly for

MH . So the corollary follows from Theorem 2.1 in degrees ≤ m− 1 in the case rkQ(G) = 2. If
rkQ(H) = 1 then this can be improved slightly because the singularities of M∗H,ΓH are isolated

and so Hi
!(M ) ⊂ GrWi Hi(M ∗) holds for i = m also. �

Remark 2.12. The use of the embedding H∗(Xc) ⊂ GrW∗ H∗(M ∗) (of Proposition 2.6) in the
proof of Theorem 2.1 can be avoided in the unitary case and also in the orthogonal case (except
possibly when n = 2m). As noted in Example 2.7, the first Chern class of the Baily-Borel

bundle can be made sense of in GrW∗ H∗(M ∗) and the invariants in IH2(n−m)(M∗Γ) are reduced

to C (cbb1 )n−m. So the argument can be run with H∗(Xc) replaced by the subring
⊕

0≤i≤nC (cbb1 )i.
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Remark 2.13. The arguments above can be modified to treat nontrivial coefficients, using the
fact that the local system E on MΓ underlies a pure polarizable variation of Hodge structure (see
[LR91, §4] or for a more canonical approach in the context of Shimura varieties see [BuW04]).
This allows us to use mixed Hodge modules and arguments with weights.

Remark 2.14. The criterion of [Ven01] in the compact case has been used in [Ber09] to prove
a number of other results about restriction using computations in the compact dual. The
analogues for the top weight quotient of H∗(M ∗) in general then follow immediately using the
criterion of Theorem 2.11 instead. It seems likely that (suitably formulated) they should extend
to H∗(M ) using the methods of later sections.

The following example shows that these bounds can sometimes be improved on:

Example 2.15. Consider the case of SO(2, 2) ⊂ SO(2, n) for n ≥ 3, and assume rkQ(H) = 2, so

that H = SL(2)×SL(2). Theorem 2.1 gives the injectivity of GrW2 H2(M ∗)→ IGH GrW2 H2(M ∗
H).

Since H2
! (MΓ) = IH2(M∗Γ) = GrW2 H2

c(MΓ), the map GrW2 H2(M∗Γ)→ GrW2 (M∗H,ΓH ) factors as

GrW2 H2
c(MΓ)→ GrW2 H2

c(MH,ΓH )→ GrW2 H2(M∗H,ΓH ).

Now MH,ΓH = X1×X2 is a product of two modular curves, so GrW2 H2
c(X1×X2) = GrW1 H1

c(X1)⊗
GrW1 H1

c(X2) injects into GrW2 H2(X∗1 ×X∗2 ) and so the second map is injective. It follows that
Res is always injective on H2

! (M ), improving Corollary 2.2 slightly.

Remark 2.16. In fact, when m = 2 and n = 3, Res is injective on all of H2(M ) by a result
of Weissauer [Wei88]. This is not covered by our results since H2

! (M ) is a proper subspace of
H2(M ).

Remark 2.17. The basic idea of this section is that in the presence of some functoriality, semisim-
plicity, and duality, one can use the cycle class argument. This can also be applied to the
reductive Borel-Serre (RBS) compactification, to get a slight generalization of Theorems 2.11
and 2.1.

The RBS compactification is a (nonalgebraic) compactification of MΓ dominating M∗Γ, i.e.

the identity of MΓ extends to M rbs
Γ → M∗Γ. The cohomology Hi(M rbs

Γ ) carries a mixed Hodge
structure like that of a proper variety, i.e. with weights ≤ i in degree i, and the top weight
quotient GrWi Hi(M rbs

Γ ) is the image of a natural map Hi(M rbs
Γ ) → IHi(M∗Γ). For ι : MH,ΓH →

MΓ there is no continuous map M rbs
H,ΓH

→M rbs
Γ extending MH,ΓH →MΓ, but nevertheless there

is a natural pullback map H∗(M rbs
Γ )→ H∗(M rbs

H,ΓH
), which is a homomorphism of mixed Hodge

structures. (See e.g. the survey [Nai17c] where these results are discussed.) Theorem 2.1 can
be improved to injectivity of the induced map Res on GrWi Hi(M rbs) = colimΓ GrWi Hi(M rbs

Γ )

for i ≤ m. Since the canonical mapping Hi(M∗Γ) → IH∗(M∗Γ) factors through H∗(M rbs
Γ ), it

follows that GrWi Hi(M ∗) ⊂ GrWi Hi(M rbs). (However, in general Hi(M ∗) → H∗(M rbs) is not
injective.) It can be shown using methods of Eisenstein series that in the case at hand this
inclusion is proper, so we would have an improvement of Theorem 2.1.

3. Lie algebra cohomology computations

3.1. Kostant’s theorem. We recall results of [Kos61]. Fix a complex semisimple Lie group G,
a maximal torus T ⊂ G and a Borel subgroup B ⊃ T , and let Φ = Φ(T,G) be the root system,
Φ+ the positive roots determined by B, Φ− = −Φ+ the negative roots, ρ = 1

2

∑
α∈Φ+ α the

half-sum of positive roots, and W = W (T,G) the Weyl group of T in G. Let P be a standard
parabolic subgroup of G, N its unipotent radical and n its Lie algebra. The Weyl group of
the Levi L = P/N is a subgroup WL ⊂ W , and we let WP be the set of minimal length coset
representatives of WL\W . For each w ∈WP the associated set of positive roots

Φ(w) = {α ∈ Φ(T,G) : α > 0, w−1α < 0} = Φ+ ∩ wΦ−

which has cardinality `(w). For a dominant λ ∈ X∗(T ) the weights w(λ + ρ) − ρ for w ∈ WP

are dominant for L and distinct. The mapping w 7→ Φ(w) sets up a bijection between WP and
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the subsets S of Φ(n) = {α ∈ Φ(T,G) : gα ⊂ n} for which both S and Φ+−S are closed under
+̇ ([Kos61, 5.10]; recall that α+̇β is α+β when this is a root and empty otherwise).

Let Eλ be the irreducible finite-dimensional G-representation with highest weight λ ∈ X∗(T )
with respect to B. The Lie algebra cohomology H∗(n, Eλ) is the cohomology of ∧∗n∗ ⊗ Eλ
with the Lie algebra differential. The natural P -module structure on ∧∗n∗ ⊗ Eλ descends to
an L = P/N -module structure in cohomology. For an L-dominant weight µ ∈ X∗(T ) let ELµ
denote the irreducible finite-dimensional algebraic representation of L with highest weight µ.
Then by [Kos61, Theorem 5.14] there is a multiplicity-free decomposition of L-modules

Hk(n, Eλ) =
⊕

w∈WP ,`(w)=k

ELw(λ+ρ)−ρ. (3.1)

Kostant also identified a highest weight vector in each summand above. Let n− be the nilradical
of the Lie algebra of the parabolic subgroup opposite to P . The Killing form gives isomorphisms
n− ∼= n∗ and ∧in− ∼= ∧in∗. Choose a nonzero vector eα in the root space gα for each α ∈
Φ(T,GC), and for w ∈ WP let ew :=

∧
α∈Φ(w) e−α ∈ ∧`(w)n−. Let vwλ ∈ Eλ be a weight

vector for the extremal weight wλ. Then under the identification of n∗ with n−, the element

ew ⊗ vwλ ∈ ∧`(w)n− ⊗ Eλ (3.2)

is closed in ∧∗n∗ ⊗ Eλ and its cohomology class is a highest weight vector for the summand
ELw(λ+ρ)−ρ in (3.1) (see [Kos61, Theorem 5.14]); it is a harmonic representative for a natural

Laplacian. A lowest weight vector is given by ∧α∈Φ(w)e−wL0 (α)⊗ vwL0 wλ, where wL0 is the longest

element of WL ⊂ W . (See [Kos61, Remark 8.2].) In fact, taking the sum of the L-submodules
of ∧∗n− ⊗ Eλ generated by the ew ⊗ vwλ as w runs over WP gives (using the identification
∧∗n∗ ∼= ∧∗n−) a canonical L-equivariant inclusion H∗(n, Eλ) ⊂ ∧∗n∗ ⊗Eλ inducing the identity
in cohomology and compatible with products (see [Kos61, Theorem 5.7]).

3.2. Restriction maps in n-cohomology. Now consider the situation where ι : H → G is a
homomorphism of real semisimple groups with finite kernel. Then for a parabolic P of G with
Levi L = P/N , we have the parabolic PH = ι−1(P ) of H with unipotent radical NH = ι−1(N)
and Levi LH = PH/NH . Let n = LieN(R) and nH = LieNH(R). For a finite-dimensional
G(C)-representation E and EH a summand of E|H(C), the restriction map

H∗(nC, E) −→ H∗(nH,C, E) −→ H∗(nH,C, EH)

is LH(C)-equivariant. Consider the map

Resn : H∗(nC, E) −→
∏

m∈L(C)

H∗(nH,C, EH)

with coordinate indexed by m ∈ L(C) given by precomposing the previous map with the adjoint
action of m. Note that the kernel of Resn is an L(C)-module; in particular, for each irreducible
summand ELw(λ+ρ)−ρ, we have that Resn is injective on ELw(λ+ρ)−ρ ⇐⇒ Resn is nonzero on

ELw(λ+ρ)−ρ ⇐⇒ Resn(ew ⊗ vwλ) 6= 0.

Let us assume that the restriction of finite-dimensional irreducible representations by H(C) ⊂
G(C) is multiplicity-free. Choose maximal tori TH ⊂ T and Borel subgroups BH ⊂ B, and for
an irreducible representation E with highest weight λ ∈ X∗(T ) let EH be the summand of
E|H(C) with highest weight λ|TH ∈ X∗(TH). The following propositions are proved by explicit
elementary calculations with roots and weights using Kostant’s theorem and take up the rest
of this section. In each case the restriction from G(C) to H(C) is multiplicity-free by classical
results ([GW09, 8.1.1]).

