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Abstract. We show that certain modular induced representations of GL2(Fq) can be written as cokernels of op-
erators acting on symmetric power representations of GL2(Fq). When the induction is from the Borel subgroup,
respectively the anisotropic torus, the operators involve multiplication by newly defined twisted Dickson polynomi-
als, respectively, twisted Serre operators. Our isomorphisms are explicitly defined using differential operators. As a
corollary, we improve some periodicity results for quotients in the theta filtration.

1. Introduction

Let G be the general linear group GL2 and let p be a prime. Let Vr for r ≥ 0 be the r-th symmetric power
representation of the standard two-dimensional representation of G(Fp). It is modeled on homogeneous
polynomials of degree r over Fp in two variables X and Y with the usual action of G(Fp). Let θ = XpY−XYp

be the theta or Dickson polynomial on which G(Fp) acts by determinant. Let V(m+1)
r for m ≥ 0 be the sub-

representation of Vr consisting of polynomials divisible by m + 1 copies of θ. The sequence V(m+1)
r is called

the theta filtration of Vr.

1.1. Principal series. It is a classical fact going back to Glover [Glo78, (4.2)] that Vr
V∗r

is periodic in r with

period p− 1 where V∗r = V(1)
r . This is proved nowadays by noting that

Vr

V∗r
' ind

G(Fp)

B(Fp)
dr (1.1)

is a principal series representation of G(Fp) obtained by inducing the character dr of the Borel subgroup
B(Fp) = {

(
a b
0 d

)
} to G(Fp), and by noting that the character depends only on r modulo (p − 1). Similar

periodicity results have been investigated for higher quotients in the theta filtration of Vr. Indeed, it was
shown in [GV22, Lemma 4.1] that for 0 ≤ m ≤ p− 1, the quotient Vr

V(m+1)
r

is periodic in r modulo p(p− 1) by

constructing an embedding
Vr

V(m+1)
r

↪→ ind
G(Fp [ε])

B(Fp [ε])
dr, (1.2)

where Fp[ε] is the ring of generalized dual numbers (with εm+1 = 0), noting that dr only depends on r
modulo p(p− 1), and by showing that the image of (1.2) is independent of r modulo p(p− 1).

The map (1.2) is no longer surjective when m > 0. In this paper, instead of working with generalized
dual numbers and characters of the inducing subgroup, we work with the induction of higher dimensional
representations of the inducing subgroup and obtain isomorphisms between Vr

V(m+1)
r

and induced spaces. We

have:

Theorem 1.1. Let 0 ≤ m ≤ p− 1. Then, we have the following explicit isomorphisms:
(1) If p - ( r

m), then

Vr

V(m+1)
r

' ind
G(Fp)

B(Fp)
(Vm ⊗ dr−m), (1.3)

where Vm is the representation of B(Fp) obtained by restriction from G(Fp).
(2) If p | ( r

m) and m = 1, then
Vr

V(2)
r

' ind
G(Fp)

B(Fp)
(Vss

1 ⊗ dr−1),

where Vss
1 is the split representation of B(Fp) obtained as the semi-simplification of V1.
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The map in (1.3) generalizes the ‘evaluation of the polynomial at the second row of a matrix’ map that is
used to prove (1.1) and (1.2). Additionally, it involves the use of a differential operator ∇. Such operators
have found sporadic use in the literature (see [Glo78] and [BG15]), but are used systematically throughout
this paper. We also need to divide by constants which do not vanish if p - ( r

m).
Consider now the case p|( r

m), that is, r is in one of the congruence classes 0, 1, . . . , m− 1 modulo p. While

it is well known that the individual principal series V(i)
r

V(i+1)
r

occurring as subquotients in the theta filtration

are extensions of two Jordan-Hölder factors (which split exactly when r ≡ 2i mod (p− 1)), it is not as clear
whether the extensions between consecutive principal series

0→ V(i+1)
r

V(i+2)
r

→ V(i)
r

V(i+2)
r

→ V(i)
r

V(i+1)
r

→ 0 (1.4)

for 0 ≤ i ≤ m − 1 occurring in the theta filtration split. We show that if p|( r
m), then exactly one of the

extensions (1.4) split. Indeed, since V(i)
r

V(i+2)
r

' Vr′

V(2)
r′
⊗ deti with r′ = r− i(p + 1) ≡ r− i mod p we are reduced

to analyzing the case m = 1. If p - r, then Vr

V(2)
r

does not split by (1.3) and [Alp86, Lemma 6 (5)]. Modifying

the above mentioned differential operator ∇ by dropping the constants mentioned above, in the second part
of the theorem we show that if p|r, then

Vr

V(2)
r

' ind
G(Fp)

B(Fp)
adr−1 ⊕ ind

G(Fp)

B(Fp)
dr

splits. In other words, if p|r, then the two-dimensional standard representation V1 in (1.3) gets replaced by
the split representation Vss

1 = a⊕ d of B(Fp). We deduce that the extensions (1.4) split exactly when r ≡ i
mod p; moreover, under this condition, we have:

Vr

V(m+1)
r

' Vr

V(i+1)
r

⊕ V(i+1)
r

V(m+1)
r

. (1.5)

As a corollary of Theorem 1.1, we obtain a strengthening of the afore-mentioned periodicity result from
[GV22] in the case that p - ( r

m) since again the right hand side of (1.3) only depends on r modulo (p − 1)
and not on r modulo p. Thus, to obtain periodicity in this case, we no longer need to restrict to r in a fixed
congruence class modulo p, only to those r that avoid collectively the congruence classes 0, 1, . . . , m− 1 mod
p. We obtain:

Corollary 1.2. Let 0 ≤ m ≤ p− 1 and r ≡ s mod (p− 1). If p - ( r
m), (

s
m), then

Vr

V(m+1)
r

' Vs

V(m+1)
s

. (1.6)

We also remark that the results above (and just below) are clearly false for very small values of r and s for
dimension reasons. So in all the results in the principal series case, we assume that r and s are sufficiently
large (but do not mention explicit lower bounds on them to keep the statements simple).

With future applications in mind, we equally treat the case of G(Fq) = GL2(Fq) for an arbitrary finite field
Fq with q = p f elements for f ≥ 1. Indeed, we prove the following twisted version of the isomorphism (1.3):

Theorem 1.3. Let Vr = ⊗ f−1
i=0 (Vri ◦ Fri), Vm = ⊗ f−1

i=0 (Vmi ◦ Fri) with 0 ≤ mi ≤ p− 1 and dr−m be the character

⊗ f−1
i=0 d(ri−mi)pi

of B(Fq). If p - ( r
m) ≡ ∏

f−1
i=0 ( ri

mi
) mod p, then

Vr

〈θm0+1
0 , θm1+1

1 , · · · , θ
m f−1+1
f−1 〉

' ind
G(Fq)

B(Fq)

(
Vm ⊗ dr−m) .

Here the Vri are modeled on homogeneous polynomials of degree ri over Fq in the variables Xi and Yi

and Vri ◦ Fri means that we twist the standard action of G(Fq) on Vri by the i-th power of Frobenius. The
polynomials

θi = XiY
p
i−1 −YiX

p
i−1

for 0 ≤ i ≤ f − 1 are what we call twisted Dickson polynomials (we adopt the convention that −1 = f − 1); they
do not seem to appear in the literature.
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If p - ( r
m), then the periodicity of the quotient on the left hand side again follows since the right hand side

only depends on the sum r = ∑ ri pi, which is periodic modulo (q− 1). We obtain:

Corollary 1.4. Let 0 ≤ m ≤ q− 1 and r ≡ s mod (q− 1). If p - ( r
m), (

s
m), then

Vr

〈θm0+1
0 , θm1+1

1 , · · · , θ
m f−1+1
f−1 〉

' Vs

〈θm0+1
0 , θm1+1

1 , · · · , θ
m f−1+1
f−1 〉

.

We end this discussion of the case of principal series by noting that the isomorphism in Theorem 1.3 is
expected to play an important role in future investigations into the reduction problem of two-dimensional
crystalline and semi-stable representations over arbitrary p-adic fields F with residue field Fq using the
compatibility with respect to reduction of the (yet to be discovered) p-adic and mod p local Langlands
correspondences for G(F) for an arbitrary finite extension of Qp.

1.2. Cuspidal case. Let T(Fp) = F×p2 ↪→ G(Fp) be the anisotropic torus. The theme of writing (general-
ized) principal series representations as cokernels of theta operators raises the question (asked by Khare)
as to whether one may similarly write representations induced from the anisotropic torus as cokernels of
symmetric power representations.

Let D be the differential operator Xp ∂
∂X + Yp ∂

∂Y and let ω2 be the identity character T(Fp) = F×p2 → F×p2 .
We prove the following analog of (1.1):

Theorem 1.5. Let 2 ≤ r ≤ p− 1. Then there is an explicit isomorphism
Vr+p−1

D(Vr)
⊗Vp−1 ' ind

G(Fp)

T(Fp)
ωr

2

defined over Fp2 .

The theorem is also true for r = 1 (see Remark 2). We prove similar isomorphisms for other values of r
by twisting (Corollary 4.2) using the fact that D preserves the theta filtration in a strong sense (Lemma 4.3).
We also prove similar isomorphisms when D is replaced by a higher power D(m+1) (Corollary 4.4, note the
analogy with (1.3)).

A non-explicit version of the isomorphism in Theorem 1.5 can be deduced from the work of Reduzzi
[Red10]. Let us provide some background and explain our contribution. In the discussion that follows, we
sometimes think of ω2 as a character taking values in a characteristic zero field (by taking its Teichmüller lift).
Recall that for each complex character χ of T(Fp) = F×p2 (with χ not self-conjugate) there is an irreducible

cuspidal complex representation Θ(χ) of G(Fp). Moreover, Θ(χ) is a factor of an induced representation: we
have

Θ(χ)⊗ St ' ind
G(Fp)

T(Fp)
χ, (1.7)

where St is the p-dimensional complex irreducible Steinberg representation of G(Fp) with reduction St '
Vp−1. While the group G(Fp) has no mod p cuspidal representations (since, for instance, the Jacquet functor
is never 0 because there are always invariant elements under the upper unipotent subgroup of G(Fp)), one
may still study the mod p reductions of Θ(ωr

2). Following a suggestion of Serre to use the operator D,
Reduzzi [Red10] proved that the mod p reduction Θ(ωr

2) is isomorphic to the cokernel of D on an appropriate
symmetric power representation, namely:

Vr+p−1

D(Vr)
' Θ(ωr

2) (1.8)

for 2 ≤ r ≤ p − 1. The proof uses a specific integral model of Θ(ωr
2) arising from the action of G(Fp) on

the crystalline cohomology of the Deligne-Lusztig variety XYp − XpY = Zp+1 (see Haastert-Jantzen [HJ90]).
Thus, Reduzzi’s isomorphism (1.8) is not at all explicit given that the right hand side involves crystalline
cohomology. However, by tensoring (1.8) with Vp−1 and using the mod p reduction of (1.7) for χ = ωr

2, one
sees that the isomorphism in Theorem 1.5 must hold, at least abstractly. An immediate question that arises is
whether one can make this isomorphism explicit, given that the right hand side of this isomorphism no longer
involves crystalline cohomology. Thus the point of Theorem 1.5 is that it contains an explicit isomorphism
(which was found after much computation with special cases). Again, the map involves a differential operator
∇α, where α is an element of Fp2 \Fp, which generalizes the operator ∇ used in the principal series case.1

1It also involves the difference of a polynomial evaluated at 2 points reminding one of the evaluation of a direct integral in calculus.
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In fact, Reduzzi [Red10] proved2 that, more generally, for G(Fq) with q = p f , and for ω2 f : F×q2 → F×q2 the
fundamental (identity) character of level 2 f , one similarly has

Vr+q−1

D(Vr)
' Θ(ωr

2 f ),

for 2 ≤ r ≤ p− 1, where now D = Xq ∂
∂X +Yq ∂

∂Y . We end this paper by proving the following twisted version
of this result, which extends Theorem 1.5 to G(Fq):

Theorem 1.6. Let r = r0 + r1 p + · · ·+ r f−1 p f−1, where 2 ≤ r0 ≤ p− 1 and rj = 0 for all 1 ≤ j ≤ f − 1. Then
there is an explicit isomorphism over Fq2 :⊗ f−1

j=0 VFrj

rj+p−1

〈D0, . . . , D f−1〉
⊗ ⊗ f−1

j=0 VFrj

p−1 ' ind
G(Fq)

T(Fq)
ωr

2 f .

We remark that ⊗ f−1
j=0 VFrj

p−1 ' St where St is now the q-dimensional Steinberg representation of G(Fq). Also
in the statement of the theorem we need the following twisted versions of Serre’s differential operator D,
namely:

D0 = Xp
0 Xp−1

1 · · ·Xp−1
f−1

∂

∂X0
+ Yp

0 Yp−1
1 · · ·Yp−1

f−1
∂

∂Y0
,

and

Dj = Xp
0 Xp−1

1 · · ·Xp−1
j−1

∂

∂Xj
+ Yp

0 Yp−1
1 · · ·Yp−1

j−1
∂

∂Yj
,

for all 1 ≤ j ≤ f − 1. Interestingly, these operators are only G(Fq)-linear modulo the images of the previous
ones (with the convention that D0 is to be thought of as D f ). Again, they do not seem to appear in the
literature and one might refer to them as twisted Serre operators.

2. Principal series case

2.1. The case of GL2(Fp). Recall G(Fp) = GL2(Fp) and B(Fp) is the subgroup of upper triangular matrices
of G(Fp). For r ≥ 0, let Vr := Symr(F2

p) denote the r-th symmetric power of the standard representation of
G(Fp) over Fp. We identify Vr with homogeneous polynomials P(X, Y) of degree r in two variables X and Y
with coefficients in Fp, with action g =

(
a b
c d

)
∈ G(Fp) given by

g · P(X, Y) = P(aX + cY, bX + dY).

Consider the Dickson polynomial
θ(X, Y) := XpY− XYp.

Note that G(Fp) acts on θ(X, Y) by the determinant character. So for each m ≥ 0, we have

V(m+1)
r :=

{
f (X, Y) ∈ Vr | f (X, Y) is divisible by θ(X, Y)m+1

}
is a G(Fp)-stable subspace of Vr. These spaces give a decreasing filtration of submodules of Vr:

Vr ⊃ V(1)
r ⊃ · · · ⊃ V(m+1)

r ⊃ · · · ⊃ (0).

Let dr : B(Fp)→ F×p denote the character given by
(

a b
0 d

)
7→ dr. For n ≥ 0, m ∈ Z, define

[n]m =


1, if m = 0,
n(n− 1) · · · (n− (m− 1)), if m > 0,
0, if m < 0.

Lemma 2.1. Let k ≥ 0. We have
k

∑
m=0

(
k
m

)
[r− j]t−l−m[j]l+m = [r− t + k]k[r− j]t−k−l [j]l . (2.1)

Proof. Follows by induction on k. �

2Technically speaking, Reduzzi does not treat the case r = p+1
2 , though it is covered by Theorems 1.5 and 1.6.
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Lemma 2.2. Let z ∈ Fp and let P(X, Y) =
r
∑

j=0
ajXr−jY j ∈ Vr with aj ∈ Fp for all 0 ≤ j ≤ r. Define the differential

operators

∇ = a
∂

∂X
+ b

∂

∂Y
and ∇′ = c

∂

∂X
+ d

∂

∂Y
,

for a, b, c, d ∈ Fp. Then, for all 0 ≤ k ≤ t, we have

∇t−k∇′k(P)
∣∣∣∣
(zc,zd)

= zr−t[r− t + k]k

(
a

∂

∂X
+ b

∂

∂Y

)t−k
(P)
∣∣∣∣
(c,d)

.

Proof. Without loss of generality assume that P = Xr−jY j. We note that

∂n

∂Xn−i∂Yi (P) = [r− j]n−i[j]iXr−j−(n−i)Y j−i. (2.2)

Now, (
a

∂

∂X
+ b

∂

∂Y

)t−k (
c

∂

∂X
+ d

∂

∂Y

)k
(P)
∣∣∣∣
(zc,zd)

=
t−k

∑
l=0

k

∑
m=0

(
t− k

l

)(
k
m

)
at−k−lblck−mdm ∂t

∂Xt−l−m∂Yl+m (P)
∣∣∣∣
(zc,zd)

=
t−k

∑
l=0

k

∑
m=0

(
t− k

l

)(
k
m

)
zr−tat−k−lblck−mdm[r− j]t−l−m[j]l+mcr−j−(t−l−m)dj−l−m

=
t−k

∑
l=0

zr−tat−k−lblcr−j−(t−l−k)dj−l
(

t− k
l

)( k

∑
m=0

(
k
m

)
[r− j]t−l−m[j]l+m

)

= zr−t[r− t + k]k
t−k

∑
l=0

(
t− k

l

)
at−k−lblcr−j−(t−l−k)dj−l [r− j]t−k−l [j]l

= zr−t[r− t + k]k

(
t−k

∑
l=0

(
t− k

l

)
at−k−lbl ∂t−k

∂Xt−k−l∂Yl

)
(P)
∣∣∣∣
(c,d)

= zr−t[r− t + k]k

(
a

∂

∂X
+ b

∂

∂Y

)t−k
(P)
∣∣∣∣
(c,d)

.

The second and last but one equalities hold by (2.2). The fourth equality follows from (2.1). �

Lemma 2.3. Let a, b, c, d, u, v, w, z ∈ Fp and P(X, Y) ∈ Vr. Let P1 = P(U, V), with U = uX + wY and V =
vX + zY. Then for k ≥ 0 we have(

a
∂

∂X
+ b

∂

∂Y

)k
(P1)

∣∣∣∣
(c,d)

=

(
(ua + wb)

∂

∂X
+ (va + zb)

∂

∂Y

)k
(P)
∣∣∣∣
(uc+wd,vc+zd)

.

Proof. This is just the chain rule. �

Lemma 2.4. Let a, b ∈ Fp and ∇ = a ∂
∂X + b ∂

∂Y . Let f := f (X, Y), g := g(X, Y) ∈ Fp[X, Y]. Then, for all m ≥ 1,
we have

∇m( f g) =
m

∑
i=0

(
m
i

)
∇m−i( f )∇i(g).

Proof. This is just Leibnitz rule. �

Lemma 2.5. Let a, b, c, d ∈ Fp. We let ∇ = a ∂
∂X + b ∂

∂Y and θ(X, Y) = XpY− XYp. Then, for l, k ≥ 0, we have

∇l(θ(X, Y)k)
∣∣
(c,d) =

l!
(
∇θ(X, Y)

∣∣
(c,d)

)l
, if k = l,

0, otherwise.

Proof. We first show that

∇l(θk) = l!
(

k
l

)
θk−l(∇θ)l , ∀ k ≥ l. (2.3)
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We prove the result by induction on l. The l = 0 case is trivial. Suppose l = 1. Then, we have

∇(θk) =

(
a

∂

∂X
+ b

∂

∂Y

)
(θk) = akθk−1 ∂θ

∂X
+ bkθk−1 ∂θ

∂Y
= kθk−1(∇θ),

as desired. Assume that the result is true for l. If k ≥ l + 1, then

∇l+1(θk) = ∇
(

l!
(

k
l

)
θk−l(∇θ)l

)
= l!

(
k
l

)(
a

∂

∂X

(
θk−l(∇θ)l

)
+ b

∂

∂Y

(
θk−l(∇θ)l

))
= l!

(
k
l

)
a
(

θk−l ∂

∂X
(∇θ)l + (k− l)θk−l−1 ∂θ

∂X
(∇θ)l

)
+l!
(

k
l

)
b
(

θk−l ∂

∂Y
(∇θ)l + (k− l)θk−l−1 ∂θ

∂Y
(∇θ)l

)
= l!

(
k
l

)
θk−l∇((∇θ)l) + l!

(
k
l

)
(k− l)θk−l−1(∇θ)l

(
a

∂θ

∂X
+ b

∂θ

∂Y

)
= (l + 1)!

(
k

l + 1

)
θk−(l+1)(∇θ)l+1.

The first equality holds by the induction hypothesis. Note that ∇θ = bXp − aYp, so ∇((∇θ)l) = 0, and hence
the last equality follows. Thus the identity (2.3) follows by induction.

Now, suppose k < l. Then

∇l(θk) = ∇l−k(∇k(θk)) = k!∇l−k((∇θ)k) = k!∇l−k−1∇((∇θ)k) = 0. (2.4)

The second equality follows by taking l = k in (2.3). The last equality follows because ∇((∇θ)k) = 0.
Combining (2.3) and (2.4), we have

∇l(θk)
∣∣
(c,d) =

l!(k
l)θ

k−l
∣∣
(c,d)

(
∇θ
∣∣
(c,d)

)l
, if k ≥ l,

0, if k < l.
=

l!
(
∇θ
∣∣
(c,d)

)l
, if k = l,

0, otherwise. �

2.1.1. Non-split case. We prove Theorem 1.1 (1) from the introduction.

Theorem 2.6. Let 0 ≤ m ≤ p− 1 and p - ( r
m). Then we have

Vr

V(m+1)
r

' ind
G(Fp)

B(Fp)

(
Vm ⊗ dr−m) .

