Assignment 1

Analysis I (Fall 2024, Semester I)

Deadline: September 04, 2024

September 2, 2024

1. Consider a *countably infinite* family $\{A_1, A_2, \ldots\}$ of subsets of Ω . We are interested in the description of the σ -algebra $\mathcal{F} = \sigma(\{A_1, A_2, \ldots\})$ generated by this family.

To this end, for each $\boldsymbol{\varepsilon} \in \{0,2\}^{\mathbb{N}^*}$, let $\boldsymbol{A}^{\boldsymbol{\varepsilon}}$ denote the set $\bigcap_{i \in \mathbb{N}^*} A_i^{\varepsilon_i}$ where $\mathbb{N}^* = \{1,2,\ldots\}$ is the set of all positive integers and $A_i^{\varepsilon} = A_i$ if $\varepsilon = 0$ and A_i^c if $\varepsilon = 2$. Note that any $\boldsymbol{\varepsilon} \in \{0,2\}^{\mathbb{N}^*}$ corresponds to a number in the real interval [0,1], namely $\sum_{i \in \mathbb{N}^*} \frac{\varepsilon_i}{3^i} \in [0,1]$. Furthermore this correspondence is *injective*. Identifying $\boldsymbol{\varepsilon}$ with this number, we can therefore define, for any $B \subset [0,1]$, the set $\boldsymbol{A}^B = \bigcup_{\boldsymbol{\varepsilon} \in B} \boldsymbol{A}^{\boldsymbol{\varepsilon}}$.

- (a) Show that $A_i = \mathbf{A}^{T_i}$ where T_i is the set of all $\boldsymbol{\varepsilon} \in \{0, 2\}^{\mathbb{N}^*}$ satisfying $\varepsilon_i = 0$.
- (b) A (closed) triadic subinterval of [0, 1] is an interval of the form $\left[\frac{k}{3^n}, \frac{k+1}{3^n}\right]$ for some $k \in \mathbb{N}$ satisfying $k + 1 \leq 3^n$. Show that $\mathbf{A}^T \in \mathcal{F}$ for any triadic subinterval T of [0, 1].
- (c) Conclude that $\mathcal{F} = \{ \mathbf{A}^B : B \in \mathscr{B}(\mathcal{C}) \}$ where \mathcal{C} is the Cantor (ternary) set.
- **2**. Consider *n* measurable spaces $(\Omega_k, \mathcal{F}_k)$; $1 \leq k \leq n$ and let $\Omega := \prod_{1 \leq k \leq n} \Omega_k$ be the cartesian product of Ω_k 's. A measurable rectangle $R \subset \Omega$ is a set of the form $\prod_{1 \leq k \leq n} A_k$ where $A_k \in \mathcal{F}_k$ for each $1 \leq k \leq n$.
 - (a) Show that the class of all measurable rectangles in Ω is a semifield and hence the class of all finite, disjoint unions of measurable rectangles is a field \mathcal{A}_0 of subsets of Ω . The σ -field generated by \mathcal{A}_0 , denoted as $\prod_{1 \leq k \leq n} \mathcal{F}_k$, is called the *product* σ -field and the measurable space $(\Omega, \prod_{1 \leq k \leq n} \mathcal{F}_k)$ is called the *product space*.
 - (b) Let j < n and fix $\omega_{\leq j} \in \prod_{1 \leq k \leq j} \Omega_k$. For any $A \subset \Omega$, define the section of A at $\omega_{< j}$ as follows:

$$A(\omega_{\leq j}) = \left\{ \omega_{>j} \in \prod_{j < k \le n} \Omega_k : (\omega_{\leq j}, \omega_{>j}) \in A \right\} \subset \prod_{j < k \le n} \Omega_k$$

Show that if $A \in \prod_{1 < k \le n} \mathcal{F}_k$, then $A(\omega_{\le j}) \in \prod_{j < k \le n} \mathcal{F}_k$.

- (c) (Not for submission) Define product σ -field for an arbitrary collection of measurable spaces and prove (b).
- **3**. Consider the field \mathcal{F}_0 of subsets of \mathbb{R}^n consisting of all finite, disjoint unions of rightsemiclosed rectangles, i.e., sets of the form $\prod_{1 \leq j \leq n} (a_j, b_j]$ where $-\infty \leq a_j < b_j < \infty$ for all $1 \leq j \leq n$. Now let λ denote the standard volume function on the class of rectangles, i.e.,

$$\lambda\left(\prod_{1\leq j\leq k} (a_j, b_j]\right) = \prod_{1\leq j\leq k} (b_j - a_j).$$

Show that λ extends to a measure on \mathcal{F}_0 . Consequently, λ extends to a unique (σ -finite) measure on $\mathscr{B}(\mathbb{R}^n)$ called the *Lebesgue measure*. Show that the Lebesgue measure is translation invariant, i.e., $\lambda(A + x) = \lambda(A)$ for all $x \in \mathbb{R}^n$ and $A \in \mathscr{B}(\mathbb{R}^n)$.

- 4. Keeping with the notation in the previous problem, let λ_n denote the *n*-dimensional Lebesgue measure on $\mathscr{B}(\mathbb{R}^n)$. Now suppose that μ is a translation invariant measure on $\mathscr{B}(\mathbb{R}^n)$ satisfying $\mu(I^n) = 1$ where $I^n := (0, 1]^n$. Through the following steps, we would prove that $\mu = \lambda_n$. All the rectangles below are assumed to be right-semiclosed.
 - (a) Show that $\mu(R) = \lambda_n(R)$ for any rectangle R with integer side-lengths.
 - (b) Show that $\mu(R) = \lambda_n(R)$ for any rectangle R with rational lengths.
 - (c) Show that $\mu(R) = \lambda_n(R)$ for all rectangles R and conclude that $\mu = \lambda_n$.
- 5. Recall the definition of an outer measure λ on Ω . Also recall that a set $E \subset \Omega$ is called λ -measurable if

$$\lambda(A) = \lambda(A \cap E) + \lambda(A \cap E^c) \quad \text{for all} \quad A \subset \Omega.$$

Let \mathcal{M} denote the class of all λ -measurable sets.

