Assignment 2

Analysis I (Fall 2024, Semester I)

Deadline: October 16, 2024

October 3, 2024

- **1**. For any $s \in \mathbb{R}$, consider the integral $I(s) \coloneqq \int_{\mathbb{R}_{\geq 0}} x^{s-1} e^{-x} dx$ where $\mathbb{R}_{\geq 0} \coloneqq [0, \infty)$.
 - (a) Show that $I(s) < \infty$ if and only if s > 0 in which case we call it the *Gamma* function, denoted as $\Gamma(s)$.
 - (b) Show that $\Gamma(\cdot)$ is differentiable and give an integral formula for $\Gamma'(s)$.
 - (c) Show that $\Gamma'(1) = \lim_{n \to \infty} \int_{[0,n]} (1 t/n)^n \ln t \, dt$.
- **2**. Let λ be a signed measure on a σ -filed \mathcal{F} of subsets of Ω . Show that

$$|\lambda|(A) = \sup\left\{\sum_{1 \le j \le n} |\lambda(E_i)| : E_n \subset A, E_n \in \mathcal{F} \text{ are pairwise disjoint}\right\}.$$

- **3.** A complex measure λ on a σ -field \mathcal{F} of subsets of Ω is a complex-valued, countably additive set function of the form $\lambda_1 + i\lambda_2$ where λ_1 and λ_2 are finite signed measures. Define the *total variation* $|\lambda|$ of λ as in the previous problem.
 - (a) Show that $|\lambda|$ is a measure on \mathcal{F} .
 - (b) Define $\lambda \ll \mu$ in the usual manner for any measure μ . Show that $\lambda \ll \mu$ iff $|\lambda| \ll \mu$.
- 4. (Scheffé's lemma) Let $(f_n)_{n\geq 1}$ be a sequence of integrable functions on a measure space $(\Omega, \mathcal{F}, \mu)$ that converges almost everywhere to an integrable function f. Show that $\int_{\Omega} |f_n - f| d\mu \to 0$ if and only if $\int_{\Omega} |f_n| d\mu \to \int_{\Omega} |f| d\mu$.

5. Let f be an integrable function on a measure space $(\Omega, \mathcal{F}, \mu)$. Show that

$$\lim_{\mu(A)\to 0} \int_A f d\mu = 0$$

in the sense that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|\int_A f d\mu| < \varepsilon$ whenever $\mu(A) < \delta$.

6. (Chain rule) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and $g : (\Omega, \mathcal{F}) \mapsto (\mathbb{R}, \mathscr{B}(\mathbb{R}))$ be non-negative. Define a measure λ on \mathcal{F} by

$$\lambda(A) = \int_A g \, d\mu \,, \quad A \in \mathcal{F}.$$

Show that if $f: (\Omega, \mathcal{F}) \mapsto (\mathbb{R}, \mathscr{B}(\mathbb{R})),$

$$\int_{\Omega} f \, d\lambda = \int_{\Omega} f g \, d\mu$$

in the sense that if one of the integrals exists, so does the other, and the two integrals are equal. In particular, prove that if $\lambda \ll \nu$ and $\nu \ll \mu$ (so that $\lambda \ll \mu$) where λ is a signed measure and ν, μ are measures on \mathcal{F} and both $\frac{d\lambda}{d\nu}$ and $\frac{d\nu}{d\mu}$ exist, then $\frac{d\lambda}{d\mu}$ exists and equals $\frac{d\lambda}{d\nu}\frac{d\nu}{d\mu}$ a.e. $[\mu]$.