Proof. We show that there is a G(Fp)-equivariant isomorphism

ψ :
Vr

V(m+1)
r

→ ind
G(Fp)

B(Fp)

(
Vm ⊗ dr−m)

given by ψ(P(X, Y)) = ψP for all P = P(X, Y) ∈ Vr, where ψP : G(Fp)→ Vm ⊗ dr−m is defined by

ψP

((
a b
c d

))
=

(
(m

j )

[r]m−j

(
a

∂

∂X
+ b

∂

∂Y

)m−j
(P)
∣∣∣∣
(c,d)

)
0≤j≤m

for all
(

a b
c d

)
∈ G(Fp). Note that, by hypothesis the constant is a well-defined non-zero element of Fp.

Recall that we denote ∇ = a ∂
∂X + b ∂

∂Y and ∇′ = c ∂
∂X + d ∂

∂Y .

B(Fp)-linearity: We first show that ψP is B(Fp)-linear. Let γ =
(

a b
c d

)
∈ G(Fp), b = ( u v

0 z ) ∈ B(Fp) and
x := (xj)0≤j≤m ∈ Vm ⊗ dr−m. Then the action of b on x is given by

b · x = zr−m ·
(

m

∑
j=i

(
j
i

)
um−jvj−izixj

)
0≤i≤m

.
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We have

ψP(b · γ) = ψP

((
ua + vc ub + vd

zc zd

))
=

(
(m

j )

[r]m−j

(
u∇+ v∇′

)m−j
(P)
∣∣∣∣
(zc,zd)

)
0≤j≤m

=

(
(m

j )

[r]m−j

(
m−j

∑
k=0

(
m− j

k

)
um−j−kvk∇m−j−k∇′k

)
(P)
∣∣∣∣
(zc,zd)

)
0≤j≤m

,

which by taking t = m− j in Lemma 2.2 and by using the fact [r]m−j = [r]m−j−k[r− (m− j− k)]k equalsm−j

∑
k=0

(m
j )(

m−j
k )zr−(m−j)

[r]m−j−k

(
um−j−kvk∇m−j−k

)
(P)
∣∣∣∣
(c,d)


0≤j≤m

. (2.5)

Now,

b · ψP(γ) =

(
u v
0 z

)
·
(

(m
j )

[r]m−j
∇m−j(P)

∣∣∣∣
(c,d)

)
0≤j≤m

=

 m

∑
j=i

(j
i)(

m
j )z

r−(m−i)

[r]m−j
um−jvj−i∇m−j(P)

∣∣∣∣
(c,d)


0≤i≤m

,

which, by relabeling j as l and i as j, and by further replacing l by j + k, equalsm−j

∑
k=0

(j+k
j )( m

j+k)z
r−(m−j)

[r]m−j−k
um−j−kvk∇m−j−k(P)

∣∣∣∣
(c,d)


0≤j≤m

. (2.6)

Observing (m
j )(

m−j
k ) = (j+k

j )( m
j+k) and comparing (2.5) and (2.6), we have ψP(b · γ) = b ·ψP(γ). So ψP is B(Fp)-

linear and hence ψ is well defined.

G(Fp)-linearity: Now, we show that ψ is G(Fp)-linear. Let γ =
(

a b
c d

)
, g = ( u v

w z ) ∈ G(Fp). Then g · P(X, Y) =
P(U, V) =: P1, where U = uX + wY and V = vX + zY. We have

ψ(g · (P(X, Y)))(γ) = ψ (P1)

((
a b
c d

))
=

(
(m

j )

[r]m−j

(
a

∂

∂X
+ b

∂

∂Y

)m−j
(P1)

∣∣∣∣
(c,d)

)
0≤j≤m

,

which, by Lemma 2.3, equals(
(m

j )

[r]m−j

(
(ua + wb)

∂

∂X
+ (va + zb)

∂

∂Y

)m−j
(P)
∣∣∣∣
(uc+wd,vc+zd)

)
0≤j≤m

= ψ(P(X, Y))(γg) = (g · ψ(P(X, Y)))(γ)

for all γ ∈ G(Fp). So ψ(g · P(X, Y)) = g · ψ(P(X, Y)) for all g ∈ G(Fp). Hence ψ is G(Fp)-linear.

Kernel: Next we show that ker ψ = V(m+1)
r by induction on m. If m = 0, it is well known that ker ψ = V(1)

r
(e.g., use [GV22, Lemma 2.7] or Lemma 2.11 with f = 1). Let P(X, Y) ∈ ker ψ. By definition of ψ, we
have ∇m−j(P)

∣∣
(c,d) = 0 for all 0 ≤ j ≤ m,

(
a b
c d

)
∈ G(Fp). In particular, this is true for all 1 ≤ j ≤ m.

So by the induction hypothesis, we have P(X, Y) ∈ V(m)
r , which gives P(X, Y) = θ(X, Y)mQ(X, Y) for some

Q(X, Y) ∈ Vr−m(p+1). Now, taking j = 0 and using Lemma 2.4,

0 = ∇m(P)
∣∣∣∣
(c,d)

=

(
m

∑
i=0

(
m
i

)
∇m−i(θm)∇i(Q(X, Y))

) ∣∣∣∣
(c,d)

.

This implies Q(c, d) = 0 since, by Lemma 2.5, all terms above die except for the i = 0 term. Then by
the m = 0 case, we have θ | Q(X, Y), so P(X, Y) ∈ V(m+1)

r . Thus ker ψ ⊂ V(m+1)
r . On the other hand if

P(X, Y) = θm+1Q′(X, Y), it is easy to check using Lemmas 2.4, 2.5 that ∇j(P(X, Y))
∣∣
(c,d) = 0 for all 0 ≤ j ≤ m.

By the definition of ψ, we have P(X, Y) ∈ ker ψ. Thus ker ψ = V(m+1)
r .

Isomorphism: This follows since the dimension of both sides of ψ is (m + 1)(p + 1). �
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2.1.2. Split case. We turn to the case p | ( r
m). As explained in the introduction we may assume that m = 1.

In the next theorem, we prove Theorem 1.1 (2). Recall that Vss
1 := a⊕ d denotes the two-dimensional split

representation of B(Fp).

Theorem 2.7. If p | r, then we have

Vr

V(2)
r

' ind
G(Fp)

B(Fp)

(
Vss

1 ⊗ dr−1
)
' ind

G(Fp)

B(Fp)
adr−1 ⊕ ind

G(Fp)

B(Fp)
dr.

Proof. Define

ψss :
Vr

V(2)
r

→ ind
G(Fp)

B(Fp)
(Vss

1 ⊗ dr−1)

by ψss(P) = ψss
P , where ψss

P : G(Fp)→ Vss
1 ⊗ dr−1 is defined by

ψss
P

((
a b
c d

))
=

(
∇P
∣∣∣
(c,d)

, P(c, d)
)

,

where ∇ = a ∂
∂X + b ∂

∂Y .
We check the B(Fp)-linearity of ψss

P . Let b = ( u v
0 z ) ∈ B(Fp) and γ ∈

(
a b
c d

)
∈ G(Fp). Then,

ψss
P (b · γ) = ψss

P

((
ua + vc ub + vd

zc zd

))
=

(
uzr−1∇(P)

∣∣∣
(c,d)

+ vzr−1∇′(P)
∣∣∣
(c,d)

, zrP(c, d)
)

=

(
uzr−1∇(P)

∣∣∣
(c,d)

+ vzr−1rP(c, d), zrP(c, d)
)

=

(
uzr−1∇(P)

∣∣∣
(c,d)

, zrP(c, d)
)

=

(
u v
0 z

)
·
(
∇(P)

∣∣∣
(c,d)

, P(c, d)
)

= b · ψss
P (γ).

Here ∇′ = c ∂
∂X + d ∂

∂Y and the fourth equality follows because p | r. Hence ψss
P is B(Fp)-linear.

The proof of the G(Fp)-linearity of ψss and the fact that ker ψss = V(2)
r follows as in the proof of Theo-

rem 2.6. We conclude as in the proof of Theorem 2.6 by comparing dimensions. �

As discussed in the introduction, we obtain the splitting (1.5):

Corollary 2.8. Let 0 ≤ m ≤ p− 1. If p | ( r
m), that is, p | r− i for some 0 ≤ i ≤ m− 1, then we have

Vr

V(m+1)
r

' Vr

V(i+1)
r

⊕ V(i+1)
r

V(m+1)
r

.

2.2. The case of GL2(Fq). Let G(Fq) := GL2(Fq) with q = p f for f ≥ 1. Let B(Fq) denote the subgroup of
upper triangular matrices of G(Fq). Let r ≥ 0 and let r = r0 + r1 p + · · ·+ r f−1 p f−1 be the p-adic expansion

of r with 0 ≤ rj ≤ p − 1 and 0 ≤ j ≤ f − 1. Let VFrj
rj

:= Symrj(F2
p) ◦ Frj for all 0 ≤ j ≤ f − 1, where Fr

denotes the Frobenius morphism. Let VFrj
rj

be modeled on polynomials in Xj and Yj over Fq of degree rj for
all 0 ≤ j ≤ f − 1. Let

θ0 := X0Yp
f−1 −Y0Xp

f−1 and θk := XkYp
k−1 −YkXp

k−1 (2.7)

for all 1 ≤ k ≤ f − 1 denote the twisted Dickson polynomials.

Lemma 2.9. Let a, b, c, d, z ∈ Fq. We write

∇j = apj ∂

∂Xj
+ bpj ∂

∂Yj
and ∇′j = cpj ∂

∂Xj
+ dpj ∂

∂Yj
.

Let Pj(Xj, Yj) =
rj

∑
ij=0

aij X
rj−ij
j Yij ∈ VFrj

rj
with aij ∈ Fq for all 0 ≤ ij ≤ rj. Then, for all 0 ≤ k j ≤ tj, we have

∇tj−kj
j ∇′kj

j (Pj)

∣∣∣∣(
(zc)pj

,(zd)pj) = z(rj−tj)pj
[rj − tj + k j]kj

∇tj−kj
j (Pj)

∣∣∣∣
(cpj

,dpj
)

.

Proof. Similar to Lemma 2.2. �
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Lemma 2.10. Let a, b, c, d, u, v, w, z ∈ Fq and Pj(Xj, Yj) ∈ VFrj
rj

. Let P′j := Pj(Uj, Vj), where Uj = upj
Xj + wpj

Yj

and Vj = vpj
Xj + zpj

Yj. Then for k j ≥ 0, we have

(
apj ∂

∂Xj
+ bpj ∂

∂Yj

)kj

(P′j )
∣∣∣∣(

cpj
,dpj) =

(
(ua + wb)pj ∂

∂Xj
+ (va + zb)pj ∂

∂Yj

)kj

(Pj)

∣∣∣∣(
(uc+wd)pj

,(vc+zd)pj).

Proof. Similar to Lemma 2.3. �

Lemma 2.11. Let θ′ = XqY − YqX. Let P(X, Y) =
r
∑

i=0
aiXr−iYi ∈ Fq[X, Y] be such that P(c, d) = 0 for all(

a b
c d

)
∈ Fq. Then P(X, Y) ∈ 〈θ′〉.

Proof. Exercise. �

Lemma 2.12. Let a, b, c, d ∈ Fq. We let ∇j =
(

apj ∂
∂Xj

+ bpj ∂
∂Yj

)
and θ′j = Xq

j Yj − XjY
q
j . Then we have

∇l
j(θ
′k
j )

∣∣∣∣
(cpj

,dpj
)

=

l!

(
∇jθ

′
j

∣∣∣∣
(cpj

,dpj
)

)l

, if k = l,

0, otherwise.

Proof. Similar to Lemma 2.5. �

Lemma 2.13. For 0 ≤ j ≤ f − 1 and 0 ≤ mj ≤ p− 1, let

ψj : VFrj

rj
→ ind

G(Fq)

B(Fq)

(
VFrj

mj
⊗ d(rj−mj)pj

)
be defined by ψj(Pj(Xj, Yj)) = ψ

j
Pj(Xj ,Yj)

, where ψ
j
Pj(Xj ,Yj)

: G(Fq)→ VFrj
mj
⊗ d(rj−mj)pj

is given by

ψ
j
Pj(Xj ,Yj)

((
a b
c d

))
=

(
(mj

nj
)

[rj]mj−nj

∇mj−nj
j (Pj)

∣∣∣∣
(cpj

,dpj
)

)
0≤nj≤mj

,

for all
(

a b
c d

)
∈ G(Fq) and ∇j = apj ∂

∂Xj
+ bpj ∂

∂Yj
. Then

(i) ψ
j
Pj(Xj ,Yj)

is B(Fq)-linear,

(ii) ψj is G(Fq)-linear,
(iii) ψj is an isomorphism.

Proof. (i) B(Fq)-linearity: Let b = ( u v
0 z ) ∈ B(Fq) and γ =

(
a b
c d

)
∈ G(Fq). Let x′ := (x′nj

)0≤nj≤mj ∈ VFrj
mj
⊗

d(rj−mj)pj
. Then the action of b on x′ is given by

b · x′ = z(rj−mj)pj
·

 mj

∑
nj=ij

(
nj

ij

)
u(mj−nj)pj

v(nj−ij)pj
zij pj

x′nj


0≤ij≤mj

.

As in the proof of Theorem 2.6, but using Lemma 2.9 instead, ψ
j
Pj
(b · γ) = ψ

j
Pj
(b · γ). Thus ψ

j
Pj

is B(Fq)-linear.

(ii) G(Fq)-linearity: This follows as in the proof of Theorem 2.6 using Lemma 2.10 instead.

(iii) Isomorphism: We now show by induction on mj that ker ψj = 〈θ′(mj+1)
j 〉, where θ′j = Xq

j Yj − XjY
q
j .

Suppose mj = 0. Then ψj(Pj) = ψ
j
Pj

is defined by ψ
j
Pj

((
a b
c d

))
= Pj(cpj

, dpj
). Clearly 〈θ′j〉 ⊂ ker ψj. Let Pj ∈

ker ψj. Then Pj(cpj
, dpj

) = 0 for all (c, d) ∈ Fq × Fq \ (0, 0). Thus, Pj(c, d) = 0 for all (c, d) ∈ Fq × Fq \ (0, 0).
Then by Lemma 2.11, we have Pj ∈ 〈θ′j〉. So ker ψj ⊂ 〈θ′j〉. Thus ker ψj = 〈θ′j〉.

Assume that the result is true for mj − 1. By Lemma 2.12, we have

∇aj
j (θ
′mj+1
j )

∣∣
(cpj

,dpj
)
= 0
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for all 0 ≤ aj ≤ mj. By definition of ψj, we have θ
′mj+1
j ∈ ker ψj. So 〈θ′mj+1

j 〉 ⊂ ker ψj. Let Pj ∈ ker ψj.

Then ∇aj
j (Pj)

∣∣
(cpj

,dpj
)
= 0 for all 0 ≤ aj ≤ mj. In particular, ∇aj

j (Pj)
∣∣
(cpj

,dpj
)
= 0 for all 0 ≤ aj ≤ mj − 1.

By the induction hypothesis Pj ∈ 〈θ
′mj
j 〉. Write Pj = Qjθ

′mj
j with Qj ∈ Fq[Xj, Yj]. Now, taking aj = mj and

proceeding exactly as in the proof of Theorem 2.6, but using Lemma 2.12 instead, we see θ′j divides Qj. So

ker ψj ⊂ 〈θ′mj+1
j 〉. Thus ker ψj = 〈θ′mj+1

j 〉.

So we have an injective map ψj :
VFrj

rj

〈θ
′mj+1

j 〉
→ ind

G(Fq)

B(Fq)

(
VFrj

mj
⊗ d(rj−mj)pj

)
. Note that the dimension of both

sides of ψj is (mj + 1)(q + 1). So ψj is also surjective and an isomorphism. �

Remark 1. It is also possible to give a direct proof of the surjectivity of ψj, at least when mj = 0. Let σ be a

representation of B(Fq). For g ∈ G(Fq), v ∈ σ, let [g, v] ∈ ind
G(Fq)

B(Fq)
σ denote the map defined by

[g, v](g′) =

{
σ(g′g)v, if g′g ∈ B(Fq),
0, otherwise.

A basis of ind
G(Fq)

B(Fq)
d(rj−mj)pj

is given by (cf. [Bre07, Lemma 7.2], [BP12, Lemma 2.5 (2)] ) fi := ∑
λ∈Fq

λi
(

λ 1
1 0

)
[1, 1], φ := [1, 1]


0≤i≤q−1

, (2.8)

where [1, 1] denotes the function supported on B(Fq) and [1, 1](u) = 1 for all u ∈
{(

1 x
0 1
)
| x ∈ Fq

}
. When,

e.g., j = 0 and m0 = 0, then one may check ψ0 maps (−1)iXr0−i
0 Yi

0 to fi for 0 ≤ i ≤ q − 1, and maps

Yr0 − Xq−1
0 Yr0−(q−1)

0 to φ.

Similarly for j, mj arbitrary, a basis of Vmj ⊗ ind
G(Fq)

B(Fq)
d(rj−mj)pj

' ind
G(Fq)

B(Fq)
(Vmj ⊗ d(rj−mj)pj

) is given by{
S

mj−l
j Tl

j ⊗ fi, S
mj−l
j Tl

j ⊗ φ
∣∣ 0 ≤ l ≤ mj, 0 ≤ i ≤ q− 1

}
,

where Vmj is modeled on polynomials of degree mj over Fq in Sj, Tj and fi, φ are as in (2.8). One should
similarly be able to write down polynomials mapping to each of these basis elements under ψj.

Theorem 1.3 is a twisted version of the Lemma 2.13. However the proof is more involved. To prove it we
need a few more lemmas. Recall the twisted Dickson polynomials θj for 0 ≤ j ≤ f − 1 were defined in (2.7).

Lemma 2.14. Let a, b, c, d ∈ Fq. For 0 ≤ j ≤ f − 1 and 0 ≤ lj, k j ≤ mj, let ∇j = apj ∂
∂Xj

+ bpj ∂
∂Yj

. Then

 f−1

∏
j=0
∇lj

j

 f−1

∏
j=0

θ
k j

j

 ∣∣∣∣
(c,d;...;cp f−1 ,dp f−1

)

=

l0! · · · l f−1! ∏
f−1
j=0

(
∇j(θj)

∣∣∣∣
(c,d;...;cp f−1 ,dp f−1

)

)lj

, i f (l0, . . . , l f−1) = (k0, . . . , k f−1),

0, otherwise.

Proof. We induct on f . Lemma 2.5 is the case f = 1. Assume the result for f − 1. Now, consider f−1

∏
j=0
∇lj

j

 f−1

∏
j=0

θ
k j

j

 ∣∣∣∣
(c,d;...;cp f−1 ,dp f−1

)

=

 f−1

∏
j=1
∇lj

j

 f−1

∏
j=2

θ
k j

j

 θk1
1 ∇

l0
0

(
θk0

0

) ∣∣∣∣
(c,d;...;cp f−1 ,dp f−1

)

=

 f−1

∏
j=1
∇lj

j

 f−1

∏
j=1

θ
k j

j

 ∣∣∣∣
(c,d;...;cp f−1 ,dp f−1

)

∇l0
0

(
θk0

0

) ∣∣∣∣
(c,d;...;cp f−1 ,dp f−1

)

=

l0! · · · l f−1! ∏
f−1
j=0

(
∇j(θj)

∣∣∣∣
(c,d;...;cp f−1 ,dp f−1

)

)lj

, i f (l0, . . . , l f−1) = (k0, . . . , k f−1),

0, otherwise.
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The first equality follows since θj for 2 ≤ j ≤ f − 1 is independent of X0, Y0, and since ∇0(θ1) = 0, and the
last from the induction hypothesis and a twisted analogue of the j = 0 version of Lemma 2.12. �

For 0 ≤ j ≤ f − 1, assume that rj ≥ p f−j. Then r =
f−1
∑

j=0
rj pj ≥ f q. Let 0 ≤ ij ≤ rj for 0 ≤ j ≤ f − 1. Set

i =
f−1
∑

j=0
ij pj and~i = (i0, . . . , i f−1). We write

~r
∑
~i=~0

:=
r0
∑

i0=0
· · ·

r f−1

∑
i f−1=0

.

Lemma 2.15. For 0 ≤ j ≤ f − 1, let 0 ≤ ij ≤ rj and 0 ≤ k j ≤ p − 1. Let k =
f−1
∑

j=0
k j pj. Let P =

~r
∑
~i=~0

a~i ∏
f−1
j=0 X

rj−ij
j Y

ij
j ∈ Fq[X0, Y0, . . . , X f−1, Yf−1] be such that P

(
c, d; . . . ; cp f−1

, dp f−1
)
= 0 for all

(
a b
c d

)
∈ G(Fq).

