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1 Fields, σ-fields and measurable spaces

In the next few lectures, we will discuss the theory of Lebesgue integration which gen-
eralizes the notion of Riemann(-Stieltjes) integrals both in terms of functions and the
underlying domain. In particular, this enables a unified treatment of (weighted) sums and
integrals which makes it very useful to work with. A remarkable property of Lebesgue
integrals — as we shall see — is that they commute with the operation of taking limits
under fairly moderate conditions (as opposed to Riemann integrals). One very desirable
consequence of this feature is that we can now exchange of derivative and integral of a
function in many situations.

One of the main reasons why Lebesgue integrals are so well-behaved with respect to
taking limits is that they are defined as limits of integrals of functions that take only
finitely many values. Such functions are called simple functions. Let us study these
functions in more detail.

Consider a (non-empty) set Ω and a simple function f : Ω 7→ R. By definition, there
exist (distinct) points x1, . . . , xn such that f−1({x1, . . . , xn}) = Ω. Consequently,

Ω =
⋃

1≤i≤n

Ai, Ai := f−1({xi})

where Ai’s are clearly disjoint.

Definition 1.1 (Indicator functions). For any A ⊂ Ω, the indicator of A is the function
IA : Ω 7→ R defined as

IA(ω) =

{
1, if ω ∈ A
0, otherwise.
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In some books, IA is also called the characteristic function of A, denoted as χA. It is
clear that

f =
∑

1≤i≤n

xi IAi
. (1.1)

Henceforth, we will take this decomposition as the definition of a simple function.

Note. The sets Ai’s in the decomposition (1.1) are disjoint but do not need to form a
partition of Ω, i.e., ∪1≤i≤nAi ⊂ Ω. This is because we can omit xiIAi

if xi = 0. Similarly
we can drop the requirement that xi’s are distinct or that the sets Ai’s are disjoint.
However, notice that with this new convention, the decomposition (1.1) is non-unique.

Let us denote the ‘hypothesised’ Lebesgue integral of f on Ω as
∫

Ω
f . Any reasonable

definition of an integral should be linear in the integrand f . In more formal terms, an
integral should be a linear functional on the space of integrable functions which is always
a vector space. Therefore, we can write∫

Ω

f =
∑

1≤i≤n

∫
Ω

xi IAi
=

∑
1≤i≤n

xi

∫
Ω

IAi
.

One has to supply the values of the integrals
∫

Ω
IAi

. In fact,
∫

Ω
IA does not need to

be defined for all subsets of Ω which, as we shall see, is “natural” in many situations. Let
F denote the class of all subsets A of Ω for which

∫
Ω

IA is defined. Then
∫

Ω
I · : F 7→

R := R∪{−∞,∞} defines a set function which we will denote as µ in the sequel. We will
eventually build the integrals only using the set function µ. Accordingly we denote

∫
Ω
f

as
∫

Ω
fdµ (often as

∫
Ω
fµ(dω)) in order to incorporate the dependence of the latter on

the choice of µ. We should keep here in mind that the notation dµ (or µ(dω)) is merely
to have resemblance to the classical notations for Riemann integrals and not because of
any differentiable structure on Ω.

One important thing that came out for the discussion above is that F already puts
a restriction on the type of simple functions that can be integrated by requiring that
f−1({xi}) ∈ F for each i. We will come back to this notion when we discuss measurable
functions. For the time being, let us ‘loosely’ use the term measurable function for any
map f for which it might make sense to talk of an integral.

We might now wonder what conditions must F satisfy in order that our notion of
integral stays reasonable and effective. Let us start with some obvious ones first. Below
we ignore the issues of adding or subtracting ∞ for now.

• Both ∅ and Ω must lie in F since we should be always able to integrate the constant
function IΩ ≡ 1 and

∫
I∅ dµ ≡

∫
0 dµ should be 0.

• Since IA + IB = IA∪B whenever A and B are disjoint and
∫

Ω
IA dµ +

∫
Ω

IB dµ is
well-defined provided each of the summands is, F should be closed under finite,
disjoint union.
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• If A ⊂ B, then IB − IA = IB\A and by similar reasoning as above, we get that F
should be closed under taking proper difference. In particular, this implies that F
should be closed under complementation as Ω ∈ F due to the first item.

However, there is one more property we would like F to have. So far we have only used
the intuition that the space of measurable functions should be a vector space. However, for
many applications in Analysis and Probability theory, we would like to consider products
of functions as well, i.e., the space of measurable functions should be an algebra. Applied
to the indicator functions and noting that IA IB = IA∩B, this suggests that F should also
be closed under finite intersection. But this leads to the following.

Exercise 1.2. Let F be a (non-empty) collection of subsets of Ω that is closed under
complementation. Show that F is closed under finite (respectively countable) union if
and only if it is closed under finite (respectively countable) intersection.

We are now ready to give our first, formal definition.

Definition 1.3 (Field). Let F be a collection of subsets of a set Ω. Then F is called a
field (alternatively called an algebra) if and only if the following conditins are satisfied:

(a) Ω ∈ F .

