AN EQUIVARIANT VERSION OF THE GABBER PRESENTATION
LEMMA

SANDEEP S AND ANAND SAWANT

ABSTRACT. We extend the Cz-equivariant version of the Gabber presentation lemma proved
in [1] to the case of a general finite abelian group under suitable hypotheses.

1. INTRODUCTION

In [4], Gabber proved a geometric presentation lemma in order to prove the effacement
theorem for étale cohomology and as a result, the exactness of the Gersten complex for certain
classes of sheaves. This lemma allows one to reduce a problem to the situation of an affine
line over a base and a closed subset finite over the base and is of fundamental importance to
motivic homotopy theory as developed in [7]. It may be seen as an analogue of the tubular
neighbourhood theroem in differential geometry.

The Gabber presentation lemma was proved over an infinite base field in [4], but it was
extended to the finite field case in [6] and to the case where the base ring is a of a Noetherian
domain with infinite residue fields in [3]. In [1], Bachmann proved a Cs-equivariant version of
the lemma, where C is the cyclic group with two elements and used it to prove a modified form
of Gersten injectivity and thereby, extend some standard results in motivic homotopy theory
about stable A'-connectivity and the homotopy t-structure to the Ch-equivariant setting.

Conventions 1.1. Throughout this paper, X will denote a smooth scheme of finite type
over an infinite field k and G will denote a finite abelian group with of order £ such that ¢ is
invertible in k and that k has primitive [th roots of unity. Let X be endowed with a G-action.

Now suppose G = Z /¢ for some prime power ¢ and let 0 € G be a generator and let « be
a primitive Ith root of unity. By A°", we mean A! endowed with the G-action corresponding
to multiplication by a!. Morphisms between any G-scheme and A°" will be assumed to be
G-equivariant.

In this article, we extend the results of [1] to the G-equivariant setting, where G is a finite
abelian group under suitable hypotheses.

Theorem 1.2. Let k be an infinite field and let X be a smooth k-scheme. Let G be a finite
abelian group of order ¢ with a G action on X. Let Z C X be a closed invariant subscheme
of positive codimension and let z € Z be a (not necessarily closed) point. In addition, assume
that ¢ is invertible in k and that k has primitive £th roots of unity. Then there exist

e a G-equivariant étale neighbourhood X' — X of Gz;
e o smooth G-scheme W ;
e a G-equivariant étale neighbourhood X' — Ail/V of Zx:, for some action of G on Al.
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These satisfy the following conditions:

e The composite Zx: — Al, — W is finite.
e In the case where the action on All/v is non-trivial, then X' — W admits a section.

In Section 3, we prove Theorem 1.2 in the case where G is a cyclic group of prime power
order. Our proof follows along the same lines as the proof in [1]. More precisely, we generalize
the preparatory result [1, Lemma 2.5] and treat the two cases, where z € X H for some
subgroup H C G and where z ¢ X! for any subgroup H, separately. The proof of the first
case follows along the same lines as Bachmann’s proof, using our generalized version of the
preparatory lemma (Lemma 2.2). In the second case, the reduction to the set-theoretically
fixed case in [1] has to be generalized to an inductive argument on the size of the group. The
case of a general finite abelian group is handled in Section 4.

2. PRELIMINARIES

In this section, we prove some preliminary results about obtaining nice equivariant mor-
phisms to affine spaces, which will be used in the proof of the main theorem. We work in
the generality of an arbitrary finite group, keeping future use in mind. We begin with an
extension of [1, Lemma 2.4].

Lemma 2.1. Let X be an affine finite type k-scheme, k an infinite field. Let S C X a
finite set of closed points. There exists a function f : X — A% inducing a universal injection
S — A,

More generally, suppose given T C X another finite set of closed points, disjoint from S.
Let p1, ..., pm be linear automorphisms of A?, where m = |S|. Let X — AN be an embedding.
Suppose that T consists of n points after geometric base change. Among the set of polynomial
morphisms X — A% of degree < n-+m—1 (with respect to the embedding X — AN ) vanishing
on T, those which induce a morphism f : S < A%\ 0 satisfying the following conditions forma
dense subset:

(1) The morphism f is universally injective.
(2) For each permutation o € Sy,, the property Y 1 i<, pi - f(50.i) # 0 holds universally.

