KATO COMPLEXES OF RECIPROCITY SHEAVES AND APPLICATIONS

SANDEEP S AND ANAND SAWANT

ABSTRACT. We show that every reciprocity sheaf gives rise to a cycle (pre)module in the
sense of Rost over a perfect field, under mild additional hypotheses. Over a perfect field of
positive characteristic, we show that the first cohomology group of a logarithmic de Rham-
Witt sheaf has a partial cycle module structure. As a consequence, we show that Kato
complexes of logarithmic de Rham-Witt sheaves satisfy functoriality properties similar to
Rost’s cycle complexes.
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1. INTRODUCTION

The notion of homotopy invariance is the cornerstone of Voevodsky’s construction of the
triangulated category of motives [Voe00] in the sense that the category of homotopy invari-
ant sheaves with transfers on smooth schemes a field is used as an essential building block.
However, especially in positive characteristic, many sheaves of interest are not homotopy in-
variant, but satisfy a weaker condition. This lead to the study of reciprocity sheaves started
in [KSY16], which in turn, has lead to the development of the theory of motives with modu-
lus, extending Voevodsky’s theory of motives. A certain special class of homotopy invariant
sheaves with transfers, called homotopy modules, was identified with cycle modules in the
sense of [Ros96] in the Ph.D. thesis of Déglise [Dég02] (see also [Dég08]). Rost’s theory of
cycle modules gives an alternate approach and a generalization of classical intersection theory
and can be seen as an axiomatization of fundamental properties of Milnor K-theory.

One of the aims of this article is to investigate to what extent this special property of
homotopy modules extends to reciprocity sheaves. Let k be a perfect field and let Sm/k
denote the big Nisnevich site of smooth, separated finite type schemes over k. The first main
result of this article is to show that every reciprocity sheaf gives rise to a cycle (pre)module
under mild hypotheses (see Theorem 3.9).

The authors acknowledge the support of SERB MATRICS grant MTR/2023/000228, India DST-DFG
Project on Motivic Algebraic Topology DST/IBCD/GERMANY /DFG/2021/1 and the Department of Atomic
Energy, Government of India, under project no. 12-R&D-TFR-5.01-0500.
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Theorem 1. Let k be a perfect field. Let F be a good reciprocity sheaf on Sm/k in the sense
of Definition 2.3. Then for any finitely generated field extension K of k, the association

F(K) := colim F(U),
bLUCX

where U wvaries over all the open subsets of a model X of K, defines a cycle premodule.
Moreover, this cycle premodule structure satisfies the cycle module axioms.

The key difference from the work of Déglise is the construction of the residue map in the
absence of Al-invariance and purity. This is done in Theorem 3.5 for good reciprocity sheaves
(see Definition 2.3) by using the recent work of Binda, Riilling and Saito [BRS22] on the
cohomology of reciprocity sheaves and especially, on the Gysin triangle.

Let us now assume that k£ is a perfect field of characteristic p > 0. One of the main
examples of an interesting good reciprocity sheaf that is not Al-invariant is the logarithmic
de Rham-Witt sheaf of Illusie [I1179]. The importance of this example is that over the étale
site, the logarithmic de Rham-Witt sheaf 1,.(q) in weight ¢ can be identified up to a shift with
the étale motivic complex Z/p"Z(q) in weight ¢, by the work of Geisser and Levine [GLO1].

In [Kat86], Kato defined a family of complexes for ¢ € Z when n € Z\ {1} and ¢ > 0 when
n = 1 given (in homological conventions) by:

C(X,Z/p"Z(q),n):

0— @ HY 0 (k(2), Z)p"Z(d + q)) = -+ — @ H™(k(x),Z/p"Z(q)) — 0
z€X(q) z€EX(0)

Under the identification Z/p"Z(q)[q] = v+(q), this takes the form (in cohomological conven-
tions)

C*(X,Z/p"Z(q),n): 0 = P H"(k(z),v(q)) = -+ = @ H"(k(z),vp(q — d)) = 0.

z€X(0) e X (d)
The complex C(X,Z/p"Z(q),n) is nonzero only for n =0 or n = 1. In the case n = 0, it can
be identified with Rost’s cycle complex for the cycle module corresponding to mod-p™ Milnor
K-theory under the isomorphism HZ (F,Z/p"Z(n)) ~ KM(F)/p" for any field F obtained by
Bloch-Gabber-Kato (see [BK86]). In fact, this observation was the main motivation behind
investigating whether reciprocity sheaves under mild hypotheses give rise to cycle premodules,
leading to Theorem 1 above.

In the case n = 1, it is known that the groups H'(—,v,(q)) do not form a cycle module as
the residue map is not defined for all valuations. However, we verify in Section 4.2 that this
partial cycle premodule data does satisfy the cycle premodule and cycle module axioms. We
also verify that the classical Gysin maps for logarithmic de Rham-Witt sheaves constructed
by Gros [Gro85] agree with the ones given by Binda, Riilling and Saito. As a consequence,
we show the following functoriality properties for Kato complexes analogous to cycle modules
in Section 5 (see Definition 5.1, Definition 5.8 and Proposition 5.11).

Theorem 2. Let k be a perfect field of characteristic p > 0 and let r > 0 be an integer.
The assignment of the Kato complex C(X,Z/p"Z(q),1) to a smooth k-scheme X admits the
following functoriality properties:

e a proper morphism f : X — Y induces a push-forward morphism

f« 1 C(X,Z/p"Z(q),1) — C(Y,Z/p"Z(q), 1),
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where § = dimY — dim X;
e an arbitrary morphism g : X — Y induces a pullback morphism

97 : C(Y, Z/p"Z(q + 6),1) — C(X, Z/p"Z(q), 1)[4],
which depends on the choice of a coordination T of the tangent bundle of Y.

Consequently, for any proper schemes X,Y, Z over k with X, Z smooth and a correspondence
in CHY™Z(Y x Z) represented by a cycle z € ZW2(Y x Z), there exists an action

2o : C(X XY, Z/p"7(q),1) = C(X x Z,Z/p"Z(q),1)

such that the induced action on the cohomology groups passes through rational equivalence
and agrees with the usual action of correspondences.

Although we follow the approach outlined in the works of Rost [R0os96] and Déglise [Dég02],
the key difference here is that the classical argument using the deformation to the normal
cone to construct general pullbacks has to be slightly modified in the absence of homotopy
invariance. This has been alluded to in [KS12, Section 4, page 147].

One of the motivations for this work is to develop some tools needed to attack the question
of Rost nilpotence for cycles having torsion primary to the characteristic of the base field,
using a combination of the methods in [RS18], [Dial9] and [Gill4]. A precise obstruction to
the Rost nilpotence principle for smooth projective varieties of dimension > 3 can be explicitly
written down in terms of actions of correspondences on certain cohomology groups of étale
motivic complexes Qy/Z¢(q) (see [RS18, Remark 4.7] and [Dial9, Theorem 2.4]), where ¢ runs
through all the primes. Theorem 2 above gives an action of a correspondence at the level of
Kato complexes that is compatible with the correspondence action on the cohomology groups.
Applications to Rost nilpotence using the methods developed in this article will be explored
elsewhere.

Conventions. We work over a perfect field k. We assume that every scheme is equidimen-
sional, separated and of finite type over k.

All fields will be assumed to be finitely generated over k. Let Fj denote the category of
finitely generated field extensions of k. All valuations on a field are assumed to be of rank 1
and of geometric type over k, which means that the local ring of the valuation is a regular
local ring which is the localization of a height 1 prime ideal of an integral domain finitely
generated over k.

For a field F, we will denote its Henselization by F" and its strict Henselization by F*",
with respect to a separable closure F*¢P. The absolute Galois group of F' will be denoted by
['p := Gal(F*?/F). The ith Milnor K-group of F will be denoted by KM(F). For any I'p-
module M, the Galois cohomology groups H(I'r, M) will be denoted by H*(F, M), which is
also the notation for the corresponding étale cohomology groups. We will abuse the notation
and denote the Galois cohomology classes and cocycles representing them by the same symbol
as long as there is no confusion.

For a scheme X over k, we write X (@ for the set of points of codimension i on X and X 0)
for the set of points of dimension i on X. We will write Z*(X) for the group of algebraic cycles

of codimension ¢ on X and CHi(X ) for the Chow group of algebraic cycles of codimension i
on X (that is, the quotient of Z*(X) modulo rational equivalence).
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2. PRELIMINARIES ON RECIPROCITY SHEAVES

In this section, we briefly recall the notions regarding reciprocity sheaves required for our
purposes from [BRS22].

A modulus pair is a pair (X, D) where X a separated scheme of finite type and D is an
effective (or empty) Cartier divisor on X such that X \ D is a smooth. A modulus pair
(X, D) is said to be proper if X is proper over k. Let (X', D’) be another modulus pair. A
proper prime correspondence from (X, D) to (X', D') is defined to be a prime correspondence
Z C X x X' between X'\ D’ and X \ D such that the normalization of its closure VAR
proper over X and D\ZN >D ‘?N. We write the free abelian group generated by such proper
prime correspondences as MCor((X, D), (X', D")). The category of modulus pairs along with
these as morphisms will be denoted by MCor and its full subcategory consisting of proper
modulus pairs will be denoted by MCor.