Proposition 3.1. Let G = SO(d, 1) and H = SO(c, 1) for 2 ≤ c < d embedded in the standard
way in G. Let P = LN be a proper parabolic subgroup of G. Then Resn is injective in degrees
i ≤ c/2 except in the case (d, c, i) = (2k + 1, 2k, k). In this case Hk(n, E) has two L-irreducible
summands and Resn is injective on either one.
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Proposition 3.2. Let G = SU(n, 1) and H = SU(m, 1) for 2 ≤ m < n embedded in the
standard way in G. Let P = MW be a proper parabolic subgroup of G. Then Resw is injective
on Hi(w, E) in degrees i < m.

Proposition 3.3. Let G = SO(2, n) and H = SO(2,m), embedded in G in the standard way
for 2 ≤ m < n, and E = C. If P = MW is the stabilizer of an isotropic plane then Resw is
injective on Hi(w,C) for i ≤ m− 2.

To treat SO(1, n) ⊂ SU(1, n) we will need:

Proposition 3.4. Let G = SU(n, 1) and H = SO(n, 1) embedded in the standard way in G
with n ≥ 2. Let P = MW be a proper parabolic subgroup of G. Then Resw is injective on
Hi,0(w,C) in degrees i < n.

The bigrading in Proposition 3.4 refers to the Hodge structure coming from the identification
of Hi(w,C) with the link cohomology Hi(i∗{x}j∗C), where j : MΓ ↪→M∗Γ and i{x} : {x} ↪→M∗Γ is

the inclusion of the cusp corresponding to P (see Proposition 1.7 or [Nai17b, Lemma 1.2].) It
is can also seen from the decomposition (3.1) (see [Nai17b, Remark 1.11]).

The rest of this section will be taken up with the proofs of these propositions.

3.3. Proof of Proposition 3.3. To make computations we will fix some notation for roots.
We may assume g = so(2, n) = so(J) where

J =


1

1
In−2

1
1

 .

Fix a Cartan subalgebra s of so(n− 2)C and let t ⊂ gC be the Cartan subalgebra defined by

t := {diag(a, d, C,−d,−a) : a, d ∈ C, C ∈ s}.
Then t is defined and maximally split over R and the subspace aC ⊂ t given by C = 0 is the
complexification of the Lie algebra a ⊂ g of a maximal R-split Cartan in g. Let α1, α2 ∈ t∗ be
defined by

α1(diag(a, d, C,−d,−a)) = a

α2(diag(a, d, C,−d,−a)) = d
(3.3)

The relative roots are Φ(aC, gC) = {±α1,±α2,±(α1 − α2),±(α1 + α2)}.
Now choose for s the Cartan subalgebra of block-diagonal matrices

s =
{
diag

((
0 b1
−b1 0

)
, . . . ,

(
0 bk
−bk 0

))
: b1, . . . , bk ∈ C

}
(3.4)

when n− 2 = 2k is even, and

s =
{
diag

((
0 b1
−b1 0

)
, . . . ,

(
0 bk
−bk 0

)
, 0
)

: b1, . . . , bk ∈ C
}

(3.5)

when n− 2 = 2k + 1 is odd. Let η1, . . . , ηk ∈ s∗ be defined by

ηi

(
diag

((
0 b1
−b1 0

)
, . . . ,

(
0 bk
−bk 0

))
, (0)

)
=
√
−1 bi (3.6)

where (0) means the entry is omitted when n − 2 is even and the entry is zero when n − 2 is
odd. Fix the positive system Φ+(s, so(n− 2)C) with simple roots {ηi − ηi+1 : 1 ≤ i < k} t {ηk}
for n− 2 = 2k + 1 odd and {ηi − ηi+1 : 1 ≤ i < k} t {ηk + ηk−1} for n− 2 = 2k even, and take
the positive system in Φ(t, gC) containing it and compatible with Φ+(aC, gC) = {α1, α2, α1 −
α2, α1 + α2}. An explicit computation shows that the positive roots are

Φ+(t, gC) = Φ+(s, so(n− 2)C) t {α1 ± ηi, α2 ± ηi : 1 ≤ i ≤ k} t {α1 − α2, α1 + α2}
for n− 2 = 2k even, and

Φ+(t, gC) = Φ+(s, so(n− 2)C) t {α1 ± η1, α2 ± ηi : 1 ≤ i ≤ k} t {α1, α2, α1 + α2, α1 − α2}



18 ARVIND NAIR AND ANKIT RAI

for n− 2 = 2k + 1 odd.
The parabolic P = MW in the proposition is the stabilizer of an isotropic plane, which may

be assumed to be the obvious plane Re1 + Re2 in Rn+2. We will need the set Φ(w) = {α ∈
Φ(t, gC) : gαC ⊂ wC}. Using the description above and explicit matrix descriptions we have

Φ(w) = {α1 ± ηi}1≤i≤k t {α2 ± ηi}1≤i≤k t {α1 + α2}
if n− 2 = 2k is even and

Φ(w) = {α1 ± ηi}1≤i≤k t {α2 ± ηi}1≤i≤k t {α1, α2, α1 + α2}
if n− 2 = 2k + 1 is odd.

Now let us prove Proposition 3.3. We may assume that h ⊂ g is given by the subspace

Rm+2 = (Rem+1 + · · ·+ Ren)⊥ ⊂ Rn+2, i.e. that h = so(2,m) is embedded in g = so(2, n) in a
way that the m+ 1,m+ 2, . . . , n rows and columns are zero. We will consider the cases n even
and n odd separately.

First assume n− 2 = 2k is even. Then we have

Φ(w) = {α1 ± ηi}1≤i≤k t {α2 ± ηi}1≤i≤k t {α1 + α2}.

For w ∈ WP of length ≤ m − 2 = 2k − (n −m) the set of roots Φ(w) ⊂ Φ(w) has cardinality
≤ 2k−(n−m), so that Φ+−Φ(w) contains at least n−m elements which belong to {α2±ηi}1≤i≤k,
which has cardinality 2k. Since Φ+−Φ(w) is closed under +̇ and α1 − α2 ∈ Φ+−Φ(w), we get
that we may choose sets I+ and I− in {1, . . . , k} such that

(1) I+ and I− are disjoint and |I+ t I−| = n−m
(2) for i ∈ I+ we have {α1 + ηi, α2 + ηi} ⊂ Φ+−Φ(w)
(3) for i ∈ I− we have {α1 − ηi, α2 − ηi} ⊂ Φ+−Φ(w).

(These sets are not unique, but any choice suffices for our purposes.) Let h′ be the copy of
so(2,m) given by the embedding of the subspace⊕

i∈I+

Re2i+2 ⊕
⊕
i∈I−

Re2i+1

⊥ ⊂ Rn+2

i.e. the 2i+ 2nd row and column are zero for i ∈ I+ and the 2i+ 1st row and column are zero
for i ∈ I−. Then the restriction of the harmonic representative ew = ∧α∈Φ(w)e−α in (3.2) to
nH′ is nonzero, and equals (up to a nonzero scalar) the harmonic representative of a similar

class in nH′ . Since the subspace above is conjugate to the subspace (Rem+1 + · · ·+ Ren)⊥ by
an element m ∈ M(C) = Spin(n − 2,C), we see that h′ is conjugate to h by m ∈ M(C), and
the highest weight vector ew restricts nontrivially to Ad(m−1)(h). This proves the proposition
in this case.

Next assume n− 2 = 2k + 1 is odd. Then

Φ(w) = {α1 ± ηi}1≤i≤k t {α2 ± ηi}1≤i≤k t {α1, α2, α1 + α2}.

For w ∈ WP of length ≤ m − 2 = 2k + 1 − (n − m) the set of roots Φ(w) ⊂ Φ(w) has
cardinality ≤ 2k+ 1− (n−m), so that Φ+−Φ(w) contains at least n−m elements from the set
{α2± ηi : 1 ≤ i ≤ k} t {α2} of cardinality 2k+ 1. As in the previous case α1−α2 ∈ Φ+−Φ(w),
and Φ(w) is closed under +̇, so we may choose (not necessarily unique) sets of indices I+ and
I− such that

(1) I+ and I− are disjoint and |I+tI−| = n−m−1 if α2 ∈ Φ+−Φ(w) and |I+tI−| = n−m
if α2 /∈ Φ+−Φ(w)

(2) for i ∈ I+ we have {α1 + ηi, α2 + ηi} ⊂ Φ+−Φ(w)
(3) for i ∈ I− we have {α1 − ηi, α2 − ηi} ⊂ Φ+−Φ(w).

As before, if α2 /∈ Φ+−Φ(w) we can define the subspace⊕
i∈I+

Re2i+2 ⊕
⊕
i∈I−

Re2i+1

⊥ ⊂ Rn+2
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of dimension m and the harmonic representative ew restricts nontrivially to the corresponding
h′ = so(2,m) in g. If α2 ∈ Φ+−Φ(w) then one adds on Ren to the subspace above and e2

restricts nontrivially to the corresponding h′ = so(2,m). In either case since h′ is conjugate to
h by m ∈M(C), we have proved the proposition. �

3.4. Proof of Proposition 3.1. For E = C the injectivity in degrees i ≤ c/2 except in the
exceptional case is immediate from the fact that n∗ is the natural representation of the factor
SO(d − 1) of L and so Hi(n,C) = ∧in∗ are irreducible. This can be easily generalized to the
case of general E, but we give a computational proof using Kostant’s theorem as we will have
to verify slightly more.

We may assume g = so(1, d) = so(J) where

J =

 1
Id−1

1

 .

Fix a Cartan subalgebra s of so(d− 2)C and let t ⊂ gC be the Cartan subalgebra defined by

t := {diag(a,C,−a) : a, d ∈ C, C ∈ s}.
Then t is defined and maximally split over R and the subspace aC ⊂ t given by C = 0 is the
complexification of the Lie algebra a ⊂ g of a maximal R-split subspace in g. Let α ∈ t∗ be
defined by

α(diag(a,C,−a)) = a. (3.7)

We choose for s the same Cartan subalgebra of block-diagonal matrices in so(d− 1)C specified
earlier in (3.4) and (3.5) and use the same roots ηi and the same positive system used there.
An explicit computation shows that the positive roots are

Φ+(t, gC) = Φ+(s, so(d− 1)C) t {α± ηi : 1 ≤ i ≤ k}
for d− 1 = 2k even, and

Φ+(t, gC) = Φ+(s, so(d− 1)C) t {α± ηi : 1 ≤ i ≤ k} t {α}
for d− 1 = 2k + 1 odd. We also have

Φ(n) = {α± ηi : 1 ≤ i ≤ k}
in the case d− 1 = 2k even and

Φ(n) = {α± ηi : 1 ≤ i ≤ k} t {α}
in the case d− 1 = 2k + 1 odd.