Proof. The first claim follows directly from the second by taking T' = (). To prove the second
claim, we may assume that k is algebraically closed. We need to find a d-tuple of polynomials
P := (Pj)i1<j<a of degree n + 1 such that for every s € S, we have P(s) # 0; for s # s', we
have P(s) # P(s") and for each permutation o € S,,, the property >, ;... pi - f(55.i) # 0.
Since each of these conditions are open, we may satisfy them separately. So, without loss
of generality, take ¢ = id. Clearly, it will suffice to show that there exists a P of degree
< n+m — 1 vanishing at T and ss,..., Sy, but not at s;. Taking a product over terms for
each t € T and s; for 2 < i < m, it suffices to find a linear polynomial vanishing at some
specific point of TU{sa, ..., S;, }, which is clearly possible since this set is disjoint from S. [

We now prove a generalization of [1, Lemma 2.5].

Lemma 2.2. Let G be a finite group and let X be an affine finite type k-scheme with a
G-action, k an infinite field of characteristic relatively prime to l. Let S C X be a finite set
of closed points. Let p be a d-dimensional G-representation.

(1) Forxz € X\ S, there exists an equivariant map f : X — A? (where A? has the trivial

action) with f(x) & f(.5).
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(2) If S € X\ X" for any subgroup H C G, then there exists an equivariant map
f:X = A% with f(s) #0 for s € S, where A? is endowed with the G-action induced
by p.

(3) Suppose S € X \ X for any subgroup H C G and T C X is another finite set of
closed points disjoint from UgegS. There exists a map f : X — A? vanishing on T
and non-vanishing on S.

Proof.

(1) On applying Lemma 2.1 to X/G and S/G U {z}, we get a morphism f': X/G — A?
injective on S/G U {z}, which in turn gives a G-equivariant morphism f : X — A¢
such that f(z) ¢ f(5).

(2) On applying Lemma 2.1 to X and G - S, we get a morphism fy : X — A%. Put
f= dec pg-1fog; this is clearly equivariant with respect to the action of a on Al
Fix an element s € S. Taking {p;}; = {pg}tgec and T' = 0 and {s;}; = Gs in Lemma
2.1 (note that gs # ¢'s for g # ¢’ by our assumption), we have that the set of fj such
that f is non-vanishing on S is dense. Therefore, we may choose such an fy.

(3) Choose an embedding X <+ A" and let n be the sum of the cardinalities of S and
T after geometric base change. Consider the space of polynomials P vanishing on T’
such that deg P < n. Since the set of polynomials P such that deG pg-1Pg does
not vanish on S is open, it will suffice us to show that it is non-empty, which we may
show after geometric base change.

The conditions on S imply that UgeggS = [l e 95" for some subset S' C S.
Indeed, if s = gs’ for some s, s’ € S, put S’ = S\ s; the conditions on S imply that the
orbit of S’ is the same as that of S. We conclude by induction. Put 7" = Ugx19S" UT
and apply Lemma 2.1 to yield a P vanishing on 7" and non-vanishing on S’. This
gives the desired map.

O

Remark 2.3. When G is a cyclic group of order £ and k has a primitive fth root of unity
«, we get an irreducible one-dimensional representation of G given by multiplication by «.
In this case, the A% in Lemma 2.1 becomes A?. This case of Lemma 2.1 will be used in the
following section.

3. THE CASE OF A CYCLIC GROUP

In this section, we treat the case where G is a cyclic group of order equal to a prime power.
The proof is split into two cases which will be treated in the next two sections. The main
theorem (Theorem 1.2) in this case follows from Propositions 3.3 and 3.7 below.

3.1. Proof of Theorem 1.2 in the case where z € X for some subgroup H C G.
In this section, we assume that z € X for some subgroup H C G. We first prove some
preliminary lemmas.

