
AN EQUIVARIANT VERSION OF THE GABBER PRESENTATION

LEMMA

SANDEEP S AND ANAND SAWANT

Abstract. We extend the C2-equivariant version of the Gabber presentation lemma proved
in [1] to the case of a general finite abelian group under suitable hypotheses.

1. Introduction

In [4], Gabber proved a geometric presentation lemma in order to prove the effacement
theorem for étale cohomology and as a result, the exactness of the Gersten complex for certain
classes of sheaves. This lemma allows one to reduce a problem to the situation of an affine
line over a base and a closed subset finite over the base and is of fundamental importance to
motivic homotopy theory as developed in [7]. It may be seen as an analogue of the tubular
neighbourhood theroem in differential geometry.

The Gabber presentation lemma was proved over an infinite base field in [4], but it was
extended to the finite field case in [6] and to the case where the base ring is a of a Noetherian
domain with infinite residue fields in [3]. In [1], Bachmann proved a C2-equivariant version of
the lemma, where C2 is the cyclic group with two elements and used it to prove a modified form
of Gersten injectivity and thereby, extend some standard results in motivic homotopy theory
about stable A1-connectivity and the homotopy t-structure to the C2-equivariant setting.

Conventions 1.1. Throughout this paper, X will denote a smooth scheme of finite type
over an infinite field k and G will denote a finite abelian group with of order ℓ such that ℓ is
invertible in k and that k has primitive lth roots of unity. Let X be endowed with a G-action.

Now suppose G = Z/ℓ for some prime power ℓ and let σ ∈ G be a generator and let α be

a primitive lth root of unity. By Aσi
, we mean A1 endowed with the G-action corresponding

to multiplication by αi. Morphisms between any G-scheme and Aσi
will be assumed to be

G-equivariant.

In this article, we extend the results of [1] to the G-equivariant setting, where G is a finite
abelian group under suitable hypotheses.

Theorem 1.2. Let k be an infinite field and let X be a smooth k-scheme. Let G be a finite
abelian group of order ℓ with a G action on X. Let Z ⊂ X be a closed invariant subscheme
of positive codimension and let z ∈ Z be a (not necessarily closed) point. In addition, assume
that ℓ is invertible in k and that k has primitive ℓth roots of unity. Then there exist

• a G-equivariant étale neighbourhood X ′ → X of Gz;
• a smooth G-scheme W ;
• a G-equivariant étale neighbourhood X ′ → A1

W of ZX′, for some action of G on A1.
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These satisfy the following conditions:

• The composite ZX′ → A1
W →W is finite.

• In the case where the action on A1
W is non-trivial, then X ′ →W admits a section.

In Section 3, we prove Theorem 1.2 in the case where G is a cyclic group of prime power
order. Our proof follows along the same lines as the proof in [1]. More precisely, we generalize
the preparatory result [1, Lemma 2.5] and treat the two cases, where z ∈ XH for some
subgroup H ⊂ G and where z /∈ XH for any subgroup H, separately. The proof of the first
case follows along the same lines as Bachmann’s proof, using our generalized version of the
preparatory lemma (Lemma 2.2). In the second case, the reduction to the set-theoretically
fixed case in [1] has to be generalized to an inductive argument on the size of the group. The
case of a general finite abelian group is handled in Section 4.

2. Preliminaries

In this section, we prove some preliminary results about obtaining nice equivariant mor-
phisms to affine spaces, which will be used in the proof of the main theorem. We work in
the generality of an arbitrary finite group, keeping future use in mind. We begin with an
extension of [1, Lemma 2.4].

Lemma 2.1. Let X be an affine finite type k-scheme, k an infinite field. Let S ⊂ X a
finite set of closed points. There exists a function f : X → Ad inducing a universal injection
S ↪→ Ad.