We will list the relevant w ∈WP and the sets Φ(w). We will consider the even and odd cases
separately.

First assume d − 1 = 2k is even. Let α1, α2, . . . , αk+1 be the set of simple roots of so(1, d)C
determined by the positive system fixed above, i.e. α1 := α − η1, αi = ηi−1 − ηi for 2 ≤ i ≤ k
and αk+1 = ηk−1 + ηk. The minimal length representatives in WP of length ≤ k are

{s0, s1, . . . , sk, tk}
where s0 := 1, sj := sα1 · · · sαj for 1 ≤ j ≤ k has length j, and tk = sk−1sαk+1

has length k (cf.
[BW99, VI.3.1], as usual, sαi denotes the reflection in αi). The set Φ(w) is easily computed for
these representatives: Φ(1) = ∅ and Φ(sj) = {α1, α1 + α2, . . . , α1 + · · · + αj} = {α − η1, α1 −
η2, . . . , α − ηj} for j ≤ k, while Φ(tk) = {α1, . . . , α1 + · · · + αk−1, α1 + · · · + αk−1 + αk+1} =
{α− η1, α1 − η2, . . . , α− ηk−1, α+ ηk}.

Now suppose d − 1 = 2k + 1 is odd. Let α1, α2, · · ·αk+1 be the simple roots of so(1, d)C
determined by the positive system, i.e. α1 := α − η1, αi = ηi−1 − ηi for 2 ≤ i ≤ k and
αk+1 = ηk. The minimal length representatives in WP of length ≤ k are

{s0, s1, . . . , sk}
where s0 := 1, sj := sα1 · · · sαj for 1 ≤ j ≤ k has length j (cf. [BW99, VI.4.4], where this set is

denoted PW ). The set Φ(sj) has the same description for j ≤ k as above.
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Now consider the setup of the proposition. So h = so(1, c) for c ≤ d − 1, embedded in the
standard way, i.e. using the subspace Rc+1 ⊂ Rd+1 spanned by e1, e2, . . . , ec, ed+1. To show
that Resn is injective in a given degree i it will suffice to show that the harmonic representative
(i.e. L-highest weight vector) ew ⊗ vwλ restricts nontrivially in Hi(nH , EH) for each w ∈ WP

of length i. In the case at hand for j < c/2 there is a unique element in WP of length j,
namely sj . The L-highest-weight vector esj ⊗ vsjλ =

∧
1≤i≤j e−(α−ηi)⊗ vsjλ maps in ∧jn∗H ⊗EH

to a (nonzero multiple of) the harmonic representative
∧

1≤i≤j e
H
−(α−ηi) ⊗ v

H
sHj λH

, where vH
sHj λH

is the sHj (λH)-weight vector of EH , hence is nonvanishing in cohomology. This proves that

Resn(ew ⊗ vwλ) 6= 0, and hence that Resn is injective for j < c/2. The same proof works if
j ≤ c/2 as long as we are not in the exceptional case (d, c, i) = (2k + 1, 2k, k).

In the remaining case we are considering Resn on Hk(n, E) for d = 2k + 1, c = 2k, i = k.
In this case there are two L-irreducible summands with highest weight vectors esk ⊗ vskλ and
etk ⊗ vtkλ respectively. In the embedding so(2k+ 1,C) ⊂ so(2k+ 2,C) the weight space h−αk is
embedded diagonally in the weight spaces g−αk and g−αk+1 . Under the restriction from T to TH
we have αk|TH = αk+1|TH = ηHk−1 = αHk . Thus the vector esk ⊗ vskλ =

∧
1≤i≤k e−(α−ηi) ⊗ vskλ

goes to (a nonzero multiple of) the vector
∧

1≤i≤k−1 e
H
−(α−ηi) ∧ e

H
−ηk−1

⊗ vHskλ which is nonzero

since ηk−1 is not one of α− ηi, i ≤ k − 1. A similar argument applies to etk ⊗ vtkλ. �

3.5. Proof of Proposition 3.2. This was proved for E = C in [Nai17b, §1.6] and the elements
of WP were explicitly listed there. The proof extends to general coefficients exactly as in the
previous proof. �

3.6. Proof of Proposition 3.4. A tedious computational proof is possible, but we will argue
differently. Recall the notation P = MW for the parabolic in SU(1, n) and PH = P ∩H = LN
for the parabolic in SO(1, n). For k < n we have a diagram:

0 // u∗C ⊗ ∧k−2v∗C
// ∧kv∗C //

��

Hk(wC,C)

��

// 0

∧kn∗C Hk(nC,C)

(3.8)

The second vertical map is induced by n ⊂ w. The first vertical map is induced by the iden-
tification of v with the χ-eigenspace for A in w; since A ⊂ PH and it acts by χ on u we
have n ⊂ v (cf. 1.2 for notation). The top row comes from the long exact sequence for the
boundary divisor in the toroidal compactification, and is exact in degrees k < n (see [Nai17b,
Lemma 1.3]). It is also a sequence of Hodge structures (see loc. cit.). The bigrading on ∧kv∗C
comes from v∗C = (v∗C)1,0 + (v∗C)0,1 given by the complex structure on v = w/u (given by the

central U(1) ⊂ M(R)) and the (k, 0)-subspace ∧k(v∗C)1,0 maps isomorphically onto Hk,0(w,C).
This is because the first term in the sequence has Hodge types (k− 1, 1), . . . , (1, k− 1) because
u∗ amounts to a Tate twist (see the proof of [Nai17b, Lemma 1.3]). Now the composition
(v∗C)1,0 ↪→ v∗C → n∗C is an isomorphism since the kernel of v∗C → n∗C is the complexification of

a real subspace, hence does not meet (v∗C)1,0. Thus ∧k(v∗C)1,0 → ∧kn∗C is nonzero and since

Hk,0(w,C) is M -irreducible (see [Nai17b, Remark 1.11]), Resw is injective on Hk,0(wC,C) for
k < n. �

4. Congruence real hyperbolic manifolds

We restate the main result Theorem 1 for congruence hyperbolic manifolds:

Theorem 4.1. Suppose that H ⊂ G are semisimple groups of the same Q-rank such that
H(R)nc ⊂ G(R)nc is SO(1, c) ⊂ SO(1, d) for 2 ≤ c < d, and that neither H nor G is triality.
Then Res : Hi(MG, E)→ IGH Hi(MH , EH) is injective for i ≤ c/2.
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In the compact case (and E = C) this is Theorem 1.5 of [BeC13] of Bergeron and Clozel,
who, using the Burger-Sarnak method [BS91] following Harris and Li [HL98], deduced it from
Arthur’s endoscopic classification [Art13] of automorphic representations for orthogonal groups.
Their arguments can be adapted to the noncompact case to prove injectivity on the interior
cohomology Hi

!(M , E) for i ≤ c/2. Since the state of the literature on this adaptation is less
than satisfactory, we will sketch the argument in some detail below, although the ingredients
are all well known. Combined with an elementary argument at infinity using Proposition 3.1
from the previous section, this proves the theorem in general. Before starting the proofs we will
need to recall some general facts.

Recall the classification of unitarizable (g,K)-modules with cohomology with coefficients in E
for G(R) = SO(d, 1) from [BW99, VI.4] or [RS87, 1.3]. (We refer to [BW99] for more details; this
reference deals with SO0(d, 1) and E = C but it is easy to extend to the general case using e.g.
translation functors as in [BW99, VI.0].) Let 0 ≤ iE ≤ bd/2c be the minimal degree for which
there exists a unitary representation V with H∗(g,K, V ⊗ E) 6= {0} (so iC = 0 and iE = bd/2c
if λ is regular). For each degree iE ≤ i ≤ bd/2c there is a unique unitary cohomological
representation πi with cohomology in degree i with respect to E, and it has cohomology in
exactly degrees i and d − i if d is odd or i < d/2 and if d = 2k it has cohomology in degree
k. In the case d = 2k the representation πk of SO(1, d) is a discrete series representation and
its restriction to SO0(1, d) is a sum of two discrete series representations. If d = 2k + 1 is odd
the representation πk is tempered. This completes the list of unitarizable (g,K)-modules with
cohomology with coefficients in E. (All these depend on E, but to keep the notation simple we
do not indicate this.) When we use these objects for H(R) we will write πHi .

We recall some well-known facts about noncompact arithmetic quotients, for which we refer to
[BoC83] or Appendix A. There is a decomposition L2(Γ\G(R)) = L2

dis(Γ\G(R))⊕L2
cts(Γ\G(R))

into discrete and continuous spectrum and a further decomposition L2
dis(Γ\G(R)) = L2

cusp(Γ\G(R))⊕
L2
res(Γ\G(R)) into cuspidal and residual spectrum. For ? ∈ {cusp, dis, cts} let

H∗?(Γ, E) = H∗(g,K, L2
?(Γ\G(R))⊗ E)

where the (g,K)-cohomology of a unitary G(R)-representation (π, V ) is understood to be that
of the space V∞ of smooth vectors. It is well-known that the natural map

H∗(g,K, L2(Γ\G(R))⊗ E) −→ H∗(Γ, E)

induced by L2(Γ\G(R))∞ ⊂ C∞(Γ\G(R)) is injective on H∗cusp(Γ, E) and zero on H∗cts(Γ, E)
(see the Appendix A for a proof of the last fact).

Lemma 4.2. For Γ arithmetic in SO(1, d) we have (1) H∗cusp(Γ, E) = H∗! (Γ, E) and (2)

Hi
dis(Γ, E)→ Hi(Γ, E) is injective in degrees i ≤ d/2 and an isomorphism for i ≤ bd/2c − 1.

