MODULAR REPRESENTATIONS OF GL,(IF;) USING CALCULUS

EKNATH GHATE AND ARINDAM JANA

ABSTRACT. We show that certain modular induced representations of GLy(IF;) can be written as cokernels of op-
erators acting on symmetric power representations of GLy(IF;). When the induction is from the Borel subgroup,
respectively the anisotropic torus, the operators involve multiplication by newly defined twisted Dickson polynomi-
als, respectively, twisted Serre operators. Our isomorphisms are explicitly defined using differential operators. As a
corollary, we improve some periodicity results for quotients in the theta filtration.

1. INTRODUCTION

Let G be the general linear group GL; and let p be a prime. Let V; for ¥ > 0 be the r-th symmetric power
representation of the standard two-dimensional representation of G(IFy). It is modeled on homogeneous
polynomials of degree r over IF, in two variables X and Y with the usual action of G(IF,). Let § = XPY — XYP

be the theta or Dickson polynomial on which G(IF,) acts by determinant. Let V,(mﬂ) for m > 0 be the sub-

representation of V;, consisting of polynomials divisible by m + 1 copies of 6. The sequence Vr(mH) is called
the theta filtration of V.

1.1. Principal series. It is a classical fact going back to Glover [Glo78, (4.2)] that VL} is periodic in r with

)

period p — 1 where V" = V,(1 . This is proved nowadays by noting that

Vi . G(Fp)
vr ~ indy ;’ )
is a principal series representation of G(IF,) obtained by inducing the character d" of the Borel subgroup

B(Fp) = {(4%)} to G(FF,), and by noting that the character depends only on r modulo (p — 1). Similar
periodicity results have been investigated for higher quotients in the theta filtration of V,. Indeed, it was

dr (1.1)

shown in [GV22, Lemma 4.1] that for 0 < m < p — 1, the quotient % is periodic in ¥ modulo p(p — 1) by
constructing an embedding
Vr . 4G(Fplel) o
L) — mdB(le[e])d , (1.2)

r

where F,[e] is the ring of generalized dual numbers (with €”*1 = 0), noting that d” only depends on r

modulo p(p — 1), and by showing that the image of is independent of ¥ modulo p(p —1).

The map is no longer surjective when m > 0. In this paper, instead of working with generalized
dual numbers and characters of the inducing subgroup, we work with the induction of higher dimensional
representations of the inducing subgroup and obtain isomorphisms between % and induced spaces. We

have:

Theorem 1.1. Let 0 < m < p — 1. Then, we have the following explicit isomorphisms:
() Fpt () then
v,

G(F
YD B

. ) _

~ ind (]F:) (Vm & dT 711)’ (1'3)
where Vi, is the representation of B(IF,) obtained by restriction from G(IFp).

(2) Ifp | (,,) and m =1, then

G(IFp)

B(Fy)

v

(;) ~ ind
v,

where V3® is the split representation of B(IFy) obtained as the semi-simplification of V.

(Vlss ® dr—l)l
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The map in ( generahzes the ‘evaluation of the polynomial at the second row of a matrix’ map that is
used to prove ( and (1.2). Additionally, it involves the use of a differential operator V. Such operators
have found sporadic use in the literature (see [Glo78|] and [BG15]), but are used systematically throughout
this paper. We also need to divide by constants which do not vanish if p 1 (;,).

Consider now the case p|(,,), that is, r is in one of the congruence classes 0,1, ...,m — 1 modulo p. While

(@)
it is well known that the individual principal series % occurring as subquotients in the theta filtration

are extensions of two Jordan-Holder factors (which split exactly when r = 2i mod (p — 1)), it is not as clear
whether the extensions between consecutive principal series

pi) oy

0= Y - V) - Y1)

-0 (1.4)

for 0 < i < m —1 occurring in the theta filtration split. We show that if p|(, ), then exactly one of the
<i) / 1 . . .
V—’ ®@det with ' =r—i(p+1) =r—imod p we are reduced

to analyzing the case m = 1. If p { 1, then does not split by (1.3) and [Alp86, Lemma 6 (5)]. Modifying

extensions (L.4) split. Indeed, since V‘(/

i+2) —

the above mentioned differential operator V by dropping the constants mentioned above, in the second part
of the theorem we show that if p|r, then

Vi G(Fp) G(Fp) .
V(;) ind; B(F )adr 1eamdB(]F )d

splits. In other words, if p|r, then the two-dimensional standard representatlon V1 in (1.3) gets replaced by
the split representation V;* = a @ d of B(IF,). We deduce that the extensions spht exactly when r =i
mod p; moreover, under this condition, we have.

v, v, Vr(i+1)

) = Y @ o (1.5)

As a corollary of Theorem we obtain a strengthening of the afore-mentioned periodicity result from
[GV22] in the case that p 1 (,,) since again the right hand side of only depends on r modulo (p —1)
and not on r modulo p. Thus, to obtain periodicity in this case, we no longer need to restrict to r in a fixed
congruence class modulo p, only to those r that avoid collectively the congruence classes 0,1, ...,m —1 mod
p. We obtain:

Corollary 1.2. Let 0 <m < p—1landr=s mod (p—1). If pt (), () then

v, W
V,(m+1) - Vs(m-&-l)

(1.6)

We also remark that the results above (and just below) are clearly false for very small values of r and s for
dimension reasons. So in all the results in the principal series case, we assume that  and s are sufficiently
large (but do not mention explicit lower bounds on them to keep the statements simple).

With future applications in mind, we equally treat the case of G(IF;) = GL,(IF,;) for an arbitrary finite field

F, with g = p/ elements for f > 1. Indeed, we prove the following twisted version of the isomorphism (T.3):

Theorem 1.3. Let V, = ®{:_01(V,l. oFr!), V; = ®{:_01(Vm[ oFr') with 0 < m; < p —1 and d"~" be the character
1 (ri—m)p 1,
®{:0 dUi=m)v' of B(F,). If pt () = H{:o () mod p, then
v,

1 1 -
<96’10+ /9;"1+ e ’fol >

Here the V;, are modeled on homogeneous polynomials of degree r; over [F; in the variables X; and Y;
and V;, o Fr' means that we twist the standard action of G(IF;) on V;, by the i-th power of Frobenius. The
polynomials

0 = Xyl —YiX!,
for 0 <i < f —1 are what we call twisted Dickson polynomials (we adopt the convention that —1 = f — 1); they
do not seem to appear in the literature.
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If p 1 (,,), then the periodicity of the quotient on the left hand side again follows since the right hand side
only depends on the sum r = Y_r;p’, which is periodic modulo (g — 1). We obtain:

Corollary 1.4. Let 0 <m < g—Tlandr=s mod (g—1). If p1t(;,), (,), then

v, N v;
<9810+1,6:1111+1,_ . ,9}”£11+1> - <9810+1/9;1nl+1/ L /9?i11+1>

We end this discussion of the case of principal series by noting that the isomorphism in Theorem [1.3] is
expected to play an important role in future investigations into the reduction problem of two-dimensional
crystalline and semi-stable representations over arbitrary p-adic fields F with residue field IF; using the
compatibility with respect to reduction of the (yet to be discovered) p-adic and mod p local Langlands

correspondences for G(F) for an arbitrary finite extension of Q,.

1.2. Cuspidal case. Let T(F,) = ]P;2 < G(Fp) be the anisotropic torus. The theme of writing (general-
ized) principal series representations as cokernels of theta operators raises the question (asked by Khare)
as to whether one may similarly write representations induced from the anisotropic torus as cokernels of
symmetric power representations.

Let D be the differential operator X” % + Y”% and let w; be the identity character T(IF,) = ]F;2 — ]F;z.

We prove the following analog of (L.I):
Theorem 1.5. Let 2 < r < p — 1. Then there is an explicit isomorphism

)

Vigp—
el Vp_1 ind(T;((g:) wh

D(V;)

defined over IF 5.

The theorem is also true for r = 1 (see Remark [2). We prove similar isomorphisms for other values of r
by twisting (Corollary using the fact that D preserves the theta filtration in a strong sense (Lemma [4.3).
We also prove similar isomorphisms when D is replaced by a higher power D("+1) (Corollary note the
analogy with (L.3)).

A non-explicit version of the isomorphism in Theorem can be deduced from the work of Reduzzi
[Red10]. Let us provide some background and explain our contribution. In the discussion that follows, we
sometimes think of w, as a character taking values in a characteristic zero field (by taking its Teichmdiiller lift).
Recall that for each complex character x of T(FF,) = ]F;2 (with x not self-conjugate) there is an irreducible

cuspidal complex representation @ () of G(IF,). Moreover, ©(x) is a factor of an induced representation: we
have
. (G(F)
O(x) ® St ~ de(]Fp) X, (1.7)

where St is the p-dimensional complex irreducible Steinberg representation of G(IF,) with reduction St ~
V,—1. While the group G(IFp,) has no mod p cuspidal representations (since, for instance, the Jacquet functor
is never 0 because there are always invariant elements under the upper unipotent subgroup of G(IF;)), one
may still study the mod p reductions of ®(wj). Following a suggestion of Serre to use the operator D,

Reduzzi [Red10] proved that the mod p reduction ®(w}) is isomorphic to the cokernel of D on an appropriate
symmetric power representation, namely:

Vr+p—1

D(V)
for 2 < r < p—1. The proof uses a specific integral model of @(w}) arising from the action of G(IFy) on
the crystalline cohomology of the Deligne-Lusztig variety XY? — XPY = ZP*! (see Haastert-Jantzen [HJ90]).
Thus, Reduzzi’s isomorphism is not at all explicit given that the right hand side involves crystalline
cohomology. However, by tensoring with V,_1 and using the mod p reduction of for x = w}, one
sees that the isomorphism in Theorem [I.5| must hold, at least abstractly. An immediate question that arises is
whether one can make this isomorphism explicit, given that the right hand side of this isomorphism no longer
involves crystalline cohomology. Thus the point of Theorem is that it contains an explicit isomorphism
(which was found after much computation with special cases). Again, the map involves a differential operator
Vi, where a is an element of IF, \ F;, which generalizes the operator V used in the principal series caseﬂ

~ ®(wh) (1.8)

1t also involves the difference of a polynomial evaluated at 2 points reminding one of the evaluation of a direct integral in calculus.
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In fact, Reduzzi [Red10] proved that, more generally, for G(IF;) with g = pf , and for wyy : ]quz — ]F;2 the
fundamental (identity) character of level 2f, one similarly has

for2 <r < p—1, wherenow D = ani + Yq%. We end this paper by proving the following twisted version

A

of this result, which extends Theorem [1.5(to G(IF;):

Theorem 1.6. Letr = rg+rip+--- —I—rf,lpf_l, where2 < rg < p—Tlandr; =0 forall1 <j < f—1. Then
there is an explicit isomorphism over IF j»:

—1 e
Ry Vi }

j=0 "ri+p—1 f-1y,Fd o . GEF) o
—<D0,-~-,Df71> ® @i Vp—1 = de(]Fq) Wy

We remark that ®{;01 V;ﬂjl =~ St where St is now the g-dimensional Steinberg representation of G(FF,). Also

in the statement of the theorem we need the following twisted versions of Serre’s differential operator D,
namely:

xrxpl x99
Dy = X X3 X %q Yy Y] Yi 4 Yo’
and
_oxpxpt L xp 9yl 1 9
D] o XOXI Xj—l aX] + YO Yl Y]’—l aY],
forall 1 < j < f — 1. Interestingly, these operators are only G(IF;)-linear modulo the images of the previous
ones (with the convention that Dy is to be thought of as D). Again, they do not seem to appear in the

literature and one might refer to them as twisted Serre operators.

2. PRINCIPAL SERIES CASE

2.1. The case of GLy(FFp). Recall G(F,;) = GL,(FF) and B([F;) is the subgroup of upper triangular matrices
of G(]Fp). Forr >0, let V, := Symr(]F%,) denote the r-th symmetric power of the standard representation of
G(IF,) over FF,. We identify V; with homogeneous polynomials P(X,Y) of degree r in two variables X and Y
with coefficients in F,, with action g = (%) € G(IF,) given by

g-P(X,Y) = P(aX +cY,bX +dY).
Consider the Dickson polynomial
0(X,Y) == XPY — XY?.
Note that G(FF p) acts on 0(X,Y) by the determinant character. So for each m > 0, we have
v { F(X,Y) €V, | f(X,Y) is divisible by 8(X, Y)m“}
is a G(IFp)-stable subspace of V;. These spaces give a decreasing filtration of submodules of V;:
v,ovV ooy 5 5.

Letd": B(IFp) — F denote the character given by (& Z) — d". For n > 0, m € Z, define

1, ifm=0,
Mp=<nn—-1)---(n—(m—-1)), ifm>0,
0, if m<0.
Lemma 2.1. Let k > 0. We have
£k
2 () = Mot bl = 1r = £+ Bl = sl @)
=

Proof. Follows by induction on k. O

2Technically speaking, Reduzzi does not treat the case r = pTH, though it is covered by Theoremsand
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r .
Lemma 2.2. Let z € Fp and let P(X,Y) = Y a;X" 7Y € V, with a; € F, for all 0 < j < r. Define the differential
j=0
operators
] ) ) 0 )
v—ﬂﬁ‘FbW and V Cﬁ+daY

fora,b,c,d € . Then, for all 0 < k < t, we have

t—k
viTkvk(p) = z”[r—t+k]k( J +ba> (P)
(zc,zd) oxX

(cd)
Proof. Without loss of generality assume that P = X"~/Y/. We note that
" .
W(P) =[r—jln-

9 o/ o 2 \*
(”ﬁ + bW) (CB dw) (P)
Kk k "
kN k11 k- d
= (ALY L —
Z:: < ) (m)a ‘ aXtilimaYler( ) (zc,zd)
k
()

("75) ()7t let s eI
) otk ko rk

_ z’*tat*k*lblcr’]’“’l’k)d]*l< ) z( )[r—f]H,mmHm

1=0 ! m=0 \'"

- bk i( )f*k*lbl PR )
1=0

= - C
J— r
=2 r—t+ kg Z == (P)

il X7 I =Dy (22)

Now,

(zc,zd)

(cd)

t—k
=2 r—t+ k)i (ax baay) (P)

The second and last but one equalities hold by 2.2). The fourth equality follows from 2.T)). O

(cd)

Lemma 2.3. Let a,b,c,d,u,v,w,z € Fy and P(X,Y) € V,. Let Py = P(U,V), with U = uX +wY and V =
vX + zY. Then for k > 0 we have

p) 2 \*
(aaX + bay> (Py)

Proof. This is just the chain rule. 0

k
= ((ua—i—wb)a(—;( (va—i—zb)aay> (P)

(c,d) (uc+wd,vc+zd)

Lemma 24. Let a,b € Fpand V = a% +b%. Let f := f(X,Y),g := g(X,Y) € F,[X,Y]. Then, for all m > 1,

we have
m

V(e = 3 (1) Vi),

i=0
Proof. This is just Leibnitz rule. 0

Lemma 2.5. Let a,b,c,d € F,. Welet V = a% + b% and 0(X,Y) = XPY — XYP. Then, for 1,k > 0, we have
I b k=1
VI(H(X, Y)k)|(c 2 _ . (VQ(X, Y)’(c,d)) ’ lf =4
' 0, otherwise.
Proof. We first show that

vy =1 (ll‘) oF1(ve), Yk > 1. (2.3)
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We prove the result by induction on I. The | = 0 case is trivial. Suppose | = 1. Then, we have

? ? 36 a0
ky _ ky _ pok—1 k-1 k-1
vV (6F) = ( 5 +baY) (0) = ake* ! 22 + bko* ! 7 = k6" (V0),

as desired. Assume that the result is true for [. If k > [ + 1, then

viH(eh = v (l!(’f)@“’(%)’) = 1!(’1‘) ( aic (ek l(ve)’) +b% (ek—l(ve)l))

— (s ek-li(ve)lJr(k 1)gk—1= 189 (V)
(1)e /)
v /)

+l!<’l‘>b<9k 19 (VO + (k—1)o*1- 189 v(Vo
_ u<’l‘)eklw(ve)l) +1!(’l‘> (k= 1)et-1-1(vg)! <a§f< +b§3)
_ (l+1)!(lf1)9k(ZH)(VG)IH'

The first equality holds by the induction hypothesis. Note that V8 = bX? —aY?, so V((V8)') = 0, and hence
the last equality follows. Thus the identity follows by induction.
Now, suppose k < . Then

Vi(6F) = VITR(VR(65)) = kVITR(V0)F) = kvIRIY ((Ve)F) = 0. (2.4)

The second equality follows by taking I = k in . The last equality follows because V((V8)) =
Combining and (2.4), we have

I l
kygk—1 : ; —
Vi) ey = {”(1)9 e () - i1 {” (V1) - i£E=1,

0, ifk <L 0, otherwise. O

2.1.1. Non-split case. We prove Theorem [1.1] (1) from the introduction.
Theorem 2.6. Let 0 < m < p —1and p 1 (,,). Then we have

Ve

. (G(F) _
W ~ mdB(IF:) (Vm@d™™).

