Assignment 4

Analysis I (Fall 2024, Semester I)

Deadline: December 04, 2024

November 20, 2024

- 1. Let G be a locally compact Hausdorff topological group. A *left Haar measure* (respectively right Haar measure) on G is a nonzero locally finite regular Borel measure μ on G such that $\mu(gA) = \mu(A)$ (respectively $\mu(Ag) = \mu(A)$) for all $g \in G$ and all measurable subsets A of G. In the remainder of this problem we will assume that μ is a left Haar measure on G.
	- (a) Show that $\mu(U) > 0$ for all open $U \subset G$ and also that $\int_G f d\mu > 0$ for any nonnegative $f \in C_c(G)$ that is not identically 0.
	- (b) Show that there always exists a nonnegative $\varphi \in C_c(G)$ that is not identically 0.
	- (c) Show that $C_c(G) \subset L^1(G)$.
	- (d) Show that $\int_G f(hg)d\mu(g) = \int_G f(g)d\mu(g)$ for all $f \in L^1(G, \mathcal{B}(G), \mu)$ and $h \in G$.
	- (e) Consider a function $\varphi \in C_c(G)$ that is not identically 0 and a left Haar measure ν (not necessarily equal to μ). Now define, for any $f \in C_c(G)$,

$$
F_f(g, h) = \frac{f(g) \varphi(hg)}{\int_G \varphi(kg) d\nu(k)}.
$$

Show that $F_f \in L^1(G \times G, \mathscr{B}(G)^{\otimes 2}, \mu \otimes \nu)$.

- (f) Show that $\int_G f d\mu = \int_{G \times G} F_f(g, h) d\mu(g) d\nu(h) = \int_{G \times G} F_f(h^{-1}, gh) d\mu(g) d\nu(h)$ and deduce that $\frac{\int_G f d\mu}{\int_G g d\mu}$ $\frac{\int_G f d\mu}{\int_G \varphi d\mu}$ is independent of the *choice* of μ .
- (g) (Uniqueness of Haar measure upto scaling) Conclude that any left Haar measure ν satisfies $\nu = a\mu$ for some $a > 0$.

HINT: Use the Riesz representation theorem.

- 2. Let Y be a closed subspace of a Banach space X .
	- (a) Show that if X is separable, then Y and X/Y are separable.
	- (b) Show that if Y and X/Y are separable, then X is separable.
- **3.** Let $(X, \|\cdot\|_X)$ be an infinite-dimensional separable Banach space and $\{e_\gamma\}$ be an algebraic basis for X. Define a new norm $\|\cdot\|$ on X by $\|x\| = \sum |x_{\gamma}|$ for $x = \sum x_{\gamma}e_{\gamma}$. Show that $\|\cdot\|$ is indeed a norm on X and prove that it is not equivalent to $\|\cdot\|_X$.
- 4. Let X be a Banach space and f be a linear functional on X .
	- (a) Show that $f \in X^*$ if and only if $f^{-1}(0)$ is closed.
	- (b) Show that if f is not continuous, then $f^{-1}(0)$ is dense in X.
- 5. Show that if X is an infinite-dimensional Banach space, then X admits a discontinuous linear functional. Conclude that a Banach space X is infinite-dimensional if and only if it has a subspace that is not closed.
- 6. Let H be a Hilbert space. Show that there exists an abstract set Γ such that H is isometric to $\ell_2(\Gamma)$
- 7. Let $C^1[0,1]$ be the normed space of all real-valued functions on $[0,1]$ with a continuous derivative, endowed with the supremum norm. Define a linear map T from $C^1[0,1]$ into $C[0,1]$ by $T(f) = f'$. Show that T is closed. Prove that T is not bounded. Explain why the closed graph theorem cannot be used here.

For the remaining problems, assume the underlying scalar field to be C unless mentioned otherwise.

