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Abstract. We study the mixed structures appearing in the cohomology of noncompact
Shimura varieties using a new spectral sequence which arises naturally from Morel’s theory
of weight truncations [M08]. The E1 term of this spectral sequence is a direct sum of pure
structures which are related to intersection cohomology (with coefficients) of strata of
the minimal (=Baily-Borel) compactification. We use it to show that the weight-graded
pieces of the cohomology of a noncompact Shimura variety are subquotients of intersection
cohomology (with twisted coefficients) of minimal compactifications of smaller Shimura
varieties. The main result is that this spectral sequence is automorphic, i.e. given by
an explicit filtration of the space of automorphic forms (which computes the cohomology
by Franke [F98]) by conditions on exponents. The main theorem is an application of
a technical result of independent interest relating the weighted complexes on minimal
compactifications defined by Morel with the weighted complexes of Goresky, Harder, and
MacPherson [GHM94] defined on the reductive Borel-Serre compactification, and also uses
results of [N99, F98].

1. Introduction

Let M be a connected component of a Shimura variety at finite level, i.e. M = Γ\G(R)/K
for a semisimple Q-algebraic group G, a maximal compact subgroup K ⊂ G(R), and a
congruence arithmetic subgroup Γ ⊂ G(Q). Let E be the local system on M given by
a Q-rational irreducible representation E of G. We assume that M is noncompact. The
cohomology H∗(M,E) has a mixed structure – a mixed Hodge structure or a mixed Hodge-
de Rham structure over the number field of definition of M , or a mixed Galois module
structure (if E is of geometric origin), in short a “mixed motive”. The relation of this
mixed structure (particularly its weight filtration) to automorphic forms is subtle.

In [M08] S. Morel introduced a general method of weight truncations using novel t-
structures in derived categories of mixed sheaves. Let j : M ↪→ M∗ be the inclusion of
M in its minimal (i.e. Baily-Borel-Satake) compactification. The formalism of [M08] gives
a natural spectral sequence converging to H∗(M,E) in which the E1 terms are related to
intersection cohomology groups (with coefficients) of minimal compactifications of strata of
M∗. In terms of Morel’s weight truncation functors w6a (cf. [M08, §3] or 2.1) the E1 term
has the form

Ep,q1 = Hp+q(M∗, w6dimM+w−pw>dimM+w−pRj∗EH) ⇒ Hp+q(M,EH) (1)

where p ≤ 0. This is a second quadrant spectral sequence with edge terms given by E0,q
1 =

IHq(M∗,E). The superscript H indicates that we are in Saito’s derived category of mixed
Hodge modules [S90], w is the weight of the natural variation of Hodge structure supported
by E, and EH is the associated Hodge module; this is then a spectral sequence of mixed
Hodge structures. In fact one can work in any theory of mixed sheaves in which E has a lift,
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e.g. mixed Hodge modules with de Rham rational structure [S06] or, if E is of geometric
origin, mixed l-adic complexes [M11]. The analogue of (1) is then a spectral sequence in
the appropriate category, e.g. mixed Hodge-de Rham structures over the field of definition,
or Galois representations. In any of these settings, the E1 term is a direct sum of pure
structures (typically, of different weights), which are intersection cohomology groups (with
coefficients) of closures of strata in M∗.

As an illustration of the utility of (1), we use it to give a quick proof of the following:

Theorem 1.1. (cf. Theorem 3.10.1) The pure Hodge-de Rham structures appearing as
weight-graded pieces of the cohomology H∗(M,E) of a Shimura variety M are subquotients of
the intersection cohomology (with coefficients) of minimal compactifications of the Shimura
varieties which appear as strata of the minimal compactification M∗.

By Theorem 1.1 the cohomology of noncompact Shimura varieties gives no new pure
motives (i.e. besides those appearing in the intersection cohomology of minimal compact-
ifications). (1) So the genuine interest in H∗(M,E) lies in the mixed motives appearing in
it. There is plenty of evidence (especially in the work of Harder [H93, H13]) that this is an
interesting and difficult question, and (1) seems to provide the general setting in which to
approach it.

The main result of this paper is that the spectral sequence (1) also has an automorphic
description. Recall that there is an analytic Hodge theory available for H∗(M,E). Let
A = A (Γ\G(R)) be the space of automorphic forms, i.e. the space of C∞ complex-
valued functions on Γ\G(R) which are finite under K and under the centre of the universal
enveloping algebra of g = LieG(R) and satisfy a uniform moderate growth condition. By
the fundamental theorem of Franke [F98],

H∗(M,E)⊗ C = H∗(g,K; A ⊗ E). (2)

We prove (cf. Theorem 5.2.1(ii)):

Theorem 1.2. There is an explicit decreasing filtration of the space of automorphic forms

· · · ⊃ F pA ⊃ F p+1A ⊃ · · ·
given by imposing conditions on the exponents (i.e. conditions on the Fourier expansions
of the constant terms along split central tori of Levi subgroups, see 5.3 below for the precise
definition) such that the associated spectral sequence with

Ep,q1 = Hp+q(g,K;F pA /F p+1A ⊗ E) ⇒ H∗(M,E)⊗ C (3)

is isomorphic to the spectral sequence (1) (tensored with C) from the E1 term onwards.

For the indexing to agree with that of (1) one has that the nonzero graded quotients of
F are for p ≤ 0 and F 0A is the space of automorphic forms which are square-integrable up
to some logarithmic factors, so that E0,∗

1 is the cohomology of the L2 discrete spectrum.
This theorem allows us to apply analytic methods to (1). In [F98, §6] Franke introduced

a family of similarly-defined filtrations and used Langlands theory of Eisenstein series to

1The same approach should work in the context of Galois representations, but we do not prove it here.
Since one expects that motives appearing in intersection cohomology are polarizable (and this can be proved
in many cases), the theorem suggests that there are no non-self-dual motives appearing in the cohomology
of Shimura varieties. The introduction of [HLTT] mentions that this was known to Harris and to Clozel. (I
thank Clozel for suggesting the inclusion of Theorem 1.1 to me after a discussion in December 2011.)
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describe their graded pieces in terms of square-integrable automorphic forms on Levi sub-
groups. The filtration in the theorem is in fact not one of Franke’s, but rather a degenerate
limiting version of these. Franke’s methods in [F98, §6] can be adapted to the filtration in
the theorem to give an automorphic description of the E1 term (⊗C), similar to that in
[F98, §7] for the spectral sequences associated to Franke’s filtrations. Thus the description
of the discrete L2 spectrum conjectured by Langlands and Arthur [Art89] should give a
precise description of E1 in terms of parameters, in a way that the mixed structures can be
read off from the description, and the differentials can be related to Eisenstein series. (2)

Since the detailed analysis of the spectral sequence requires mainly analytic techniques,
while the arguments of this paper are mainly geometric (or topological), the discussion of
the previous paragraph (and the consideration of examples) is postponed to a sequel. For
the moment we use Theorem 1.2 and a result of Franke to show:

Theorem 1.3. (cf. Theorem 5.2.1 (iii)) If the representation E has regular highest weight
then the spectral sequence (1) degenerates at E1.

Note that for such coefficient systems H i(M,E) vanishes for i < dimM due to a result
of Li-Schwermer [LS04] and Saper [Sap05a].

The general analysis of the cohomology of noncompact locally symmetric spaces, starting
with the work of Borel and Harder in the 1970s, has traditionally used the nerve spectral
sequence for the cohomology of the Borel-Serre boundary ∂MBS and the theory of Eisenstein
cohomology to lift classes from the boundary. In the Shimura variety case the boundary
cohomology has a natural mixed structure such that the long exact sequence

· · · −→ H i
c(M,E) −→ H i(M,E) −→ H i(∂MBS

,E|
∂M

BS ) −→ · · ·

is one of mixed structures. In the sequence of papers [HZ94a, HZ94, HZ01], Harris and
Zucker proved the remarkable fact that the nerve spectral sequence for the covering of
∂M

BS by its closed faces is a spectral sequence of mixed Hodge-de Rham structures.
More recently, the work of Franke [F98] provided a new general framework for the study

of cohomology via Eisenstein series, one in which Franke’s filtrations on the space of au-
tomorphic forms play an essential role. We refer to [F98, FS98, LS04, F08] etc. for some
notable applications of these methods. Theorem 1.2 can then be seen as providing, in the
Shimura variety case, a mixed Hodge-de Rham theory for this approach. (3) The theorem
can also be seen as singling out, in the case of Shimura varieties, a particular filtration on
the space of automorphic forms for which the spectral sequence has good motivic properties.

There is no simple relation between the nerve spectral sequence and (1) if G has Q-rank
> 1. Indeed, the E1 term in the nerve spectral sequence is (in general) genuinely mixed, and
the relation of its limit filtration to automorphic forms is complicated (cf. [OS90, HZ94]).
So (1) seems (to me) rather better suited to the problem of understanding the mixed motives
in Shimura varieties.

2For purely geometric reasons (see the proof of Theorem 5.2.1 (i)), the E1 term of (1) is a sum of
intersection cohomology with coefficients of Shimura varieties appearing in the minimal boundary; the point
here is that Theorem 1.2 describes the coefficient systems appearing in terms of the discrete spectrum of the
linear subgroups of Levi subgroups (cf. 3.2).

3As mentioned above, (1) is related to a degenerate version of Franke’s filtrations. The spectral sequences
associated with all of Franke’s filtrations are spectral sequences of mixed HdR structures (as can be proved
using the methods of this paper, see Remark 5.3.1(ii)), but they do not have the purity property of (1) so
we do not study them here.
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Theorem 1.2 is an application of a technical result of independent interest. This is the
comparison of two constructions of weighted complexes in the literature, namely Morel’s
weighted complexes, defined on the minimal compactification M∗ of a locally symmetric
variety using the weight truncations of [M08], and the weighted cohomology complexes of
Goresky, Harder, and MacPherson [GHM94], defined on the reductive Borel-Serre (RBS)
compactification M of an arbitrary locally symmetric space. (Morel’s construction is meant
to be an algebraic analogue of [GHM94], so that the existence of such a relation is not
entirely surprising.)

Recall that given a weight, i.e. a quasicharacter ν ∈ X∗(A0)Q on a maximal Q-split
torus A0 ⊂ G, the construction of [GHM94] defines a complex of sheaves W>νC(E) on
M . There is a proper continuous map p : M → M∗ extending the identity on M , giving
a constructible complex Rp∗W

>νC(E) on M∗. On the other hand, for a Q-valued func-
tion a on the set of strata of M∗, the construction of [M08] defines objects w6aRj∗EH
and w>aRj∗EH in the derived category of mixed Hodge modules on M∗. The underly-
ing Q-complexes rat(w6aRj∗EH) and rat(w6aRj∗EH) are objects in the derived category
Db
c(QM∗) of constructible complexes on M∗. In 4.3 we associate (in an explicit way) with

ν ∈ X∗(A0)Q a function a such that, denoting by a + w the sum of a with the constant
function w, we have:

Theorem 1.4. (cf. Theorem 4.3.1) For a associated with ν there are natural and Hecke-
equivariant isomorphisms in Db

c(QM∗):

rat(w6a+wRj∗EH) = Rp∗W
>νC(E) (a)

rat(w>a+wRj∗EHM ) = Rp∗
(
W>−∞C(EM )/W>νC(EM )

)
, (b)

where −∞ stands for any sufficiently negative weight (so that Rp∗W>−∞C(EM ) = Rj∗EM ).

Analogous statements hold in other categories of mixed sheaves (see Remark 4.3.7). There
are some interesting special cases of (a):

When ν = −ρ (the half-sum of negative roots) then a is the constant function dimM
and one gets the intersection complex (j!∗EM [dimM ])[−dimM ] on both sides by [GHM94,
Theorem 23.2] and [M08, Theorem 3.1.4].

When ν = 0 one has for a the dimension function dim(S) = dimS and for E trivial one
gets the identity

Rp∗QM = rat(w6dimRj∗QH). (4)

This shows that the cohomology of the RBS compactification carries a natural mixed struc-
ture. In fact, according to Ayoub and Zucker [AZ12], the RBS compactification is even
motivic (in the sense of Voevodsky). In [V12, V13] Vaish gives an alternate construction of
the motive of Ayoub and Zucker along the lines suggested by (4); together with the l-adic
analogue of (4) this recovers the main results of [AZ12] in a different way and in slightly
strengthened form. Another application of (4) and related results is in [N10] where we use
it (and results from [NV12]) to prove several new results about the cohomology of the RBS
compactification by a mixture of analytic and geometric methods. (See 4.6 for some further
discussion of these results related to M .)

When a has constant value a > dimM the resulting complexes are relevant to (1) and
its limit filtration.
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As a corollary of Theorem 1.4, we see that the weighted cohomology groups of a lo-
cally symmetric variety carry natural mixed Hodge-de Rham structures and also Galois
representations. In some cases (including those just mentioned) these provide mixed struc-
tures which can be related to automorphic forms. For example, when a has constant value
a > dimM the cohomology H∗(M∗, w6a+wRj∗EHM ) is a mixed structure which can be com-
puted in terms of automorphic forms (by the theorem and results of [N99, F98] recalled
in 5.3). It surjects onto a mixed substructure of H∗(M,E) (the corresponding step of the
limit filtration of (1)). This suggests that some of these mixed structures should provide a
simpler setting (i.e. simpler than H∗(M,E)) in which to study the general relation between
automorphic forms and mixed motives. Thanks to Morel’s formalism we can prove some
properties of these mixed structures (e.g. determine the highest weight quotient or lowest
weight subspace) in some cases. The results are summarized in Theorem 4.5.3.

We make some comments on the proofs of Theorems 1.1–1.4.
The proof of Theorem 1.1 uses (1), some simple properties of Morel’s truncation functors,

and a result from [HZ01] or [BW04].
The proof of Theorem 1.4 uses the ubiquitous local Hecke operator introduced by Looi-

jenga [L88] and the relation between local Hecke weights and weights in the sense of mixed
Hodge theory or Frobenius established by Looijenga and Rapoport [LR91]. We remark that
some difficulties are caused by the fact that we are comparing the functorial image (under
rat) of an object defined using a t-structure (viz. w6a+wRj∗EH) with an object defined via
an explicit complex (viz. Rp∗W>νC(E)), and the comparison takes place in the category
Db
c(QX), where the t-structure is not available. A key input is a splitting property of the

weighted complexes (of either type) in the derived category with respect to the action of a
local Hecke operator. For the construction of [GHM94] this splitting property was already
used for the proof of the main theorem of loc. cit.; we recall it as Lemma 4.2.2. For the
construction of [M08] this is proved in Lemma 4.3.4 using the relation between local Hecke
weights and mixed Hodge weights from [LR91]. The proof of Theorem 1.4 can be adapted
to give versions of the theorem in some other categories of mixed sheaves, in particular
mixed l-adic complexes (cf. Remark 4.3.7).

Theorem 1.2 is deduced from Theorem 1.4 using the main results of [N99] and [F98] as
follows: Theorem 1.4 allows us to work with a particular complex representing weighted
cohomology, namely the one defined in [GHM94, II] using special differential forms. In
[N99] this complex was compared with certain complexes of differential forms with square-
integrability conditions coming from the work of Franke [F98]. Specific properties of the
Q-root system of groups giving rise to Shimura varieties (verified in an appendix) then come
into play to allow a further reduction to spaces of automorphic forms, using results of [F98].
(4)

Theorem 1.3 follows easily from Theorem 1.2 and a result [F98, Theorem 19] about the
degeneration of Franke’s spectral sequences.

We briefly mention some applications of these results which will be taken up elsewhere.
In [F08] Franke showed that the submodule of Hecke-invariant classes is a direct summand
in H∗(M,Q) and has a particularly simple topological model in terms of an open subset of

4Due to a technical difficulty to do with cones in the derived category we do not prove here that the
isomorphism in Theorem 1.2 is Hecke-equivariant. This does not affect the applications mentioned here; we
hope to deal with this elsewhere.
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the compact dual. It should be possible to describe this summand more completely as a
mixed structure (it is of mixed Tate type) using the results here. Secondly, in the regular
coefficients case the degeneration at E1 of the spectral sequence (1) should allow us to
give a more detailed description of the mixed structure H∗(M,E). Finally, the vanishing
theorems of Borel [B87] and Saper [Sap05] for the cohomology of linear locally symmetric
spaces give vanishing results for summands of the E1 term; in some examples these should
give interesting constraints on the weight filtration of H∗(M,E).

The arguments in this paper are written in the context of mixed Hodge modules, but
many of them work, with minor changes, in other settings of mixed sheaves. Rather than
work in a general setting we make remarks about the necessary changes for this from time
to time. We have also avoided the formalism of Shimura varieties for simplicity, although
this would have been more elegant at some places (and would give results over the reflex
field).

The contents of the various sections are as follows:
In section 2 we recall Morel’s theory of weight truncations, as transposed to the setting

of mixed Hodge modules (or, more generally, any theory of mixed sheaves for varieties over
a subfield of C) and prove some additional properties of the weight truncation functors.

In section 3 we recall background material on locally symmetric varieties and the minimal
and reductive Borel-Serre compactifications and discuss the pure structures appearing as
the weight-graded pieces of H∗(M,E) (proving Theorem 1.1).

In section 4 we prove the basic relation between the weighted complexes and the weight
truncations (i.e. Theorem 1.4). We also prove some basic properties of the resulting mixed
structures on weighted cohomology.

In section 5 we discuss the spectral sequence (1) and its relation with automorphic forms
and prove Theorems 1.2 and 1.3.

The appendix summarizes facts about the relative root system required in sections 4 and
5.

2. Weight truncation of mixed sheaves

2.1. Weight truncation of mixed Hodge modules. We first recall some facts from
Saito’s theory of mixed Hodge modules (cf. [S88, S90], especially §4 of the latter). For any
complex algebraic variety X, Saito defines the abelian category MHM(X) of (algebraic)
mixed Hodge modules on X. This is the analogue in Hodge theory of the category of mixed
perverse complexes of [BBD82]. When X is a point MHM(X) is equivalent to the category
of rational mixed Hodge structures with polarizable pure subquotients. When X is smooth
MHM(X) contains polarizable variations of Hodge structure on X and, more generally,
admissible variations of mixed Hodge structure with polarizable pure subquotients. In
general, there is a faithful and exact functor rat from MHM(X) to the category of perverse
complexes of QX -sheaves constructible for an algebraic stratification. rat gives a functor
on bounded derived categories:

rat : DbMHM(X)→ Db
c(QX).