More generally, suppose given T ⊂ X another finite set of closed points, disjoint from S.
Let ρ1, . . . , ρm be linear automorphisms of Ad, where m = |S|. Let X ↪→ AN be an embedding.
Suppose that T consists of n points after geometric base change. Among the set of polynomial
morphisms X → Ad of degree ≤ n+m−1 (with respect to the embedding X ↪→ AN ) vanishing
on T , those which induce a morphism f : S ↪→ Ad\0 satisfying the following conditions forma
dense subset:

(1) The morphism f is universally injective.
(2) For each permutation σ ∈ Sm, the property

∑
1≤i≤m ρi · f(sσ.i) ̸= 0 holds universally.

Proof. The first claim follows directly from the second by taking T = ∅. To prove the second
claim, we may assume that k is algebraically closed. We need to find a d-tuple of polynomials
P := (Pj)1≤j≤d of degree n + 1 such that for every s ∈ S, we have P (s) ̸= 0; for s ̸= s′, we
have P (s) ̸= P (s′) and for each permutation σ ∈ Sm, the property

∑
1≤i≤m ρi · f(sσ.i) ̸= 0.

Since each of these conditions are open, we may satisfy them separately. So, without loss
of generality, take σ = id. Clearly, it will suffice to show that there exists a P of degree
≤ n +m − 1 vanishing at T and s2, . . . , sm, but not at s1. Taking a product over terms for
each t ∈ T and si for 2 ≤ i ≤ m, it suffices to find a linear polynomial vanishing at some
specific point of T ∪{s2, . . . , sm}, which is clearly possible since this set is disjoint from S. □

We now prove a generalization of [1, Lemma 2.5].

Lemma 2.2. Let G be a finite group and let X be an affine finite type k-scheme with a
G-action, k an infinite field of characteristic relatively prime to l. Let S ⊂ X be a finite set
of closed points. Let ρ be a d-dimensional G-representation.

(1) For x ∈ XG \S, there exists an equivariant map f : X → Ad (where Ad has the trivial
action) with f(x) /∈ f(S).
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(2) If S ⊂ X \ XH for any subgroup H ⊂ G, then there exists an equivariant map
f : X → Ad, with f(s) ̸= 0 for s ∈ S, where Ad is endowed with the G-action induced
by ρ.

(3) Suppose S ⊂ X \ XH for any subgroup H ⊂ G and T ⊂ X is another finite set of
closed points disjoint from ∪g∈GgS. There exists a map f : X → Ad vanishing on T
and non-vanishing on S.

Proof.

(1) On applying Lemma 2.1 to X/G and S/G ∪ {x}, we get a morphism f ′ : X/G→ Ad

injective on S/G ∪ {x}, which in turn gives a G-equivariant morphism f : X → Ad

such that f(x) /∈ f(S).
(2) On applying Lemma 2.1 to X and G · S, we get a morphism f0 : X → Aσ. Put

f =
∑

g∈G ρg−1f0g; this is clearly equivariant with respect to the action of α on A1.

Fix an element s ∈ S. Taking {ρi}i = {ρg}g∈G and T = ∅ and {si}i = Gs in Lemma
2.1 (note that gs ̸= g′s for g ̸= g′ by our assumption), we have that the set of f0 such
that f is non-vanishing on S is dense. Therefore, we may choose such an f0.

(3) Choose an embedding X ↪→ AN and let n be the sum of the cardinalities of S and
T after geometric base change. Consider the space of polynomials P vanishing on T
such that degP ≤ n. Since the set of polynomials P such that

∑
g∈G ρg−1Pg does

not vanish on S is open, it will suffice us to show that it is non-empty, which we may
show after geometric base change.

The conditions on S imply that ∪g∈GgS =
∐

g∈G gS′ for some subset S′ ⊂ S.

Indeed, if s = gs′ for some s, s′ ∈ S, put S′ = S \s; the conditions on S imply that the
orbit of S′ is the same as that of S. We conclude by induction. Put T ′ = ∪g ̸=1gS

′∪T
and apply Lemma 2.1 to yield a P vanishing on T ′ and non-vanishing on S′. This
gives the desired map.