Then a~0 = 0 = a~r, and the polynomial P is of the form

P =
q−1

∑
k=1


~r

∑
~i=~0
~i 6=~k

i≡k mod (q−1)

a~i

 f−1

∏
j=0

X
rj−ij

j Y
ij

j −
f−1

∏
j=0

X
rj−k j

j Y
k j

j


 .

Proof. From the given condition we have P
(

c, d; . . . ; cp f−1
, dp f−1

)
=

~r
∑
~i=~0

a~ic
r−idi = 0, for all (c, d) ∈ Fq × Fq \

{(0, 0)}. In particular, choosing (c, d) = (1, 0), we have a~0 = 0 and choosing (c, d) = (0, 1), we have a~r = 0.
Let F×q = {λl | 1 ≤ l ≤ q− 1}. Then taking (c, d) = (1, λl), we have

P(1, λl ; . . . ; 1, λ
p f−1

l ) =
q−1

∑
k=1


 ~r

∑
~i=~0

i≡k mod (q−1)

a~i

 λk
l

 = 0,

which, by writing Ak =
~r
∑
~i=~0

i≡k mod (q−1)

a~i, gives
q−1
∑

k=1
Akλk

l = 0. Since the (essentially) Vandermonde matrix (λk
l )

is invertible, we have

Ak = 0 (2.9)

for all 1 ≤ k ≤ q− 1. Now, we have

P =
~r

∑
~i=~0

a~i

f−1

∏
j=0

X
rj−ij

j Y
ij

j =
q−1

∑
k=1

 ~r

∑
~i=~0

i≡k mod (q−1)

a~i

f−1

∏
j=0

X
rj−ij

j Y
ij

j



=
q−1

∑
k=1




~r

∑
~i=~0
~i 6=~k

i≡k mod (q−1)

a~i

f−1

∏
j=0

X
rj−ij

j Y
ij

j

+ a~k

f−1

∏
j=0

X
rj−k j

j Y
k j

j

 =
q−1

∑
k=1


~r

∑
~i=~0
~i 6=~k

i≡k mod (q−1)

a~i

 f−1

∏
j=0

X
rj−ij

j Y
ij

j −
f−1

∏
j=0

X
rj−k j

j Y
k j

j


 .

The last equality follows from (2.9). �

Lemma 2.16. Let θ0 := X0Yp
f−1 − Y0Xp

f−1 and θk := XkYp
k−1 − YkXp

k−1 for all 1 ≤ k ≤ f − 1. For 0 ≤ j ≤ f − 1,

let cj, dj, gj, hj ∈N∪ {0} be such that cj + dj = rj with rj ≥ p f−j. Let

P(X0, Y0; . . . ; X f−1, Yf−1) =
f−1

∏
j=0

X
cj
j Y

dj
j −

f−1

∏
j=0

X
gj
j Y

hj
j ,
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where
f−1
∑

j=0
dj pj =

f−1
∑

j=0
hj pj + t(q− 1) for all t ≥ 1. Assume that P has no pure term which involves either only Xj or

only Yj. Then, for 0 ≤ j ≤ f − 1 there exists c′j, d′j ∈N∪ {0} such that

P(X0, Y0; . . . ; X f−1, Yf−1) =

(
f−1

∏
j=0

X
c′j
j Y

d′j
j −

f−1

∏
j=0

X
gj
j Y

hj
j

)
mod 〈θ0, . . . , θ f−1〉

with
f−1
∑

j=0
d′j p

j =
f−1
∑

j=0
hj pj.

Proof. We first make two observations. If c0 ≥ 1, d f−1 ≥ p, we have

f−1

∏
j=0

X
cj
j Y

dj
j =

(
f−2

∏
j=1

X
cj
j Y

dj
j

)
Xc0−1

0 Yd0+1
0 X

c f−1+p
f−1 Y

d f−1−p
f−1 mod θ0. (2.10)

For 1 ≤ k ≤ f − 1, if ck ≥ 1, dk−1 ≥ p, then

f−1

∏
j=0

X
cj
j Y

dj
j =

 f−1

∏
j=0

j 6=k,k−1

X
cj
j Y

dj
j

Xck−1+p
k−1 Ydk−1−p

k−1 Xck−1
k Ydk+1

k mod θk. (2.11)

Note that the first operation involving θ0 decreases ∑
f−1
j=0 dj pj in (2.10) by q− 1. However, the second operation

involving θk does not change ∑
f−1
j=0 dj pj in (2.11).

Now, to prove the result we may assume that d f−1 ≥ h f−1 (replacing P by -P). We also assume that t = 1.
For t > 1 we reiterate the proof below till t = 1.

Case 1: Suppose d f−1 ≥ p.
First assume c0 ≥ 1. Since c0 ≥ 1 and d f−1 ≥ p, by (2.10), we have

f−1

∏
j=0

X
cj
j Y

dj
j =

(
f−2

∏
j=1

X
cj
j Y

dj
j

)
Xc0−1

0 Yd0+1
0 X

c f−1+p
f−1 Y

d f−1−p
f−1 mod θ0.

Note that,

(d0 + 1) +
f−2

∑
j=1

dj pj + (d f−1 − p)p f−1 =
f−1

∑
j=0

dj pj − (q− 1) =
f−1

∑
j=0

hj pj.

Thus the result follows by taking c′0 = c0 − 1, d′0 = d0 + 1; c′f−1 = c f−1 + p, d′f−1 = d f−1 − p and c′k = ck, d′k =

dk for all 1 ≤ k ≤ f − 2.
Next suppose c0 = 0. Since there is no pure term in Yj in P, we choose k to be the least index for which

cj 6= 0 in ∏
f−1
j=0 X

cj
j Y

dj
j . Then we have cj = 0 for all j < k and ck 6= 0. This implies that dj = rj ≥ p for all j < k

and ck ≥ 1. Then, using (2.11), we have

f−1

∏
j=0

X
cj

j Y
dj

j =

 f−1

∏
j=0

j 6=k,k−1

X
cj

j Y
dj

j

Xck−1+p
k−1 Ydk−1−p

k−1 Xck−1
k Ydk+1

k mod θk

=

 f−1

∏
j=0

j 6=k,k−1,k−2

X
cj

j Y
dj

j

Xck−1
k Ydk+1

k Xck−1+p−1
k−1 Ydk−1−p+1

k−1 Xck−2+p
k−2 Ydk−2−p

k−2 mod θk−1

...

=

 f−1

∏
j=k+1

X
cj

j Y
dj

j

Xck−1
k Ydk+1

k

k−1

∏
j=1

X
cj+p−1
j Y

dj−p+1
j

Xc0+p
0 Yd0−p

0 mod θ1.

Clearly c0 + p ≥ 1 and we are reduced to the previous paragraph (c0 ≥ 1).
Case 2: Suppose d f−1 < p.
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Then d f−1 = p− i1 = i0 p− i1, where i0 = 1 and 0 < i1 ≤ p. Since r f−1 ≥ p, we have c f−1 = r f−1 − i0 p +
i1 ≥ i1. Now, if d f−2 ≥ i1 p, taking k = f − 1, by (2.11) we have

f−1

∏
j=0

X
cj
j Y

dj
j =

(
f−3

∏
j=0

X
cj
j Y

dj
j

)
X

c f−2+i1 p
f−2 Y

d f−2−i1 p
f−2 X

c f−1−i1
f−1 Y

d f−1+i1
f−1 mod θi1

f−1.

Note that d f−1 + i1 = p, so we are done by Case 1.
Suppose, d f−2 < i1 p. We write d f−2 = i1 p − i2 with 0 < i2 ≤ i1 p. Since by assumption r f−2 ≥ p2 and

0 < i1 ≤ p, we have r f−2 ≥ p2 ≥ i1 p. This shows that c f−2 = r f−2 − i1 p + i2 ≥ i2. Now, if d f−3 ≥ i2 p, taking
k = f − 2, by (2.11) we have

f−1

∏
j=0

X
cj
j Y

dj
j =

 f−1

∏
j=0

j 6= f−2, f−3

X
cj
j Y

dj
j

X
c f−3+i2 p
f−3 Y

d f−3−i2 p
f−3 X

c f−2−i2
f−2 Y

d f−2+i2
f−2 mod θi2

f−2.

Note that d f−2 + i2 = i1 p. So we are done by the ‘d f−2 ≥ i1 p’ case above. And so on.
Thus it is enough to show that this process stops. Suppose not. Then for 0 ≤ j ≤ f − 1, we have

0 < ij+1 ≤ ij p such that d f−1−j = ij p− ij+1. In particular, d0 < i f−1 p. Now, note that

f−1

∑
j=0

dj pj < i f−1 p +
f−2

∑
j=0

d f−1−j p f−1−j = i f−1 p +
f−2

∑
j=0

(ij p− ij+1)p f−1−j = i0q.

Since i0 = 1, we have
f−1
∑

j=0
dj pj < q. Also, note that

f−1
∑

j=0
dj pj ≥ q− 1 by assumption. Hence,

q− 1 ≤
f−1

∑
j=0

dj pj ≤ q− 1 =⇒
f−1

∑
j=0

dj pj = q− 1 =⇒
f−1

∑
j=0

hj pj = 0 =⇒ hj = 0,

for all 0 ≤ j ≤ f − 1. This is a contradiction because P does not contain any pure term in Xj. Thus modulo
〈θ1, . . . , θ f−1〉, we can always assume that d f−1 ≥ p, hence by Case 1 the result follows. �

Lemma 2.17. Let θk := XkYp
k−1 − YkXp

k−1 for all 1 ≤ k ≤ f − 1. For 0 ≤ j ≤ f − 1, let cj, dj, gj, hj ∈ N ∪ {0} be
such that cj + dj = rj with rj ≥ p f−j. Let

P(X0, Y0; . . . ; X f−1, Yf−1) =
f−1

∏
j=0

X
cj
j Y

dj
j −

f−1

∏
j=0

X
gj
j Y

hj
j ,

where
f−1
∑

j=0
dj pj =

f−1
∑

j=0
hj pj. Then P(X0, Y0; . . . ; X f−1, Yf−1) ∈ 〈θ1, . . . , θ f−1〉.

Proof. We make the following observation. For 1 ≤ k ≤ f − 1, if dk ≥ 1, ck−1 ≥ p, then

f−1

∏
j=0

X
cj
j Y

dj
j =

 f−1

∏
j=0

j 6=k,k−1

X
cj
j Y

dj
j

Xck−1−p
k−1 Ydk−1+p

k−1 Xck+1
k Ydk−1

k mod θk. (2.12)

Note that the operation involving θk in (2.12) does not change the sum ∑
f−1
j=0 dj pj.

Now, we prove the result by induction on f . If f = 1, then P = 0, and hence, the result follows. Assume
that the result is true for f − 1. Without loss of generality we assume that d f−1 ≥ h f−1. If d f−1 = h f−1, we
are done by the induction hypothesis.

Suppose d f−1 > h f−1. We assume that d f−1− h f−1 = 1. If this difference is bigger than 1, then we reiterate
the proof below until it is 1. Clearly d f−1 ≥ 1. If c f−2 ≥ p, taking k = f − 1 in (2.12), we have

f−1

∏
j=0

X
cj
j Y

dj
j =

(
f−3

∏
j=0

X
cj
j Y

dj
j

)
X

c f−2−p
f−2 Y

d f−2+p
f−2 X

c f−1+1
f−1 Y

d f−1−1
f−1 mod θ f−1.

Since the operation involving θ f−1 does not change the sum ∑
f−1
j=0 dj pj and d f−1 − 1 = h f−1, we are done by

the case ‘d f−1 = h f−1’.



14 EKNATH GHATE AND ARINDAM JANA

If c f−2 < p, we write c f−2 = p− i1 = i0 p− i1, where i0 = 1 and 0 < i1 ≤ p. Since by assumption r f−2 ≥ p,
we have d f−2 = r f−2 − i0 p + i1 ≥ i1. Now, if c f−3 ≥ i1 p, taking k = f − 2 in (2.12), we have

f−1

∏
j=0

X
cj
j Y

dj
j =

 f−1

∏
j=0

j 6= f−2, f−3

X
cj
j Y

dj
j

X
c f−3−i1 p
f−3 Y

d f−3+i1 p
f−3 X

c f−2+i1
f−2 Y

d f−2−i1
f−2 mod θi1

f−2.

Since the operation involving θ f−2 does not change the sum ∑
f−1
j=0 dj pj and c f−2 + i1 = p, we are done by the

‘c f−2 ≥ p’ case. And so on.
Thus it is enough to show that this process stops. Suppose not. Then for 0 ≤ j ≤ f − 2, we have

0 < ij+1 ≤ ij p such that c f−2−j = ij p− ij+1. In particular, c0 < i f−2 p. By hypothesis, we have

f−1

∑
j=0

dj pj =
f−1

∑
j=0

hj pj =⇒
f−2

∑
j=0

dj pj + (d f−1 − h f−1)p f−1 =
f−2

∑
j=0

hj pj,

which by substituting d f−1 − h f−1 = 1, dj = rj − cj and hj ≤ rj for all 0 ≤ j ≤ f − 2 gives

f−2

∑
j=0

(rj − cj)pj + p f−1 ≤
f−2

∑
j=0

rj pj =⇒ −
f−2

∑
j=0

cj pj + p f−1 ≤ 0,

which further by substituting cj = i f−2−j p− i f−1−j implies that

−
f−2

∑
j=0

(
i f−2−j p− i f−1−j

)
pj + p f−1 ≤ 0 =⇒ −i0 p f−1 + i f−1 + p f−1 ≤ 0.

Since i0 = 1, we conclude i f−1 ≤ 0. But we had 0 < i f−1 ≤ i f−2 p. Thus we arrive at a contradiction. So
modulo 〈θ1, . . . , θ f−1〉 we are always reduced to the ‘d f−1 = h f−1’ case, and so we are done. �

We finally prove Theorem 1.3 from the introduction.

Theorem 2.18. Let r = r0 + r1 p + · · ·+ r f−1 p f−1 with rj ≥ p f−j for all 0 ≤ j ≤ f − 1. Let m = m0 + m1 p + · · ·+
m f−1 p f−1 be the p-adic expansion of m with 0 ≤ mj ≤ p− 1 and p - ( rj

mj
) for all 0 ≤ j ≤ f − 1. Then we have⊗ f−1

j=0 VFrj
rj

〈θm0+1
0 , . . . , θ

m f−1+1
f−1 〉

' ind
G(Fq)

B(Fq)

f−1⊗
j=0

(
VFrj

mj
⊗ d(rj−mj)pj

)
.

Proof. We show that there is a G(Fq)-equivariant isomorphism

ψ :

⊗ f−1
j=0 VFrj

rj

〈θm0+1
0 , . . . , θ

m f−1+1
f−1 〉

→ ind
G(Fq)

B(Fq)

f−1⊗
j=0

(
VFrj

mj
⊗ d(rj−mj)pj

)
defined by ψ(

⊗ f−1
j=0 Pj(Xj, Yj)) =

⊗ f−1
j=0 ψ

j
Pj(Xj ,Yj)

, where Pj(Xj, Yj) ∈ VFrj
rj

for all 0 ≤ j ≤ f − 1, and

f−1⊗
j=0

ψ
j
Pj(Xj ,Yj)

: G(Fq)→
f−1⊗
j=0

(
VFrj

mj
⊗ d(rj−mj)pj

)
is given by (

a b
c d

)
7→

f−1⊗
j=0

(
(mj

nj
)

[rj]mj−nj

∇mj−nj
j (Pj)

∣∣∣∣
(cpj

,dpj
)

)
0≤nj≤mj

.

We first show that
⊗ f−1

j=0 ψ
j
Pj(Xj ,Yj)

is B(Fq)-linear. This follows from the B(Fq)-linearity of each ψ
j
Pj(Xj ,Yj)

.

Let b ∈ B(Fq) and g ∈ G(Fq). Then

f−1⊗
j=0

ψ
j
Pj(Xj ,Yj)

(b · g) =
f−1⊗
j=0

ψ
j
Pj(Xj ,Yj)

(b · g) =
f−1⊗
j=0

b · ψj
Pj(Xj ,Yj)

(g) = b ·

 f−1⊗
j=0

ψ
j
Pj(Xj ,Yj)

(g)

 .

The second equality holds by Lemma 2.13 (i).
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Similarly, for the G(Fq)-linearity of ψ, we note that ψ(g ·⊗ f−1
j=0 Pj(Xj, Yj)) = ψ(

⊗ f−1
j=0 g · Pj(Xj, Yj)) =⊗ f−1

j=0 ψ
j
g·Pj(Xj ,Yj)

=
⊗ f−1

j=0 ψj(g · Pj(Xj, Yj)), which by Lemma 2.13 (ii), equals
⊗ f−1

j=0 g · ψj(Pj(Xj, Yj)) = g ·⊗ f−1
j=0 ψj(Pj(Xj, Yj)) = g ·⊗ f−1

j=0 ψ
j
Pj(Xj ,Yj)

= g · ψ(⊗ f−1
j=0 Pj(Xj, Yj)).

Now there is a natural surjection

π :
f−1⊗
j=0

ind
G(Fq)

B(Fq)

(
VFrj

mj
⊗ d(rj−mj)pj

)
� ind

G(Fq)

B(Fq)

 f−1⊗
j=0

VFrj

mj
⊗ d(rj−mj)pj


given by π(⊗ f−1

j=0 Fj) = F with F(g) = ⊗ f−1
j=0 Fj(g) for all g ∈ G(Fq). By definition of ψ, we have that

ψ(⊗ f−1
j=0 Pj(Xj, Yj))(g) = ⊗ f−1

j=0 ψ
j
Pj(Xj ,Yj)

(g) = π(⊗ f−1
j=0 ψ

j
Pj(Xj ,Yj)

)(g) for all g ∈ G(Fq). Hence we have that

ψ(⊗ f−1
j=0 Pj(Xj, Yj)) = π(⊗ f−1

j=0 ψ
j
Pj(Xj ,Yj)

). But the last map is equal to π((⊗ f−1
j=0 ψj)(⊗ f−1

j=0 Pj(Xj, Yj))) = (π ◦

⊗ f−1
j=0 ψj)(⊗ f−1

j=0 Pj(Xj, Yj)). Thus

ψ = π ◦ (⊗ f−1
j=0 ψj).

By Lemma 2.13 (iii), each ψj is an isomorphism, hence so is ⊗ f−1
j=0 ψj. Since π is surjective, so is ψ.

Note that π is not necessarily injective (take f > 1 and compare dimensions on both sides of π), so ψ is

not necessarily injective. It remains to compute ker ψ. We show that ker ψm = 〈θm0+1
0 , . . . , θ

m f−1+1
f−1 〉, where we

write ψm instead of ψ for emphasis. By Lemma 2.14, for 0 ≤ aj ≤ mj,(
f−1

∏
j=0
∇aj

j

)
(θms+1

s )

∣∣∣∣
(c,d;...;cp f−1

,dp f−1
)

= 0,

for all 0 ≤ s ≤ f − 1. By the definition of ψm, we see that 〈θm0+1
0 , . . . , θmt+1

t , . . . , θ
m f−1+1
f−1 〉 ⊂ ker ψm. We now

prove the other containment

ker ψm ⊂ 〈θm0+1
0 , . . . , θmt+1

t , . . . , θ
m f−1+1
f−1 〉. (2.13)

This is the trickiest part of the proof of the theorem. We need to make use of the three lemmas proved just
before the theorem.

The proof is by induction on ∑p(m), where ∑p(m) = m0 + · · ·+ m f−1 denotes the sum of the p-adic digits
in the base p expansion of m. If ∑p(m) = 0, then we have mj = 0 for all 0 ≤ j ≤ f − 1. Then (2.13) follows
immediately from Lemmas 2.15, 2.16 and 2.17.

Now, suppose ∑p(m) ≥ 1. Assume that (2.13) holds for m′ with ∑p(m′) ≤ ∑p(m)− 1. Pick t such that
mt ≥ 1. Let m′ = m0 + · · ·+ (mt − 1)pt + · · ·+ m f−1 p f−1. Then ∑p(m′) = ∑p(m)− 1 and so

ker ψm′ ⊂ 〈θ
m0+1
0 , . . . , θmt

t , . . . , θ
m f−1+1
f−1 〉, (2.14)

by the induction hypothesis. Now, let P ∈ ker ψm. So
(

∏
f−1
j=0 ∇

aj
j

)
(P)
∣∣
(c,d;...;cp f−1

,dp f−1
)
= 0 for all 0 ≤ aj ≤ mj.

In particular,
(

∏
f−1
j=0 ∇

aj
j

)
(P)
∣∣
(c,d;...;cp f−1

,dp f−1
)
= 0 for all 0 ≤ aj ≤ mj with j 6= t and for all 0 ≤ at ≤ mt − 1.