Let MPST (respectively, MPST) denote the category of presheaves on MCor (respec-
tively, MCor). We have a functor 7*: MPST — MPST given by restriction; this has a left
adjoint 7. We also have functors

w;: MPST = PST :w”",
where w) is left adjoint to w*. For FF € MPST and G € PST, we have
w F(X) = F(X,0)
and
w'G(X,D)=G(X\D).

For F € MPST and X = (X, D), we have a presheaf Fiy on the small étale site of X given
by Fx(U) = F(U,Dyy). If Fx is a Nisnevich sheaf for all modulus pairs X, then we say that
F is a Nisnevich sheaf. We denote the category of such sheaves by MINST.

For two modulus pairs (X, D) and (X', D'), we set
(X,D)®(X',D") = (X x X',p*D + ¢*D"),
where p and ¢ are the projection maps from X x X’ to X and X’ respectively. We set
O := (P!, ).
Definition 2.1. For 7 € MPST, we say that

(1) Fis cube-invariant if for each X € MCor, the map F(X) — F (X ®@0) induced by the
projection X ® 0 — X is an isomorphism. We denote the category of cube-invariant
presheaves by CI

(2) F has M-reciprocity if the map n7*F — F is an isomorphism.

(3) F is semipure if the map F — w*w,F is injective.

We denote the category of the cube-invariant, semipure presheaves having M-reciprocity
by CI™*" and set CI{;” := MINST N CI™*P.

Definition 2.2. We say that a Nisnevich presheaf (respectively, sheaf) with transfers F
is a reciprocity presheaf (respectively, reciprocity sheaf) if there exists some G € CI™*P
(respectively, CI{:”) such that wG = F. Note that a reciprocity sheaf is a reciprocity
presheaf, which is a Nisnevich sheaf.
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Definition 2.3. We say that a reciprocity sheaf F is good if it satisfies the following condi-
tions:

(1) for two finite correspondences o, 5: S — T, we have (a + 3)* = o* + 5%;
(2) there exists an integer N such that F(S) has no N-torsion for every S.

Examples 2.4.

(1) For every integer n, the nth Milnor K-theory sheaf KM is an example of a reciprocity
sheaf.

(2) The n-th logarithmic de Rham-Witt sheaf v.(n) = W,Q% , (defined in [Mil76],
[11179]) for any integer n > 0 is an example of a good reciprocity sheaf in the sense of
Definition 2.3. There is a quasi-isomorphism

vr(n) = WSk 105 ~ Z/p"Z(n)[n]

of étale motivic complexes, due to [GLO1], [GL00], where p > 0 is the characteristic
of the base field.

There are inclusions ig,i1: (Speck,) — O corresponding to the k-rational points 0 and 1
of P'. For a modulus pair X, set

ho(X) := Coker(MCor(— ® 0, &) "Iy MCor(—, X)) € MPST.
There is a canonical surjection Z,. (X \ D) — wiho(X, D).
Definition 2.5. Let F be a presheaf with transfers and let a € F(U), for a smooth k-scheme
U. We say that a has modulus (X, D) € MCor if X\ D = U and the morphism Z,.(U) % F
corresponding to « factors through Z, (U) — w ho(X, D).

Theorem 2.6. [KSY22, Theorem 3.2.1, Corollary 3.2.3] A presheaf with transfers F is a
reciprocity presheaf if and only if for each smooth separated scheme U, every element o € F(U)
has modulus X for some proper modulus pair X .

Notation 2.7. For an integral scheme C' a closed subscheme D of C defined by an ideal Z,
set

G(C,D):= [ Ker(05 =05 )= () I
xzeD zeD
With this notation, for f € G(C, D), we have f* € G(C,nD). Also, for two closed subschemes
Y, Y’ of C such that Zy C Zy, we have G(C,Y) C G(C,Y").

Remark 2.8. One gets an equivalent characterization of Definition 2.5 by [KSY16, Theorem
2.1.5] and [KSY22, Theorem 3.2.1], which is often helpful in practical applications.

Suppose that for a smooth separated scheme S, an integral normal scheme C and a proper
modulus pair (X, D) with U = X \ D quasi affine, we are given a commutative diagram

(2.1) C
N
S<~—XxS——X

satisfying the following conditions:

(1) ¢ is finite;
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(2) For some generic point 1 of S, dimC xgn = 1;
(3) The image of 4 is not contained in D.

Then for any f € G(C’,V;ZD), we have ¢.divs(f) € Cor(S,X). With this setting, the
element a € F(U) has modulus (X, D) if and only if for every diagram as above, and each
f € G(C,~;D), we have (¢.divs(f))*(a) = 0.

3. CYCLE MODULE STRUCTURE ASSOCIATED WITH A GOOD RECIPROCITY SHEAF

In [Dég02], a cycle module in the sense of Rost [Ros96] is associated with every homotopy
module, which is a homotopy invariant presheaf with transfers satisfying an additional con-
dition. In this section, we associate a cycle premodule with every good reciprocity sheaf in
the sense of Definition 2.3. The construction goes exactly analogous to [Dég02], except for
the definition of the residue map, which in the case of homotopy modules relies on homotopy
invariance. The key point of our work is to bypass this use of homotopy invariance by using
appropriate results from [BRS22].

3.1. The cycle premodule data.

Definition 3.1. Let R be an essentially smooth local k-algebra. Let X be an integral sepa-
rated smooth k-scheme with a dominant morphism z: Spec R — X inducing an isomorphism
between R and Ox ., where we denote by x the image of the closed point of Spec R as well
by abuse of notation. We call such a pair (X, ) a model for R and a compatible morphism of
schemes a morphism of models. Existence of models is guaranteed by [Dég02, Lemma 2.1.39].

Definition 3.2. Let F be a reciprocity sheaf. For a finitely generated field K over k, define
F(K) = H°(K, F) as follows. Choose a model X for K and set

() ( ) ¢(§2Jlglx o)
where U varies over all the open subsets of X.

Definition 3.3. For every reciprocity sheaf F, we define its contraction F_1 to be the internal
Hom
F_q1:= HomPST(Kll\/I,}").
By induction, we define
Fon = (f—n+l)—1v

for all positive integers n. We have F_,, = Hompgt (KM, F), for all positive integers n.

In the following data regarding the cycle premodule structure, items (D1), (D2) and (D3)
are given exactly as in [Dég02] and hold for all presheaves with transfers, which we restate
for the convenience of readers.

(D1) [Dég02, Definition 5.2.1] For every field extension ¢: K — L in F, define the map
¢s: F(K) — F(L) as follows: there exist models X and Y of L and K, respectively
and a morphism of models f: X — Y. We define ¢, to be the induced map

COlimd);,gVCy ]:(V) — COlim@gUCX .F(U)
given by the restrictions along f and F(V) — F(f~1V).
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(D2) For each finite field extension ¢: K — L in Fy, the map ¢*: F(L) — F(K) defined as
follows: there exist models X,Y of L, K respectively and a finite dominant morphism
of models f: X — Y [Dég02, Lemma 5.3.16]. Since the graph of f is finite and sur-
jective over both X and Y, it may be considered as a correspondence f! € Cor(Y, X).
Open subsets of the form f~'V where V is an open subset of Y are cofinal among the
open subsets of X. So we define

¢*: F(L) = colimyspcx F(U) = colimysycy F(f V) — colimgycy F(V)

as the one given by the restrictions along f! and F(f~1V) — F(V).

(D3) We have a natural pairing KM x Hompgr(KM, ) — F. This defines an action
KM(K) x F_,(K) — F(K) for every K € F, by taking the colimit of the above
pairing over the sections over the open subsets of some model of K.

Remark 3.4. Let F be a reciprocity sheaf and let m,n be integers. We note that every
a € KM(K) induces a morphism

Fon-m w;> Fon
defined as follows. The element o defines a map Z.(X) — KM, which induces a morphism

KM @ 74, (X) — KN @ KM @ 74, (X) — KM, @ Z(X).
For any G € PST, since we have Hompgt(F,G)(X) = HompsT(F @' Z(X),G), we obtain
a morphism
Fop—m =~ Hompgr (KM, ., F) = Hompgr (KM, F) ~ F_,,,

which we denote by « - —.

Henceforth, we assume that F is a good reciprocity sheaf in the sense of Definition 2.3. In
this case, the data (D4) is given by Theorem 3.5 below.

Theorem 3.5. Let F be a good reciprocity sheaf. For every valuation v of K € Fi with
residue field k(v), there is a residue map 0,: F(K) — F_1(k(v)).

Proof. By [Dég02, Lemma 5.4.53], we have a model X for O, such that the closed point of
Spec O, maps to a codimension 1 point z of X and the reduced subscheme Z = {z} is smooth.
Note that this also gives a model for K and that k(v) = k(z2).