For algebraic maps f : X → Y there are functors Rf∗, f∗, Rf!, f
! and ⊗ and RHom between

the appropriate derived categories of mixed Hodge modules, and these are compatible under
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rat with the corresponding functors on derived categories of complexes of Q-sheaves (5).
The cohomology functor H0 : DbMHM(X) → MHM(X) goes to the perverse cohomology
functor pH0 on Db

c(QX) under rat, i.e. rat ◦H0 = pH0 ◦ rat.
Mixed Hodge modules have weight filtrations and for K ∈ MHM(X) and a ∈ Z there is

a canonical short exact sequence in MHM(X)

0 −→ w6aK −→ K −→ w>aK −→ 0

where w6aK is the maximal subobject of K with weights 6 a and w>aK is the maximal
quotient object of K with weights > a (equivalently, weights > a+1). This is, up to unique
isomorphism, the unique short exact sequence 0 → K ′ → K → K ′′ → 0 with K ′ having
weights 6 a and K ′′ having weights > a. By strictness of morphisms in MHM(X) with
respect to weight filtrations, this implies that K 7→ w6aK and K 7→ w>aK = w>a+1K are
functors. Represent a complex K of DbMHM(X) by a bounded complex (Ci)i∈Z of objects
in MHM(X). Setting (w6aK)i := w6aC

i and (w>aK)i := w>aC
i can be shown to define

functors w6a, w>a : DbMHM(X)→ DbMHM(X).
Morel’s original definition of these functors (rather, the analogues in the `-adic context)

is via a t-structure. Following [M08, §3], define wD6a = wD6aMHM(X) (resp. wD>a) to be
the full subcategory of DbMHM(X) with objects

Ob wD6a = {K ∈ DbMHM(X) : H i(K) has weights 6 a for all i}.

(resp. with objects

Ob wD>a = {K ∈ DbMHM(X) : H i(K) has weights > a for all i}).

Then (wD6a,wD>a) is a t-structure on DbMHM(X). (The proof of this from [M08] carries
over, the main point being that Homi(K,L) = 0 if K has weights 6 a and L has weights
> a + i [S90, 4.5.3]. Recall that a complex K ∈ DbMHM(X) is said to have weights 6 a
(resp. > a) if H i(K) is of weights 6 i + a (resp. > i + a) for all i ([S90, 4.5]).) The
corresponding truncation functors are

w6a, w>a : DbMHM(X)→ DbMHM(X)

(the right adjoint to wD6a ⊂ DbMHM(X) and the left adjoint to wD>a ⊂ DbMHM(X),
respectively). This t-structure has some unusual properties: wD6a and wD>a are full tri-
angulated subcategories of DbMHM(X). The functors w6a and w>a commute with shifts,
take distinguished triangles to distinguished triangles, satisfy w6a(K(1)) = (w6a+2K)(1)
and w>a(K(1)) = (w>a+2K)(1), and satisfy D ◦w6a = w>−a ◦D where D is the Verdier du-
ality functor. Any object in the heart wD6a∩wD>a of the t-structure is isomorphic to zero.
The cohomology sequences (for the usual cohomology functorH0) associated with the distin-
guished triangle w6aK −→ K −→ w>aK

+1−→ are short exact and H i(w6aK) = w6aH
i(K)

and H i(w>aK) = w>aH
i(K). (The proofs of these facts in [M08] carry over, mutatis

mutandis, to our setting.)
A key result is the following:

Theorem 2.1.1. (Morel [M08, Thm 3.1.4]) If j : U ↪→ X is a nonempty open subset and
K is a pure polarizable Hodge module of weight a on U then w>aj!K = j!∗K = w6aRj∗K.

5We follow Saito’s notation in [S88, S90], except that we use the slightly misleading notation Rf∗, Rf!

instead of f∗, f! for direct images in the categories of mixed Hodge modules to agree with the notation for
complexes of sheaves.
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Suppose now that we are given a stratification of X, i.e. a partition X =
∐r
i=0 Si into

locally closed subvarieties with each Sd open in X − t06j<dSj . Let iSd : Sd ↪→ X be the
inclusion. Let a = (a0, . . . , ar) ∈ (Z ∪ {±∞})r+1. As in [BBD82, 1.4], one can glue the
t-structures (wD6ai(Si),wD>ai(Si)) on DbMHM(Si) to get a new t-structure (wD6a,wD>a)
on DbMHM(X). Thus wD6a (resp. wD>a) is the full subcategory of DbMHM(X) consisting
of complexes K such that i∗SdK ∈

wD6ad(Sd) for d ∈ {0, . . . , r} (resp. i!SdK ∈
wD>ad(Sd)

for d ∈ {0, . . . , r}). The corresponding truncation functors, denoted

w6a, w>a : DbMHM(X)→ DbMHM(X)

take distinguished triangles to distinguished triangles, commute with the shift, and satisfy
w6(a0,...,ar)

(
K(1)

)
=
(
w6(a0+2,...,ar+2)K

)
(1) and w>(a0,...,ar)

(
K(1)

)
=
(
w>(a0+2,...,ar+2)K

)
(1)

([M08, Prop. 3.4.1]). When a = (a, . . . , a) we recover the previous construction, i.e.
w6(a,...,a) = w6a ([M08, Lemme 3.3.3]).

The following lemma is stronger than the Hom-vanishing required to prove that (wD6a,wD>a)
is a t-structure (which follows by taking H0). The proof in [M08] works mutatis mutandis.

Lemma 2.1.2. ([M08, Prop. 3.4.1]) If K ∈ wD6a and L ∈ wD>a then RHom(K,L) = 0.

For k ∈ {0, . . . , r} and a ∈ Z ∪ {±∞} define wk6a := w6(+∞,...,+∞,a,+∞,...,+∞) where a
appears in the kth place.

Lemma 2.1.3. ([M08, Prop. 3.3.4]) (i) w6(a0,...,ar) = wr6ar ◦ w
r−1
6ar−1

◦ · · · ◦ w0
6a0

.
(ii) For K ∈ DbMHM(X) and k ∈ {0, . . . , r} there is a distinguished triangle wk6aK −→

K −→ RiSk∗w>ai
∗
Sk
K

+1−→.

Lemma 2.1.4. ([M08, Prop. 3.4.2]) If K ∈ wD6a0(S0) ∩ wD>a0(S0) then

w6(a0,a1,...,ar)Rj∗K = w>(a0,a1+1,...,ar+1)j!K

and this is the unique extension of K in wD6(a0,...,ar) ∩ wD>(a0,a1+1,...,ar+1).

2.2. Some further properties of weight truncation. Fix a stratification X =
∐r
i=0 Si

of the variety X. For d = 0, . . . , r let Ud :=
∐d
i=0 Sd and let

Ud−1
� � jd // Ud Sd? _

idoo (2.2.1)

be the inclusions.

Lemma 2.2.1. There are natural isomorphisms of functors

w6(a0,...,ar)R(jr · · · j1)∗ = wr6arRjr∗ ◦ w
r−1
6ar−1

Rjr−1∗ ◦ · · · ◦ w1
6a1

Rj1∗ ◦ w6a0 .

= wr6arRjr∗ ◦ w6(a0,...,ar−1)R(jr−1 · · · j1)∗.

Proof. The lemma follows from Lemma 2.1.3 (i) and the observation that for k < d we have
the identity wk6aRjd∗ = Rjd∗w

k
6a. To prove this identity, it suffices to show that the two

obvious natural transformations

wk6aRjd∗ ← wk6aRjd∗w
k
6a → Rjd∗w

k
6a

are isomorphisms. For the second transformation, note thatRjd∗ takes wD6(+∞,...,a,...,+∞)(Ud−1)
to wD6(+∞,...,a,...,+∞,+∞)(Ud) (where the a is in the kth place in each case), so that wk6a is
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the identity on any object like Rjd∗wk6aK. For the first, note that for K on Ud−1, applying
wk6a ◦Rjd∗ to the t-structure distinguished triangle for
(wD6(+∞,...,a,...,+∞)(Ud−1),wD>(+∞,...,a,...,+∞)(Ud−1)) gives a distinguished triangle

wk6aRjd∗w
k
6aK −→ wk6aRjd∗K −→ wk6aRjd∗w>(+∞,...,a,...,+∞)K

+1−→ .

The third term is zero sinceRjd∗ takes wD>(+∞,...,a,...,+∞)(Ud−1) into wD>(+∞,...,a,...,+∞,+∞)(Ud)
(because i!dRjd∗ = 0) and wD6a ∩ wD>a = {0} for any a, in particular
for a = (+∞, . . . , a, . . . ,+∞,+∞). �

Lemma 2.2.2. (i) If a 6 b (i.e. ad 6 bd for all d) then w6aw6b = w6a and w>aw6b =
w6bw>a.

(ii) If (a0, · · · , ar) is nonincreasing then w6a is right t-exact, i.e. w6a(D60) ⊂ D60.

Proof. (i) follows from the inclusion wD6a ⊂ wD6b.
(ii) If ad > ad+1 for all d, then

w6(a0,...,ar) = w6(a0,...,ar) ◦ · · · ◦ w6(a0,a1,...,a1) ◦ w6(a0,...,a0)

= w6(+∞,...,+∞,ar) ◦ · · · ◦ w6(+∞,a1,...,a1) ◦ w6(a0,...,a0)

Now w6(+∞,...,+∞,ad,...,ad) is the functor w6(+∞,ad) for the coarser stratification ofX with two
strata S′0 = tk6d−1Sk and S′1 = tk≥dSk. In such a situation any w6(+∞,b) preserves D60.
Indeed, if K ∈ D60, then i∗S′0

w6(+∞,b)K = i∗S′0
K ∈ D60 by definition and i∗S′1

w6(+∞,b)K =

w6bi
∗
S′1
K ∈ D60 since i∗S′1K ∈ D

60 and w6b is t-exact. �

For later use we note some properties of the “diagonal” functors w6a = w6(a,...,a).

Lemma 2.2.3. We have
(i) w>aw6b = w6bw>a

(ii) For K ∈ wD6a ∩ wD>a there is a canonical isomorphism K = ⊕kHk(K)[−k]. Each
cohomology object Hk(K) is pure (of weight a) and so is a sum of simple pure Hodge
modules supported on irreducible closed subvarieties.

(iii) For K,L ∈ wD6a ∩ wD>a, Hom(K,L) = ⊕kHom(Hk(K), Hk(L)).

Proof. (i) is a special case of Lemma 2.2.2(i).
(ii) This is proved by induction on the cardinality of {k ∈ Z : Hk(K) 6= 0}, the case of

cardinality one being obvious. Let K ∈ wD6a ∩ wD>a and let k0 be the minimal element of
{k ∈ Z : Hk(K) 6= 0}), so that τ6k0K = Hk0(K)[−k0]. In the distinguished triangle

Hk0(K)[−k0] −→ K −→ τ>k0+1K
+1−→

the first two terms belong to wD6a∩wD>a and hence τ>k0+1K belongs to wD6a∩wD>a. By
the induction hypothesis there is a canonical isomorphism τ>k0+1K = ⊕k>k0+1H

k(K)[−k].
Now Hk(K)[−k] is pure of weight a − k, so τ>k0+1K is of weights 6 a − k0 − 1, while
Hk0(K)[−k0 + 1] is pure of weight a − k0 + 1. Thus in the distinguished triangle above
the +1 morphism must be zero, i.e. the triangle must split. The splitting is unique: Two
splittings differ by a morphism τ>k0+1K → Hk0(K)[−k0], which must be zero for weight
reasons. So there is a canonical isomorphism K = Hk0(K)[−k0]⊕ τ>k0+1K, completing the
inductive step.
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(iii) In the canonical isomorphisms given by (ii), an element of Hom(K,L) is a sum of its
components in Hom(Hk(K)[−k], Hj(L)[−j]) for various k, j. If k < j then

Hom(Hk(K)[−k], Hj(L)[−j]) = 0

by the standard t-structure vanishing. If k > j then

Hom(Hk(K)[−k], Hj(L)[−j]) = 0

since Hk(K)[−k] has weight a− k and Hj(L)[−j] has weight a− j > a− k. �

There is a pointwise criterion for the weights of a complex K ∈ DbMHM(X): K is of
weights 6 a if and only if for any point ix : {x} ↪→ X, the mixed Hodge structure H i(i∗xK)
has weights 6 i+a ([S90, 4.6.1]). There is a t-structure (cD60, cD>0) on DbMHM(X) related
to the classical t-structure on Db

c(QX) (see [S90, 4.6]). It is defined by K ∈ cD60 if and
only if rat(K) ∈ Db

c(QX)60. Let cH0 be the corresponding cohomology functor, so that
rat ◦ cH0 = H0 ◦ rat.

For a smooth variety X we say that a mixed Hodge module K ∈ MHM(X) is smooth if
rat(K)[−dimX] is a local system. (6) A complex K ∈ DbMHM(X) is smooth if H i(K) is
smooth for all i.

Lemma 2.2.4. Suppose that X is smooth and K ∈ DbMHM(X) is smooth. Then
(i) H i(K) = cH i−dimX(K)[dimX] for all i
(ii) K ∈ wD6a if, and only if, for each x ∈ X, H i(i∗xK) has weights 6 a−dimX for all

i.

Proof. (i) follows from the identity pH i(rat(K)) = H i−dimX(rat(K))[dimX] in Db
c(QX).

(ii) Since K is smooth, H i(i∗xK) = cH i(i∗xK) = i∗x
cH i(K) = i∗xH

i+dimX(K)[−dimX]. By
definition, K ∈ wD6a if H i(K) has weights 6 a for all i, which translates to the condition
that H i(i∗xK) has weights 6 a− dimX for all i. �

2.3. Mixed sheaves. Everything so far works in any theory of A-mixed sheaves in the
sense of Saito [S06] (A a field of characteristic zero) for varieties over a fixed field k ⊂ C.
Recall that such a theory gives an A-linear abelian category M (X) for every variety X/k
with an A-linear forgetful functor For to perverse A-sheaves on X(C), satisfying a number
of axioms similar to the properties of mixed Hodge modules [S88, S90]. In particular, objects
have weight filtrations, associated with a morphism of varieties are four functors satisfying
conditions with respect to weights, and there is a (Verdier) duality functor. The basic
example is the theory of Q-mixed sheaves given by M (X) = MHM(X(C)) with For = rat.

A second example is the theory of Q-mixed sheaves defined in [S06, 1.8(ii)], which we
will denote MHM(X/k) and refer to as mixed Hodge modules with de Rham structure.
In essence, for X/k, MHM(X/k) is the category of mixed Hodge modules on X(C) such
that the underlying bifiltered D-module on X(C) comes (by extension of scalars) from a
bifiltered D-module on X/k. (For X = Spec(k) this gives the category of mixed Hodge-de
Rham structures over k with polarizable graded pieces.) Working in this theory of mixed
sheaves allows us to keep track of the de Rham rational structure in various cohomology
groups, i.e. to work with Hodge-de Rham structures everywhere.

6By Theorem 3.27 of [S90] (cf. also the remark after the proof of the theorem regarding the algebraic
case) a smooth Hodge module on a smooth variety X is the same thing as an admissible variation of mixed
Hodge structure with polarizable pure subquotients.
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In [M11] Morel constructs a theory of mixed l-adic complexes on varieties over a number
field k ⊂ C (l is any fixed prime), using earlier work of Huber [Hu97]. Denote the category
of l-adic mixed perverse complexes having a weight filtration by Ml(X); this has a forgetful
functor to the category of perverse Ql-complexes in the classical topology on X(C) which
factors through the perverse l-adic complexes in the étale topology. Morel shows that given
a morphism f : X → Y the four functors f∗, f !, Rf∗, Rf! on l-adic complexes can be lifted
to functors between the derived categories DbMl(X) and DbMl(Y ) (cf. [M11, Thm 2.1]
and §5 of loc. cit.). Working in this theory will allow us to conclude that some statements
hold in the context of Gal(Q̄/k)-modules. (The theory Ml(·) is not quite a theory of mixed
Ql-sheaves in the sense of Saito as one does not have semisimplicity of pure objects in Ml(·).
Nevertheless, the preceding discussion goes through in this theory (cf. [M11, §6]), with the
following caveats about Lemma 2.2.3: The isomorphism K = ⊕kHk(K)[−k] in Lemma
2.2.3 (ii) is not canonical. Each cohomology object Hk(K) in (ii) breaks up canonically
“by support”, i.e. is canonically isomorphic to a direct sum of intersection complexes with
coefficient local systems which are pure but not necessarily semisimple. Lemma 2.2.3 (iii)
fails.)

Remark 2.3.1 (Effectivity). Recall that a Hodge structure H is effective if Hp,q 6= 0 only if
p, q ≥ 0. A mixed Hodge structure is effective if its weight graded pieces are effective. (In
particular, its weights are ≥ 0.) For example, if X is a complex algebraic variety the mixed
Hodge structures on H∗(X,Q) and H∗c (X,Q) given by Deligne’s Hodge theory [D74] are
effective. More generally, if X is smooth and V is an effective variation of Hodge structure
on X then H∗(X,V) and H∗c (X,V) are effective (cf. [S90, 3.10]).

For a complex K ∈ DbMHM(X) we will say K is pointwise effective if the mixed Hodge
structure Hk(i∗xK) is effective for all ix : {x} ↪→ X and k ∈ Z. Pointwise effective complexes
form a triangulated subcategory of DbMHM(X). The following can be proved by standard
arguments: (1) Pointwise effectivity is preserved by the functors Rf∗, Rf!, f

∗ for an arbitrary
morphism and by f ! for f a locally closed immersion. (2) For a Whitney stratification,
the functors w6a and w>a applied to objects constructible for the stratification preserve
pointwise effectivity. (3) If K in DbMHM(X) is pointwise effective then H∗c(X,K) and
H∗(X,K) are effective mixed Hodge structures. Thus with the notation of 2.2 objects
like w6aRj∗QH

U (for a Whitney stratification) are pointwise effective and their cohomology
groups are effective. (We will not use these statements below so we do not give complete
proofs here.)

2.4. Properties of some weight-truncated cohomology groups. In this subsection we
prove some results about the hypercohomology groups of some special weight truncations
which will used later (in 4.5) for locally symmetric varieties. Thus we fix the following
notation: j : M ↪→M∗ is an open immersion of a smooth varietyM as a Zariski-dense subset
of a complete variety M∗, EHM [dimM ] is the pure Hodge module of weight w+dimM coming
from a polarizable variation on M , and M =

∐
iMi is a stratification by equidimensional

smooth varieties for which Rj∗EHM and j!EHM are constructible. (In the application in 4.5 M
will be a locally symmetric variety and M∗ its minimal compactification with its canonical
stratification.)