Lemma 3.1. Let X be a smooth affine scheme over k and let G act on X. Let Z C X be
a closed invariant subscheme of positive codimension, z € Z a point such that z € XH for
some subgroup H C G and Z € X" a closed specialisation of z. Moreover, assume that G
acts non-trivially on every neighbourhood of z. Then there exist G-equivariant morphisms
fiyeoosfn: X = Al and gi1,. .., gim, + X — A% for primitive roots of unity o1, ..., 0, such
that if ¢ : X — A"F2:™Mi% s the induced morphism, dim ¢~ (¢(Z)) N Z = 0.
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Proof. First, note that the action of G on T5X is non-trivial. To see this, let X = Spec A
and let z correspond to the maximal ideal m. Since the action of G is nontrivial on every
neighbourhood of z, we may assume that the action of ¢ is non-trivial. Let Ay be the subring
of A such that o.a = a and let A; be the eigen-space of o, which is non-trivial. If o acted
trivially on 73X, it would act trivially on its dual, which is isomorphic m/m2. This would
imply that m; /mym;=0, where m; = m N (Ay);. By considering m; as a finite (Ag)m-module
and using the Nakayama Lemma, we get m; = 0 so that A; = 0, which contradicts our
assumption that o acts non-trivially on all neighbourhoods of Z.

The group action of G induces a representation on 73X, which splits into irreducible
representations as k()" @ k(z)2=("+17%  where m; > 0.

By Lemma 2.2(1), we have f; : X — A! such that f;'(f1(Z)) does not contain any com-
ponent of positive dimension of Z or Z%. This implies that dim f Y(f1(z)NZ < dim Z and
T (£1(2)NZ% < dim Z9. By induction, using the fact that (f,9)"*((f,9)(Z)) € f~ (f(Z)N
g Y(9(2)), we get fi,..., fn such that dim(f1,..., fn) " (f1,--., fa)(Z)NZ < dim Z — n and
dim(f, ..., fo) ' (f1s. .., £2)(Z) N ZC = 0 because dim Z¢ < dim X@ = n. Therefore, each
positive dimensional component of f~'(f(Z)) N Z has some point not lying in Z%. Now,
dmZ < dimX —1=n+t—1+Y,m;, so that dim(f1,...,fn) ' (f1,...,f)E)NZ <
t—14>, m;. We apply Lemma 2.2(2) to get an equivariant morphism g; ; : X — A% such that
dim(f, gi1) " ((f, 9i1)(Z)NZ < t—2+3", m;. Repeating this process for each (i, j), 1 < j < m;,
1 <i <t, we get our result by taking ¢ = (f1,..., fns 91,1, s Gl Gt1s - -5 Gtomy)-

O

Lemma 3.2. With the same notation as in Lemma 3.1, there exists a G-equivariant closed im-
mersion X — ANt Mioi yhere N, M; are integers such that N > n and M; > m; satisfying
the following property. For a general linear projection ¢ : ANTZ: Mioi _y Antd2mici o A3 04
we have:
(1) The composite morphism Z — A2 Mi% 5 AZ2i 0y APT20™Mi% s quasi-finite at Z.
(2) The composite X — AN+I: Mioi _y An+3mioi 5 A3 s étale at Z.

Proof. Let p1,...,pn be the generators of Ox(X). We claim that we may choose the p; such
that o - p; = o - p; for some primitive root of unity «. If this holds, the morphism induced
by pi : X — A% is equivariant, where ¢’ is the element of G inducing the representation
a on k. Combining these with the morphisms of Lemma 3.1, we get our closed immersion
X s AN M

To prove the claim, observe that if p € Ox(X), then

-1
l—l . Zam . O'Zp
1=0

for 0 < j <1 —1 satisfy our conditions. Moreover, p can be recovered by adding up these
expressions over j. So applying this construction to each p;, the claim is proved.

To prove that our immersion satisfies conditions (1) and (2), observe that both conditions
are open and therefore, we need only check that they are non-empty. Therefore, if we take
the projection ¢ such that they give the f;s and g; ;s of Lemma 3.1 when composed with X,
we are done by Lemma 3.1.