□

Remark 2.3. When G is a cyclic group of order ℓ and k has a primitive ℓth root of unity
α, we get an irreducible one-dimensional representation of G given by multiplication by α.
In this case, the Ad in Lemma 2.1 becomes Aσ. This case of Lemma 2.1 will be used in the
following section.

3. The case of a cyclic group

In this section, we treat the case where G is a cyclic group of order equal to a prime power.
The proof is split into two cases which will be treated in the next two sections. The main
theorem (Theorem 1.2) in this case follows from Propositions 3.3 and 3.7 below.

3.1. Proof of Theorem 1.2 in the case where z ∈ XH for some subgroup H ⊂ G.
In this section, we assume that z ∈ XH for some subgroup H ⊂ G. We first prove some
preliminary lemmas.

Lemma 3.1. Let X be a smooth affine scheme over k and let G act on X. Let Z ⊂ X be
a closed invariant subscheme of positive codimension, z ∈ Z a point such that z ∈ XH for
some subgroup H ⊂ G and z ∈ XH a closed specialisation of z. Moreover, assume that G
acts non-trivially on every neighbourhood of z. Then there exist G-equivariant morphisms
f1, . . . , fn : X → A1 and gi,1, . . . , gi,mi : X → Aσi for primitive roots of unity σ1, . . . , σt, such

that if φ : X → An+
∑

i miσi is the induced morphism, dimφ−1(φ(z)) ∩ Z = 0.
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Proof. First, note that the action of G on TzX is non-trivial. To see this, let X = SpecA
and let z correspond to the maximal ideal m. Since the action of G is nontrivial on every
neighbourhood of z, we may assume that the action of σ is non-trivial. Let A0 be the subring
of A such that σ.a = a and let A1 be the eigen-space of σ, which is non-trivial. If σ acted
trivially on TzX, it would act trivially on its dual, which is isomorphic m/m2. This would
imply that m1/m0m1=0, where mi = m ∩ (Am)i. By considering m1 as a finite (A0)m-module
and using the Nakayama Lemma, we get m1 = 0 so that A1 = 0, which contradicts our
assumption that σ acts non-trivially on all neighbourhoods of z.

The group action of G induces a representation on TzX, which splits into irreducible
representations as k(z)n ⊕ k(z)

∑
(mi+1)σi , where mi ≥ 0.

By Lemma 2.2(1), we have f1 : X → A1 such that f−1
1 (f1(z)) does not contain any com-

ponent of positive dimension of Z or ZG. This implies that dim f−1
1 (f1(z)) ∩ Z < dimZ and

f−1
1 (f1(z))∩ZG < dimZG. By induction, using the fact that (f, g)−1((f, g)(z)) ⊂ f−1(f(z)∩
g−1(g(z)), we get f1, . . . , fn such that dim(f1, . . . , fn)

−1(f1, . . . , fn)(z) ∩ Z ≤ dimZ − n and
dim(f1, . . . , fn)

−1(f1, . . . , fn)(z) ∩ ZG = 0 because dimZG ≤ dimXG = n. Therefore, each
positive dimensional component of f−1(f(z)) ∩ Z has some point not lying in ZG. Now,
dimZ ≤ dimX − 1 = n + t − 1 +

∑
imi, so that dim(f1, . . . , fn)

−1(f1, . . . , fn)(z) ∩ Z ≤
t−1+

∑
imi. We apply Lemma 2.2(2) to get an equivariant morphism gi,1 : X → Aσi such that

dim(f, gi,1)
−1((f, gi,1)(z)∩Z ≤ t−2+

∑
imi. Repeating this process for each (i, j), 1 ≤ j ≤ mi,

1 ≤ i ≤ t, we get our result by taking φ = (f1, . . . , fn, g1,1, . . . , g1,m1 , . . . , gt,1, . . . , gt,mt).
□

Lemma 3.2. With the same notation as in Lemma 3.1, there exists a G-equivariant closed im-
mersion X ↪→ AN+

∑
i Miσi where N,Mi are integers such that N ≥ n and Mi ≥ mi satisfying

the following property. For a general linear projection φ : AN+
∑

i Miσi → An+
∑

i miσi×A
∑

i σi,
we have:

(1) The composite morphism Z → An+
∑

i miσi ×A
∑

i σi → An+
∑

i miσi is quasi-finite at z.