Lemma 2.4.1. (i) Suppose that (a1, . . . , ar) is nonincreasing, ai < dimM for i > 1, and
a0 > dimM . Then

rat(w6(a0+w,...,ar+w)Rj∗EHM )[dimM ] ∈ pD60(QM∗) (2.4.1)
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and

w>dimM+ww6(a0+w,...,ar+w)Rj∗EHM [dimM ] = j!∗(EHM [dimM ]). (2.4.2)

The mixed structure on Hi(M∗, rat(w6(a0+w,...,ar+w)Rj∗EHM )) has weights 6 i+ w.
(ii) Suppose that (a1, . . . , ar) is nondecreasing, ai > dimM for i > 1 and a0 > dimM .

Then

rat(w6(a0+w,...,ar+w)Rj∗EHM )[dimM ] ∈ pD>0(QM∗) (2.4.3)

and

w6dimM+ww6(a0+w,...,ar+w)Rj∗EHM [dimM ] = j!∗(EHM [dimM ]). (2.4.4)

The mixed structure on Hi(M∗, rat(w6(a0+w,...,ar+w)Rj∗EHM )) has weights > i+ w.

Proof. Write d0 := dimM to simplify the notation.
(i) If (a1, . . . , ar) is nonincreasing, ai 6 d0 for all i and a0 = d0 then by Lemma 2.2.2(i)

w6(a0+w,...,ar+w)Rj∗EHM [d0] = w6(a0+w,...,ar+w)w6d0+wRj∗EHM [d0] (2.4.5)

and this lies in D60 by Lemma 2.2.2 since w6d0+wRj∗EHM [d0] = j!∗EHM [d0] ∈ D60. This
proves (2.4.1) if (a1, . . . , ar) is nonincreasing and a0 > d0 since we can always replace a0 by
d0 without changing w6(a0+w,...,ar+w)Rj∗EHM [d0].

For a0 = d0, we have:

w>d0+ww6(a0+w,...,ar+w)Rj∗EHM [d0] = w>d0+ww>(a0+w,a1+1+w,...,ar+1+w)j!EHM [d0]

= w>d0+wj!EHM [d0] = j!∗EHM [d0]

by Prop. 3.4.2 of [M08] (i.e. Lemma 2.1.4), Lemma 2.2.2(i), and Theorem 2.1.1. This
proves (2.4.2) if a0 = d0; the general case follows since we can replace a0 = d0 by any
a0 > d0 without changing w6(a0+w,...,ar+w)Rj∗EHM .

For the assertion about weights it is enough to prove that w6(a0+w,...,ar+w)Rj∗EHM [d0]
has weights 6 d0 + w. Suppose X = S0 t S1 with S1 closed. If K on X is of weights
6 a then i∗1w6(+∞,b)K = w6bi

∗
1K and Hk(i∗1w6(+∞,b)K) = w6bH

k(i∗1K) has weights 6
min(b, k + a) 6 k + a. So i∗1w6(+∞,b)K has weights 6 a. Since i∗0w(6(+∞,b)K = i∗0K has
weights 6 a, we conclude that w6(+∞,b)K has weights 6 a. Thus w6(+∞,b) preserves the
subcategory of complexes with weights 6 a. Now for (a0, . . . , ar) nonincreasing we have

w6(a0,...,ar) = w6(+∞,...,+∞,ar) ◦ · · · ◦ w6(+∞,a1,...,a1) ◦ w6(a0,...,a0).

Each functor here is of the form w6(+∞,b) for a suitable restratification of M∗. So we
conclude that if K is of weights 6 a and (a0, . . . , ar) is nonincreasing, then w6(a0,...,ar)K is
of weights 6 a. Combining this with (2.4.5) gives the required assertion in the case a0 = d0

and the general case then follows.
(ii) will follow from (i) by duality. Suppose that (a0, . . . , ar) satisfies the conditions of

(ii). Define (b0, . . . , br) by b0 = 2d0 − a0 and bd = 2d0 − ad − 1 for d > 1. Then (b0, . . . , br)
satisfies the conditions of (i) and so (2.4.1) holds, i.e. w6(b0+w,...,br+w)Rj∗EHM [d0] ∈ D60.
Dualizing (and replacing ĚHM by EHM ) gives

w>(−b0−w,...,−br−w)

(
j!EHM [d0](d0 + w)

)
∈ D>0.
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Using the identities

w>(−b0−w,...,−br−w)

(
j!EHM [d0](d0 + w)

)
= w>(2d0−b0+w,...,2d0−br+w) j!EHM [d0]

= w>(2d0−b0+w,2d0−b1+w−1,...,2d0−br+w−1) j!EHM [d0]

= w6(2d0−b0+w,2d0−b1+w−1,...,2d0−br+w−1)Rj∗EHM [d0]

= w6(a0+w,a1+w,...,ar+w)Rj∗EHM [d0]

(using Lemma 2.1.4 for the third equality) gives (2.4.3). Similarly, dualizing (2.4.2) gives

j!∗EHM [d0](d0 + w) = w6−d0−w w>(−b0−w,...,−br−w)

(
j!EHM [d0](d0 + w)

)
= w6−d0−w

(
w>(2d0−b0−w,...,2d0−br−w) j!EHM [d0](d0 + w)

)
= w6d0−w w>(2d0−b0+w,...,2d0−br+w) j!EHM [d0]

= w6d0+w w6(2d0−b0+w,2d0−b1+w−1...,2d0−br+w−1)Rj∗EHM [d0]

= w6d0+w w6(a0+w,a1+w...,ar+w)Rj∗EHM [d0]

(using Lemma 2.1.4 for the fourth equality) gives (2.4.4). �

In the case of “diagonal” truncations w6a and the special truncation w6(dimM0,...,dimMr)

we have information about the weights in (global) hypercohomology:

Proposition 2.4.2. (i) For a 6 dimM the weights of

Hi(M∗, w>a+wj!EHM [dimM ]) = Hi(M∗, w6(dimM+w,a+w−1,...,a+w−1)Rj∗EHM [dimM ])

are 6 i+ dimM +w. The top weight quotient is the image in IH i+dimM (M∗,E) under the
map induced by (2.4.2).

(ii) For b > dimM the weights of

Hi(M∗, w6b+wRj∗EHM [dimM ])

are > i+ dimM +w. The lowest weight piece is the image of IH i+dimM (M∗,E) under the
map induced by (2.4.4).

(iii) The mixed structure on

Hi(M∗, w6(dimM+w,dimM1+w,...,dimMr+w)Rj∗EHM )

has weights 6 i + w. The top weight quotient is the image in IH i+dimM (M∗,E) under the
map induced by (2.4.2).

Proof. Let d0 := dimM . In each of (i)–(iii) the first assertion follows from the previous
lemma, so we concentrate on the second assertions.

(i) From the long exact sequence in cohomology associated with the triangle

w<d0+ww>a+wj!EHM [d0]→ w>a+wj!EHM [d0]→ w>d0+wj!EHM [d0] +1→
it suffices to show that for a 6 d0, w<d0+ww>a+wj!EHM [d0] has weights < d0 + w. Since

w<d0+ww>a+wj!EHM [d0] = w>a+ww<d0+wj!EHM [d0]

and w>a+w preserves the complexes of weight< d0+w, it is enough to show that w<d0+wj!EHM [d0]

has weights < d0 + w. The triangle w<d0+wj!EHM [d0] → j!EHM [d0] → w>d0+wj!EHM [d0] +1→
shows that for any d > 1,

i∗dw<d0+wj!EHM [d0] = i∗dw>d0+wj!EHM [d0] [−1]
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has weights 6 d0 + w − 1 since w>d0+wj!EHM [d0] = j!∗EHM [d0] is of weights 6 d0 + w. Since
i∗0w<d0+wj!EHM [d0] = 0 we have that w<d0+wj!EHM [d0] has weights 6 d0 + w − 1.

(ii) follows from (i) by duality.
(iii) Let di = dimMi. From the triangle

w6(d0+w,...,dr+w)Rj∗EHM → w6d0+wRj∗EHM → w>(d0+w,...,dr+w)w6d0+wRj∗EHM
+1→

we see that it suffices to show that K := w>(d0+w,...,dr+w)w6d0+wRj∗EHM has weights 6 w.
For this we will use the pointwise criterion (cf. 2.2): K has weights 6 w if and only if
for every point ix : {x} ↪→ M∗, H i(i∗xK) has weights 6 i + w. If x ∈ M0 this obviously
holds, so assume x ∈Mk for k > 1. Then i∗kw6(d0+w,...,dr+w)Rj∗EHM belongs to wD6dk+w, i.e.
H i(i∗kw6(d0+w,...,dr+w)Rj∗EHM ) has weights 6 dk+w for all i. Since these cohomology objects
are smooth, Lemma 2.2.4 implies that for any point x ∈Mk, H i(i∗xw6(d0+w,...,dr+w)Rj∗EHM )
has weights 6 w + dk − dk = w for all i. In the long exact sequence

→ H i(i∗xw6d0+wRj∗EHM )→ H i(i∗xK)→ H i+1(i∗xw6(d0+w,...,dr+w)Rj∗EHM )→

the first group has weights 6 i+w (because w6d0+wRj∗EHM = (j!∗EHM [d0])[−d0] has weight
w) and the last group has weights 6 w. So H i(i∗xK) has weights 6 i+ w for all i. �

Remarks 2.4.3. (i) Everything in this subsection holds in any theory of A-mixed sheaves in
which EM ⊗A underlies an object, in particular in the theories mentioned in 2.3 (and with
the same proofs).

(ii) There are bounds on weights generalizing Prop. 2.4.2 (iii) in the noncomplete case,
cf. [NV12, 4.3].

3. Locally symmetric varieties and their compactifications

3.1. Locally symmetric varieties. Let G be a semisimple simply-connected and almost
Q-simple Q-algebraic group. We assume that the symmetric space D of maximal compact
subgroups of G(R) is a Hermitian symmetric domain. Let Γ ⊂ G(Q) be a neat arithmetic
subgroup. The quotient

M = Γ\D
is a smooth quasiprojective complex algebraic variety. We assume that M is noncompact
(equivalently, that G is Q-isotropic).

3.2. Rational parabolic subgroups. (cf. [BB66, §3], [AMRT75, III.4.1–III.4.2], [LR91,
6.1], [GP02, 7.1–7.3]) Let P be a rational parabolic subgroup of G. The Levi quotient
M = P/RuP has an almost-direct product decomposition

M = M` ·A ·Mh

where A is the Q-split part of the centre of M and such that
(i) Mh contains no nontrivial proper Q-anisotropic connected subgroup
(ii) the symmetric space of Mh(R) is of Hermitian type.

Since G is simply-connected, so is Mder, and therefore Mder = Mder
` ×Mh. Thus Mder

`
and Mh are simply-connected. Note that Mh satisfies similar assumptions as G in (3.1)
(except that it may be Q-anisotropic), namely it is semisimple and simply-connected and
almost Q-simple. We will refer to M` and Mh as the linear and Hermitian parts of the Levi
quotient.
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If P is a maximal proper rational parabolic subgroup, then in addition to (i) and (ii), we
have

(iii) If U is the centre of W := RuP then the quotient V := W/U is abelian. The adjoint
action of A = Gm on LieU(R) is by the square χ2 of a generator of the character
group. If V = W/U is nontrivial then A acts by χ on LieV (R).

(iv) Mh centralizes U
(v) M`(R)A(R)0 acts (via the adjoint action) properly and transitively on an open cone

C ⊂ LieU(R). The stabilizer of a point in C is maximal compact modulo the centre
of M` and this identifies C/A(R)0 with the symmetric space of Mder

` (R).
The projection from a parabolic P to its Levi quotient will be denoted νP .

For a parabolic P with Levi quotient M = MhAM`, we set

ΓP : = Γ ∩ P (Q),

ΓM : = νP (ΓP ),

ΓM`
: = ΓM ∩M`(Q),

ΓMh
: = ΓM/ΓM`

. (3.2.1)

These are neat arithmetic subgroups of their respective groups.
Fix a minimal parabolic P0. The standard (with respect to P0) maximal parabolic sub-

groups are partially ordered by

Q ≺ Q′ ⇐⇒ U ⊂ U ′.
Under our assumption that G is almost Q-simple this is a total order. Define a map P 7→ P+

from standard rational parabolics to standard maximal rational parabolics as follows: If P
is written as an intersection of maximal parabolics P = Q1 ∩ · · · ∩Qd with Qi ≺ Qi+1, then
P+ = Qd, i.e. P+ is the last maximal parabolic (i.e. the one with largest U) containing P
in the ordering.

Lemma 3.2.1. The map P 7→ P+ can be extended to all rational parabolics compatibly with
conjugation, i.e. with (gPg−1)+ = gP+g−1. It then has the following properties:

(i) If P ⊂ Q then P+ � Q+.
(ii) If P+ = Q and Q/W = MhAM` then the parabolic νQ(P ) of Q/W contains

Mh. The projection ννQ(P ) identifies Mh with the Hermitian part of P/RuP =
νQ(P )/RuνQ(P ).

(iii) If P+ = Q+ then P and Q are Γ-conjugate if and only if they are ΓP+=Q+-conjugate.
(iv) If Q is maximal and Q/W = M`AMh, then there is a bijection between Γ-conjugacy

classes in {P : P+ is Γ-conjugate to Q} and ΓM`
-conjugacy classes of parabolics in

M`. (The bijection is the following: If γP+γ−1 = Q then P 7→ νQ(γPγ−1) ∩M`.)
(v) Two standard parabolics P1 and P2 are associates (i.e. have conjugate Levi sub-

groups) if and only if P+
1 = P+

2 (and hence M1,h = M2,h) and M1,` and M2,` are
conjugate in M+

1,` = M+
2,`.

3.3. Minimal (Baily-Borel-Satake) compactification. This is a normal projective al-
gebraic variety M∗ with an open immersion

j : M ↪→M∗.

As a topological space, M∗ is the quotient M∗ = Γ\D∗ where

D∗ =
∐

F rational
F (3.3.1)
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is the union of all rational boundary components equipped with the Satake topology. The
action of G(Q) on D extends to a continuous action on D∗; the stabilizer of a rational
boundary component F is a maximal Q-parabolic subgroup (in which case F is proper, i.e.
F ⊂ D∗−D) or G itself (the case F = D). Thus the proper rational boundary components
are indexed bijectively by maximal Q-parabolic subgroups, and M∗ has a natural stratifica-
tion induced by (3.3.1) in which M is the open and dense stratum and the boundary strata
are indexed by Γ-conjugacy classes of such subgroups. If F ⊂ D∗ is a rational boundary
component and Q the associated parabolic, then (M`A)(R) acts trivially on F while Mh(R)
acts properly transitively, identifying F with the symmetric space of Mh(R). The stratum
S of M∗ covered by F is S = ΓMh

\F , where ΓMh
is defined in (3.2.1). Thus M∗ has a

stratification in which each stratum is a smooth locally symmetric variety satisfying the
same assumptions as M in 3.1. The closure relations between the strata are determined by
those between rational boundary components in D∗, which in turn are determined by the
associated parabolic subgroups: Let F, F ′ be rational boundary components with stabilizers
Q,Q′. Then F ′ ⊂F ⇐⇒ U ′ ⊃ U .

The Baily-Borel theory [BB66] puts an analytic structure on M∗ inducing the given
complex structure on each stratum, and this structure is unique. Moreover, M∗ has a
unique structure of projective algebraic variety compatible with this analytic structure. The
stratification induced by (3.3.1) is an algebraic Whitney stratification by smooth varieties.
The minimal compactification has a hereditary nature: The normalization of the closure of
a boundary stratum in M∗ is isomorphic to its minimal compactification.

3.4. Reductive Borel-Serre (RBS) compactification. The RBS compactification M ,
first constructed by Zucker in [Z83] by modifying the earlier construction of Borel and Serre,
should perhaps be thought of as a desingularization of M∗, although it is in general neither
algebraic nor smooth. The construction is similar to that of M∗: There is an extension D
of D which is the union of locally closed strata indexed by Q-parabolic subgroups of G:

D =
∐

P
DP . (3.4.1)

If M = P/RuP is the Levi quotient, DP = M(R)/A(R)0KM where A is the Q-split centre
of M and KM is the image of K ∩P (R) in M(R). (7) D carries a topology for which DP is
contained in the closure of DQ if and only if P ⊂ Q. There is a continuous action of G(Q)
on D and the quotient

M = Γ\D
is the RBS compactification of M . (3.4.1) induces a decomposition of M into locally closed
strata indexed by Γ-conjugacy classes of Q-parabolic subgroups of G:

M =
∐

Γ\{P}

MP , where MP = ΓM\DP = ΓM\M(R)/A(R)0KM . (3.4.2)

The RBS construction can be made for spaces like MP and the closure of a stratum MP in
M is naturally identified with its RBS compactification MP . Note that M can have strata
of odd real dimension.

The identity mapping of M extends to a proper continuous map

p : M →M∗.

7In general, M(R)/A(R)0KM is the product of a symmetric space and a Euclidean space; we will refer
to it as a symmetric space, and its quotient by an arithmetic group as a locally symmetric space in what
follows. RBS compactifications can be constructed for arbitrary locally symmetric spaces in this sense.
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This was proved in [Z83]; we describe p following [GHM94, §22]. For a rational parabolic
P let M = P/RuP and M = MhAM` as in (3.2). Then

DP = M`(R)/KM`
×Mh(R)/KMh

where KMh
and KM`

are the respective intersections with Mh(R) and M`(R) of KM . The
Hermitian part Mh is naturally identified with the Hermitian part of the Levi quotient of
P+ (Lemma 3.2.1(ii)), so the rational boundary component associated with P+ is F =
Mh(R)/KMh

. Thus projection to the second factor defines a map DP → F . Varying P

defines a Γ-equivariant continuous extension of the identity D → D∗ and the induced map
on quotients is p : M → M∗ (cf. [GHM94, Cor. 22.5]). The next lemma describes the
restriction of p to the closure of a stratum. (When P is maximal it describes the fibres of
p over the P -stratum of M∗ cf. [GHM94, Cor. 22.7].)

