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2 Measures

In the previous lecture, we saw that a desirable property of the set function µ(A) :=
∫

Ω
IA

is finite additivity, i.e., for any collection of disjoint, measurable sets A1, . . . , An, µ should
satisfy

µ

( ⋃
1≤k≤n

An

)
=
∑

1≤k≤n

µ(Ak).

Definition 2.1 (Finitely additive measure). A finitely additive measure on a field F is a
finitely additive set function µ : F 7→ R≥0 := [0,∞] satisfying µ(∅) = 0.

However, since we would like to ensure the continuity of µ(A) =
∫

Ω
IA at least under

increasing limits so that we can obtain ‘well-behaved-ness of integrals under taking limits’,
we should require a more stringent property. For any increasing family of sets A1, A2, . . . ∈
F converging to A ∈ F , i.e., A1 ⊂ A2 ⊂ . . . and A := limnAn =

⋃
nAn ∈ F , the following

should be true
lim
n
µ(An) = µ(A).

Henceforth, we will refer to this property as the continuity of µ under increasing limit.
Similarly we can define the continuity under decreasing and monotonic limit. The follow-
ing result says that the continuity under increasing limit is equivalent to an extension of
finite additivity, namely countable additivity which is the property that

µ

(⋃
n

An

)
=
∑
n

µ(An)
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for any finite or countably infinte collection of disjoint sets A1, A2, . . . ∈ F such that⋃
nAn ∈ F . Our next result states that countable additivity and increasing limit are

equivalent.

Proposition 2.2. Let µ be a finitely additive measure on the field F . Then µ is countably
additive if and only if µ is continuous under increasing limit.

Proof. Countable additivity =⇒ continuity under increasing limit.

Let A1 ⊂ A2 ⊂ . . . ∈ F be such that A :=
⋃

nAn ∈ F . Clearly, the sets An \ An−1 ∈ F
(n ≥ 1) are disjoint (here we let A0 = ∅) and satisfy,

A =
⋃
n

An+1 \ An.

By the countable additivity of µ, we then have

µ(A) =
∑
n

µ(An \ An−1) = lim
n

∑
1≤k≤n

µ(Ak \ Ak−1) = lim
n
µ(An)

which yields the implication.

Continuity under increasing limit. =⇒ countable additivity (Exercise).

Definition 2.3 (Measure). We call a finitely additive measure a measure if it is countably
additive. A measure space is an ordered triple (Ω,F , µ) where (Ω,F) is a measurable space
and µ is a measure on F .

Note. Although we required µ to be nonnegative in this and the previous definitions,
there is abolutely no problem in allowing µ to take negative or even complex values. We
will call such set functions as signed and complex measures respectively and use the term
measure only when µ is nonnegative. One reason for this is that the signed and complex
measures can be understood using nonnegative measures as we will see later in the course.

Exercise 2.4 (Monotonicity of measures). Let F be a field of subsets of Ω and µ be a
finitely additive measure on F . Show that µ is monotonic with respect to set inclusion,
i.e., µ(A) ≥ µ(B) (respectively, µ(A) ≤ µ(B)) whenever B ⊂ A ∈ F (respectively,
A ⊂ B ∈ F).

The following result gives a partial analogue of Proposition 2.2 for decreasing limits.

Proposition 2.5 (Continuity of measures from above). Let F be a field of subsets of
Ω and µ be a measure on F . Also let A1, A2, . . . ∈ F be such that An ↓ A ∈ F (i.e.,
A1 ⊃ A2 ⊃ . . . and A =

⋂
nAn = limnAn) with µ(A1) <∞. Then

lim
n
µ(An) = µ(A).
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Proof. Since An ↓ A, it follows that A1 \ An ↑ A1 \ A and hence by the continuity of µ
under increasing limit we get,

lim
n
µ(A1 \ An) = µ(A1 \ A).

Also because An ⊂ A1, A ⊂ A1 and µ(A1) < ∞, we have µ(A1 \ B) = µ(A1) − µ(B) for
B = An or A and consequently limn µ(An) = µ(A).

