Assignment 2

(Submission deadline: 15.04.2021)

Exercise 1.

Let $f : M \to \mathbb{R}^n$ be a map, where M is a smooth compact n-manifold. Show that df_x must be singular at some $x \in M$. Conclude that you cannot embed a smoth compact n-manifold in \mathbb{R}^n .

Exercise 2.

Let *M* be a smooth manifold and let *G* be a finite group acting on *M* by diffeomorphisms. Show that the set of fixed points $M^G := \{m \in M \mid g \cdot m = m\}$ is a smooth manifold.

Exercise 3.

- (*a*) Let *M* be a smooth manifold and let *G* be a finite group acting freely on *M* by diffeomorphisms. Show that the quotient space M/G is a smooth manifold.
- (*b*) Give an example of a smooth action of the group \mathbb{R} on a manifold M (that is, the action map $\mathbb{R} \times M \to M$ is smooth) such that the quotient M/\mathbb{R} with the quotient topology is not a manifold.

Exercise 4.

Let $f : M \to N$ be a smooth map between smooth manifolds and let $q \in N$ be such that f is a subersion at every $p \in f^{-1}(q)$ (In this case, q is said to be a *regular value* of f). Show that $f^{-1}(q)$ is an embedded submanifold of M of dimension dim M – dim N. Also show that $T_p f^{-1}(q)$ is isomorphic to Ker df_p .

Exercise 5.

Let *V* be the $\frac{n(n+1)}{2}$ -dimensional real vector space of $n \times n$ symmetric real matrices. Define $f : GL_n(\mathbb{R}) \to V$ by $A \mapsto {}^tA \cdot A$ and show that it is a smooth map. Show that the identity matrix $Id \in V$ is a *regular value* of f; that is, f is a submersion at every $A \in f^{-1}(Id)$. What is $f^{-1}(Id)$?

Exercise 6.

Let n > 1 be an integer and set $N = \frac{n(n+1)}{2}$. Let $F : \mathbb{R}^n - \{0\} \to \mathbb{R}^N$ be defined by $(x_i)_i \mapsto (x_i x_j)_{i \le j}$, where the $x_i x_j$ are ordered lexicographically.

- (*a*) Show that *F* is an immersion.
- (*b*) Show that F(v) = F(w) if and only if $v = \pm w$. Show that *F* induces an embedding $f : \mathbb{RP}^{n-1} \to S^{N-1}$.
- (c) Show that f cannot be surjective. Conclude that f induces an embedding of \mathbb{RP}^{n-1} in \mathbb{R}^{N-1} .

Note: For n = 3, this gives an embedding of \mathbb{RP}^2 in \mathbb{R}^5 . This can be improved to \mathbb{R}^4 using the so-called Whitney embedding theorem but not to \mathbb{R}^3 (as we have already seen in class).