Lemma 3.4.1. Let P be parabolic, P/RuP = MhAM` (as in 3.2), and let S = ΓMh
\Mh(R)/KMh

be the P+-stratum of M∗. Then p|MP
is given by

MP

pM` // S
pMh // S∗

îS // M∗

where S (resp. S∗) is the RBS (resp. minimal) compactification of S. The map pM`
: MP →

S is induced by DP → F and is a fibre bundle with fibres isomorphic to ΓM`
\M`(R)/KM`

, the
map pMh

: S → S∗ is the unique extension of the identity on S, and the map îS : S∗ →M∗

is the composite of normalization with the inclusion of the closure of S in M∗.

3.5. Stratifications. We will use coarser stratifications of M∗ and M than those defined
above. Recall that we fixed (in 3.2) an enumeration Q1, . . . , Qr of the standard maximal
parabolics with the property that i < j ⇐⇒ Qi ≺ Qj (⇐⇒ Ui ⊂ Uj ⇐⇒ Fi ⊃ Fj). For
d = 0, 1, . . . , r define D∗6d to be the union of D with the rational boundary components
corresponding to parabolic subgroups conjugate to Qi for some i ∈ {1, . . . , d}. Let M∗6d :=
Γ\D∗6d. This defines a filtration

M = M∗60 ⊂M∗61 ⊂ . . . ⊂M∗6r = M∗ (3.5.1)

by Zariski-open and dense sets with Md := M∗6d−M∗6d−1 (and M0 = M) a union of finitely
many copies of the Hermitian locally symmetric space associated with the Hermitian part
Md,h of the standard parabolic Qd. M∗ =

∐
d=0,...,rMd is a stratification in the sense used

in 2.1.
The filtration (3.5.1) of M∗ defines one of M by setting M6d := p−1(M∗d ). This is a

filtration by open sets
M = M60 ⊂M61 ⊂ . . . ⊂M6r = M (3.5.2)

such that p−1(Md) = M6d−M6d−1 contains, as a dense open subset, finitely many copies of
the RBS boundary stratum MQd attached to Qd. We fix notation for inclusions as follows:

M6d−1
� � jd //

��

M6d

p
��

M6d −M6d−1? _
idoo

��

M∗6d−1
� � jd // M∗6d Md? _

idoo

(3.5.3)
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3.6. Correspondences. For g ∈ G(Q) and Γ′ ⊂ Γ ∩ g−1Γg of finite index let M ′ = Γ′\D.
The pair of morphisms

(c1, c2) : M ′ ⇒M by c1(Γ′x) = Γx
c2(Γ′x) = Γgx (3.6.1)

give a finite correspondence on M . When Γ′ = Γ∩g−1Γg this is called the Hecke correspon-
dence associated with g; in general (3.6.1) is a finite cover of the Hecke correspondence.

(3.6.1) extends to a finite correspondence

(c1, c2) : M ′∗ ⇒M∗ (3.6.2)

where M ′∗ = Γ′\D∗.
(3.6.1) also extends to RBS compactifications: For g ∈ G(Q) and Γ′ ⊂ Γ∩g−1Γg of finite

index, letM ′ be the RBS compactification of M ′ = Γ′\D. Then there is a correspondence

(c̄1, c̄2) : M ′ ⇒M (3.6.3)

which has finite fibres ([GM03, 6.3]). There is a commutative diagram

M

p
��

M ′
c̄2oo

p′��

c̄1 // M

p
��

M∗ M ′∗
c2oo c1 // M∗.

(3.6.4)

The filtrations (3.5.1) and (3.5.2) are preserved by these correspondences, i.e. (c1, c2) as
in (3.6.2) restricts to (c1, c2) : M ′∗6d ⇒M∗6d for each d and similarly for (c̄1, c̄2).

3.7. Coefficient systems. A Q-irreducible finite-dimensional rational representation of G
gives a polarizable irreducible variation of rational Hodge structures of a certain weight w
on EM . This is explained in [Z81] and also in [LR91, §4]. (A more elegant treatment is
possible in the context of Shimura varieties, cf. [HZ01, BW04].) By [S90, Theorem 3.27]
(cf. also the remark after 3.27 regarding the algebraic case) a polarizable variation of Hodge
structure gives a smooth Hodge module

EHM [dimM ] ∈ MHM(M)

which is pure of weight w+dimM , irreducible, and polarizable, and has rat(EHM (dimM ]) =
EM [dimM ]. Note that EHM is effective. For a correspondence (c1, c2) as in (3.6.1) there are
isomorphisms c∗2EHM = EHM ′ = c∗1EHM = c!

1EHM . If Γ′ = gΓg−1 and (g·) : M ′ → M is the
isomorphism induced by g· : D → D there is a natural isomorphism (g·)∗EHM = EHM ′ .

Remark 3.7.1. It is well-known that M , being a connected component of a Shimura variety
at finite level, has a model over a number field k contained in C. (The theory of canonical
models shows that k is, up to an abelian extension, independent of the congruence subgroup
Γ.) Let M (·) be a theory of A-mixed sheaves over k in the sense of Saito [S06] (cf. 2.3).
If the rational local system EM is of geometric origin (in the sense of [BBD82, S06]) then
EM ⊗ A underlies an object EM

M ∈ DbM (M). (If A = Q and the forgetful functor to
perverse sheaves on X(C) factors through mixed Hodge modules then EM

M maps to EHM .)
The local systems EM are known to be of geometric origin in many cases where M can be
related to a moduli problem involving abelian varieties, cf. [P92, 5.6], but not in general.

For the particular theory of mixed sheaves MHM(·/k) in [S06, 1.8(ii)] (mentioned earlier
in 2.3), the local system EM coming from a Q-rational representation of G underlies an
object in the category MHM(M/k) where k is the field of definition of M .
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A well-known prescription (of Langlands, cf. [P92, 5.1]) makes EM ⊗ Ql into an l-adic
sheaf. For Morel’s theory of mixed l-adic complexes (cf. 2.3) EM ⊗ Ql underlies a mixed
l-adic sheaf if EM is of geometric origin (in the sense of [BBD82]).

3.8. Correspondences and weight truncations. In the next section we will consider
weight truncations of Rj∗EHM with respect to the stratification of (3.5). We note some basic
facts about the action of correspondences on them (cf. [M08, §5]).

Let a = (a0, . . . , ar) ∈ (Z ∪ {±∞})r+1. A correspondence (c1, c2) : M ′∗ ⇒ M∗ as in
(3.6.2) has a unique lift to Rj∗EHM extending the isomorphism c∗2EHM = EHM ′ = c!

1EHM . It is
given by

c∗2Rj∗EHM
BC−→ Rj′∗c

∗
2EHM = Rj′∗EHM ′ = Rj′∗c

!
1EHM

BC−→ c!
1Rj∗EHM (3.8.1)

(Arrows marked BC are base change morphisms.)

Lemma 3.8.1. Let (c1, c2) : M ′∗ ⇒M∗ be a finite correspondence on M∗ as above.
(i) There is a unique morphism c∗2w6aRj∗EHM −→ c!

1w6aRj∗EHM such that

c∗2w6aRj∗EHM //

��

c!
1w6aRj∗EHM

��
c∗2Rj∗EHM

(3.8.1) // c!
1Rj∗EHM

commutes.
(ii) The morphism in (i) factors as

c∗2w6aRj∗EHM −→ w6aRj
′
∗EHM ′ −→ c!

1w6aRj∗EHM . (3.8.2)

Proof. (i) This is a case of [M08, Lemme 5.1.3] (and follows easily from Lemma 2.1.2).
(ii) Consider the composition c∗2w6aRj∗EHM

can−→ c∗2Rj∗EHM
BC−→ Rj′∗EHM ′ . Since c2 is finite,

c∗2w6aRj∗EHM ∈ wD6a and so BC ◦ can factors through a unique morphism

c∗2w6aRj∗EHM −→ w6aRj
′
∗EHM ′ .

A dual argument (using Lemma 2.1.4) gives a morphism

w6aRj
′
∗EHM ′ −→ c!

1w6aRj∗EHM ,

so that we can compose as in (3.8.2). The compatibility with (3.8.1) is clear. By uniqueness
the composition is the unique lift. �

We will also use the following fact: If gΓg−1 = Γ′ and (g·) : M ′∗ →M∗ is the isomorphism
induced by g· : D∗ → D∗ then (g·)∗w6aRj∗EHM = w6aRj

′
∗EHM ′ .

3.9. Automorphic complexes. Following [LR91, §6], let DbMHMaut(M∗) be the (full)
triangulated subcategory of DbMHM(M∗) consisting of automorphic complexes. Thus K ∈
ObDbMHM(M∗) is automorphic if for each stratum S (of the canonical stratification of
M∗) and integer k the cohomology object Hk(i∗SK) ∈ MHM(S) is smooth and satisfies

(1) its underlying local system is the local system associated with a finite-dimensional
rational representation of Mh and

(2) the weight graded pieces GrWj H
k(i∗SK) are pure Hodge modules associated with

the locally homogeneous variation coming (as in 3.7) from the Mh-representation
on GrWj H

k(i∗SK).
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The definition makes sense for any subvariety X ⊂M∗ which is a union of strata and locally
closed, for example X = M∗6d for d ∈ {0, . . . , r} (as in (3.5.1)) or X the closure of a stratum.

Lemma 3.9.1. (i) Let X ⊂ Y be subvarieties of M∗ which are unions of strata of the
canonical stratification and let i : X ↪→ Y be the inclusion. Then the functors Ri∗, Ri!, i∗, i!

define functors between categories of automorphic complexes of mixed Hodge modules.
(ii) The functors w6a, w>a preserve categories of automorphic complexes of mixed Hodge

modules.

Proof. (i) This is stated in [LR91, p. 256], but only the weight filtration is fully treated
there. The results of Harris and Zucker [HZ01, III.4.3] or Burgos and Wildeshaus [BW04,
Thm 2.6] show that Rj∗ preserves automorphic complexes in the case where j is the inclusion
of a locally symmetric variety in its minimal compactification. (We note that the result of
[HZ01] is more than we need, and the simpler result of [BW04] suffices here.) The general
case follows from this and from the standard triangles for open-closed pairs.

(ii) If X and K are smooth and K is automorphic then H i(w6aK) ↪→ H i(K) for all
i, so that w6aK is smooth and automorphic. It follows that w>aK is also smooth and
automorphic. Now consider a general X. For an automorphic complex K and a stratum
Sk consider the standard triangle

wk6aK −→ K −→ RiSk∗w>ai
∗
Sk
K

+1−→

from Lemma 2.1.3 (ii). The third term is automorphic because i∗SkK is smooth and RiSk∗
is the composite of pushforward by an open immersion (which preserves automorphy by
(i)) and pushforward by a closed immersion (which preserves automorphy trivially). Since
K is automorphic, we conclude that wk6aK is automorphic. Now Lemma 2.1.3 (i) and an
induction prove the lemma. �

Remark 3.9.2. Let M ( · ) be a theory of A-mixed sheaves. Suppose that for any G as in 3.1
and any finite-dimensional rational representation E of G, the local system EM⊗A underlies
an object in M (M). (The theories MHM(·) and MHM(·/k) in 2.3 satisfy this condition;
Ml(·) satisfies this for EM ⊗ Ql of geometric origin.) Then the notion of automorphic
complex makes sense in DbM (X) where X is a union of strata of M∗ as the conditions (1)
and (2) of the previous paragraph do so. (If S is smooth an object M ∈ M (S) is called
smooth if For(M) is a shifted local system of A-vector spaces.) The proof of (i) of the
lemma shows that if Rj∗ preserves the automorphy condition, where j is the inclusion of a
stratum in its closure (i.e. in its minimal compactification), then the other functors also do
so, i.e. (i) of the lemma holds for M (·). The proof of (ii) works in any category of mixed
sheaves such that the direct image by an open immersion preserves automorphy.

3.10. Pure and mixed. We use the spectral sequence of the introduction to show that the
pure structures appearing in the cohomology of noncompact Shimura varieties (i.e. things
like GrWi H

j(M,E)) can already be found in the intersection cohomology (with homogeneous
coefficients) of noncompact Shimura varieties of smaller dimension, at least in the setting of
Hodge (or Hodge-de Rham) structures. (The existence of the spectral sequence is explained
in 5.2 below.)

Theorem 3.10.1. Assume that we are working in a theory of A-mixed sheaves M (·) such
that (a) the direct image preserves automorphy and (b) EM ⊗ A underlies an object in the
theory.
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Then the weight-graded pieces GrWj H
i(M,EM

M ) of the mixed structure on H i(M,EM
M )

appear as subquotients of the intersection cohomology of (minimal compactifications of)
boundary strata of M∗ with homogeneous local systems as coefficients.

In particular this holds in the following situations: (i) A = Q and the theory of mixed
Hodge modules (ii) A = Q and the theory of mixed Hodge modules with de Rham rational
structure.

Proof. Assume that (a) and (b) hold for M (·). There is a spectral sequence with

Ep,q1 = Hp+q(M∗, w6dimM+w−pw>dimM+w−pRj∗EM
M ) ⇒ Hp+q(M,EM

M ).

(This is explained in 5.2 below, specifically (5.2.3).) By Lemma 2.2.3 (ii) and the remark
following it, the E1 term breaks up as a sum of intersection complexes supported on the
closures of boundary strata. The normalizations of these closures are minimal compactifi-
cations of the boundary locally symmetric varieties, and by Lemma 3.9.1 the intersection
complexes in question are associated with homogeneous local systems and their canonical
variations.

If A = Q and M (X) = MHM(X) we have established (a) and (b) above. For A = Q and
M (X) = MHM(X/k) for k the field of definition of the canonical stratification of M∗, (b)
holds and (a) also holds because MHM(X/k) is a subcategory of MHM(X). �

Remark 3.10.2. As remarked in 2.3, pure objects in Morel’s theory Ml(·) are not necessarily
semisimple. However, it seems likely that (a) holds in Ml(·) for EM ⊗Ql of geometric origin
and that the terms appearing in (5.2.3) should be (pure and) semisimple

4. Mixed structures in weighted cohomology

4.1. Weighted complexes of [GHM94]. Let P0 be the fixed minimal parabolic and A0

the split centre of the Levi quotient M0. For a standard parabolic P ⊃ P0 with Levi
quotient MA (i.e. A is the split centre of the Levi and M is its natural complement), the
inclusion of split radicals RdP ⊂ RdP0 induces an inclusion A ⊂ A0. Thus ν ∈ X∗(A0)Q
gives ν|A ∈ X∗(A)Q by restriction. For nonstandard P an element of X∗(A)Q is defined by
conjugation. (Since X∗(A)Q = X∗(P )Q one sees that this is well-defined.) Thus ν defines a
(quasi)character on the split part of every Levi quotient.

Let EM be the local system given by an irreducible rational representation of G (as in
3.7). For each ν ∈ X∗(A0)Q, the weighted cohomology complex

W>νC(EM )

defined in [GHM94] is an explicit complex of Q-sheaves on M with cohomology sheaves
constructible with respect to natural stratification. In fact, two definitions are given, one
a complex of Q-sheaves [GHM94, IV] and the other a complex of C-sheaves [GHM94, II]
and their agreement (in the derived category) is proved [GHM94, §29]. [N99] gives another
complex of C-sheaves quasi-isomorphic to weighted cohomology using differential forms with
square-integrability conditions from [F98]. We will not need to recall the actual definitions
but only some properties of these complexes established in [GHM94].

The natural correspondences of 3.6 lift to weighted complexes: For (c̄1, c̄2) : M ′ ⇒M as
(3.6.1) there are natural isomorphisms

c̄∗2W
>νC(EM ) = W>νC(EM ′) = c̄!

1W
>νC(EM )



22 ARVIND NAIR

(cf. [GM03, §13.3]). Applying Rp∗ gives a lift of the correspondence (c1, c2) : M ′∗ ⇒ M∗

to Rp∗W>νC(EM ) by using the base change morphisms coming from (3.6.4):

c∗2Rp∗W
>νC(EM ) BC // Rp′∗c̄

∗
2W

>νC(EM )

Rp′∗W
>νC(EM ′)

Rp′∗c̄
!
1W

>νC(EM ) BC // c!
1Rp∗W

>νC(EM ).

(4.1.1)

For Γ′ = gΓg−1 and (g·) : M ′∗ ∼→M∗ there is a natural isomorphism (g·)∗Rp∗W>νC(EM ) =
Rp′∗W

>νC(EM ′) extending (g·)∗EM = EM ′ .

4.2. Local Hecke actions and the splitting property. (cf. [L88, LR91, GHM94]) Let
S be a stratum of M∗. Fix a rational boundary component F covering it and let Q be the
maximal parabolic stabilizing it. Fix a lift A ⊂ Q of the split centre of the Levi quotient.
By [L88, 3.6] there exist elements a ∈ A(Q) such that:

(i) χ(a) ∈ Z>0

(ii) aΓQa−1 ⊂ ΓQ.
(Here χ ∈ X∗(A) is as in 3.2, i.e. χ2 is the character in LieU .) Such elements are called
divisible.

For a rational boundary component F ⊂ D∗ let Star(F ) denote the union of all rational
boundary components containing F in their closure. Similarly, for a stratum S ⊂ M∗

let Star(S) denote the union of all strata containing S in their closure. The following
summarizes some well-known facts about Looijenga’s local Hecke operators:

Lemma 4.2.1. Let a ∈ A(Q) be divisible. Let W = RuQ.
(i) There is a closed W (R)-invariant neighbourhood BF of F in Star(F ) such that
(a) ΓQ\Star(F )→ Γ\D∗ identifies ΓQ\BF with a closed nbhd of S in Star(S)
(b) the endomorphism of ΓQ\Star(F ) defined by Φ(ΓQx) = ΓQax restricts to an endo-

morphism of ΓQ\BF fixing S pointwise.

(ii) There is a closed W (R)-invariant neighbourhood V Q of DQ in D such that

(a) ΓQ\V Q is identified with a closed nbhd of MQ in M

(b) Φ̄(ΓQx) = ΓQax defines an endomorphism of ΓQ\V Q fixing MQ pointwise.
(c) Φ̄ respects the stratification of ΓQ\V Q induced by M =

∐
P MP .

The morphism Φ̄ is a component of the restriction to ΓQ\V Q of the Hecke correspondence
given by ΓaΓ.

(iii) Let p : D → D∗ be as in 3.4. If V Q is as in (ii), let

BQ :=
∐

P+=Q

V Q ∩MP .

