Assignment 3

Exercise 1.

If $f : X \to Y$ is a homotopy equivalence, then show that $\Pi(f) : \Pi(X) \to \Pi(Y)$ is an equivalence of groupoids.

Exercise 2.

For any subspace *Z* of a space *Y*, let $\Pi(Y, Z)$ denote the full subcategory of $\Pi(Y)$ consisting of points of *Z* as objects. Let *U* and *V* be subspaces of a space *X* such that the interiors of *U* and *V* cover *X*. Let *A* be a subspace of $U \cap V$ such that *A* intersects every connected component of *U*, *V* and $U \cap V$. Show that the diagram

$$\Pi(U \cap V, A) \longrightarrow \Pi(U, A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Pi(V, A) \longrightarrow \Pi(X, A)$$

is a pushout square in the category of groupoids.

Exercise 3.

Use Exercise 2 to give another proof of the fact that $\pi_1(S^1, 1) = \mathbb{Z}$.

Exercise 4.

The *Klein bottle* is the quotient space of $S^1 \times I$ under the equivalence relation generated by $(z,0) \sim (z^{-1},1)$, for all $z \in S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$. Compute the fundamental group of the Klein bottle.