Our first theorem in this section is one of the most important concerning limits of
measures of sets.

Theorem 2.6 (Fatou’s lemma and the continuity of finite measures). Let (Ω,F , µ) be a
measure space and A1, A2, . . . ∈ F . Then we have,

µ
(

lim inf
n

An

)
≤ lim inf

n
µ(An).

Furthermore, if µ(Ω) <∞, i.e., µ is finite, we also have

µ(lim inf
n

An) ≤ lim inf
n

µ(An) ≤ lim sup
n

µ(An) ≤ µ( lim sup
n

An).

In particular, if limnAn exists, we have µ(limnAn) = limn µ(An) for all finite measures.

Proof. Recall that lim infnAn =
⋃

nBn where Bn :=
⋂

k≥nAk, i.e., Bn ↑ lim infnAn.
Thus, by the continuity of µ under increasing limit as well as its monotonicity, we get

µ
(

lim inf
n

An

)
= lim

n
µ(Bn) ≤ lim inf

n
µ(An).

The other inequality follows by applying this result to Ac
n’s and noting that µ is finite.

Examples.

1) Dirac measures and weighted sums. Possibly the simplest non-trivial measure (i.e., a
measure which is not identically zero) one can define on a field F of subsets of Ω is
the Dirac measure. Let ω ∈ Ω and define the measure δω on F as follows:

δω(A) =

{
1, if ω ∈ A
0, otherwise.

It is straightforward to check that δω is a measure on F called the Dirac measure at
ω. We can use positive linear combinations of Dirac measures to define a large class
of measures.
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Exercise 2.7. Let {µi : i ∈ I} be a family of measures on a field F of subsets of Ω. Given
any family of nonnegative numbers {pi : i ∈ I}, consider the set function µ =

∑
i∈I µi

defined as
µ(A) =

∑
i∈I

piµi(A) := sup
J⊂⊂I

∑
j∈J

pjµj(A), A ∈ F

(J ⊂⊂ · means that J is finite). Show that µ is a measure.

In view of Exercise 2.7, given any subset Ω′ ⊂ Ω and nonnegative numbers {pω : ω ∈
Ω′}, the set function

∑
ω∈Ω′ pωδω is a measure on P(Ω) and hence on any field F of

subsets of Ω. We can rightly think of such measures as weighted sums especially when
Ω′ is countable. In the special case when Ω′ = Ω and pω’s are all 1, µ(A) is simply the
cardinality of the set A and the measure is called the counting measure on Ω. Taking
this cue, we will henceforth think of measures as ways of assigning ‘size values’ to sets.

2) Length, area and volume. Recall from the previous lecture that the intervals (open,
closed or semiclosed) generate the Borel σ-algebra B(R). Similarly, the rectangles,
i.e., k-fold product of real intervals generate B(Rk) for any k ≥ 1. The natural way
to assign a size value to an interval (a, b] (or (a, b), [a, b], or (a, b]) is to use its length
b− a. In case of Rk, we can similarly use its volume. But unfortunately, the measure
on a σ-field is not always determined by its value on a generating set.

Exercise 2.8. Give an example of two different measures that agree on a generating set
for the underlying σ-field. One can even produce an example where Ω is a compact metric
space, F = B(Ω) and C = {closed balls in Ω} (why is this a generating set for B(Ω)?).
But this is more difficult.

However, in a previous exercise, we saw that the family of right-semiclosed intervals
of R forms a semifield and the collection of all finite, disjoint unions of such intervals
is a field (say B(R)). The length function admits of a natural extension to B(R). It
is less immediate, however, that this function is in fact a measure which will be an
assignment problem. Whether it extends to a measure on all Borel sets is a question
that requires more work.

The take-home message is that it is often relatively easier to define a measure on a
field and hence they are good starting points for the construction of measures. But can we
always extend such measures to the corresponding σ-field and are such extensions unique
whenever they exist? We will address these two questions in the next lecture.

Suggested reading. Section 1.2 in Probability and Measure Theory by Robert B. Ash
and Catherine A. Doléans-Dade.
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