(This is preserved by Φ̄ by (ii)(c).) Then BF = p(BQ) satisfies (a) and (b) of (i), and Φ̄
and Φ are related by p ◦ Φ̄ = Φ ◦ p.

Proof. (i)(a) is well-known (cf. [L88]): For BF one may take any closed W (R)-invariant
nbhd of F in Star(F ) which in ΓQ-invariant and on which Γ-equivalence and ΓQ-equivalence
coincide. If, in addition, BF ∩ D is invariant under the geodesic action of the semigroup
{a ∈ A(R)0 : χ(a) > 1} then (b) also holds.
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For (ii) we recall some facts from [GM03] about how Hecke correspondences break up
near the boundary:

(1) For g ∈ G(Q) and a parabolic P , the double coset ΓgΓ meets P (Q) in finitely many
double cosets for ΓP :

ΓgΓ ∩ P (Q) =
∐

i
ΓP giΓP (4.2.1)

For a double coset ΓP giΓP here write g = γ1giγ2. Let Γ′ = Γ ∩ g−1Γg. Then
P 7→ γ1Pγ

−1
1 = g−1γ−1

2 Pγ2g gives a bijection between the double cosets on the
right of (4.2.1) and the Γ′-conjugacy classes of parabolics Q with both Q and gQg−1

Γ-conjugate to P . (See [GM03, 7.3].)
(2) Consider the Hecke correspondence (c̄1, c̄2) in (3.6.3) with Γ′ = Γ ∩ g−1Γg. The

restriction to the P -boundary stratum MP is the correspondence (c̄1, c̄2) : c̄−1
1 (MP )∩

c̄−1
2 (MP )⇒MP . This breaks up according to (4.2.1):

c̄−1
1 (MP ) ∩ c̄−1

2 (MP ) =
∐

i
M ′Qi

where Qi corresponds to gi under the bijection and M ′Q = Γ′\DQ is the Q-stratum
ofM ′. The restriction of (c̄1, c̄2) to M ′Qi is isomorphic to the correspondence on MP

of the form (3.6.1) given by νP (gi) ∈ (P/RuP )(Q) for Γ′P/RuP = νP (ΓP ∩ g−1
i ΓP gi)

(cf. [GM03, 8.1, 8.6]).
(3) In fact this happens over a suitable neighbourhood of MP in M ([GM03, Prop. 7.3]).

Let VP be a closed ΓP -invariant and (RuP )(R)-invariant neighbourhood of DP in
D on which Γ-equivalence and ΓP -equivalence coincide. Assume further that VP
is invariant under the geodesic action of the semigroup {a ∈ A(R)0 : χ(a) > 1}.
(Without the (RuP )(R)-invariance condition this is called a Γ-parabolic neigh-
bourhood of DP in [GM03].) Then ΓP \VP is a neighbourhood of MP in M and
c̄−1

1 (ΓP \VP ) ∩ c̄−1
2 (ΓP \VP ) is a disjoint union of components indexed by (4.2.1).

The gi component is a neighbourhood of M ′Qi inM ′ with properties similar to VP .
Now if a ∈ P (Q) there is a distinguished double coset in (4.2.1), namely ΓPaΓP . Let V ′P =
VP ∩ a−1VP . The corresponding component of the restriction of the Hecke correspondence
is

(c̄1, c̄2) : Γ′P \V ′P ⇒ ΓP \VP
c1(Γ′Px) = ΓP x
c2(Γ′Px) = ΓP ax

(4.2.2)

where Γ′P = ΓP ∩ a−1ΓPa. Suppose further that a ∈ (RdP )(Q) (the split radical). In this
case (4.2.2) is a covering of the trivial correspondence when restricted to MP .

Now let Q, A be as in the lemma. If P ⊂ Q then RdQ ⊂ RdP , so it follows that
a ∈ A(Q) ⊂ (RdQ)(Q) induces local correspondences on neighbourhoods ΓP \VP for each
P ⊂ Q. Letting V Q := ∪P⊂QVP , V ′Q := ∪P⊂QV ′P , and Γ′Q = ΓQ ∩ a−1ΓQa we get a local
correspondence

(c̄1, c̄2) : Γ′Q\V
′
Q ⇒ ΓQ\V Q (4.2.3)

on the closed neighbourhood ΓQ\V Q of the closure MQ, and which is a covering of the
trivial correspondence on each MP ⊂MQ.

Finally, suppose that a is divisible. Since a−1ΓQa ⊃ ΓQ we have a−1ΓPa ⊃ ΓP for all
P ⊂ Q since a ∈ P (Q). Thus Γ′P = ΓP for all P ⊂ Q. Moreover, we can take V ′P = VP for
all P since aVP ⊂ VP . Thus Φ̄ = c̄2 defines an endomorphism of ΓQ\V Q fixing each MP for
P ⊂ Q pointwise.
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(iii) Since p ◦ Φ̄ = Φ ◦ p on (ΓQ\BQ) ∩M they are the same. �

For a maximal parabolic Q with associated boundary stratum S ⊂ M∗, restricting the
lifts (4.1.1) to the relevant neighbourhoods as in Lemma 4.2.1 (and choosing the correct
component of the correspondence) gives compatible lifts of the local Hecke operator Φ̄ to
W>νC(EM )

∣∣
p−1(S)

and of Φ to Rp∗W>νC(EM )
∣∣
S

. The basic splitting property of weighted
complexes is the following (the notation M∗6d is as in 3.5):

Lemma 4.2.2. (cf. [GHM94, §16]) Let iS : S ↪→ M∗6d be the inclusion of a connected
component of Md. Fix a maximal parabolic subgroup Q stabilizing a boundary component
covering S, a lift A ⊂ Q of the split centre, and let Φ be the local Hecke operator given by
a divisible element a ∈ A(Q). Let

Ld−1 := Rp∗W
>νC(EM )

∣∣
M∗6d−1

.

(i) There is a (finite) Φ-invariant direct sum decomposition in the derived category

i∗SRjd∗Ld−1 =
⊕
λ

(i∗SRjd∗Ld−1)λ (4.2.4)

such that Φ acts by the rational scalar λ on the λ-summand. The standard triangle

Rp∗W
>νC(EM )

∣∣
M∗6d
−→ Rjd∗Rp∗

(
W>νC(EM )

∣∣
M∗6d−1

)
−→ id∗i

!
d

(
Rp∗W

>νC(EM )
∣∣
M∗6d

)
[1] +1−→

(4.2.5)
(i.e. Ld → Rjd∗Ld−1 → id∗i

!
dLd[1] +1→) on M∗6d becomes isomorphic to the split triangle⊕

λ6ν(a)−1

(i∗SRjd∗Ld−1)λ −→ i∗SRjd∗Ld−1 −→
⊕

λ>ν(a)−1

(i∗SRjd∗Ld−1)λ
0−→

coming from (4.2.4) when restricted to S, i.e. after applying i∗S.
(ii) For any subset Z ⊂ S the action of Φ in Hi(Z,Rjd∗Ld−1) is semisimple over Q and

(4.2.5) gives the short-exact sequence

0 −→ Hi(Z,Rjd∗Ld−1)6ν(a−1) −→ Hi(Z,Rjd∗Ld−1) −→ Hi(Z,Rjd∗Ld−1)>ν(a−1) −→ 0
(4.2.6)

given by decomposing with respect to weights of Φ.

Proof. Following the notation of [GHM94, §16], let

B• := jd∗
(
W>νC(EM )

∣∣
M6d−1

)
This represents Rjd∗

(
W>νC(EM )

∣∣
M6d−1

)
in the derived category and adjunction gives

an inclusion W>νC(EM ) ⊂ B• representing W>νC(EM ) → Rjd∗
(
W>νC(EM )

∣∣
M6d−1

)
.

Lemma 16.9 of [GHM94] gives a quasi-isomorphic subcomplex B•sp ⊂ B• containingW>νC(EM ).
Now p−1(S) is the closure in M6d of the Q-stratum of M , and [GHM94, 16.13] shows that
the restriction of B•sp to such a closure admits a decomposition

B•sp|p−1(S) =
⊕
λ

(
B•sp|p−1(S)

)
λ
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such that Φ̄ acts by the scalar λ on the λ-summand. The scalars appearing here are the
values of certain rational characters of A on the divisible element a ∈ A(Q) and so lie in Q.
(The proof of) Proposition 16.4 of [GHM94] shows that the distinguished triangle on M6d

W>νC(EM )
∣∣
M6d

−→ Rjd∗
(
W>νC(EM )

∣∣
M6d−1

)
−→ īd∗ī

!
d

(
W>νC(EM )

∣∣
M6d

)
[1] +1−→

(4.2.7)
is, on restriction to p−1(S), isomorphic to the split triangle⊕

λ6ν(a)−1

(
B•sp|p−1(S)

)
λ
−→ B•sp|p−1(S) −→

⊕
λ>ν(a)−1

(
B•sp|p−1(S)

)
λ

0−→ .

Pushing forward by the proper map p : M → M∗ and using that Φ ◦ p = p ◦ Φ̄ on
neighbourhoods as in Lemma 4.2.1 gives the decomposition of

Rp∗
(
B•sp|p−1(S)

)
= Rp∗

(
B•|p−1(S)

)
= i∗SRjd∗Ld−1

and the splitting of the triangle (4.2.5) over S. This proves (i). (8) For (ii) note that
the description of the restriction to p−1(S) of (4.2.7) above shows that for any subset
Y ⊂ M6d −M6d−1 contained in a single connected component the resulting short-exact
sequence in hypercohomology is the short-exact sequence

0 −→ Hi(Y,B•)6ν(a−1) −→ Hi(Y,B•) −→ Hi(Y,B•)>ν(a−1) −→ 0 (4.2.8)

given by decomposing Hi(Y,B•) with respect to weights of the local Hecke operator Φ̄ (Cor.
16.5 of [GHM94]). Taking the direct image by p : M →M∗ gives (ii). �

Remark 4.2.3. The decomposition of Hi(Z,Rjd∗Ld−1) (resp. of Hi(Y,B•)) into eigenspaces
for Φ (resp. for Φ̄) depends on the choice of a lift A ⊂ Q, but once a lift is chosen it
is independent of the choice of divisible element a ∈ A(Q). The sum of eigenspaces with
eigenvalues 6 ν(a−1) and the short exact sequence (4.2.6) are independent of choices.

4.3. Pushforward of weighted complexes. For d = 1, . . . , r, let Q1, . . . , Qd be the max-
imal parabolic subgroups containing P0 (ordered as in 3.2) and let χd denote the distin-
guished generator of the character group of Ad (cf. 3.2). Recall the inclusion Ad ⊂ A0

induced by the inclusion of split radicals RdQd ⊂ RdP0. If ν ∈ X∗(A0)Q satisfies

ν|Ad = χndd (for d = 1, . . . , r)

(where χ2
d is the character ofAd on LieUd), we associate with it the sequence a = (a1, . . . , ar) ∈

Qr defined by
ad = dimMd − nd (for d = 1, . . . , r). (4.3.1)

Theorem 4.3.1. Let EM be the local system of rational vector spaces on M coming from an
irreducible representation of G. Let w be the weight of the associated shifted Hodge module
EHM . For (a1, . . . , ar) associated with ν ∈ X∗(A0)Q (i.e. satisfying (4.3.1)) and a0 = dimM

there are natural isomorphisms in Db
c(QM∗)

Rp∗W
>νC(EM ) = rat(w6(a0+w,a1+w,...,ar+w)Rj∗EHM ) (4.3.2)

Rp∗
(
W>−∞C(EM )/W>νC(EM )

)
= rat(w>(a0+w,a1+w,...,ar+w)Rj∗EHM ) (4.3.3)

8The arguments in [GHM94, §16] are for the version of W >νC(EM ) with C-coefficients, so that the
decomposition (4.2.4) is a priori only available with C-coefficients. However, it follows from Lemma 4.3.3
below that it holds with Q-coefficients, as we will see in the proof of Theorem 4.3.1.
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compatible with Hecke correspondences. (Here −∞ is any sufficiently negative weight, so
that Rp∗W>−∞C(EM ) = j!EM ).)

The proof of this theorem takes up the rest of 4.3.

Proof. The proof of the first equality is by induction on the stratification M∗ =
∐
d=0,...,rMd

in 3.5, for which the objects in question are constructible. To simplify notation in the proof
we set:

Ld := Rp∗W
>νC(EM )

∣∣
M∗6d

Kd := w6(a0+w,...,ar+w)Rj∗EHM
∣∣
M∗6d

= w6(a0+w,...,ad+w)R(jd · · · j1)∗EHM .

(The same notation Ld was used in Lemma 4.2.2.) Further, if we are working at level Γ′,
i.e. on M ′∗ for M ′ = Γ′\D we will use L′d,K

′
d etc. to denote the same objects on M ′∗. We

will use the notation in (3.5.3). Note that j∗dLd = Ld−1 and j∗dKd = Kd−1.
We will prove by induction that for all d there are natural isomorphisms αd : Ld →

rat(Kd) (at all levels Γ) such that
(i)d If Γ′ = g−1Γg then for the isomorphism (g·) : M ′∗ → M∗ induced by g· : D∗ → D∗

the diagram

(g·)∗Ld //

(g·)∗(αd)
��

L′d

α′d��
(g·)∗rat(Kd) // rat(K ′d)

commutes. (The horizontal maps are the isomorphisms extending (g·)∗EHM ′ = EHM ′ .)
(ii)d If b : M ′∗ →M∗ is the finite morphism coming from Γ′ ⊂ Γ then

b∗Ld

b∗(αd)
��

// L′d

α′d��
b∗rat(Kd) // rat(K ′d)

commutes. (Here b∗Ld → L′d is as in (4.1.1) and b∗Kd → K ′d comes from (3.8.2).)
(iii)d αd is the unique morphism making the diagram

Ld

αd ��

// Rjd∗Ld−1

Rjd∗(αd−1)
��

rat(Kd) // rat(Rjd∗Kd−1)

commute.
(iv)d If (c1, c2) : M ′∗6d ⇒M∗6d is a correspondence as in (3.6.2) the diagram

c∗2Ld //

c∗2(αd)
��

c!
1Ld

c!1(αd)��
c∗2rat(Kd) // c!

1rat(Kd)

(4.3.4)

commutes (cf. (4.1.1) for the top row and 3.8 for the bottom row).
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There are some relations between these properties. (i)d follows from (i)d−1 and (iii)d. Fur-
thermore, (iv)d is implied by the other conditions as follows. (4.3.4) is the outer square of
the diagram

c∗2Ld //

c∗2(αd)
��

L′d

α′d��

// c!
1Ld

c!1(αd)��
c∗2rat(Kd) // rat(K ′d) // c!

1rat(Kd)

(4.3.5)

(The top row is (4.1.1). The bottom row is from (3.8.2).) Let M ′g
∗ = gΓ′g−1\D∗. Then

c2 : M ′∗ → M∗ factorizes as M ′∗
g·−→ M ′g

∗ −→ M∗ where g· is the isomorphism induced
by g· : D∗ → D∗ and the second map is induced by gΓ′g−1 ⊂ Γ. Then (i)d and (ii)d (for
M ′g
∗ →M∗) imply that the first square commutes. The commutativity of the second square

follows by duality from (ii)d.
We start the induction argument. When d = 0 both L0 and rat(K0) are isomorphic to the

homogeneous local system EM and an equivariant isomorphism between them α0 (unique
up to a scalar as E is irreducible) satisfies (i)0–(iv)0. The induction hypothesis is that there
are natural isomorphisms (at all levels) αd−1 : Ld−1 −→ rat(Kd−1) satisfying (i)d−1–(iv)d−1.
Consider the diagram on M∗6d in which both rows are distinguished triangles:

Ld
u //

αd

���
�
�

Rjd∗Ld−1
//

Rjd∗(αd−1)

��

id∗i
!
dLd[1]

+1 //

rat(Kd) // rat(Rjd∗Kd−1) v // id∗rat(w>ad+wi
∗
dRjd∗Kd−1) +1 //

(4.3.6)

Here Kd = wd6ad+wRjd∗Kd−1 by Lemma 2.2.1. We will show that

v ◦Rjd∗(αd−1) ◦ u = 0,

so that Rjd∗(αd−1) ◦ u factors through a morphism αd as indicated, that αd is an isomor-
phism, and that (i)d–(iv)d hold. This will complete the inductive step.

For a C-vector space V with an endomorphism write V6λ (resp. V>λ) for the sum of
eigenspaces with eigenvalue of modulus 6 λ (resp. > λ). We will need the following
lemma (from [LR91], cf. especially Prop. 6.4 of loc. cit.) which gives the connection
between weights (in mixed Hodge theory) and weights of a local Hecke operator. (The
action of correspondences defined in 3.8 gives an action of a local Hecke operator along S
on i∗Sw

d
6aRjd∗Kd−1, see the discussion in [LR91, 4.3].)

Lemma 4.3.2. Let S be a component of Md, and Q the maximal parabolic subgroup sta-
bilizing a boundary component covering S. Let A ⊂ Q be a lift of the split centre and let
Φ be given by a divisible element a ∈ A(Q). Let Kd−1 = w6(a0+w,...,ar+w)Rj∗EHM

∣∣
M∗6d−1

(as

above). Then applying pH i+dimMd ◦ i∗S to the triangle

rat(wd6ad+wRjd∗Kd−1) −→ rat(Rjd∗Kd−1) −→ id∗rat(w>ad+wi
∗
dRjd∗Kd−1) +1−→

gives the short exact sequence of local systems on S

0 −→ H i(rat(i∗SRjd∗Kd−1))6χ(a)ad−dimMd −→ H i(rat(i∗SRjd∗Kd−1)) −→

−→ H i(rat(i∗SRjd∗Kd−1))>χ(a)ad−dimMd −→ 0 (4.3.7)

given by decomposing H i(i∗Srat(Rjd∗Kd−1)) with respect to weights of Φ.
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Proof. Applying i∗S to wd6ad+wRjd∗Kd−1 → Rjd∗Kd−1 → id∗w>ad+wi
∗
dRjd∗Kd−1

+1→ gives
the triangle for the t-structure (wD6ad+w(S),wD>ad+w(S)), i.e.

w6ad+wi
∗
SRjd∗Kd−1 → i∗SRjd∗Kd−1 → w>ad+wi

∗
SRjd∗Kd−1

+1→ .