We first define a map

§: F(K) = HX(X,F) := colim Hye (V, F)
zE

as follows. Abusing notation, let o € F(K) be represented by o € F(V') for some open subset
Vof X. If X\V 2 Z, define dy (o) = 0. Otherwise, define dy(a) to be the image of o under
the composition

F(V) = Hy\ (X, F) = Hyop (U, F) = HX(X, F),
where U is the complement of the union of the other irreducible components of X \ V. We
next show that H%(k(z), F_1) injects inside H}(X,F) and that the image of § falls inside it,
thus giving the desired residue map.

By [BRS22, Theorem 7.16], for a smooth scheme X and a smooth subvariety i: Z — X of

codimension 1 and a modulus presheaf with transfers G € CI’? we have an exact triangle

. g
Z*g(z,(b)_l[—l] R 9x,0 — 9x,2)-
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Applying RI'z (X, —) to the above triangle and taking cohomology, we get the exact sequence:
Hy(X,G(x.2)) = H(Z,Gz0)_,) = Hz(X,G(xp) = Hz(X,G(x z))-
Note that HY(X,Gx 7)) = 0 since G(X, Z) = G(X \ Z,0) is injective by semipurity.
We take G to be such that F = w,G. Then the above exact sequence takes the form
0— HYZ,F_1) = HY(X,F) = Hy(X, F'),
where F' := J(x,z)- Taking the colimit over affine open sets containing z, we get an exact
sequence
0— H'(k(2),F_1) = H(X,F) - H:(X,F').
We claim that if X \ Z is quasi-affine, then the composite map
HY X\ Z,F) — Hy(X,F) — Hy(X,F)
vanishes. This implies that the image of ¢ falls inside H'(k(z), F), proving Theorem 3.5.

We obtain the following commutative diagram with exact rows by taking the localization
sequences for F and F'.

HY(X\ Z,F) ——~ HL(X, F)

HO(X, F') > H X\ Z.F) > Hy(X,F') =~ H'(X \ Z,F)
It is clear from the diagram that posot = 0. We need to show that s ot = 0, so it suffices
to show that p is injective. This, in turn, follows if we show that r is surjective.

We have HY(X,F') = G(X,Z) and H(X \ Z,F') = G(X \ Z,0). These groups can be
calculated as follows (see [OR22, Definition 1.11]): let (X, Z + B) be a proper modulus pair
such that X = X \ B and Z = ZN X. Then

G(X,Z)={a € F(X\ Z) | ahas modulus (X, Z + NB) for some N > 0},
and
G(X\Z,0)={ae F(X\Z)| ahas modulus (X, NZ + NB) for some N > 0}.
Now, X \ Z is quasi-affine, so we can use the characterization mentioned in Remark 2.8.
Suppose that an integral scheme C' and a diagram as in (2.1) has been given for the proper
modulus pair (X,Z + B). Let a € G(X \ Z,0), so that & has modulus NZ + N B, for some
integer N > 0 and let f € G(C, 7;';(7 + NB)). Then for every M > N, we have
MeG(Cy(MZ+MNB)) C G(C,v;(NZ + NB)).
Therefore, (¢« (diva(fM)))*(a) = 0, for every M > N. However, since F is good, for every
M > N we have
(D (diva(f)))" (@) = (6 (M divg(f)) () = (M-¢u(dive(f)))* (@) = M-(¢x(diva(f)))" ().
Since there is some integer m such that each F(S) is m-torsion free, we may take M to be a

large enough power of m that is greater than N to conclude that ¢.(divs(f)))*a = 0. Thus,
a € G(X,Z). This shows that r is surjective, as desired. This completes the proof. ]

This allows us to associate the data of a cycle premodule to every good reciprocity sheaf.
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3.2. The cycle premodule axioms. In this subsection, we verify that the cycle premod-
ule data associated with a good reciprocity sheaf F satisfies the cycle premodule axioms of
[Ros96]. The axioms not involving the residue map have been proved in [Dég02]; we list them
here for the sake of completeness.

Rla.

R1b.

Rlc.

R2a.

R2b.

R2c.

R3a.

For field extensions ¢: K — L and ¥: L — M, we have (¢ 0 @), = 1, 0 ¢, [Dég02,
5.2.2].

For finite field extensions ¢: K — L and ¢: L — M, we have (¢ o ¢)* = ¢* o ¢*
[Dég02, Corollary 5.3.22].

For field extensions ¢: K — L and ¢: K — M, where ¢ is finite and R = L Qx M,

we have

Ye0¢* = Z Z(Rp)ﬁb;(wz)*a

pESpec R

where ¢, is the extension K — L — R — R/p and 1, is similarly defined [Dég02,
Corollary 5.3.22].
For a field extension ¢: K — L, o € KM(K) and p € H*(K, F_,), we have ¢.(a-p) =
o« () - pi(p) [Dég02, 5.5.18].
If : K — L is a finite extension and p € H°(L, F_,), then ¢*((¢sa) - 1) = a - ¢* ()
[Dég02, Corollary 5.5.19(1)].
If $: K — L is a finite extension and 8 € KM(L), then ¢*(3 - ¢x(p)) = ¢*(8) - (p)
[Dég02, Corollary 5.5.19(2)].
Let ¢: K — L be a field extension and v be a valuation on L restricting to a nontrivial
valuation w on K. Let ¢: k(w) — k(v) be the induced map on residue fields and e be
the ramification index of the extension. Then 0,¢, = €@, 0.
Proof. There exist models X, X’ of v, w respectively with codimension 1 points z, 2’
such that Ox . = O, and Ox/ » = O,. Let {z} = Z and {2’} = Z’. We can also
assume that there exists a morphism f: X’ — X compatible with v and w such that
f(2') = z and Z' is an eth order thickening of Y := f~!1Z. For this, it suffices to show
the commutativity of the following diagram.

HY X\ Z,F) —— HLY(X,F) <22 gz, F_y)

| | [+

HOX'\ 2/, F) —— HL (X', F) ZL5 g7, Fy)

The left square is commutative by functoriality. It remains to prove the commutativity
of the right square. A special case of [BRS22, Proposition 7.9] states that when
e = 1, that is, Z' = f~'Z, the right square commutes. We shall modify the proof
of [BRS22, Proposition 7.9] for the special case we need: Z and Z' = (f~'1Z)"*? are
of codimension 1. Therefore, the excess intersection in [BRS22, Proof of Proposition
7.9] becomes trivial. The only modification we need to make is after [BRS22, (7.9.4)].
We still have a cartesian square as follows

RN

g

E, — E;
By
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R3b.

R3c.

R3d.
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in which Fy = IP(/\/}//XEB(QZ), E| = ]ID(NZV,/X, ®0Oyz) and s and s are the zero sections
of the bundles. Let ¢ = c1(Og (1)) € CHY(E}) and ¢ = ¢1(Og, (1)) € CH'(E;). We
need to show that f;lf =e¢e-(. We have ( = s, Z" and £ = s5,Z. Hence,

&= TosZ=5slfr=5f"Z=e s.Z =e(.
]

Let ¢: K — L be a finite extension and v a valuation on K and let w be extensions
of v to L. Let ¢y, : k(v) — k(w) be the induced extensions. Then

Do " = ¢t 0Dy

Proof. We may assume that v is a complete valuation that extends to a unique com-
plete valuation w on L. We have models Y and X of w and v respectively, with the
closed points of O, and O,, mapping to codimension one points z € X and t € Y with
reduced closures Z and T respectively. We also have a dominant finite map f: ¥ — X
such that T is the reduced subscheme associated with f~'Z. We have the following
diagram, where the left square is commutative by functoriality and we need to show
that the right square is commutative.

HOY\T,F) —— HLY,F) <L BT, F_y)

| |85 |6t

HOY(X\ Z2,F) —— HL(X,F) &5 12, F_y)

By [BRS22, Theorem 8.8(3)], we have (f')* = f. and (f!|7)* = (f|r)s, where f, is the
pushforward defined in [BRS22, Sections 8.7 and 9.5]. Also, gz/x = ix and gr/y = ji,
where i and j are the inclusion maps of Z and T respectively. By [BRS22, Theorem
9.7], we obtain fy 0 j. = (foj)s = (io flr)x = ix o (f|7)«, as desired. O
Let ¢: K — L be a field extension v a valuation on L that becomes trivial on K.
Then 0, o ¢, = 0.

Proof. This is exactly analogous to [Dég02, Proposition 5.4.58] with the appropriate
replacement of the residue map. ]
With the same notation as above, let ¢: K — k(v) be the induced extension of residue
fields, 7 be a uniformizer of v and p € HY(K,F_1). Then 0,({—7} - ¢x(p)) = &,.
Proof. We use the notation of the proof of R3c. We may assume that f~}(U) = X
and that 7 € Oy, where V.= X \ Z. Restricting further, we may assume that
7 € Ox(X) and that Z is cut out by m. Then ¢,(p) is the class of the image of p
under the composition

Fa(U) 55 Foa(X) = Foa(2) 25 HY(X, F)
and 0, ({—7} - @«(p)) is the class of the image of p under the composition

Fa) L Fox) = 7o) 2 7 v) %2 mY (X, F).
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Thus, it suffices to show that the following diagram is commutative for a sufficiently
small open subset W of X.