Proof. We show that there is a G(IFp)-equivariant isomorphism

.V G(Fp)
tp.W—Hnd( )(Vm®d’ ")

given by ¢(P(X,Y)) = ¢p for all P = P(X,Y) € V;, where ¢p : G(IFy) — V;,, @ d"™ is defined by

vr ((g Z)) - (ng)—] (a£< +b‘—;;>mj *) (Crd)>0§j§m

for all (“ Z) € G(IF,). Note that, by hypothesis the constant is a well-defined non-zero element of .
Recall that we denote V = a% + b3 and V/ = c % +d=3

B(F,)-linearity: We first show that ¢p is B(FF)-linear. Let v = (7%) € G(F,), b = (§?) € B(FF,) and
x:= (Xj)o<j<m € Vim @ d"~". Then the action of b on x is given by
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We have

woion) = o (575 - (V(]z)_,(uvwvvm‘f ®)

j
_ (’]’1) ] m_j umf'fkvk m—j—kxo/k
= <[r]m_j (;}( L ) kR gm=i=kgk ) (P)

which by taking t = m — j in Lemma and by using the fact [r],,—j = [r];—jk[r — (m — j — k)] equals

(Zc,zd)> 0<j<m

7

(zc,zd)) 0<j<m

m—j (my(Mm=j 1= (m—j) ) .
Z (] )( k ) (umfjfkvkvmf]*k) (P)‘ X (25)
= ek @) ] ocicm
Now,
m ' m (D (m o1 —(m—i) o ]
[r]m*] (cd) /) o<j<m j=i [r]mfj (cd) 0<i<m
which, by relabeling j as [ and i as j, and by further replacing ! by j + k, equals
m—j ]+k m Zr_(m_j) . .

Observing (’;1)("1]:]) = (jJ]Tk) (j«n:k) and comparing and , we have ¢p(b-) = b-p(7y). So p is B(Fy)-

linear and hence ¢ is well defined.

G(F,)-linearity: Now, we show that ¢ is G(IF)-linear. Lety = (75), ¢ = (%?) € G(F,). Theng- P(X,Y) =
P(U,V) =: P;, where U = uX +wY and V = vX 4 zY. We have

(7 d a\"/
Py (o5% +435)

7

(g (P(X,Y))(y) = WPO((Z Z)) _< (d)>0
¢ <j<m

which, by Lemma 2.3 equals

( (’7 ((ua + wb)i + (va + zb)i) " (P) )
M’”*]‘ 0X Y (uet+wd,vetzd) ) o<j<m

for all v € G(IF,). So (g - P(X,Y)) = g p(P(X,Y)) for all g € G(IF,). Hence ¢ is G(IF,)-linear.

=p(P(X,Y))(rg) = (- ¥(P(X,Y)))(7)

Kernel: Next we show that keryp = Vr(mH) by induction on m. If m = 0, it is well known that ker ¢ = Vr(l)
(e.g., use [GV22, Lemma 2.7] or Lemma with f = 1). Let P(X,Y) € kery. By definition of ¢, we
have Vm’f(P)|(Cd) =0forall 0 <j<m, (2’2) € G(FFp). In particular, this is true for all 1 < j < m.

So by the induction hypothesis, we have P(X,Y) € Vr(m), which gives P(X,Y) = 6(X,Y)"Q(X,Y) for some
Q(X,Y) € V,_p(p41)- Now, taking j = 0 and using Lemma

- (f (T)vm—%em)Vf(Q(X,Y)))

i=0

0= V" (P)

(c,d) (c,d)

This implies Q(c,d) = 0 since, by Lemma all terms above die except for the i = 0 term. Then by

the m = 0 case, we have 6 | Q(X,Y), so P(X,Y) € Vr(m+1). Thus keryp C Vr(mH). On the other hand if
P(X,Y) = 0"1Q/(X,Y), it is easy to check using Lemmasthat VI(P(X,Y))] (ca) = 0forall0 <j<m.

By the definition of i, we have P(X,Y) € ker¢. Thus ker ¢ = Vr("”'l),

Isomorphism: This follows since the dimension of both sides of ¢ is (m +1)(p + 1). O
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2.1.2. Split case. We turn to the case p | (;). As explained in the introduction we may assume that m = 1.
In the next theorem, we prove Theorem (2). Recall that V® := a @ d denotes the two-dimensional split
representation of B(IFp).

Theorem 2.7. If p | r, then we have

v
L indy() (Vs @ d ) = indyglad ! @ ind,g )

Proof. Define

V,
1/)SS V( ; ((IFp))(VlsS ® drfl)

r

by ¥ (P) = %, where ¢ : G(F,) — V* @ d" ! is defined by

SS a b —
E )
where V = aaE;( + by a

We check the B(IFP) linearity of 3. Let b = ({2) € B(F,) and v € (*4) € G(FFp). Then,

ss(7, s (ua+uvc ub —|— od ,
v = v ("1 )) = (v tve oy TP

= (uzr1V(P) + vz YrP(c,d), 2" P(c, d)) = (uz"'V(P) , 2" P(c, d))
(c,d) (cd)

59 (e,

Ly Ped) = by

+ vz 71V'(P)
(cd)

Here V' = c;% +d . and the fourth equality follows because p | r. Hence ¢ is B(FF)-linear.

The proof of the G(IF,)-linearity of * and the fact that ker ¢*° = V,(2) follows as in the proof of Theo-
rem [2.6f We conclude as in the proof of Theorem 2.6|by comparing dimensions. O

As discussed in the introduction, we obtain the splitting (1.5):

Corollary 2.8. Let 0 <m < p—1.Ifp | (,), thatis, p | r — i for some 0 < i < m — 1, then we have

v, v, Vr(i+1)

~

y D) = T @ y

2.2. The case of GLy(IF,). Let G(IF;) := GLy(F,) with g = p/ for f > 1. Let B(F,) denote the subgroup of
upper triangular matrices of G(IF;). Letr > 0 and letr = ro +rp+-- - + rf_lpf ~1 be the p-adic expansion

of rwith0 <r; <p—-1land 0 <j < f—1 Let Vrlj,rj = Symrf(lF%,)oFrj forall 0 < j < f —1, where Fr

denotes the Frobenius morphism. Let V,};r/ be modeled on polynomials in X; and Y; over IF; of degree r; for
all0 <j < f—1 Let

60:=XoY}  —YoX} , and 6 =X Y] | —YiX] 2.7)
for all 1 <k < f — 1 denote the twisted Dickson polynomials.
Lemma 2.9. Let a,b,c,d,z € F;. We write

P9 9 P90 g9
V]— 8X + b7 ay and V]- BX +dP aY

7]' T .
Let P(X;,Y;) = 'Zoaifx;] Y € VI with a;, € Fy for all 0 < i; < rj. Then, for all 0 < k; < tj, we have
l]':

) | D L L R PR 5 P U] I
<(zc)”],(2d)p]) CAr

Proof. Similar to Lemma O
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Lemma 2.19. Let a,.b, c,d,u,v,w,z € Fy and P]-(X]-,Y]-) c Vrlj_rf_ Let P]( = pj(uj, V]), where U; = tuX]- + wpfyj
and V; = o Xj+ ZP]Y]-. Then for kj >0, we have

2 L (Pf) ) ’ (P')’
0X; aY; ] (Cpfldpf> aY; ! ((uc+wd)pf,(vc+zd)vf)

Proof. Similar to Lemma O

9X;

= ((ua + wb)?’ i 9 + (va +zb

r L
Lemma 2.11. Let 6/ = X9Y — Y9X. Let P(X,Y) = ¥ a;X"7'Y" € F4[X,Y] be such that P(c,d) = 0 for all
i=0

a b
(c d) € F;. Then P(X,Y) € (¢').
Proof. Exercise. O

Lemma 2.12. Leta,b,c,d € Fq. Welet V; = ( a? 2 a + bl"] 9 ) and 6; = X?Yj — X]'qu. Then we have

!
I v.e , ifk=1,
( T <cvf}dvf>> d

0, otherwise.
Proof. Similar to Lemma O

Lemma 2.13. Forogjgf—landogmjgp—l let

G(Fq) Fr/ (rji—m;)p/
e (Vay @dtm)

be defined by ¢/ (P;(X;,Y;)) = #’;(&A@)’ where ¢P/-(Xj,Yj) : G(Fy) — V,E/r_j AL given by

i a b (T}:l]) mi—n;
IP;J,.(X,.,Y;) ((C d>) - <[rj]m]jn]- ij /(Pj)

a b j pl
for all ( Z) € G(Fy) and V; = a? 5% —|—b av;- Then

1tk
v].(ej )

¥l VFr/—> nd,

7

(CP],dV])> 0<n;<m;

N . r
(i) lp%,j(xj,)/j) is B(IF,)-linear,
(ii) ¢’ is G(IF;)-linear,
(iii) ¢/ is an isomorphism.
Proof. (i) B(IFy)-linearity: Let b = ({2) € B(F;) and v = (?}) € G(F,). Let x’ := (%0, Jo<n;<m; € V,E;j ®

AP Then the action of b on x' is given by

by = Z=mp . Y. <’7J)u(m/‘—"f)rﬂv("f—lj>szlfP’x;}_

As in the proof of Theorem w but using Lemmainstead, wé,, b-v) = 1/;{,], (b-). Thus wéj is B(IF;)-linear.

(ii) G(IF4)-linearity: This follows as in the proof of Theorem [2.6| using Lemma instead.

(iii) Isomorphism: We now show by induction on m; that ker P = (9]/-(mj+1)> where 9’- = XgY‘ — X~Y7
Suppose m; = 0. Then ¢/ (Pj) = l[Jé,j is defined by I/J{Jj ((a8)) = Pj(cpj,dp]) Clearly (07) C ker lp] Let P €
ker /. Then Pj(c”,d¥") = 0 for all (c,d) € Fy x Fy\ (0,0). Thus, Pj(c,d) = 0 for all (c,d) € Fy x Fy \ (0,0).
Then by Lemma 2. 11} we have P; € (0 > So ker g/ C ( ]’> Thus ker ¢/ = <9]’>

Assume that the result is true for m] — 1. By Lemma we have

V‘.Zj (e{mj—&-l

iV )’(cl’j,dpj):()
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for all 0 < a; < m;. By definition of ¢/, we have 9]/-m/+1 € kery/. So <9]/-mj+l> C kery/. Let P; € kery/.
Then V?/(H)’(ij,dp;) = 0 for all 0 < a; < mj. In particular, V?(P]-)|(ij oy = 0forall 0 <a; < m;—1
By the induction hypothesis P; € <9;mj ). Write P; = ng;mi with Q; € qu [Xj,Y;]. Now, taking a; = m; and
proceeding exactly as in the proof of Theorem but using Lemma instead, we see 9]’4 divides Q;. So

ker g/ c (6"""). Thus ker y/ = (6""").
v G(F,)

So we have an injective map ¢/ : W — indp g D (VFT/ ®dUi=mj W) Note that the dimension of both
( )

, Y
sides of ¢/ is (m; +1)(q +1). So ¢/ is also surjective and an isomorphism. O

Remark 1. Tt is also possible to give a direct proof of the surjectivity of ¢/, at least when m; = 0. Let o be a

representation of B(IF;). For ¢ € G(IF,), v € 0, let [g,v] € ind (( )) o denote the map defined by

otherwise.

N Jo(g'g)v, if g's € B(IFy),
[8,0](8") = {0, I

A basis of ind G(F )d( m)P i given by (cf. [Bre07, Lemma 7.2], [BP12, Lemma 2.5 (2)] )

B(F)
P
Al s = |4 s .
{ A§Fq ( ) A ¢ [11]} 2.8)

0<i<g—-1
| x € F;} . When,

where [1,1] denotes the function supported on B(F,) and [1,1](u) = 1 forall u € {(}¥)
i < g—1, and maps

e.g, j = 0 and my = 0, then one may check y° maps (—1)'Xy> 'Y} to f; for 0 <
Yo — qulyé’O*(qfl to ¢. ‘
Similarly for j, m; arbitrary, a basis of V;; @ ind (( )) dti=—m)e! 1ndG((]Fq)) (Vin; ®d (ri=m)P') is given by
‘7
{s'.”f‘ Twf, s Tioglo<i<m,0<i<q-1},

where V;;; is modeled on polynomials of degree m; over F, in S;, Tj and f;, ¢ are as in (2.8). One should
similarly be able to write down polynomials mapping to each of these basis elements under /.

Theorem [1.3|is a twisted version of the Lemma However the proof is more involved. To prove it we
need a few more lemmas. Recall the twisted Dickson polynomials 6; for 0 < j < f —1 were defined in (2.7).

Lemma 2.14. Let a,b,c,d € Fg. For 0 <j < f—T1and 0 < I k;j < mj, let V; —a’ ?( +bF’]aY Then

f-1 1. f-1 k
i) i

Proof. We induct on f. Lemma [2.5} ﬂis the case f = 1. Assume the result for f — 1. Now, consider

-1
V 9
f=1 f=1
(- 75"') ((“) 54 )
= =

(c,z:l;...;cPf*l,dPF1 )

lj
7 lf (IO/«../lffl) - (ko”"’kffl)/
Coapf1 -l )
(c,d;...;cﬂffl,drf’l) (e d;e?’ H,ar’ ™)

otherwise.

Lo lp ! {:—01 <Vj(9j)

7

(c,d;“.;cf’f*l,dl’f*l)
lo ( gko
% (90 )

lj
{10!-.-1f1!H{(} (vj(ej) y “> s if (oo lpg) = (koyeoo kp1),
(e,d;.c;e?” ™ ,dr" ")
0/

otherwise.