Proof. This follows from methods of Harder [Har73] recalled in Appendix B and also Rohlfs-
Speh [RS87]. According to Theorem 1.5.1 of [RS87] the cohomology in degrees i < k = bd/2c
is all square-integrable, and by the results in 1.4 of loc. cit., the noncuspidal square-integrable
classes are generated using residues of Eisenstein series. These classes restrict nontrivially to the
boundary (see the proof of Proposition 1.4.4 of loc. cit. or Lemma B.1 in Appendix B), so they
do not belong to interior cohomology. This proves (1) of the lemma in degrees i < k = bd/2c.
Moreover, the restriction to the boundary is injective on the residual classes (ibid.), proving (2)
of the lemma in degrees i < k = bd/2c. (1) follows in degrees i > d − bd/2c by duality. This
leaves degree k when d = 2k is even and degrees k, k + 1 when d = 2k + 1 is odd. In both
cases the only contributions to H∗! (Γ, E) (or to Hi

dis(Γ, E)) in these degrees are from tempered
representations (namely the discrete series when d = 2k is even and the tempered representation
πk when d = 2k + 1 is odd), so that they are cuspidal by a well-known observation of Wallach
[Wal84], and then (1) and (2) are clear for these contributions. �

Proposition 4.3. Assume that neither G nor H is triality. Then Res is injective on Hi
!(M , E)

for i ≤ c/2.
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Proof. We sketch how to adapt the argument of [HL98, Ber03, Ber06, BeC13] to the noncompact
case. The main points are:

(1) For i ≤ c/2 the abstract restriction of πi to (h,KH) contains πHi as a direct summand
and multiplicity one holds, i.e. dim Hom(h,KH)(πi|H , πHi ) = 1. Moreover, the induced map

Hi(g,K, πi ⊗ E) → Hi(h,KH , π
H
i ⊗ EH) (4.1)

is an isomorphism of one-dimensional spaces. This is proved in [Ber03, Theorem 3.4] (see also
[HL98, §1,§6] and [Ber06, Théorème 5.3]). The references treat the case E = C but the proof
works in general; alternately one can use translation functors as in [BW99, VI.0] to reduce the
general case to this one.

(2) LetR : C∞(Γ\G(R))→ C∞(ΓH\H(R)) denote restriction of functions andR∗ : H∗(Γ, E)→
H∗(ΓH , EH) the induced map in cohomology. Given an irreducible summand π of L2

cusp(Γ\G(R))
with smooth vectors π∞ = πi, the image R(πi) consists of bounded functions, so we may consider
its closure R(π) in L2(Γ\H(R)). Suppose that an irreducible summand σ of L2(Γ\H(R)) with
σ∞ = πHi appears as a direct summand of R(π). We claim that R∗ : Hi(Γ, E) → Hi(ΓH , EH)
is injective on the summand Hi(g,K, π ⊗ E). To see this, note that R(π) = R(π)dis ⊕ R(π)cts
where R(π)? = R(π) ∩ L2

?(Γ\G(R)) for ? = dis, cts, and the map R∗ on Hi(g,K, π ⊗ E) is
induced by the composition

π∞ → R(π)∞ → R(π)∞dis → C∞(ΓH\H(R)).

(We use that H∗(h,KH , R(π)cts ⊗ EH) → H∗(ΓH , EH) is zero since R(π)cts is a summand of
L2
cts(ΓH\H(R)), see Appendix A for a proof of this fact.) The last map induces an injection

in degree i ≤ c/2 (by (2) of Lemma 4.2). The map π∞ → R(π)∞dis is nonzero in cohomology

because the composition π∞ → R(π)∞dis → σ∞ is a nonzero multiple of the map πi|H → πHi
in (1) (by multiplicity one), and hence induces the nontrivial map (4.1) in cohomology. This
proves that R∗ is nonzero on H∗(g,K, π ⊗ E), hence injective.

(3) The Burger-Sarnak argument shows that given π as in (2), and assuming a certain isolation
hypothesis on πHi (recalled below), we can arrange for a summand σ as in (2) above, perhaps
after replacing H by a conjugate, i.e. replacing the map R above by Rg : C∞(Γ\G(R)) →
C∞(gΓg−1 ∩H\H(R)) for some g ∈ G(Q). This is [HL98, Proposition 3.1] and the refinement
[Ber03, Proposition 3.2]. The observation of [BS91] is that matrix coefficients of the cuspidal
representation on Γ\G(R) are, when restricted to H(R), the limits, uniform on compacta, of
finite sums of matrix coefficients of H(R) appearing in the spaces L2(g−1Γg ∩ H\H(R)) for
g ∈ G(Q). A key point explained in [HL98] (see the remarks at the bottom of p. 93 of loc. cit.)
is that this applies to cuspidal cohomology on a noncompact quotient because cuspidal functions
are of rapid decrease, hence uniformly continuous on Γ\G(R), and this suffices for the argument
in [BS91]. Thus under the isolation hypothesis, if πHi is weakly contained in R(π), then there
is a direct summand σ of Rg(π) as in (2), and so by (2), R∗g is injective on Hi(g,K, π ⊗ E).

(4) The isolation hypothesis required in (3) is that πHi is isolated in {πHi } ∪ {(ρ, Vρ) ∈
ĤAut : d ≡ 0 on Ci(g,K, Vρ ⊗ E)}. (We refer to [HL98, Ber03] for the precise definitions

of ĤAut and the relevance of this condition.) This was shown in [Ber03] to follow from a
uniform (in Γ) lower bound for the first nonzero eigenvalue of the Laplacian on i-forms on MΓ

(Conjecture 2.3 of [Ber03]). This eigenvalue bound was later proved in [BeC13, Theorem 1.3]
using Arthur’s endoscopic classification [Art13] of representations. (At this point triality forms
must be excluded, although they do not occur if the Q-rank is one, see Remark 4.5 below.)

(5) Putting (1)–(4) together, we conclude that Res is injective on the cuspidal cohomology
for i ≤ c/2, and hence, by Lemma 4.2, on Hi

!(M , E) for i ≤ c/2. �

We will make some remarks below as to the necessity of the contortions in the previous proof
after finishing the proof of the theorem.
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Proof of Theorem 4.1. We will use the standard commutative diagram

0 // Hi
!(M , E) //

Res
��

Hi(M , E) //

Res
��

IGP Hi(n, E)

Res∞
��

0 // IGH Hi
!(MH , E) // IGH Hi(MH , E) // IGH I

H
PH

Hi(nH , EH).

(4.2)

This diagram comes from the properness of MH,ΓH → MΓ, or can be seen using the fact that
the cusp (i.e. reductive Borel-Serre) compactification is functorial for H ⊂ G in this case. The
identification of the boundary cohomology with IGP Hi(n, E) is standard. It suffices to prove
the injectivity of Res∞ for i ≤ c/2. By transitivity of induction IGH I

H
PH

= IGP I
P
PH

so it suffices

to prove the injectivity of Hi(n, E) → IPPH Hi(nH , EH). Now the action of N(Q) on Hi(n, E)

is trivial, so this factors through
(
IPPH Hi(nH , EH)

)N(Q)
= ILLH Hi(nH , EH) and it is enough to

prove the injectivity of Hi(n, E) → ILLH Hi(nH , E). This follows from the injectivity of Resn in

degrees i ≤ c proved in Proposition 3.1, except possibly in the case (d, c, i) = (2k + 1, 2k, k).
The remaining case is restriction from SO(1, 2k+ 1) to SO(1, 2k) in degree i = k. It suffices

to prove Res∞ is injective on the image of Hk(M , E) → IGP Hk(n, E). This map is induced by

the P (Q)-map Hk(M , E) → Hk(n, E) given by restriction to a deleted neighbourhood of the
cusp given by P = LN and the image of Hk(M , E) → IGP Hk(n, E) is IGP U where U is the

image of of Hk(M ) → Hk(n, E). There is a nondegenerate duality pairing on Hk(n, E) given
by the cup product and the self-duality of E. Now U is a maximal isotropic subspace for the
duality pairing on Hk(n, E), i.e. U⊥ = U , and it is also L(C) = C∗ × SO(2k,C)-stable. Since
Hk(n, E) = U+⊕U− is a sum of two inequivalent SO(2k,C)-modules of the same dimension (they
form a single O(2k,C)-module), either U = U+ or U = U−, and the image IGP U of Hk(M ) →
IGP Hk(n, E) is either IGP U+ or IGP U−. In the notation of 3.4, U+ and U− are the SO(2k,C)-
modules with highest weight vectors esk ⊗ vskλ and etk ⊗ vtkλ respectively. Now the restriction

Resn : Hk(n, E)→
∏
m Hk(nH , EH) induced by nH ⊂ n is nonzero on either summand, because

it is nonzero on these highest weight vectors, as was proved in Proposition 3.1. It follows that
IGP Hk(n, E) → IGP I

P
PH

Hk(nH , EH) is injective on each of IGP U± individually, and hence on the

image of Hk(M , E)→ IGP Hk(n, E), whichever of these modules it is. This completes the proof
of the theorem. �

Remark 4.4. (On the Burger-Sarnak method for noncompact quotients) In general, it is not clear
to us that the argument of [HL98, Ber03, Ber06, BeC13] can be adapted to treat noncuspidal
interior cohomology classes on a general arithmetic quotient without a better understanding
of the latter, e.g. using Eisenstein series. Since the argument for injectivity in cohomology
treats one summand π of L2 at a time, one needs to know that π∞, or at least π, contains some
uniformly continuous functions, the diagonal matrix coefficients of which can then be used in the
Burger-Sarnak argument. If π is cuspidal then the functions in π∞ are of rapid decrease, hence
uniformly continuous, and this suffices. It is not clear to us that the automorphic representatives
of noncuspidal interior cohomology classes are uniformly continuous on Γ\G(R) – they are not of
rapid decrease as they would then be cuspidal – or, indeed, that the summand π∞ contributing
to such cohomology contains any uniformly continuous functions.

In the case at hand, Lemma 4.2 shows that there is no noncuspidal interior cohomology
and so this problem does not occur. For the congruence ball quotients discussed in [Nai17b],
[BeC17, §3] and in the next section one can show that the noncuspidal interior cohomology
consists of nonprimitive classes (see the discussion in the next section), and the analogue of
Proposition 4.3 for SU(1,m) ⊂ SU(1, n) can be proved similarly. However, for SO(2, n) the
situation is more complicated and something more is required. In any case, we will not use
automorphic arguments to treat interior cohomology in the SU(1, n) and SO(2, n) cases since
the geometric arguments of Section 2 are available.