Now if χ(a)2 = q then the results in [LR91, §2] (specifically, (2.14) and (2.13) of loc.
cit., noting also that the truncation functors w6ak make sense in the setting of q-Hodge
modules of loc. cit.) show that χ(a)wΦ∗ = qw/2Φ∗ acts as a q-endomorphism on each
term in the triangle, making each into a (mixed) q-Hodge module in the terminology of
[LR91]. Thus for x ∈ S, χ(a)wΦ∗ splits the weight filtration on H i(i∗xi

∗
SRjd∗Kd−1), i.e. it

acts by eigenvalues of modulus qk/2 = χ(a)k on GrWk ( · ) of this space. By Lemma 2.2.4,
for each i, H i(i∗xw

d
6ad+wRjd∗Kd−1) is the subspace of H i(i∗xRjd∗Kd−1) with Hodge weights

6 ad + w − dimMd. Since χ(a)wΦ∗ is a q-endomorphism, this is precisely the subspace on
which Φ∗ has eigenvalues of modulus 6 χ(a)ad−dimMd . Applying rat gives the statement of
the lemma. �

We will also need the following lemma of Laumon and Ngô (the analogue of Jordan
decomposition in the derived category):

Lemma 4.3.3. ([LN08, Lemme 3.2.5]) Let E be a field, A an E-linear abelian category,
K an object of Db(A ), and Γ an abelian group acting E-linearly on K. Assume that for
each integer n the cohomology object Hn(K) admits in A a Γ-equivariant decomposition

Hn(K) =
⊕
χ

Hn(K)χ

where χ runs over characters of Γ with values in E∗, and for each χ and each γ ∈ Γ,
γ − χ(γ) operates nilpotently on Hn(K)χ, and Hn(K)χ = 0 for all but finitely many χ.

Then there exists a unique Γ-equivariant decomposition

K =
⊕
χ

Kχ

in Db(A ) where χ runs over E∗-valued characters of Γ, such that for each χ and each γ ∈ Γ,
γ − χ(γ) operates nilpotently on Kχ, and Kχ = 0 for all but finitely many χ. Moreover,
Hn(Kχ) = Hn(K)χ for any integer n and character χ.

Let iS : S ↪→M∗6d be a component of Md = M∗6d−M∗6d−1. Consider the triangle

i∗Sw
d
6ad+wRjd∗Kd−1 −→ i∗SRjd∗Kd−1 −→ w>ad+wi

∗
SRjd∗Kd−1

+1−→ . (4.3.8)

Fix a local Hecke operator Φ as in Lemmas 4.2.2 and 4.3.2. The action of Γ = ΦZ on
i∗SRjd∗Kd−1 satisfies the condition of Lemma 4.3.3 (by the faithfulness of rat on mixed
Hodge modules (applied to cohomology objects), the induction hypothesis, and Lemma
4.2.2(ii)). This gives a decomposition

i∗SRjd∗Kd−1 =
⊕
λ

(i∗SRjd∗Kd−1)λ (4.3.9)

where the λ are rational and Φ− λ is nilpotent on (i∗SRjd∗Kd−1)λ.
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Lemma 4.3.4. There are natural isomorphisms

w6ad+wi
∗
SRjd∗Kd−1 =

⊕
λ6χ(a)ad−dimMd

(i∗SRjd∗Kd−1)λ

and
w>ad+wi

∗
SRjd∗Kd−1 =

⊕
λ>χ(a)ad−dimMd

(i∗SRjd∗Kd−1)λ.

The triangle (4.3.8) is isomorphic to the split triangle⊕
λ6χ(a)ad−dimMd

(i∗SRjd∗Kd−1)λ −→ i∗SRjd∗Kd−1 −→
⊕

λ>χ(a)ad−dimMd

(i∗SRjd∗Kd−1)λ
0−→

(4.3.10)
coming from the decomposition of i∗SRjd∗Kd−1.

Proof. Let J =
⊕

λ6χ(a)ad−dimMd (i∗SRjd∗Kd−1)λ. By Lemma 4.3.2 the obvious morphism
J → i∗SRjd∗Kd−1 induces isomorphisms Hk(J) → w6ad+wH

k(i∗SRjd∗Kd−1) for all k. It
follows (since the cohomology functors {Hk}k∈Z are conservative) that J → i∗SRjd∗Kd−1

induces an isomorphism J ∼= w6ad+wi
∗
SRjd∗Kd−1. A similar argument (or the octahedral

axiom) shows that if J ′ :=
⊕

λ>χ(a)ad−dimMd (i∗SRjd∗Kd−1)λ then the obvious morphism
i∗SRjd∗Kd−1 → J ′ induces an isomorphism w>ad+wi

∗
SRjd∗Kd−1

∼= J ′.
That (4.3.8) and (4.3.10) are isomorphic then follows from the fact that (4.3.8) is the

unique (up to unique isomorphism) triangleA→ i∗SRjd∗Kd−1 → B
+1→ withA in wD6ad−dimMd

and B in wD>ad−dimMd . �

Let us return to the diagram (4.3.6) and complete the proof of (4.3.2) by completing the
inductive step. By adjunction

v ◦Rjd∗(αd−1) ◦ u = 0 ⇔ i∗d(v ◦Rjd∗(αd−1) ◦ u) = 0

⇔ i∗S(v ◦Rjd∗(αd−1) ◦ u) = 0 for each component S ⊂Md.

Fix a component S and apply i∗S to get:

i∗SLd
i∗S(u)

//

���
�
�

i∗SRjd∗Ld−1
//

i∗SRjd∗(αd−1)

��

i!SLd[1]
+1 //

rat(i∗Sw
d
6ad+wRjd∗Kd−1) // rat(i∗SRjd∗Kd−1)

i∗S(v)
// rat(w>ad+wi

∗
SRjd∗Kd−1) +1 //

(4.3.11)
Lemma 4.3.3 applies to the action of Φ on i∗SRjd∗Ld−1 (by Lemma 4.2.2(ii)) and gives a
decomposition in Db

c(QS):

i∗SRjd∗Ld−1 =
⊕
λ

(i∗SRjd∗Ld−1)λ.

By uniqueness of the decomposition this is the same as that given in Lemma 4.2.2(i) (show-
ing, in particular, that (4.2.4) is rational). By Lemmas 4.2.2 and 4.3.4, (4.3.11) is isomorphic
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to ⊕
λ6ν(a)−1

(i∗SRjd∗Ld−1)λ //

))TTTTTTTTTTTTTTTTTTT

���
�
�

i∗SRjd∗Ld−1
//

��

⊕
λ>ν(a)−1

(i∗SRjd∗Ld−1)λ 0 //

⊕
λ6χ(a)ad−dimMd

rat(i∗SRjd∗Kd−1)λ // rat(i∗SRjd∗Kd−1) //
⊕

λ>χ(a)ad−dimMd

rat(i∗SRjd∗Kd−1)λ 0 //

(4.3.12)
The isomorphism i∗SRjd∗(αd−1) from the induction hypothesis is Φ-equivariant and so (by
uniqueness) the two decompositions are related by this isomorphism, i.e. (i∗SRjd∗Ld−1)λ =
rat((i∗SRjd∗Kd−1)λ) for all λ. It follows that if

χ(a)ad−dimMd > ν(a−1) = χ(a)−nd

then the diagonal arrow factors through the first morphism in the bottom triangle. Then
i∗S(v◦Rjd∗(αd−1)◦u) factors through the composition of successive morphisms in a triangle,
hence is zero. So the arrow αd in (4.3.6) exists (overM∗6d−1tS) and i∗S(αd) is an isomorphism
if

χ(a)ad−dimMd = ν(a−1) = χ(a)−nd .
Varying S ⊂Md completes the construction of an isomorphism αd over M∗6d.

Next we note that (iii)d holds, i.e. αd is the unique morphism in (4.3.6) making the
square commute. The difference of two lifts of Rjd∗(αd−1) ◦ u in (4.3.6) is a morphism

β : Ld −→ id∗rat(w>ad+wi
∗
dRjd∗Kd−1)[−1].

For a component S ⊂Md, the restriction i∗S(β) is the difference of two lifts of i∗S(Rjd∗(αd−1)◦
u) in (4.3.11). But a lift of i∗S(Rjd∗(αd−1) ◦ u) (when it exists) is unique because the lower
triangle in (4.3.11) is split (by Lemma 4.3.4). Thus i∗S(β) = 0 for all S ⊂ Md and hence
i∗d(β) = 0. By adjunction, β = 0.

As remarked earlier, (i)d−1 and (iii)d imply (i)d, and (iv)d is a consequence of (i)d–(iii)d.
So to complete the inductive step it remains to prove (ii)d. The diagram of (ii)d is the back
face of the following cube:

b∗Ld

��

//

""DDDD
L′d

""DDDD

��

Rj′d∗b
∗Ld−1

//

��

Rj′d∗L
′
d−1

��

b∗rat(Kd) //

""DDDD
rat(K ′d)

""DDDD

Rj′d∗b
∗rat(Kd−1) // Rj′d∗rat(K

′
d−1)

(4.3.13)

The maps from the back face to the front face are all adjunctions induced by id→ Rj′d∗j
′
d
∗.

The commutativity of the top, bottom, left, and right faces follow by functoriality of adjunc-
tion. The front face is the result of applying Rj′d∗ to the square of (ii)d−1, which commutes
by the induction hypothesis. Thus all faces, except possibly the back one, commute. Con-
sider the two compositions b∗Ld −→ rat(K ′d) given by the back face. Their difference δ,
when composed with rat(K ′d) −→ Rj′d∗rat(K

′
d−1), vanishes (since all other faces of the cube

commute). Thus the difference lifts to a morphism

δ̃ : b∗Ld −→ i′d∗rat(w>ad+wi
′
d
∗
Rj′d∗K

′
d−1).
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Now for S′ ⊂ M ′d, i
∗
S′(δ̃) = 0 since the morphism i∗S′rat(K

′
d) −→ i∗S′Rj

′
d∗rat(K

′
d−1) is part

of a split triangle (the triangle (4.3.8) on M ′∗6d, split by Lemma 4.3.4). By adjunction δ̃ = 0
and hence δ = 0. This proves (ii)d and completes the proof of (4.3.2) in Theorem 4.3.1.

The second assertion (4.3.3) is deduced as follows: It is evident from the construction of
α = αr that the square

Rp∗W
>νC(EM ) //

α
��

Rp∗W
>−∞C(EM )

��
rat(w6(a0+w,...,ar+w)Rj∗EHM ) // Rj∗EM

commutes, where the quasiisomorphism Rp∗W
>−∞C(EM ) = Rj∗EM extends α0 = α|M . It

can be completed to a morphism of triangles

Rp∗W
>νC(EM ) //

α

��

Rp∗W
>−∞C(EM )

��

// Rp∗
(
W>−∞C(EM )/W>νC(EM )

)
α′

��

+1 //

rat(w6(a0+w,...,ar+w)Rj∗EHM ) // Rj∗EM // rat(w>(a0+w,...,ar+w)Rj∗EHM )
+1 //

(4.3.14)
in which α′ is necessarily an isomorphism, but may not, a priori, be unique. The source and
target of α′ are supported on the minimal boundary M∗−M , so that if i : M∗−M ↪→ M∗

denotes the inclusion, then applying i!i! gives (since i!Rj∗ = 0) a square

Rp∗
(
W>−∞C(EM )/W>νC(EM )

) y //

α′

��

i!i
!Rp∗W

>νC(EM )[1]

i!i
!α[1]

��
rat(w>(a0+w,...,ar+w)Rj∗EHM ) z // i!i

!rat(w6(a0+w,...,ar+w)Rj∗EHM )[1]

in which the horizontal maps y, z are isomorphisms (and evidently Hecke-equivariant). Thus

α′ = z−1 ◦ i!i!α[1] ◦ y
is unique and Hecke-equivariant. �

Remarks 4.3.5. (i) The proof of the theorem shows that if a1, . . . , ar are defined by (4.3.1)
then

Rp∗W
>νC(EM ) = rat(w6(a0+w,a1+w,...,ar+w)Rj∗EHM ) (4.3.15)

for any a0 > dimM . By [M08, Prop. 3.4.2] (i.e. Lemma 2.1.4 above) we also have

Rp∗W
>νC(EM ) = rat(w>(a0+w,a1+1+w,...,ar+1+w)j!EHM ) (4.3.16)

for any a0 6 dimM . The proof also shows that (4.3.2) is the unique morphism extending
α0 : EM → rat(EHM ).

(ii) If ν is very positive (or very negative) the theorem is trivial as we have j!EM (or
Rj∗EM ) on both sides.

If ν = −ρ is minus the half-sum of positive roots then −ρ|Ad = χ−codimMd
d for d = 1, . . . , r

and hence ad = dimMd + codimMd = dimM for all d. In this case there are natural
isomorphisms

Rp∗W
>−ρC(EM ) = (j!∗EM [dimM ])[−dimM ] = rat(w6dimM+wRj∗EHM ) (4.3.17)
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by [GHM94, Theorem 23.2] and [M08, Theorem 3.1.4], which gives the theorem. (In fact,
either one of these equalities, together with (4.3.1), implies the other. The reader will
note that the proof of the theorem (especially the use of the splitting property Lemma
4.2.2) is similar to the proof of Theorem 23.2 of [GHM94], except that in loc. cit. things
are made easier by the characterization of the intersection complex in Db

c(QX) by local
cohomology vanishing conditions. For the general complex rat(w6a+wRj∗EHM ) there is no
such characterization, so that one has to argue differently.)

For ν = 0 and E trivial we get

Rp∗QM = rat(w6(dimM,dimM1,...,dimMr)Rj∗Q
H
M )

where we use the fact that W>0C(QM ) = QM (cf. [GHM94, §19]). For a discussion of
related results see 4.6 below.

For general ν, the resulting equality in the Grothendieck group of Db
c(QM∗) is in [M08,

Rem. 4.2.4].

Remark 4.3.6. We have assumed in §3 that G is simply connected and almost Q-simple
but this is unnecessary. The theorem remains true for general semisimple G provided that
in (4.3.1) we let χd ∈ X∗(Ad)Q be the square root of the character of Ad appearing in
LieUd. (This need not belong to X∗(Ad) unless G is simply connected, cf. the appendix.)
The statement of the theorem is then compatible with taking products and coverings, hence
holds for any connected semisimple group. The generalization to connected reductive groups
is straightforward.

Remark 4.3.7. The theorem and its proof work in some other categories of mixed sheaves.
If (1) EM underlies an object in the theory and (2) the forgetful functor For to perverse

complexes factors through rat, i.e. through mixed Hodge modules, then the proof is exactly
the same since Lemma 4.3.2 is available. This is the case with the theory MHM(·/k) of 2.3
of mixed Hodge modules with de Rham structure.

In the theory of Morel [M11], if EM ⊗Ql underlies an object in Ml(M) (e.g. if EM is of
geometric origin), one can argue as follows: By definition we have a mixed l-adic complex
on a model of M∗ over an open subset of Spec(Ok). The weights of such an object are given
by reducing modulo a prime and then looking at Frobenius weights. Now the arguments in
6.9–6.11 of [LR91] show how to deduce the analogue of Lemma 4.3.2 in this situation. The
rest of the argument is the same and the result is the following version of Theorem 4.3.1:
There is a natural isomorphism

Rp∗W
>νC(EM )⊗Ql = For(w6(a0+w,a1+w,...,ar+w)Rj∗E

Ml
M )

(where For(EMl
M ) = EM⊗Ql) in the derived category of Ql-sheaves in the classical topology.

4.4. Compatibility. The isomorphisms in Theorem 4.3.1 for various µ are compatible:

Proposition 4.4.1. Let µ, ν ∈ X∗(A0)Q with associated sequences (a1, . . . , ar), (b1, . . . , br) ∈
Qr and assume that µ|Ad > ν|Ad for all d (with respect to X∗(Ad)Q = Qχd ∼= Q), so that
ad 6 bd for all d. Let a0 = b0 = dimM .

If α and β in the diagram

Rp∗W
>µC(EM ) //

α
��

Rp∗W
>νC(EM )

β
��

rat(w6(a0+w,...,ar+w)Rj∗EHM ) // rat(w6(b0+w,...,br+w)Rj∗EHM )
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are isomorphisms such that α|M = β|M , then the diagram commutes.
For the isomorphisms α′ and β′ determined by α and β (as in the proof of (4.3.3)), the

diagram

Rp∗
(
W>−∞C(EM )/W>µC(EM )

)
α′

��

// Rp∗
(
W>−∞C(EM )/W>νC(EM )

)
β′

��
rat(w>(a0+w,...,ar+w)Rj∗EHM ) // rat(w>(b0+w,...,br+w)Rj∗EHM )

commutes.

Proof. For the proof of the first part we use the notation

Lµd : = Rp∗W
>µC(EM )

∣∣
M∗6d

K
a
d : = w6(a0+w,...,ad+w)R(jd · · · j1)∗EHM

and, similarly, Lνd and K
b
d. We will show by induction on d that

Lµd
//

αd

��

Lνd

βd
��

rat(Ka
d ) // rat(Kb

d)

commutes for all d. If d = 0, Lµ0 = Lν0 and K
a
d = K

b
d and α0 = β0 by assumption. Assume

that the diagram for d−1 commutes. We argue as in the proof of (ii)d in the inductive step
in the proof of the first part of Theorem 4.3.1: The diagram for d is the back face of the
cube

Lµd

��

//

""DD
Lνd

""DDD

��
Rjd∗L

µ
d−1

//

��

Rjd∗L
ν
d−1

��
rat(Ka

d ) //

  BBB
rat(Kb

d)
  BB

Rjd∗rat(K
a
d−1) // Rjd∗rat(K

b
d−1).

The front face commutes by the induction hypothesis, while the top, bottom, left, and right
faces commute by functoriality of adjunction. Thus the two compositions on the back face
agree after composing with rat(Kb

d) → Rjd∗rat(K
b
d−1), and so their difference lifts to a

morphism δ : Lµd −→ id∗rat(w>b+d+wi
∗
dRjd∗K

b
d−1). For each S ⊂ Md the restriction i∗S(δ)

vanishes because i∗Srat(K
b
d) −→ i∗SRjd∗rat(K

b
d−1) is part of the split triangle (4.3.8). Then

δ = 0.
The second assertion follows from the first by considering the diagrams (4.3.14) for µ and

ν and the morphism between them. �

The horizontal morphisms in the first diagram have natural cones, namelyRp∗
(
W>νC(EM )/W>µC(EM )

)
for the upper one and rat(w>a+ww6b+wRj∗EHM ) for the lower. The proposition gives an
isomorphism between them, but does not fix a canonical (or unique) one. (In the special
case ν = −∞ this was done in (4.3.3) of Thm 4.3.1.)
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4.5. Mixed structures in cohomology. To translate the results in 2.4 into results about
weighted cohomology groups we note some facts about roots and weights which come from
explicit calculations with the Q-root system to be found in the appendix. At some points
in the discussion below we mix additive and multiplicative notation for characters, but this
should cause no confusion.