(c,d;...;cf’ffl,d!’f*1 )
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The first equality follows since 6; for 2 < j < f — 1 is independent of Xy, Yp, and since V((6;) = 0, and the

last from the induction hypothesis and a twisted analogue of the j = 0 version of Lemma O
. f=r
ForOSij—l,assumethatrj > pf’]. Thenr = Y r]-p] > fq.Let0 < i]- §rjfor0§j§f—l. Set
j=0

f=r . - 7 ro =
i= ) ijplandi= (ip,...,if1). Wewrite }_ 1= ) -+ ¥ .
j=0 =g =0  if_1=0

f ,
Lemma 2.15. For 0 < j < f—1,let 0 < ij < rjandngj < p-—1 Letk = ijpf. Let P =

;j_ijl/;f IS qu[XO,YQ,...,Xf_l,Yf_ﬂ be such that P (c,d;...;cl’ffl,dﬁf’l) = 0 for all (‘; Z) € G(IF,;).

v
-1
Lol X
i=0
Then ag = 0 = ag, and the polynomial P is of the form

q-1 7 f1 PREFT f1 ri—ki o k:
_ IR [VAYY
= Lo w| DX - II Y
k=1 i=0 j=0 j=0
£k
i=k mod (q—-1)

_ _ [ ..
Proof. From the given condition we have P (c, d;. ..;c’”f 1,d7”f 1) =Y alvc”ld’ =0, for all (c,d) € Fy x IF, \
i=0

{(0,0)}. In particular, choosing (c,d) = (1,0), we have a5 = 0 and cioosing (¢c,d) = (0,1), we have a; = 0.

Let Fy = {A; [ 1 <1 < g—1}. Then taking (c,d) = (1, 1), we have

g-1 7

f-1
P(LA;..; LAY ) =Y Y a|Af| =0
k=1 =0
i=k mod (g-1)
7 9-1
which, by writing Ay = Yy ay, gives ), Ak/\é‘ = 0. Since the (essentially) Vandermonde matrix (/\;‘ )
7—G k=1
i=k niod (g—-1)
is invertible, we have
A =0 (2.9)
forall 1 <k < g —1. Now, we have
LI A ! =i
— 77 7T — 77 ]
Po= LallX =) Lo wllx
i=0 Jj=0 k= i=0 j=0
i=k mod (q-1)
g-1 7 f-1 o f-1 g-1 7 f-1 I |
ri—ijy i ri—ki ki ri—ijy i ri—ki\ ki
_ Z Z a?Hle /ij +uEHXj] Ile _ Z Z “?(HX]'] ]le_ij] /Yj/)
k=1 i=0 j=0 j=0 k=1 i=0 j=0 j=0
£k £k
i=k mod (q-1) i=k mod (q-1)
The last equality follows from (2.9). O

Lemma 2.16. Let 6y := XOYJ’Z_1 — YOXJ’E_1 and 0y := Xlef_l — YkX,f_l foralll1<k< f—1.For0<j<f—1,
let cj,d;, gj,h; € N U{0} be such that c; + d; = rj with r; > p/ . Let

f-1 c: d: f-1 gi
P(Xo,Yo;-- s Xp1, Ypo1) = [ XY =TT XY,
j=0 j=0
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f-r o f=r
where Y djp! = Y hjp! +t(q —1) for all t > 1. Assume that P has no pure term which involves either only X; or
j=0 j=0

only Yj. Then, for 0 < j < f — 1 there exists c;,d; € N U {0} such that

Ui S e SO
P(Xo, Yoi--; Xfo1, Y1) = (H XY - ]‘[Xff)gf) mod (6, ..., 07 1)
j=0 j=0

f=roo for
with ¥ dip) = ¥ hip.
=0 j=0

Proof. We first make two observations. If co > 1,df 1 > p, we have

T i _ (0 iy eotydot1 ggr1py dr1p
[1xY = (T1X"Y | X "X/ 7Y,/ mod 6. (2.10)
j=0 j=1
For1 <k<f—1,ifcg >1,d;_1 > p, then
=4 St | e pden —1ydi+1
[1x7y7 = TT X'y | X577y mod 6, (2.11)
j=0 =0
! j;é]k,kfl

Note that the first operation involving 6y decreases Z{:_()l d; p/ in (2.10) by g — 1. However, the second operation

involving 6 does not change Z{;()l d;p/ in @11).

Now, to prove the result we may assume that dy | > hy_; (replacing P by -P). We also assume that t = 1.
For t > 1 we reiterate the proof below till t = 1.

Case 1: Suppose dy 1 > p.

First assume ¢ > 1. Since cg > 1 and df_; > p, by , we have

1 iy A f=2 ¢y A co—1ydo+1~,CF-11Py df-1—P
1’[0 XY = 1‘{ XV X XY mod 6.
j= j=
Note that,
f=2 -1 -1
(ot 1)+ Lo dip! + (@ = p)p' 1 = ! = (g = 1) = 1y
= = J=
zh?s thﬁ iezu}l(t io?ow; by taking c; = ¢ — 1,dj = do + 1;6}71 =cr1+p, d’f71 =df_g —pand ¢ = ¢y, d, =
pforalll <k < f—2.
Next suppose ¢y = 0. Since there is no pure term in Y; in P, we choose k to be the least index for which

¢j #0in H{fol X;jl/;if. Then we have ¢; = 0 for all j < k and ¢, # 0. This implies thatd; = r; > p forall j <k

and ¢ > 1. Then, using (2.11), we have

f-1 f-1
Cj d]' o Cj d/' Cr-1t+p qu*p cx—1dx+1
| | X]- Y] = | | Xj Y] Xk—l Yk—l Xk Yk mod 6
j=0 j=0
j#kk—1
= d Ty dit1 +p—1ydi—p+1 +py 4
_ Ciy 9 Cp— k+1yChk-1+p— k-1—P k2P Ak—2—P
= | | Xj Y]- Xk Yk kal kal Xk72 Yk72 mod 6)_1
ik k—1k—2

1 k=1
i A - -1, di—p+1 —
( [T x7v) | sy T X777 ) xg Py ™ mod 6y,
j=k+1 j=1

Clearly co + p > 1 and we are reduced to the previous paragraph (co > 1).
Case 2: Suppose dy 1 < p.
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Thend; | = p—iy =ipp —iy, whereip =1and 0 <i; < p.Since rf 1 > p, we have ¢y | =7y 1 —ipp +
iy > i1. Now, if df 5 > ip, taking k = f — 1, by (2.11) we have

Ji:Il XC]Yd] _ Ji—fXC]Yd] XCf,z-‘rZ‘ledf,z—ileCf,l—il Ydf,l'i‘il mod Gil
i /A =0 ji f-2 f-2 f-1 f-1 f-r
Note that df,l +i; = p, so we are done by Case 1.
Suppose, df_z < i1p. We write df_z = i1p —ip with 0 < i < i1p. Since by assumption rfo 2 pz and
0 < i < p, we have rfp > pz > i1p. This shows that Cfo =Trfo—ip+iz > ip. Now, if df_3 > ipp, taking

k = f —2, by (2.11) we have
1 XC]Yd] . b XC]Yd] XCf,3+i2def,37i2pXCf,zfl‘2Ydf,2+i2 d 61'2
g it T ]:HO A I R A I
J#f=2f=3
Note that dy_» + iy = i1p. So we are done by the ‘d;_, > i1p” case above. And so on.

Thus it is enough to show that this process stops. Suppose not. Then for 0 < j < f —1, we have
0 <ijyp <ijpsuchthatds 1 ;j =ijp—ij1. In particular, dy < i 1p. Now, note that

f1 f2 f2
Yo dip <ipaap+ Y dapl T =iap+ Y (ip—ij)p’ T =g
j=0 j=0 j=0
f-r o f=r o
Since ip = 1, we have j;O djp! < g. Also, note that ];O djp! > g — 1 by assumption. Hence,

=1 -1 -1
g—1< Zdjp] <g-1 = Zdjp]:q—l - Zhjp7:0 = h;j =0,
j=0 j=0 j=0
forall 0 < j < f —1. This is a contradiction because P does not contain any pure term in X;. Thus modulo
(61, .., 9f_1>, we can always assume that d 12> hence by Case 1 the result follows. O

Lemma 2.17. Let 0, := Xlef_l — YkX,f_lfor all1 <k < f-1For0<j<f—1,1letcdjgjhi € NU{0} be
such that c; +dj = rj with rj > pf~J. Let

f-1 -1

) ) _ i d: gi i
P(Xo,Yo;-. i Xpo1,Ypo1) = [ XY = [ XY},
j=0 j=0
-1 f-1
where ): d]p] = ): h]p] Then P(XO/YO;--‘;Xf—l/Yf—l) S <91,...,9f_1>.
j=0 j=0

Proof. We make the following observation. For 1 <k < f —1,if dj > 1,¢,_1 > p, then

f-1 f-1
i\ d; ciy A 1Pyt 14,d;—1
[ O| Xy =] 0] XY XS mod 6. (2.12)
j= =
jEkk—1

Note that the operation involving 6 in does not change the sum Z{;()l d; pl.

Now, we prove the result by induction on f. If f = 1, then P = 0, and hence, the result follows. Assume
that the result is true for f — 1. Without loss of generality we assume that dy | > hy 1. If df 1 = hy 1, we
are done by the induction hypothesis.

Suppose dy 1 > hy 1. We assume that dg y —hy 1 = 1. If this difference is bigger than 1, then we reiterate
the proof below until it is 1. Clearly df,l >1.If Cra22p, taking k= f —1in |i we have

1 ci i f=3 ci d; c d
Ty = AV foo—Py Aot p opatly dp -1

Since the operation involving 6 1 does not change the sum Z{;Ol djpj and df 1 —1 = hy_1, we are done by

the case ‘df  =hy 1"



14 EKNATH GHATE AND ARINDAM JANA

If ¢y o < p wewritecy » =p—i; =igp—i;, whereig = 1and 0 < i; < p. Since by assumption r; » > p,
wehavedy 5 =1 5 —igp +1i1 > i1. Now, if ¢y 3 > i1p, taking k = f — 2 in (2.12), we have

Vit civai Vit iy cr3—i1p\ dfatirp ,Cro+inry df o—i i
[1%7 = g XY | Xps T Yps Xpp Y, o mod
j#f-2f=3
Since the operation involving 6, does not change the sum Z ]p] and ¢y 5 +i; = p, we are done by the

‘cfp > p’ case. And so on.
Thus it is enough to show that this process stops. Suppose not. Then for 0 < j < f —2, we have
0 <ij41 <ijpsuchthatcy » j=1ijp—ijq. In particular, ¢o < i »p. By hypothesis we have
f-1 f-1 f-2
Ldip' =Y byt = L dip + (= hpa)p Zh;r’]
=0 = j=
which by substituting dy | —hy 1 =1,dj=r;j—cjand hj <rjforall0 <j < f — 2 gives

f=2 , f=2 f=2
Z(')(rj —cj)p/ +pfl< Z(:)rjp] = - ,Z(:)ij] +p/1 <o,
= = =

which further by substituting ¢; = if 5 jp —if 1; implies that
f=2 ,
- (iffzij - ifflfj) pl+p <0 = —igp/ M +ipa+p/ 7 <0
j=0
Since ip = 1, we conclude iy y < 0. But we had 0 < iy 1 < iy op. Thus we arrive at a contradiction. So
modulo (0, ..., Gf,l> we are always reduced to the ’df,l = hf,l’ case, and so we are done. O
We finally prove Theorem [I.3|from the introduction.

Theorem 2.18. Letr = ro—ﬁ—rlp—i—---—i—rf,lpf’l withry > p/ =i forall0 <j < f—1.Letm=my+mp+--+
mf_lpr be the p-adic expansion of m with 0 <m; < p —T1and p { (TZJ']_)for all 0 < j < f —1. Then we have

f=1Ff .
®/ ) VE .y, | |
~ q Fr/ (ri—m;)p/
<9m0+1 me 1+1> - 1nd‘B(IFq) % (ij ®d\iT ) .
0 Jecoy f_1 _
Proof. We show that there is a G(IFq)—equivariant isomorphism
® Fr] _ |
: i Fr/ i
l/] ’ mo+1 VVIf 1+1 — lnd ® <V ) ®d )P)
(0 ,‘..,ef_l ) et

defined by $(®1_, P;(X;,Y;)) = ®, ¢f (x,, Where (X, Y;) € VI forall0 < j < f—1,and

f-1

(%) lP@,(xj,Yj) 1 G(Fy) = @ (Vrﬁf ® d(’f*mf)i’])
]:

j=0

AL -
(i d) - ® <[VJ V] ()

j=0 ]’”1_”]

is given by

(C’”j,dpj)> 0<n;<m;
We first show that ®{;01 1/)%_ (X, is B(IF;)-linear. This follows from the B(IF;)-linearity of each IIJ;.J]_ (X, ¥))"

Let b € B(IF;) and g € G(IF;). Then

[ fr f1 ,
J J
®‘/’pj(xj, ®‘/’ (X.Y) (b-g)=Q0- ‘PPXY ®4’PXY :
j=0 j=0
The second equality holds by Lemma [2.13] (i).
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Slmllarly, for the G(IF;)-linearity of ¢, we note that (g - f 1P (X, Y7)) = ¢( 0 g Pi(X;,Y)) =
® l/JgP X, v) ®{ : Wi(g- Pi(Xj,Y;)), which by Lemma 2.13 (ii), equals ® —0 g 1/) (P (X, Y) = g+
®f 0 V(X)) = 8- ® g ¥hx v) = 8 ¥(® g Bi(X;,Y))).

Now there is a natural sur]echon

f-1 -1
7T : ®ind§((lp )) (VFr] ®d(r] m;)p ) _y lndG(]F (® VFr/ ®d(r] m;j)p )

j=0 j=0

given by 71(®/(F) = F with F(g) = @/_JF(g) for all g € G(F,). By definition of , we have that
1 1 i 1 i
P(® { Pi(X;,Y}))(g) = ®{:0 lp‘;,j(X]_,Y]_)(g) = 7t(®{:0 I/J;,j(leyj))(g) for all ¢ € G(]Fq) Hence we have that
1/’(@{ Ip Pi(X;, ])) T[(®{:—Ollp;)j(xjryj))' But the last map is equal to 71(( Otpf)( Pi(X;,Y}))) = (mo
011/)])( ](X],Y])) Thus

p=mo (e 9.

By Lemma [2.13|(iii), each ¢/ is an isomorphism, hence so is ®{:_01 . Since 71 is surjective, so is .

Note that 77 is not necessarily injective (take f > 1 and compare dimensions on both sides of ), so ¢ is

<9m0+1 mefl‘i'l
s

not necessarily injective. It remains to compute ker ¢». We show that ker ¢, = (6, 074 ), where we

write ¢, instead of ¢ for emphasis. By Lemma for 0 < aj < mj,

mf,1+l

for all 0 <s < f — 1. By the definition of ¢,,, we see that (9m0+1 ..,9:"’“, ) "’fol ) C ker ¢,. We now
prove the other containment

= 0,
(c,d;...;cl”fil,dpfil)

mf_1+1>

ker i, C (67071, ..,9;’““,...,9f_1

(2.13)

This is the trickiest part of the proof of the theorem. We need to make use of the three lemmas proved just
before the theorem.
The proof is by induction on Zp( ) where Y, (m) = mq + - - - +my_; denotes the sum of the p-adic digits

in the base p expansion of m. If = 0 then we have m; = 0 for all 0 < j < f — 1. Then 2.13) follows

immediately from Lemmas - 6 and

Now, suppose }_,(m) > 1. Assume that (2.13) holds for m’ with -, (m") < ¥,(m) — 1. Pick t such that
my > 1. Letm' =mo+ -+ (m—1)p'+ -+ mf_lpf 1. Then Y, (m") = ¥, (m) — 1 and so

Ker g, C (600", 00,07, (2.14)

by the induction hypothesis. Now, let P € ker ¢;,,. So (H{:_()l V}zj ) (P)| I N 0 forall 0 < a; < m;.

