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3 Extension of measures

Before addressing the question whether can we extend a given measure from a field to the
corresponding σ-field, let us consider the question whether such a measure, if it exists,
is unique. In other words, this is equivalent to asking whether the measure on the field
determines the measure on the corresponding σ-field whenever it can be extended. The
general answer to this question is no and you can find a counter-example in Section 1.3.12
in the book by Ash and Dade. But fortunately, this holds for a large enough class of
measures containing most of the interesting examples we are going to consider in this
course.

Definition 3.1 (σ-finite measure). A measure on a field F of subsets of Ω is called σ-finite
if Ω can be expressed as

⋃
nAn where An ∈ F have finite µ-measures.

In particular, a σ-finite measure can be written as a countable sum of finite measures
(Exercise). The following fundamental theorem is the central object of today’s lecture.

Theorem 3.2 (Carathéodory Extension Theorem). Let µ be a σ-finite measure a field
F0 of subsets of Ω. Then µ has a unique extension to a measure to F := σ(F0).

As a first application and in view of our description of Borel σ-field as generated by
the field of all finite, disjoint unions of rectangles , we can define the Lebesgue measure
on B(Rk) as the unique extension of the volume of rectangles.

We now proceed to prove the extension theorem starting with the uniqueness part
which is shorter.

Proof of uniqueness. Suppose that µ can be extended to a measure, also denoted as µ, to
a measure on F . Let λ be another such measure so that λ|F0 = µ|F0 = µ. We would like
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to prove that λ = µ. A natural approach — based on what we have seen so far — would
be to use the so-called good sets principle. To this end we can define our class of good
sets to be

S = {A ∈ F : λ(A) = µ(A)}.
It is clear that F0 ⊂ S . However, although it is quite easy to see that S is closed under
countable, disjoint union owing to the additivity of λ and µ, it is not obvious how to use
similar arguments to deduce the closure under general countable union. When faced with
such situations, there are usually two different, albeit related, principles that come to our
rescue. The first one is the Dynkin π − λ theorem while the second one is the monotone
class theorem. We will state and use the latter in this note although you should look up
and learn the former.

Theorem 3.3 (Monotone class theorem). Let F0 be a field of subsets of Ω, and C a class
of subsets of Ω that is monotone, i.e., C is closed under monotone limit. If F0 ⊂ C , then
σ(F0) ⊂ C .

Let us finish the proof of uniqueness assuming the monotone class theorem. However,
the class of sets S is not monotone unless µ is finite (why?). It is at this point we will
make use of the σ-finiteness of µ on F0. To this end, let Ω =

⋃
nAn where An ∈ F0’s

are disjoint with µ(An) < ∞ for each n. Now define the measures µn and λn on F as
µn(A) = µ(A ∩ An) and λn(A) = λ(A ∩ An) for A ∈ F . Since An ∈ F0 and µ|F0 = λ|F0 ,
it follows that both λn and µn are extensions of the finite measure µn on F0. Now, using
continuity of finite measures, we can conclude that the class of sets Sn comprising all sets
in F where the measures λn and µn coincide is a monotone class containing the field F0.
By Theorem 3.3, we can then conclude µ(A ∩ An) = λ(A ∩ An) for all A ∈ F and n.
Summing over n, we deduce the uniqueness.

It remains to give the:

Proof of Theorem 3.3. This is an instance of a very powerful problem solving technique
known as bootstrapping. Let M be the smallest monotone class containing F0, i.e., the
intersection of all monotone class containing F0 (why is this a monotone class?). We want
to show that F ⊂M which in turn implies F = M (why?).

Fix A ∈ M and let MA := {B ∈ M : A ∩ B,A ∩ Bc and Ac ∩ B ∈ M }. Then MA

is a monotone class which implies MA = M due to the minimality of M and the fact
that F0 ⊂MA by the properties of fields. But this shows that for any B ∈M , we have
A ∩ B,A ∩ Bc, Ac ∩ B ∈M for any A ∈ F0 yielding F0 ⊂MB. Again by minimality of
M , MB = M .

We thus get that M is a field (because if A,B ∈M = MA, then A∩B,A∩Bc, Ac∩B ∈
M ) and a monotone class that is also a field is a σ-field. Hence M is a σ-field containing
F0.

Now we proceed to prove the existence.

We will extend the measure µ in multiple steps and in the process will introduce several
notions of fundamental importance.
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Step I. Extending by taking increasing limit.