FaW) ——— Fa(WnZ)

) 9z/x
J*

Fawaw) S qvaw) %2 mLw, F)
Let T',: Sh(X) — Sh(X) be the functor given by L', (F)(W) = T'zaw (W, F) for
W € Xnis. Consider the localization sequence for W € Xyjs:
0= Hiyaz (W, F) = HY(W, F) = Hy(V O W, F) = Hiyrz (W, F) = H' (W, F).

Since the Nisnevich sheafification of the presheaf W +— H(W, F) is zero and R'T , Fx
is the sheafification of the presheaf W — Hiy,, (W, F), there exists an isomorphism
R'T , Fx = j.Fv/Fx. Consequently, for a sufficiently small open subset W of X, the
residue morphism 9z : F(VNW) — H},,, (W, F) is given by the map induced by the
restriction F(VNW) — F(VNW)/F(W). Set f*(p) = a. Then dz({—7} - a|lyrw)
is given by the class of {—7|yrw} - alyaw.

Let G € CI{Y be such that 7 = w,G. By [BRS22, Theorem 7.12], gz xi* =
H'(X,cz), where cz is the cupping action defined in [BRS22, Section 5.8] for the
class of Z in CH(X). Now we apply [BRS22, Lemma 5.10] for G € CIg;?, taking
E=Zand D=0,U = (V,0) and e = —m. It states that the map

H'(cz): (G-1)x = R'T;Gx = j.Gv /Gx
factors through the natural injection Q(X,Z)/QX — 7:Gv/Gx. The map H'(cz)(a)
is given as follows: take a representative of a € F((A!,0) ® X) and pull it back to
G(X, Z) under the morphism y®id: (X, Z) — (A',0)® (X, Z), where v is induced by
the morphism X — A! corresponding to —m € Ox(X). Now, for a sufficiently small
open subset W of X, we have

HO(W,R'T ,Gx) = Hy(W.Gx) = G(W N V)/G(W).
Therefore, by [BRS22, Lemma 5.6], we get
H' (W, cz)(a) = {—nlwrav} - elwav € GW NV)/GW).

Since the images of a under gz, x 0i* and dz{—m}-oj* agree on W, we are done. [
For an arbitrary unit u for the valuation v and p € F_;(K), we have 9,({u} - p) =
—{a} - 0u(p).

Proof. Let X be a model for v with the closed point of O, mapping to z. Let Z = @
and V = X \ Z. By passing to a small enough open subset, we may assume that u €

Ox(X)* so that we have a map u: X — G,,. We may assume that p € H°(V, F_1).
We have the following commutative diagram, where r is the morphism induced by
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{ﬂ}: (]:,1),1 — F_q.

HOV, Foy) — M gogy, F)

| |

HY(X, F ) — s gL (X, F)

I |

HYZ,(F_1)_1) —~— H°(Z,F_1)

We claim that » = —{u}. We make the following convention: the adjunction map
Hom(KM @ F,G) — Hom(KM ; @ F, Hom(KM, G)) corresponds to the map KM x
KM | — KM, Consider the following diagram

Hom(KM @' Z4,(X), F-1) ——— Hom(Z¢(X), F_1)

Hom(KM &' Z,,(X), F) —— Hom(KM &' Z;,(X), F)
I |
Hom(K) & Zy, (X), F) — 9 Hom(KM @t Zy(X), F)
in which e is induced by the map K3 — K3! given by {a,b} — {b,a} and therefore,
multiplication by —1. The top square is commutative since r’ is merely the adjunction
isomorphism applied to r. For the commutativity of the bottom square, observe that
r’ is given by the map

KM@ 7, (X) = K o KM @ Z;,(X) —» K @ Z;,.(X)

given by a ® b — u(b) ® a ® b, while {u} is given by a ® b — a @ w(b) ® b and €
interchanges the first two factors. 0

3.3. The cycle module structure associated with a good reciprocity sheaf. We are
now set to show that the cycle premodule structure associated with a good reciprocity sheaf
in Sections 3.1 and 3.2 is in fact a cycle module structure in the sense of Rost [Ros96].
Throughout the section, F will denote a good reciprocity sheaf in the sense of Definition 2.3.
The following is the first cycle module axiom.

Proposition 3.6 (Finite support). Let X be a normal integral scheme of finite type over k
with, fraction field K and p € HO(K,F). Then for all but finitely many x € X1, 9,(p) = 0,
where by 0;, we mean 0,, where v is the valuation of K corresponding to x.

Proof. Since X is normal, X1 lies inside the smooth locus of X; so we may assume that X
is smooth. Let p be represented by an element of F(U). Suppose z € U); then {x} and U
intersect non-trivially and therefore d,(p) = 0 by definition. Since XM\ UM is a finite set,
we are done. g

Let ¢ be an integer. Let z € X(;; 1) and y € X(;) for a scheme X; put Z = @ We define
a map

o7 HO(k(x), F) — H°(k(y), F-1)
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as follows: if y ¢ Z(1 set 0, = 0. Otherwise, let Z — Z be the normalization of Z. For

any point 2 of Z lying over y, let ¢, : k(y) — k(z) denote the induced finite extension and
9, : H'(k(2),F) — H°(k(z), F_1) denote the residue map. Define

*
> $10..
zEZ;zHy

By Proposition 3.6, there are only finitely many points y for a given z € X such that 9 # 0.
Therefore, for a scheme X, the 9y give a differential graded module

C(X,F(q)) :
0= P Hk(x),Farg) =+ @ Hk(2), Firg) = -+ @ Hk(z), Fy) = 0.
2€X (g TE€X (3 €X (0

We also have the cousin complex (introduced in [Har66, Chapter IV])

C'(X,F(q) :
0— P HIX,Farg) = @ HI(X,Fayg) = @ HUX, Fayg) = 0.
J}EX(d) QieX(L> JJEX(O)

Suppose that G € CI{;” is such that F = wG. We now define a differential graded map
g: C(X,F(q)) — C(X',F(q)). Let z € X(;) and set Z := {z}. For open subsets U such that
U N Z is smooth, we have the Gysin morphism g7~y : HY(Z NU, Fiyq) — HngU(U, Fdtq)-
Taking the colimit over such open subsets, we get a map HY(k(2), Fitq) — HY(T, Fitq)-
This gives a map g: C(X,F(¢q)) — C'(X,F(¢)). It can be verified that this morphism
commutes with the differentials.

Definition 3.7. We say that F satisfies weak purity if for each smooth schemes X and a
smooth closed subscheme Z of codimension r, the Gysin map gz, x HY(Z,F_,) = Hy(X,Z)
is injective.

Now if F satisfies weak purity, then the morphism of complexes
9: C(X,F(q)) = C(X', F(q))

is injective in each degree. Since C'(X,F(q)) is a complex, this implies that C(X, F(q)) is
also a complex. By the work of Saito [Sai20], every reciprocity sheaf F satisfies weak purity
Zariski locally, in the sense made clear at the end of the proof of Proposition 3.8. The second
cycle module axiom can be deduced from this.

Proposition 3.8 (Closedness). For any good reciprocity sheaf F on Sm/k, the differential
graded module C(X, F(q)) is a complez.

Proof. Since C'(X, F(q)) is a complex, it suffices to show that g is injective. On each direct
0

summand @zeX(d,r H(k(2), Fa—rtq), g is defined by

colimzey HY(Z MU, Fa_pyq) 222 colim,er Hynr(Us Furg)s

where Z = {z}. Let G € CI{;? be such that Fy,, = w,G. By [BRS22, Section 7.4], we have
an exact triangle

i*(g—’l‘)Z[_r] - gX - Rp*g()?vE) +—1>’
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where p: X — X is the blow-up of X at Z with exceptional divisor E. Applying RI'z(X, —)
and taking the long exact sequence, we get an exact sequence

H N(X,G % ) = H(Z,(G-r)z) = H'(X,Gx).

By [BRS22, Theorem 2.12], we have HE_I(X,G(X E)) =~ [0 (X, G (x,z))- So to prove the

injectivity of g, we only need to show that colim,cy H{fle(U, G(x,z)) = H' (X, G(x,2)) = 0.
But this is true by [Sai20, Corollary 8.3(2)]. O

We end this section by summarizing the results.

Theorem 3.9. Let F be a good reciprocity sheaf on Sm/k. Then for any finitely generated
field extension K of k, the association
F(K):= colim F(U),
pAUCX

where U wvaries over all the open subsets of a model X of K, defines a cycle premodule.
Moreover, this cycle premodule structure satisfies the cycle module axioms.

Remark 3.10. We have the following classes of Nisnevich sheaves on Sm/k:
Homotopy modules C Homotopy invariant sheaves with transfers C Reciprocity sheaves.