(2) The composite X ↪→ AN+
∑

i Miσi → An+
∑

i miσi × A
∑

i σi is étale at z.

Proof. Let p1, . . . , pN be the generators of OX(X). We claim that we may choose the pi such
that σ · pi = α′ · pi for some primitive root of unity α. If this holds, the morphism induced
by pi : X → Aσ′

is equivariant, where σ′ is the element of G inducing the representation
α on k. Combining these with the morphisms of Lemma 3.1, we get our closed immersion
X ↪→ AN+

∑
i Mi .

To prove the claim, observe that if p ∈ OX(X), then

l−1 ·
l−1∑
i=0

αij · σip

for 0 ≤ j ≤ l − 1 satisfy our conditions. Moreover, p can be recovered by adding up these
expressions over j. So applying this construction to each pi, the claim is proved.

To prove that our immersion satisfies conditions (1) and (2), observe that both conditions
are open and therefore, we need only check that they are non-empty. Therefore, if we take
the projection ϕ such that they give the fis and gi,js of Lemma 3.1 when composed with X,
we are done by Lemma 3.1.

To show the condition (2), we may base change to the algebraic closure of k. It suffices to
show that the condition is non-empty for each point lying over z. Therefore, we may assume
that z is a rational point, so that k(z) ∼= k. Also, the inclusion TzX → kN+

∑
i Mi splits



AN EQUIVARIANT VERSION OF THE GABBER PRESENTATION LEMMA 5

equivariantly, giving an isomorphism with the tangent space of An+
∑

i miσi ×A
∑

i σi which is
kn+

∑
i(1+mi)σi . Therefore, by [5, Theorem 17.11.1 (d)], we are done.

□

Now we are ready to the presentation lemma under the conditions of Lemma 3.1.

Proposition 3.3. Theorem 1.2 holds in the case where z ∈ XH for some subgroup H ⊂ G.

Proof. We may assume that the conditions of Lemma 3.1 is satisfied. Indeed, if not, there is
a neighbourhood of z on which G acts trivially, in which case we reduce to the usual Gabber
lemma.

First we produce étale maps X ← X3 →W h
z ×Aσ such that the preimage of Z is finite over

W h
z and maps via a closed immersion to W h

z × Aσ. By Lemma 3.2, we have a G-equivariant
closed immersion X ↪→ AN+

∑
i Miσi and a linear projection φ : AN+

∑
i Miσi → An+

∑
i miσi ×

A
∑

i σi , such that the maps Z → An+
∑

i miσi is quasi-finite at z and X → An+
∑

i miσi ×A
∑

i σi

is étale at z. After passing to a smaller open subset if necessary, we may assume that these
two maps are quasi-finite and étale respectively. Choose some σi, which we take to be σ1 ∈ H
without loss of generality. Let W ⊂ X denote the vanishing locus of the projection X → Aσ1 .
Since W is étale over an affine space, it is smooth. Also z ∈ W since XH ⊂ W ; indeed
x ∈ XH implies that g(x) = g(σ1 · x) = α · g(x) so that g(x) = 0. We have the following
pullback squares.

X1 W × Aσ1 W

X An+
∑

miσi × A
∑

i σi An+
∑

miσi × A
∑

i ̸=1 σi

Since W is a closed subscheme of X, W ×An+
∑

miσi×A
∑

i ̸=1 σi W is a closed subscheme of X1.