Consider the σ-closure G of F0 defined as follows:

G = {A ⊂ Ω : ∃An ∈ F0 such that An ↑ A} .

Exercise 3.4. G can also be defined as the collection of all countable unions of sets in
F0. Is G a σ-field?

Lemma 3.5. F0 ⊂ G and G is closed under finite union, intersection, countable union
and increasing limit.

Proof. It follows by using the characterization of G given in Exercise 3.4, the fact that F0

is a field and the distributive properties of the algebra of sets.

The natural choice for µ(A) when A ∈ G is as follows (we denote the extended set
function as µσ):

µσ(A) = lim
n
µ(An). (3.1)

where An ∈ F0 are such that An ↑ A. However, it is not immediately clear whether this
is well-defined since there can be multiple sequences (An)n≥1 in F0 increasing to A.

Lemma 3.6. Let An ∈ F0 ↑ A and A′n ∈ F0 ↑ A′ such that A ⊂ A′, then

lim
m
µ(Am) ≤ lim

n
µ(A′n).

In particular, µσ in (3.1) is well-defined.

Proof. Since A′n ↑ A′ ⊃ A and Am ⊂ A, it follows that Am ∩ A′n ∈ F0 ↑n→∞ Am ∩ A′ =
Am ∈ F0 for each m. Hence

lim
n
µ(A′n) ≥ lim

n
µ(Am ∩ A′n) = µ(Am),

where we used the monotonicity and continuity of the measure µ under increasing limit
in the first and second steps respectively. Now the result follows by sending n→∞.

The following result says that µσ is well-behaved on G.

Lemma 3.7. µσ = µ on F0 and satisfies 0 ≤ µσ(A) ≤ µ(Ω) for all A ∈ G. It further
satisfies the following properties:

(a) If G1, G2 ∈ G, then µσ(G1 ∪G2) + µσ(G1 ∩G2) = µσ(G1) + µσ(G2).

(b) (Monotonicity) If G1, G2 ∈ G such that G1 ⊂ G2, then µσ(G1) ≤ µσ(G2).

(c) (Continuity under increasing limit) If Gn ∈ G such that Gn ↑ G, then µσ(Gn) →
µσ(G).
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Proof. We will only give the proof of (c), since the other properties follow in a straight-
forward manner from Lemmas 3.5—3.6 as well as the fact that µ is a measure on F0

(Exercise: check this).

From (b), we get that limn µ
σ(Gn) ≥ µσ(G) and hence we only need to prove the

reverse inequality. To this end we will make use of a diagonal argument. The objective
is to construct a sequence of increasing sets Cn ⊂ Gn in F0 so that Cn ↑ G. For then we
would be able to immediately conclude µ(G) = limn µ

σ(Cn) ≤ limn µ
σ(Gn).

It remains to construct Cn’s. Let Amn ∈ F0 ↑m→∞ Gn for each n and define Cn =⋃
1≤i≤nAin. Since Aij’s are increasing in i, it follows that Cn’s are increasing and satisfy

Cn ⊂
⋃

1≤i≤n

Gi = Gn (3.2)

for each n. On the other hand, Amn ⊂
⋃
j Cj for all m,n and hence Gn ⊂

⋃
j Cj for all n

which implies — together with the (3.2) — that Cn ↑
⋃
j Cj =

⋃
j Gj = G.

Step II. Extending to an outer measure on Ω.

We will now extend µσ from G to P(Ω) by taking limits on sets from above through sets
in G. More precisely, we define for each A ⊂ Ω,

µ∗(A) := inf{µσ(G) : G ∈ G, G ⊃ A}.

It is clear from this definition and the monotonicity of µσ that µ∗ = µ on G and that
0 ≤ µ∗(A) ≤ 1 for all A ⊂ Ω. There is a class of ‘measure-like’ set functions defined on
P(Ω) which arise quite often in practice — especially when Ω is a metric space — and
are particularly useful for constructing measures on suitable σ-fields. These are known as
outer measures.

Definition 3.8 (Outer measure). A outer measure on Ω is a nonnegative, R≥0-valued set
function λ on P(Ω), satisfying

(a) λ(∅) = 0.

(b) (Monotonicity) A ⊂ B implies λ(A) ≤ λ(B).

(c) (Countable subadditivity) λ (
⋃
nAn) ≤

∑
n λ(An).

Proposition 3.9. µ∗ is an outer measure on Ω.

In order to prove this proposition, we need the following lemma.

Lemma 3.10. µ∗ is finitely subadditive, monotonic and continuous under increasing limit.