- 8. Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Then T is hermitian if and only if $\langle Tx, x \rangle \in \mathbb{R}$ for all $x \in H$.
- **9.** Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Show that there exist unique self-adjoint operators $T_1, T_2 \in \mathcal{B}(H)$ such that $T = T_1 + iT_2$. T_1 and T_2 are called the real and imaginary parts of T respectively.
- 10. Let H be a hilbert space and $T \in \mathcal{B}(H)$. T is called normal if $TT^* = T^*T$. Show that the following statements are equivalent:
	- (i) T is normal.
	- (ii) $||Tx|| = ||T^*x||$ for all x.
- (iii) The real and imaginary parts of T commute.
- 11. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $k \in L^2(\Omega \times \Omega, \mathcal{F} \times \mathcal{F}, \mu \times \mu)$ be a kernel. Given $f \in L^2(\Omega, \mathcal{F}, \mu)$, define the function Kf on Ω as follows:

$$
(Kf)(\omega) = \int k(\omega, \omega') f(\omega') d\mu(\omega').
$$

- (a) Show that K is a bounded linear operator on $L^2(\Omega, \mathcal{F}, \mu)$ with $||K|| \le ||k||_2$.
- (b) Let $\{e_i : i \in I\}$ be an ONB for $L^2(\Omega, \mathcal{F}, \mu)$ and

$$
\phi_{ij}(\omega,\omega') \coloneqq e_j(\omega) \, \overline{e_i(\omega')}
$$

for $i, j \in I$ and $\omega, \omega' \in \Omega$. Show that $\{\phi_{ij} : i, j \in I\}$ is an ONS in $L^2(\Omega \times \Omega, \mathcal{F} \times \Omega)$ $\mathcal{F}, \mu \times \mu$ and that $\langle k, \phi_{ij} \rangle = \langle K e_i, e_j \rangle$ where the inner products are L^2 in their respective measure spaces.

- (c) Show that there are at most a countable number of i and j such that $\langle k, \phi_{ij} \rangle \neq 0$. Let us denote them as $\{\psi_{k\ell} : 1 \leq k, \ell < \infty\}$ and $\psi_{k\ell}(\omega, \omega') = e_k(\omega) \overline{e_{\ell}(\omega')}$. Now define $K_n = KP_n + P_nK - P_nKP_n$ where P_n is the orthogonal projection onto span ${e_k : 1 \le k \le n}$. Deduce that K_n is finite-rank.
- (d) Show that

$$
||Kf - K_nf||^2 \le \sum_{n+1 \le k,\ell < \infty} |\langle k, \psi_{k\ell} \rangle|^2
$$

for any $f \in L^2(\Omega, \mathcal{F}, \mu)$ such that $||f|| \leq 1$.

- (e) Deduce that $||K K_n|| \to 0$ and conclude that K is a compact operator.
- **12**. Let $(\Omega, \mathcal{F}, \mu)$ be a σ -finite measure space. For any $\phi \in L^{\infty}(\Omega, \mathcal{F}, \mu)$, consider the multiplication operator $M_{\phi}: L^2(\Omega, \mathcal{F}, \mu) \mapsto L^2(\Omega, \mathcal{F}, \mu)$ by $M_{\phi}f = \phi f$.
	- (a) Show that M_{ϕ} is bounded and $||M_{\phi}|| = ||\phi||_{\infty}$.
	- (b) No nonzero multiplication operator on $L^2[0,1]$ is compact.
- 13. Let H be a Hilbert space and $T \in \mathcal{K}(H)$. Let S be an invariant subspace for H, i.e., $TS \subset S$. Show that $T_{|S}$ is compact.
- 14. (Hilbert-Schmidt operators) Let H be a separable Hilbert space. An operator $T \in$ $\mathscr{B}(H)$ is called a *Hilbert-Schmidt operator* if there is an ONB $\{e_n\}_{n=1}^{\infty}$ of H such that $\sum ||Te_n||^2 < \infty$.
	- (a) Show that if $\{f_m\}_{m=1}^{\infty}$ is another ONB of H, then $\sum ||Te_n||^2 = \sum ||Tf_m||^2$.
	- (b) The number $||T||_{\text{HS}} = (\sum ||Te_n||^2)^{1/2}$ is called the *Hilbert-Schmidt norm* of T. Show that $||T||_{\text{HS}} \geq ||T||$.
	- (c) Show that the operator K considered in Problem 4 is in fact a Hilbert-Schmidt operator. Find its Hilbert-Schmidt norm.
- **15.** Show that every Hilbert-Schmidt operator T on a Hilbert space H is compact. Find a compact operator that is not a Hilbert-Schmidt operator.