This shows that P ∈ ker ψm′ . By (2.14), we may write

P = Q0θm0+1
0 + · · ·+ Qtθ

mt
t + · · ·+ Q f−1θ

m f−1+1
f−1 ,

with Qj ∈ Fq[X0, Y0; . . . ; X f−1, Yf−1] for 0 ≤ j ≤ f − 1. Clearly,

P ∈ 〈θm0+1
0 , . . . , θmt+1

t , . . . , θ
m f−1+1
f−1 〉 ⇐⇒ Qtθ

mt
t ∈ 〈θ

m0+1
0 , . . . , θmt+1

t , . . . , θ
m f−1+1
f−1 〉.
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So without loss of generality, let P = Qtθ
mt
t . Since P ∈ ker ψm, for 0 ≤ aj ≤ mj and j 6= t, we have f−1

∏
j=0,j 6=t

∇aj

j

∇mt
t (Qtθ

mt
t )

∣∣∣∣
(c,d;...;cp f−1 ,dp f−1

)

= 0

=⇒

 f−1

∏
j=0,j 6=t

∇aj

j

( mt

∑
l=0

(
mt
l

)
∇mt−l

t (Qt)∇l
t(θ

mt
t )

) ∣∣∣∣
(c,d;...;cp f−1 ,dp f−1

)

= 0

=⇒
mt

∑
l=0

(
mt
l

)
∇at−1

t−1

 f−1

∏
j=0,j 6=t,t−1

∇aj

j

∇mt−l
t (Qt)∇l

t(θ
mt
t )

 ∣∣∣∣
(c,d;...;cp f−1 ,dp f−1

)

= 0

=⇒
mt

∑
l=0

(
mt
l

)at−1

∑
k=0

(
at−1

k

)
∇at−1−k

t−1

 f−1

∏
j=0,j 6=t,t−1

∇aj

j

∇mt−l
t (Qt)

∇k
t−1

(
∇l

t
(
θmt

t
)) ∣∣∣∣

(c,d;...;cp f−1 ,dp f−1
)

= 0

=⇒

 f−1

∏
j=0,j 6=t

∇aj

j

∇0
t (Qt)

∣∣∣∣
(c,d;...;cp f−1 ,dp f−1

)

= 0

=⇒ Qt ∈ 〈θm0+1
0 , . . . , θ1

t , . . . , θ
m f−1+1
f−1 〉 =⇒ Qtθ

mt
t ∈ 〈θ

m0+1
0 , . . . , θmt+1

t , . . . , θ
m f−1+1
f−1 〉.

The fourth implication follows from Lemma 2.14: if (k, l) = (0, mt), then

∇k
t−1∇l

t(θ
mt
t )

∣∣∣∣
(c,d;...;cp f−1

,dp f−1
)

= mt!(ad− bc)mt pt 6= 0,

and is 0 for all other (k, l). The penultimate implication holds by the induction hypothesis as the sum of the

p-adic digits is Σp(m)−mt ≤ Σp(m)− 1. So P ∈ 〈θm0+1
0 , . . . , θmt+1

t , . . . , θ
m f−1+1
f−1 〉, proving (2.13). �

3. Dual numbers

This section is an aside. The ring of generalized dual numbers is defined by Fp[ε] =
Fp [X]

〈Xm+1〉 . We make
some remarks on two questions that arise in the context of the lack of surjectivity when m > 0 of the map
(1.2) which involves dual numbers (introduced in [GV22, Lemma 4.1]). Firstly, can one possibly replace the
inducing subgroup B(Fp[ε]) in (1.2) by another subgroup B′ of index p + 1 in G(Fp[ε]) and dr by a surjective
character χr : B′ → Fp[ε]× such that there is an isomorphism

Vr

V(m+1)
r

?' ind
G(Fp [ε])

B′ χr

which might then be used to study periodicity results? The answer is no, and explains why in this paper
we turned towards proving the isomorphism in Theorem 1.1. Secondly, can one at least describe the image
of (1.2) in a more conceptual way than is done in [GV22, Lemma 4.1]? The answer in some cases is yes (see
Proposition 3.1, whose proof we omit).

It would be interesting to see how the material in this section connected to announced work of Schein and
his coauthors on the modular representation theory of GL2(R) where R is a finite quotient ring of OF for F a
p-adic field, and, e.g., to work of Avni, Onn, Prasad, Vaserstein [AOPV].

3.1. Isomorphisms using dual numbers. There are two notions of projective space over the generalized dual
numbers. The first is standard projective space

P1(Fp[ε]) = {[x : y]|(x, y) = 1}.
It has cardinality p(p + 1) when m = 1 and is the cylinder obtained by glueing the line at ∞, namely [1 : dε],
to the plane [c : 1]. The second is P̃1(Fp[ε]) = {[x : y]|(x, y) 6= 0}. It has cardinality (p + 1)2 when m = 1.
The group G(Fp[ε]) acts on the left on both these spaces via

(
a b
c d

)
· [x : y] = [ax + by : cx + dy].

Let B′ be the ε-Iwahori subgroup of G(Fp[ε]) obtained as the pre-image of the usual Borel B(Fp) under the
reduction modulo ε map G(Fp[ε]) → G(Fp). Then B′ is the stabilizer of [ε : 0] under the action of G(Fp[ε])

on P̃1(Fp[ε]) (whereas B(Fp[ε]) is the stabilizer of [1 : 0] in P1(Fp[ε])). Clearly B′ has index p + 1.
One may ask if there is a surjective character χ : B′ → Fp[ε]× which induces a G(Fp)-isomorphism

Vr

V(m+1)
r

' ind
G(Fp [ε])

B′ χr
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from which the periodicity of the left side would follow if one knew χr only depended on r modulo p(p− 1).
The answer is no. Indeed, one quickly sees that B′ has abelianization Fp[ε]××F×p and so the only surjective

characters B′ → Fp[ε]× it supports are powers of the determinant character. These characters are not genuine
characters of B′, since they are obtained by restricting from G(Fp[ε]), so the induction is not so well-behaved.

Moreover, one checks that every other subgroup B′′ of index p + 1 in G(Fp[ε]) is conjugate to B′ so this
line of reasoning does not bear fruit.

3.2. Image of (1.2). Thus, the best one can hope to do is to characterize the image of the (non-surjective) map
(if m > 0)

Vr

V(m+1)
r

↪→ ind
G(Fp [ε])

B(Fp [ε])
dr

mentioned in the introduction (cf. [GV22, Lemma 4.1]).
To this end, we consider the right action of G(Fp[ε]) on standard projective space P1(Fp[ε]) defined via

[x : y] ·
(

a b
c d

)
= [ax + cy : bx + dy]. This action is transitive and the stabilizer of [0 : 1] under this action is

B(Fp[ε]). We have the following decomposition

G(Fp[ε]) = B(Fp[ε])

(
1 0
c 1

)⊔
B(Fp[ε])

(
0 1
1 dε

)
,

where c, d ∈ Fp[ε]. There is a bijection between B(Fp[ε])\G(Fp[ε]) and P1(Fp[ε]) by sending B(Fp[ε])g to
[0 : 1]g for g ∈ G(Fp[ε]).

We say that f : P1(Fp[ε]) → Fp[ε] is smooth if for all z0 + z′ε ∈ Fp[ε] with z0 ∈ Fp and z′ = z1 + z2ε +

· · ·+ zm−1εm−1 with z1, . . . , zm−1 ∈ Fp and all 0 ≤ j ≤ m, there exist constants f (j)([z0 : 1]) and f (j)([1 : 0]) in
Fp such that

f
(
[z0 + z′ε : 1]

)
=

m

∑
j=0

(z′ε)j

j!
f (j) ([z0 : 1]) and f

(
[1 : z′ε]

)
=

m

∑
j=0

(z′ε)j

j!
f (j) ([1 : 0]) .

Proposition 3.1. Let ψ : Vr → ind
G(Fp [ε])

B(Fp [ε])
dr be given by ψ(P(X, Y)) = ψP(X,Y) for all P(X, Y) ∈ Vr, where

ψP(X,Y) : G(Fp[ε])→ Fp[ε] is defined by ψP
((

a b
c d

))
= P(c, d) for all

(
a b
c d

)
∈ G(Fp[ε]). If r ≡ 0 modulo p(p− 1),

then
Im ψ =

{
f : P1(Fp[ε])→ Fp[ε] | f (α) ∈ Fp if α ∈ P1(Fp) and f is smooth

}
.

4. Cuspidal case

In this section, we prove Theorems 1.5 and 1.6 which, as explained in the introduction, are the cuspidal
analogs of Theorems 1.1 and 1.3.

4.1. The case of GL2(Fp). Let α ∈ Fp2 be such that α2 ∈ Fp and α /∈ Fp. Fix an identification i : F×p2 '
T(Fp) ⊂ GL2(Fp) given by u + vα 7→

(
u vα2
v u

)
for u, v ∈ Fp not both zero.

We define some functions in induced spaces. For r ≥ 0 and 0 ≤ i ≤ r + p2 + 1, let fi : G(Fp)→ Fp2 be

fi

((
a b
c d

))
= (a + cα)(r+p2+1)−i(b + dα)i,

for all g =
(

a b
c d

)
∈ G(Fp). Then fi is T(Fp)-linear and hence fi ∈ ind

G(Fp)

T(Fp)
ωr+2

2 . Indeed, for t =
(

u vα2
v u

)
∈

T(Fp), we have

fi (t · g) = fi

((
ua + vα2c ub + vα2d
va + uc vb + ud

))
= (u + vα)r+p2+1(a + cα)(r+p2+1)−i(b + dα)i

which equals

(u + vα)(r+2)+p2−1 · fi(g) = (u + vα)r+2 · fi(g) = ωr+2
2 (t) · fi(g) = t · fi(g).

One can check that the functions in B =
{

fi | 0 ≤ i ≤ p2 − p− 1
}

are linearly independent. Also, T(Fp)

has index p2− p in G(Fp). So B forms a basis of ind
G(Fp)

T(Fp)
ωr+2

2 . We fix this basis in the computations to follow.

For p2 − 1 ≤ i ≤ r + p2 + 1, we observe that

fi = fp2−1+j = f j (4.1)
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for some 0 ≤ j ≤ r + 2. In this case, we say that fi is a flip. We shall soon assume that r ≤ p− 3 ≤ p2 − p− 3
in which case fi lies in B.

On the other hand, for p2 − p ≤ i ≤ p2 − 2, we have fi = fp2−p+j for some 0 ≤ j ≤ p− 2. Then we say that
fi is a flop. It is the last term in the following relation:

f j + f j+(p−1) + f j+2(p−1) + · · ·+ f j+(p−1)(p−1) + f j+p2−p = 0 (4.2)

where all but the last term lie in B. Indeed, we have

Xp2−1 − 1 =
(

Xp−1 − 1
) (

Xp(p−1) + X(p−1)(p−1) + · · ·+ Xp−1 + 1
)

.

Then for A ∈ F×p2 \F×p , we have Ap(p−1) + A(p−1)(p−1) + · · ·+ Ap−1 + 1 = 0. So for
(

a b
c d

)
∈ G(Fp), we have(

a + cα

b + dα

)p(p−1)
+

(
a + cα

b + dα

)(p−1)(p−1)
+ · · ·+

(
a + cα

b + dα

)p−1
+ 1 = 0,

which, after multiplying by (a + cα)(r+p+1)−j(b + dα)j+p2−p on both sides, gives

(a + cα)(r+p2+1)−j(b + dα)j + (a + cα)(r+p2−p+2)−j(b + dα)j+(p−1) + · · ·+ (a + cα)(r+p+1)−j(b + dα)j+p2−p = 0,

which shows that (4.2) holds for 0 ≤ j ≤ p− 2.
Thus any flip or flop can be changed to a linear combination of vectors in B.
For any polynomial P(X, Y) and A, B, C, D ∈ Fp2 , we set

P(X, Y)
∣∣∣(C,D)

(A,B)
:= P(C, D)− P(A, B).

The following theorem is Theorem 1.5 from the introduction (replacing r by r + 2).

Theorem 4.1. Let 0 ≤ r ≤ p− 3. Then there is an explicit isomorphism defined over Fp2 :

Vr+p+1

D(Vr+2)
⊗Vp−1 ' ind

G(Fp)

T(Fp)
ωr+2

2 ,

where D := Xp ∂
∂X + Yp ∂

∂Y .

Proof. Let P ∈ Vr+p+1 and Q ∈ Vp−1. Define

ψ :
Vr+p+1

D(Vr+2)
⊗Vp−1 → ind

G(Fp)

T(Fp)
ωr+2

2

by ψ(P⊗Q) = ψP⊗Q, where ψP⊗Q : G(Fp)→ Fp2 is defined by

ψP⊗Q

((
a b
c d

))
= ∇r

α(P)
∣∣∣((a+cα)p , (b+dα)p)

(a+cα, b+dα)
·Q
∣∣∣((a+cα)p , (b+dα)p)

(0,0)

for all
(

a b
c d

)
∈ G(Fp), and where

∇α = (a + cα)
∂

∂X
+ (b + dα)

∂

∂Y
.

For convenience, we set

Aα = a + cα and Bα = b + dα.

T(Fp)-linearity: We show that ψP⊗Q is T(Fp)-linear. Since P(X, Y) is a homogeneous polynomial of degree
r + p + 1 and Q(S, T) is a homogeneous polynomial of degree p− 1, we have ∇r

α(P(X, Y)) ·Q(S, T) is a linear
combination of terms of the form

Ar−j
α Bj

α · Xp+1−kYk · Sp−1−lTl

for 0 ≤ k ≤ p + 1, 0 ≤ l ≤ p− 1, and 0 ≤ j ≤ r. Now,

Ar−j
α Bj

α · Xp+1−kYk
∣∣∣(Ap

α ,Bp
α )

(Aα ,Bα)
· Sp−1−lTl

∣∣∣(Ap
α ,Bp

α )

(0,0)
= Ar−j

α Bj
α

(
Ap2−kp−lp+1

α Bkp+lp
α − Ap2−lp−k+1

α Bk+lp
α

)
,

which shows that ψP⊗Q is a linear combination of the functions fi defined above. Since these functions are
T(Fp)-linear, ψP⊗Q is also T(Fp)-linear.
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G(Fp)-linearity: We show that ψ is G(Fp)-linear. Let g = ( u v
w z ) ∈ G(Fp). Then we have

g · (P⊗Q) = P(U, V)⊗Q(U′, V′) = P1 ⊗Q1(say),

where U = uX + wY, V = vX + zY and U′ = uS + wT, V′ = vS + zT. Now,

ψ(g · (P⊗Q))

((
a b
c d

))
= ψ(P1 ⊗Q1)

((
a b
c d

))
=

(
(a + cα)

∂

∂X
+ (b + dα)

∂

∂Y

)r
(P1)

∣∣∣((a+cα)p ,(b+dα)p)

((a+cα),(b+dα))
·

Q
(
U′
(
(a + cα)p , (b + dα)p) , V′

(
(a + cα)p , (b + dα)p)) ,

which, by Lemma 2.10 applied twice

=

(
(uAα + wBα)

∂

∂X
+ (vAα + zBα)

∂

∂Y

)r
(P)
∣∣∣∣((uAα+wBα)

p ,(vAα+zBα)
p)

(uAα+wBα ,vAα+zBα)

·

Q
(
(uAα + wBα)

p , (vAα + zBα)
p)

= ψP⊗Q

((
au + bw av + bz
cu + dw cv + dz

))
=

(
u v
w z

)
· ψP⊗Q

((
a b
c d

))
= g · ψP⊗Q

((
a b
c d

))
.

Thus we have ψ(g · (P⊗Q)) = g · ψP⊗Q. Hence ψ is G(Fp)-linear.

Kernel of ψ: Next we show that ker ψ = D(Vr+2) ⊗ Vp−1. We first show that D(Vr+2) ⊗ Vp−1 ⊂ ker ψ.

Let P =
r+2
∑

i=0
aiXr+2−iYi ∈ Vr+2 and Q ∈ Vp−1. Then D(P) =

r+2
∑

i=0
ai
(
(r + 2− i)Xr+p+1−iYi + iXr+2−iYi+p−1).

Claim: for all
(

a b
c d

)
∈ G(Fp), we have ∇r

α(D(P))
∣∣∣((a+cα)p ,(b+dα)p)

(a+cα,b+dα)
= 0.

Indeed,

∇r
α(D(P)) =

(
Aα

∂

∂X
+ Bα

∂

∂Y

)r
(

r+2

∑
i=0

ai

(
(r + 2− i)Xr+p+1−iYi + iXr+2−iYi+p−1

))

=
r+2

∑
i=0

r

∑
k=0

(
r
k

)
Ar−k

α Bk
α

∂r

∂Xr−k∂Yk ai

(
(r + 2− i)Xr+p+1−iYi + iXr+2−iYi+p−1

)
=

r+2

∑
i=0

r

∑
k=0

(
r
k

)
ai(r + 2− i)Ar−k

α Bk
α[r + p + 1− i]r−k[i]kXp+1−(i−k)Yi−k

+
r+2

∑
i=0

r

∑
k=0

(
r
k

)
aiiAr−k

α Bk
α[r + 2− i]r−k[i + p− 1]kXk+2−iYi+p−1−k,

which, by observing [i]k equals 0 if i < k and equals i! if i = k,

= a0(r + 2)Ar
α[r + p + 1]rXp+1 +

r+1

∑
i=1

r

∑
k=0

(
r
k

)
ai(r + 2− i)Ar−k

α Bk
α[r + p + 1− i]r−k[i]kXp+1−(i−k)Yi−k

+ar+2(r + 2)Br
α[r + p + 1]rYp+1 +

r+1

∑
i=1

r

∑
k=0

(
r
k

)
aiiAr−k

α Bk
α[r + 2− i]r−k[i + p− 1]kXk+2−iYi+p−1−k,

which again using [r + p + 1− i]r−k = 0 mod p for k < i − 1, [i]k = 0 for k > i and [r + 2− i]r−k = 0 for
k < i− 2 and [i + p− 1]k = 0 mod p for k > i− 1,

= a0(r + 2)Ar
α[r + p + 1]rXp+1 +

(
r+1

∑
i=1

(
r
i

)
ai(r + 2− i)Ar−i

α Bi
α[r + p + 1− i]r−i[i]i

)
Xp+1

+

(
r+1

∑
i=1

(
r

i− 1

)
ai(r + 2− i)Ar−i+1

α Bi−1
α [r + p + 1− i]r−i+1[i]i−1

)
XpY

+ar+2(r + 2)Br
α[r + p + 1]rYp+1 +

(
r+1

∑
i=1

(
r

i− 2

)
aiiAr−i+2

α Bi−2
α [r + 2− i]r+2−i[i + p− 1]i−2

)
Yp+1

+

(
r+1

∑
i=1

(
r

i− 1

)
aiiAr−i+1

α Bi−1
α [r + 2− i]r−i+1[i + p− 1]i−1

)
XYp.
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Since [r + p + 1− i]r−i+1 = (r− i + 1)! modulo p and [i + p− 1]i−1 = (i− 1)! modulo p, the above expression

= a0(r + 2)Ar
α[r + p + 1]rXp+1 +

(
r+1

∑
i=1

(
r
i

)
ai(r + 2− i)Ar−i

α Bi
α[r + p + 1− i]r−i[i]i

)
Xp+1

+ar+2(r + 2)Br
α[r + p + 1]rYp+1 +

(
r+1

∑
i=1

(
r

i− 2

)
aiiAr−i+2

α Bi−2
α [r + 2− i]r+2−i[i + p− 1]i−2

)
Yp+1

+

(
r+1

∑
i=1

(
r

i− 1

)
ai(r + 2− i)!i!Ar−i+1

α Bi−1
α

)
(XpY + XYp) .

Note that since Aα, Bα ∈ Fp2 , we have

Xp+1
∣∣∣(Ap

α ,Bp
α )

(Aα ,Bα)
= Ap(p+1)

α − Ap+1
α = 0 and Yp+1

∣∣∣(Ap
α ,Bp

α )

(Aα ,Bα)
= Bp(p+1)

α − Bp+1
α = 0.

Also,

XpY + XYp
∣∣∣(Ap

α ,Bp
α)

(Aα ,Bα)
= AαBp

α + Ap
α Bα − Ap

α Bα − AαBp
α = 0.

Thus we have,

∇r
α(D(P))

∣∣∣((a+cα)p ,(b+dα)p)

(a+cα,b+dα)
= ∇r

α(D(P))
∣∣∣(Ap

α ,Bp
α )

(Aα ,Bα)
= 0,

proving the claim, and so P⊗Q ∈ ker ψ. Thus D(Vr+2)⊗Vp−1 ⊂ ker ψ.
Next, we show that ker ψ ⊂ D(Vr+2)⊗Vp−1. We prove this inclusion by changing r to r− 2, i.e., we show

ker ψ ⊂ D(Vr)⊗Vp−1,

for 2 ≤ r ≤ p− 1, where

ψ : Vr+p−1 ⊗Vp−1 → ind
G(Fp)

T(Fp)
ωr

2

such that ψ(P⊗Q) = ψP⊗Q ,where ψP⊗Q : G(Fp)→ Fp2 is defined by

ψP⊗Q

((
a b
c d

))
= ∇r−2

α (P)
∣∣∣((a+cα)p ,(b+dα)p)

(a+cα,b+dα)
·Q
(
(a + cα)p , ((b + dα)p)

for all
(

a b
c d

)
∈ G(Fp).