Following the work of Déglise [Dég02], the categories of cycle modules and homotopy modules
are equivalent. Moreover, the first inclusion above admits a left adjoint (see [Dég02, Propo-
sition 3.1.7, Remarque 3.1.8]). The cycle module associated with a good reciprocity sheaf is
defined by the formula analogous to the one used by Déglise. One can introduce a notion of
a good homotopy module analogous to Definition 2.3. A consequence of Theorem 3.9 is that
the inclusion

Good homotopy modules C Good reciprocity sheaves

admits a left adjoint. The proof is exactly analogous to [Dég02, Proof of Proposition 3.1.7,
Remarque 3.1.8]

Remark 3.11. Let F be a good reciprocity sheaf on Sm/k and let X € Sm/k. The cycle
complex C'(X,F) is in general only a subcomplex of the cousin complex C'(X,F). If F is
a homotopy invariant sheaf with transfers, then the complexes C'(X,F) and C'(X,F) are
isomorphic. This difference can be attributed to semi-purity of reciprocity sheaves; more
specifically, the lack of purity in general. In the situation where purity is known (for example,
in the case of logarithmic de Rham-Witt sheaves following the work of Gros [Gro85]), one can
conclude that cycle complex and the cousin complex are isomorphic.

4. LOGARITHMIC DE RHAM-WITT SHEAVES AND THEIR KATO COMPLEXES

4.1. Gysin maps for Logarithmic de Rham-Witt sheaves. Let k be a perfect field of
characteristic p > 0. Let X be a scheme of dimension d over k. For any integer r > 0, let
W, Q% denote the de Rham-Witt complex of X defined in [IlI79]. For any integer ¢ > 0,
we denote by v,(q) := Wng(’IOg the logarithmic de Rham-Witt sheaf of X defined in [Shi07,
Definition 2.6] to be the étale sheaf on X defined to the image of

(0% > W, 0% 21 @ @y — dloglzy] A - - - dlog[x],

where [z;] € W, Ox is the Teichmiiller representative of x;, for each 1.
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In [Kat86], Kato defined a family of complexes for ¢ € Z when n € Z\ {1} and ¢ > 0 when
n = 1 given by:
(4.1)
C*(X,Z/p"Z(q),n): 0 = @ H"(k(x),v(@)) == @ H"(k(2),v:(¢—d)) =0,
z€X(0) zeX ()
under the identification Z/p"Z(q)[q] = vr(q). The complex C*(X,Z/p"Z(q),n) is nonzero
only for n = 0 or n = 1. In the case n = 0, it can be identified with Rost’s cycle com-

plex for the cycle module corresponding to mod-p” Milnor K-theory under the isomorphism
H2(F,Z/p"Z(n)) ~ KM(F)/p" for any field F obtained by Bloch-Gabber-Kato (see [BK86]).

Our aim is to show functoriality properties analogous to those for Rost’s cycle complexes
in the case n = 1 above. It is known that the functor F'+ H'(F, u1,(q)) does not give rise to
a cycle module [Tot22]. In Section 4.2, we will exhibit that although this data comprises a
slightly weaker structure than that of a cycle module, it is good enough to define the required
functoriality properties for the associated Kato complexes, thanks to the recent purity results
obtained in [BRS22]. We begin with a comparison of the Gysin maps for logarithmic de
Rham-Witt sheaves constructed by Gros [Gro85] and by Binda-Riilling-Saito [BRS22].

Let i: Z — X be a codimension 7 closed immersion of smooth schemes, F a reciprocity
sheaf and G € CI{;” such that F = w,G. In [BRS22, Section 7.4], a Gysin map

9z/x: 1x(G—r)z[-7] = Gx
is defined. Applying H7, (X, —), we get a map
HY(Z,F_,) = Hy(X,F).

We take F = R, W, QL _ where 7 : X¢ — Xnjs is the canonical morphism of sites.

log>’
(4.2) 9x/z - HO(Z, Wk 1) = Hy(Xet, W% 100);
which we also denote by gz,x abusing notation. On the other hand, a Gysin map

was constructed in [Gro85, Chapitre II, Définition 1.2.1], which we denote by g, /X

Proposition 4.1. With the above notation, we have the equality gz, x = g’Z/X of morphisms
mentioned in (4.2) and (4.3).

Proof. Let F be a reciprocity sheaf and G € CIQissp such that F = w,G. In [BRS22, Section
5.8], for each a € CH (X)), amap ¢o: (G_,)x[—7r] = R 4Gx is defined. By [BRS22, Theorem
7.12], we have the equality g;/x oi* = Hy (X, cz) of morphisms

HY(X,F_,;) 5 B2, F_;) 725 Hy (X, F).
On the other hand, [Gro85, Chapitre II, Corollaire 2.2.8] states that g, / 4" is the multipli-
cation by cl(Z/X), where cl(Z/X) is the image of 1 under the map

Iy HO(Z,WaSy) = Z/p"Z — H" (Xet, WilY,g).
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By [BRS22, Theorem 7.14], i has a retraction Nisnevich locally. Therefore, i* is an epimor-
phism and in order to show that g/, /x = 92/X it suffices to show that ¢z coincides with

multiplication by c/(Z/X). Note that
H" (Xet, WnS,g) = HY (Xer, Z/p"Z(r)) = CH(X) /p".

log
Under the above isomorphism, c¢l(Z/X) is sent to the class of Z in CH"(X,Z/p"Z) and
multiplication by ¢l(Z/X) is same as the action of the class of Z, which is exactly the map
cz. This completes the proof. O

4.2. Weak cycle module structure. Let X be a variety of dimension d over k, which is
assumed to be perfect of characteristic > 0. Fix a positive integer r. Let

vr(m) = WiQl¥ 1oy = Z/p"Z(m)[m]
be the logarithmic de Rham-Witt sheaf on X¢; defined in [I1179] (see also [Shi07, Section 2]).

Notation 4.2. Fix a positive integer r. For any any field extension F' of £ and any integer
i, we write M;(F) := H'(F,v,(3)).

It is known that the family of functors M, from the category of field extensions of k£ to
abelian groups do not form a cycle module since the homology of the Kato complex is not
Alinvariant (see [Ota23], for instance). However, they are still endowed with the following
data analogous to the definition of cycle premodules [Ros96, Definition 1.1].

(D1) For a field extension ¢: E — F, there are restriction maps @, : M;(E) — M;(F).

(D2) For a finite field extension ¢ : £ — F', there are corestriction maps ¢*: M;(F) —
M;(FE) defined as in [JSS14, Section 0.7]: if 7 is the induced map on schemes, the
norm map in Milnor K-theory induces a map of étale sheaves m,v, p(i) — vy g(7).
Taking cohomology and using the isomorphism H'(F, v, p(i)) & HY(E, 7, p(i)), we
get the desired map. This agrees with Kato’s transfer map defined in [Kat78, p.658].

(D3) There is an action KM(F) x M;(F) — M;4;(F) induced by the cup product in Galois
cohomology and an isomorphism H(F,v,.(i)) = KM (F)/p" compatible with the cup
product. We will use - to denote the product as well as the action of Milnor K-theory
groups.

(D4) For a valuation v on F such that (k(v) : k(v)?) < p' , there is a residue map
Op: Miy1(F) — M;(k(v)) defined in [Kat86] as the composite:

HYF,v,(i +1)) = HY(F" v,(i + 1)) = H(k(v), H*(F*", v,(i + 1)))

DL, 1 (k(w), HO(k(0)P, 00(0))) = H (h(0), 0 ().

Here the 0,: HO(F*" v,(i4+1)) = HO(k(v)*P,1,(4)) is defined in [Kat86] through the

isomorphism with Milnor K-theory.

The key difference above from the cycle module axioms is that the data (D4) is defined
only for valuations satisfying an additional condition.
Remark 4.3. We will freely use the description of elements of M;(F) = H*(F,v,(7)) in terms
of 1-cocycles. If F is Henselian, then H'(F", v,.(i 4 1)) = HY(k(v), H(F*" v.(i +1))) and
the residue map in terms of 1-cocycles representing H'(k(v), HO(F*",v,.(i + 1))) is given by:

du(a)(0) = 0y (g™ 0)),
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where o € 'y, ¢ is the quotient map I'r — Gal(Fs"/F) = ['(v) and the OM is the residue
map on Milnor K-theory under the identification HO(F, v, (i + 1)) = KM, (F)/p".

We will use the explicit description of the corestriction map in (D2) in terms of cocycles
[NSYO08, Chapter 1, Section 5.4]. If H is an open subgroup of a profinite group G and A is
a G-module, the corestriction map H'(H, A) — H(G, A) is as follows: let a: H — A be a
cocycle; then the corestriction of a to G sends o € G to

Y s la(s(r)os(ro) D),

TEH\G
where s is a set-theoretic splitting of G — H\G.

Remark 4.4. The definition of the residue 9, given in (D4) above agrees with the following
definition given in [GS88a]: Take a smooth variety X such that the valuation ring of v is the
local ring at a codimension 1 point x so that Ox, = K, where 7 is the generic point and

k(z) = k(v). For a point z € X, let HY(X,G) = colim,cys Hf?}mU(U’ G) for G € Sh(Xg).