24 ARVIND NAIR AND ANKIT RAI

Remark 4.5. A triality form over a totally real field F which becomes SO(1, 7) over R for some
real embedding of F is necessarily anisotropic over Q. This follows by looking at Tits indices,
see the table on p. 58 of [Tit65]. So in the Q-rank one case we may ignore triality altogether.

5. Congruence complex hyperbolic manifolds

The first main result for congruence complex hyperbolic manifolds is the following:

Theorem 5.1. Suppose that H ⊂ G are groups of the same Q-rank and H(R)nc ⊂ G(R)nc

is the inclusion SU(1,m) ⊂ SU(1, n) with 2 ≤ m < n. Then Res is injective on Hi
!(MG) for

i ≤ m and on Hi(MG) for i < m.

This follows immediately from Corollary 2.2 and Proposition 3.2. This is simpler than the
proof in [Nai17b].

The rest of this section consists of the proof of the following, which is Theorem 2 of the
introduction:

Theorem 5.2. Suppose that H ⊂ G are groups of the same Q-rank and H(R)nc ⊂ G(R)nc is
the inclusion SO(1, n) ⊂ SU(1, n) with n > 2. Then Res is injective on Hi,0(MG) for i ≤ n/2.

Proof of Theorem 5.2. The proof is broadly the same as that of Theorem 4.1: Given the

injectivity on Hi,0
! (M ) for i ≤ n/2, the diagram (4.2), strictness of the Hodge filtration, and

Proposition 3.4 combine to prove the theorem.

The proof of injectivity on Hi,0
! (M ) for i ≤ n/2 follows the outline of the proof of Proposi-

tion 4.3, with step (1) there replaced by the following:
(1′) For each i < n there is a unique cohomological (g,K)-module Ji,0 with cohomology in

bidegree (i, 0). This is immediate from the classification of (g,K)-modules with cohomology for
SU(1, n) (see [BW99, VI.4.7-VI.4.12]). For i ≤ n/2 the abstract restriction of Ji,0 to (h,KH)
contains πHi (the unique cohomological representation for SO(1, n) with Hi(h,KH , π

H
i ) 6= 0, see

Section 4) as a direct summand with multiplicity one, i.e. dim Hom(h,KH)(Ji,0|H , πHi ) = 1, and
the induced map

Hi(g,K, Ji,0) −→ Hi(h,KH , π
H
i )

is an isomorphism of one-dimensional spaces. This is [Ber06, Théorème 5.6].
Given (1′), steps (2)–(5) in the proof of Proposition 4.3 work verbatim to prove that Res

is injective on Hi,0
cusp(M ) for i ≤ n/2. (e are using here the agreement of the two possible

Hodge structures on Hi
!(M ), the first coming from geometry (hence having good properties

for the boundary exact sequence and in diagram (4.2)), and the second from the inclusion
Hi

!(MΓ) ⊂ IHi(M∗Γ) and the L2 Hodge theory on the latter coming from (2.11) (hence agreeing
with the Hodge types in (g,K)-cohomology). This is known by [Zuc87] because M∗Γ has isolated
singularities.

Lemma 5.3 below completes the proof of the theorem. �

It remains to prove:

Lemma 5.3. For Γ arithmetic in SU(1, n), we have H∗,0! (MΓ) = H∗,0cusp(MΓ).

Proof. The proof is similar to that of Lemma 4.2 for SO(1, n). Suppose first that i < n. Since
IHi(M∗Γ) = Hi(MΓ) for i < n we are actually dealing with the cohomology

Hi(g,K, L2
dis(Γ\G(R))) =

⊕
π⊂L2

dis

Hi(g,K, π)

where the sum is over irreducible closed summands, only finitely many of which contribute to
the sum. For π to contribute to the (i, 0) summand of cohomology we must have π∞ = Ji,0. For
such a summand π, the theory of Eisenstein series gives a mapping Ii,0 → L2

dis onto π∞ = Ji,0.
Here Ii,0 denotes the standard module of which Ji,0 is the Langlands quotient (see [BW99,
VI.4.8]). Now the minimal degree in which Ji,0 has cohomology is i, so we are in the situation
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of Appendix B and applying Lemma B.1 gives Lemma 5.3 for i < n. (Note that the assumption
(∗) required in Lemma B.1 holds since Ii,0 has cohomology in degrees 2n − i, 2n − i − 1 and
Ii,0 → Ji,0 induces an isomorphism in degree 2n− i, see [BW99, p. 133].)

The statement in degrees i > n follows by duality. Finally, the equality in degree n holds
because the component at infinity of a class in Hn,0

! (MΓ) is of discrete series type, hence is
already cuspidal by [Wal84]. �

Remark 5.4. The proof of the lemma shows more generally that for i+ j ≤ n, we have

Hi,j
! (MΓ)prim = Hi,j

cusp(MΓ)prim.

where the primitive is taken with respect to the Lefschetz class. Thus the Burger-Sarnak method

can be applied to prove injectivity on Hi,j
! (MΓ)prim for the restriction by SU(1,m) ⊂ SU(1, n).

Using the action of the Lefschetz operator this can be used to give another proof of Theorem 5.1
for complex hyperbolic manifolds.

6. Orthogonal Shimura varieties

The main theorem in this case is the following:

Theorem 6.1. Suppose that H ⊂ G are of the same Q-rank and that H(R)nc ⊂ G(R)nc is
the inclusion SO(2,m) ⊂ SO(2, n) with n > m ≥ 2. Then Res is injective on Hi(MG, E) for
i ≤ m− 1.

We will argue as if the Q-rank of both G and H is two and indicate how the argument
simplifies in the Q-rank one case. The proof is by a kind of induction on the stratification of
the minimal compactification, going from injectivity on interior cohomology Hi

!(MG) (proved

earlier as Corollary 2.2) to injectivity on a larger subspace GrWi Hi
c(M

1
G, j

1
∗C) of Hi(MG) (defined

below) which takes into account some contributions from the one-dimensional boundary strata,
and then to the injectivity on all of Hi(MG) by taking into account some contributions from the
cusps (using the Lefschetz property for real hyperbolic manifolds from Section 4). A similar,
but simpler, argument was used in [Nai17b] for ball quotients.

To simplify the notation somewhat we will write M for MG. (We continue to write MH for
the Shimura variety associated to H of course.)

6.1. We will introduce some notation which will be useful. Recall the stratification of M∗Γ
discussed in Section 1 and denote the inclusions by

MΓ
� � j

1
Γ // M1

Γ
� � j

0
Γ // M∗Γ

with j0
Γ ◦ j1

Γ = jΓ. This gives two cohomology long exact sequences:

(1) The distinguished triangle associated with j1
Γ∗C on M1

Γ and the open-closed decomposi-

tion MΓ
� � j

1
Γ // M1

Γ Z1
Γ

? _
i1Γoo is j1

Γ!C −→ j1
Γ∗C −→ i1Γ∗i

1∗
Γ j

1
Γ∗C

+1−→ and gives

· · · −→ Hi
c(MΓ) −→ Hi

c(M
1
Γ, j

1
Γ∗C) −→ Hi

c(Z
1
Γ, i

1∗
Γ j

1
Γ∗C) −→ · · · .

(2) The distinguished triangle associated with jΓ∗C and M1
Γ
� � j

0
Γ // M∗Γ Z0

Γ
? _

i0Γoo is j0
Γ!j

1
Γ∗C −→

jΓ∗C −→ i0Γ∗i
0∗
Γ j

1
Γ∗C

+1−→ and gives

· · · −→ Hi
c(M

1
Γ, j

1
Γ∗C) −→ Hi(MΓ) −→ Hi(Z0

Γ, i
0∗
Γ jΓ∗C) −→ · · · .

Both are long exact sequences of mixed Hodge structures by [Sai90].
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The exact sequences (1) and (2) are natural with respect to passing to subgroups of Γ of
finite index, and this leads us to introduce the following suggestive notation:

Hi
c(M

1, j1
∗C) := colimΓ Hi

c(M
1
Γ, j

1
Γ∗C)

Hi
c(Z

1, i1∗j1
∗C) := colimΓ Hi

c(Z
1
Γ, i

1∗
Γ j

1
Γ∗C)

Hi(Z 0, i0∗j∗C) := colimΓ Hi(Z0
Γ, i

0∗
Γ jΓ∗C)

(6.1)

where all colimits are over congruence subgroups. These are smooth G(Q)-modules and the
map H∗c(M ) → H∗(M ) factors through Hi

c(M
1, j1
∗C) −→ Hi(M ). The exact sequences above

give exact sequences

· · · −→ Hi
c(M ) −→ Hi

c(M
1, j1
∗C) −→ Hi

c(Z
1, i1∗j1

∗C) −→ · · · (6.2)

and

· · · −→ Hi
c(M

1, j1
∗C) −→ Hi(M ) −→ Hi(Z 0, i0∗j∗C) −→ · · · (6.3)

which are exact sequences of (colimits of) mixed Hodge structures.
We also note the following useful consequence of the purity lemma (Lemma 2.5):

Hi
!(M ) = im

(
GrWi Hi

c(M )→ GrWi Hi
c(M

1, j1
∗C)

)
for i ≤ n− 1. (6.4)

Indeed, Lemma 2.5 implies that Hi
!(MΓ) = im

(
GrWi Hi

c(MΓ)→ GrWi Hi
c(M

1
Γ, j

1
∗C)

)
for i ≤ n− 1

because GrWi Hi
c(M

1
Γ, j

1
Γ∗C) ⊂ GrWi Hi(MΓ) by the second exact sequence above. Since GrWi

commutes with the colimits we get (6.4).