To show the condition (2), we may base change to the algebraic closure of k. It suffices to
show that the condition is non-empty for each point lying over Z. Therefore, we may assume
that Z is a rational point, so that k(Z) = k. Also, the inclusion 73X — ENTXZ:i Mi gplits
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equivariantly, giving an isomorphism with the tangent space of A™T22i™i% x A% % which is
krt2i(4ma)oi - Therefore, by [5, Theorem 17.11.1 (d)], we are done.
O

Now we are ready to the presentation lemma under the conditions of Lemma 3.1.
Proposition 3.3. Theorem 1.2 holds in the case where z € X for some subgroup H C G.

Proof. We may assume that the conditions of Lemma 3.1 is satisfied. Indeed, if not, there is
a neighbourhood of z on which G acts trivially, in which case we reduce to the usual Gabber
lemma.

First we produce étale maps X < X3 — W/ x A% such that the preimage of Z is finite over
th and maps via a closed immersion to th x A?. By Lemma 3.2, we have a G-equivariant
closed immersion X < ANTX:i Mi%i and a linear projection ¢ : ANTZ: Mioi _y An+32;mioi
A% guch that the maps Z — A™t22i™i% ig quasi-finite at zZ and X — A"T2imi0i 5 A o
is étale at z. After passing to a smaller open subset if necessary, we may assume that these
two maps are quasi-finite and étale respectively. Choose some o;, which we take to be o1 € H
without loss of generality. Let W C X denote the vanishing locus of the projection X — A%!.
Since W is étale over an affine space, it is smooth. Also z € W since X < W: indeed
r € XH implies that g(x) = g(o1 - ) = a - g(x) so that g(x) = 0. We have the following
pullback squares.

X ———— W x A1

> W
X — AnJerm X Azl Oi AnJFZmiC"i X AZi;ﬁl gi

Since W is a closed subscheme of X, W X, 500 50

Since both schemes are étale over A"2mi% x A% and separated, the diagonal W —
W x W is both open and closed. Therefore, we may write the scheme
W X i mios o g Sivn oo Woas a disjoint union W[ W’ and put Xj = X3 \ W'. We have the
following pullback squares.

W is a closed subscheme of Xj.

ANt myo; XAEi;&l 4

wh Xy > Whx A" —— W)
w X1 W x A" —— W

Since W lifts to X, as the square indicates, z lifts to X5. Since Z — ANt mio
is quasi-finite at z, so is Zx, — W/. By [8, Theorem 10.153.4], we can write Zyx, =
ALTL--- 11 An 11 B, where A; are local finite schemes over W/ and B — W is not quasi-
finite over any point over z. Therefore, without loss of generality, we may take z € A;. Set
X3 = X2\ (Ui»14; U B). Then Zx, — W is finite and the composite map Zx, = X3 —
W x A% is finite and unramified. Since the fiber of Zx, over z consists solely of z, the fiber
of Zx, — W x A% is a closed immersion. By Nakayama’s lemma, the map Zx, — W/ x A
is itself a closed immersion.

Note that in Diagram 3.1, the composite of the bottom row W — X{ — W x A% — W is
the identity and therefore, so is its base change W/ — Xy — W/ x A%t — W/, This implies
that WP — X3 — W] is the identity so that X3 — W/ admits a section.
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The rest of the proof proceeds as in [1, Page 592, Step 5]. Note that W/ C X3. Indeed,
for ¢ > 1, we have that th UA; C Wf C Xy is closed, but does not contain z and is
therefore empty and by the same argument, so is W/ U B. The map Zx, — ¢ ' (¢(Zx,))
is both open and closed and so we may write »~(p(Zx,;)) = Zx, [[Z’. We have z ¢ Z'
and therefore, Z' N W/ = () and W) c X, := X3\ Z’. By definition, X; — W/ x A% is
an étale neighbourhood of Zx,. The composite W/ — X; — W} x A%t consists of finitely
presented W/ schemes. Writing W/ as the cofiltered limit of étale neighbourhoods of zin W,
we conclude by continuity that there exists such an étale neighbourhood W oW together
with a model W — Xy — W X A%t of the previous composite, satisfying all the properties
as above. In particular, X4 — W x Al is an étale neighbourhood of Z % and X4 is an open

subscheme of X/ xy W. Since W — W and X} — X are open neighbourhoods of z, so is
)E — X.

