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This is concerning the remark a few lines after display (5) in the paper
of Ghate and Kumar on ‘Reductions of Galois representations and the theta
operator’ (to appear in IJNT):

Finally, we remark that while the forms f and f satisfying the congru-
ence conditions on the weight k in Theorem 1.1 and Corollary 1.2 may not
be typical, examples of such forms are not hard to write down under some
plausible assumptions on the size of My, .

The eigenforms satisfying the hypotheses and conclusion of Corollary 1.2
are probably not typical since there is a congruence condition on the weight
of f that needs to be satisfied.

However, it is easy to give examples of forms satisfy Corollary 1.2, mod-
ulo some intelligent guesses about the radii of the various families occurring
in the proof (there does not seem to be an effective method to compute these
radii).

Here is an example of forms f and g satisfying the conclusion (3) of
Corollary 1.2, with the former living in a family of slope @ = 1 and the
latter in a family of slope a + 1 = 2.

Let p = 5. Let Ag be the unique eigenform of slope a =1 in Si(1,1) of
weight k € {20, 40,60, 80,100} and level N = 1. Using SAGE, one sees: the
space S20(1,1) is 1-dimensional, spanned by the newform

Ago(2) = q + 456¢% 4 50652¢° — 316352¢* — 2377410¢° + O(¢%),



and the space Syo(1, 1) is 3-dimensional, spanned by the newforms

I 5 6501 22907296044

ha(2) = q + ag® + ( > ¢ + (a® — 549755813888 ¢*

T 7
1053 4 481748300 289722287396034 \ 5 6
-t - a+ - ¢’ +0(q),

where a is a root of the polynomial
23 — 54885622 — 8100517570562 + 213542160549543936.

The ideal (5) factors in the ring of integers of Q(a), the coefficient field of
ha, as (5) = A1 AaA3, where

v (s L o 523 7305104
P 7377395200 104832 455 )

v (s Lo 523 7306924
27\ 7377395200 104832 155 )

1
A3 = (5, i 2542>

are the prime ideals in the ring of integers of Q(a) lying over (5). Note that
Ayo(z) = ha(z), for some a. One checks

Agp(2) = ha(z) (mod \p),

so that we have
PAzy = PAgo-

Similarly, one checks
Pz = PAsy = PAeo == PAso = PAigo-

Now let us focus on f = Ay with £ = 100. Let fr be the p-stabilization
of f of slope 1. Recall that My, is the smallest non-negative integer such
that f; lives in a Coleman family of radius p~™ft. The above computation
suggests that My, = 1. In fact, the computation only show that My, # 0,
since there are no such congruences of Agg(z) with forms of weights 24, 28,
32, etc. so technically we may only conclude that My, > 1. Let us assume
that M e = 1.

Under this (plausible) assumption, f; satisfies the congruence condition
in the hypothesis of Corollary 1.2: k£ = 100 = 0 mod pMiton = 5 or



25 noting that d7, = 0 or 1. The corollary predicts the existence of an
eigenform g of slope a+1 = 2 such that (3) holds. Indeed, some computation
shows that if g € S22(1,1) denotes the unique eigenform of slope 2, with ¢-
expansion

g(z) = q — 288¢% — 128844¢> — 2014208¢* + 21640950¢° + O(¢°),
then we have 6f = g (mod 5), so that
PrOw > pg.

The proof of Theorem 1.1 shows that there should be a Coleman family
of slope 2 passing through the p-stabilized form g2s of g of slope 2. Com-
putations with SAGE show that there is indeed such a family (with M,,,
most likely 1: in fact, for any [ € {42,62,82}, there is a unique eigenform
g1 € Si(1,1) of slope 2 with ¢;(z) = g(z) (mod p)).

To summarize, while forms f (and fx) satisfying the congruence hypoth-
esis of Corollary 1.2 may not be typical, examples satisfying it are not hard
to find modulo some plausible assumptions on the size of the radius My, .