Let

P⊗Q =
r+p−1

∑
i=0

p−1

∑
j=0

ai,jXr+p−1−iYi ⊗ Sp−1−jT j ∈ ker ψ, (4.3)

where Vp−1 is modeled on polynomials in S,T. Then we have

p−1

∑
j=0

(
r+p−1

∑
i=0

ai,j

((
Aα

∂

∂X
+ Bα

∂

∂Y

)r−2 (
Xr+p−1−iYi

) ∣∣∣(Ap
α ,Bp

α )

(Aα ,Bα)

))
Ap2−p−jp

α Bjp
α = 0. (4.4)

Now,
r+p−1

∑
i=0

ai,j

((
Aα

∂

∂X
+ Bα

∂

∂Y

)r−2 (
Xr+p−1−iYi

) ∣∣∣(Ap
α ,Bp

α )

(Aα ,Bα)

)

=
r+p−1

∑
i=0

ai,j

(
r−2

∑
k=0

(
r− 2

k

)
Ar−2−k

α Bk
α

∂r−2

∂Xr−2−k∂Yk

(
Xr+p−1−iYi

) ∣∣∣(Ap
α ,Bp

α )

(Aα ,Bα)

)

=
r+p−1

∑
i=0

ai,j

(
r−2

∑
k=0

(
r− 2

k

)
Ar−2−k

α Bk
α[r + p− 1− i]r−2−k[i]k

(
Xp+1−i+kYi−k

) ∣∣∣(Ap
α ,Bp

α )

(Aα ,Bα)

)

=
r+p−1

∑
i=0

ai,j

(
r−2

∑
k=0

(
r− 2

k

)
[r + p− 1− i]r−2−k[i]k

(
Ar−ip+kp+p−k−1

α Bip−kp+k
α − Ar+p−1−i

α Bi
α

))

=
r+p−2

∑
i=1

ai,j

(
r−2

∑
k=0

(
r− 2

k

)
[r + p− 1− i]r−2−k[i]k

(
Ar−ip+kp+p−k−1

α Bip−kp+k
α − Ar+p−1−i

α Bi
α

))
.
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In the last equality, we dropped the terms for i = 0, r + p− 1 as these are zero. Indeed, for i = 0, since [i]k = 0
for k 6= 0, only the k = 0 term survives in the sum over k for which

Ar−ip+kp+p−k−1
α Bip−kp+k

α − Ar+p−1−i
α Bi

α = Ar+p−1
α − Ar+p−1

α = 0.

Similarly, one can check that the terms for i = r + p− 1 are also zero. The last expression

=
r+p−2

∑
i=1

ai,j

((
r−2

∑
k=0

(
r− 2

k

)
[r + p− 1− i]r−2−k[i]k Ar−ip+kp+p−k−1

α Bip−kp+k
α

)
− (r− 1)!Ar+p−1−i

α Bi
α

)
, (4.5)

since Ar+p−1−i
α Bi

α is independent of k and, by (2.1),

r−2

∑
k=0

(
r− 2

k

)
[r + p− 1− i]r−2−k[i]k = [r + p− 1]r−2 = (r− 1)! mod p.

For 1 ≤ i ≤ r− 1, we now compute the coefficients of ai,j and ai+p−1,j in (4.5).

Coefficient of ai,j: Note that for 1 ≤ i ≤ r− 1 and 0 ≤ k ≤ r− 2, we have [r + p− 1− i]r−2−k = 0 for k < i− 1,
and [i]k = 0 for i < k. Thus the coefficient of ai,j in (4.5)

=

(
r− 2
i− 1

)
[r + p− 1− i]r−i−1[i]i−1 Ar−i

α Bi+p−1
α +

(
r− 2

i

)
[r + p− 1− i]r−i−2[i]i A

r+p−1−i
α Bi

α − (r− 1)!Ar+p−1−i
α Bi

α

=

(
r− 2
i− 1

)
(r− i− 1)!i!Ar−i

α Bi+p−1
α +

((
r− 2

i

)
(r− i− 1)!i!− (r− 1)!

)
Ar+p−1−i

α Bi
α

= i
(
(r− 2)!Ar−i

α Bi+p−1
α − (r− 2)!Ar−i+p−1

α Bi
α

)
.

Coefficient of ai+p−1,j: Similarly, in (4.5), the coefficient of ai+p−1,j is(
r−2

∑
k=0

(
r− 2

k

)
[r− i]r−2−k[i + p− 1]k Ar−ip−p2+p+kp+p−k−1

α Bip+p2−p−kp+k
α

)
− (r− 1)!Ar−i

α Bi+p−1
α

=

(
r− 2
i− 2

)
[r− i]r−i[i + p− 1]i−2 Ar−i

α Bi+p−1
α +

(
r− 2
i− 1

)
[r− i]r−i−1[i + p− 1]i−1 Ar−i+p−1

α Bi
α − (r− 1)!Ar−i

α Bi+p−1
α

=

((
r− 2
i− 2

)
(r− i)!(i− 1)!− (r− 1)!

)
Ar−i

α Bi+p−1
α +

(
r− 2
i− 1

)
(r− i)!(i− 1)!Ar−i+p−1

α Bi
α

= −(r− i)
(
(r− 2)!Ar−i

α Bi+p−1
α − (r− 2)!Ar−i+p−1

α Bi
α

)
.

The first equality holds because [r− i]r−2−k = 0 for k < i− 2 and [i + p− 1]k = 0 for k > i− 1. The second
equality follows because [i + p− 1]i−2 = (i− 1)! = [i + p− 1]i−1.

For 1 ≤ i ≤ r− 1, substituting the coefficients of ai,j and ai+p−1,j in (4.5), we have

r+p−1

∑
i=0

ai,j

((
Aα

∂

∂X
+ Bα

∂

∂Y

)r−2 (
Xr+p−1−iYi

) ∣∣∣(Ap
α ,Bp

α )

(Aα ,Bα)

)

=
r−1

∑
i=1

(
iai,j − (r− i)ai+p−1,j

)
(r− 2)!

(
Ar−i

α Bi+p−1
α − Ar−i+p−1

α Bi
α

)
+

p−1

∑
i=r

ai,j

((
r−2

∑
k=0

(
r− 2

k

)
[r + p− 1− i]r−2−k[i]k Ar−ip+kp+p−k−1

α Bip−kp+k
α

)
− (r− 1)!Ar+p−1−i

α Bi
α

)

=
r−1

∑
i=1

(
iai,j − (r− i)ai+p−1,j

)
(r− 2)!

(
Ar−i

α Bi+p−1
α − Ar−i+p−1

α Bi
α

)
+

p−1

∑
i=r

ai,j

((
r−2

∑
k=0

(r− 2)!
(

r + p− 1− i
r− 2− k

)(
i
k

)
Ar−ip+kp+p−k−1

α Bip−kp+k
α

)
− (r− 1)!Ar+p−1−i

α Bi
α

)
.
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Thus (4.4) shows that the following linear combination of functions in the induced space vanishes:

p−1

∑
j=0

(
r−1

∑
i=1

(
iai,j − (r− i)ai+p−1,j

) (
Ar−i

α Bi+p−1
α − Ar−i+p−1

α Bi
α

))
Ap2−jp−p

α Bjp
α +

p−1

∑
j=0

(
p−1

∑
i=r

ai,j

((
r−2

∑
k=0

(
r + p− 1− i

r− 2− k

)(
i
k

)
Ar−ip+kp+p−k−1

α Bip−kp+k
α

)
− (r− 1)Ar+p−1−i

α Bi
α

))
· Ap2−jp−p

α Bjp
α = 0,

(4.6)

after dividing by (r− 2)!.
For simplicity, we denote

Xi,j := iai,j − (r− i)ai+p−1,j,

for 1 ≤ i ≤ r− 1 and 0 ≤ j ≤ p− 1, and, we denote

Xi,j := ai,j and Zi,k :=
(

r + p− 1− i
r− 2− k

)(
i
k

)
,

for r ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1, 0 ≤ k ≤ r− 2. The Xi,j are variables (and the Zi,k constants).

Claim: For 1 ≤ i ≤ p− 1 and 0 ≤ j ≤ p− 1, we have Xi,j = 0.
We prove the claim. Write (4.6) as

p−1

∑
j=0

(
r−1

∑
i=1

Xi,j

(
Ar+p2−i−jp−p

α Bi+jp+p−1
α − Ar+p2−i−jp−1

α Bi+jp
α

))
+

p−1

∑
j=0

(
p−1

∑
i=r

Xi,j

((
r−2

∑
k=0

Zi,k Ar+p2−ip−jp+kp−k−1
α Bip+jp−kp+k

α

)
− (r− 1)Ar+p2−1−i−jp

α Bi+jp
α

))
= 0.

Collecting terms in the same congruence class n of i + j modulo (p− 1), we have

p−1

∑
n=1

∑
1≤i≤r−1
0≤j≤p−1

i+j≡n mod (p−1)

Xi,j

(
Ar+p2−i−jp−p

α Bi+jp+p−1
α − Ar+p2−i−jp−1

α Bi+jp
α

)
+

p−1

∑
n=1

∑
r≤i≤p−1
0≤j≤p−1

i+j≡n mod (p−1)

Xi,j

((
r−2

∑
k=0

Zi,k Ar+p2−ip−jp+kp−k−1
α Bip+jp−kp+k

α

)
− (r− 1)Ar+p2−1−i−jp

α Bi+jp
α

)
= 0.

Write the n-th summand above as Bn for 1 ≤ n ≤ p − 1. By inspection, each of the functions in Bn is

of the form Ar+p2−1−l
α Bl

α for l ≡ n modulo (p − 1). Using (4.1) and (4.2), we may assume each of these
functions belong to the basis B, noting that these operations preserve the congruence class n. By the linear
independence of the basis B and the vanishing of the sum of the Bn, we conclude that each Bn = 0. Thus
fixing 1 ≤ n ≤ p− 1 we have:

∑
1≤i≤r−1
0≤j≤p−1

i+j≡n mod (p−1)

Xi,j

(
Ar+p2−i−jp−p

α Bi+jp+p−1
α − Ar+p2−i−jp−1

α Bi+jp
α

)
+

∑
r≤i≤p−1
0≤j≤p−1

i+j≡n mod (p−1)

Xi,j

((
r−2

∑
k=0

Zi,k Ar+p2−ip−jp+kp−k−1
α Bip+jp−kp+k

α

)
− (r− 1)Ar+p2−1−i−jp

α Bi+jp
α

)
= 0. (4.7)

The possible pairs of (i, j) such that i + j ≡ n mod (p− 1) for 1 ≤ i ≤ p− 1 and 0 ≤ j ≤ p− 1 are:

(i, j) =

{
(i, n− i) , if 1 ≤ i ≤ n,
(i, p− 1 + n− i) , if n ≤ i ≤ p− 1.

(4.8)

We analyze three cases:
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Case 1: Suppose 1 ≤ n ≤ r− 1. Using (4.8), equation (4.7) becomes

n

∑
i=1

Xi,n−i

(
Ar+p2−i−(n−i)p−p

α Bi+(n−i)p+p−1
α − Ar+p2−i−(n−i)p−1

α Bi+(n−i)p
α

)
+

r−1

∑
i=n

Xi,p−1+n−i

(
Ar−i−np+ip

α Bi+p2+np−ip−1
α − Ar−i−np+ip+p−1

α Bi+p2−p+np−ip
α

)
+

p−1

∑
i=r

Xi,p−1+n−i

(
r−2

∑
k=0

Zi,k Ar+(p−1)k−np+p−1
α Bp2−p+np−(p−1)k

α

)

−
p−1

∑
i=r

(r− 1)Xi,p−1+n−i A
r−i−np+ip+p−1
α Bi+p2−p+np−ip

α = 0. (4.9)

Looking at the indices occurring in Xi,j in the above equation, we note for each i 6= n, there is a unique
j 6= 0. But for i = n, we get both j = 0 and j = p− 1. For convenience, we drop the index j for j 6= 0: we write

Xi,j as

{
Xi, if j 6= 0,
X0, if j = 0.

(4.10)

Now, there is no flip or flop in the first summand of the above equation. If i = n, then there is one flip in
the first component of the second summand and one flop in its second component. Also, for i = n + 1, there
is one flop in the first component of the second summand if n ≤ r− 2 (and the i = n + 1 term is not there if
n = r − 1). Finally in the third summand, there are flips for 0 ≤ k ≤ n− 1 and there is one flop for k = n.
Apart from these there are no flips and flops appearing in the above equation.

Assume that 1 ≤ n ≤ r− 2. Changing the flips and flops appearing in (4.9) to functions in B and looking

at the coefficient of Ar+p2−1−(n+l(p−1))
α Bn+l(p−1)

α for 0 ≤ l ≤ p− 1, we get the following system of equations:

2Xn − Xn+1 +
p−1

∑
i=r

(Zi,n−1 − Zi,n) Xi − X0 = 0, if l = 0,

Xn − Xn+1 +
p−1

∑
i=r

(Zi,n−2 − Zi,n) Xi − Xn−1 + X0 = 0, if l = 1,

Xn − Xn+1 +
p−1

∑
i=r

(Zi,n−l−1 − Zi,n) Xi + Xn−l+1 − Xn−l = 0, if 2 ≤ l ≤ n− 1,

Xn − Xn+1 −
p−1

∑
i=r

Zi,nXi + Xn−l+1 = 0, if l = n,

Xn − Xn+1 −
p−1

∑
i=r

Zi,nXi − (r− 1)Xn+p−l = 0, if n + 1 ≤ l ≤ p− r + n,

Xn − Xn+1 −
p−1

∑
i=r

Zi,nXi − Xn+p−l = 0, if l = p− r + n + 1,

Xn − Xn+1 +
p−1

∑
i=r

(
Zi,p+n−l − Zi,n

)
Xi + Xn+p−l+1 − Xn+p−l = 0, if p− r + n + 2 ≤ l ≤ p− 1. (4.11)

Case 2: Suppose r ≤ n ≤ p− 2. In this case, by (4.7) we have
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r−1

∑
i=1

Xi,n−i

(
Ar+p2−i−(n−i)p−p

α Bi+(n−i)p+p−1
α − Ar+p2−i−(n−i)p−1

α Bi+(n−i)p
α

)
+

n

∑
i=r

Xi,n−i

(
r−2

∑
k=0

Zi,k Ar+(p−1)k−np+p2−1
α Bnp−(p−1)k

α

)

−
n

∑
i=r

(r− 1)Xi,n−i A
r+p2−1−i−np+ip
α Bi+np−ip

α

+
p−1

∑
i=n

Xi,p−1+n−i

(
r−2

∑
k=0

Zi,k Ar+(p−1)k−np+p−1
α Bp2−p+np−(p−1)k

α

)

−
p−1

∑
i=n

(r− 1)Xi,p−1+n−i A
r−i−np+ip+p−1
α Bi+p2−p+np−ip

α = 0.

In the second but last sum above there are flips for all 0 ≤ k ≤ r− 2. Also, there is a flop in the last sum at
i = n. As before, by changing the flips and flops appearing in the above equation to functions in B and then

looking at the coefficient of Ar+p2−1−(n+l(p−1))
α Bn+l(p−1)

α for 0 ≤ l ≤ p− 1 and using the convention (4.10) for
the variables, we get the following system of equations:

(r− 1)Xn − (r− 1)X0 = 0, if l = 0,

(r− 1)Xn − (r− 1)Xn−l = 0, if 1 ≤ l ≤ n− r,

((r− 1) + Zn,n−l−1) Xn − Xn−l +
p−1

∑
i=n+1

Zi,n−l−1Xi = 0, if l = n− r + 1,

((r− 1) + Zn,n−l−1) Xn +
n−1

∑
i=r

Zi,n−lXi

− Xn−l + Xn−l+1 +
p−1

∑
i=n+1

Zi,n−l−1Xi + Zn,n−lX0 = 0, if n− r + 2 ≤ l ≤ n− 1,

(r− 1)Xn + Xn−l+1 +
n−1

∑
i=r

Zi,n−lXi + Zn,n−lX0 = 0, if l = n,

(r− 1)Xn − (r− 1)Xn−l+p = 0, if n + 1 ≤ l ≤ p− 1. (4.12)

Case 3: Suppose n = p− 1. From (4.7) we have,

r−1

∑
i=1

Xi,p−1−i

(
Ar−i+ip

α Bi−ip+p2−1
α − Ar+p−1−i+ip

α Bi+p2−p−ip
α

)
+

p−1

∑
i=r

Xi,p−1−i

(
r−2

∑
k=0

Zi,k Ar+(p−1)k+p−1
α Bp2−p−(p−1)k

α

)

−
p−1

∑
i=r

(r− 1)Xi,p−1−i A
r−i+ip+p−1
α Bi+p2−p−ip

α

+ Xp−1,p−1

(
r−2

∑
k=0

Zp−1,k Ar+(p−1)k−(p−1)2

α B2p2−2p−(p−1)k
α

)
− (r− 1)Xp−1,p−1 Ar

αBp2−1
α = 0. (4.13)

There are flops in the first component of the first sum for i = 1 and in the second sum for k = 0. Also,
there are flips in the second last line above for all 0 ≤ k ≤ r− 2 and in the last line. Changing the flips and

flops appearing in the above equation to functions in B, looking at the coefficient of Ar+p2−1−l(p−1)
α Bl(p−1)

α for
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0 ≤ l ≤ p− 1 and using the convention (4.10) for the variables, we have the following system of equations:

− X1 −
p−2

∑
i=r

Zi,0Xi − (r− 1)Xp−1 − Zp−1,0X0 = 0, if l = 0,

− X1 −
p−2

∑
i=r

Zi,0Xi − (r− 1)X0 − Zp−1,0X0 = 0, if l = 1,

− X1 −
p−2

∑
i=r

Zi,0Xi − (r− 1)Xp−l − Zp−1,0X0 = 0, if 2 ≤ l ≤ p− r,

− X1 −
p−2

∑
i=r

Zi,0Xi − Xp−l + Zp−1,r−2Xp−1 − Zp−1,0X0 = 0, if l = p− r + 1,

− X1 −
p−2

∑
i=r

(
Zi,0 − Zi,p−l

)
Xi + Xp−l+1 − Xp−l

+ Zp−1,p−l−1Xp−1 + Zp−1,p−lX0 − Zp−1,0X0 = 0, if p− r + 2 ≤ l ≤ p− 1. (4.14)

Let M be the coefficient matrix of the above systems of equations in Cases 1, 2 and 3, respectively. A
computation shows that det(M) 6= 0. In fact, one can give a formula for det(M) in each case but we do not
need it, so to keep this paper a reasonable size, we omit it (details about this and other omitted arguments
in this current abridged version of the paper may be found in an earlier version of the paper on the arXiv at
https://arxiv.org/pdf/2308.10246.pdf). It follows that in each case Xi = 0 for 0 ≤ i ≤ p− 1. Thus we
have Xi,j = 0 for all 1 ≤ i ≤ p− 1 and 0 ≤ j ≤ p− 1, proving the Claim.

Thus, for all 0 ≤ j ≤ p− 1, we have

iai,j − (r− i)ai+p−1,j = 0

for 1 ≤ i ≤ r− 1 and

ai,j = 0

for r ≤ i ≤ p− 1, where ai,j are the coefficients of P⊗Q in (4.3).
Using these relations, we have

P⊗Q =
r+p−1

∑
i=0

p−1

∑
j=0

ai,jXr+p−1−iYi ⊗ Sp−1−jT j

=
p−1

∑
j=0

a0,jXr+p−1 ⊗ Sp−1−jT j +
p−1

∑
j=0

ar+p−1,jYr+p−1 ⊗ Sp−1−jT j

+
r−1

∑
i=1

p−1

∑
j=0

ai,jXr+p−1−iYi ⊗ Sp−1−jT j +
r−1

∑
i=1

p−1

∑
j=0

ai+p−1,jXr−iYi+p−1 ⊗ Sp−1−jT j

=
p−1

∑
j=0

a0,jXr+p−1 ⊗ Sp−1−jT j +
p−1

∑
j=0

ar+p−1,jYr+p−1 ⊗ Sp−1−jT j

+
p−1

∑
j=0

r−1

∑
i=1

ai,j
1

(r− i)

(
(r− i)Xr+p−1−iYi + iXr−iYi+p−1

)
⊗ Sp−1−jT j.

