Assignment 2

Analysis I (Fall 2022, Semester I)

Deadline: October 5, 2022

October 10, 2022

1. Consider a topological space X and a function $f: X \mapsto \mathbb{R}$. Show that the set $C_{f} \subset X$ of continuity points of f lies in $\mathscr{B}(X)$.
2. For any $s \in \mathbb{R}$, consider the integral $I(s):=\int_{\mathbb{R}_{\geq 0}} x^{s-1} e^{-x} d x$ where $\mathbb{R}_{\geq 0}:=[0, \infty)$.
(a) Show that $I(s)<\infty$ if and only if $s>0$ in which case we call it the Gamma function, denoted as $\Gamma(s)$.
(b) Show that $\Gamma(\cdot)$ is differentiable and give an integral formula for $\Gamma^{\prime}(s)$.
(c) Show that $\Gamma^{\prime}(1)=\lim _{n} \int_{[0, n]}(1-t / n)^{n} \ln t d t$.
3. Let λ be a signed measure on a σ-filed \mathcal{F} of subsets of Ω. Show that

$$
|\lambda|(A)=\sup \left\{\sum_{1 \leq j \leq n}\left|\lambda\left(E_{i}\right)\right|: E_{n} \subset A, E_{n} \in \mathcal{F} \text { are pairwise disjoint }\right\}
$$

4. A complex measure λ on a σ-field \mathcal{F} of subsets of Ω is a complex-valued, countably additive set function of the form $\lambda_{1}+i \lambda_{2}$ where λ_{1} and λ_{2} are finite signed measures. Define the total variation $|\lambda|$ of λ as in the previous problem.
(a) Show that $|\lambda|$ is a measure on \mathcal{F}.
(b) Define $\lambda \ll \mu$ in the usual manner for any measure μ. Show that $\lambda \ll \mu$ iff $|\lambda| \ll \mu$.
(c) If λ is finite, then $\lambda \ll \mu$ iff $\lim _{\mu(A) \rightarrow 0} \lambda(A)=0$.
5. Consider the space $L^{p}\left(\mathbb{R}^{n}, \mathscr{B}\left(\mathbb{R}^{n}\right), \lambda\right)$ where λ is the Lebesgue measure on $\mathscr{B}\left(\mathbb{R}^{n}\right)$ and $1 \leq p<\infty$. Through the following steps, we would prove that the normed space $L^{p}\left(\mathbb{R}^{n}, \mathscr{B}\left(\mathbb{R}^{n}\right), \lambda\right)$ is separable (here we identify all the functions that agree almost everywhere $[\lambda]$).
(a) If $f \in L^{p}$ and $\varepsilon>0$, there is a finite-valued simple function $|g| \leq|f|$ in L^{p} such that $\|f-g\|_{p}<\varepsilon$.
(b) Prove that the Lebesgue measure λ is regular according to the definition given in Problem 7 in Assignment 1.
(c) Conclude that L^{p} is separable.
6. Let (X, d) be a complete, separable, locally compact metric space, μ a finite measure on $\mathscr{B}(X)$ and $C_{c}(X)$ denote the space of all compactly supported continuous functions on X. Prove that $C_{c}(X)$ is a dense subspace of $L^{p}\left(\mathbb{R}^{n}, \mathscr{B}\left(\mathbb{R}^{n}\right), \mu\right)$ for any $1 \leq p<\infty$.

HINT: Use a special property of this type of measures and Urysohn's lemma.
7. (Chain rule) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and $g:(\Omega, \mathcal{F}) \mapsto(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ be non-negative. Define a measure λ on \mathcal{F} by

$$
\lambda(A)=\int_{A} g d \mu, \quad A \in \mathcal{F}
$$

Show that if $f:(\Omega, \mathcal{F}) \mapsto(\mathbb{R}, \mathscr{B}(\mathbb{R}))$,

$$
\int_{\Omega} f d \lambda=\int_{\Omega} f g d \mu
$$

in the sense that if one of the integrals exists, so does the other, and the two integrals are equal. In particular, prove that if $\lambda \ll \nu$ and $\nu \ll \mu$ (so that $\lambda \ll \mu$) where λ is a signed measure and ν, μ are measures on \mathcal{F} and both $\frac{d \lambda}{d \nu}$ and $\frac{d \nu}{d \mu}$ exist, then $\frac{d \lambda}{d \mu}$ exists and equals $\frac{d \lambda}{d \nu} \frac{d \nu}{d \mu}$ a.e. $[\mu]$.