In particular, (H{;()l V?j) (P)|(C bt gy = 0 forall 0 < a; < m;withj#tand forall 0 <a; <m —1.
This shows that P € ker ¢,,. By (2.14), we may write

_1+1
P:Qoengrl‘I"'"“QtQ:nt +Qf 19f 11 )
with Q] S ]Fq[Xo, Yo; - . ';Xfferffl] for0<j < f —1. Clearly,
Pe <GOWI0+1,“./9:M+1,."/9}”211+1> thmf < m0+1 ..,0:Ht+1/‘../9}”£11+1>.
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So without loss of generality, let P = QtGI"f. Since P € ker iy, for 0 < aj < mj and j # t, we have

( v )vm' Q")

j=0,j7t
=0

f-1 m

. H v ( ( ) vmf Qt) (92%))

j=0,j#t 1=0 (edicr a1

. t mg va[—l H v vmffl (Q )vl (Qm[) -0
1 t—1 t t Uy P =

0 j=0,j#tt—1 (e d;..e,dr" ")

(g (o)) com)

=0
(c,r:l;...,'(.’F’JLl,dlf'ff1 )

3

ES

I

=0
(c,d;m;c!'f*l,di’f*l)

f-1
N
= Vj’ V(Qr) o =0
j=0,j#t (e ;e ", dr" )
— Qte<95"0+1,...,9},...,9]’?111“> — Qteg"fe<95"0+1,...,9;'“+1,...,9}”j;“>.

The fourth implication follows from Lemma if (k,1) = (0,m;), then

= my!(ad — bc)"’f’”t #0,

k 1
v
(¢,d;ce?” ~,dP7 )

and is 0 for all other (k,1). The penultimate implication holds by the induction hypothesis as the sum of the

p-adic digits is X (m) —m; < X,p(m) —1.So P € <9m°+1 ..,Gt’"fﬂ,...,ﬂ;nf{ﬁl), proving (2.13). O

3. DUAL NUMBERS
This section is an aside. The ring of generalized dual numbers is defined by [Fy[e] = (T(m[ +1]> We make
some remarks on two questions that arise in the context of the lack of surjectivity when m > 0 of the map
2) which involves dual numbers (introduced in [GV22| Lemma 4.1]). Firstly, can one possibly replace the
1nduc1ng subgroup B(F)[e]) in (L.2) by another subgroup B’ of index p + 1 in G(Fp[e]) and d" by a surjective
character x;, : B" — F,[€]* such that there is an isomorphism
Vi 2. G(Fyle])
o = indg
which might then be used to study periodicity results? The answer is no, and explains why in this paper
we turned towards proving the isomorphism in Theorem Secondly, can one at least describe the image
of (1.2) in a more conceptual way than is done in [GV22, Lemma 4.1]? The answer in some cases is yes (see
Proposition 3.1 whose proof we omit).
It would be interesting to see how the material in this section connected to announced work of Schein and
his coauthors on the modular representation theory of GL;(R) where R is a finite quotient ring of Of for F a
p-adic field, and, e.g., to work of Avni, Onn, Prasad, Vaserstein [AOPV].

3.1. Isomorphisms using dual numbers. There are two notions of projective space over the generalized dual
numbers. The first is standard projective space

PY(Fple]) = {[x: yll(x,y) = 1}.
It has cardinality p(p + 1) when m = 1 and is the cylinder obtained by glueing the line at oo, namely [1 : de|,
to the plane [c : 1]. The second is P'(F,[e]) = {[x : y]|(x,y) # 0}. It has cardinality (p + 1)> when m = 1.
The group G(IFp[e]) acts on the left on both these spaces via (?}) - [x : y] = [ax + by : cx + dy].

Let B’ be the e-Iwahori subgroup of G(IF, [€]) obtained as the pre-image of the usual Borel B(IF,) under the
reduction modulo € map G(Fy[e]) — G(FF,). Then B’ is the stabilizer of [e : 0] under the action of G(IFy[e])
on IP1(IF[e]) (whereas B(IF,[e]) is the stabilizer of [1 : 0] in IP!(IF,[e])). Clearly B’ has index p + 1.

One may ask if there is a surjective character x : B* — F,[e]* which induces a G(IF)-isomorphism

Vr

. 1G(Fple])
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from which the periodicity of the left side would follow if one knew x, only depended on r modulo p(p — 1).
The answer is no. Indeed, one quickly sees that B’ has abelianization FFp[e] * x IF; and so the only surjective
characters B' — IFp[e]* it supports are powers of the determinant character. These characters are not genuine
characters of B’, since they are obtained by restricting from G(IF,[e]), so the induction is not so well-behaved.
Moreover, one checks that every other subgroup B” of index p + 1 in G(IFy[e]) is conjugate to B’ so this
line of reasoning does not bear fruit.

3.2. Image of (1.2). Thus, the best one can hope to do is to characterize the image of the (non-surjective) map
(if m > 0)
v

r
Vr(erl)
mentioned in the introduction (cf. [GV22, Lemma 4.1]).

To this end, we consider the right action of G(IF,[e]) on standard projective space IP!(F,[¢]) defined via
[x :y]- (?Y) = [ax + cy : bx + dy]. This action is transitive and the stabilizer of [0 : 1] under this action is
B(FFp[e]). We have the following decomposition

G(Eyle]) = B(F,[e]) (i ﬁ’) LI B(Fy[e) (ﬁ’ dle) :

where ¢,d € FFp[e]. There is a bijection between B(IF,[e])\G(F,[e]) and P!(FF,[e]) by sending B(F,[e])g to
[0:1]g for g € G(FFle]).

We say that f : PY(IFy[e]) — Fple] is smooth if for all zg + z'e € Fple] with zg € F and 2’ = z1 + zpe +
ot zy_1€" with zy, ..., 2,1 € Fpand all 0 < j < m, there exist constants f)([zg : 1]) and fU)([1:0]) in
IF}, such that

f(zo+2e:1]) = i
=0

(Fyfe]) 4r

. G(F,
= indp e )

(Z;.!e>]f(j) ([z0:1]) and f([1:Z¢]) = i (e

=

FO([L:0]).

Proposition 3.1. Let ¢ : V; — indg((]]gs[[;]))dr be given by Y(P(X,Y)) = ¥p(x,y) for all P(X,Y) € V,, where

¥p(xy) : G(Fple]) — Fyle] is defined by yp ((*4)) = P(c,d) for all (%) € G(Fyle]). If r = 0 modulo p(p — 1),
then
Imy = {f :PY(Fyle]) — Fple] | f(a) € Fyifa € PY(Fy) and f is smooth} :

4. CUSPIDAL CASE

In this section, we prove Theorems [1.5 and [1.6] which, as explained in the introduction, are the cuspidal
analogs of Theorems|[1.1]and
4.1. The case of GLy(IFp). Let a € IF» be such that 2?2 € F, and « ¢ . Fix an identification i : ]F;2 o~
T(F,) C GLy(FFp) given by u +va — (% v¢*) for u, v € IF, not both zero.

v u

We define some functions in induced spaces. Forr > 0and 0 <i <r+ pz +1, let f; : G(]Fp) — ]sz be

A((E 7)) =@ra e ray,

forall g = (25%) € G(F,). Then f; is T(F,)-linear and hence f; € ind(T;((];FZ))aJEH. Indeed, for t = (1) €
T(F,), we have
2 2 , ,
filt-8) = f ((ugffﬁcc uzlijfzdd) ) = (u+o0)" P (a4 ca) DT (b + da)

which equals

(u+ o) DL fi(g) = (u+0a) 2 fi(g) = whA(E) - fi(g) = £ filg):
One can check that the functions in B = {f; | 0 < i < p* — p — 1} are linearly independent. Also, T(F,)

(]Fp) r+2
F

has index p? — p in G(FF,). So BB forms a basis of ind?( w2 We fix this basis in the computations to follow.

For p2 —-1<i<r+ p2 + 1, we observe that
fi=fpay=J (4.1)
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for some 0 < j < r + 2. In this case, we say that f; is a flip. We shall soon assume that r < p —3 < p> —p —3
in which case f; lies in B.

On the other hand, for p> — p <i < p?> — 2, we have f; = fp2—pyj for some 0 < j < p —2. Then we say that
fi is a flop. It is the last term in the following relation:

fitfiv-v i1t v T fjrp—p =0 (4.2)
where all but the last term lie in B. Indeed, we have

xr*-1_1— (Xp—l _ 1) (XP(P—l) +x(P-Dp-1 4. xpl 1) .

Then for A € ]F;2 \ X, we have AP(P=1) 1 A(P=D(r=1) ... AP=1 11 = 0. So for (2t) € G(IF), we have

a-+ca p(p71)+ a+cu (pfl)(pfl)_i_m_i_ a-+ca p71+1:0,
b+ da b+da b+ da

which, after multiplying by (a + ca) P+ =i (b + da)I*7*~P on both sides, gives
(a+ca) P (b da) + (a + ) TP (b 4 da )T PY 4 (a4 o) TP (b da) PP = 0,

which shows that holds for 0 <j < p—2.
Thus any flip or flop can be changed to a linear combination of vectors in B.
For any polynomial P(X,Y) and A,B,C,D € Isz, we set
px,v)| ) = P(C,D) — P(A,B
(XY)| /) =P(CD)~P(4,B).
The following theorem is Theorem [1.5/from the introduction (replacing r by r + 2).

Theorem 4.1. Let 0 < r < p — 3. Then there is an explicit isomorphism defined over IF ,»:

Virpt1

~ i G(]FP) r+2
D(Vy) & Vrot = ey 27

p)
where D := X"’% + yp%_
Proof. Let P € V,yp1 and Q € V1. Define

Vitp+1 . 4G(Fy) i
w . m ® fol _> lndT(]Fp)wz

by $(P® Q) = ¢paq, where Ypeq : G(IFp) — F is defined by

b (e, (b)) (atea)?, (bda)?)
¥raQ ((Z d)) = Va(P) :

forall (*%) € G(IF,), and where

(a+ca, b+da) (0,0)

d d
V= (a+coc)ﬁ + (b+d¢x)w.

For convenience, we set
Ay=a+ca and By =b-+da.

T(IFp)-linearity: We show that ipgq is T(IFp)-linear. Since P(X,Y) is a homogeneous polynomial of degree
r+p+1and Q(S, T) is a homogeneous polynomial of degree p — 1, we have V,(P(X,Y)) - Q(S, T) is a linear
combination of terms of the form o

AIBl . xpti—kyk  gp-1-1l
for0<k<p+1,0<I<p—-1,and 0<j<r. Now,

(AL,BY) (Af,BY)

. Spflfl Tl

(A,By) (0,0)
which shows that {pg o is a linear combination of the functions f; defined above. Since these functions are
T(IF,)-linear, pg is also T(IFp)-linear.

AZ*]'BZ;C . Xerlfkyk ,

r—ipj 2—kp—Ip+1 pkp+l 2 —Ip—k+1 pk+1
- A ]BZX<AZ prlpHigkptly _ 4pi=lp Bf p)
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G(FFp)-linearity: We show that ¢ is G(IFp)-linear. Let ¢ = (4 7) € G(IFp). Then we have

¢ (P®Q)=PU,V)2QU', V') =P Q(say),
where U = uX +wY,V =0vX+zY and U’ = uS + wT, V' = 0vS + zT. Now,

ws-pea) ((7 7)) = vm=en((f 7))
((atea)”, (b+da)?)

? 3\’
- ((a—i—coc)ax (b+ da )ay) (P1) (a+cn) (b-+da))
QU ((a+ca)?, (b+da)’), V' ((a+ca), (b+da)’)),

which, by Lemma 2.10]applied twice

9 o\’ ((uAa+wBa)p,(vAa+zBa)’”)
= ((uA,x + wBy) 3% + (vAx +2zBa) 8Y> (P)

Q ((uAs + wBy)P, (vAy + zBy)P)
B au+bw av+bz\\ [(u v a b\\ _ a b
= ¥reQ cu+dw cv+dz))  \w z PreQ |\ g)) T8 ¥rea (. 4) )

Thus we have ¢(g- (P® Q)) = g Ppgq- Hence ¢ is G(IF)-linear.

(uAg+wBy,vAx+2By)

Kernel of y: Next we show that keryp = D(V,y2) ® V1. We first show that D(V,42) ® V,-1 C kery.

r+2 . r+2 . .

Let P = Y 4,X""7'Y' € V,yp and Q € V,_1. Then D(P) = ¥ a; ((r+2 — i) X' TPy 4 jXr+2=iyttp=1),
i=0 i=0

l ((a+ca)? (b+da)?)

Claim: for all (7Y) € G(F,), we have V4 (D(P))

(a+ca,b+da)
Indeed,
r d arr+2 r+p+1—iyi r4+2—iyit+p—1
ViD(P)) = (Augx +Bigy Zal(H—Z i) XTHPHL=iyi y jxr2=iyitp )
B r—kpk__ 9" Tl iy xer2—iyitp—1
- ,-Z(:n;)(k>A By iy i((r+2-i)x Y! 4 ix iy
r+2 r r . .
= Y (k) ai(r+2— i) ALFBEr 4+ p 4+ 1 — i,y il XPHI R vk
i=0 k=0
r4+2 r r o
+Yy ) (k) aii ALRBR [ 2 — ], g i + p — 1] XYook
i=0 k=0
which, by observing [i]y equals 0 if i < k and equals i! if i =k,
r+1 r .
= ay(r+2)AL[r+p+1), XP+1+Z Y (Z) (r+2—)ARBE[r + p+ 1 — i, [i]xP TR yi=k
i=1 k=0

r+1 r L

Fapga(r+2)Byr +p+ 1LY 4 Y Y (D @i AL BE[r +2 — il fi + p — 1 X* T2y Pk,
i=1 k=0

which again using [r+p+1—i], y =0 mod pfork <i—1,[ily =0fork >iand [r+2—i], , = 0 for

k<i—2and[i+p—1]4y =0 mod pfork >i—1,

r+1 L
= ag(r+2)AL[r+p+1], X + <_,\: C) a;(r+2—0)A'Bi[r+p+1-— i]ri[i],-> xpH
i=1

r+1 . .
+ (Z (i ! 1)“i("+2 — DA B A p 1 =] i [i]il) XPY

i=1
r+1

S it i , ,
+a,40(r +2)B[r +p+ 1], P 4 <Z (i B 2) aii Al 2B A r 2 — ] o li+ p — 1]1’2) yrtl
i=1

i=1

r+1 . .
+ (Z (i ! 1)”1‘1'1412_1“3&_1 [r+2—i, ipli+p— 1}1'1) XYP.
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Since [r+p+1—i],_jy1 = (r—i+1)! modulo p and [i + p — 1];_1 = (i — 1)! modulo p, the above expression

r+1 o
= ay(r+2)AL[r+p+1),XPH ¢ (Z C) a;(r+2—-0ABlr+p+1-— i]ri[i]l) xptl
i=1
r+1

oo (r + 2B+ p+ 1,7 4 (Z (i ! 2) @i AL 2B 2 il i+ p 111»2) yr+i
i=1

r+1 . .
+ (Z (l. 1 1)ai(r +2— i)!i!A;1+13;1> (XPY + XYP).
i=1

Note that since A,, B, € ]sz, we have

(A%.BL) (ALB)
Xp+1‘ — AP _ APt g and Yerl’ _ g gl
(Aw,By) (AuBo)
Also,
(AL,BL)
XPY+XYP‘ - AuB! + APB, — APB, — A.BF = 0.