Each term in the last equality belongs to D(Vr)⊗ Vp−1, and hence, so does P⊗ Q. Thus ker ψ ⊂ D(Vr)⊗
Vp−1 and so equality holds. Changing r back to r + 2, we have ker ψ = D(Vr+2)⊗Vp−1. Since both sides of ψ

have the same dimension p2− p, we conclude that ψ is an isomorphism. This finally proves Theorem 4.1. �

Remark 2. We have proved Theorem 1.5 for 2 ≤ r ≤ p− 1. One might wonder what happens for boundary
values of r. Theorem 1.5 is also true if r = 1:

Vp

D(V1)
⊗Vp−1 ' ind

G(Fp)

T(Fp)
ω2. (4.15)

https://arxiv.org/pdf/2308.10246.pdf
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To prove this, define instead ψ : Vp ⊗Vp−1 → ind
G(Fp)

T(Fp)
ω2 by

P⊗Q 7→
(

ψP⊗Q :
(

a b
c d

)
7→ D(P)

∣∣∣(Ap
α ,Bp

α )

(0,0)
·Q
∣∣∣(Ap

α ,Bp
α )

(0,0)

)
.

One checks that ψ is a well defined G(Fp)-linear map and ker ψ = (ker D ∩ Vp)⊗ Vp−1, which by [Red10,
Proposition 3.3] (which is due to Fakhruddin), equals

(Fp[Xp, Yp, θ] ∩Vp)⊗Vp−1 = (Fp-span of Xp, Yp)⊗Vp−1 = D(V1)⊗Vp−1.

By comparing dimensions on both sides, the isomorphism (4.15) follows. In fact, (4.15) is true ‘without
tensoring with Vp−1’. That is, Reduzzi’s result (1.8) even holds for r = 1. Indeed, one has

Vp

D(V1)
' Vp−2 ⊗ det ' Θ(ω2),

by Diamond [Dia07, Proposition 1.3] (this does not use crystalline cohomology, see also the material around
Prasad [Pra10, Lemma 4.2] for a survey: in fact, the reduction mod p of the complex cuspidal representation
Θ(ωr

2) for 1 ≤ r ≤ p− 1 of G(Fp) is irreducible if and only if r = 1).

On the other hand, if r = p, then Theorem 1.5 is false for dimension reasons. Since ind
G(Fp)

T(Fp)
ω

p
2 '

ind
G(Fp)

T(Fp)
ω2, the right hand side of the isomorphism in the theorem reduces to the case r = 1. As for the

left side, one easily checks
V2p−1

D(Vp)
' ind

G(Fp)

B(Fp)
d

is a principal series representation. Similarly, if r = p + 1, then ω
p+1
2 is self-conjugate and the induction on

the right side is not as interesting, whereas on the left side one checks

V2p

D(Vp+1)
' Vp−1 ⊗ det

is a twist of the mod p Steinberg representation.

In view of the above remark, Theorem 4.1 holds for −1 ≤ r ≤ p− 3 but not for r = p− 2, p− 1. However,
by twisting, the theorem may be extended to the following higher symmetric powers:

Corollary 4.2. If −1 ≤ r ≤ p− 3− k for 0 ≤ k ≤ p− 2, then

Vr+(k+1)(p+1)

D(Vr+2+k(p+1))
⊗Vp−1 ' ind

G(Fp)

T(Fp)
ω

r+2+k(p+1)
2 .

Proof. We first show that

Vr+p+1 ⊗ detk

D(Vr+2)⊗ detk '
V(k)

r+(k+1)(p+1)

D(V(k)
r+2+k(p+1))

'
Vr+(k+1)(p+1)

D(Vr+2+k(p+1))

for 0 ≤ k ≤ p− 2. Define π : Vr+p+1⊗detk →
V(k)

r+(k+1)(p+1)

D(V(k)
r+2+k(p+1))

by sending P to θkP for P ∈ Vr+p+1. Let Q ∈ Vr+2.

Then π(D(Q)) = θkD(Q) = D(θkQ), where the last equality follows because D(θ) = −XpYp + XpYp = 0.
Thus we have π(D(Vr+2)⊗ detk) ⊂ D(V(k)

r+2+k(p+1)), and hence,

π :
Vr+p+1 ⊗ detk

D(Vr+2)⊗ detk →
V(k)

r+(k+1)(p+1)

D(V(k)
r+2+k(p+1))

is a surjection. Also, both sides have dimension p− 1, so π is an isomorphism.
For the second isomorphism, consider the composition

V(k)
r+(k+1)(p+1) ↪→ Vr+(k+1)(p+1) �

Vr+(k+1)(p+1)

D(Vr+2+k(p+1))
. (4.16)
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In the above, the first map is the natural inclusion map and the second one is the natural surjection map.
Note that, the kernel of the map (4.16) is V(k)

r+(k+1)(p+1) ∩ D(Vr+2+k(p+1)). We show that

V(k)
r+(k+1)(p+1) ∩ D(Vr+2+k(p+1)) = D(V(k)

r+2+k(p+1)).

Clearly, D(V(k)
r+2+k(p+1)) ⊂ V(k)

r+(k+1)(p+1) ∩ D(Vr+2+k(p+1)). The other containment is trivially true for k = 0.
To establish it for 1 ≤ k ≤ p− 2, we need the following lemma which is easily proved by checking the two
conditions in [GV22, Lemma 2.7].

Lemma 4.3. If 0 ≤ m ≤ p− 2 and p - ( r
m+1), then θm+1 | D(Q) ⇐⇒ θm+1 | Q.

Remark 3. By the lemma, D induces an inclusion

Vr

V(m+1)
r

↪→
Vr+p−1

V(m+1)
r+p−1

,

which is an isomorphism for dimension reasons. This provides another proof of (1.6) using the D map, under
the slightly stronger assumptions 0 ≤ m ≤ p− 2 and p - ( r

m+1). The last condition is necessary (for instance,
for m = 0, if p | r, then D maps Xr, Yr to 0, so the map above is not injective).

Now, let θkP = D(Q), for some P ∈ Vr+p+1, Q ∈ Vr+2+k(p+1) and 1 ≤ k ≤ p − 2. By Lemma 4.3,

we have θk | D(Q) if and only if θk | Q. Thus θkP = D(Q) ∈ D(V(k)
r+2+k(p+1)) and hence V(k)

r+(k+1)(p+1) ∩

D(Vr+2+k(p+1)) ⊂ D(V(k)
r+2+k(p+1)). So the kernel of (4.16) is D(V(k)

r+2+k(p+1)). Thus, there is an injection

V(k)
r+(k+1)(p+1)

D(V(k)
r+2+k(p+1))

↪→
Vr+(k+1)(p+1)

D(Vr+2+k(p+1))
.

If −1 ≤ r ≤ p− 3− k and 0 ≤ k ≤ p− 2, then D is injective on Vr+2+k(p+1). Otherwise, by [Red10, Proposition
3.3] and comparing degrees, we would have a relation of the form ap + bp + c(p + 1) = r + 2 + k(p + 1) for
some a, b, c ≥ 0. Comparing p-adic digits on both sides and noting they are in the range [0, p− 1], we have
c = r + 2 + k and a + b + c = k. The first equality implies c ≥ k + 1, whereas the second implies c ≤ k, a
contradiction. Thus the dimension of each side of the inclusion above is p− 1. So it is an isomorphism.

Now, by Theorem 4.1 and Remark 2, for −1 ≤ r ≤ p− 3, we have

Vr+p+1

D(Vr+2)
⊗Vp−1 ' ind

G(Fp)

T(Fp)
ωr+2

2 .

Twisting both sides by detk with 0 ≤ k ≤ p− 2

=⇒
Vr+p+1 ⊗ detk

D(Vr+2)⊗ detk ⊗Vp−1 ' ind
G(Fp)

T(Fp)

(
ωr+2

2 ⊗ detk|T(Fp)

)

=⇒
V(k)

r+(k+1)(p+1)

D(V(k)
r+2+(p+1))

⊗Vp−1 ' ind
G(Fp)

T(Fp)

(
ωr+2

2 ⊗ω
k(p+1)
2

)

=⇒
Vr+(k+1)(p+1)

D(Vr+2+k(p+1))
⊗Vp−1 ' ind

G(Fp)

T(Fp)
ω

r+2+k(p+1)
2 . �

Corollary 4.4. Let m ≥ 0 and 2m− 1 ≤ r ≤ p− 3. Then, we have
Vr+2+(m+1)(p−1)

Dm+1(Vr+2)
⊗Vp−1 ' ind

G(Fp)

T(Fp)

(
Vm ⊗ωr+2−m

2

)
.

Proof. Note that Vm
∣∣
T(Fp)

' ⊕m
j=0 ω

m+j(p−1)
2 . Thus to prove the corollary, it suffices to prove that for 2m− 1 ≤

r ≤ p− 3, we have

Vr+2+(m+1)(p−1)

Dm+1(Vr+2)
⊗Vp−1 ' ind

G(Fp)

T(Fp)

 m⊕
j=0

ω
r+2+j(p−1)
2

 .

For m = 0, this is Theorem 4.1 and Remark 2. The proof for m > 0 is by induction and is omitted. �
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4.2. The case of GL2(Fq). We now prove Theorem 1.6, which is a twisted version of Theorem 4.1. Recall that

VFrj
rj

:= Symrj(F2
p) ◦ Frj and {Xrj−ij

j Y
ij
j }0≤ij≤rj is a basis of VFrj

rj
, for all 0 ≤ j ≤ f − 1.

Lemma 4.5. Let r0 ≥ 1. We define

D0 = Xp
0 Xp−1

1 · · ·Xp−1
f−1

∂

∂X0
+ Yp

0 Yp−1
1 · · ·Yp−1

f−1
∂

∂Y0

and

Dj = Xp
0 Xp−1

1 · · ·Xp−1
j−1

∂

∂Xj
+ Yp

0 Yp−1
1 · · ·Yp−1

j−1
∂

∂Yj
,

for all 1 ≤ j ≤ f − 1. Then, the maps
(1)

D0 : Vr0 ⊗VFr
0 ⊗ · · · ⊗VFr f−1

0 →
Vr0+p−1 ⊗VFr

p−1 ⊗ · · · ⊗VFr f−1

p−1

〈D1, . . . , D f−1〉
and

(2)

Dj : Vr0−1 ⊗VFr
0 ⊗ · · · ⊗VFrj−1

0 ⊗VFrj

p ⊗VFrj+1

p−1 ⊗ · · · ⊗VFr f−1

p−1 →
Vr0+p−1 ⊗VFr

p−1 ⊗ · · · ⊗VFr f−1

p−1

〈D1, . . . , Dj−1〉

are G(Fq)-linear.

Proof. (1). We show that D0 is G(Fq)-linear modulo 〈D1, . . . , D f−1〉. By Bruhat decomposition, it is enough

to check that D0(g · Xr0−i0
0 Yi0

0 ) = g · D0(Xr0−i0
0 Yi0

0 ) modulo 〈D1, . . . , D f−1〉 for g either diagonal, the Weyl
element w =

(
0 1
1 0

)
or upper unipotent. The case when g diagonal is clear. If g = w, then

D0(w · Xr0−i0
0 Yi0

0 ) = D0(Y
r0−i0
0 Xi0

0 )

= i0Xi0+p−1
0 Yr0−i0

0 Xp−1
1 · · ·Xp−1

f−1 + (r0 − i0)Xi0
0 Yr0+p−1−i0

0 Yp−1
1 · · ·Yp−1

f−1

= w ·
(

i0Yi0+p−1
0 Xr0−i0

0 Yp−1
1 · · ·Yp−1

f−1 + (r0 − i0)Y
i0
0 Xr0+p−1−i0

0 Xp−1
1 · · ·Xp−1

f−1

)
= w · D0(Xr0−i0

0 Yi0
0 ).

Finally, if g =
(

1 a
0 1
)

, for a ∈ Fq, then

D0(g · Xr0−i0
0 Yi0

0 ) = D0

(
Xr0−i0

0 (aX0 + Y0)
i0
)

= Xp
0

(
(r0 − i0)Xr0−i0−1

0 (aX0 + Y0)
i0 + Xr0−i0

0 i0a(aX0 + Y0)
i0−1

)
Xp−1

1 · · ·Xp−1
f−1

+Yp
0 Xr0−i0

0 i0(aX0 + Y0)
i0−1Yp−1

1 · · ·Yp−1
f−1 (4.17)

and

g · D0(Xr0−i0
0 Yi0

0 ) = g ·
(

Xp
0 (r0 − i0)Xr0−i0−1

0 Yi0
0 Xp−1

1 · · ·Xp−1
f−1 + Yp

0 Xr0−i0
0 i0Yi0−1

0 Yp−1
1 · · ·Yp−1

f−1

)
= Xp

0 (r0 − i0)Xr0−i0−1
0 (aX0 + Y0)

i0 Xp−1
1 · · ·Xp−1

f−1

+i0Xr0−i0
0 (aX0 + Y0)

p+i0−1(apX1 + Y1)
p−1 · · · (ap f−1

X f−1 + Yf−1)
p−1, (4.18)

so taking the difference of (4.17) and (4.18), we have

D0(g · Xr0−i0
0 Yi0

0 )− g · D0(Xr0−i0
0 Yi0

0 )

= i0aXp
0 Xr0−i0

0 (aX0 + i0Y0)
i0−1Xp−1

1 · · ·Xp−1
f−1 + i0Yp

0 Xr0−i0
0 (aX0 + Y0)

i0−1Yp−1
1 · · ·Yp−1

f−1

− i0Xr0−i0
0 (aX0 + Y0)

p+i0−1(apX1 + Y1)
p−1 · · · (ap f−1

X f−1 + Yf−1)
p−1

= i0Xr0−i0
0 (aX0 + Y0)

i0−1

(
aXp

0

f−1

∏
j=1

Xp−1
j + Yp

0

f−1

∏
j=1

Yp−1
j − (apXp

0 + Yp
0 )

f−1

∏
j=1

(apj
Xj + Yj)

p−1

)
. (4.19)
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The term in the parentheses

=

(
aXp

0

f−1

∏
j=1

Xp−1
j − apXp

0

f−1

∏
j=1

(apj
Xj + Yj)

p−1

)
+

(
Yp

0

f−1

∏
j=1

Yp−1
j −Yp

0

f−1

∏
j=1

(apj
Xj + Yj)

p−1

)

= −
p−1

∑
i1=0
· · ·

p−1 ′

∑
i f−1=0

Xp
0 ap

f−1

∏
j=1

((
p− 1

ij

)
apj(p−1−ij)X

p−1−ij
j Y

ij
j

)

−
p−1

∑
i1=0
· · ·

p−1 ′′

∑
i f−1=0

Yp
0

f−1

∏
j=1

((
p− 1

ij

)
apj(p−1−ij)X

p−1−ij
j Y

ij
j

)

= −
p−1

∑
i1=0
· · ·

p−1 ′

∑
i f−1=0

a
1−

f−1
∑

j=1
ij pj

(−1)

f−1
∑

j=1
ij

Xp
0

f−1

∏
j=1

X
p−1−ij
j Y

ij
j

−
p−1

∑
i1=0
· · ·

p−1 ′′

∑
i f−1=0

a
1−p−

f−1
∑

j=1
ij pj

(−1)

f−1
∑

j=1
ij

Yp
0

f−1

∏
j=1

X
p−1−ij
j Y

ij
j ,

where ∑ · · ·∑′ means (0, . . . , 0) is omitted from the sum and ∑ · · ·∑′′ means (p − 1, . . . , p − 1) is omitted

from the sum. Writing Ij =
f−1
∑
l=j

il pl and ∑p Ij =
f−1
∑
l=j

il , the above expression

= −
f−1

∑
j=1

 0

∑
i1=0
· · ·

0

∑
ij−1=0

p−1

∑
ij=1

p−1

∑
ij+1=0

· · ·
p−1

∑
i f−1=0

(−1)∑p Ij a1−Ij Xp
0

(
j−1

∏
l=1

Xp−1
l

)
f−1

∏
l=j

Xp−1−il
l Yil

l


−

f−1

∑
j=1

 p−1

∑
i1=p−1

· · ·
p−1

∑
ij−1=p−1

p−2

∑
ij=0

p−1

∑
ij+1=0

· · ·
p−1

∑
i f−1=0

(−1)∑p Ij a1−pj−IjYp
0

(
j−1

∏
l=1

Yp−1
l

)(
f−1

∏
l=j

Xp−1−il
l Yil

l

)
= −

f−1

∑
j=1

p−1

∑
ij=1

p−1

∑
ij+1=0

· · ·
p−1

∑
i f−1=0

(−1)∑p Ij a1−Ij Xp
0

(
j−1

∏
l=1

Xp−1
l

)
X

p−1−ij
j Y

ij
j

(
f−1

∏
l=j+1

Xp−1−il
l Yil

l

)
−

f−1

∑
j=1

p−1

∑
ij=1

p−1

∑
ij+1=0

· · ·
p−1

∑
i f−1=0

(−1)∑p Ij−1a1−IjYp
0

(
j−1

∏
l=1

Yp−1
l

)
X

p−ij
j Y

ij−1
j

(
f−1

∏
l=j+1

Xp−1−il
l Yil

l

) ,

where the fourth sum above is obtained by the transformation ij 7→ ij − 1 in the second sum above, which,
together with (4.19), gives

D0(g · Xr0−i0
0 Yi0

0 )− g · D0(Xr0−i0
0 Yi0

0 )

= −
f−1

∑
j=1

p−1

∑
ij=1

p−1

∑
ij+1=0

· · ·
p−1

∑
i f−1=0

(−1)∑p Ij−1

ij
a1−Ij Dj

(
i0Xr0−i0

0 (aX0 + Y0)
i0−1X

p−ij
j Y

ij
j

f−1

∏
l=j+1

Xp−1−il
l Yil

l

)
∈ 〈D1, . . . , D f−1〉.

Thus D0 is G(Fq)-linear modulo 〈D1, . . . , D f−1〉.
(2). The proof is similar and is omitted. �

Let α ∈ Fq2 be such that α2 ∈ Fq, α /∈ Fq. Fix an identification i : F×q ' T(Fq) ⊂ GL2(Fq) given by
u + vα 7→

(
u vα2
v u

)
.

Let r ≥ 0 and 0 ≤ i ≤ r + q2 − 1. Let fi : G(Fq)→ Fq2 be a function such that

fi

((
a b
c d

))
= (a + cα)r+q2−1−i(b + dα)i,
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for all
(

a b
c d

)
∈ G(Fq). Then fi ∈ ind

G(Fq)

T(Fq)
ωr

2 f and the set Bq = { fi|0 ≤ i ≤ q2 − q − 1} forms a basis of

ind
G(Fq)

T(Fq)
ωr

2 f . Indeed, let t =
(

u vα2
v u

)
∈ T(Fq) and g =

(
a b
c d

)
∈ G(Fq). Then we have

fi (t · g) = fi

((
ua + vα2c ub + vα2d
va + uc vb + ud

))
= (u + vα)r+q2−1(a + cα)(r+q2−1)−i(b + dα)i

which equals (u + vα)r · fi(g) = ωr
2 f (t) · fi(g) = t · fi(g). One can check that the functions in Bq are linearly

independent. Also, T(Fq) has index q2 − q in G(Fq). So Bq forms a basis of ind
G(Fq)

T(Fq)
ωr

2 f .

For q2 − 1 ≤ i ≤ r + q2 − 1, we observe that

fi = fq2−1+j = f j (4.20)

for some 0 ≤ j ≤ r. We say that fi is a flip. We soon assume that r ≤ p− 1 ≤ q2 − q− 1, so fi ∈ Bq.
On the other hand, for q2 − q ≤ i ≤ q2 − 2, we have fi = fq2−q+j for some 0 ≤ j ≤ q− 2. We say that fi is a

flop since it satisfies the following relation:

f j + f j+(q−1) + f j+2(q−1) + · · ·+ f j+(q−1)(q−1) + f j+q2−q = 0, (4.21)

where all terms but the last are in Bq. Indeed, since Xq2−1 − 1 = (Xq−1 − 1)(X(q−1)q + X(q−1)(q−1) + · · ·+
Xq−1 + 1), for A ∈ F×q2 \F×q , we have A(q−1)q + A(q−1)(q−1) + · · ·+ Aq−1 + 1 = 0. Thus for

(
a b
c d

)
∈ G(Fq),(

a + cα

b + dα

)(q−1)q
+

(
a + cα

b + dα

)(q−1)(q−1)
+ · · ·+

(
a + cα

b + dα

)q−1
+ 1 = 0,

which, after multiplying by (a + cα)(r+q−1)−j(b + dα)q2−q+j, gives

(a + cα)(r+q2−1)−j(b + dα)j + (a + cα)(r+q2−q)−j(b + dα)j+(q−1) + · · ·+ (a + cα)(r+q−1)−j(b + dα)j+q2−q = 0,

which shows (4.21).
Thus any flip or flop can be changed to a linear combination of functions in Bq. We fix the basis Bq in the

computations to follow.
For any

(
a b
c d

)
∈ G(Fq), we denote Aα = a + cα and Bα = b + dα. For any polynomial P(X, Y) and

A, B, C, D ∈ Fq, we write P(X, Y)
∣∣∣(C,D)

(A,B)
= P(C, D)− P(A, B).