From the differential of the E page of the coniveau spectral sequence EV'? = HE (X, v, (s+q)),
we get a map Hg(X, vr(it1)) = Dyexw Hyl(X, vr(i+1)). By purity [Gro85, Theorem 3.5.8],
for a point z of codimension ¢, we have an isomorphism H(k(z),v,.(i)) = HS(X, v, (i + c)).
So the differential becomes HO(K,v,.(i + 1)) — Dyexm HO(k(y),vr(i)). Projecting to the
factor of x, we get a morphism that is compatible with d, under the isomorphism with mod-p”
Milnor K-theory given by (D3).

Following [Ros96], given a valuation v on F' € Fj, and a uniformizer 7 for v, we define the
specialization homomorphism s7 : M;(F) — M;(F') by

sp(a) == 0y({—7} - ).
The data (D1)-(D4) given above for the logarithmic de Rham-Witt sheaves satisfies the

cycle premodule axioms (R1)-(R3) of [Ros96, Definition 1.1]. The axioms (R1) and (R2)
are easy to verify and are left to the reader.

R1la. For field extensions ¢: F — F and ¢: F — K, we have (1) 0 ¢), = 1) 0 ps.
R1b. For finite field extensions ¢: F — F and ¢: F — K, we have (¢ o ¢)* = ¢* o ¢*.
R1c. For field extensions ¢: E — F and ¢: F — K, where ¢ is finite and R = F ®p K,

we have
Puo @t = Z Z(Rp)‘P;(wz)*v
pESpec R
where ¢, is the extension £ — F' — R — R/p and 1), is similarly defined.

R2a. For a field extension ¢: £ — F, a € KM(E) and p € M;(E), we have p.(a - p) =
Px(@) - x(p).

R2b. If ¢: E — F is a finite extension and pu € M;(F), then ¢o*((p.a) - u) = a - p*(u).

R2c. If : E — F is a finite extension and 8 € KM(F), then ¢*(8 - ¢.(p)) = ©*(B) - (p).

We verify the axiom R3 below. This may be well-known to experts; we include the verifi-
cation here for the convenience of readers.

Proposition 4.5. Let ¢ : E — F be a field extension in Fi, and let v be a valuation on F
restricting to a valuation w on E. Let @, : k(w) — k(v) be the induced extension of residue
fields. The following relations hold.
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R3a. If w is a nontrivial valuation with ramification indez e, then
Oy 0 =€-P, 00y.
R3b. If ¢ is a finite extension, then

0o =Y o by
,v/

where v' runs through the extensions of w to F and ¢, : k(w) — k(v') denotes the
induced extension of residue fields.
R3c. If v is trivial on E (that is, w is trivial), then
Oy 0, = 0.
R3d. If v is trivial on E and @ : E — k(v) denotes the induced map, then for any uni-
formizer m for v, we have
Sg O Yx = @*
R3e. For a unit u with respect to v and for any p € M;(F'), we have

Oy({u} - @) = —{u} - 9y().

Proof. The isomorphism H?(F,v,(n)) = KM(F)/p" in (D3) is compatible with corestriction
and residue maps. Since mod-p” Milnor K-theory satisfies the cycle premodule axioms (R1)-
(R3) of [Ros96, Definition 1.1], so do the functors F' + H°(F,v,(x)). This fact will be used
repeatedly.

We first prove R3a. Note that we have commutative diagrams

HYE,v, (i + 1)) —= HY (E" v.(i + 1)) — H' (k(w), H*(E*",v,.(i + 1))

J{w* l%« lHl(w*)

HY(F,v, (i + 1)) —= HY(F" v, (i + 1)) — H'(k(v), HO(F*" v,.(i + 1)))

and

H (k(w), H (B, vy (i + 1)) ——= H' (k(w), H (k(w)*?, v,(i)) ,

H (k(v), HO(F", vn (i + 1)) ——= H' (k(v), H (k(v)*?, 1.(1)))

where the commutativity of the latter diagram follows from that of the corresponding diagram
for mod-p” Milnor K-theory as the horizontal arrows in the diagram are induced by the residue
maps

S - ~ S T 8U) Se; T~ S€E; -
HO (B, vy (i + 1)) 2= K (B) /o7 =25 K (k(w)*P) /p" = HO (k(w)*P, v,())
and 5
HO (P (i + 1)) = KN (F) /p7 =5 K (R(0)*P) /p" = HO(k(0)*, ().
This implies R3a. We next prove R3c. By the explicit formula given in the datum (D4), it

suffices to assume that F' is henselian. Let o € M;(FE) and consider a 1-cocycle representing
a. By Remark 4.3, we have

0y 0 pu(a)(0) = Duo(pra(q™10)) = Bu(ps(a(B(g7 ")) = 0,
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by the corresponding result for Milnor K-theory. Now, suppose that v is trivial on £ and
let & € M;(E). We prove (d) by a similar computation involving cocycles as above. For any
o< Fk(v),

sy 0 px(@)(0) = 0u(({-7} - ) (m710)) = Bu({=7} - pu(a((r™10))))

For a unit v with respect to v, we have
8o({u} - @) (0) = u({u} - aln™'0)) = —{a} - Bu(a(n™H(0))) = —{u} - 9u(a) (o)
= —{u} - 9y(a)(0).
This proves R3e.

It remains to prove R3b. Let E,, and F, denote the completions of £ and F with respect
to w and v, respectively. Consider the diagram

HYF,v.(i+1)) — 6,9 HYEy,v.(i+1)) — 6/9 HY (k('),v.(i+ 1))

° l lzul el
HY(E, v (3)) HY(Ey, vr(i)) H' (k(w), v (1))

in which the commutativity of the outer square is the assertion of (b). The left square is
commutative by (R1), since F' @ E,, = @,, F,y. Thus, in order to prove R3b, we are
reduced to proving it for the extensions F,, — F,,. Therefore, replacing E by E,, and F' by
F,,, we may assume that w is a complete valuation on F that extends uniquely to v on F.
By a standard argument (see [GS17, Proof of Proposition 7.4.1] for instance), we reduce to
the case where ¢ and © are Galois extensions. We need to show the commutativity of the
following diagram, in which all the vertical arrows are appropriate corestriction maps.

HY(F,vp(i + 1)) —= H'(k(v), HO(F*, v, (i + 1)) — H"(k(v), H(k(v)*, 1,(i)))

v H (k(v), HO(E*", vp (i + 1)) ——= H'(k(v), H(k(w)*P, v,(i)))

*| |

HY (B, v, (i + 1)) — H'(k(w), H(E*", v, (i + 1)) — H" (k(w), H(k(w)*?, v,(i)))

Since the analogue of R3b holds for Milnor K-theory, applying it to Fs" ﬂ E*h and then
applying H!(k(w),—), we conclude that the top right square is commutative. The bottom
right square commutes because of the functoriality of corestriction. So, it suffices to show
that the diagram on the left commutes.
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We have the following commutative diagram of groups, in which H, H' and H” are defined
so as to have exact rows and columns.

0 H" H H 0

0 Ty I'p—2 - Gal(F/E) 0
i lm lPQ

0 Cr(v) () —— Gal(k(v)/k(w)) —= 0

Choose (set-theoretic) splittings s1, 2, 3, 54 of p1, p2, p3, p4 respectively such that the lower
right square in the above diagram commutes also when the maps p; are replaced by the split-
tings s;. The map ¢*"" is given by applying H'(k(w), —) to the norm map N : HO(F*" v, (i+
1)) = HY(E*" v, (i+1)). Let a« € H'(F,v,(i+1)). Then ¢*(«a) is represented by the 1-cocyle
that sends ¢ € I'g to

pa)o)= > s(n)la(si(n)osi(ro) )

rE€Gal(E/F)

— Z s1(hsz(w)) " ta(sy (hsa(w))osi(hsa(w)o)~T)

weGal(k(w)/k(v)) heH

= > s3(w) ™'Y s1(h)la(ss(w)Fss(wr) )

weGal(k(w)/k(v)) heH

= > s3(w) "IN (a(s3(w)Fss(wa) )
weGal(k(w)/k(v))

= ¢* 0 0™ (a)(0),

where we have used the equalities s1(hs2(w) = s1(w), s1(hs2(w)o)™! = s1(s2(w)o)~! and
s1(s2(w)) = s4(s3(w)) coming from the above diagram of Galois groups and the fact that the
action of s4(s3(w)) on HO(F*" v,(i+1))) is the same as that of s3(w). This proves R3b. [

Remark 4.6. The fact that the above weak cycle premodule structure on the first cohomology
groups of logarithmic de Rham-Witt sheaves also satisfies the cycle module axioms follows
exactly as in Section 3.3 by the work of Gros [Gro85].

Remark 4.7. Note that the residue map in data (D4) is constructed in [Kat86] by using
the degeneration of the Hochschild-Serre spectral sequence and using the definition of the
residue in the case of mod-p” Milnor K-theory. This is enabled by the vanishing of the group
H 1(IA( sh_ v,.(1)), for any finitely generated field extension K of k. One can get a similar partial
cycle module structure on the functor K +— H'(K, F) for a good reciprocity sheaf F provided
one has H 1([? sh_ F) =0, for any finitely generated field extension K of k.

