Assignment 4

(Submission deadline: 22.10.2020)

Exercise 1.

- (a) Give an example of a connected covering map $p : E \to B$ of locally path connected spaces for which there exists a continuous map $f : E \to E$ such that
 - $p \circ f = p$; and
 - *f* is *not* a homeomorphism.

(Thus, in the definition of deck transformations, we need to assume that f is a homeomorphism; it is not automatically true.)

(b) Let *B* be locally path connected, let $p : E \to B$, $p' : E' \to B$ be covering maps and let $f : E \to E'$ be a morphism of coverings $p \to p'$. Show that *f* is also a covering map.

Exercise 2.

Let $p : E \to B$ be a covering map, which is a left principal *G*-covering for a discrete group *G*. Let $\ell : G \to \operatorname{Aut}(p)$ denote the group homomorphism that takes $g \in G$ to the deck transformation

$$\ell_g: E \to E; \quad x \mapsto gx$$

of *p* given by left translation by *g*. Suppose that *E* is connected.

- (1) Show that ℓ is an isomorphism of groups.
- (2) Show that the action of each subgroup of Aut(p) on *E* is properly discontinuous.
- (3) Assume that *B* is locally path connected and that *H* is a subgroup of Aut(*p*). Show that *p* induces a covering map $E/H \rightarrow B$, where E/H denotes the quotient of *E* by the equivalence relation $x \sim hx$, for all $h \in H$.

Exercise 3.

Consider the subspace of \mathbb{R}^2 defined by

$$B = \partial(I \times I) \cup \left(\bigcup_{n \in \mathbb{N}} \{1/n\} \times I \right).$$

Show that *B* cannot admit a covering $p : E \rightarrow B$, where *E* is simply connected.

Exercise 4.

Let $k \leq n$ be positive integers and let $Gr_{\mathbb{C}}(k, n)$ denote the set of *k*-dimensional C-vector subspaces of \mathbb{C}^n . Let $S(k, n) \subset (\mathbb{C}^n)^k$ denote the subset consisting of linearly independent *k*-tuples of elements of \mathbb{C}^n endowed with the subspace topology. There is a surjective map

$$\pi: S(k,n) \to Gr_{\mathbb{C}}(k,n),$$

taking a *k*-tuple to its span; endow $Gr_{\mathbb{C}}(k,n)$ with the quotient topology. Show that $Gr_{\mathbb{C}}(k,n)$ is path connected and compute its fundamental group using the van Kampen theorem. (The space $Gr_{\mathbb{C}}(k,n)$ is called the *complex Grassmannian* of *k*-dimensional subspaces of \mathbb{C}^{n} .)