Lemma 4.6. Let r = r0 + r1 p + · · · + r f−1 p f−1 with 2 ≤ r0 ≤ p − 1 and rj ≥ 0 for all 1 ≤ j ≤ f − 1. Let

P⊗Q :=
⊗ f−1

j=0 Pj⊗
⊗ f−1

j=0 Qj ∈
⊗ f−1

j=0 VFrj

rj+p−1⊗
⊗ f−1

j=0 VFrj

p−1, with Pj a homogeneous polynomial of degree rj + p− 1

in Xj, Yj, and Qj homogeneous of degree p− 1 in Sj, Tj. Define ψP⊗Q : G(Fq)→ Fq2 by

(
a b
c d

)
7→ ∇r0−2

0 (P0)∇r1
1 (P1) · · · ∇

r f−1
f−1(Pf−1)

∣∣∣(Ap f
α ,Bp f

α ,...,Ap2 f−1
α ,Bp2 f−1

α )

(Aα ,Bα ,...,Ap f−1
α ,Bp f−1

α )
·

f−1

∏
j=0

Qj(Ap f+j

α , Bp f+j

α ),

where

∇j = Apj

α
∂

∂Xj
+ Bpj

α
∂

∂Yj

for all 0 ≤ j ≤ f − 1. Then the map

(1) ψP⊗Q is T(Fq)-linear.

(2) ψ :
⊗ f−1

j=0 VFrj

rj+p−1 ⊗
⊗ f−1

j=0 VFrj

p−1 → ind
G(Fq)

T(Fq)
ωr

2 f such that ψ(P⊗Q) = ψP⊗Q is G(Fq)-linear.

Proof. T(Fq)-linearity: Note ∇r0−2
0 (P0)∏

f−1
j=1 ∇

rj
j (Pj)∏

f−1
j=0 Qj(Sj, Tj) is a linear combination of terms

Ar−i−2
α Bi

αXp+1−i0
0 Yi0

0

f−1

∏
j=1

X
p−1−ij
j Y

ij
j ·

f−1

∏
j=0

S
p−1−kj
j T

kj
j ,
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where r = ∑
f−1
j=0 rj pj and i = ∑

f−1
j=0 ij pj. Now,

Ar−i−2
α Bi

αXp+1−i0
0 Yi0

0

f−1

∏
j=1

X
p−1−ij
j Y

ij
j

∣∣∣(Ap f
α ,Bp f

α ,...,Ap2 f−1
α ,Bp2 f−1

α )

(Aα ,Bα ,...,Ap f−1
α ,Bp f−1

α )

f−1

∏
j=0

S
p−1−kj
j T

kj
j

∣∣∣(Ap f+j
α ,Bp f+j

α )

(0,0)

= Ar−i−2
α Bi

α

A
p f

(
p+1−i0+

f−1
∑

j=1
(pj+1−pj−ij pj)

)
α B

p f

(
i0+

f−1
∑

j=1
ij pj

)
α − A

p+1−i0+
f−1
∑

j=1
(pj+1−pj−ij pj)

α B
i0+

f−1
∑

j=1
ij pj

α



· A
p f

(
f−1
∑

j=0
(pj+1−pj−kj pj)

)
α B

p f

(
f−1
∑

j=0
kj pj

)
α

= Ar−i−2
α Bi

α

(
Aq+q2−iq

α Biq
α − A1−i+q

α Bi
α

)
Aq2−q−kq

α Bkq
α = Ar+q2−1−i−(i+k)q

α Bi+(i+k)q
α − Ar+q2−1−(2i+kq)

α B2i+kq
α ,

where in the last but one equality k = ∑
f−1
j=0 k j pj. Thus ψP⊗Q is a linear combination of functions of the form

fi above and hence is T(Fq)-linear.

G(Fq)-linearity: Let g = ( u v
w z ) ∈ G(Fq). Note that,

g · (P⊗Q) =
f−1⊗
j=0

Pj(Uj, Vj)⊗
f−1⊗
j=0

Qj(U′j , V′j ) =:
f−1⊗
j=0

P′j ⊗
f−1⊗
j=0

Q′j,

where Uj = upj
Xj + wpj

Yj, Vj = vpj
Xj + zpj

Yj, U′j = upj
Sj + wpj

Tj, V′j = vpj
Sj + zpj

Tj. Now,

ψ (g · P⊗Q)

((
a b
c d

))

=

(
Aα

∂

∂X0
+ Bα

∂

∂Y0

)r0−2
(P′0)

f−1

∏
j=1

(
Apj

α
∂

∂Xj
+ Bpj

α
∂

∂Yj

)rj

(P′j )
∣∣∣(Ap f

α ,Bp f
α ,...,Ap2 f−1

α ,Bp2 f−1
α )

(Aα ,Bα ,...,Ap f−1
α ,Bp f−1

α )

·
f−1

∏
j=0

Q′j(Ap f+j

α , Bp f+j

α ). (4.22)

Applying Lemma 2.10 (twice), for 0 ≤ j ≤ f − 1 and k ≥ 0 we have(
Apj

α
∂

∂Xj
+ Bpj

α
∂

∂Yj

)k

(P′j )
∣∣∣(Ap f+j

α ,Bp f+j
α )

(Apj
α ,Bpj

α )

=

(
(upj

Apj

α + wpj
Bpj

α )
∂

∂Xj
+ (vpj

Apj

α + zpj
Bpj

α )
∂

∂Yj

)k

(Pj)

∣∣∣∣∣
(upj

Ap f+j
α +wpj

Bp f+j
α ,vpj

Ap f+j
α +zpj

Bp f+j
α )

(upj
Apj

α +wpj
Bpj

α ,vpj
Apj

α +zpj
Bpj

α )

=

(
A′p

j

α
∂

∂Xj
+ B′p

j

α
∂

∂Yj

)k

(Pj)
∣∣∣(A′p

f+j
α ,B′p

f+j
α )

(A′p
j

α ,B′p
j

α )
,

where A′α = uAα + wBα and B′α = vAα + zBα. Observe that, in the last equality in writing the top limits in
terms of A′α and B′α, we use the fact that u, v, w and z are in Fq.

Now taking, k = r0 − 2 for j = 0 and k = rj for 1 ≤ j ≤ f − 1, the expression in (4.22) equals(
A′α

∂

∂X0
+ B′α

∂

∂Y0

)r0−2
(P0)

f−1

∏
j=1

(
A′p

j

α
∂

∂Xj
+ B′p

j

α
∂

∂Yj

)rj

(Pj)
∣∣∣(A′p

f
α ,B′p

f
α ,...,A′p

2 f−1
α ,B′p

2 f−1
α )

(A′α ,B′α ,...,A′p
f−1

α ,B′p
f−1

α )

·
f−1

∏
j=0

Qj(A′p
f+j

α , B′p
f+j

α )

= ψ(P⊗Q)

((
ua + wb va + zb
uc + wd vc + zd

))
= g · (ψ(P⊗Q))

((
a b
c d

))
. �

The following lemmas will be useful in the proof of the main theorem.
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Lemma 4.7. Let

P =
r0+p−1

∑
i0=0

p−1

∑
i1=0
· · ·

p−1

∑
i f−1=0

bi0,...,i f−1
Xr0+p−1−i0

0 Yi0
0

(
f−1

∏
l=1

Xp−1−il
l Yil

l

)
∈ Vr0+p−1 ⊗

f−1⊗
l=1

VFrl

p−1.

Then,

(1) we have P ∈ Im D0 if and only if

i0bi0,0,...,0 = (r0 − i0)bi0+p−1,p−1,...,p−1

for 1 ≤ i0 ≤ r0 − 1, and

bi0,...,i f−1
= 0

for r0 ≤ i0 ≤ p− 1 and all 0 ≤ ij ≤ p− 1 for 1 ≤ j ≤ f − 1.
(2) for 1 ≤ j ≤ f − 1, we have P ∈ Im Dj if and only if

bi0,0,...,0,ij ,...,i f−1
= −bi0+p,p−1,...,p−1,ij−1,ij+1,...,i f−1

where 0 ≤ i0 ≤ r0 − 1, 1 ≤ ij ≤ p− 1 and 0 ≤ ij+1, . . . , i f−1 ≤ p− 1, and in the remaining cases

bi0,...,i f−1
= 0.

Proof. The conditions are clearly necessary, and can be checked to be sufficient. �

Lemma 4.8. Let 1 ≤ r0 ≤ p− 1 and let

P =
r0+p−1

∑
i0=0

p−1

∑
i1=0
· · ·

p−1

∑
i f−1=0

bi0,...,i f−1
Xr0+p−1−i0

0 Yi0
0

(
f−1

∏
l=1

Xp−1−il
l Yil

l

)
∈ Vr0+p−1 ⊗

f−1⊗
l=1

VFrl

p−1.

Then we have P ∈ 〈D0, . . . , D f−1〉 if and only if the following hold:

(1) for 1 ≤ i0 ≤ r0 − 1, we have

i0bi0,0,...,0 = (r0 − i0)bi0+p−1,p−1,...,p−1

(2) for r0 ≤ i0 ≤ p− 1 and all 0 ≤ ij ≤ p− 1 for 1 ≤ j ≤ f − 1, we have

bi0,...,i f−1
= 0,

(3) for 0 ≤ i0 ≤ r0 − 1 and for all 1 ≤ t ≤ f − 1, 1 ≤ it ≤ p− 1 and 0 ≤ it+1, . . . , i f−1 ≤ p− 1, we have

bi0,0,...,0,it ,...,i f−1
= −bi0+p,p−1,...,p−1,it−1,it+1,...,i f−1

.

Proof. Say P ∈ 〈D0, . . . , D f−1〉. We show conditions (1), (2), (3) are satisfied. Write P = ∑
f−1
j=0 Pj where

Pj =
r0+p−1

∑
i0=0

· · ·
p−1

∑
i f−1=0

b(j)
i0,...,i f−1

Xr0+p−1−i0
0 Yi0

0

f−1

∏
l=1

Xp−1−il
l Yil

l ∈ Im Dj

for all 0 ≤ j ≤ f − 1. Then

bi0,...,i f−1
=

f−1

∑
j=0

b(j)
i0,...,i f−1

with each b(j)
i0,...,i f−1

satisfying the conditions of Lemma 4.7. Now (2) is clear since if r0 ≤ i0 ≤ p− 1, each term
on the right vanishes by (both parts of) Lemma 4.7. Condition (1) is also clear, since if 1 ≤ i0 ≤ r0 − 1 and the
other ij are all 0 or all p− 1, then all the terms on the right vanish for j ≥ 1, by the second part of Lemma 4.7,
and the j = 0 term on the right satisfies the desired identity by the first part. Similarly (3) holds, since if
0 ≤ i0 ≤ r0 − 1 and the other ij are not all 0 or not all p− 1, then the j = 0 term on the right vanishes by the
first part of the lemma and the remaining terms satisfy the desired identity by the second part, whence so
does their sum.
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For the converse, note that P can be written as

f−1

∑
t=1

r0−1

∑
i0=0

0

∑
i1=0
· · ·

0

∑
it−1=0

p−1

∑
it=1

p−1

∑
it+1=0

· · ·
p−1

∑
i f−1=0

bi0,0,...,0,it ,...,i f−1
Xr0+p−1−i0

0 Yi0
0

t−1

∏
l=1

Xp−1
l

f−1

∏
l=t

Xp−1−il
l Yil

l


+

r0−1

∑
i0=1

bi0,0,...,0Xr0+p−1−i0
0 Yi0

0

f−1

∏
l=1

Xp−1
l + b0,...,0Xr0+p−1

0

f−1

∏
l=1

Xp−1
l

+
p−1

∑
i0=r0

p−1

∑
i1=0
· · ·

p−1

∑
i f−1=0

bi0,...,i f−1
Xr0+p−1−i0

0 Yi0
0

f−1

∏
l=1

Xp−1−il
l Yil

l

+
f−1

∑
t=1

r0+p−1

∑
i0=p

p−1

∑
i1=p−1

· · ·
p−1

∑
it−1=p−1

p−2

∑
it=0

p−1

∑
it+1=0

· · ·
p−1

∑
i f−1=0

bi0,p−1,...,p−1,it ,...,i f−1
Xr0+p−1−i0

0 Yi0
0

t−1

∏
l=1

Yp−1
l

f−1

∏
l=t

Xp−1−il
l Yil

l


+

r0+p−2

∑
i0=p

bi0,p−1,...,p−1Xr0+p−1−i0
0 Yi0

0

f−1

∏
l=1

Yp−1
l + br0+p−1,p−1,...,p−1Yr0+p−1

0

f−1

∏
l=1

Yp−1
l ,

which, by the transformations i0 7→ i0 + p and it 7→ it − 1 in the fourth sum above (and dropping the
summations for i1, . . . , it−1 in the first and fourth sum) and by the transformation i0 7→ i0 + p− 1 in the last
sum, can be rewritten as

f−1

∑
t=1

r0−1

∑
i0=0

p−1

∑
it=1

p−1

∑
it+1=0

· · ·
p−1

∑
i f−1=0

bi0,0,...,0,it ,...,i f−1
Xr0+p−1−i0

0 Yi0
0

(
t−1

∏
l=1

Xp−1
l

)
Xp−1−it

t Yit
t

f−1

∏
l=t+1

Xp−1−il
l Yil

l


+

f−1

∑
t=1

r0−1

∑
i0=0

p−1

∑
it=1

p−1

∑
it+1=0

· · ·
p−1

∑
i f−1=0

bi0+p,p−1,...,p−1,it−1,...,i f−1
Xr0−i0−1

0 Yi0+p
0

t−1

∏
l=1

Yp−1
l Xp−it

t Yit−1
t

f−1

∏
l=t+1

Xp−1−il
l Yil

l


+

r0−1

∑
i0=1

bi0,0,...,0Xr0+p−1−i0
0 Yi0

0

f−1

∏
l=1

Xp−1
l +

r0−1

∑
i0=1

bi0+p−1,p−1,...,p−1Xr0−i0
0 Yi0+p−1

0

f−1

∏
l=1

Yp−1
l

+
p−1

∑
i0=r0

p−1

∑
i1=0
· · ·

p−1

∑
i f−1=0

bi0,...,i f−1
Xr0+p−1−i0

0 Yi0
0

f−1

∏
l=1

Xp−1−il
l Yil

l

+b0,...,0Xr0+p−1
0

f−1

∏
l=1

Xp−1
l + br0+p−1,p−1,...,p−1Yr0+p−1

0

f−1

∏
l=1

Yp−1
l . (4.23)

Now suppose the conditions (1), (2), (3) hold. Then by (4.23), we can write the polynomial P as

f−1

∑
t=1

− r0−1

∑
i0=0

p−1

∑
it=1

p−1

∑
it+1=0

· · ·
p−1

∑
i f−1=0

bi0,0,...,0,it ,...,i f−1

it
Dt

(
Xr0−1−i0

0 Yi0
0 Xp−it

t Yit
t

f−1

∏
l=t+1

Xp−1−il
l Yil

l

)
+

r0−1

∑
i0=1

bi0,0,...,0

(r0 − i0)
D0

(
Xr0−i0

0 Yi0
0

)
+

1
r0

D0
(
b0,...,0Xr0

0 + br0+p−1,p−1,...,p−1Yr0
0
)

.

This implies that P ∈ 〈D0, . . . , D f−1〉. �

Remark 4. In Lemma 4.8, there are no conditions on the coefficients b0,...,0 and br0+p−1,p−1,...,p−1 of P. So if
1 ≤ r0 ≤ p− 1, then the dimension of 〈D0, . . . , D f−1〉 over Fq is

2 + (r0 − 1) +
f−1

∑
t=1

r0(p− 1)p f−1−t = r0 + 1 + r0(p f−1 − 1) = r0 p f−1 + 1.

Theorem 4.9. Let r = r0 + r1 p + · · ·+ r f−1 p f−1, where 2 ≤ r0 ≤ p− 1 and rj = 0 for all 1 ≤ j ≤ f − 1. Recall
that

D0 = Xp
0 Xp−1

1 · · ·Xp−1
f−1

∂

∂X0
+ Yp

0 Yp−1
1 · · ·Yp−1

f−1
∂

∂Y0

and

Dj = Xp
0 Xp−1

1 · · ·Xp−1
j−1

∂

∂Xj
+ Yp

0 Yp−1
1 · · ·Yp−1

j−1
∂

∂Yj
,
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for all 1 ≤ j ≤ f − 1. Then over Fq2 we have

⊗ f−1
j=0 VFrj

rj+p−1

〈D0, . . . , D f−1〉
⊗

f−1⊗
j=0

VFrj

p−1 ' ind
G(Fq)

T(Fq)
ωr

2 f .

Proof. Define ψ :
⊗ f−1

j=0 VFrj

rj+p−1 ⊗
⊗ f−1

j=0 VFrj

p−1 → ind
G(Fq)

T(Fq)
ωr

2 f as in Lemma 4.6. Recall that for P ⊗ Q :=⊗ f−1
j=0 Pj ⊗

⊗ f−1
j=0 Qj, we have ψ(P⊗ Q) = ψP⊗Q, where now noting that rj = 0 for 1 ≤ j ≤ f − 1, we have

ψP⊗Q : G(Fq)→ Fq2 is defined by

(
a b
c d

)
7→ ∇r0−2

0 (P0)P1 · · · Pf−1

∣∣∣(Ap f
α ,Bp f

α ,...,Ap2 f−1
α ,Bp2 f−1

α )

(Aα ,Bα ,...,Ap f−1
α ,Bp f−1

α )
·

f−1

∏
j=0

Qj(Ap f+j

α , Bp f+j

α ),

where ∇0 = Aα
∂

∂X0
+ Bα

∂
∂Y0

. By Lemma 4.6 (1), the map ψP⊗Q is T(Fq)-linear and hence ψ is well defined. It
is also G(Fq)-linear by Lemma 4.6 (2).

We show that ker ψ = 〈D0, . . . , D f−1〉 ⊗
⊗ f−1

j=0 VFrj

p−1. The proof occupies the rest of this paper. First we

show 〈D0, . . . , D f−1〉 ⊗
⊗ f−1

j=0 VFrj

p−1 ⊂ ker ψ.

Case 1: Suppose j 6= 0. We show that Im Dj ⊂ ker ψ. For 0 ≤ i0 ≤ r0 − 1, we have

Dj

(
Xr0−1−i0

0 Yi0
0 X

p−ij
j Y

ij
j

f−1

∏
l=j+1

Xp−1−il
l Yil

l

)

= Xr0+p−1−i0
0 Yi0

0

(
j−1

∏
l=1

Xp−1
l

)
(−ij)X

p−1−ij
j Y

ij
j

(
f−1

∏
l=j+1

Xp−1−il
l Yil

l

)

+ Xr0−1−i0
0 Yi0+p

0

(
j−1

∏
l=1

Yp−1
l

)
ijX

p−ij
j Y

ij−1
j

(
f−1

∏
l=j+1

Xp−1−il
l Yil

l

)
.

