Assignment 11

(Submission deadline: 24.12.2020)

Exercise 1.

Let $X = T^{\#n}$, where $T = S^1 \times S^1$. Compute the (singular) homology groups of X.

Exercise 2.

Give an example of a space X with a finite covering $\{U_1, ..., U_n\}$ by open subsets such that $H_*(U_i)$ is finitely generated for every *i*, but $H_*(X)$ is not finitely generated.

Exercise 3.

Give an example of a continuous map $f : X \to Y$ which is not a homotopy equivalence but induces an isomorphism $f_* : H_*(X) \to H_*(Y)$.

Exercise 4.

Let *G* be a finitely generated abelian group and let $n \ge 1$ be an integer. Show that there exists a finite connected CW-complex *X* of dimension $\le n + 1$ such that $H_n(X) = G$ and $H_i(X) = 0$ for all $i > 0, i \ne n$.

Hint: Reduce to the case where *G* is cyclic.

Exercise 5.

Let $p : E \to B$ be an *r*-sheeted covering space.

- (a) Show that if $\sigma : \Delta^n \to B$ is a singular *n*-simplex in *X*, then there are precisely *r* singular simplices $\sigma_i : \Delta^n \to E$, $1 \le i \le r$, such that $f \circ \sigma_i = \sigma$ for all *i*.
- (b) Show that $[\sigma] \mapsto [\sigma_1] + \cdots + [\sigma_r]$ defines a chain map $Lf^{\bullet} : S_{\bullet}(B) \to S_{\bullet}(E)$ and hence, a homomorphism $Lf^* : H_*(B) \to H_*(E)$.
- (c) Compute the composition $f_* \circ Lf^* : H_*(B) \to H_*(B)$.
- (d) Suppose moreover that $G = \operatorname{Aut}(p)$ is Galois. Show that every $g \in G$ determines an automorphism $g_* : H_*(E) \to H_*(E)$ and that the composition

$$L(f)^* \circ f_* : H_*(E) \to H_*(E)$$

coincides with $\sum_{g \in G} g_*$.

Exercise 6.

Let $f: S^n \to S^n$ be a map and define its (homological) *degree* to be the unique integer deg(f) such that $f_*: H_n(S^n) \to H_n(S^n)$ is the multiplication by deg(f). Show that the antipode map $A: S^n \to S^n$ has degree $(-1)^{n+1}$.