Assignment 3

(Submission deadline: 07.05.2021)

Exercise 1.

Let *M* be a smooth manifold. Show that any sheaf homomorphism $C_M^{\infty} \to C_M^{\infty}$, which is \mathbb{R} -linear and satisfies the Leibniz rule is given by $f \mapsto Xf$, for a unique vector field *X* on *M*.

Exercise 2.

Determine the tangent space $T_{\text{Id}}(SO_n(\mathbb{R}))$ as a subspace of $T_{\text{Id}}(GL_n(\mathbb{R})) = M_n(\mathbb{R})$.

Exercise 3.

Show that for a real vector space V of dimension n, the real Grassmannian Gr(k, V) of k-dimensional subspaces of V has the structure of a smooth manifold.

Hint: You may use the following atlas $\{U_W\}_W$. For $W \in Gr(k, V)$ define a chart U_W containing W as follows: fix an inner product on V and consider the orthogonal decomposition $V = W \oplus W^{\perp}$ with natural projections $\pi_W : V \to W$ and $\pi_{W^{\perp}} : V \to W^{\perp}$. Set $U_W := \{E \mid E \cap W^{\perp} = 0\}$ and appropriately define $\varphi_W : U_W \to \text{Hom}(W, W^{\perp}) = \mathbb{R}^{k(n-k)}$.

Exercise 4.

We use the same notation as in Exercise 3. Let

$$E:=\coprod_{W\in Gr(k,V)}W$$

with the natural map $E \rightarrow Gr(k, V)$.

- (*a*) Show that *E* has a natural vector bundle structure and is a subbundle of the trivial bundle $\tilde{E} := V \times Gr(k, V)$ (the vector bundle *E* is called the *tautological bundle* of Gr(k, V)). Compute the transition functions of $E \rightarrow M$ with respect to the atlas given in Exercise 3.
- (*b*) Show that the tangent space to Gr(k, V) at *W* can be canonically identified with Hom(*W*, *V*/*W*). Conclude that there is a natural vector bundle isomorphism between the tangent bundle TGr(k, V) with Hom($E, \tilde{E}/E$).

Exercise 5.

Let *G* be a Lie group.

- (*a*) Show that $dexp_0 : Lie(G) \to Lie(G)$ is the identity map. (Hence, exp is a diffeomorphism around 0.)
- (*b*) Show that every Lie group homomorphism $\mathbb{R} \to G$ is of the form $t \mapsto exp(tX)$, for some $X \in Lie(G)$.

Exercise 6.

(*a*) Show that any smooth manifold can be given a Riemannian metric.

(*b*) Fix a Riemannian metric on a smooth manifold *M*. The *unit sphere bundle* of *M* is the subset of the tangent bundle *TM* defined by

 $SM := \{(x, v_x) \in TM \mid \langle v_x, v_x \rangle_x = 1\}.$

Show that *SM* is a smooth manifold is independent of the Riemannian metric up to diffeomorphism.

(c) Show that the unit sphere bundle of S^2 is diffeomorphic to $SO_3(\mathbb{R})$.

2