We claim

−∇r0−2
0

(
Xr0+p−1−i0

0 Yi0
0

)(j−1

∏
l=1

Xp−1
l

)
X

p−1−ij

j Y
ij

j

 f−1

∏
l=j+1

Xp−1−il
l Yil

l

 ∣∣∣(Ap f
α ,Bp f

α ,...,Ap2 f−1
α ,Bp2 f−1

α )

(Aα ,Bα ,...,Ap f−1
α ,Bp f−1

α )

+∇r0−2
0

(
Xr0−1−i0

0 Yi0+p
0

)(j−1

∏
l=1

Yp−1
l

)
X

p−ij

j Y
ij−1
j

 f−1

∏
l=j+1

Xp−1−il
l Yil

l

 ∣∣∣(Ap f
α ,Bp f

α ,...,Ap2 f−1
α ,Bp2 f−1

α )

(Aα ,Bα ,...,Ap f−1
α ,Bp f−1

α )
= 0. (4.24)

Indeed, we have

∇r0−2
0

(
Xr0+p−1−i0

0 Yi0
0

)
=

(
Aα

∂

∂X0
+ Bα

∂

∂Y0

)r0−2 (
Xr0+p−1−i0

0 Yi0
0

)
=

r0−2

∑
k0=0

(
r0 − 2

k0

)
Ar0−2−k0

α Bk0
α [r0 + p− 1− i0]r0−2−k0 [i0]k0 Xp+1−(i0−k0)

0 Yi0−k0
0

=

(
r0 − 2
i0 − 1

)
Ar0−1−i0

α Bi0−1
α (r0 − 1− i0)!i0!Xp

0 Y0

+

(
r0 − 2

i0

)
Ar0−2−i0

α Bi0
α (r0 − 1− i0)!i0!Xp+1

0 , (4.25)

and similarly

∇r0−2
0

(
Xr0−1−i0

0 Yi0+p
0

)
=

(
r0 − 2
i0 − 1

)
Ar0−1−i0

α Bi0−1
α (r0 − 1− i0)!i0!Yp+1

0

+

(
r0 − 2

i0

)
Ar0−2−i0

α Bi0
α (r0 − 1− i0)!i0!X0Yp

0 . (4.26)
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Ignoring the factor (r0 − 1− i0)!i0! and using (4.25), the first summand on the left side of (4.24) becomes

−
(

r0 − 2
i0 − 1

)
Ar0−1−i0

α Bi0−1
α Xp

0 Y0

(
j−1

∏
l=1

Xp−1
l

)
X

p−1−ij

j Y
ij

j

 f−1

∏
l=j+1

Xp−1−il
l Yil

l

 ∣∣∣(Ap f
α ,Bp f

α ,...,Ap2 f−1
α ,Bp2 f−1

α )

(Aα ,Bα ,...,Ap f−1
α ,Bp f−1

α )

−
(

r0 − 2
i0

)
Ar0−2−i0

α Bi0
α Xp+1

0

(
j−1

∏
l=1

Xp−1
l

)
X

p−1−ij

j Y
ij

j

 f−1

∏
l=j+1

Xp−1−il
l Yil

l

 ∣∣∣(Ap f
α ,Bp f

α ,...,Ap2 f−1
α ,Bp2 f−1

α )

(Aα ,Bα ,...,Ap f−1
α ,Bp f−1

α )
,

which, by noting

j−1

∑
l=1

(p− 1)p f+l + (p− 1− ij)p f+j +
f−1

∑
l=j+1

(p− 1− il)p f+l = p2 f − p f+1 −
f−1

∑
l=j

il p f+l

and, dividing by p f ,

j−1

∑
l=1

(p− 1)pl + (p− 1− ij)pj +
f−1

∑
l=j+1

(p− 1− il)pl = p f − p−
f−1

∑
l=j

il pl ,

equals

−
(

r0 − 2
i0 − 1

)
Ar0−1−i0

α Bi0−1
α

A
p f+1+p2 f−p f+1−

f−1
∑
l=j

il p f+l

α B
p f +

f−1
∑
l=j

il p f+l

α − A
p+p f−p−

f−1
∑
l=j

il pl

α B
1+

f−1
∑
l=j

il pl

α



−
(

r0 − 2
i0

)
Ar0−2−i0

α Bi0
α

A
p f+1+p f +p2 f−p f+1−

f−1
∑
l=j

il p f+l

α B

f−1
∑
l=j

il p f+l

α − A
p+1+p f−p−

f−1
∑
l=j

il pl

α B

f−1
∑
l=j

il pl

α



= −
(

r0 − 2
i0 − 1

)A
r0−i0−

f−1
∑
l=j

il p f+l

α B
i0−1+p f +

f−1
∑
l=j

il p f+l

α − A
r0−1−i0+p f−

f−1
∑
l=j

il pl

α B
i0+

f−1
∑
l=j

il pl

α



−
(

r0 − 2
i0

)A
r0−1−i0+p f−

f−1
∑
l=j

il p f+l

α B
i0+

f−1
∑
l=j

il p f+l

α − A
r0−1−i0+p f−

f−1
∑
l=j

il pl

α B
i0+

f−1
∑
l=j

il pl

α

 . (4.27)

Again, ignoring the common factor (r0 − 1− i0)!i0! and using (4.26), a similar computation shows that the
second summand on the left hand side of (4.24) is

(
r0 − 2
i0 − 1

)A
r0−i0−

f−1
∑

l=j
il p f+l

α B
i0−1+p f +

f−1
∑

l=j
il p f+l

α − A
r0−1−i0+p f−

f−1
∑

l=j
il pl

α B
i0+

f−1
∑

l=j
il pl

α



+

(
r0 − 2

i0

)A
r0−1−i0+p f−

f−1
∑

l=j
il p f+l

α B
i0+

f−1
∑

l=j
il p f+l

α − A
r0−1−i0+p f−

f−1
∑

l=j
il pl

α B
i0+

f−1
∑

l=j
il pl

α

 , (4.28)

which is the negative of (4.27). This proves the claim (4.24). Hence Im Dj ⊂ ker ψ for all 1 ≤ j ≤ f − 1.

Case 2: The proof that Im D0 ⊂ ker ψ is similar and is omitted.

Combining Cases 1 and 2, we see that 〈D0, . . . , D f−1〉 ⊗
⊗ f−1

j=0 VFrj

p−1 ⊂ ker ψ.

Next we show that ker ψ ⊂ 〈D0, . . . , D f−1〉 ⊗
⊗ f−1

j=0 VFrj

p−1. Let

P⊗Q =

~r+q−1

∑
~i=~0

~q−1

∑
~j=~0

b~i,~jX
r0+p−1−i0
0 Yi0

0

(
f−1

∏
l=1

Xp−1−il
l Yil

l

)(
f−1

∏
l=0

Sp−1−jl
l T jl

l

)
∈ ker ψ,
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where~i = (i0, . . . , i f−1),~j = (j0, . . . , j f−1) and
~r+q−1
∑
~i=~0

:=
r0+p−1

∑
i0=0

p−1
∑

i1=0
· · ·

p−1
∑

i f−1=0
,

~q−1
∑
~j=~0

:=
p−1
∑

j0=0
· · ·

p−1
∑

j f−1=0
. By definition

of ψ, for all
(

a b
c d

)
∈ G(Fq), we have

~r+q−1

∑
~i=~0

~q−1

∑
~j=~0

b~i,~j∇
r0−2
0

(
Xr0+p−1−i0

0 Yi0
0

)( f−1

∏
l=1

Xp−1−il
l Yil

l

) ∣∣∣(Ap f
α ,Bp f

α ,...,Ap2 f−1
α ,Bp2 f−1

α )

(Aα ,Bα ,...,Ap f−1
α ,Bp f−1

α )

·
f−1

∏
l=0

Sp−1−jl
l T jl

l

∣∣∣(Ap f+l
α ,Bp f+l

α )

(0,0)

 = 0. (4.29)

Note, for each~j,

f−1

∏
l=0

Sp−1−jl
l T jl

l

∣∣∣(Ap f+l
α ,Bp f+l

α )

(0,0)

 = A

f−1
∑

l=0
(p−1−jl)p f+l

α B

f−1
∑

l=0
jl p f+l

α = A
1−q−

f−1
∑

l=0
jl p f+l

α B

f−1
∑

l=0
jl p f+l

α . (4.30)

Now by fixing~j and only considering the sum over~i in (4.29), we have

~r+q−1

∑
~i=~0

b~i,~j

(
Aα

∂

∂X0
+ Bα

∂

∂Y0

)r0−2 (
Xr0+p−1−i0

0 Yi0
0

)( f−1

∏
l=1

Xp−1−il
l Yil

l

) ∣∣∣(Ap f
α ,Bp f

α ,...,Ap2 f−1
α ,Bp2 f−1

α )

(Aα ,Bα ,...,Ap f−1
α ,Bp f−1

α )

=

~r+q−1

∑
~i=~0

r0−2

∑
k0=0

b~i,~j

(
r0 − 2

k0

)
[r0 + p− 1− i0]r0−2−k0 [i0]k0 Ar0−2−k0

α Bk0
α

· Xp+1−(i0−k0)
0 Yi0−k0

0

(
f−1

∏
l=1

Xp−1−il
l Yil

l

) ∣∣∣(Ap f
α ,Bp f

α ,...,Ap2 f−1
α ,Bp2 f−1

α )

(Aα ,Bα ,...,Ap f−1
α ,Bp f−1

α )
,

which by observing p f+1 + p f − (i0− k0)p f +
f−1
∑

l=1
(p− 1− il)p f+l = p2 f + p f (1+ k0)−

f−1
∑

l=0
il p f+l , and writing

Ci0,k0 =

(
r0 − 2

k0

)
[r0 + p− 1− i0]r0−2−k0 [i0]k0 = (r0 − 2)!

(
r0 + p− 1− i0

r0 − 2− k0

)(
i0
k0

)
, (4.31)

equals
~r+q−1

∑
~i=~0

r0−2

∑
k0=0

b~i,~j Ci0,k0 Ar0−2−k0
α Bk0

α

·

A
p2 f +p f (1+k0)−

f−1
∑

l=0
il p f+l

α B
(i0−k0)p f +

f−1
∑

l=1
il p f+l

α − A
p f +1+k0−

f−1
∑

l=0
il pl

α B
i0−k0+

f−1
∑

l=1
il pl

α



=

~r+q−1
′

∑
~i=~0′

b~i,~j

r0−2

∑
k0=0

Ci0,k0 A
r0+q−1−k0(1−q)−q

(
f−1
∑

l=0
il pl

)
α B

k0(1−q)+q

(
f−1
∑

l=0
il pl

)
α


−

~r+q−1
′

∑
~i=~0′

b~i,~j(r0 − 1)!A
r0+q−1−

f−1
∑

l=0
il pl

α B

f−1
∑

l=0
il pl

α . (4.32)

The last equality holds since by (2.1), we have
r0−2

∑
k0=0

Ci0,k0 =
r0−2

∑
k0=0

(
r0 − 2

k0

)
[r0 + p− 1− i0]r0−2−k0 [i0]k0 = (r0 − 1)! mod p.

Moreover, we have adorned the limits in the last two sums with ′s to indicate that we drop the terms corre-
sponding to~i =~0 and~i = ~r + q− 1. Indeed, if~i =~0, then i0 = 0 and

C0,k0 =

{
(r0 − 1)!, if k0 = 0,
0, otherwise.
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So the term for~i =~0 in (4.32) is

b~0,~j

(
(r0 − 1)!Ar0+q−1

α − (r0 − 1)!Ar0+q−1
α

)
= 0.

Similarly, one may check that the term for~i = ~r0 + q− 1 is zero.
For notational convenience, set

(∗) :=

r0−2

∑
k0=0

Ci0,k0 A
r0+q−1−k0(1−q)−q

(
f−1
∑

l=0
il pl

)
α B

k0(1−q)+q

(
f−1
∑

l=0
il pl

)
α

− (r0 − 1)!A
r0+q−1−

f−1
∑

l=0
il pl

α B

f−1
∑

l=0
il pl

α .

Then (4.32) decomposes as
r0−1

∑
i0=1

bi0,0,...,0,~j (∗) +
r0+p−2

∑
i0=p

bi0,p−1,...,p−1,~j (∗)

+
p−1

∑
i0=r0

p−1

∑
i1=0
· · ·

p−1

∑
i f−1=0

bi0,...,i f−1,~j (∗)

+
f−1

∑
t=1

r0−1

∑
i0=0

0

∑
i1=0
· · ·

0

∑
it−1=0

p−1

∑
it=1

p−1

∑
it+1=0

· · ·
p−1

∑
i f−1=0

bi0,0,...,0,it ,...,i f−1,~j (∗)


+

f−1

∑
t=1

r0+p−1

∑
i0=p

p−1

∑
i1=p−1

· · ·
p−1

∑
it−1=p−1

p−2

∑
it=0

p−1

∑
it+1=0

· · ·
p−1

∑
i f−1=0

bi0,p−1,...,p−1,it ,...,i f−1,~j (∗)

 . (4.33)

By taking i1 = i2 = · · · = i f−1 = 0, the coefficient (∗) of bi0,0,...,0,~j in the first sum above is(
r0−2

∑
k0=0

Ci0,k0 Ar0+q−1−k0(1−q)−i0q
α Bk0(1−q)+i0q

α

)
− (r0 − 1)!Ar0+q−1−i0

α Bi0
α .

Note that, by (4.31), for 0 ≤ i0 ≤ r0 − 1, we have

Ci0,k0 =


(r0 − 2)!i0, if k0 = i0 − 1,
(r0 − 2)!(r0 − 1− i0), if k0 = i0,
0, otherwise.

Thus the coefficient of bi0,0,...,0,~j becomes

i0(r0 − 2)!Ar0−i0
α Bi0+q−1

α + ((r0 − 1− i0)(r0 − 2)!− (r0 − 1)!) Ar0+q−1−i0
α Bi0

α ,

which further equals

i0(r0 − 2)!
(

Ar0−i0
α Bi0+q−1

α − Ar0+q−1−i0
α Bi0

α

)
. (4.34)

Now use the transformation i0 7→ i0 + p− 1 in the second sum of (4.33). By taking i1 = i2 = · · · = i f−1 =
p− 1, the coefficient (∗) of bi0+p−1,p−1,...,p−1,~j is given by(

r0−2

∑
k0=0

Ci0+p−1,k0 Ar0+q−1−k0(1−q)−q(i0+q−1)
α Bk0(1−q)+q(i0+q−1)

α

)
− (r0 − 1)!Ar0−i0

α Bi0+q−1
α .

For 0 ≤ i0 ≤ r0 − 1, we have

Ci0+p−1,k0 =

(
r0 − 2

k0

)
[r0 − i0]r0−2−k0 [i0 + p− 1]k0 =


(r0 − 2)!(i0 − 1), if k0 = i0 − 2,
(r0 − 2)!(r0 − i0), if k0 = i0 − 1,
0, otherwise.

Thus the coefficient of bi0+p−1,p−1,p−1,...,p−1,~j becomes

((r0 − 2)!(i0 − 1)− (r0 − 1)!) Ar0−i0
α Bi0+q−1

α + (r0 − 2)!(r0 − i0)Ar0+q−1−i0
α Bi0

α ,

which equals

− (r0 − 2)!(r0 − i0)
(

Ar0−i0
α Bi0+q−1

α − Ar0+q−1−i0
α Bi0

α

)
. (4.35)
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Finally, using i0 7→ i0 + p and it 7→ it − 1 in the fifth sum of (4.33), and noting that
f−1
∑

l=0
il pl changes to

i0 + p +
t−1

∑
l=1

(p− 1)pl + (it − 1)pt +
f−1

∑
l=t+1

il pl = i0 +
f−1

∑
l=t

il pl ,

the coefficient (∗) of bi0+p,p−1,...,p−1,it−1,it+1,...,i f−1,~j equals

r0−2

∑
k0=0

Ci0+p,k0 A
r0+q−1−k0(1−q)−q

(
i0+

f−1
∑

l=t
il pl

)
α B

k0(1−q)+q

(
i0+

f−1
∑

l=t
il pl

)
α − (r0 − 1)!A

r0+q−1−i0−
f−1
∑

l=t
il pl

α B
i0+

f−1
∑

l=t
il pl

α (4.36)

which is exactly the coefficient of bi0,0,...,0,it ,...,i f−1,~j obtained by taking i1 = i2 = · · · = it−1 = 0 in (∗), since

Ci0+p,k0 = Ci0,k0 mod p for 0 ≤ i0 ≤ r0 − 1. Summarizing, the transformation i0 7→ i0 + p− 1 in the second
sum of (4.33) and the transformations i0 7→ i0 + p and it 7→ it − 1 in the fifth sum of (4.33), together with
(4.34), (4.35) and (4.36), allow us to rewrite (4.33) as

r0−1

∑
i0=1

(r0 − 2)!
(

i0bi0,0,...,0,~j − (r0 − i0)bi0+p−1,p−1,...,p−1,~j

) (
Ar0−i0

α Bi0+q−1
α − Ar0+q−1−i0

α Bi0
α

)

+
p−1

∑
i0=r0

p−1

∑
i1=0
· · ·

p−1

∑
i f−1=0

bi0,...,i f−1,~j (∗)

+
f−1

∑
t=1

r0−1

∑
i0=0

p−1

∑
it=1

p−1

∑
it+1=0

· · ·
p−1

∑
i f−1=0

(
bi0,0,...,0,it ,...,i f−1,~j + bi0+p,p−1,...,p−1,it−1,...,i f−1,~j

)
(∗)

 . (4.37)

Now, for each~j = (j0, . . . , j f−1), let i = ∑
f−1
l=0 il pl and j = ∑

f−1
l=0 jl pl , and set

Xi,j =


i0bi0,0,...,0,~j − (r0 − i0)bi0+p−1,p−1,...,p−1,~j, if 1 ≤ i0 ≤ r0 − 1, it = 0 for t 6= 0,

bi0,...,i f−1,~j, if r0 ≤ i0 ≤ p− 1, 0 ≤ it ≤ p− 1 for t 6= 0,

bi0,0,...,0,it ,...,i f−1,~j + bi0+p,p−1,...,p−1,it−1,...,i f−1,~j, if 0 ≤ i0 ≤ r0 − 1, t ≥ 1 smallest s.t. it 6= 0.

Note that 1 ≤ i ≤ q− 1 and 0 ≤ j ≤ q− 1, so there are (q− 1)q variables Xi,j, with the first kind running in
the range 1 ≤ i = i0 ≤ r0 − 1, and the second and third kind running in the range r0 ≤ i ≤ q− 1.

By (4.29), and (4.30), and (4.37) but with the variables Xi,j, we obtain

r0−1

∑
i=1

q−1

∑
j=0

(r0 − 2)!Xi,j

(
Ar0−i

α Bi+q−1
α − Ar0+q−1−i

α Bi
α

)
· A1−q−jq

α Bjq
α

+
q−1

∑
i=r0

q−1

∑
j=0

Xi,j

((
r0−2

∑
k0=0

Ci0,k0 Ar0+q−1−k0(1−q)−iq
α Bk0(1−q)+iq

α

)
− (r0 − 1)!Ar0+q−1−i

α Bi
α

)
· A1−q−qj

α Bqj
α = 0,

which by dividing by (r0 − 2)! and setting (cf. (4.31))

Zi0,k0 =
Ci0,k0

(r0 − 2)!
=

(
r0 + p− 1− i0

r0 − 2− k0

)(
i0
k0

)
yields the system of equations (that was obtained earlier in (4.6) for q = p)

r0−1

∑
i=1

q−1

∑
j=0

Xi,j

(
Ar0+1−q−i−jq

α Bi+jq+q−1
α − Ar0−i−jq

α Bi+jq
α

)

+
q−1

∑
i=r0

q−1

∑
j=0

Xi,j

((
r0−2

∑
k0=0

Zi0,k0 Ar0−k0(1−q)−(i+j)q
α Bk0(1−q)+(i+j)q

α

)
− (r0 − 1)Ar0−i−jq

α Bi+jq
α

)
= 0.

As before, we separate the equations according to the congruence class 1 ≤ n ≤ q− 1 of the sum i + j so that
we obtain q− 1 separate systems of equations (each with q distinct variables). Again in order to work in the
basis Bq, we convert all flips and flops to elements of Bq using (4.20) and (4.21). The resulting equations and
corresponding coefficient matrices obtained and the computation using row operations to show that these
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matrices have non-zero determinant are identical to the case of q = p treated earlier. The only real difference
is that in the formulas for the determinant (obtained earlier in three cases depending on the relative size of
n), one needs to replace p by q everywhere. We conclude that all Xi,j = 0. That is, for each~j, we have

(1) if 1 ≤ i0 ≤ r0 − 1 and ij = 0 for j 6= 0, then

i0bi0,0,...,0,~j = (r0 − i0)bi0+p−1,p−1,...,p−1,~j,

(2) if r0 ≤ i0 ≤ p− 1 and 0 ≤ ij ≤ p− 1 for 1 ≤ j ≤ f − 1, then

bi0,...,i f−1,~j = 0,

(3) if 0 ≤ i0 ≤ r0 − 1 and there is a (smallest) 1 ≤ t ≤ f − 1 with it 6= 0 (so ij = 0 for 1 ≤ j ≤ t− 1 and
0 ≤ it+1, . . . , i f−1 ≤ p− 1), then

bi0,0,...,0,it ,...,i f−1,~j = −bi0+p,p−1,...,p−1,it−1,it+1,...,i f−1,~j.

Then,

P⊗Q =

~q−1

∑
~j=~0

 ~r+q−1

∑
~i=~0

b~i,~jX
r0+p−1−i0
0 Yi0

0

f−1

∏
l=1

Xp−1−il
l Yil

l

⊗ f−1

∏
l=0

Sp−1−jl
l T jl

l ,

where each polynomial in the parentheses satisfies (1), (2), (3). So by Lemma 4.8, we conclude P ⊗ Q ∈
〈D0, . . . , D f−1〉 ⊗

⊗ f−1
j=0 VFrj

p−1, showing ker ψ ⊂ 〈D0, . . . , D f−1〉 ⊗
⊗ f−1

j=0 VFrj

p−1. We finally have

ker ψ = 〈D0, . . . , D f−1〉 ⊗
f−1⊗
j=0

VFrj

p−1.

By Remark 4, the dimension of 〈D0, . . . , D f−1〉 over Fq equals r0 p f−1 + 1, so after tensoring with Fq2 ,

dimFq2

 ⊗ f−1
j=0 VFrj

rj+p−1

〈D0, . . . , D f−1〉

 = (r0 + p)p f−1 − r0 p f−1 − 1 = q− 1.

Thus, over Fq2 we have dimFq2

 ⊗ f−1
j=0 VFrj

rj+p−1

〈D0, . . . , D f−1〉
⊗⊗ f−1

j=0 VFrj

p−1

 = q(q− 1) = dimFq2 ind
G(Fq)

T(Fq)
ωr

2 f , and so ψ

must be an isomorphism. This completes the proof of Theorem 4.9 (which is also Theorem 1.6). �
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