Since both schemes are étale over An+
∑

miσi × A
∑

i σi and separated, the diagonal W →
W ×An+

∑
miσi×A

∑
i ̸=1 σi W is both open and closed. Therefore, we may write the scheme

W ×An+
∑

miσi×A
∑

i̸=1 σi W as a disjoint union W
∐

W ′ and put X ′
1 = X1 \W ′. We have the

following pullback squares.

W h
z X2 W h

z × Aσ1 W h
z

W X ′
1 W × Aσ1 W

Since W h
z lifts to X2 as the square indicates, z lifts to X2. Since Z → An+

∑
miσi

is quasi-finite at z, so is ZX2 → W h
z . By [8, Theorem 10.153.4], we can write ZX3 =

A1
∐
· · ·

∐
An

∐
B, where Ai are local finite schemes over W h

z and B → W1 is not quasi-
finite over any point over z. Therefore, without loss of generality, we may take z ∈ A1. Set
X3 = X2 \ (∪i>1Ai ∪ B). Then ZX3 → W h

z is finite and the composite map ZX3 → X3 →
W h

z ×Aσ1 is finite and unramified. Since the fiber of ZX3 over z consists solely of z, the fiber
of ZX3 →W h

z ×Aσ1 is a closed immersion. By Nakayama’s lemma, the map ZX3 →W h
z ×Aσ1

is itself a closed immersion.
Note that in Diagram 3.1, the composite of the bottom row W → X ′

1 →W ×Aσ1 →W is
the identity and therefore, so is its base change W h

z → X2 →W h
z ×Aσ1 →W h

z . This implies
that W h

z → X3 →W h
z is the identity so that X3 →W h

z admits a section.
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The rest of the proof proceeds as in [1, Page 592, Step 5]. Note that W h
z ⊂ X3. Indeed,

for i > 1, we have that W h
z ∪ Ai ⊂ W h

z ⊂ X2 is closed, but does not contain z and is
therefore empty and by the same argument, so is W h

z ∪ B. The map ZX3 → φ−1(φ(ZX3))
is both open and closed and so we may write φ−1(φ(ZX3)) = ZX3

∐
Z ′. We have z /∈ Z ′

and therefore, Z ′ ∩W h
z = ∅ and W h

z ⊂ X4 := X3 \ Z ′. By definition, X4 → W h
z × Aσ1 is

an étale neighbourhood of ZX4 . The composite W h
z → X4 → W h

z × Aσ1 consists of finitely
presented W h

z schemes. Writing W h
z as the cofiltered limit of étale neighbourhoods of z in W ,

we conclude by continuity that there exists such an étale neighbourhood W̃ → W together

with a model W̃ → X̃4 → W̃ × Aσ1 of the previous composite, satisfying all the properties

as above. In particular, X̃4 → W̃ ×Aσ1 is an étale neighbourhood of Z
X̃4

and X̃4 is an open

subscheme of X ′
1 ×W W̃ . Since W̃ → W and X ′

1 → X are open neighbourhoods of z, so is

X̃4 → X.
Note that since X3 → W h

z admits a section, so does X4 → W h
z and therefore, so does

X̃4 → W̃ . Setting X ′ := X̃4 and W := W̃ in the statement of Theorem 1.2, we get the
desired result. □

3.2. Proof of Theorem 1.2 in the case where z /∈ XH for any subgroup H ⊂ G. Now,
it remains for us to treat the case where z /∈ XH for any subgroup H ⊂ G. After replacing
X by X \ (∪H⊂GX

H), we may assume that G acts freely on X.

Lemma 3.4. We may assume without loss of generality that σz = z, where σ is a generator
of G.

Proof. If σiz ̸= z for all i ̸= 0, we have Gz = G × z and therefore, the projection map
G × X → X is an equivariant étale neighbourhood of z. Therefore, we may replace X by
G ×X. Now, G ×X → G is a smooth map to a zero-dimensional scheme on which G acts
freely. Thus, we may reduce to the non-equivariant Gabber lemma over (G×X)/G→ Spec k.