Thus we have,

((atca)?,(b+da)P) (A%.BY)

= Vi(D(P)) =0,
(a+ca,b+da) (Aa,By)
proving the claim, and so P ® Q € ker . Thus D(V,42) ® V1 C ker ¢.

Next, we show that ker ¢y C D(V,42) ® V,,_1. We prove this inclusion by changing r to r — 2, i.e., we show
kerp C D(V;) @V, 1,

Vi(D(P))

for2 <r < p—1, where

. ,G(F
Y:Vip1®Vy1 — 1ndT( S)wé

(Fp)
such that (P ® Q) = ¢pgq ,where Ppeq : G(F,) — 2 is defined by

ol(¢ ) -vie

forall (25) € G(Fp).
Let

((a4ca)?,(b+da)?P)

. p p
(a-+cab-+da) Q((a+ca)?, ((b+da)?)

r+p—1p—1 o o
PoQ= Y Y a; X" 1Y @S T € keryp, (4.3)
i=0 j=0
where V,_; is modeled on polynomials in S,T. Then we have

ol (et ) 2\ 2 - ((ALBD) 2 iy
.. i i r+p—1—iyi pr=p=ipplp _
y ( ;:O; a; <<A,X =5 + Ba ay> (X Y) ‘(AQ,BW) AP B —o. (4.4)

j=0

r+p—1 ) ) r—2 o\ ((ARBE)
- -9 9 r+p—1—iyi
Z aj,j <(Aa X + By ay> (X Y ) ‘(AMB&)
rp-1 r=2 1. o2 o |(ALBY)
. r—2—kpk r+p—1—iyi e
, . (2 ( k >A"‘ Be oXr—2-kgyk <X Y) ‘(Aa,Ba)

ki (ALBY)
r—2—knk 1 1 ; p+1—i+kyi—k
Ag By [r +p-1 l]r—Z—k[l]k (X Y > ‘(AMB“)

I
7]

Il
=]

[+ p =1 =il g i (AL g A;“’“Bf;))

-
+
=

Il
<
— ot
I ™M=
| <o
—
=2
Ny
/—}»/_\/—\
L Ib
/“\/‘:/"\
= |
N
N~ N N~

Il
—_
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In the last equality, we dropped the terms for i = 0,7 + p — 1 as these are zero. Indeed, for i = 0, since [i]y =0
for k # 0, only the k = 0 term survives in the sum over k for which

Agfip+kp+pfk71B;pfkp+k . AZerflfiBti _ A;+pfl . AZ(erfl -0
Similarly, one can check that the terms for i = ¥ 4+ p — 1 are also zero. The last expression
r+p-2 =2 /. _ 9 ; ; i i
= L ((Z (r i ) r+p—1- i]r2k[z‘]kAL“””‘”*P"‘*Bff‘k“k> —(r- 1>!A;+*"1‘IB;> , (45)
i=1 k=0

since A" '"'Bi is independent of k and, by (Z1),
r—2 r—2
L (")t il = b p - U2 = (- 1! mod
k=0

For 1 <i <r—1, we now compute the coefficients of 4;; and a;,, 1; in (4.5).

Coefficient of a;j: Note thatfor1<i<r—land0<k<r—2 wehave[r+p—1—i], » y=0fork<i—1,
and [i]x = 0 for i < k. Thus the coefficient of a;; in {.5)

-2 T ) . L
= (:_1)[f+l’—1 ily—i1lilic1 Ay By 1+(ri )[r+p—1 i, o[ APT B - (r— 1Al R
B (Z:f) (r—i—1)tA; B 4 ((rjz) (r—i—1)tit = (r — 1)!) ASPTTB
i((r=20 a7 BT = (r—2)p1a B

Coefficient of a;,, 1 ;: Similarly, in (4.5), the coefficient of a;, 1 is

r—2
r—2 . . in_ 2 e ; 2 i idp_
(Z( )[r—m,z,k[wp—ukA; L Ay 7 "*’*") — (r=11A B

o\ k
-2 r—2 o
= (:_2>[ rili+p—1]i2Ay lBler 1+( _1)[ i_icali+p—1)i_1Ax - 1Bl (7’*1)!A£_1B;+p 1

= —(r—i) ((r —2)ArBTP T 2)!A27i+”713;) :

The first equality holds because [r —i], , y = 0fork <i—2and [i+ p — 1]y = 0 for k > i — 1. The second
equality follows because [i+p—1]; = (i—1)!=[i+p—1];_1.

For 1 <i <r—1, substituting the coefficients of a;; and a;,, 1 in (4.5), we have

et d 3 \"2 o\ ((ALBD)
.. _— . r+p—1—iyi
;) az/] ((Atx X + By aY> (X Y) ’(AD(,B,,()

— i 1 o 1.

z (inij = (r = i)agp ) (r =2t (ATBP T — AT BL)

r—2 _ o
+ Z“i,j ((2 (") p=1 = ol g k*’*") (r 1>!A;*P“B;>
i k=0

i <1a,] (r— i)ai_,_p_1/j> (r—2)! (A;f"ijpfl — A;ﬁierle,i)

r—2 1 : . . .o
T ((Dr ~2)! ( [ ) (k) AL‘IV*k*’*P—k—lB;P‘k”*k) —(r- 1>!A;+"‘1"B;) :
i=r

k=0
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Thus (4.4) shows that the following linear combination of functions in the induced space vanishes:

p=1 /r—1 . . . )

i ; —ipitp—1 —i+p—1pi 2 jp—
Z<z(mi,j—<r—z>a,-+p1,j) (A B A B;))AEZ L
i=0 \i=1

1 —

~

(4.6)

rl =2 (r+ p—1—10\ [(i\ ,r—ip+kp+p—k—1 pip—kp+k r+p—1—ipi P—jip—pnir _
Yol Xai{lX ok ¢ Ay B, —(r—1)A, B, | | - AF BY =o,
j=0 \i

i=r k=0

=

after dividing by (r — 2)!.
For simplicity, we denote
Xi,j = l‘{/'ll"]' — (7" — i)ui+p—l,j/

for1<i<r—1land 0 <j<p—1, and, we denote

r+p—1—1\ /i
Xi,j = ai,]‘ and Zi,k ::< rKZ—k >(k>,

forr<i<p—-1,0<j<p—-1,0<k<r—2 The Xi,]- are variables (and the Z;; constants).

Claim: For 1 <i<p—-1and 0 <j<p—1, we have X;; = 0.
We prove the claim. Write as
p—

1 /r=1 , . , .
Y (Z X; (A;ﬂi —imipopgitiptp=l e flfmlellxﬂp) +
j=0 \i=1

p—l P—l r—2 r+ 2_1' —'}7+kp—k—1 ip-‘r'p—k +k r+p2—]—i—jp i+]'p
Z Z Xij ZixAx rer B P —(r—=1)Aq B, =0.
j=0 \i k=0

i=r

Collecting terms in the same congruence class # of i + j modulo (p — 1), we have

p—1 PR VP
Y Y X;j (A2+p i=ip=pgitivtp=l _ gripi—ijp 1B;+Jp)+
n=1 1<i<r-1
0<j<p-1
i+j=n mod (p—1)

p-1 r—2 y . s
r+p*—ip—jp+kp—k—1 Lip+jp—kp+k r+p*=1—i—jp pi+
) X;j (( ZipAy P PTIPTPTE  PTR )—(r—l)Aa P PRSP | = 0.
k=0

Write the n-th summand above as B;, for 1 < n < p —1. By inspection, each of the functions in B, is

of the form A} " 2_1_1331 for | = n modulo (p —1). Using and (£2), we may assume each of these
functions belong to the basis B, noting that these operations preserve the congruence class n. By the linear
independence of the basis B and the vanishing of the sum of the B,, we conclude that each B, = 0. Thus
fixing 1 <n < p — 1 we have:

rp2—i—jp—p pitjptp—1 _ ,r+p*—i—jp—1pitj
y X; (A;P Jp=pgitivtp=1 _ yrep=izjp Baﬂlﬂ)Jr
1<i<r—1
0<j<p-1
i+j=n mod (p—1)

=2 P+ pP—ip—jp+kp—k—1 pip+jp—kp+k r+pP—1=i—jp pit+jp
D Xij | | X ZikA By —(r=1)A, By | =0. 4.7)
r<i<p-—1 k=0

0<j<p-1
i+j=n mod (p—1)

The possible pairs of (i,j) such thati+j=n mod (p—1)for1 <i<p—1land0<j<p—1are:

.. in—i), ifl1<i<mn,
i) =1 7) P 7 (4.8)
(Lp—1+n—i), fn<i<p-1

We analyze three cases:
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Case 1: Suppose 1 < n < r — 1. Using (4.8), equation (4.7) becomes

Xn: Xin_i (A;-&-pz—i—(n—i)p—pBlz;‘-i-(n—i)p-i-p—l B A;—l—pz—i—(n—i)p—lBll;&-(n—i)p)

i=
r—i—np+ip pi+p>+np—i 1 yr—i—np+ip+p—1pni+ 2 —p+np—i
leplnz(a ppo p—ip— W p+ip+p B(prpp)

1
+(p—D)k—np+p—1 P> —p+ 1)k
+ZX,p1+nz<2Z A" (p—Dk—np+p— BP p+np—(p— ))

1=r
P r—i—np+ip+p—1 pit+p?—p+np—i
- Z(T*l)Xi,p,1+n,,‘A“ vy B, PP — o, (4.9)

i=r

Looking at the indices occurring in Xl-,]- in the above equation, we note for each i # n, there is a unique
j # 0. But for i = n, we get both j = 0 and j = p — 1. For convenience, we drop the index j for j # 0: we write

X, if]
X;jas 7 ) 70, (4.10)
’ Xo, ifj=0.

Now, there is no flip or flop in the first summand of the above equation. If i = 7, then there is one flip in
the first component of the second summand and one flop in its second component. Also, for i = n 4 1, there
is one flop in the first component of the second summand if n# < r — 2 (and the i = n + 1 term is not there if
n = r —1). Finally in the third summand, there are flips for 0 < k < n — 1 and there is one flop for k = n.
Apart from these there are no flips and flops appearing in the above equation.

Assume that 1 < n < r — 2. Changing the flips and flops appearing in to functions in B and looking

rp?—1— (n+l(p71))Bn+l( -
x

at the coefficient of A, P for 0 <1 < p—1, we get the following system of equations:

n+1+2 in—1—" l}’l)Xi_XOZOI if =0,
”+1+Z in—2 — 1n)Xi_Xn—1+X0:0/ ifl =1,
Xn n+1+z in—-l1-1— zn)Xi+Xn—l+1_Xn—l:0/ if2<1<n-1,
p—l
Xn—Xpt1— Y ZinXi+Xy_111 =0, ifl=n,
i=r
p—1
X”_X”H_Zzi,nxi_(r—l)xmpfl:o/ ifn+1<I<p—r+n,
i=r
p—1
Xn = Xng1— Y, ZinXi — Xysp—1 =0, ifl=p—r+n+1,

i=r

Xn — Xp1 + Z (Zi,p+n—l - Zi,n) Xi+ Xn+p—l+1 - Xn+p—l =0, ifp—r+n+2<I<p-1 (4.11)
i=r

Case 2: Suppose r < n < p — 2. In this case, by (.7) we have
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Exi,n i (Ar+p2—i—(n—i)p—pB;+(n—i)p+p—1 B A;—l—pz—i—(n—i)p—lBll;‘-i-(n—i)p)

o

+H
7= 3

r—2
r+(p—1)k—np+p*—1 pup—(p—1)k
Xin—i (2 ZixAx By
i=r k=0
- r+p2717i7np+ip i+np—ip
2 (r=1)XiuiAa B,
i=r

— r+(p—Dk—np+p—1pp*—p+np—(p—1)k
2 i,p—14+n—i EZZkA By )
=n < k=0

p—1 . . .9 .
r—i—np+ip+p—1pi+p°—pt+np—i
Z r—= 1 zp71+n7iAa Ty B, P — o,

In the second but last sum above there are flips for all 0 < k < r — 2. Also, there is a flop in the last sum at
i = n. As before, by changing the flips and flops appearing in the above equation to functions in B and then

looking at the coefficient of Ar+p ~I (e 1))B}Hl(p YVioro<i< p — 1 and using the convention (4.10) for

the variables, we get the following system of equations:

r—1)X,—(r—1)Xp =0, if 1 =0,

r—-1DX,—(r—1)X,_; =0, if1<I<n-—r,
p—1

(r =D+ Zypo1-1) Xn = Xpy+ Y, Zin_1-1X; =0, ifl=n—r+1,
i=n+1

n—1
(r =D+ Zypoi-1) Xn+ Y Zini X

i=r

p—1
=X+ Xumip1 Y, Zine1aXi + Zyn1Xo =0, ifn—r+2<I1<n-1,
i=n+1
n—1
(r—DX,+X,_ 111+ Z ZiniXi+ Zyn_1Xo =0, ifl =n,
i=r
(r—1)X, — (r—l)Xn,Hp =0, fn+1<I<p-1 (4.12)

Case 3: Suppose n = p — 1. From {.7) we have,

r—1 P P 2 L . 2 .
r—i+ip pi—ip+p-—1 r+p—1—i+ip pi+p-—p—i
E Xi,pli(Aa pBapp —A,Xp pB,xp P p)

p—1

+ZX,p . z(ZszAH(p Dk+p— 1Bp -p—(p— 1))

i=r

- r—itip+p—1 pitpP—p—i
Z 1’—1 zpflfiAtx prp B, pr—p—ip

r—2 b (12 2 o
+X, 1, (Z Zp,l,kA,ff(” Dk—(p-1) Bip 2p—(p 1)k>
k=0

2_
—(r=1)X, 1,1 ALBY ' =0. (4.13)

There are flops in the first component of the first sum for i = 1 and in the second sum for k = 0. Also,
there are flips in the second last line above for all 0 < k < r — 2 and in the last line. Changing the flips and

flops appearing in the above equation to functions in 5, looking at the coefficient of Ar+p —1=Hp=) l(p Y for
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0 <1 < p—1 and using the convention {.10) for the variables, we have the following system of equations:

p—2
—X1— ) ZioXi— (r—=1)Xp_1 — Zp_10X0 =0, ifl =0,
i=r
p—2
- Xl — 2 Ziloxi - (1’ - 1)X0 - Zp,1/0XQ =0, ifl = 1,
i=r
p—2
— Xy — Y ZioXi— (r—=1)X,_;1 — Zp_19Xo = 0, if2<I<p-r,
i=r
p—2
— X1 = Y ZioXi — Xp_ 1+ Zp_1,2Xp-1 — Zp-10X0 = 0, ifl=p—r+1,
i=r
p—2
-X1—-), (Zi,o - Zi,p—l) Xi+ Xp141 — Xpy
i=r
+ Zy 1p-1-1Xp—1+ Zp_1,p-1X0 — Zp_10X0 = 0, ifp—r+2<I<p-1 (4.14)

Let M be the coefficient matrix of the above systems of equations in Cases 1, 2 and 3, respectively. A
computation shows that det(M) # 0. In fact, one can give a formula for det(M) in each case but we do not
need it, so to keep this paper a reasonable size, we omit it (details about this and other omitted arguments
in this current abridged version of the paper may be found in an earlier version of the paper on the arXiv at
https://arxiv.org/pdf/2308.10246.pdf). It follows that in each case X; = 0 for 0 < i < p — 1. Thus we
have X;;=0foralll1 <i<p-1and 0 <j < p—1, proving the Claim.

