Assignment 10

(Submission deadline: 03.12.2020)

Fix a commutative ring *R*.

Exercise 1.

Consider the category of chain complexes of *R*-modules.

- (a) Show that chain homotopy gives an equivalence relation on the morphisms of chain complexes.
- (b) If $f,g: A_{\bullet} \to B_{\bullet}$ are chain homotopic morphisms of *R*-modules, then show that $H_n(f) = H_n(g)$, for all $n \in \mathbb{Z}$.

Exercise 2.

(a) Let

$$\begin{array}{ccc} A \xrightarrow{f} & B \xrightarrow{g} & C \\ \downarrow^{\alpha} & \downarrow^{\beta} & \downarrow^{\gamma} \\ A' \xrightarrow{f'} & B' \xrightarrow{g'} & C' \end{array}$$

be a commutative diagram of *R*-modules with exact rows. If *g* is surjective and f' is injective, show that there is an exact sequence

 $\operatorname{Ker} (\alpha) \to \operatorname{Ker} (\beta) \to \operatorname{Ker} (\gamma) \to \operatorname{Coker} (\alpha) \to \operatorname{Coker} (\beta) \to \operatorname{Coker} (\gamma).$

(b) Show that a short exact sequence of chain complexes of *R*-modules

 $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$

induces a long exact sequence

$$\cdots \to H_n(A_{\bullet}) \to H_n(B_{\bullet}) \to H_n(C_{\bullet}) \to H_{n-1}(A_{\bullet}) \to \cdots$$

of homology groups.

Exercise 3.

Let $(X_j, x_j)_{j \in J}$ be a family of pointed spaces and set $(X, x) = \bigvee_{j \in J} (X_j, x_j)$ with $i^j : (X_j, x_j) \to (X, x)$ denoting the inclusion. Suppose that $\overline{\{x\}}$ has a neighborhood U in X such that $H_*(U, \{x\}) \to H_*(X, \{x\})$ is the zero map. Show that

$$\sum_{i_*}^{j} : \bigoplus_{j \in J} H_*(X_j, \{x_j\}) \to H_*(X, \{x\})$$

is an isomorphism.

Exercise 4.

Let $\{(C_{\bullet}^{(i)}, d_{\bullet}^{(i)})\}_{i \in \Lambda}$ be a direct system of chain complexes of abelian groups.

(a) Let $C_n = \varinjlim_i C_n^{(i)}$. Show that the differentials $d_n^{(i)}$ induce differentials $d_n : C_n \to C_{n-1}$ making $(C_{\bullet}, d_{\bullet})$ into a chain complex such that the natural maps $C_n^{(i)} \to C_n$ yield morphisms of chain complexes $f_{\bullet}^{(i)} : (C_{\bullet}^{(i)}, d_{\bullet}^{(i)}) \to (C_{\bullet}, d_{\bullet})$.

- (b) Formulate and prove the universal property of (C_•, d_•) with respect to the above morphisms f_•⁽ⁱ⁾.
 (c) Show that the natural maps

$$f^{(i)}_*: H_n(C^{(i)}_{\bullet}) \to H_n(C_{\bullet})$$

induce an isomorphism

$$\varinjlim_{i\in\Lambda} H_n(C_{\bullet}^{(i)}) \to H_n(C_{\bullet}).$$