On the other hand if σz ̸= z and σiz = z for some i > 1. Let H be the subgroup generated
by σi. Since G is cyclic, G/H is isomorphic to some subgroup H ′ ⊂ G such that G/H ′ ∼= H.
Note that Gz = G/H×z ∼= H ′×z, so that H ′×X → X is an equivariant étale neighbourhood
of Gz. The projection map H ′ ×X → H ′ is a G-equivariant smooth map between schemes
on which H ′ acts freely. Now, the G-equivariant case of the map H ′ ×X → H ′ is equivalent
to the G/H ′ ∼= H equivariant case of the map (H ′ × X)/H ′ → H ′/H ′ ∼= Spec k which we
may assume by induction on the size of G since H ′ is a cyclic group with a prime power order
strictly less than the order of G. □

The proof of the next lemma is identical to the corresponding section in [1, Page 593] and
therefore, we omit it.

Lemma 3.5. We may assume without loss of generality that dimX > 1.

Because of this lemma, we may assume that dimX = n + 1 for some n > 0. The next
Lemma corresponds to [1, Page 593, Step 1].

Lemma 3.6. Let z be a closed specialisation of z. There exists a G-equivariant map φ :
X → Anσ which is smooth at z, and whose restriction to Z is quasi-finite at z and which is
non-vanishing at z.

Proof. After choosing an open embedding into some G-representation and considering the set
of linear projections from it to Anσ, we can take the conditions of quasi-finiteness, smoothness
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and non-vanishing at z to be open conditions. Therefore, it suffices to show that each of the
conditions may be satisfied separately.

The non-vanishing condition is already satisfied because of Lemma 2.2(2).
For quasi-finiteness, the proof is very similar to that of Lemma 3.1. Given a closed subset

Z ′ of X of dimension ≤ d, by Lemma 2.2(3) we can find a map f : X → Aσ vanishing at z
with dimZ ′ ∩ Z(f) < d. Indeed, let S be a set of points in each dim d component of Z such
that none of them are conjugate to z; let T be the set of conjugates of z. Then Lemma 2.2(3)
gives a map satisfying our conditions. By the same arguments as in the proof of Lemma 3.1,
we can construct the required map X → Anσ.

For smoothness, choose finitely many generators of mz, the maximal ideal at z and let V
be the affine space spanned by them. For general elements f1, . . . , fn of V , we show that

(3.1) φ = (
∑

0≤i≤l−1

α−i · f1σi,
∑

0≤i≤l−1

α−i · f2σi, . . . ,
∑

0≤i≤l−1

α−i · fnσi).

will satisfty the desired conditions. By the same argument as in the proof of Lemma 2.2, we
can see that φ is G-equivariant. For the smoothness, we may base change to the algebraic
closure, where z splits into finitely many G orbits Gz1, . . . , Gzr and V is the affine space
generated by a set of generators of the maximal ideal at each point in ∪iGzi. It suffices to
show that φ is smooth at Gz1 without loss of generality. The map V →

⊕
σ∈GΩσz1X is

surjective as the right hand side is a quotient of mz/m
2
z⊗k. Let e1, . . . , en be a basis of Ωz1X;

if we pick each fi to be a preimage of (ei, 0, . . . , 0), we are done. □

Now we proceed with the final part of the proof.

Proposition 3.7. Theorem 1.2 holds in the case where z /∈ XH for any subgroup H ⊂ G.

Proof. We first construct étale maps X ← X3 →W ×A1 such that the induced map ZX3 →
W × A1 is finite over the Henselian local scheme W and maps via a closed immersion to
W ×Aσ. By Lemma 3.6, and passing to an open subset if necessary, we may assume that we
have a smooth map φ : X → Anσ which is smooth and quasi-finite when restricted to Z and
such that w := φ(z) ̸= 0. Since z is set-theoretically fixed, so is w, but it has a non-trivial
G-action scheme-theoretically. Set W = (Anσ)hw and X1 = X ×Anσ W . Since ZX1 → W is
quasi-finite, just as in the proof of Proposition 3.3, we can define X2 by removing finitely
many connected components of X1 such that z ∈ X2 and ZX2 →W is finite.