Note that since X3 — Wh admits a section, so does X, — Wh and therefore, so does
Xy = W. Setting X' := = X4 and W := W in the statement of Theorem 1. 2, we get the
desired result. O

3.2. Proof of Theorem 1.2 in the case where z ¢ X" for any subgroup H C G. Now,
it remains for us to treat the case where z ¢ X for any subgroup H C G. After replacing
X by X\ (UgcgXH), we may assume that G acts freely on X.

Lemma 3.4. We may assume without loss of generality that oz = z, where o is a generator

of G.

Proof. If o'z # z for all i # 0, we have Gz = G x z and therefore, the projection map
G x X — X is an equivariant étale neighbourhood of z. Therefore, we may replace X by
G x X. Now, G x X — (G is a smooth map to a zero-dimensional scheme on which G acts
freely. Thus, we may reduce to the non-equivariant Gabber lemma over (G x X)/G — Speck.

On the other hand if 0z # 2z and 0’z = z for some i > 1. Let H be the subgroup generated
by o'. Since G is cyclic, G / H is isomorphic to some subgroup H' C G such that G/H' = H.
Note that Gz = G/H x z = H' x z, so that H' x X — X is an equivariant étale neighbourhood
of Gz. The projection map H' x X — H’ is a G-equivariant smooth map between schemes
on which H' acts freely. Now, the G-equivariant case of the map H' x X — H' is equivalent
to the G/H' = H equivariant case of the map (H' x X)/H' — H'/H' = Speck which we
may assume by induction on the size of G since H' is a cyclic group with a prime power order
strictly less than the order of G. ([l

The proof of the next lemma is identical to the corresponding section in [1, Page 593] and
therefore, we omit it.

Lemma 3.5. We may assume without loss of generality that dim X > 1.

Because of this lemma, we may assume that dim X = n + 1 for some n > 0. The next
Lemma corresponds to [1, Page 593, Step 1].

Lemma 3.6. Let Z be a closed specialisation of z. There exists a G-equivariant map @ :
X — A" which is smooth at Z, and whose restriction to Z is quasi-finite at Z and which is
non-vanishing at z.

Proof. After choosing an open embedding into some G-representation and considering the set
of linear projections from it to A", we can take the conditions of quasi-finiteness, smoothness
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and non-vanishing at Z to be open conditions. Therefore, it suffices to show that each of the
conditions may be satisfied separately.

The non-vanishing condition is already satisfied because of Lemma 2.2(2).

For quasi-finiteness, the proof is very similar to that of Lemma 3.1. Given a closed subset
Z" of X of dimension < d, by Lemma 2.2(3) we can find a map f : X — A vanishing at z
with dim Z’ N Z(f) < d. Indeed, let S be a set of points in each dimd component of Z such
that none of them are conjugate to z; let T be the set of conjugates of Z. Then Lemma 2.2(3)
gives a map satisfying our conditions. By the same arguments as in the proof of Lemma 3.1,
we can construct the required map X — A",

For smoothness, choose finitely many generators of m,, the maximal ideal at z and let V

be the affine space spanned by them. For general elements fi,..., f, of V', we show that
(3.1) © = Z a b fiot, Z a ot Z a”t- fuot).
0<i<l—1 0<i<l—1 0<i<l—1

will satisfty the desired conditions. By the same argument as in the proof of Lemma 2.2, we
can see that ¢ is G-equivariant. For the smoothness, we may base change to the algebraic
closure, where Z splits into finitely many G orbits Gz,...,Gz. and V is the affine space
generated by a set of generators of the maximal ideal at each point in U;Gz;. It suffices to
show that ¢ is smooth at Gz without loss of generality. The map V — @, cq Qo X is
surjective as the right hand side is a quotient of mg/m%@)ﬁ. Let ey, ..., e, be a basis of 2, X;
if we pick each f; to be a preimage of (e;,0,...,0), we are done. O

Now we proceed with the final part of the proof.
Proposition 3.7. Theorem 1.2 holds in the case where z ¢ X for any subgroup H C G.