Thus, for all 0 < j < p — 1, we have
iagj— (r—i)aip-1, =0
forl1<i<r—1and
lZi/]‘ =0

for r <i < p—1, where a;; are the coefficients of P ® Q in (£.3).
Using these relations, we have

r+p—1p-1 o o
PeQ= ) Y} a XY esrmiT
i=0 j=0
pil i i p71 . .
= Z aOIjXﬂrpfl ® SP=1-jTj + ar+p71,jyr+p71 ® sp—1-jTi
j=0 j=0
o Yy " o or-aptl - -
+ Z Z ai,jXV"rP—l—lYZ ® SP—l_]T] + Z Z ai+p—],]’Xr_ZYl+p_l ® Sp—l_]T]
i=1 j=0 i=1 j=0
p—1 p—1

=Y ag X @S IIT + Y 4, 1Y TP g gp=1-jTi
j=0 j=0

p=lr-1 . iy .
Y Y a (= i)xrtr 1oiyd o ixr=iy 1) @ g1,

= =)
Each term in the last equality belongs to D(V;) ® V},_1, and hence, so does P ® Q. Thus kery C D(V;) ®

V,—1 and so equality holds. Changing r back to r 42, we have ker ¢ = D(V,2) ® V,,_1. Since both sides of ¢
have the same dimension p? — p, we conclude that  is an isomorphism. This finally proves Theorem O

Remark 2. We have proved Theorem [1.5|for 2 < r < p — 1. One might wonder what happens for boundary
values of r. Theorem [L3is also true if r = 1:

Vp . 1G(Fp)
W & Vp—l =~ 1ndT(]Fp)w2. (415)
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. L ) . G(F,)
To prove this, define instead ¢ : V, ® V1 — 1ndT(]F yw2 by
p

a

P®Q <¢p®Q: (C Z) —~ D(P)|

(ALBL) _|(ALBL)
-Q .
(0,0)
One checks that ¢ is a well defined G(IF,)-linear map and ker¢ = (ker D NV,) ® V,_1, which by [Red10,
Proposition 3.3] (which is due to Fakhruddin), equals
(F,y[XF,YP,0]N V) @ V,_1 = (Fp-span of XP,YP) @V, 1 = D(V}) @ V,_1.

By comparing dimensions on both sides, the isomorphism (4.15) follows. In fact, (4.15) is true ‘without
tensoring with V), 1". That is, Reduzzi’s result (1.8) even holds for » = 1. Indeed, one has

(0,0)

Y V,_o ®det ~ O(wy)
D(vy) ~ P EEe TR
by Diamond [Dia07, Proposition 1.3] (this does not use crystalline cohomology, see also the material around
Prasad [Pral0, Lemma 4.2] for a survey: in fact, the reduction mod p of the complex cuspidal representation
O(wj) for 1 <r < p—1 of G(IFp) is irreducible if and only if r = 1).
(Fp) p

On the other hand, if r = p, then Theorem is false for dimension reasons. Since ind?(IF )Wz ~
P

md?((]]i;’ ))wz, the right hand side of the isomorphism in the theorem reduces to the case r = 1. As for the

left side, one easily checks

is a principal series representation. Similarly, if r = p + 1, then wgﬂ is self-conjugate and the induction on
the right side is not as interesting, whereas on the left side one checks
Vap
D ( Vp+1 )

is a twist of the mod p Steinberg representation.

~ Vp,1 ® det

In view of the above remark, Theorem f.1]holds for —1 < r < p — 3 but not for r = p — 2, p — 1. However,
by twisting, the theorem may be extended to the following higher symmetric powers:

Corollary 4.2. If -1 <r<p—-3—kfor0 <k <p—2,then

Vr+(k+1)(p+1)
D(Vr+2+k(p+l) )

(Fp)  r+2+k(p+1)

. 4G
RV, de(]Fs) w, .

Proof. We first show that

k vk v,
Vigpri®det” Viigiypen | Vi)

DUsa) o del ™ D) Priaikpon)

(k)

v

for0 <k <p-—2 Definew: V11 ® det — % by sending P to 0kpP for P Vitpt1-Let Q € Vipo.
r+2-+k(p+

Then 71(D(Q)) = 6¥D(Q) = D(6*Q), where the last equality follows because D(8) = —XPY? 4+ XPYP = 0.

Thus we have 71(D (V1) @ det’) C D(Vr(—lﬁc-)Z-&-k(p—&-l))’ and hence,
k A
= Viipy1 ® det () (p)
' k (k)
D(Vr42) ® det D(Vr+2+k(p+1))

is a surjection. Also, both sides have dimension p — 1, so 77 is an isomorphism.
For the second isomorphism, consider the composition

v Vit (k4 1) (p41)

rk)(pe1) 7 V) (41) 7 By

. (4.16)
r+2+k(p+1))
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In the above, the first map is the natural inclusion map and the second one is the natural surjection map.

Note that, the kernel of the map {#.16) is Vr+) (k1) (p1) D(Viy21k(p+1))- We show that

(k) o (k)
Vr+(k+1)(p+1) N D(Vr+2+k(P+1)) - D(Vr+2+k(p+1))'

D( r(J}i)ZJrk(erl)) C Vr@(kﬂ)(pﬂ) N D(V,y24k(p+1))- The other containment is trivially true for k = 0.
To establish it for 1 < k < p — 2, we need the following lemma which is easily proved by checking the two
conditions in [GV22, Lemma 2.7].

Lemma 4.3. If 0 <m < p—2and pt(,,)

Clearly,

then 6"*1| D(Q) <= 6"+ | Q.

Remark 3. By the lemma, D induces an inclusion

Vr Vr-l-p 1
(m+1) (m+1)
v, Vi,

which is an isomorphism for dimension reasons. This provides another proof of (1.6) using the D map, under

the slightly stronger assumptions 0 < m < p —2and p { (,,’;). The last condition is necessary (for instance,

form=0,ifp ] 7, then D maps X', Y” to 0, so the map above is not injective).

Now, let 6P = D(Q), for some P € Vyip11, Q € Viipig(psr) and 1 < k < p—2. By Lemma [43]
we have 6 | D(Q) if and only if 65 | Q. Thus 6P = D(Q) € D(‘/;'(J]i)2+k(p+1)) and hence Vr(+)(k+l)(p+l) N
v

k .
D(Viyaik(p+1) C D(Vr(+)2+k(p+1)) So the kernel of {.16) is D( r+2+k(p+l))' Thus, there is an injection

e

r+(k+1) (p+1) Vit (k1) (p+1)
D(Vr(ji)ﬂk(wl)) D(Vr+2+k(p+1))

If-1<r<p-3-kand0 <k <p-—2, thenD isinjective on V, 5 y(,41)- Otherwise, by [Red10, Proposition

3.3] and comparing degrees, we would have a relation of the form ap +bp+c(p+1) =r+2+k(p+1) for

some a,b,c > 0. Comparing p-adic digits on both sides and noting they are in the range [0, p — 1], we have

c=r+2+kand a+b+c = k. The first equality implies ¢ > k + 1, whereas the second implies ¢ < k, a

contradiction. Thus the dimension of each side of the inclusion above is p — 1. So it is an isomorphism.
Now, by Theorem [f.T|and Remark 2} for —1 < r < p — 3, we have

Vitp+1
D(Vi+2)
Twisting both sides by det’ with 0 < k < p—2

i 1GEp)  pi2
®Vp,1_md( ) wht2.,

Vr+p+1 & detk

D(Vy2) @ det*

(k)
Vet (o)

®VP 1 _lnd (( ))< r+2®det |T(]Fp>

LGB (2 k(p)
@ Vyq de(]F:) (w£+ ® wy’ )

(k)
D(Vr+2+(p+l))
Vet (k1) (p1) G(Fy) r2rk(p+1)
= ——— -V, ~ind_ "w P, O
D(Vr+2+k(p+1)) s T(Ey) 2
Corollary 4.4. Let m > 0and 2m —1 <r < p — 3. Then, we have
Visa+ (me1)(p-1) O Ep) r+2-m
W @Vy_ g~ de(]F,,) (Vm ® wy ) .
Proof. Note that V;;, |T ;” 0 w;" =Y Thus to prove the corollary, it suffices to prove that for 2m — 1 <

r < p — 3, we have
Vot (m+1)(p—1) (]F ) [ N r24i(p-1)
— = ®V,_1 ~ind/ wy Y .
S oy i) (B
For m = 0, this is Theorem [4.1|and Remark 2] The proof for m > 0 is by induction and is omitted. O
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4.2. The case of GL;(IF;). We now prove Theorem [1.6] . which is a twisted version of Theorem- 4.1 Recall that
VFrJ := Sym'i (F3) o Fr/ and {X] ]Y/}0<, <r; is a basis of VFr forall0 <j< f—1.

Lemma 4.5. Let rg > 1. We define

_ xPxp-l. . xp-1 9 pyp—1.  yp—1 9
Dy = X} X} xHa 0+y0y1 Y[ 3,
and
4_PP*1 Pla Py P—1 Pla
i = X)X] -X]18X+YY 'Ylay

forall1 < j < f—1. Then, the maps
)
—1
VrOJ,-p—l ® V -1 ® ® V;ifl

1
Dy:Vy,@VE®-- @V o Dr,...D; 1> and

()

f-1
e o Ve L Vo1 @ Vpta @ @Vt
1

Dj: V@ Vi@ o Vi o Vi o v
j 7o 1@ Ve @ ® ® P ® <D1,...,D],]>

are G(IF,)-linear.

Proof. (1). We show that Dy is G(IFg)-linear modulo (D, ..., Dy _1). By Bruhat decomposition, it is enough
to check that Dy(g - X;* °Y®) = ¢ - Do(X" Y{) modulo (Dy,...,Dy_q) for g either diagonal, the Weyl
element w = (91) or upper unipotent. The case when g diagonal is clear. If g = w, then

Do(w- X2 0Y) = Do(Yy 0XY)
gt p—Tyro—ig -1 -1 )X “l-ioyp-1 !
l()XZ]Oer Y(;O lon . ij 1+ (ro — 10)X60Y50+P zoylp .. Y;—l
A B I 1 i —1—ig y,p—1 -1
= o (oY PIXETOV T (o — i)Y X RXE X

= - Do(X YD),
Finally, if g = (}4), for a € F,, then
Do(g- Xy ™Y®) = Dy (XTO D (aXo + Yo)lo)

= X} ((ro = i0) Xy (aXo + Yo) + X iga(aXo + Vo)) X[ X))

FYI XD 04 (aXg + Yo) oy Y 4.17)
and
g+ Do(XP¥9) = g+ (X} (ro—io) Xy 0T YEXY T XE T X igY Y v
= X[ (ro—i0) Xp* ! (aXo + Yo)ox 7T X

Fig X0 (X + Yo) PO @P Xy + V)P (0P X Y )P (4.18)
so taking the difference of and (4.18), we have
Do(g- Xy "Yy) — g Do(Xy°Yy")
— iaX X[ (aXo + igYo) 0 1xP ... X5 L+ igYEXPT0 (aXo + Yo) o yP T i
—ig X" (aXo + Yo)P 0 (P Xy + Yp)P L (“pf*lefl + Yf*l)p_

f-1 -1 -
_ —i ig—1 p p—1 4 p—1 _ p p j
= zOXSO IO(aXO + Yp) (“Xo ngj +Yg EYJ aPX +Y ]1 (a? X +Y ) . (4.19)
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The term in the parentheses

= = f-1 -1
B <an [Tx/ —ar Xy [T(a"X; + Yf)”_1> ! (Yg [TY/ " =Y TT@"%; + Yj)’”_1>

j=1 j=1

-1 p—ll -1 . . .
! e ! ((pf‘1>ap%p1iﬂxflﬁyﬁ>
=0  if =0 j=1 L ! !

I
|
g
]
2L

-1 —
p—1 p—1, 1y ijp] ¥ ij f-1 ,
_ =1 1 P p—1-ij i
==Y - Ya 7 T XIIx Ty
i1=0 if1=0 j=1
1 1 =
h= P 1=p= X ijp! Z’] _ 1—i: i
. Z Z a j=1 (,1 ] 1 YPHXP ]Y]
i1:0 if,lz() ]7

where }---Y means (0,...,0) is omitted from the sum and }_---Y” means (p —1,...,p — 1) is omitted
f-1 f-1

from the sum. Writing [; = Z ijp! and Y, li= Z i;, the above expression

=j

p—1 p—1

0 0o p-1 p- j—1 f-1 .
Ll\L ok D3I SR SC AT (ﬂxl’”)ﬂxf”w

_ —OZ]—l Z]+1 =0 if_1=0
f-1f p-1 p—1

LB T EE R com g (M) (T )

j=1 \ij=p-1 ij1=p—1i;=0i41=0 ir1=0 I=1 I=j

f-1 (p-1 p-1 p—1
:_Z 2 Z 2 (_1)2;; XP(HXP 1>XP1 ij z (HXplzlY11>
j=1 i

l]:1 iH’l:O f_1:O 1 ]+1
p—1 p—1 p-1

_fi YOy (—1)Z i 1g - hy <Hyp 1) X”’ i (H xP1- ”Y”) ,
j=1

1121 ij+1:0 if*l =0 I} ]+1

where the fourth sum above is obtained by the transformation ij—i—1in the second sum above, which,
together with (4.19), gives

Do(g-X(r]O*ioYéo) g DO(Xro onzo)
R e
=1 \ij=lij=0 i =0 ij
S <D1,...,Df_1>.

al =D, (z X0 (aXo + Yp)o~ 1X’” Z’Yf H xP1- “W)
I=j+1

Thus Dy is G(IFq)-linear modulo (Dy, ..., Ds_1).
(2). The proof is similar and is omitted. ]
Let & € F., be such that a? € F,, a ¢ F,. Fix an identification i : F ~ T(IFg) C GLy(IFg) given by

u+on — (U ng)
Letr >0and 0 <i < r—l—qz —1. Let f; : G(qu) — ]qu be a function such that

fi (<Z Z)) = (a4 ca)™ ™1 (b + da),
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for all (°%) € G(IF;). Then f; € indG((IF"))wgf and the set B; = {f;|0 < i < ¢°> — g — 1} forms a basis of
ind?((]f"))w% Indeed, let t = (4 o*) € T(IF;) and g = (7}) € G(IF;). Then we have

2 . .
fi(t-8) = fi (<uza—|—+vzcc uzb—:_vzdd)) = (u+o0) T (a + ca) D (b 4 da)’

which equals (1 +va)" - fi(g) = W} f(t) - fi(§) =t~ fi(g). One can check that the functions in B; are linearly
independent. Also, T(FF,) has index 4> — g in G(IF,). So B, forms a basis of ind(T;((E;’)) wh £

For q2 —-1<i<r+ q2 — 1, we observe that
fi=fpoy =1 (4.20)

for some 0 < j < r. We say that f; is a flip. We soon assume that r < p—1<¢>—g—1,s0 f; € B,.
On the other hand, for q2 —g<i< q2 —2, we have f; = fquﬁj for some 0 < j < g —2. We say that f; is a
flop since it satisfies the following relation:

fi+ fj+(qfl) + f]’+2(qfl) et f]’+(q*1)(frl) + fj+q2—q =0, (4.21)

where all terms but the last are in B;. Indeed, since X711 = (X771 —1)(X@-D7 4 x@-D@-1) ... 4
X171 +1), for A € Ff; \ Fy, we have Al=1a 4 Al=D@=1) ... 4 4771 41 = 0. Thus for (?Y) € G(Fy),

(1-D)q (1-1@-1) q—1
a—+cux n a—+cu T a—+cu +1=0,
b+dua b+dua b+ du

which, after multiplying by (a + ca)" =D~ (b + da )7 91, gives
(a4 ca) D7 (b + da)l + (a + ca) THD T (b 4+ da) TOD 4o 4 (@ ca) T (b 4 da) T = 0,

which shows (4.21).

