Assignment 1

Analysis I (Fall 2024, Semester I)

Deadline: September 04, 2024

September 2, 2024

1. Consider a countably infinite family {A;, Ay, ...} of subsets of 2. We are interested in
the description of the o-algebra F = o({A;, As,...}) generated by this family.

To this end, for each & € {0, 2}, let A® denote the set (), . A5 where N* = {1,2,...}
is the set of all positive integers and A; = A; if ¢ = 0 and A{ if ¢ = 2. Note that any
e € {0,2}"" corresponds to a number in the real interval [0, 1], namely >, . 5 € [0,1].
Furthermore this correpondence is injective. Identifying € with this number, we can
therefore define, for any B C [0, 1], the set AP =] 5 A°®.

(a) Show that A; = AT where T; is the set of all € € {0,2}"" satisfying ¢; = 0.

(b) A (closed) triadic subinterval of [0, 1] is an interval of the form [£ 2] for some

k € N satisfying k + 1 < 3". Show that AT € F for any triadic subinterval 7" of
[0, 1].
(c) Conclude that F = {AZ : B € #(C)} where C is the Cantor (ternary) set.

2. Consider n measurable spaces ({4, Fx); 1 < k < n and let Q = [, % be the
cartesian product of Q’s. A measurable rectangle R C Q is a set of the form H1§k§n Ay
where A, € Fj, for each 1 < k < n.

(a) Show that the class of all measurable rectangles in €2 is a semifield and hence the
class of all finite, disjoint unions of measurable rectangles is a field Aj of subsets
of Q. The o-field generated by Ag, denoted as [[,..,, Fx, is called the product
o-field and the measurable space (€, [,<,, F&) is called the product space.

(b) Let j < n and fix wej € [];pc; % For any A C €, define the section of A at
w<; as follows:

A(ng):{ P € H Qp - w<J7W>J EA} H Q.

Jj<k<n j<k<n



Show that if A € [[,_;<, Fr, then A(w<;) € [] Fi.

(¢) (Not for submission) Define product o-field for an arbitrary collection of mea-
surable spaces and prove (b).

j<k<n

3. Consider the field F{ of subsets of R™ consisting of all finite, disjoint unions of right-
semiclosed rectangles, i.e, sets of the form H1§j§n(ajabj] where —oo < a; < b; < o0
for all 1 < 5 < n. Now let A denote the standard volume function on the class of

rectangles, i.e.,
A ( 11 (%‘»M) = 1] @ —ay.

1<j<k 1<j<k

Show that A extends to a measure on Fy. Consequently, A extends to a unique (o-finite)
measure on A(R"™) called the Lebesgue measure. Show that the Lebesgue measure is
translation invariant, i.e., N(A+ x) = M(A) for all z € R" and A € B(R").

4. Keeping with the notation in the previous problem, let A\, denote the n-dimensional
Lebesgue measure on #(R™). Now suppose that p is a translation invariant measure
on AB(R™) satisfying p(I™) = 1 where I" := (0, 1]". Through the following steps, we
would prove that g = \,. All the rectangles below are assumed to be right-semiclosed.

(a) Show that pu(R)
(b) Show that u(R)
(¢) Show that u(R)

(R) for any rectangle R with integer side-lengths.

An
An(R) for any rectangle R with rational lengths.
An

(R) for all rectangles R and conclude that p = A,.

5. Recall the definition of an outer measure A on 2. Also recall that a set £ C €2 is called
A-measurable if

AMA)=AMANE)+ ANANES) forall AcCQ.
Let .# denote the class of all A-measurable sets.

(a) Show that . is a field.
(b) Show that for any finite sequence of disjoint sets Ey,...,E, € .# and A C Q,

one has
A(Am U Ek> = > MANE).

1<k<n 1<k<n

(c) Extend (b) to countable, disjoint unions.

(d) Conclude that . is a o-field and that A is a measure on ..



(e) Let p be a measure on a field Fy of subsets of 2. If A C (2, define

p*(A) = inf {Z,u(En) A C UEn,En € .7:0} :

Show that p* is an outer measure on €2 and that u* = pu.

(f) Show that the o-field of p*-measurable sets contains Fy.

6. Let (X, d) be a metric space. An outer measure A on X is called a metric outer measure
if
MAUB)=XA)+ A(B)
for all pairs of positively separated subsets A and B of X, i.e., d(A, B) = inf,c 4 pep d(a, b)
> 0. Through the following steps, we would prove that all Borel subsets of X are -
measurable.

(a) Let FF C X be closed and A C X. Define, for each n > 1, A, = {x € A :
d(xz,F) > 1/n}. Show that

AMA) > AMANF)+ AA).

(b) Show that A\ F =, 4;.
(c) Show that
AMA) > AMANF)+ AANF°).

(d) Conclude that all sets in Z(X) are A\-measurable.

7. Let (X, d) be a metric space and A C X. Define, for any o > 0 and § > 0,

HY(A) = inf {Z(diam U,)*: Ac|JUn, U, C X, diam U, < 5}

n

where diam U = sup{d(z,y) : z,y € U} is the d-diameter of U. By convention, we
set 0 = 1 and diam(()? = 0. H(A) is called the Hausdorff content of A. Clearly,
H§(A) is decreasing in §. Now define the a-dimensional Hausdorff measure of A,
denoted as H*(A), as follows:

HO(4) = supH3 () = lim H3 (4)

5>0
(a) Prove that H® is an outer measure on X and hence, by the previous problem, all
Borel subsets of X is H*measurable.

(b) What if we replaced (diam (C))® with any Rso-valued set function 7 satisfying
7(0) = 0.



(c) Define the Hausdorff dimension of S C X, denoted by dimg(S), as follows:
dimy(S) = inf{a > 0: HY(S) = 0}.

Show that H?(S) = oo for all d < dimg(S) so that dimy(S) can be alternatively
defined as
dimp(S) = sup{a > 0: HY(S) = oo}.

8. Let (X, d) be a metric space and p be a Borel measure on X. p is called regular if
p(A) =sup {u(K) : K C A compact} = inf {u(U) : U D A open}

for all A € A(X). The first condition is called inner regularity whereas the second
condition is called outer reqularity. p is called a Radon measure if it is regular and
locally finite, i.e., every point of X has a neighborhood with finite measure. Through
the following steps, we would prove that any finite, Borel measure on X is a Radon
measure if X is a Polish space — a separable, completely metrizable topological space.

(a) Show that for any ¢ > 0 and A € #A(X), there exists a closed set I C A and an
open set G D A such that (G \ F) < e.

(b) (Tightness) Show that for any € > 0, there exists K C X compact such that
p(X\K) <e.

(c¢) Conclude that p is regular.