As in [1, Page 594], we claim that there exists a map X → A1
W such that the special fibre

Xw → A1
w is quasi-finite, étale and geometrically injective at z. Indeed, it is shown in [1,

Page 594, Proof of claim] that there exists a map fw : Xw → A1
w with the desired properties.

We take any (not-necessarily equivariant) lift f0 : X → A1
W of fw. The map f :=

∑
i f0σ

i

will satisy the required conditions.
By Miracle Flatness ([8, Theorem 10.128.1]), we have that this map is flat at z and therefore,

étale (see [8, 29.36.15]).
Just as in the proof of Proposition 3.3, we define X4 = X3 \ φ−1(φ(ZX3) \ ZX3 . We get

an étale neighbourhood X4 → A1
W of ZX4 . These are all finitely presented schemes over W ,

which is the direct limit of the étale neighbourhoods of w ∈ Anσ. Similarly to the proof of

Proposition 3.3, we obtain an étale neighbourhood W̃ → Anσ of w and a model X̃4 → A1
W̃

having the same properties as before. Since W̃ → Anσ is an étale neighbourhood of W , so is

X̃4 → X an étale neighbourhood of z. Setting X ′ := X̃4 and W := W̃ in the statement of
Theorem 1.2, we get the desired result.
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□

4. The case of a general finite abelian group

By the structure theorem for finite abelian groups, we may assume G =
∏

1≤i≤mGi, where
each Gi is a cyclic group of order li, where each li is a power of a prime. Assume that primitive
lith roots of unity exist in k. Let l =

∏
i li. The proof of Theorem 1.2 in this case follows

exactly the same lines as in the case of a cyclic group. We will need the following variation
of Lemma 3.4.

Lemma 4.1. Assume that the action of G on X is free and z /∈ XH for any subgroup
H ⊂ G. To prove the Gabber presentation lemma, we may assume without loss of generality
that (σi)iz = z, where each σi is a generator of Gi.

Proof. If σj
i z ̸= z for all i, j ̸= 0, we have Gz = G × z and therefore, the projection map

G × X → X is an equivariant étale neighbourhood of z. Therefore, we may replace X by
G ×X. Now, G ×X → G is a smooth map to a zero-dimensional scheme on which G acts
freely. Thus, we may reduce to the non-equivariant Gabber lemma over (G×X)/G→ Spec k.

Otherwise, for each i, let Hi ⊂ Gi be the maximal subgroup that fixes z. Since each Gi is
cyclic, there exists H ′

i ⊂ Gi such that G/Hi
∼= H ′

i. We have Gz = G′× z, where G′ :=
∏

iH
′
i,

so that G′ ×X → X is an equivariant étale neighbourhood of Gz. The projection morphism
G′ ×X → G′ is a smooth G-equivariant morphism between schemes on which G′ acts freely.
Now, the G-equivariant case of the map G′ × X → G′ is equivalent to the G/G′ ∼=

∏
iHi

equivariant case of the map (G′×X)/G′ → G′/G′ ∼= Spec k which we may assume by induction
on the size of G as

∏
iHi is a product of cyclic groups of order strictly less than G. □

Theorem 4.2. Theorem 1.2 holds for a general abelian group.

Proof. The proof goes through exactly as in the case where G is a cyclic group, by using
Lemma 4.1 in place of Lemma 3.4. The only other change that we need to replace the
definition of φ in (3.1) with

(4.1) φ = (
∑

(
∏
i

α−ni
i f1.

∏
i

σni
i ),

∑
(
∏
i

α−ni
i f2.

∏
i

σni
i ), . . . ,

∑
(
∏
i

α−ni
i fn.

∏
i

σni
i )),

where each of the sums are taken over (ni)i such that 0 ≤ ni < li. □
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