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1. Consider a countably infinite family {A1, A2, . . .} of subsets of Ω. We are interested in
the description of the σ-algebra F = σ({A1, A2, . . .}) generated by this family.

To this end, for each ε ∈ {0, 2}N∗
, let Aε denote the set

⋂
i∈N∗ A

εi
i where N∗ = {1, 2, . . .}

is the set of all positive integers and Aεi = Ai if ε = 0 and Aci if ε = 2. Note that any
ε ∈ {0, 2}N∗

corresponds to a number in the real interval [0, 1], namely
∑

i∈N∗
εi
3i
∈ [0, 1].

Furthermore this correpondence is injective. Identifying ε with this number, we can
therefore define, for any B ⊂ [0, 1], the set AB =

⋃
ε∈B Aε.

(a) Show that Ai = ATi where Ti is the set of all ε ∈ {0, 2}N∗
satisfying εi = 0.

(b) A (closed) triadic subinterval of [0, 1] is an interval of the form [ k
3n
, k+1

3n
] for some

k ∈ N satisfying k + 1 ≤ 3n. Show that AT ∈ F for any triadic subinterval T of
[0, 1].

(c) Conclude that F = {AB : B ∈ B(C)} where C is the Cantor (ternary) set.

2. Consider n measurable spaces (Ωk,Fk); 1 ≤ k ≤ n and let Ω :=
∏

1≤k≤n Ωk be the
cartesian product of Ωk’s. A measurable rectangle R ⊂ Ω is a set of the form

∏
1≤k≤nAk

where Ak ∈ Fk for each 1 ≤ k ≤ n.

(a) Show that the class of all measurable rectangles in Ω is a semifield and hence the
class of all finite, disjoint unions of measurable rectangles is a field A0 of subsets
of Ω. The σ-field generated by A0, denoted as

∏
1≤k≤nFk, is called the product

σ-field and the measurable space (Ω,
∏

1≤k≤nFk) is called the product space.

(b) Let j < n and fix ω≤j ∈
∏

1≤k≤j Ωk. For any A ⊂ Ω, define the section of A at
ω≤j as follows:

A(ω≤j) =

{
ω>j ∈

∏
j<k≤n

Ωk : (ω≤j, ω>j) ∈ A

}
⊂
∏

j<k≤n

Ωk.
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Show that if A ∈
∏

1<k≤nFk, then A(ω≤j) ∈
∏

j<k≤nFk.
(c) (Not for submission) Define product σ-field for an arbitrary collection of mea-

surable spaces and prove (b).

3. Consider the field F0 of subsets of Rn consisting of all finite, disjoint unions of right-
semiclosed rectangles, i.e, sets of the form

∏
1≤j≤n(aj, bj] where −∞ ≤ aj < bj < ∞

for all 1 ≤ j ≤ n. Now let λ denote the standard volume function on the class of
rectangles, i.e.,

λ

( ∏
1≤j≤k

(aj, bj]

)
=
∏

1≤j≤k

(bj − aj).

Show that λ extends to a measure on F0. Consequently, λ extends to a unique (σ-finite)
measure on B(Rn) called the Lebesgue measure. Show that the Lebesgue measure is
translation invariant, i.e., λ(A+ x) = λ(A) for all x ∈ Rn and A ∈ B(Rn).

4. Keeping with the notation in the previous problem, let λn denote the n-dimensional
Lebesgue measure on B(Rn). Now suppose that µ is a translation invariant measure
on B(Rn) satisfying µ(In) = 1 where In := (0, 1]n. Through the following steps, we
would prove that µ = λn. All the rectangles below are assumed to be right-semiclosed.

(a) Show that µ(R) = λn(R) for any rectangle R with integer side-lengths.

(b) Show that µ(R) = λn(R) for any rectangle R with rational lengths.

(c) Show that µ(R) = λn(R) for all rectangles R and conclude that µ = λn.