To fix some notation, recall that we have fixed a minimal Q-parabolic subgroup P0,
and fix a maximal Q-split torus A0 ⊂ P0. This fixes in ǎ0 = X∗(A0) ⊗ R a root system
Φ0 = Φ(A0, G), a system of positive roots Φ+

0 , a set of simple roots ∆0 ⊂ Φ0, a positive
cone +ǎ0, a positive Weyl chamber ǎ+

0 (⊂+ǎ0), and their closures +ǎ0 and ǎ+
0 . We use the

partial order 6 on X∗(A0)Q given by λ 6 µ if and only if µ− λ ∈+ǎ0. (This is the same as
the condition that λ|Ad 6 µ|Ad for all d, where an isomorphism X∗(Ad)Q ∼= Q is fixed by the
character in LieUd.) We will call ν ∈ X∗(A0)Q dominant if belongs to the closed positive
Weyl chamber ǎ+

0 . The half-sum of positive roots in Φ0 is denoted ρ; it is dominant.
As a consequence of the fact that G(R) gives rise to a Hermitian symmetric domain and

the fact that G is almost Q-simple, the set of simple roots comes with a canonical ordering
(see A.1 in the appendix; this is the same as that given by the ordering of standard maximal
parabolics in 3.2). It determines a set of simple coroots (with ordering) and the dual basis
to the simple coroots is the set of relative fundamental weights {$1, . . . , $r} ⊂ X∗(A0)Q
(cf. the appendix for more details). They are dominant and span the Weyl chamber, i.e.
ǎ+

0 =
∑

i R>0$i. (9)
First we note that there is a natural condition on ν ∈ X∗(A0)Q ensuring that the asso-

ciated sequence (a1, . . . , ar) is as in Lemma 2.4.1(i):

Lemma 4.5.1. If ν + ρ is dominant (resp. antidominant) then the sequence (a1, . . . , ar)
associated with ν is nonincreasing (resp. nondecreasing).

Proof. It is enough to show that for each relative fundamental weight $i the sequence
m1, . . . ,mr defined by $i|Ad = χmdd is nondecreasing, because the sequence associated with
−ρ+$i is (dimM, . . . , dimM)− (m1, . . . ,mr) and every dominant weight is a nonnegative
linear combination of the $i. An explicit calculation with the system Φ(A0, G) of rational
roots shows this (cf. Lemma A.3.2 in the Appendix). �

Let χd ∈ X∗(Ad)Q be such that χ2
d is the character of Ad on LieUd. (In the simply

connected case χd is a generator of X∗(Ad), cf. the appendix.) The relative fundamental
dominant weight $1 has a special property:

Lemma 4.5.2. $1|Ad = χd for d = 1, . . . , r.

Proof. This is proved in the appendix, cf. Lemma A.3.1. �

In the simply connected case $1 ∈ X∗(A0) (cf. the appendix), but in general it is in
X∗(A0)Q. For a general group G the (quasi)character defined by this property (namely,
that for each rank one split torus given by a standard maximal parabolic the restriction is
the positive generator of the character group) is not always dominant (e.g. if G is split of
type G2), so this property is particular to groups giving rise to Shimura varieties.

The following theorem summarizes the properties of the mixed structures on weighted
cohomology groups. We state it for mixed Hodge structures, but see Remark 4.5.4 (i) below.

9The term “relative fundamental weight” seems to have multiple meanings in the literature. We will
always mean the $i defined here.
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Theorem 4.5.3. (i) The weighted cohomology groups

W>νH i(Γ, E) := Hi(M,W>νC(EM ))

carry canonical mixed Hodge structures with polarized graded quotients such that the mor-
phisms

W>µH i(Γ, E)→W>νH i(Γ, E) (for µ > ν),

the cup products

W>µH i(Γ, E1)⊗W>νHj(Γ, E2)→W>µ+νH i+j(Γ, E1 ⊗ E2),

and the duality pairings

W>νH i(Γ, E)⊗W>−2ρ−νH2 dimM−i(Γ, Ě)→ Q(−dimM)

are all morphisms of mixed Hodge structures.
(ii) If ν + ρ is dominant then the mixed Hodge structure on W>νH i(Γ, E) is like that of

a complete variety, i.e. W>νH i(Γ, E) has weights 6 i+ w.
If ν + ρ is antidominant then the mixed Hodge structure on W>νH i(Γ, E) is like that of

a smooth variety, i.e. W>νH i(Γ, E) has weights > i+ w.
(iii) If ν = −ρ+ k$1 for k > 0 or if ν = 0 then the top weight quotient is isomorphic to

the image of W>νH i(Γ, E) in W>−ρH i(Γ, E) = IH i(M∗,EM ), i.e.

GrWi+wW
>νH i(Γ, E) = im

(
W>νH i(Γ, E)→ IH i(M∗,EM )

)
.

If ν = −ρ+ k$1 for k 6 0 then the lowest weight subspace is isomorphic to the image of
IH i(M∗,EM ) = W>−ρH i(Γ, E) in W>νH i(Γ, E), i.e.

Wi+w

(
W>νH i(Γ, E)

)
= im

(
IH i(M∗,EM )→W>νH i(Γ, E)

)
.

Proof. The first part of (i) follows from Theorem 4.3.1 and Prop. 4.4.1 and the duality
statement follows because the isomorphisms constructed in Thm 4.3.1 are compatible with
duality. (We leave the case of cup products to the reader.)

(ii) follows from Lemma 4.5.1 and Lemma 2.4.1.
(iii) follows from Lemma 4.5.2 and Proposition 2.4.2 after noticing that the sequence

associated with −ρ− k$1 is a = (dimM + k, . . . , dimM + k). �

Remarks 4.5.4. (i) The theorem holds in the theories of mixed sheaves for which Theorem
4.3.1 holds. In particular by Remark 4.3.7 it holds for mixed Hodge-de Rham structures
and for mixed l-adic complexes. If one were to work in the context of Shimura varieties all
this would obviously work over the reflex field.

(ii) The mixed HdR structures in the theorem are effective (Remark 2.3.1).
(iii) The condition that ν + ρ is antidominant is natural from the automorphic point of

view, for under this condition the groups W>νH∗(Γ, E) are computable using automorphic
forms (by results of [N99, F98], which will be quoted in 5.3 below). So the theorem provides a
supply of mixed structures related to automorphic forms. One might expect that the relation
between extensions and automorphic forms is easier in some of these than in H∗(M,EM ).

(iv) It is an interesting question whether the Hodge structures in weighted cohomology
groups can be seen in more classical terms, e.g. in terms of explicit bifiltered complexes of
differential forms (as in classical mixed Hodge theory for smooth varieties [D74]).
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4.6. Remarks on the RBS compactification. As remarked earlier, if ν = 0 and E is
trivial then we have an isomorphism

rat(w6(dimM0,...,dimMr)Rj∗Q
H
M ) = Rp∗QM . (4.6.1)

Thus we get a mixed Hodge structure on H∗(M,Q) with various good properties. (A
natural mixed Hodge structure on H∗(M,Q) was first constructed by Zucker [Z04] by
different means.) Theorem 4.5.3(iii) says that the mixed Hodge structure is like that of a
complete variety, and

GrWi H
i(M) = im

(
H i(M)→ IH i(M∗)

)
. (4.6.2)

Let π : MΣ → M∗ be a smooth toroidal compactification of M . In [NV12] we prove the
formula

rat(w6(dimM0,...,dimMr)Rπ∗Q
H
MΣ

) = Rp∗QM (4.6.3)

which shows that there is a natural map H∗(M)→ H∗(MΣ). [NV12] also shows that

GrWi H
i(M) = im

(
H i(M)→ H i(MΣ)

)
. (4.6.4)

(4.6.4) and (4.6.2) are equivalent by the decomposition theorem. (4.6.4) is reminiscent of the
fact from classical Hodge theory that for a complete variety X and resolution of singularities
Y → X, GrWi H

i(X) = im
(
H i(X)→ H i(Y )

)
(cf. [D74, III.8.2.5]), which combined with

the decomposition theorem gives GrWi H
i(X) = im

(
H i(X)→ IH i(X)

)
. (The identification

IH i(M∗) = IH i(M) given by [Sap05] makes the resemblance of M to a “partial” resolution
of singularities of M∗ stronger.)

In fact, the particular truncation w6(dimM0,...,dimMr) (suitably modified so that it becomes
independent of the stratification) has many nice properties (in either l-adic or mixed Hodge
contexts) for general algebraic varieties, as we show in [NV12].

We discuss some other results related to (4.6.1). Ayoub and Zucker [AZ12] proved a
formula analogous to (4.6.1) in the category of motivic sheaves on M∗, using a functor ω0

(the relative Artin motive functor of loc. cit.) in place of w6(dimM0,...,dimMr). Pushforward
to a point gives a Voevodsky motive for M and applying realizations one gets a mixed
Hodge structure on H∗(M,Q) (or l-adic Galois representations etc.)

Following the outline of [NV12], Vaish [V13] gives another construction of the RBS motive
of Ayoub and Zucker, which in fact shows slightly more, namely that it is truncation with re-
spect to a t-structure (the motivic analogue of Morel’s t-structure (wD6dim(M∗),wD>dim(M∗))
defined on a suitable subcategory of the category of motivic sheaves on M∗. Thus [V13],
together with the l-adic analogue of (4.6.1) (available by Remark 4.3.7), recovers the main
results of [AZ12] by a different route. (Realization functors from the categories of motivic
sheaves used in [AZ12] to the derived category of mixed Hodge modules have not been
constructed, so that (4.6.1) itself does not follow from [AZ12] and one has to use the l-adic
realizations. Vaish also shows that, assuming the existence of suitable realization functors
to mixed Hodge modules, the mixed Hodge structure coming from (4.6.1) agrees with that
coming from [AZ12].)

In another direction, in [N10] we applied (4.6.1)–(4.6.4), the C∞ de Rham description
of M from [N99], and analytic results about automorphic forms from [F98] to study Chern
classes of automorphic vector bundles and to the study of restriction maps between locally
symmetric varieties, providing the first generalization to noncompact Shimura varieties of
some well-known Lefschetz-type properties.
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5. Spectral sequences and automorphic forms

5.1. Postnikov systems and spectral sequences. Let D be a triangulated category. A
(right) Postnikov system for an object K of D is a diagram

G0

+1
��5555

G1

+1
��5555

Gn

+1

""FFFFFF

K = F 0

??~~~~~

F 1oo

DD				

F 2oo · · ·oo Fn

DD����
oo Fn+1 = {0}oo

in which all the triangles are distinguished in D . The following lemma is standard (cf. e.g.
[GeM96, p.262f]):

Lemma 5.1.1. For a cohomological functor H from D to an abelian category there is a
spectral sequence with

Ep,q1 = Hp+q(Gp) ⇒ Hp+q(K)
(with E1 differential induced by Gp → F p+1[1] → Gp+1[1]). The E∞ term computes the
graded of the limit filtration of the spectral sequence, i.e. the filtration of H∗(K) given by

F pH i(K) = im
(
H i(F p)→ H i(K)

)
= ker

(
H i(K)→ H i(K/F p)

)
.

Exact functors take Postnikov systems to Postnikov systems. A morphism of Postnikov
systems is a morphism of diagrams; it gives a morphism of spectral sequences. An isomor-
phism of Postnikov systems induces an isomorphism of spectral sequences from the E1 term
on.

Example 5.1.2. (i) If K is a complex of objects in an abelian category A and F • is a de-
creasing filtration of K by subcomplexes, then F p = F pK and Gp = F pK/F p+1K, together
with the triangles given by the exact sequences 0 → F p+1K → F pK → F pK/F p+1K → 0
give a Postnikov system in D = Db(A ). If H is a cohomological functor then we get the
usual spectral sequence for a filtered complex.

(ii) If D has a t-structure with truncation functors τ60 and τ>0 then for any object K,
F pK = τ6−pK and Gp = τ>−pτ6pK with the t-structure triangles defines a Postnikov
system for K. A cohomological functor H : D → A to an abelian category gives a spectral
sequence in A with Ep,q1 = Hp+q(τ6−pτ>−pK)⇒ Hp+q(K). In this example the Postnikov
system is functorial in the obvious sense.

In the locally symmetric setting, an increasing sequence ν1 6 ν2 6 · · · 6 νn of elements
of X∗(A0)Q gives a filtration of W>ν1C(EM by subcomplexes

W>ν1C(EM ) ⊃W>ν2C(EM ) ⊃ · · · ⊃W>νnC(EM ) ⊃ {0}
and hence a Postnikov system for W>ν1C(EM ) in Db

c(QM ) (as in Ex. 5.1.2(i)). Applying
Rp∗ gives a Postnikov system in Db

c(QM∗) with the triangles

Rp∗
(
W>νpC(EM )/W>νp+1C(EM )

)
+1

%%KKKKKK

Rp∗W
>νpC(EM )

99ssssss

Rp∗W
>νp+1C(EM )oo

(5.1.1)

for p = 1, . . . n. (We make the convention that W>νpC(EM ) = {0} for p > n and
W>νpC(EM ) = W>ν1C(EM ) for p ≤ 0.) The r-tuples ai = (ai1, . . . , a

i
n) ∈ Qr associ-

ated with νi by (4.3.1) satisfy a1 > . . . > an. With the convention ai0 = dimM for all i, we
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get a Postnikov system for K = w6(a1
0+w,...,a1

r+w)Rj∗EHM in DbMHM(M∗) with the triangles

w
>(ap+1

0 +w,...,ap+1
r +w)

w6(ap0+w,...,apr+w)Rj∗EHM
+1

''OOOOOOO

w6(ap0+w,...,apr+w)Rj∗EHM

77ooooooo
w6(ap+1

0 +w,...,ap+1
r +w)

Rj∗EHMoo

(5.1.2)

for p = 1, . . . , n. Applying rat gives a Postnikov system in Db
c(QM∗).

Proposition 5.1.3. The Postnikov system for Rp∗W>ν1C(EHM ) with triangles (5.1.1) and
the Postnikov system for rat(w6(a1

0+w,...,a1
r+w)Rj∗EHM ) with triangles given by applying rat

to (5.1.2) are isomorphic.

Proof. This follows from Prop. 4.4.1. �

We have not shown that the Postnikov systems are uniquely isomorphic, as one might
expect, nor that there is an isomorphism compatible with Hecke correspondences. We leave
this for another occasion.

5.2. Statement of the main theorem. We now introduce the Postnikov systems giving
the spectral sequence of the introduction. Consider the increasing sequence of weights
· · · 6 ν−2 6 ν−1 6 ν0 where

νp = −ρ+ p$1 for p ≤ 0.

It gives a Postnikov system for W>−∞C(EM ) = Rj∗EM with the triangles

Rp∗
(
W>νpC(EM )/W>νp+1C(EM )

)
+1

%%KKKKKK

Rp∗W
>νpC(EM )

99ssssss

Rp∗W
>νp+1C(EM )oo

(5.2.1)

for p ≤ 0 (with the convention W>ν1C(EM ) = {0}). The corresponding decreasing sequence
· · · > a−1 > a0 with

ap = (d0 − p, . . . , d0 − p) (d0 = dimM)

gives a Postnikov system for rat(Rj∗EHM ) = Rj∗EM with triangles

rat(w>d0−p+ww6d0−p+wRj∗EHM )
+1

''OOOOOOO

rat(w6d0−p+wRj∗EHM )

77ooooooo

rat(w6d0−p−1+wRj∗EHM )oo

(5.2.2)

for p ≤ 0.
The spectral sequence given by the Postnikov system with triangles (5.2.2) is the spectral

sequence (1) of the introduction. It has

Ep,q1 = Hp+q(M∗, w6dimM+w−pw>dimM+w−pRj∗EHM ) ⇒ Hp+q(M,EHM ). (5.2.3)

With our indexing conventions this is a second-quadrant spectral sequence with edge terms
given by E0,q

1 = IHq(M∗,E). The following summarizes our results about it:
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Theorem 5.2.1. The spectral sequence (5.2.3) has the following properties:
(i) It is a spectral sequence of split mixed Hodge(-de Rham) structures, i.e. the E1 term

is a direct sum of pure structures. The E1 term is (canonically) a sum of intersection
cohomology groups of the minimal compactifications of strata of M∗ with homogeneous co-
efficients.

(ii) It is automorphic (after ⊗C), i.e. in the isomorphism

H∗(M,EM )C = H∗(LieG(R),K; A (Γ\G(R))⊗ E)

of [F98] it is isomorphic to the spectral sequence associated with an explicit decreasing fil-
tration on the space of automorphic forms.

(iii) If the highest weight of E is regular then it degenerates at the E1 term.

(i) was proved in 3.9–3.10, while (ii) and (iii) are proved below in 5.3.

Remark 5.2.2. The spectral sequence exists and (i) holds in any theory of A-mixed sheaves
(in the sense of Saito) if EM ⊗ A underlies an object in the theory, in particular if EM is
of geometric origin. In Morel’s theory M (·,Ql) of 2.3 the spectral sequence exists under
the geometric origin condition and the E1 term continues to be a direct sum of pure Galois
modules. (The object w6dimM+w−pw>dimM+w−pRj∗EM

M breaks up as a sum of twisted
intersection complexes with pure local systems as coefficients, but one does not know if
these local systems are semisimple or homogeneous.)

5.3. Automorphic forms. In this section we prove the relation of the spectral sequence
(5.2.3) with automorphic forms and complete the proof of Theorem 5.2.1. This is a simple
matter of applying results of [F98] using the translation provided by [N99], but we must
recall some notation and facts about automorphic forms from [F98] (cf. also [W97]) required
for this. Since [F98] is written in an adelic context we must restrict to congruence subgroups
Γ in the sequel.