Thus any flip or flop can be changed to a linear combination of functions in B;. We fix the basis B, in the
computations to follow.
For any (%) € G(F,), we denote A, = a+ca and B, = b+ da. For any polynomial P(X,Y) and

(C,D)
A,B,C,D € F,;, we write P(X,Y) (AB) = P(C,D) — P(A,B).

Lemma 4.6. Let r = ro+rp+---+rp 1wt with2 < rg < p—landr; > 0 foralll < j < f—1 Let

P®Q:= ®{:_01 Pi® ®{:_01 Q€ ®f ! VFr/ tp-1® ®f ! V; rjl, with Pj a homogeneous polynomial of degree rj +p — 1
in X;, Y, and Q; homogeneous ofdegree p—1ins;, T Define pog : G(Fq) — Fa by

f o pof 2f=1 ,2f~ 1
a b vro—z POV (P V"f—l p (AL By AL pfﬂ pf+1'
¢ a) 7 Vo TRIVE(R) Vi (Pr) (Au B Al 1,BZZf i HQ] Ba ),

where

o p] d p] d
V= Ay 5 oX; + By aY

forall 0 <j < f —1. Then the map
(1) ¢peq is T(IE,)-linear.
2 v ®f ! VFr]p 1® ®f ! VFrj — ind (( ))wzf such that (P ® Q) = pgq is G(IF,)-linear.

Proof. T(IF,)-linearity: Note V'~ 2(py) ]_[f ! \% (P )H Q]( j, Tj) is a linear combination of terms

Ar i— ZBZXP+1 lOYlOHXp 1- l l Hsp 1— k k
]_
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where r = Zf:_()l rip/ and i = Zf:l ijp/. Now,

foopf 2f=1 ,2f-1 S pfti
AP B AP Bp )f 1 ( AP BP )
r—i—2pi yP+1=io o P1’/]( wo “ p=1=kjk;
ATPBLXET Y Hx A Y [Is; 1/ 00
] arDasees Ay Dy ]‘:0

f = o IS "~ oo
pr p+l-io+ X (P —p/=ijp)) | p/ a0+ X iip! p+1- 10+Z(p’ —pl—ijpl) i+ X ijp/
A j=1 B j=1 j=1

[

= AZTFZBQ — Ag = B,

f f
pf<2(pf“fpf kp’)) Pf<§0kﬂ’/>
'AOL j=0 th =

: ) 2 i _ . 2, 2 i (; e 2_1_(2 i
:Az:lithlx (Az+q WB,I,?—A,}‘ z+qB’1X> AZ q qu(I’ccq _ A;+q 1—i (z+k)thzX+(z+k)q_A2+q 1 (21+kq)B§z+kq,

where in the last but one equality k = Zf

j—0 ki pl. Thus ¢pe is a linear combination of functions of the form
fi above and hence is T(IF,)-linear.

G(IF,)-linearity: Let ¢ = (7 7) € G(IF;). Note that,

f-1 f-1 f-1
g-(P®Q) = <§§O>P] ]/]®®QJ uj, vy) :831’;@(83@}/
= = =

where U = u?’ X; + w?'Y;, V; = o' X; 4 2¢'Y;, U) = u”]Sj +w!' T, V! = o¥'S; +2/'T;. Now,

lP(g~P®Q)(<i S))
p2f =1

_ 1 i of pf 21
A a + B a To f p] a p]i ](P/) (Alx IBA’ r"'r?ikl }?ﬂ]&
“9Xo = "9Yp ]:1 A ax B dY; 77\ (A Byt BE )

)

HQ pf+/ Pf+]) (422)

Applying Lemma [2.10| (twice), for 0 < j < f — 1 and k > 0 we have
k
p/ 0 p] i / )
(2 w2 o
0

i i
= ((u”]Az + w” BE )an

) ) k /pf*/' /pf*]'
_ A/p]i + Blp]i (P)‘(Azx ) /Ba )
“oX; Tt oY Play g?y 7

+j +j
(Aff ],ijf j

(Al B

i pfti i pfti i pfti i pfti
WV AL P BY o AR 42 BE T

k

S R T R R R T
(P! AV +wP' BY P! AL 2P BY)

where A, = uAy + wB, and B}, = vA, + zB,. Observe that, in the last equality in writing the top limits in

terms of Al and B), we use the fact that u,v, w and z are in F,.
Now taking, k =rg —2for j=0and k =r; for 1 <j < f —1, the expression in (4.22) equals
A/pf B/pf Alpzf71 B/pzf71

P aN e e\ ,
r 9 p P .
(A“ 0Xo + gy Yy ) (Po) 111 Ad ax] + B Y; (P])’(A;,B,’,‘,...,Afffil,B;”fil)

)

/f*] 1pfti
I—IQ] P / ap )

wrea((r 2 - sowean () ’

The following lemmas will be useful in the proof of the main theorem.
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Lemma 4.7. Let
—1p-1 -1 -1 -1
P = r0+2p pz - pz b X’UﬂLP*l*iUYiO ]i—[ prlfilyil cvV ®f VFII
- ig,eerlf—140 0 I I ro+p—1 p-1
io=0 #1=0  if_1=0 I=1 I=1

Then,
(1) we have P € Im Dy if and only if

inbiy0,...,0 = (r0 —i0)bigtp—1,p-1,..p—1
for1 <iy <ry—1,and
big,...iy =0
forroSioSp—landallogijSp—lforlgjgf—l.
(2) for1 <j < f—1, wehave P € Im D; if and only if
Bio 0, 0,ijip 1 = ~Digtpp—1p=Lij=Lis i1 ip 1
where 0 <ig <rop—1,1<i;<p—-1and0 <ijiq,...,if 1 < p—1,and in the remaining cases

b =0.

o1

Proof. The conditions are clearly necessary, and can be checked to be sufficient.

Lemma 4.8. Let 1 <ry < p—1and let

ro+p—1p—1 p—1 i f-1 lir f-1 ;
_ . . . rorp—1=io 10 p—1i=uy1 Fr
P= ) ) ). big,...i 1 Xo YW (ITX V') € Vigsp1 @ Q V11
=0 =0 ;=0 1=1 =1

Then we have P € (Do, ..., Dy _1) if and only if the following hold:
(1) for1 <ig <rg—1, we have
iobiy0,...,0 = (ro —i0)bigtp—1,p-1,...p—1
(2) forrg <ip Sp—landallogij <p-—1forl1 <j< f—1, wehave
big,...is 4

(3)f0r0§i0§ro—1andforalll§t§f—1,1§itgp—landogitﬂ,...,if,lgp—l,wehave

=0,

Bio,0,...0itip 1 = ~Digtp,p—1e p=Lis—Lips1,ip1°

Proof. Say P € (Do, ..., Ds_1). We show conditions (1), (2), (3) are satisfied. Write P = Z{:_()l P; where

ro+p—1 p—1 0 tpiei 1 L
. — ] roT+p—1=lo4, 10 pP—1i=t1 .
Pi= ) Y. bio,...,if,lxo Yo [TX Y; € Im D;
io=0 ir1=0 =1

forall0 <j < f —1. Then
S0
_ J
biOz--.,if—l - ZO bl’o,...,if,l
j=

with each b(j )

Qs

. satisfying the conditions of Lemma Now (2) is clear since if 7y < iy < p —1, each term

on the right vanishes by (both parts of) Lemma Condition (1) is also clear, since if 1 < iy < rg — 1 and the
other i; are all 0 or all p — 1, then all the terms on the right vanish for j > 1, by the second part of Lemma
and the j = 0 term on the right satisfies the desired identity by the first part. Similarly (3) holds, since if
0 <ip < rp—1and the other i; are not all 0 or not all p — 1, then the j = 0 term on the right vanishes by the
first part of the lemma and the remaining terms satisfy the desired identity by the second part, whence so

does their sum.
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For the converse, note that P can be written as

=1 (r-1 0 0 p-1 p-1 p-1 Yot p—1—i =1 ) i i
. . . 0 —1=loy 10 - — 1=\ 1
XX X X X b0 Xo oIl T1x 'y
t=1 \ ip=01i1=0 i-1=04=11i;,1=0 ir 1=0 1=1 1=t
ro—1 f 1 f*l
ro+p—1—io+ i p—1 ro+p—1 p—1
O B ) E R R O B
ip=1 =1 =1

p—1 p-1

. o
+ Z 2 Z blo,m,l 1X60+p_1_l°Y6°HXf_l_”Yl”
=1

ig=rg i1=0 if 1=0

f=1 [rotp-1 p— -1 p=2 p— - | f-1 o
+2 | X Z : Z Z Y bt X0 TR T T I XY
t=1 io=p i1=p—1 i_1=p—1i=0141=0 if 1=0 =1 1=t
ro+p—2 f-1 f-1
+ Y by paXy oy [y +bro+p71,P71,--.,P71Ygoﬂlil [y
ip=p =1 =1

which, by the transformations iy +— ip + p and iy — i; — 1 in the fourth sum above (and dropping the
summations for iy,...,7;_1 in the first and fourth sum) and by the transformation iy — ip + p — 1 in the last
sum, can be rewritten as

i (T ro+p—1—io i r—1 p—1—iti p—1—iji
ZZZZ szo,,,o“,,z“X Yg' HX Xi Y'HX Y/

t=1 =014=14;11=0 if 1=0 I=t+1
LA s 2l 1y d0+p p—1 p i f_l p—1—iji
ro— 10 0 t lf -1 1]
+ Yo X X birppt i1 X0 Yy HY vt TT X Y,
=1 \ig=0i=lit1=0 s 1=0 = I=t41
T Xty T x0T o, Xpo oy P T v
+ Z i,0,...,0%0 H + Y bigrp-1p-1,p-1 H
i0= 1071 1=1
-1 p-1

* Z Z 2 blo,...,zf 1X60+p 1= IOY“J Hxl’ 1- lzyz,

ig=rp i1=0 if 1=0
1

Xrngpflf Xpl b Yr0+p 1f Ypfl 423
04%0 [1 + Orop—1,p-1,..p-1¥p [y (4.23)
1=1 =1

+by

.

Now suppose the conditions (1), (2), (3) hold. Then by {.23), we can write the polynomial P as

fZH 0 nslrtl e biy0,..0i1,...i R 1i i
L(-EL T T et (xp oy TT o)

t=1 10 Olt llH»l 0 lf 1= =0 lt I=t+1
1’0*1 bio,O,...,O D Xrofioyio 1 D b X'r‘o b Y?’g
+ ) (o —i0) 0( o Yo ) T 0 (b0,...0X0" + bryp-1,p-1,...p-1%p") -
=1 (ro—1o 0
This implies that P € (D, ..., Ds_1). O

Remark 4. In Lemma there are no conditions on the coefficients by o and by 1p-1,p-1,.,p-1 of P. So if
1 <7y < p—1, then the dimension of (D, ..., Df_l) over [F, is

f-1
24 (ro—1)+ Y rop— Dpf T =rg+ 14+ =1) = rgp/ T+ 1.
=1

Theorem 4.9. Letr =rog+rip+---+ rf,lpf’l, where2 <rg < p—1landr; =0 forall 1 <j < f—1. Recall
that

_ yPyp—1 p-1 0 pyp—1 p-1 0
Dy = X X} ---Xf_la—XOJrYOY1 ”'Yf—laYo

and

— ywPypP—1, Pla pyP—1 . Pla
D; = X} X! Xflax +Yy Y oy
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forall1 < j < f—1. Then over IF > we have

® Fi 1 I G(F,)

TP Fr/ ~ 3 q), r

(DO,. ..,Ds_1) g Vpia = indyp ywyy.
G(Fy)

Proof Define 1/1 ®f ! V,Fip 1 ® ®f ! VFr]1 — 1ndT(]Fq)w§ ¢ as in Lemma Recall that for P ® Q :=

® P ® ® Qj, we have (P ® Q) = ¥pgg, where now noting that r; = 0 for 1 < j < f — 1, we have
1/Jp®Q G(]Fq) — 2 is defined by

2f—1 2f—1
BT R
: H Qj(Azx , By )/

a b 2
(¢ O mn

-1 -1
(Aa,Ba,...,Aif ,Bé’f )

where Vg = Aaa% + B“aiyo' By Lemrna (1), the map ¢pgq is T(IF,)-linear and hence 1 is well defined. Tt
is also G(IF,)-linear by Lemma |4.6|(2).
We show that kery = (Dy,...,Df_ 1) ® ®f VFr] The proof occupies the rest of this paper. First we

show (Dy,..., Dy 1) ® ®f ! vFr’1 C kery.
Case 1: Suppose j # 0. We show that Im D, C ker . For 0 < ip < ry—1, we have

D] <X60 1- lOYZOXp ZJYJ H XP 1- lly”)
I=j+1

= X3 Yy (ﬁXf*) (—ipX! ") (H Xp Y)

I=1 I=j+1

. j-1 o f-1 o
ro—1—ig A0+P p—1\ . P—ijyii—1 p—1—ijy,i
+ XYy <| [ Y] )1]-)(]. Y/ ( [T x! lY/).