5. Recall the definition of an outer measure λ on Ω. Also recall that a set E ⊂ Ω is called
λ-measurable if

λ(A) = λ(A ∩ E) + λ(A ∩ Ec) for all A ⊂ Ω.

Let M denote the class of all λ-measurable sets.

(a) Show that M is a field.

(b) Show that for any finite sequence of disjoint sets E1, . . . , En ∈ M and A ⊂ Ω,
one has

λ

(
A ∩

⋃
1≤k≤n

Ek

)
=
∑

1≤k≤n

λ(A ∩ Ek).

(c) Extend (b) to countable, disjoint unions.

(d) Conclude that M is a σ-field and that λ is a measure on M .
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(e) Let µ be a measure on a field F0 of subsets of Ω. If A ⊂ Ω, define

µ∗(A) = inf

{∑
n

µ(En) : A ⊂
⋃
n

En, En ∈ F0

}
.

Show that µ∗ is an outer measure on Ω and that µ∗ = µ.

(f) Show that the σ-field of µ∗-measurable sets contains F0.

6. Let (X, d) be a metric space. An outer measure λ on X is called a metric outer measure
if

λ(A ∪B) = λ(A) + λ(B)

for all pairs of positively separated subsetsA andB ofX, i.e., d(A,B) := infa∈A,b∈B d(a, b)
> 0. Through the following steps, we would prove that all Borel subsets of X are λ-
measurable.

(a) Let F ⊂ X be closed and A ⊂ X. Define, for each n ≥ 1, An = {x ∈ A :
d(x, F ) ≥ 1/n}. Show that

λ(A) ≥ λ(A ∩ F ) + λ(An).

(b) Show that A \ F =
⋃
nAj.

(c) Show that
λ(A) ≥ λ(A ∩ F ) + λ(A ∩ F c).

(d) Conclude that all sets in B(X) are λ-measurable.

7. Let (X, d) be a metric space and A ⊂ X. Define, for any α ≥ 0 and δ > 0,

Hα
δ (A) = inf

{∑
n

(diamUn)α : A ⊂
⋃
n

Un, Un ⊂ X, diamUn < δ

}

where diamU := sup{d(x, y) : x, y ∈ U} is the d-diameter of U . By convention, we
set 00 = 1 and diam(∅)0 = 0. Hα

∞(A) is called the Hausdorff content of A. Clearly,
Hα
δ (A) is decreasing in δ. Now define the α-dimensional Hausdorff measure of A,

denoted as Hα(A), as follows:

Hα(A) = sup
δ>0
Hα
δ (A) = lim

δ→0
Hα
δ (A)

(a) Prove that Hα is an outer measure on X and hence, by the previous problem, all
Borel subsets of X is Hα-measurable.

(b) What if we replaced (diam (C))α with any R≥0-valued set function τ satisfying
τ(∅) = 0.
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(c) Define the Hausdorff dimension of S ⊂ X, denoted by dimH(S), as follows:

dimH(S) = inf{α ≥ 0 : Hα(S) = 0}.

Show that Hd(S) =∞ for all d < dimH(S) so that dimH(S) can be alternatively
defined as

dimH(S) = sup{α ≥ 0 : Hα(S) =∞}.

8. Let (X, d) be a metric space and µ be a Borel measure on X. µ is called regular if

µ(A) = sup {µ(K) : K ⊂ A compact} = inf {µ(U) : U ⊃ A open}

for all A ∈ B(X). The first condition is called inner regularity whereas the second
condition is called outer regularity. µ is called a Radon measure if it is regular and
locally finite, i.e., every point of X has a neighborhood with finite measure. Through
the following steps, we would prove that any finite, Borel measure on X is a Radon
measure if X is a Polish space — a separable, completely metrizable topological space.

(a) Show that for any ε > 0 and A ∈ B(X), there exists a closed set F ⊂ A and an
open set G ⊃ A such that µ(G \ F ) < ε.

(b) (Tightness) Show that for any ε > 0, there exists K ⊂ X compact such that
µ(X \K) < ε.

(c) Conclude that µ is regular.
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