5. FUNCTORIALITY OF KATO COMPLEXES OF LOGARITHMIC DE RHAM-WITT SHEAVES

5.1. The Kato complex and the four basic maps at the level of complexes. Let X
be a variety of dimension d over a perfect field k of characteristic p > 0. We have the Kato
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complexes for n =0, 1:
(5.1)
C(X.Z/VZ(@),n): 0 — @ H"(k(x),vr(d+q) % S @ H'(k(2),v:(q)) — 0.
xEX(d) IGX(O)

One can pass from the cohomological conventions (4.1) to the homological conventions using
the formula ‘
C'(X,Z/p"Z(q),n) = Ca—i(X,Z/p"Z(q — d), n).

Throughout this section, we will follow the homological convention for complexes. The dif-
ferential of the Kato complex is defined as follows. Let z € X(41), ¥y € X3 and a €
HY(k(x),v.(i +1+4q)). If y ¢ Z = {x}, then we set the y- component of d(a) to be zero.
Suppose y € Z = {z} and consider Z with the reduced induced subscheme structure. Then
R = 0y, is a 1-dimensional k-algebra with residue field k(y) and fraction field k(z). Let R’
be its normalization; this is a 1-dimensional semilocal finite R-algebra. For each valuation w
of k(x) corresponding to the maximal ideals of R’, we get a finite extension ¢, : k(y) — k(w).
We define the y-component of d(c) in this case to be ), @5 0 0y(a). Kato proved in [Kat86]
that C(X,Z/p"Z(q),n) defines a complex.

We will focus on the case n = 1, as in the case n = 0, the complex C(X,Z/p"Z(q),0) can
be identified with Rost’s cycle complex associated with KM /p". Now we define the four basic
maps for the Kato complex in the same way as done in [Ros96] for cycle complexes.

Definition 5.1 (Proper pushforward). For a morphism f: X — Y, we define
feo: C(X,Z2/p"Z(q),1) — C(Y, Z/p"Z(q), 1))
as the map that sends a € M;,(k(r)) with z € X;) to 0 if k(y) — k(z) is not finite and to

»y(@) if k(y) — k() is finite, where f; , denotes the induced map on the residue fields. We
write the pointwise components as (fi);. When f is proper, f. is a morphism of complexes.

Definition 5.2 (Flat pullback). For a flat morphism f: Y — X of constant relative dimension
n, we define a map of complexes

[ C(X,Z/p"Z(q +n), 1) = C(Y,Z/p"Z(q), 1)[n])

as follows: for o € M yg4n(k(x)) and y € VY, set (f*(@)y = U(Oy, y) by, (a). Fory ¢ v,
we set (f*(a))y = 0. We denote the p01ntw1se components of f* by (f*);.

Definition 5.3 (Multiplication by a unit). For ¢t € Ox(X)*, define the map
{t}: C(X,Z/p"Z(q),1) = C(X, Z/p"Z(q + 1),1)

by a — ({tz} - az),. While this is not a map of complexes, it satisfies d o {t} = —{t} od by
the axioms R2b and R3e.

Definition 5.4 (Boundary). Let U be an open subset of X and let Y be its complement in
X. Define
[—1]

— C(X,Z/p"Z(q),
) — C(Y,Z/p"Z(q),

o C(U,Z/p"Z(q),1) = C(Y. Z/p'Z(q), 1
to be the composite of the canonical inclusion C(U,Z/p"Z(q), 1
the projection composed with the boundary map C(X,Z/p"Z(q),
This map satisfies dy o 3U + 8U ody =dx odx =0.

) and

1
1)[-1].
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5.2. The Kato complex of a vector bundle. One of the main constructions in [Ros96]
is the homotopy property for affine bundles at the level of cycle modules. More precise, for
every affine bundle 7 : V' — X, Rost shows in [Ros96, Section 9] that the pullback map 7*
at the level of cycle complexes is a chain homotopy equivalence. This homotopy inverse is
then used in the construction of the general pullback using the deformation to normal cone.
For the Kato complex (5.1) in the case n = 1, we do not have the full homotopy property.
However, we will show that the pullback 7* admits a retract, which enables us to define the
general pullback in this case.

We first define the homotopy inverse for a trivial bundle X x A™ — X. First consider the
case n = 1 and write A’ = Spec k[t]. Define rx to be the composite

rx: O(X x AL Z/pZ(q), 1)[1] =C(X x G, Z/p" Z(g), 1)[1] 52,
C(X % G, Z/p"Z(q + 1), )[1] & C(X,Z/p"Z(q + 1), 1),

where the leftmost morphism is the flat pullback induced by the inclusion X x G,,, < X x A,
the complement X x 0 of which we identify with X. Iterating this, we can define the map of
complexes

(5.2) rx: O(X x A", Z/p"Z(q), 1)[n] — C(X,Z/p"Z(q + n), 1).

Let m: V — X be a vector bundle of rank n. We will define a map of complexes
r(r): C(V,Z/p"Z(q),1)[n]| = C(X,Z/p"Z(q + n), 1),
depending upon a coordination of V' in the sense of [Ros96, page 371], which is a sequence of
closed subsets
lcXicXoC---CXp=X
such that Vx,\x, , is a trivial bundle for each i. Such a sequence always exists because X is
noetherian. Since

C(X,2/p"2(q),1) = C(X \ X1, 2/P"Z(q), 1) © C(Xm-1,2/p"Z(q), 1)),

we define r(7) inductively as rx\x,,_, ® 7(7|x,,_,). Since X \ X;,_1 is a trivial bundle and
we have already defined r in that case in (5.2), we are done.

Proposition 5.5. r(7) is a left inverse to 7*.

Proof. Tt suffices to show this for a rank 1 trivial bundle. Let A! = Spec k[t] and let V = X x Al
and view it as the open subscheme of X x (P!\ 0) of X x PL. Let 7 : X x P! — X denote
the projection onto X and consider the section of 7 identifying X with X x co C X x P! cut
out by the rational function —1/t. Let 7’ : X x (P! \ 0) = X x oo denote the restriction of
7. We need to show that the composition d o {—1/t} o 7'* is the identity map

C(X x00,Z/p"Z(q+1),1) = C(X,Z/p"Z(q + 1),1) = C(X,Z/p"Z(q + 1), 1).
As in the above paragraph, we reduce to the case X = Spec E. With the same notation as in

the above paragraph, the composition 0 o {—1/t} o 7’* takes the form sv_l/t 0 4, which is the
identity map by R3d. O

Theorem 5.6. Let 7,7 on X be two coordinations of V. on X, then r(7) and r(7') induce
the same map on homology.
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Proof. Leer=0Cc X; CXoC - CXg=Xand7 =0C X|CcX,C--CX/ =X.
We use double induction on the lengths of the coordinations. Let U = X \ X]_;. If we show
that r(7) = r(7|y) ® r(7|x;_,), then by induction, we have r(7|v) = r(7'|v) and r(7[x;_ ) =
r(7'|x;_,) and consequently, r(1) = r(7').

Therefore, it suffices to show the following: if U is an open subset of X with complement
Z, then r(1) = r(7|y) ®r(7|z). Since, (1) = P 7x,\x,_, and we have analogous expressions
for r(7|y) and r(7|z), it suffices to show this for each X; \ X;_1. Therefore, we may assume
that V is a trivial bundle and that 7 is trivial. By induction, it suffices to consider the
case V = X x Al. So, it suffices to show that ry = ry @ rz at the level of homology for
V=XxAl5X.

Let a € C(X x AY, Z/p"Z(q),1)[1] such that dy 1 (a) = 0. Suppose that « is concentrated
at a point P € X X Gy,. Let Q € X x oo be such that @ € {P} and dim P = dim @ + 1.
Let ¢ be the projection to X x A' — A! and 7 be the generic point of A'. Then ¢(P) = n.
We now claim that 7(P) = 7(Q). We have 7(Q) € {n(P)}. If 7(P) # 7(Q), then we would
have dim 7(Q) < dim 7 (P) — 1, which would imply that dim @ < dim P — 2, contradicting our
assumption. Therefore, it follows that if o is concentrated in U x Al (respectively, Z x Al),
then rx(«) coincides with 7y (a) (respectively, rz(«)). This proves the theorem. O

5.3. The general pullback. In order to define the action of correspondences at the level
of Kato complexes, we need to show that any morphism of smooth schemes gives rise to a
pullback morphism at the level of complexes. This is done using the deformation to the normal
cone technique in [Ros96]. Our construction of the general pullback for Kato complexes of
logarithmic de Rham-Witt sheaves is analogous, but with necessary modifications in absence
of homotopy invariance for vector bundles.