I=1 I=j+1

We claim

f=1 pf=1
=it ‘(Aa,BWAf; B )

; i1 o ‘ A g
ro—2 ro+p—1—ioy, g p—1 p—1—i;, i p—1—ir i a b s Aa /By
— v (XO YO) <ﬂxl )xj v/ TT X7
. j—1 o f-1 . (A"f Bt ar l)
- —1—i -1 —ii\ di—1 —1— i o A /Dy
+ VI 2 (X(r)o 1 10Y60+P) HYIP Xf ;Y]/ I1 le lzylll ‘ g —0 (4.24)
=1 ]:]+1 (AmBmm/Aa ,Ba )

Indeed, we have

-2
2 (protp—l—iorig\ 9 2 \" ro+p—1-ioyi
v60 <X00 0Y60> _ (Aaﬁ‘FBaﬁ) <X00 0Y60>
=2 (ry—2 ; ;
0 2k . . +1—(ig—ko) ysig—
= 5 (" P ) AR B b p = 1= ool X v
ko=0 0
0
= (rsfl)Aro = IOBlo 1(1’0 —1—10)'10'XPY0
+ <r°l._ 2> APT2T0BI (rg — 1 — i )lig! P, (4.25)
0

and similarly

_ iy 2
VSO 2(X6(] 1 10Y60+p> _ (71'(())_1)141’0 1- tho 1(}’071*10)'10'1#7

_9 o
+ (Voi )AQO*Z*IOB;O(rO — 1 —ig)tig!Xo Y. (4.26)
0
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Ignoring the factor (rg — 1 — ip)!ip! and using {@.25), the first summand on the left side of (4.24) becomes
j—1 L. f*l . (Al’f Bﬂf Al’zf;l Bﬂszl)
7, _ —1—i: . 1 a Da s Da
a ( O—l)ATO . lOBlO 1XPY <Hxlp 1) X]p lfy;j H le ! ”Ylll ‘ Ay B, A g
i i e (Al B
o i1 . o Aty A g
10 = 2\ 4 ro—2—ig pig yP+1 p—1 p—1—ijy i p—1—iiyi ( B B )
— (07" )ap-2pix xPH) xP Ty X | B
( io ) « « 20 <H I j j 1:1111 I U ) Ay Byal 80
which, by noting
-1 f-1 -1
+1 N N2 +1 o ft
Y (p=Dp T (p-1—ip+ . (p-1—i)p T = —p = i/
=1 I=j+1 1=
and, dividing by p/,
-1 f-1 f-1
1 : ] c N\l T
Y=V +(p-1-ipp/+ L (p-1-ipp'=p/ —p— Y ip!,
=1 I=j+1 1=
equals
f-1 f-1
, prpY —p =L pl Rt ppl—p— E ip! 1+ 2 irp!
_ (l(())i 1)A70 1— ZUBI() 1 Alx I=j B,x I=j _Azx Bﬂ( =j
f1 —1 f-1
ro—2 o pr el e —pl T Yl Z ipf™! pH+1+p/—p— ): ap' X apt
- ( g )AZO*Z””BIJ? Aq TOBY - A By
-1 f-1 f-1 -1
— ro—io— ¥ ip/™ ig—1+p/ 4+ 1 ip/t! ro—l—ig+p/ =L ip' io+ ¥ irp!
:7(5_1> A, 7 B, o — A, = B, 7
‘ O =
o2 70*1*10+Pf*]§_ ipf* 10+I¥_ ip/* ro—1—ip+p/ - 2 ip' o+ E ip!
( 01,0 ) Ay 7 B, — A, 7 B, 7 . 4.27)

Again, ignoring the common factor (ry — 1 — ip)'ip! and using (4.26), a similar computation shows that the

second summand on the left hand side of (4.24) is

f-1 -1
ro—2 ro—ip— Z ipf ! ig— 1+Pf+ Z it ro—l—i0+lﬂf—l§ inp! fo+l); inp!
<' ) Aac N th - Atx K Boc K

10 — 1

f-1 f-1 f-1 f-1
D ro—1—ig+p/ =% ijp/™ Qg+ ¥ ipft! ro—1—ig+pf =¥ ijpt ig+ 2 ip!
0 — , . ,

io
which is the negative of (#.27). This proves the claim @#.24). Hence Im D; C ker¢ forall 1 <j < f —1.
Case 2: The proof that Im Dy C ker ¢ is similar and is omitted.
Combining Cases 1 and 2, we see that (Do, ...,Df_1) ® ®f ! VF’TJ1 C ker .
Next we show that kery C (Dy, ..., Dy 1) ® ®f ! VFr]1 Let

rg-19-1 1 o\ [ .
P®Q= Z Zb”XmH’ 1- loylo (H lelnylzz> (H Sfl”lel> € ker

=0 j=0 I=1 1=0

A, =, — A, =B, 7 , (4.28)
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. . r+q-1  rotp—1p-1 p-1 g1  p-1 -1
where i = (iy,...,if_1),j = (jo,---,jf—1)and } = ¥ ¥ .- , Y=y Z . By definition
gy =0 =0 i 1=0 7=§  jo=0  j;1=0
of g, forall (7%) € G(F,), we have
r+q—1q-1 o [f N g A
_‘_‘er—Z (X"(H-p—l—lOYlo) XP—l—lIYZZ ‘ Fo1 o f1
726 ;26 0 0 0 E ! P A Bae A BE )
_ S fH
(AL BY )
H s~ 1- JzTJI‘ =0. (4.29)
1= (0,0)
Note, for each f,
f-1 f-1 f-1 f-1
o e L (p=1=p)p/ ™ gt g g M E i
IT(s/ ") =4l B =A, O B L (430)

1=0 (00)

Now by fixing j and only considering the sum over 7 in (29), we have

r+q 1 a a ro—2 ot . . f (Apf Bl’f AP
p—1—ip i p—1—i wos
£y (e 5o ) 05 (T ) [0

1 (Aw,Baye AL

2f—1  2f-1

BLT )
1
B”f )

r02

i 02 ,
Z, Z < ko )[70+P—1— i0]rg—2—ko li0] kg Ad’ ~2 koo

7

. f-1 .
+1—(ig—ko) ig—k —1—ij\i
,Xg (io—ko Y(l)o 0 (H le zyllz

2f-1 _2f-1
>‘( przf’ ,Apf ,Bf,ff )
I=1

(Aa B Al B
f-1 f-1

which by observing p/*1 + pf — (ip —ko)pf + = (p —1—i))p/ T = p* + pf (1 + ko) — T ijp/*, and writing
=1 =0

rq—2 . ) ro+p—1—i i
Cigko = ( Oko ) [ro+p—1—iolry—2-kliolk, = (10 — 2)!( Oro 172 ke 0) (k(;)’ (4.31)

equals

r+q-1
Z Z b ClokoAro 2 kOBkU

=0
2 U U S S
P p! (Ltko)— X igp/ ™ (io—ko)p! + X irp/* p/Hltko— L ip! do—ko+ ¥ irp
1=0 B =1 _ A 1=0 B 1=1
4 o o o
- - S
rq—1 ro—2 rotq-1-ko(1=q)=q| Lip | ko(1-g)+q{ X ip
= ﬂZ brr | X CiokoAa B,
=0 ko=0
- f-1 f-1,
r+q-1 ro+g—1-"¥ ip T ip!
-y bﬁ(ro —1)!A, =0 gl (4.32)
=

The last equality holds since by 2.1), we have

C o2 ro — 2 1 . . o 1M d
Z l(],ko - Z k [1’0 + p - lO}V@*Z*kO [lo]ko - (7’0 - ) mo p
ko=0 ko=0 0

Moreover, we have adorned the limits in the last two sums with ’s to indicate that we drop the terms corre-
sponding to i = 0 and i = r + ¢ — 1. Indeed, if i = 0, then iy = 0 and

Cop = {(ro —1)!, ifko=0,

ki .
0 0, otherwise.
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So the term for i = 0 in @#32) is
b7 ((ro = 114! — (r — 1147 1) =0,

Similarly, one may check that the term for i=r +q —11is zero.
For notational convenience, set

e o fo1 o f
ro—2 ro+q—1-ko(1—q)—q EO ip' | ko(1—q)+q EO ip ro+g—1—"X iip! ¥ ip!
() == | Y CipkoAn - B - — (ro —1)!A, =0 B

ko=0

Then (4.32) decomposes as

}’071 ro+p72
Z szO 0,j (*)+ Z io,p—1,...p—1, (*)
1p= 0=

0 0
)y Z_ )P bio,o,...,o,i,,...,z'fJ(*))

p—1
X . .Zlo"'iflz_obio,p1,...,p1,it,...,if1,f(*))- (4.33)

By taking iy = ip = - =iy 1 = 0, the coefficient (x) of b -in the first sum above is

io,O,...,O]

rg—2 . . .
( Z Cio,koA:cOJrq_l_ko(1_q)_loq3§0(1_q)+l°q) — (ro — 1)!A;°+‘7_1_l°B§?.

ko=0
Note that, by (#.31), for 0 < iy < rp — 1, we have
(ro — 2)Yp, if ko =iy —1,
Cio ko (ro —2)Y(ro —1—1ip), ifko=1ip,
0, otherwise.
Thus the coefficient of bio,o,.‘.,o,f becomes

io(ro — 2)LAT OB HITL () — 1 —ig) (rg — 2)! — (ro — 1)1) ARHI~10plo,

which further equals

io(ro — 2)! (AQO‘iOB,§9+q‘1 - AQO*"‘l‘iOB;'?) . (4.34)
Now use the transformation iy — ip + p — 1 in the second sum of 4.33). By taking iy =iy = -+ =iy 1 =
p — 1, the coefficient () of b, -is given by

ip+p—1,p—1,..,p—1,j

}’0—2 . . )
Y +q—1—ko(1—9)—q(ig+q—1) pko(1—q)+4(ig+q-1 —ig pyio+q-1
( Ci0+P*1,koA;0 i o(1=g)=alio g )B‘XO( Pt )> _<r0_1)!A£O ZOB‘ZXO .
ko=0

For 0 < iy < rg—1, we have
5 (70—2)!(i0—1), ika:iO—Z,
ro — . . . . .
Cig+p—1,k0 = ( Oko ) [ro — lo]ro—z—ko lio+p— 1]k0 = 4 (ro—2)!(ro —ip), ifko=1ip—1,
0, otherwise.

Thus the coefficient of bl.0 LT p—1,p1] becomes

((ro —2)1(ig — 1) — (ro — 1)) AR B! 4 (rg — 2)1(rg — ig) A" B,
which equals
— (1o — 2)!(ro — i) (A;?‘iOB;W*1 - A;W”*lOB;'?) : (4.35)
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f-1
Finally, using ip + igp + p and i; — iy — 1 in the fifth sum of (4.33), and noting that ) ilpl changes to
1=0

=1 f-1 -1
zo+P+Z —1p G —1)p + Y ap =i+ Y ip,
= I=t+1 =t

the coefficient (*) of b, - equals

iotp,p=1p=Lit=Lirs1,if 1)

2l —1 -1 1
ro—2 ro+q—1—ko(1—q)—q <i0+l§ 1'1}71> ko(1- ‘7)+‘1<10+ )y 11P> ro+g—1—ig— Z ip! zo+f2 ipt
Z Cigpky A - /B — (ro—1)!A, B, = (436)
ko=0
which is exactly the coefficient of bl O it 1] - obtained by taking iy = ip = --- = i;_1 = 0 in (%), since

Cigtpke = Cio,ko mod p for 0 < iy < rp — 1. Summarizing, the transformation igp — igp + p — 1 in the second
sum of (.33) and the transformations iy — io +p and i; — iy — 1 in the fifth sum of (.33), together with
@.34), @. 35) and ([@.36)), allow us to rewrite (#.33) as

ro—1 o o
Y (ro—2)! (iob, — (ro —ig)b 2) (AL~ glota—t _ grotq—1iogio
— 0 0%,0,...,0,f 0= 0% 4p-1,p-1,...p—1] @ @ « @
0=

S

10 7’011 =0 lf 1_0

f-1 {ro—1p-1 p— p—1

+ Z Z Z Z Z ( lo,O,...,O,l't,...,l'f,l,f+ bio—l—p,p—l,...,p—l,it—1,---/if—lrf) (*) : (437)

t=1 10 Olt 11t+1 0 lf 170
Now, for each | = (jo, . o ffe1), leti = Z{;Ol iip' and j = E{;()l jip!, and set

iobio,O,...,O,f_ (1’0 — io)bi0+p71,p71 ..... pfl,f’ if 1 S io S ro — 1, it =0fort 75 0,
X = b. . - ifrg<ip<p—-1,0<i<p—1fort#0,

7 70/~~~rlf—1,]’
b. . . 7+ . . . <, i <ip < o — t > L. j fé .
1[)/0’.../0’”/“./1/ , bl 3 1,.., 1i ],...,Zf /], lf O ZO 0 1, 1 Smalles s.t 1t 0

Note that 1 <i < g—1and 0 <j < g —1, so there are (g — 1)q variables X; ;, with the first kind running in

the range 1 <i =iy <ry— 1, and the second and third kind running in the range ro <i < g —1.
By (#.29), and (4.30), and ([@.37) but with the variables X; ;, we obtain

rp—1g-1 . o .
Z 2 ro — (Aro 1B1+q71 _AZCoJrqfllefx) _A};quqB{Xq
i=1 j=0

qg—1g-1 r9—2 P
+ Z Z Xl] (( Z Clg 0A7’0+‘7 1—ko(1—9)— qukO(l Q)Jrlq) (70 _ 1)!AZ‘0+”71’BZX>

i=ry j=0 ko=0

_AlleqquBZJ’ —0,
which by dividing by (rp — 2)! and setting (cf. (4.31))

7. - Cio,k[) o ro + p— 1-— iO iO
ioko (7’0 — 2)! o rg — 2 — k() ko

yields the system of equations (that was obtained earlier in for g = p)

ro—1g—1 .o "
2 2 X; i ( 7’0'*‘1 q—i= ]‘iBl+]‘7+‘7 1 A;o—l—]qB;‘*‘]‘i)
i=1 j=0 ’

qg—1q-1 rg—2 L
i Z Z X; (( Z Zi 0Aro ko(1—4)— (1+/)quo(1 0)+(+j)q ) —(rp— 1)A;01MB;+]51> —0.

i=ry j= ko=0
As before, we separate the equations according to the congruence class 1 < n < g — 1 of the sum i + j so that
we obtain g — 1 separate systems of equations (each with g distinct variables). Again in order to work in the
basis B, we convert all flips and flops to elements of B, using and (£21). The resulting equations and
corresponding coefficient matrices obtained and the computation using row operations to show that these
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matrices have non-zero determinant are identical to the case of 4 = p treated earlier. The only real difference
is that in the formulas for the determinant (obtained earlier in three cases depending on the relative size of

1), one needs to replace p by g everywhere. We conclude that all X;; = 0. That is, for each f, we have
(1) if1 <ip <rp—1andi; =0 forj # 0, then

iobi0,.07 = (ro— lO)bio-l—p—l,r)—l,---,r)—l,f’

(2) ifro§i0§p—1and0§ij§p—lfor1Sjgf—l,then

=0,

01,

3) if0§i0Sro—landthereisa(smallest)1§t§f—1withit7é0(soi]-:0for1§j§t—1and

Then,

0< it+1,...,l'f,1 < pfl), then

big,O,...,O,z’t,...,if,l,f - _bioer,pfl,...,pfl,itfl,it+1,‘..,if,1,f'

q=1 [r+q-1 ,
PeQ = 2 Z b X"O*p 1- 10Y10 H Xp 1- llYll ® H SP 1=ji Tl]Z’
j=0 \ i=0

where each polynomial in the parentheses satisfies (1), (2), (3). So by Lemma [4.8, we conclude P ® Q €

(D, ...,

Df 1) ® ®f 1 VFr]y showing kery C (Dy,...,Df 1) ® ®] 0 VFrJl We finally have

ker = (Dy,..., Dy 1) ® ® VI,
=0

By Remark@ the dimension of <Do,. .., D¢_1) over F; equals rop/ =1 +1, so after tensoring with F.,

®) o Viftyr
. pP- -1 -1
dim =(ro+p)pf 1—rogp/ 1 —1=9g—1.
Fo <D0/~-/Df_1> (o +p)p op q
@0 Vit (E,)
. +p -1 F/ _ L . ,G(F,
Thus, over F,» we have dlm]pq2 m ® ® o Vs "]l =4(@-1) = dlm]l:l72 1ndT(]Fq)w£ iz and so
must be an isomorphism. This completes the proof of Theorem [4.9| (which is also Theorem [1.6). O
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