- (a) Show that \mathcal{M} is a field.
- (b) Show that for any finite sequence of disjoint sets $E_1, \ldots, E_n \in \mathcal{M}$ and $A \subset \Omega$, one has

$$\lambda\left(A\cap\bigcup_{1\leq k\leq n}E_k\right)=\sum_{1\leq k\leq n}\lambda(A\cap E_k).$$

- (c) Extend (b) to countable, disjoint unions.
- (d) Conclude that \mathscr{M} is a σ -field and that λ is a measure on \mathscr{M} .

(e) Let μ be a measure on a field \mathcal{F}_0 of subsets of Ω . If $A \subset \Omega$, define

$$\mu^*(A) = \inf\left\{\sum_n \mu(E_n) : A \subset \bigcup_n E_n, E_n \in \mathcal{F}_0\right\}.$$

Show that μ^* is an outer measure on Ω and that $\mu^* = \mu$.

- (f) Show that the σ -field of μ^* -measurable sets contains \mathcal{F}_0 .
- **6**. Let (X, d) be a metric space. An outer measure λ on X is called a *metric outer measure* if

$$\lambda(A \cup B) = \lambda(A) + \lambda(B)$$

for all pairs of *positively separated* subsets A and B of X, i.e., $d(A, B) := \inf_{a \in A, b \in B} d(a, b) > 0$. Through the following steps, we would prove that all Borel subsets of X are λ -measurable.

(a) Let $F \subset X$ be closed and $A \subset X$. Define, for each $n \ge 1$, $A_n = \{x \in A : d(x,F) \ge 1/n\}$. Show that

$$\lambda(A) \ge \lambda(A \cap F) + \lambda(A_n).$$

- (b) Show that $A \setminus F = \bigcup_n A_j$.
- (c) Show that

$$\lambda(A) \ge \lambda(A \cap F) + \lambda(A \cap F^c).$$

- (d) Conclude that all sets in $\mathscr{B}(X)$ are λ -measurable.
- 7. Let (X, d) be a metric space and $A \subset X$. Define, for any $\alpha \geq 0$ and $\delta > 0$,

$$\mathcal{H}^{\alpha}_{\delta}(A) = \inf\left\{\sum_{n} (\operatorname{diam} U_{n})^{\alpha} : A \subset \bigcup_{n} U_{n}, U_{n} \subset X, \operatorname{diam} U_{n} < \delta\right\}$$

where diam $U := \sup\{d(x, y) : x, y \in U\}$ is the *d*-diameter of *U*. By convention, we set $0^0 = 1$ and diam $(\emptyset)^0 = 0$. $\mathcal{H}^{\alpha}_{\infty}(A)$ is called the *Hausdorff content* of *A*. Clearly, $\mathcal{H}^{\alpha}_{\delta}(A)$ is decreasing in δ . Now define the α -dimensional Hausdorff measure of *A*, denoted as $\mathcal{H}^{\alpha}(A)$, as follows:

$$\mathcal{H}^{\alpha}(A) = \sup_{\delta > 0} \mathcal{H}^{\alpha}_{\delta}(A) = \lim_{\delta \to 0} \mathcal{H}^{\alpha}_{\delta}(A)$$

- (a) Prove that \mathcal{H}^{α} is an outer measure on X and hence, by the previous problem, all Borel subsets of X is \mathcal{H}^{α} -measurable.
- (b) What if we replaced $(\operatorname{diam}(C))^{\alpha}$ with any $\mathbb{R}_{\geq 0}$ -valued set function τ satisfying $\tau(\emptyset) = 0$.

(c) Define the Hausdorff dimension of $S \subset X$, denoted by $\dim_{\mathrm{H}}(S)$, as follows:

$$\dim_{\mathrm{H}}(S) = \inf\{\alpha \ge 0 : \mathcal{H}^{\alpha}(S) = 0\}.$$

Show that $\mathcal{H}^d(S) = \infty$ for all $d < \dim_{\mathrm{H}}(S)$ so that $\dim_{\mathrm{H}}(S)$ can be alternatively defined as

$$\dim_{\mathrm{H}}(S) = \sup\{\alpha \ge 0 : \mathcal{H}^{\alpha}(S) = \infty\}.$$

8. Let (X, d) be a metric space and μ be a Borel measure on X. μ is called *regular* if

 $\mu(A) = \sup \{\mu(K) : K \subset A \text{ compact}\} = \inf \{\mu(U) : U \supset A \text{ open}\}$

for all $A \in \mathscr{B}(X)$. The first condition is called *inner regularity* whereas the second condition is called *outer regularity*. μ is called a *Radon measure* if it is regular and *locally finite*, i.e., every point of X has a neighborhood with finite measure. Through the following steps, we would prove that any *finite*, Borel measure on X is a Radon measure if X is a *Polish space* — a separable, completely metrizable topological space.

- (a) Show that for any $\varepsilon > 0$ and $A \in \mathscr{B}(X)$, there exists a closed set $F \subset A$ and an open set $G \supset A$ such that $\mu(G \setminus F) < \varepsilon$.
- (b) (**Tightness**) Show that for any $\varepsilon > 0$, there exists $K \subset X$ compact such that $\mu(X \setminus K) < \varepsilon$.
- (c) Conclude that μ is regular.