We begin by constructing the deformation map at the level of complexes. Let m: X xG,,, —
X be the projection onto X and consider t € Oxyg,, (X X G;,)*. Although we only defined
the complexes C(X,Z/p"Z(1),0) for ¢ > 0, the construction of the Gysin map will involve
graded groups of the form

Ci(X X G, Z/p"Z(-1),1) = €  H'(k(y),Z/p"Z(i - 1)).
yGXXGm(i)
This does not form a complex as the differential is not defined in general. However, the
definitions of the basic maps still give morphisms of graded groups

C(X, Z/p"Z(0),1) ™ C(X X G, Z/p"Z(—1), 1)[1] 25 C(X x Gy, Z/9"Z(0), 1)[1].

Although the composite morphism {t} o 7* is a priori only a morphism of graded groups, it
is in fact an anti-morphism of complexes. We leave the verification to the reader.

Now, let i: Y — X be a closed immersion of codimension ¢ with ideal sheaf I. Let
Ny X := Spec@®,,~o I" /1" be the normal cone of Y. Let D(X,Y) := Spec@,,c, I"t™™ be
the deformation space, where I = Ox for n < 0. Note that X x G,, is an open subset of
D(X,Y) with complement Ny X. Define the deformation morphism

J(i): C(X,Z/p"Z(q),1) = C(NyX,Z/p"Z(q), 1)
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to be the composite

CX,Z/p 2q), 1)~ C(X X G Z/ P g — 1), [L] — 2> O(X X G, Z/p Zq), 1)[1]

o
2 C(Ny X, Z/p"Z(g), 1).
Since {t} o 7* and O are anti-morphisms for complexes, it follows that J(i) is a morphism
complexes.

Proposition 5.7. Suppose g: X — Z is a flat morphism of relative dimension d such that
f:NyX =Y 5 X% Zis flat. Then f* = J(i) o g*.

Proof. The proof is exactly analogous to [EKMO08, Proof of Lemma 51.9] and is hence, omitted.
0

We are now set to define the pullback for a general morphism of schemes f: Y — X,

where X is smooth. We may factorize f as Y Lyxx2x , where I' denotes the graph
of f and p is the projection. Since X is smooth, I' is a regular closed immersion and the
tangent cone TX := Nx(X x X) is a vector bundle. We choose a coordination 7 of T'X.
Since Ny (X x Y) = f*T'X, this induces a coordination f*7 on Ny (X xY). Let d = dim X,
d =dimY and set m :=d' — d.

Definition 5.8. Let the notation and setting be as above. Define f* to be the composite
£ OX 2 g +m), 1) 2 O(X x Y, ZJp" Z(q +m — &), 1)[d] 22

C(Ny (X x Y),Z/p"Z(g +m — '), )[d] "2 (v, 2/p"2(g), 1)[m].

The map induced on homology by f is independent of the coordination 7 since the map
induced by r(f*7) on homology is independent of the choice of coordination.

Proposition 5.9. If f : Y — X s flat, the map of complexes f} agrees with the flat pullback
f* defined in Definition 5.2 and is independent of the chosen coordination.

Proof. Factorize f as Y Lyxx 2 x , where I' denotes the graph of f and p is the
projection. We need to show that

ff=r(f*r)oJ(T)op".
Let m: Ny (X xY) — Y be the projection. Since r(7) o 7* = id, it suffices to show that
7 o f* = J(I') o p*. Applying Proposition 5.7 with ¢ = I and g = p, we get J(I') o p* =
o™ op* =a* o f*, as desired. O

5.4. Products and action of correspondences. As a consequence of the functoriality
properties of Kato complexes, we conclude that a correspondence induces a morphism of
Kato complexes.

Let X, Y be schemes over k, which is assumed to be perfect of characteristic p > 0. Let
q,q be integers. Analogous to Rost’s cycle complexes, there exists an external product

Ci(X,Z/p"Z(q),0) x C;(Y,Z/p"Z(q'),1) = Ciyj(X x Y, Z/p"Z(q+ ¢'),1); (o, ) = ax B



KATO COMPLEXES OF RECIPROCITY SHEAVES AND APPLICATIONS 25

defined as follows. For P € (X X Y)(;4;), we set (a x 8)p = 0 unless P projects to a point
r € X(;) and y € Y(;. In the latter case, we set

(ax B)p = Lp - resy(py /i) () - T€Sk(P) /k(y) (By)
where £p is the length of the local ring of P on Spec k(z) x Spec k(y) and res denotes obvious
restriction maps.
For (o, B) € Ci(X,Z/p"Z(q),0) x C;(Y,Z/p"Z(q'), 1), we define their internal product (or
simply their product) by

(5.3) a-f=A(axpB)eCij(X xY,Z/p"Z(q+4q),1),

where A : X — X x X is the diagonal and the pullback AX depends upon the chosen
coordination 7 of the tangent bundle of X x X.

The following proposition summarizes the basic properties of the internal and external
products. Since the proofs are exactly analogous to the corresponding statements in Rost’s
theory, we leave them to the reader and give precise references to the corresponding statements
in Rost’s theory.

Proposition 5.10. Let X and Y be schemes over k and let (o, ) € Ci(X,Z/p"Z(q),0) x
C;(Y,Z/p"Z(q'),1). Writew € H;(C(X,Z/p"Z(q),0)) and B € H;(C(Y,Z/p"Z({'),1)) for the
classes of o and 3 respectively in homology. Let f: X — X' and g: Y — Y’ be morphisms.

(a) The internal and external product pairings factor through homology.

(8) (f x 9)a(a x B) = fu(a) X 4u(5).

(¢) If X, X" Y, Y are smooth, then (f x g)*(a x 8) = f*(a) X g*(B), where we have
suppressed the coordinations. B B

(d) If X,Y are smooth and ¢ : Y — X is a morphism, then ¢*(a - ) = ¢*(@) - ¢*(5).

(e) (Projection formula) If X,Y are smooth and ¢ :' Y — X is a proper morphism, then
b.(@-¢*(B) = 6.(@) - B.

(f) Define [Y] := p}-(1), where py : Y — Speck denotes the structure morphism. If X is

smooth and ¢ :' Y — X is a morphism, then ¢.(¢*(5)) = (¢«[Y]) - B.

Proof. The proofs are exactly analogous to those of [EKMO08, 50.3, 50.4, 55.20, 56.8, 56.9 and
56.11]. O

We are now set to construct the action of a correspondence at the level of Kato complexes.
A similar action in the case of cycle modules has been considered in [Gill4, 1.11].

Let X,Y, Z be proper schemes over k with X, Z smooth and dim Z = d. Assume

is a codimension d cycleon Y x Z. Fori =1,...,r let ¢; : W; — Y X Z be the inclusion of the
closed integral subscheme W; of codimension d, and define morphisms f(i) : X xW; - Y x Z
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and g(i) : X x W; =Y X Z by the commutative diagram

X x Wi
g(’L) J{idXXLi f(z)
X XY xZ
XY T™XZ
X xY X x Z

in which 7xy, mxz are the obvious projection maps. Note that the morphism f(7) is proper
for each i. The morphism of Kato complexes induced by « is given by

(5'4) Zx = anf(z)* © g(Z): : C(X XY, Z/pTZ(Q)a 1) — C(X X Z, Z/pTZ(Q)v 1)
=1

for any coordination 7 of the tangent bundle of Y x Z and such that the induced maps on
cohomology groups

H'(X x Y, Z/p"Z(q)) — H'(X x Z,Z/p"Z(q))
depend only on the class Z of z in the Chow group CHd(X x X) and are denoted by Z,.
Proposition 5.11. Let the setting and motation be as above and let mxy, 7yz and mwxz

denote the projection maps from X xY x Z to X XY, Y X Z and X x Z, respectively. For
any o € H (X x Y, Z/p"7Z(q)), we have

Ze(@) = Tx 24 (Ty 2(2) - Txy (@) -

Proof. Since z =Y _;_, n;[W;], by the formula (5.4) and the equalities f(i) = mxz o (idx X ¢;)
and g(i) = mxy o (idx X ¢;), we have

Zo(@) = > nif (i) 0 g(i)i(a)
=1

= ni(rxz o (idx x 1)), o (mxy o (idx x 1;))"(c)
=1

= Zni(ﬂ'xz (¢} (idX X Li))*(idx X Li)*(Oé) . W;(y(a)
i=1

= nimxzy ((idx X 1) [X x Wil - 75y (@) = mxz4 (75 2(Z) - Ty (@)
=1
by Proposition 5.10. ]

Remark 5.12. Let X be a smooth scheme over a perfect field k of characteristic p > 0. By
the Gersten conjecture for logarithmic de Rham-Witt sheaves [GS88b], for integers 4,7, and
q the sheaf H} (Z/p"Z(q)) on Xz, has a resolution given by
C(X,i,q): & HK@)— & He (k@)= — & HLY k@),
2€X(0) zeXx @) zeX ()
where H."(k(z)) = ipHE (k(2x), Z/p"Z(n)) for a point iy : {r} — X. Therefore, it fol-
lows that the cohomology HY(X,H.. (Z/p"Z(q))) of this complex agrees with the homology
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Hy ;(C(X,Z/p"Z(q — d),i — q)) of the Kato complex (5.1). The action of correspondences
constructed above in Proposition 5.11 agrees with the action of correspondences considered
in [Dial9, Section 1.4].
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