Assignment 2

(Submission deadline: 08.10.2020)

Exercise 1.

Let *X* be a pointed topological space and let $n \ge 1$ be an integer. Let $f, g : X \to S^n$ be non-antipodal maps; that is, $f(x) \ne -g(x)$, for all $x \in X$. Show that *f* and *g* are homotopic.

Exercise 2.

Let (X, x_0) be a pointed space and let $\alpha : I \to X$ be a path from x_0 to x_1 . Show that α induces a well-defined group homomorphism

$$\gamma_{[\alpha]}:\pi_1(X,x_0)\to\pi_1(X,x_1)$$

taking the class of a loop [β] to [$\alpha\beta\alpha^{-1}$]. Show that for a path β from x_1 to x_2 , we have

$$\gamma_{[eta \cdot lpha]} = \gamma_{[eta]} \circ \gamma_{[lpha]}$$

Conclude that if $\pi_1(X, x_0)$ is abelian, then $\gamma_{[\alpha]}$ is independent of $[\alpha]$. Consequently, $\pi_1(X, x_0)$ is canonically isomorphic to $\pi_1(X, x_1)$.

Exercise 3.

Let (X, x_0) and (Y, y_0) be pointed topological spaces. Show that $\pi_1(X \times Y, (x_0, y_0))$ is isomorphic to $\pi_1(X, x_0) \times \pi_1(Y, y_0)$ as groups.

Exercise 4.

Show the fundamental theorem of algebra by proceeding in the following steps.

(1) Given a continuous map $f : S^1 \to S^1$, choose a path α in S^1 taking f(1) to 1. The composite

$$\pi_1(S^1, 1) \xrightarrow{f_*} \pi_1(S^1, f(1)) \xrightarrow{\gamma_{\alpha}} \pi_1(S^1, 1)$$

sends a generator, say *a*, of $\pi_1(S^1, 1) \simeq \mathbb{Z}$ to *na*, for an integer *n*. We define the *degree* of *f* by deg(*f*) = *n*. Show that the degree is well-defined and is independent of the choice of α .

- (2) What is the degree of the constant map? What is the degree of the map $x \mapsto x^n$?
- (3) Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{C}[x]$ be a polynomial. Suppose, if possible, that f has no root in \mathbb{C} . Define $\hat{f} : S^1 \to S^1$ by $x \mapsto f(x)/|f(x)|$.
 - (a) If $f(x) \neq 0$ for all $x \in \mathbb{C}$ with $|x| \leq 1$, then show that \hat{f} is homotopic to the constant map at f(0)/|f(0)|.
 - (b) If $f(x) \neq 0$ for all $x \in \mathbb{C}$ with $|x| \ge 1$, then show that \hat{f} is homotopic to the map $x \mapsto x^n$.
- (4) Get a contradiction and conclude.