6.2. Proof of Theorem 6.1. Now consider the situation of H ⊂ G and the morphism
M∗H,ΓH →M∗Γ. The stratifications are compatible, in the sense that the stratification of M∗H,ΓH
is the pullback of that of M∗Γ, i.e. the relevant diagrams relating strata are Cartesian. It follows
that both the exact sequences above are functorial, i.e. there are H(Q)-module maps from each
exact sequence for G to the corresponding one for H. Frobenius reciprocity gives a commutative
diagram of G(Q)-modules with exact rows

// Hi
c(M ) //

��

Hi
c(M

1, j1
∗C) //

��

Hi
c(Z

1, i1∗j1
∗C)

��

//

// IGH Hi
c(MH) // IGH Hi

c(M
1
H , j

1
H∗C) // IGH Hi

c(Z
1
H , i

1∗
H j

1
H∗C) //

from the first sequence and a similar diagram with exact rows

// Hi
c(M

1, j1
∗C) //

��

//

��

Hi(M ) //

��

Hi(Z 0, i0∗j∗C)

��

//

// IGH Hi
c(M

1
H , j

1
H∗C) // IGH Hi(MH) // IGH Hi(Z 0

H , i
0∗
H jH∗C) //

from the second. Taking GrWi and using (6.4) in the first diagram gives a commutative diagram

0 // Hi
!(M ) //

Res!

��

GrWi Hi
c(M

1, j1
∗C) //

Res1

��

GrWi Hi
c(Z

1, i1∗j1
∗C)

Res1
∞

��

0 // IGH Hi
!(MH) // IGH GrWi Hi

c(M
1
H , j

1
H∗C) // IGH GrWi Hi

c(Z
1
H , i

1∗
H j

1
H∗C)

(6.5)

in which the upper row is exact for i ≤ n − 1 and the lower row is exact for i ≤ m − 1. (We
have used the purity of Hi

!(M ).) Similarly, taking GrWi and using (6.4) in the second diagram
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gives a commutative diagram with exact rows for i ≤ m− 1:

0 // GrWi Hi
c(M

1, j1
∗C) //

Res1

��

//

Res1

��

Hi(M ) //

Res
��

GrWi Hi(Z 0, i0∗j∗C)

Res0
∞

��

0 // IGH GrWi Hi
c(M

1
H , j

1
H∗C) // IGH GrWi Hi(MH) // IGH GrWi Hi(Z 0

H , i
0∗
H jH∗C)

(6.6)

We have used the purity of Hi(M ) in degrees ≤ m − 1, which follows from the fact that
IHi(M∗Γ) = Hi(MΓ) in degrees i ≤ n− 2.

We see from these diagrams that Theorem 6.1(i), namely the injectivity of Res on Hi(M ) in
degrees ≤ m−1, follows from the conjunction of Corollary 2.2 (injectivity on interior cohomology
in degrees ≤ m− 1) and the following two statements:

Proposition 6.2. The map Res1
∞ in (6.5) is injective in degrees i ≤ m− 1.

Proposition 6.3. The map Res0
∞ in (6.6) is injective in degrees i ≤ m− 1.

The rest of this subsection will be taken up with the proofs of these two propositions. The
first will use Proposition 3.3 while the second will use the Lefschetz property for real hyperbolic
manifolds in Theorem 4.1.

Proof of Proposition 6.2. Recall that Proposition 6.2 asserts the injectivity of

Res1
∞ : GrWi Hi

c(Z
1, i1∗j1

∗C) −→ IGH GrWi Hi
c(Z

1
H , i

1∗
H j

1
H∗C)

in degrees i ≤ m− 1. We will deduce from Proposition 3.3 the a priori stronger assertion that
the map

Hi
c(Z

1, i1∗j1
∗C) −→ IGH Hi

c(Z
1
H , i

1∗
H j

1
H∗C) (6.7)

is injective in this range; since this is a morphism of mixed Hodge structures the statement
about the ith graded follows. By definition,

Hi
c(Z

1, i1∗j1
∗C) = colimΓ Hi

c(Z
1
Γ, i

1∗
Γ j

1
Γ∗C).

Choose a rational boundary component F of dimension one and let P = MW be its stabilizer,
which is the maximal parabolic stabilizing an isotropic plane in V . The stratum of M∗Γ given
by F is SΓ := ΓMh

\F and it is a component of Z1
Γ; let iSΓ

: SΓ ↪→ M1
Γ be the inclusion. Then

we have natural identifications

Hi
c(Z

1, i1∗j1
∗C) = IGP

(
colimΓ Hi

c(SΓ, i
∗
SΓ
jΓ∗CMΓ

)
)

=
⊕
k

IGP

(
colimΓ Hi−k

c (SΓ,H
k(i∗SΓ

jΓ∗CMΓ
))
)

=
⊕
k

IGP

(
colimΓ Hi−k

c (SΓ,H
k(w,C))

)
=
⊕
k

IGP Hi−k
c (MM ,H

k(w,C)).

(6.8)

Here the first equality is an elementary argument keeping track of the cusps (see [Nai17a,
Lemma 3.3] for a similar argument for ball quotients), the second is given by Proposition 1.7.
We have also used that M`(R) is compact, so that ΓM`A = {e} for neat Γ. There is a similar
expression for the H(Q)-module Hi

c(Z
1
H , i

1∗
H j

1
H∗C) and hence for the target of (6.7), namely

IGH Hi
c(Z

1
H , i

1∗
H j

1
H∗C) =

⊕
k

IGHI
H
PH

(
colimΓH Hi−k

c (SΓH ,H
k(wH ,C))

)
.

By transitivity of induction IGHI
H
PH

= IGP I
P
PH

we are reduced to showing that

colimΓ Hi−k
c (SΓ,H

k(n,C)) −→ IPPH colimΓH Hi−k
c (SΓH ,H

k(nH ,C))

is injective for i ≤ m− 1. Now the action of W (Q) on the left-hand-side is trivial, and(
IPPHHi−k

c (SΓ,H
k(nH ,C))

)W (Q)
= IMMH

Hi−k
c (SΓH ,H

k(nH ,C)),
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so we must show

colimΓ Hi−k
c (SΓ,H

k(n,C)) −→ IMMH
colimΓH Hi−k

c (SΓH ,H
k(nH ,C))

is injective for i ≤ m − 1. But now note that SΓ = SΓH for neat Γ (M and MH differ only in
the compact factor), and the case i = k does not occur (because H0

c(SΓ, V ) = 0 for any V ), so
this follows from Proposition 3.3. �

Proof of Proposition 6.3. Recall that the proposition asserts the injectivity of

Res0
∞ : GrWi Hi(Z 0, i0∗j∗C) −→ IGH GrWi Hi(Z 0

H , i
0∗
H jH∗C)

in degrees i ≤ m− 1. We will reduce this to the Lefschetz property for congruence hyperbolic
manifolds, i.e. Theorem 4.1.

Let P = MW be the stabilizer of an isotropic line I in V , and F the associated rational
boundary component. Let isΓ : {sΓ} ↪→ M1

Γ be the stratum given by F in M∗Γ. Then by
Proposition 1.7 there is an isomorphism in the derived category

i∗SΓ
jΓ∗C =

⊕
k

Hk(i∗SΓ
jΓ∗C)[−k]

and moreover

Hi(i∗sΓjΓ∗C) =
⊕
k

Hi−k(ΓM ,∧ku∗C)

where we have used that ΓM = ΓM`
(assuming Γ is neat) is in SO(1, n−1) and w = u is abelian,

so that H∗(w,C) = ∧∗u∗. By Proposition 1.7, the k-summand is pure of weight 2k, so that

GrWi Hi(i∗sΓjΓ∗C) = Hi/2(ΓM ,∧i/2u∗C)

if i is even and zero if i is odd. We then have

GrWi Hi(Z 0, i0∗j∗C) = IGP colim Hi/2(ΓM ,∧i/2u∗C)

= IGP Hi/2(MM ,∧i/2u∗C)

for i even and zero for i odd. This discussion applies also to GrWi Hi(Z 0
H , i

0∗
H jH∗C) and gives

GrWi Hi(Z 0, i0∗j∗C) = IHPH colim Hi/2(ΓMH
,∧i/2u∗H,C)

= IGP Hi/2(MMH
,∧i/2u∗H,C)

for i even and zero for i odd. By transitivity of induction, the injectivity of Res0
∞ in degree i is

reduced to that of

Hi/2(MM ,∧i/2u∗C) −→ IPPH Hi/2(MMH
,∧i/2u∗H,C).

The action of W (Q) = U(Q) on the source is trivial so this factors through the U(Q)-invariants
of the target, i.e.(

IPPH colim Hi/2(ΓMH
,∧i/2u∗H,C)

)U(Q)
= IMMH

colim Hi/2(ΓMH
,∧i/2u∗H,C).

We are thus reduced to the injectivity of

colim Hi/2(ΓM ,∧i/2u∗C) −→ IMMH
colim Hi/2(ΓMH

,∧i/2u∗H,C).

Suppose i ≤ m−1. Then ∧i/2u∗C is irreducible and ∧i/2u∗H,C is the MH -summand containing the
M -highest weight vector, so injectivity of the previous map follows from the Lefschetz property
in Theorem 4.1. (The subgroup MH is never triality.) This concludes the proof. �

This concludes the proof of Theorem 6.1.
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Appendix A. Some facts about L2 cohomology

Let G be a semisimple algebraic group over Q, K a maximal compact subgroup of G(R),
X = G(R)/K and Γ ⊂ G(Q) a congruence subgroup.

The L2 cohomology of Γ with coefficients in a finite-dimensional algebraic representation E
of G(C) is

H∗(2)(Γ, E) = H∗(g,K, L2(Γ\G(R))⊗ E).

