Assignment 1

Exercise 1.

For pointed locally compact Hausdorff topological spaces (X, x_0) , (Y, y_0) and (Z, z_0) , show that the spaces $X \land (Y \land Z)$ and $(X \land Y) \land Z$ are homeomorphic.

Exercise 2.

Let (X, x_0) , (Y, y_0) and (Z, z_0) be pointed topological spaces. Let $g_0 : Z \to Y$ denote the constant map y_0 . Show that the exponential map $Y^{Z \times X} \to (Y^Z)^X$ induces a continuous function

$$(Y,y_0)^{(Z\times X,Z\vee X)} \to \left((Y,y_0)^{(Z,z_0)},g_0\right)^{(X,x_0)}$$

which is a homeomorphism if *Z* and *X* are Hausdorff and *Z* is locally compact.

Exercise 3.

Show that if (K, k_0) is an *H*-cogroup, then for every pointed topological space (X, x_0) , the set

$$[(K, k_0), (X, x_0)]$$

can be given a natural group structure in the sense that every pointed map $f : (X, x_0) \rightarrow (Y, y_0)$ induces a group homomorphism $f_* : [(K, k_0), (X, x_0)] \rightarrow [(K, k_0), (Y, y_0)]$.

Exercise 4.

For any pointed topological space (X, x_0) , show that the suspension ΣX is an *H*-cogroup.