(b) If A ∈ F , then Ac ∈ F .

(c) If A1, A2, . . . , An ∈ F , then
⋃

1≤i≤nAi ∈ F .

By Exercise 1.2, it follows that F is closed under finite intersection.

We are yet to touch upon the aspect of ‘well-behaved-ness of integrals under taking
limits’ that we promised ourselves in the beginning. For this we need to equip the space
of measurable functions with a closure under sequential limits (superiors and inferiors).
To this end, consider a sequence of sets A1, A2, . . . in F . Now define:

lim sup
n

An =
⋂
n

⋃
k≥n

Ak, and lim inf
n

An =
⋃
n

⋂
k≥n

Ak. (1.2)

When lim supnAn = lim infnAn, we call the common value as the limit of An and denote
it as limnAn.

Exercise 1.4. Let A1, A2, . . . be a sequence of subsets of Ω. Show that

lim sup
n

IAn = Ilim supnAn , and lim inf
n

IAn = Ilim infnAn ,

and consequently that limnAn exists if and only if limn IAn exists pointwise. How can one
describe the sets lim supnAn and lim infnAn in terms of the elements of An’s?
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In view of (1.2) and Exercise 1.2, it follows that the closure of F under (sequential)
limits (superior and inferior) is equivalent to the closure under countable union. This is
called a σ-field.

Definition 1.5 (σ-Field). A field F is called a σ-field (alternatively called a σ-algebra)
if it is closed under countable union. The (ordered) pair (Ω,F) comprising a set Ω and
a σ-field of subsets of Ω is often called a measurable space and the sets in F are called
measurable.

Examples.

1) Largest and smallest σ-field. The largest or the finest σ-field of subsets of Ω is simply
P(Ω) — the power set of Ω, i.e., the collection of all subsets of Ω. The smallest or the
coarsest σ-field (also called the trivial σ-field), on the other hand, is {∅,Ω}.

2) Minimal σ-field. For any C ⊂ P(Ω), i.e., a class of subsets of Ω, we can easily check
that

σ(C ) :=
⋂

C⊂F

F

is a σ-field called the minimal σ-field over C or the σ-field generated by C .

Exercise 1.6. LetA1, A2, . . . , An be subsets of Ω. Describe explicitly the σ-field generated
by the family {A1, A2, . . . , An}.

3) Borel subsets of R. Let Ω = R and C := {(a, b] : −∞ ≤ a < b < ∞} consist of all
right-semiclosed intervals of real numbers. Then σ(C ), denoted as B(R), is known as
the Borel σ-field of R and the members of B(R) are called Borel subsets of R.

Similarly when Ω = R, we define B(R) as the σ-field generated by C := {(a, b] : −∞ ≤
a < b ≤ ∞} (notice the difference).

Exercise 1.7. A semifield S of subsets of Ω is a non-empty subset of P(Ω) such that
(a) S is closed under finite, non-empty intersection and (b) the complement of any set
in S is a finite, disjoint union of sets in S. Show that the family F consisting of all
finite (including empty) disjoint unions of sets in S is a field. Show that the family of
right-semiclosed intervals in both cases above are semifields. Show that the corresponding
fields are not σ-fields.

Exercise 1.8. Show that B(R) = σ(C ) where C is the class of all intervals of any of the
following types:

open intervals, closed intervals, left-semiclosed intervals, (a,∞) where a ∈ R.

4) Topology and σ-field. More generally, if (Ω, T ) is a topological space where T is the
collection of all open subsets of Ω, then B(Ω) = σ(T ) is called the Borel σ-field of the
topological space Ω and the members of B(Ω) are called the Borel subsets of Ω.
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1.1 Good sets principle

Every so often in measure theory, we encounter statements of the form ‘every member of
σ(C ) satisfies property P ’ for some given class of subsets C of Ω and property P of sets.
Usually, it is immediate that sets in C satisfy property P . Let S be the class of all sets
in σ(C ) — called the good sets — satisfying property P . If it is the case that the property
P is closed under countable union and complementation and is satisfied by Ω, then by
Definition 1.3 and 1.5, S is a σ-field. However, since C ⊂ S ⊂ σ(C ), it follows from the
definition of minimal σ-field that S = σ(C ) and consequently P is satisfied by all sets in
σ(C ). A simple but useful application of this principle is the following statement.

Exercise 1.9. For any class C of subsets of Ω and A ⊂ Ω, let C ∩ A denote the class
{B ∩ A : B ∈ C }. Show that σA(C ∩ A) = σ(C ) ∩ A where σA(C ∩ A) is the minimal
σ-field of subsets of A over C ∩ A.

Here is another one.

Exercise 1.10. Show that for any Borel subset B of R and any real number x, x+B is
also a Borel set where x+B is the set {x+ y : y ∈ B}.

Suggested reading. Sections 1.1–1.2.2 in Probability and Measure Theory by Robert B.
Ash and Catherine A. Doléans-Dade.
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