We fix some notation. Recall that we have fixed a minimal Q-parabolic P0 and a maximal
Q-split torus A0. This fixes in ǎ0 = X∗(A0) ⊗ R a root system Φ0 = Φ(A0, G), a system
of positive roots Φ+

0 , a positive cone +ǎ0, a positive Weyl chamber ǎ+
0 (⊂ +ǎ0), and their

closures +ǎ0 and ǎ+
0 . Elements of ǎ+

0 and ǎ+
0 are called dominant and strictly dominant,

respectively. The centralizer M0 of A0 is a minimal Levi subgroup. For any standard Levi
subgroup M ⊃M0 the split centre is a torus AM ⊂ A0 and this gives the dual vector spaces
aM = LieAM (R) = X∗(AM ) ⊗ R and ǎM = X∗(M) ⊗ R = X∗(AM ) ⊗ R. Restriction of
characters by M0 ⊂ M gives an embedding ǎM ⊂ ǎ0. Restriction by AM ⊂ A0 gives a
projection ǎ0 � ǎM inverse to ǎM ⊂ ǎ0. (10)

Fix a Cartan subalgebra h of gC containing a0 = LieA0(R) (hence h ⊂ (m0)C). This
gives a root system Φ = Φ(h, gC) and Weyl group W = W (h, gC). Fix a system of positive
roots Φ+ ⊂ Φ = Φ(h, gC) compatible with Φ+

0 (i.e. if β ∈ Φ+ then β|a0 ∈ Φ+
0 ∪ {0}). The

half-sum of roots in Φ+ will be denoted ρh; so ρh|a0 = ρ, where ρ is the half-sum of roots
in Φ+

0 . The Harish-Chandra isomorphism Z(g) ∼= S(h)W identifies infinitesimal characters
with W -orbits in ȟ and ideals of finite codimension in Z(g) with W -invariant subschemes
in ȟ of dimension zero.

We need an elementary construction. For λ ∈ ǎ0 denote by λ+ the closest point to λ

in the closed positive Weyl chamber ǎ+
0 (for an inner product on ǎ0 invariant under the

10The notation here is slightly different from that in §3: M is a Levi subgroup of P (not the Levi quotient)
and so AM is a lift of the split centre A of the Levi quotient from 3.2.
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stabilizer of ǎ0 in W ). For a finite set Θ ⊂ ȟ define another finite set Θ+ ⊂ ǎ+
0 as follows:

Θ+ :=
⋃

M

{
Re(θ|aM )+ : θ ∈ Θ

}
.

(The union is over standard Levis and we have used the inclusions aM ⊂ a0 ⊂ h to restrict
and the inclusion ǎM ⊂ ǎ0 to consider all elements as lying in ǎ0.) Note that associated
with each λ ∈ Θ+ is a canonical standard parabolic subgroup Pλ and standard Levi Mλ,
maximal with the property that λ ∈ ǎMλ

⊂ ǎ0. (The root group of α ∈ Φ0 is contained in
Pλ (resp. in Mλ) if and only if (α, λ) ≥ 0 (resp. (α, λ) = 0.)

Let A (Γ\G(R)) be the space of automorphic forms for Γ; these are the Z(g)-finite and
K-finite smooth functions on Γ\G(R) which satisfy a moderate growth condition. For a
finite W -invariant set Θ ⊂ ȟ, let

AΘ(Γ\G(R))
denote the subspace of automorphic forms killed by a power of the ideal of Z(g) given by
Θ. Then A (Γ\G(R)) =

⋃
Θ AΘ(Γ\G(R)) as Θ runs over W -orbits in ȟ.

Let f ∈ A (Γ\G(R)). For each standard rational parabolic P , the constant term of
f along P admits a Fourier expansion in terms of characters of aM (cf. [F98, §6]); the
characters appearing form a finite set, the P -exponents of f :

ExpP (f) ⊂ (ǎM )C ⊂ (ǎ0)C.

The exponents of automorphic forms in AΘ(Γ\G(R)) satisfy:

f ∈ AΘ(Γ\G(R)) and λ ∈ ExpP (f) =⇒ Re(λ)+ ∈ Θ+. (5.3.1)

Let Alog(Γ\G(R)) ⊂ A (Γ\G(R)) be the subspace of automorphic forms which have all
their exponents in the closed negative cone −+ǎ0, i.e. f ∈ Alog(Γ\G(R)) if and only if
Re(λ)+ = 0 for all λ ∈ ExpP (f). (This is not the definition of Alog(Γ\G(R)) in [F98] but
is equivalent. The functions in Alog(Γ\G(R)) are square-integrable up to some logarithmic
terms; in particular, square-integrable automorphic forms belong to Alog(Γ\G(R)).)

From now on, let
Θ := W · (ρh + λĚ) = − W · (ρh + λE)

where λĚ ∈ ȟ is the highest weight of the contragredient Ě of E. Thus Θ is the infinitesimal
character of Ě. We will filter AΘ(Γ\G(R)) by conditions on the exponents. (This is a
degenerate version of the filtrations used by Franke [F98], which we will also recall below.)
Let $1 be the relative fundamental dominant weight defined in 4.5 (or the appendix). Define
an indexing function T : Θ+ → Z by

T (λ) = p if − (p+ 1)$1 < λ 6 −p$1. (5.3.2)

Define a decreasing filtration F • of AΘ(Γ\G(R)) by the condition

f ∈ F pAΘ ⇐⇒ for all P and λ ∈ ExpP (f) we have T (Re(λ)+) > p. (5.3.3)

The nonzero graded quotients are for p ≤ 0, and

F p = AΘ(Γ\G(R)) for p << 0

F 0 = AΘ,log(Γ\G(R))

F 1 = {0}

so that F • is finite and exhaustive. Here AΘ,log := AΘ ∩Alog. (If N is the minimal integer
such that λ ∈ Θ+ ⇒ λ 6 N$1, then F−N = AΘ(Γ\G(R)). The integer N depends on
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the representation E; if E is trivial then N = codimMr. The number of nontrivial graded
pieces of the filtration is independent of E.)

By Franke’s fundamental theorem [F98, Theorem 18] (formerly Borel’s conjecture), the
cohomology of M can be computed using automorphic forms:

H∗(M,EM )C = H∗(g,K; AΘ(Γ\G(R))⊗ E).

F • induces a filtration of the relative Lie algebra cohomology complex C•(g,K; AΘ ⊗ E)
and hence a spectral sequence with

Ep,q1 = Hp+q(g,K;F pAΘ/F
p+1AΘ ⊗ E) ⇒ H∗(M,EM )C. (5.3.4)

We can now complete the proof of Theorem 5.2.1.

Proof of (ii) of Theorem 5.2.1. We will show that (5.2.1) is identified with (5.3.4) after
tensoring with C, using the results of [N99, F98]. By Prop. 5.1.3 we need to consider the
Postnikov system with triangles

Rp∗W
>−ρ+(p+1)$1C(EM ) −→ Rp∗W

>−ρ+p$1C(EM ) −→ Rp∗

(
W>−ρ+p$1C(EM )

W>−ρ+(p+1)$1C(EM )

)
+1−→

for p < 0. Now we will use a particular version of the weighted complexes, namely the one
constructed using special differential forms in [GHM94, II]. The hypercohomology long exact
sequence of the triangle above is that of the following short exact sequence of complexes of
sheaves on M :

0 −→W>−ρ+(p+1)$1C(EM ) −→W>−ρ+p$1C(EM ) −→ W>−ρ+p$1C(EM )
W>−ρ+(p+1)$1C(EM )

−→ 0.

The explicit weighted complexes of [GHM94, II] are complexes of fine sheaves (they are
sheaves of modules over the fine sheaf of special functions) so that applying Γ(M, · ) gives
the short-exact sequence of complexes

0 −→ Γ(M,W>−ρ+(p+1)$1C(EM )) −→ Γ(M,W>−ρ+p$1C(EM )) −→ Γ(M,W>−ρ+p$1C(EM ))
Γ(M,W>−ρ+(p+1)$1C(EM ))

−→ 0.

The associated long-exact sequence in cohomology is the hypercohomology long-exact se-
quence of the triangle (because all three complexes of sheaves are fine).

Consider the following diagram of complexes in which each row is short-exact:

Γ(M,W>−ρ+(p+1)$1C(EM )) //

(1)

��

Γ(M,W>−ρ+p$1C(EM )) //

(2)

��

Γ(M,W>−ρ+p$1C(EM ))

Γ(M,W>−ρ+(p+1)$1C(EM ))

(3)
��

C•(g,K;Sρ−τp+1+log ⊗ E) // C•(g,K;Sρ−τp+log ⊗ E) // C•
(

g,K;
Sρ−τp+log

Sρ−τp+1
+log
⊗ E

)

C•(g,K;F p+1AΘ ⊗ E)

(1′)

OO

// C•(g,K;F pAΘ ⊗ E) //

(2′)

OO

C•
(
g,K; F pAΘ

F p+1AΘ
⊗ E

)(3′)

OO

Here in the second row Sρ−τp+log(Γ\G(R)) is the log-modified weighted L2 space appearing
in Franke [F98] for the element τp := −p$1 ∈ ǎ0.

The maps (1), (2) were constructed in [N99, §2], essentially by checking that suitably
weighted special differential forms satisfy suitable weighted L2 conditions; (3) is the induced
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map on quotients. By [N99, Theorem A], (1) and (2) are quasiisomorphisms, and hence so
is (3).

The maps (1′) and (2′) are the inclusions of subspaces of automorphic forms with gener-
alized infinitesimal character Θ. (This follows from [F98, Theorem 15], using the dominance
of −p$1 for p ≤ 0.) By [F98, Theorem 16], (1′) and (2′) are quasiisomorphisms, again using
the dominance of −p$1 for p ≤ 0, and hence so is (3′).

(3) and (3′) give an isomorphism of the E1 terms of (5.3.4) and (5.2.1)⊗C and these are
compatible with differentials. �

Proof of (iii) of Theorem 5.2.1. We will use the elementary fact that for a complex K
with (finite, exhaustive) filtration F • the spectral sequence converging to H∗(K) satisfies∑

p,q E
p,q
1 ≤

∑
nH

n(K), with equality holding if and only if it degenerates at E1.
It suffices to work ⊗C. Let T ′ : Θ+ → Z≥0 be a function satisfying the condition

T ′(λ) < T ′(µ) if µ 6 λ, µ 6= λ. (5.3.5)

This defines a filtration ′F • of the space of automorphic forms by the condition (5.3.3)
which refines F • in the obvious sense. Let ′Ep,q1 be the E1 term of the corresponding
spectral sequence. Then∑

n

Hn(M,EM ) =
∑
p,q

dimEp,q∞ ≤
∑
p,q

dimEp,q1

≤
∑
p,q

dim ′Ep,q1 =
∑
n

Hn(M,EM ).

The inequality in the second line holds because F • is refined by ′F •. (The column Ep,∗−p1 =
H∗(Grp) is the abutment of a spectral sequence which involves the columns ′Er,∗−r1 =
H∗(′Grr) for r ∈ Ip := {s ∈ Z : F p+1 ⊂ ′F s ⊂ F p} (an interval of integers). Hence∑

kH
k(Grp) ≤

∑
r∈Ip

∑
kH

k(′Grr).)
The equality in the second line holds because the spectral sequence of T ′ degenerates at

E1 when the highest weight of E is regular by [F98, Theorem 19].
It follows that

∑
nH

n =
∑

p,q dimEp,q1 , i.e. that the spectral sequence degenerates at
E1. �

Remarks 5.3.1. (i) For the filtration ′F • coming from an indexing function T ′ on Θ+ sat-
isfying (5.3.5), Theorem 14 of [F98] gives a detailed decomposition of the graded pieces of
this filtration. This decomposition has the following coarsening:

′F p/′F p+1 =
⊕

ν∈Θ+,T (ν)=p

IndGPν
(
CMν
ν ⊗AΘ−ν,log

(
ΓMνAν(R)0\Mν(R)

))
(5.3.6)

(Here IndGP is a suitable induction functor on (g,K)-modules, and CMν
ν is the one-dimensional

space on which Mν acts via the character ν ∈ ǎMν .) This admits a further decomposition
using Eisenstein series, as does the E1 term of the associated spectral sequence. There are
similar decompositions of the E1 term of the distinguished spectral sequence (5.2.1). This
does not follow immediately from the results of [F98, §6] because the function T in (5.3.2)
does not satisfy (5.3.5), so some adaptation of arguments in [F98] is necessary. It is an
interesting question to what extent the finer decompositions respect mixed Hodge-de Rham
structures.
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(ii) It seems that our methods can be used to show that all of Franke’s spectral sequences
(i.e. those associated with a filtration of the space of automorphic forms satisfying (5.3.5))
are spectral sequences of mixed structure. This would require (1) a generalization of Morel’s
construction in the category of automorphic complexes on a locally symmetric variety, (2) a
refinement of the weighted cohomology construction of [GHM94] (along the lines suggested
in [GHM94, 35.4]), (3) a version of Theorem 4.3.1 relating the two constructions, and
(4) a refinement of the main result of [N99] relating these constructions to [F98]. All of
these elements are straightforward generalizations of the existing results. Notice that these
spectral sequences need not have the important property of (5.2.1) that the E1 term is a
direct sum of pure structures, which is why we do not pursue this here.

Appendix A. Relative roots

For a connected reductive group G over a field k, by the k-root system or the relative
root system of G we mean the system of roots with respect to a maximal k-split torus. This
root system may be reducible and nonreduced.

A.1. Suppose that G is a connected, semisimple, almost R-simple real algebraic group. If
the symmetric space of G(R) is Hermitian then the R-root system of G is of type BCs
or Cs. We choose a maximal set of strongly orthogonal roots γ1, . . . , γs in the manner
specified in [BB66, 1.2] or [AMRT75, III.2.3]. The roots of G are the nonzero elements of{
±γi±γj

2

}
1≤i≤j≤s

in the Cs case and the nonzero elements of
{
±γi±γj

2 , ±γi2

}
1≤i≤j≤s

in the

BCs case (with multiplicities) (cf. [AMRT75, p.186]).

A.2. Suppose now that G is connected, semisimple and almost Q-simple Q-algebraic group
such that G(R) has a Hermitian symmetric space. Fix a maximal R-split torus T which con-
tains a maximal Q-split torus A0. The real root system Φ(T,G) is a union of irreducible root
systems of type BC and C (by A.1). Choosing a maximal set of strongly orthogonal roots
in each irreducible factor as above gives a set of s = dimT roots γ1, . . . , γs ∈ X∗(T ) such
that the roots of Φ(T,G) are among the nonzero elements of

{
±γi±γj

2 , ±γi2

}
1≤i≤j≤s

. Con-

sider the restriction of characters from T to A0. Arguments of [BB66, 2.9] (cf. [AMRT75,
III.2.5, p.195f]) show that there is a partition {1, . . . , s} = tk=0,...,rIk such that A0 ⊂ T is
the identity component of the subgroup defined by setting the characters in I0 to be trivial
and equating all characters in Ik for each k ≥ 1, i.e.:

A0 =

⋂
i∈I0

ker(γi) ∩
⋂
k≥1

⋂
i,j∈Ik

ker(γi − γj)

0

.

Setting βk = γi|A0 for any i ∈ Ik (for k ≥ 1) we get a collection of r roots β1, . . . , βr ∈
Φ(A0, G) (r the Q-rank of G) such that Φ0 := Φ(A0, G) is a subset of the nonzero elements
of
{
±βi±βj

2 , ±βi2

}
1≤i≤j≤r

. Since G is almost Q-simple, Φ0 is irreducible, and hence of type

BCr or Cr. Thus Φ0 consists of the nonzero elements of{
±βi ± βj

2

}
1≤i≤j≤r

in the Cr case,{
±βi ± βj

2
,
±βi

2

}
1≤i≤j≤r

in the BCr case
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(with multiplicities). A set of simple roots {α1, . . . , αr} is given by

αi :=
βi − βi+1

2
(for 1 ≤ i < r) and αr :=

{
βr for Cr
βr
2 for BCr.

The basis dual to the simple coroots {α∨i := 2αi/(αi, αi)}1≤i≤r is

$i =
β1 + · · ·+ βi

2
(for 1 ≤ i < r) and $r =

{
β1+···+βr

2 for Cr
β1+···+βr

4 for BCr.

The abstract weight lattice of Φ0 is

P (Φ0) := {λ ∈ X∗(A0)Q|(λ, α∨) ∈ Z for α ∈ Φ0}.
The lattice P (Φ0) is generated by $1, . . . , $r in the Cr case and by $1, . . . , $r−1, 2$r in the
BCr case. (In the BCr case 2αr = βr is a root and ($r, (2αr)∨) = ($r, β

∨
r ) = 2 ($r,βr)

(βr,βr)
=

1/2, so that $r /∈ P (Φ0).) Since Φ0 is a root system, X∗(A0) ⊂ P (Φ0).

Lemma A.2.1. If G is simply connected or Φ0 is of type BCr then X∗(A0) = P (Φ0).

Proof. This follows from [BT72, Cor. 4.4 to Prop. 4.3]. �

A.3. Continuing in the setting of A.2, let

Ad =

⋂
i 6=d

ker(αi)

0

(for d = 1, . . . , r).

On Ad we have β1 = · · · = βd and βd+1 = · · · = βr = 0. For Cr we have:

$i|Ad =

{
i$1|Ad if i ≤ d
d$1|Ad if i > d.

(A.3.1)

For BCr we have the same identities for i < r plus the identity

2$r|Ad = d$1|Ad (A.3.2)

for each d = 1, . . . , n.

Lemma A.3.1. (i) The restriction of β1 = 2$1 ∈ X∗(A0) to Ad is the character appearing
in LieUd for d = 1, . . . , r.

(ii) If G is simply connected or Φ0 is of type BCr then $1 = β1/2 ∈ X∗(A0) is a character
and its restriction to Ad generates X∗(Ad) for d = 1, . . . , r.

Proof. (i) Since β1|Ad = βd|Ad = αd|Ad 6= 0 its root space must be contained in LieWd.
Since β1 is the highest root it must be contained in LieUd.

(ii) Since X∗(A0)� X∗(Ad) this follows from Lemma A.2.1, (A.3.1), and (A.3.2). �

Let
χd := $1|Ad =

1
2
β1|Ad (∈ X∗(Ad)Q).

(By Lemma A.3.1 this is consistent with the notation χd introduced in 3.2 and used in the
main body of the paper.) From (A.3.1) and (A.3.2) we have:

Lemma A.3.2. For each i = 1, . . . , r, the sequence of integers (m1, . . . ,mr) defined by
$i|Ad = χmdd is nondecreasing.
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Remark A.3.3. The example of G = PGL(2) shows that the conclusions of Lemma A.2.1
and A.3.1(ii) can fail if G is not simply connected.
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