Proof. We first construct étale maps X < X3 — W x A! such that the induced map Zx, —
W x Al is finite over the Henselian local scheme W and maps via a closed immersion to
W x A?. By Lemma 3.6, and passing to an open subset if necessary, we may assume that we
have a smooth map ¢ : X — A" which is smooth and quasi-finite when restricted to Z and
such that w := ¢(Z) # 0. Since Z is set-theoretically fixed, so is w, but it has a non-trivial
G-action scheme-theoretically. Set W = (A™)" and X; = X xgne W. Since Zx, — W is
quasi-finite, just as in the proof of Proposition 3.3, we can define Xs by removing finitely
many connected components of X; such that z € Xy and Zx, — W is finite.

As in [1, Page 594], we claim that there exists a map X — A{;, such that the special fibre
X — ALl is quasi-finite, étale and geometrically injective at z. Indeed, it is shown in [1,
Page 594, Proof of claim] that there exists a map f,, : Xu — AL with the desired properties.
We take any (not-necessarily equivariant) lift fo : X — A%/V of fy. The map f := 3, foo’
will satisy the required conditions.

By Miracle Flatness ([8, Theorem 10.128.1]), we have that this map is flat at z and therefore,
étale (see [8, 29.36.15]).

Just as in the proof of Proposition 3.3, we define X4 = X3\ ¢~ (¢(Zx;) \ Zx,. We get
an étale neighbourhood X4 — A%/V of Zx,. These are all finitely presented schemes over W,
which is the direct limit of the étale neighbourhoods of w € A™. Similarly to the proof of
Proposition 3.3, we obtain an étale neighbourhood W — A" of w and a model Xy — Alﬁ/

having the same properties as before. Since W — A" is an étale neighbourhood of W, so is
X, — X an étale neighbourhood of z. Setting X’ := X, and W := W in the statement of
Theorem 1.2, we get the desired result.
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4. THE CASE OF A GENERAL FINITE ABELIAN GROUP

By the structure theorem for finite abelian groups, we may assume G = [[, -,,,, Gi, where
each G is a cyclic group of order I;, where each [; is a power of a prime. Assume that primitive
l;th roots of unity exist in k. Let I = [[,l;. The proof of Theorem 1.2 in this case follows
exactly the same lines as in the case of a cyclic group. We will need the following variation
of Lemma 3.4.

Lemma 4.1. Assume that the action of G on X is free and z ¢ X" for any subgroup
H C G. To prove the Gabber presentation lemma, we may assume without loss of generality
that (0;)iz = z, where each o; is a generator of G;.

Proof. If o]z # z for all i,j # 0, we have Gz = G x z and therefore, the projection map
G x X — X is an equivariant étale neighbourhood of z. Therefore, we may replace X by
G x X. Now, G x X — @ is a smooth map to a zero-dimensional scheme on which G acts
freely. Thus, we may reduce to the non-equivariant Gabber lemma over (G x X)/G — Speck.

Otherwise, for each i, let H; C G; be the maximal subgroup that fixes z. Since each G is
cyclic, there exists H, C G; such that G/H; = H]. We have Gz = G’ x z, where G’ := [, H,
so that G’ x X — X is an equivariant étale neighbourhood of Gz. The projection morphism
G’ x X — @G’ is a smooth G-equivariant morphism between schemes on which G’ acts freely.
Now, the G-equivariant case of the map G’ x X — G’ is equivalent to the G/G" = [], H;
equivariant case of the map (G'x X)/G" — G'/G" = Spec k which we may assume by induction
on the size of G as [[; H; is a product of cyclic groups of order strictly less than G. O

Theorem 4.2. Theorem 1.2 holds for a general abelian group.

Proof. The proof goes through exactly as in the case where G is a cyclic group, by using
Lemma 4.1 in place of Lemma 3.4. The only other change that we need to replace the
definition of ¢ in (3.1) with

(41 o= (Lo f- ITom) 2 oq e - IT o 2o o™ £ TL oD,

where each of the sums are taken over (n;); such that 0 < n; < ;. O
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