(The (g,K)-cohomology of a G(R)-representation (π, V ) is, by definition, that of the space V∞

of smooth vectors.) This is not the usual definition, which requires looking at the complex of
L2 differential forms with L2 weak differential (or smooth L2 forms with L2 differential) but
they are known to agree [BoC83, Prop. 5.4]. The decompositions

L2(Γ\G(R)) = L2
dis(Γ\G(R))⊕ L2

cts(Γ\G(R))

= L2
cusp(Γ\G(R))⊕ L2

res(Γ\G(R))⊕ L2
cts(Γ\G(R))

induce decompositions

H∗(2)(Γ, E) = H∗dis(Γ, E)⊕H∗cts(Γ, E)

= H∗cusp(Γ, E)⊕H∗res(Γ, E)⊕H∗cts(Γ, E)

where H∗?(Γ, E) = H∗(g,K, L2
?(Γ\G(R)) ⊗ E). The summand H∗dis(Γ, E) is identified with the

(finite-dimensional) space of E-valued L2 harmonic forms for the invariant metric (a result
due to Borel and Garland, see [BoC83, Prop. 4.4(i)]), while the summand H∗cts(Γ, E) either
vanishes (e.g. when G is equal-rank) or is infinite-dimensional (see [BoC83]). The inclusion
L2(Γ\G(R))∞ ⊂ C∞(Γ\G(R)) induces a natural map

H∗(2)(Γ, E) −→ H∗(Γ, E)

which is well known to be injective on cuspidal cohomology. Proposition A.1 below is well
known to experts but for lack of a suitable reference we give a proof, which is a simple matter
of applying results of [Fra98] and [BoC83]. It goes beyond the existing literature ([BoC83]) only
in the cases where G(R) does not have a discrete series, e.g. GL(n), and we need to use it in
the main body of the paper for the case SO(1, d), d odd.

Proposition A.1. The map H∗(2)(Γ, E)→ H∗(Γ, E) is zero on H∗cts(Γ, E).

Proof. Following Franke [Fra98], let S1(Γ\G(R)) ⊂ L2(Γ\G(R)) be the submodule of smooth
functions which are uniformly in L2, i.e. smooth functions f such that Df ∈ L2 for all D ∈ U(g).
The inclusion S1 ⊂ L2 induce isomorphisms in cohomology (by [Fra98, Theorem 3]), so S1 ⊂ C∞
induces the map in question. It factors as

S1(Γ\G(R)) ⊂ Slog(Γ\G(R)) ⊂ C∞(Γ\G(R))

where Slog is the space of functions which are uniformly L2 up to logarithmic terms (see [Fra98,
§5] or [Wal97, 6.1]). It suffices to show that H∗cts(Γ, E), as a summand of H∗(g,K, S1⊗E), goes
to zero in H∗(g,K, Slog ⊗ E). We will do this using further reductions to the bounded spectra
S1,b ⊂ S1 and Slog,b ⊂ Slog with respect to the Casimir operator, a notion introduced in [Fra98,
5.1] (cf. also [Wal97, 6.3]). We will show that:

(1) S1,b ⊂ L2 induces an isomorphism H∗(g,K, S1,b ⊗ E) = H∗(2)(Γ, E),

(2) Slog,b ⊂ Slog induces an isomorphism in cohomology, and
(3) S1,b ⊂ Slog,b induces zero on H∗cts(Γ, E).

This will prove the proposition.
(1) To show that S1,b ⊂ L2 induces an isomorphism in cohomology we use Langlands spectral

decomposition of L2. There are compatible direct sum decompositions

S1,b =
⊕
{R}

S1,b,{R} ⊂ L2 =
⊕
{R}

L2
{R}
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indexed by associate classes of parabolic subgroups. The R = G summands are L2,∞
dis and L2

dis.
(In the usual statement of {R}-decompositions the R = G summand is the cuspidal part; we

are using the obvious rearrangement.) The inclusion L2,∞
dis ⊂ L2

dis induces an isomorphism by
definition, so we must show the same for S1,b,{P} ⊂ L2

{P} for proper P . For P = MAN , we have

(cf. Theorem 11 of [Fra98]):

S1,b,{P} =
(

IndGP L2
c(ia

∗)⊗AM2
)WM

where AM2 is the space of L2 automorphic forms on ΓM\M(R), and the Weyl group WM of M
acts by intertwining operators. The {P}-summand of L2 has the following description (see e.g.
[BoC83, 4.3]). For each irreducible summand V of L2

dis(ΓM\M(R)) we have the direct integral

EP,V =

∫ ⊕
a∗

IndGP Cρ+iµ ⊗ V.

Then L2
{P} is the invariants under the action of WM by intertwining operators on the (count-

able) Hilbert space direct sum of EP,V as V varies over all irreducible summands. One could,
equivalently, restrict to a subset of V modulo WM -equivalence and take the sum of direct inte-
grals like the above over the positive Weyl chamber a∗+, which is the formulation in [BoC83,
4.3].

Now H∗(g,K,EP,V ⊗ E) = {0} unless EP,V shares K-types with ∧∗(g/k) ⊗ E∗ and the
Casimir acts by the correct scalar, so it follows that there is a finite set {Vi}i∈I of V such that
the cohomology becomes a finite sum

H∗(g,K, L2
{P} ⊗ E) =

(⊕
i∈I

H∗(g,K,EP,Vi ⊗ E)
)WM

(see [BoC83, Prop. 4.4(ii)]). The same applies to S1,b,{P}, i.e. we may replace AM2 by
⊕

i∈I A
M
2 ∩

V∞i and get the same cohomology. The computation of a single summand H∗(g,K,EP,Vi ⊗ E)
is contained in Theorem 3.4 of [BoC83] and is similar to the usual computation for induced
representations in [BW99, III.3.3]. It gives that there is a unique s ∈WP such that

H∗(g,K,EP,Vi ⊗ E) = H∗−`(s)(m,KM , Vi ⊗ EMs(λ+ρ)−ρ)⊗H∗
(
a,

∫ ⊕
a∗

Ciµ dµ
)

where EMs(λ+ρ)−ρ is the restriction to M of EMA
s(λ+ρ)−ρ (notation as in Kostant’s theorem in 3.1).

The parallel computation for IndGP L
2
c(ia

∗)⊗Vi (by the same arguments as in the proof of [BoC83,

Theorem 3.4]) gives the same expression, with
∫ ⊕
a∗ Ciµ dµ replaced by L2

c(ia
∗). The assertion

that S1,b,{P} ⊂ L2
{P} induces an isomorphism now boils down to the assertion that (for each

P ) the inclusion of L2
c(ia

∗) = colimΩ⊂a∗
∫ ⊕

Ω Ciµ dµ (the colimit taken over compact Ω) into the

direct integral
∫ ⊕
a∗ Ciµ dµ is an isomorphism in a-cohomology. This elementary fact follows e.g.

from Prop. 3.2 of [BoC83], which shows that this is already true of
∫ ⊕

Ω Ciµ dµ ⊂
∫ ⊕
a∗ Ciµ dµ if

0 ∈ Ω.
(2) To show that the inclusion Slog,b ⊂ Slog induces an isomorphism in cohomology we simply

combine [Fra98, Theorem 10] and the spectral sequence in (3) of [Fra98, Theorem 7]. (This may
not be the simplest or most direct proof, but it is certainly the shortest to write down here!)

(3) We are reduced to considering the inclusion S1,b ⊂ Slog,b. Now Slog,b has a spectral
decomposition analogous to that of S1,b in which the {P}-summand for P = MAN is(

IndGP D′c(ia
∗)⊗AM2

)WM

where D′c(ia
∗) is the space of compactly supported distributions (cf. [Fra98, Theorem 12]).

The P = G summand is still L2,∞. So the fact that S1,b,{P} ⊂ Slog,b,{P} induces zero for P

proper boils down to the fact that the inclusion of a-modules L2
c(ia

∗) ⊂ D′c(ia∗) induces zero in
a-cohomology. This is immediate: The first has cohomology in degrees in [1, dim a] (by [BoC83,
Prop. 3.2] as remarked above), while the latter has cohomology only in degree zero (e.g. by
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[Fra98, Lemma 1]; this reduces to the fact that the complex D′c(R)
x·−→ D′c(R) has cohomology

only in degree zero). This concludes the proof of the proposition. �

The proof of the preceding proposition used three results (Theorems 10, 12, and 13 of [Fra98]),
the proofs of which constitute the technical heart of Franke’s work. It is possible that they can
be avoided, but the method of proof gives rather more, as we now show. The results which
follow are not used in the body of the paper, but will be useful elsewhere. The following is a
corollary of the proof of the proposition:

Corollary A.2. If E is rationally defined (i.e. has a rational structure preserved by G(Q)) then
the square-integrable cohomology, which is (by definition) the image of H∗(2)(Γ, E) → H∗(Γ, E),

is a rational subspace.

Proof. By [Nai99, Theorem A] the cohomology of Slog is isomorphic to the lower middle weighted
cohomology of [GHM94], and this has a rational structure ([GHM94, IV]) compatible with the
map to H∗(Γ, E). �

In fact, we can refine this statement somewhat using the same methods. Recall that there is
a subspace S−log(Γ\G(R)) ⊂ Slog(Γ\G(R)) defined by using a condition dual to the one defining
Slog (see [Fra98, §5] or [Wal97, 6.1]).

Proposition A.3. The image of H∗(g,K, S−log ⊗ E) → H∗(g,K, Slog ⊗ E) is identified with
H∗dis(Γ, E), or, equivalently, with the space of E-valued L2 harmonic forms.

Proof. This was proved in [Nai99, Theorem B] under the assumption that G is equal-rank,
in which case the map in the proposition is an isomorphism and both groups compute the
L2 cohomology. In general, we argue as follows. By Theorem 10 of [Fra98] and the spectral
sequence of Theorem 7 of loc. cit., we know that S±log,b ⊂ S±log induce isomorphisms in (g,K)-
cohomology, so it is enough to consider the inclusion S−log,b ⊂ Slog,b. For these spaces there are
compatible decompositions

S−log,b =
⊕
{P}

S−log,b,{P} ⊂ Slog,b =
⊕
{P}

Slog,b,{P}

indexed by associate classes of parabolic subgroups. The {P}-summand for S−log,P is(
IndGP C∞c (ia∗)⊗AM2

)WM

.

The {P}-summand for Slog,b was recalled in the proof of the previous proposition and amounts
to replacing C∞c (ia∗) by D′c(ia

∗) in this expression; the map S−log,b,{P} ⊂ Slog,b,{P} is induced
by C∞c (ia∗) ⊂ D′c(ia

∗). The map in a-cohomology induced by this inclusion is zero since
H∗(a, C∞c (ia∗)) is concentrated in degree dim a while H∗(a, D′c(ia

∗)) is concentrated in degree
zero. By the standard computations of cohomology for induced representations (recalled earlier
in the proof of the previous proposition) we see that S−log,b,{P} ⊂ Slog,b,{P} is zero in cohomology

for P 6= G. Since the P = G summands are both identified with L2,∞
dis the first statement follows.

