Assignment 4

Analysis I (Fall 2022, Semester I)

Deadline: December 07, 2022

November 28, 2022

The underlying scalar field is taken to be $\mathbb C$ unless mentioned otherwise

- **1**. Let *H* be a Hilbert space and $T \in \mathscr{B}(H)$. Then *T* is hermitian if and only if $\langle Tx, x \rangle \in \mathbb{R}$ for all $x \in H$.
- **2**. Let *H* be a Hilbert space and $T \in \mathscr{B}(H)$. Show that there exist unique self-adjoint operators $T_1, T_2 \in \mathscr{B}(H)$ such that $T = T_1 + iT_2$. T_1 and T_2 are called the *real* and *imaginary* parts of *T* respectively.
- **3**. Let *H* be a hilbert space and $T \in \mathscr{B}(H)$. *T* is called *normal* if $TT^* = T^*T$. Show that the following statements are equivalent:
 - (i) T is normal.
 - (ii) $||Tx|| = ||T^*x||$ for all x.
 - (iii) The real and imaginary parts of T commute.
- 4. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $k \in L^2(\Omega \times \Omega, \mathcal{F} \times \mathcal{F}, \mu \times \mu)$ be a *kernel*. Given $f \in L^2(\Omega, \mathcal{F}, \mu)$, define the function Kf on Ω as follows:

$$(Kf)(\omega) = \int k(\omega, \omega') f(\omega') d\mu(\omega').$$

- (a) Show that K is a bounded linear operator on $L^2(\Omega, \mathcal{F}, \mu)$ with $||K|| \leq ||k||_2$.
- (b) Let $\{e_i : i \in I\}$ be an ONB for $L^2(\Omega, \mathcal{F}, \mu)$ and

$$\phi_{ij}(\omega,\omega') \coloneqq e_j(\omega) \overline{e_i(\omega')}$$

for $i, j \in I$ and $\omega, \omega' \in \Omega$. Show that $\{\phi_{ij} : i, j \in I\}$ is an ONS in $L^2(\Omega \times \Omega, \mathcal{F} \times \mathcal{F}, \mu \times \mu)$ and that $\langle k, \phi_{ij} \rangle = \langle Ke_i, e_j \rangle$ where the inner products are L^2 in their respective measure spaces.

- (c) Show that there are at most a countable number of i and j such that $\langle k, \phi_{ij} \rangle \neq 0$. Let us denote them as $\{\psi_{k\ell} : 1 \leq k, \ell < \infty\}$ and $\psi_{k\ell}(\omega, \omega') = e_k(\omega) \overline{e_\ell(\omega')}$. Now define $K_n = KP_n + P_nK - P_nKP_n$ where P_n is the orthogonal projection onto span $\{e_k : 1 \leq k \leq n\}$. Deduce that K_n is finite-rank.
- (d) Show that

$$||Kf - K_n f||^2 \le \sum_{n+1 \le k, \ell < \infty} |\langle k, \psi_{k\ell} \rangle|^2$$

for any $f \in L^2(\Omega, \mathcal{F}, \mu)$ such that $||f|| \leq 1$.

- (e) Deduce that $||K K_n|| \to 0$ and conclude that K is a compact operator.
- 5. Let $(\Omega, \mathcal{F}, \mu)$ be a σ -finite measure space. For any $\phi \in L^{\infty}(\Omega, \mathcal{F}, \mu)$, consider the multiplication operator $M_{\phi} : L^2(\Omega, \mathcal{F}, \mu) \mapsto L^2(\Omega, \mathcal{F}, \mu)$ by $M_{\phi}f = \phi f$.
 - (a) Show that M_{ϕ} is bounded and $||M_{\phi}|| = ||\phi||_{\infty}$.
 - (b) No nonzero multiplication operator on $L^2[0,1]$ is compact.
- 6. Let *H* be a Hilbert space and $T \in \mathcal{K}(H)$. Let *S* be an invariant subspace for *H*, i.e., $TS \subset S$. Show that $T_{|S|}$ is compact.
- 7. (Hilbert-Schmidt operators) Let H be a separable Hilbert space. An operator $T \in \mathscr{B}(H)$ is called a *Hilbert-Schmidt operator* if there is an ONB $\{e_n\}_{n=1}^{\infty}$ of H such that $\sum ||Te_n||^2 < \infty$.
 - (a) Show that if $\{f_m\}_{m=1}^{\infty}$ is another ONB of H, then $\sum ||Te_n||^2 = \sum ||Tf_m||^2$.
 - (b) The number $||T||_{\text{HS}} = (\sum ||Te_n||^2)^{1/2}$ is called the *Hilbert-Schmidt norm* of *T*. Show that $||T||_{\text{HS}} \ge ||T||$.
 - (c) Show that the operator K considered in Problem 4 is in fact a Hilbert-Schmidt operator. Find its Hilbert-Schmidt norm.
- 8. Show that every Hilbert-Schmidt operator T on a Hilbert space H is compact. Find a compact operator that is not a Hilbert-Schmidt operator.