�

The previous corollary is refined by:

Corollary A.4. If E is rationally defined then the space of square-integrable E-valued harmonic
forms on Γ\X has a canonical (Betti) rational structure.

Proof. By [Nai99, Theorem A] the groups in the proposition are the upper and lower middle
weighted cohomology groups, which have natural Q-structures ([GHM94, IV]). �

Remark A.5. In contrast to the corollary, the space of cuspidal harmonic forms, which is simply
the cuspidal cohomology, should not be expected to be Betti rational in general, e.g. for Sp(4).
Of course, it is well known to be so in the case of GL(n), see [Fra98, 7.6], and some related
cases, e.g. for SO(1, d) it follows from Lemma 4.2.
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Remark A.6. When X = G(R)/K has a Hermitian structure something much stronger than
the corollary is true thanks to (2.11), namely the space of L2 harmonic forms is part of a mixed
realization over the number field of definition of Γ\X (the reflex field if we work in the context
of Shimura varieties), in particular it has both Betti and de Rham rational structures.

Appendix B. Residual Eisenstein cohomology in corank one

We summarize here some very well-known facts (essentially going back to [Har73]) on the
construction of cohomology via residual Eisenstein series from cuspidal data on maximal par-
abolic subgroups. In the body of the paper these are applied to the rank one groups SO(1, n)
and SU(1, n).

For a G(R)-representation V the smooth vectors are denoted V∞ and H∗(g,K, V ) is the
(g,K)-cohomology of V∞. For a (g,K)-module or G(R)-representation V let

dmin(V ) = min{i : Hi(g,K, V ⊗ E) 6= 0}, dmax(V ) = max{i : Hi(g,K, V ⊗ E) 6= 0},

assuming these make sense and are finite.
Let P = LN ⊂ G be a maximal parabolic subgroup and A the Q-split part of the centre

of L. Let σ ⊂ L2
cusp(ΓLA(R)0\L(R)) be a cuspidal automorphic form on L. For λ ∈ a∗C let

Iλ = IndGP σ ⊗ Cλ be the (normalized) induced representation. The theory of Eisenstein series
produces a (g,K)-homorphism to the space of automorphic forms

E : I∞λ → A (Γ\G(R))

which is meromorphic in λ ∈ a∗C. If λ is a pole of E (meaning that the Eisenstein series E(φ, λ)
has a pole for generic φ in the space of σ), then P is self-associate and the pole is real and
simple if Re(λ) ∈ (a∗)+. Taking the residue at such a λ defines a residual Eisenstein operator

E∗ : I∞λ → A (Γ\G(R)).

By [Fra98] the (g,K)-cohomology of A (Γ\G(R))⊗ E is H∗(Γ, E).

Lemma B.1. Suppose that E has a pole at λ and that the Langlands quotient Jλ of Iλ is
cohomological. Suppose further that

(∗) dmax(Iλ) = dmax(Jλ) and Hdmax(Iλ)(g,K, Iλ)→ Hdmax(Jλ)(g,K, Jλ) is an isomorphism

(see Remark B.2 below). Then the map in cohomology induced by E∗(I∞λ ) ⊂ A in degree
dmin(Jλ) is injective and the classes in the subspace

Hdmin(Jλ)(g,K,E∗(I∞λ )⊗ E) ⊂ Hdmin(Jλ)(Γ, E)

restrict nontrivially to the boundary, i.e. do not belong to H∗! (Γ, E).

Proof. We write I, J for Iλ, Jλ and ignore the coefficients E as they are not relevant. The
residue of a cuspidal Eisenstein series at a point of the positive Weyl chamber is well-known to
be square-integrable, so that E∗(I∞) ⊂ A ∩ L2

dis and as an abstract representation E∗(I∞) is
the Langlands quotient J∞. Taking the constant term of automorphic forms along P defines a
mapping

I∞
E∗−→ A −→ I∗,∞

where I∗ = IndGP σ
∗ ⊗ C−λ is the contragredient of I. (The usual expression for the constant

term defines maps Iλ → A → Iλ ⊕ I∗λ for generic λ, but for the residual operator at a pole
only the second term is nonvanishing.) The composite is a nonzero multiple of the standard
interwining operator I → I∗, the image of which is the Langlands quotient J , and the factoring
above is exactly I∞ → J∞ ⊂ I∗,∞.

Now by assumption dmax(I) = dmax(J), and so by duality ([BW99, I.7.6] for the irreducible
unitary module J and [BW99, III.3.3] combined with [BW99, I.7.6] for I), we have that

dmin(J) = dimX − dmax(J) = dimX − dmax(I) = dmin(I∗)
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and Hdmin(J)(g,K, J) ∼= Hdmin(J)(g,K, I∗). Moreover, for a class in Hdmin(J)(g,K,E∗(I)) in
H∗(Γ,C), the induced mapping

C∗(g,K,E∗(I∞))→ C∗(g,K, I∗,∞)

gives, via the identification of H∗(g,K, I∗,∞) with a summand of the cohomology of the P -
boundary, the restriction of the class to the P -boundary. (This is contained in [Har73] in a
differential-geometric language and [Sch83] in representation-theoretic terms.) The restriction is

therefore nonzero (because Hdmin(J)(g,K, J) ∼= Hdmin(J)(g,K, I∗)) and so Hdmin(J)(g,K,E∗(I))→
H∗(Γ,C) is injective. The classes in this subspace survive on restriction to the boundary so they
are not in interior cohomology. �

Remark B.2. In fact (∗) always holds for a unitary cohomological Langlands quotient, but rather
than prove this general fact will verify it in the cases of interest.

Appendix C. Chern classes of automorphic vector bundles

We are in the situation of 2.2: G is semisimple and simply-connected, X = G(R)/K is
Hermitian, and MΓ = Γ\X. Fix a smooth toroidal compactification MΓ ↪→ MΣ

Γ in which the
boundary is a simple normal crossings divisor [AMRT]. Let Rep(H) denote the category of
finite-dimensional representations of a compact group H. With E in Rep(K) are associated
the homogeneous bundle E c on Xc, the automorphic vector bundle E Σ

Γ on MΓ = Γ\X, and the
canonical extension E Σ

Γ of EΓ to MΣ
Γ .

Lemma C.1. There is an injective ring homomorphism θ : H∗(Xc,Q) → H∗(MΣ
Γ ,Q) with

θ(ck(E
c)) = (−1)kck(E

Σ
Γ ) for all E ∈ Rep(K).

Proof. Following a suggestion of N. Fakhruddin we will use K-theory to prove this. Let K0(−)
denote the topological K-theory of a space and ch : K0(−) → H∗(−,Q) the Chern character
homomorphism. We write R(H) for the representation ring of a compact group H, i.e. the
Grothendieck group of the category Rep(H)

We first show that the ring homomorphism R(K) → H∗(MΣ
Γ ,Q) defined by V 7→ ch(V Σ

Γ )
and extended Q-linearly defines a ring homomorphism

κ : K0(Xc)⊗Q→ H∗(MΣ
Γ ,Q). (C.1)

Since Xc = G(R)c/K with G(R)c simply connected (it is the maximal compact of the simply-
connected group G(C)) and K ⊂ G(R)c is a subgroup of maximal rank, the construction
V 7→ V c gives an isomorphism

R(K)⊗R(G(R)c) Z→ K0(Xc)

where Z is an R(G(R)c)-module via the dimension homomorphism (by [Pit72, Theorem 3]).
Since the left-hand side is the quotient of R(K) by the ideal generated by ker(dim : R(G(R)c)→
Z) and ch is a ring homomorphism, to show that κ is well-defined it suffices to show that
ch(E Σ) = dimE if E ∈ Rep(G(R)c). The degree zero term of the Chern character of a bundle
is its rank, so it suffices to check that ck(E

Σ
Γ ) = 0 for k > 0 for such E. Now Mumford

showed that the kth Chern form of the invariant or Nomizu connection defines a current on MΣ
Γ

which represents (up to a factor of (2π
√
−1)k) the Chern class ck(E

Σ
Γ ) ([Mum77, Theorem 3.1

and Theorem 1.4]). But if E is a G(R)c-representation the curvature 2-form of the Nomizu
connection vanishes identically (see e.g. [GP02, Proposition 5.3]), hence so do its Chern forms
for k > 0. Thus ck(E

Σ
Γ ) = 0 for k > 0 and ch(E Σ

Γ ) = dimE, and we have κ as in (C.1). It is
a ring homomorphism because canonical extension is compatible with tensor product [Har89,
4.2] and the Chern character is multiplicative.

Since Xc is a flag variety it has only even-degree cohomology, so the Chern character gives
an isomorphism ch : K0(Xc)⊗Q→ H∗(Xc,Q) (cf. [AH61, 2.4]). Now define

θ := κ ◦ ch−1 ◦ σ
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where σ : H∗(Xc,Q) → H∗(Xc,Q) is defined by σ(α) = (−1)deg(α)/2α. Since H∗(Xc,Q) is
concentrated in even degrees this makes sense and σ is a ring homomorphism. Note that
θ(σ(ch(E c)) = ch(E Σ

Γ ), from which it follows that θ(ck(E
c)) = (−1)kck(E

Σ
Γ ). This implies

that θ is injective (i.e. nonzero) in top degree 2n = 2 dimCX: Choose a nonzero monomial
ck1(E c

1 ) · · · ckr(E c
r ) with

∑
i ki = n; it spans H2n(Xc,Q). By Mumford’s version of proportion-

ality [Mum77, Theorem 3.2],

[MΣ
Γ ] ∩ θ(ck1(E c

1 ) · · · ckr(E c
r )) = (−1)n · C · [Xc] ∩ ck1(E c

1 ) · · · ckr(E c
r ) 6= 0

where C is a nonzero constant independent of ki,Ei. It follows that θ is injective: For nonzero
α ∈ Hi(Xc) choose β ∈ H2n−i(Xc) such that α · β 6= 0. Then 0 6= θ(α · β) = θ(α) · θ(β), so that
θ(α) 6= 0. �
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[Fra98] J. Franke, Harmonic analysis in weighted L2 spaces, Ann. Sci. de l’ÉNS 31 (1998), 181–279.
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