Let us first finish the proof of Proposition 3.9 assuming Lemma 3.10.
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Proof of Proposition 3.9. (a) holds since µ∗ = µ on F0 whereas (b) is precisely the
monotonocity of µ∗. As to (c), we can write

µ∗

(⋃
n

An

)
= lim

n
µ∗

( ⋃
1≤k≤n

Ak

)
≤ lim

n

∑
1≤k≤n

µ∗(Ak) =
∑
n

µ∗(An)

where, in the first step, we used the continuity of µ∗ under increasing limit and in the
second step we used the finite subadditivity of µ∗.

Now we can return to

Proof of Lemma 3.10. We can in fact prove a stronger statement than mere finite subad-
ditivity:

µ∗(A ∪B) + µ∗(A ∩B) ≤ µ∗(A) + µ∗(B). (3.3)

To see this, for ε > 0, chooseG1, G2 ∈ G, G1 ⊃ A, G2 ⊃ B, such that µσ(G1) ≤ µ∗(A)+ε/2
and µσ(G2) ≤ µ∗(B) + ε/2. By Lemma 3.7–(a),

µ∗(A) + µ∗(B) + ε ≥ µσ(G1) + µσ(G2) = µσ(G1 ∪G2) + µσ(G1 ∩G2)

≥ µ∗(A ∪B) + µ∗(A ∩B).

Since ε > 0 is arbitrary, (3.3) follows.

Monotonicity of µ∗ follows from the definition.

By monotonicity, µ∗(A) ≥ limn µ
∗(An). In order to prove the reverse inequality, choose

for each n, Gn ∈ G, An ⊂ Gn such that

µ∗(Gn) ≤ µ∗(An) + ε2−n

where ε > 0. We assume that µ∗(An) <∞ for each n as otherwise the inequality is trivial.
Now since A =

⋃
nAn ⊂

⋃
nGn ∈ G, we have

µ∗(A)
monoton.

≤ µ∗

(⋃
n

Gn

)
µ∗|G=µ

σ
|G

= µσ

(⋃
n

Gn

)
Lem. 3.7−(c)

= lim
n
µσ

( ⋃
1≤k≤n

Gk

)
Thus we will be done if we can show

µσ

( ⋃
1≤k≤n

Gk

)
≤ µ∗(An) + ε

∑
1≤k≤n

2−k (3.4)

for all n. This is true for n = 1 by the choice of G1. Suppose that it holds for some n ≥ 1.
Now applying Lemma 3.7–(b) to the sets

⋃
1≤k≤n and Gn+1, we get

µσ

( ⋃
1≤k≤n+1

Gk

)
= µσ

( ⋃
1≤k≤n

Gk

)
+ µσ(Gn+1)− µσ

(( ⋃
1≤k≤n

Gk

)
∩Gn+1

)
≤ µ∗(An) + ε

∑
1≤k≤n

2−k + µ∗(An+1) + ε2−(n+1) − µ∗(An)

= µ∗(An+1) + ε
∑

1≤k≤n+1

2−k,
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where in the second step, we used the observation that( ⋃
1≤k≤n

Gk

)
∩Gn+1 ⊃ Gn ∩Gn+1 ⊃ An ∩ An+1 = An

along with the monotonicity of µ∗. (3.4) now follows by induction.

Step III. Obtaining a measure by restricting µ∗ .

The proof of the following important result will be an assignment problem.

Proposition 3.11. Let λ be an outer measure on Ω. A set E is called λ-measurable if

λ(A) = λ(A ∩ E) + λ(A ∩ Ec)

for all A ⊂ Ω. The class M of all λ-measurable sets is a σ-field and λ restrcited to M is
a measure.

In view of Proposition 3.9, µ∗ restricted to σ(F0) is a measure provided the sets in F0

are µ∗-measurable.

Lemma 3.12. The sets in F0 are µ∗-measurable.

Proof. By the subadditivity, we already have µ∗(A) ≤ µ∗(A ∩ E) + µ∗(A ∩ Ec) for all
A,E ⊂ Ω. Hence, we only need to show the reverse inequality. To this end let A ⊂ G ∈ G
so that, by Lemma 3.7–(a), we have for any E ∈ F0,

µσ(G) = µσ(G ∩ E) + µσ(G ∩ Ec) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec)

where in the final step we simply used the definition of µ∗. The lemma now follows by
taking infimum over all G ⊃ A.

Now we have accomplished what we had set out for.

Although it is usually difficult to give explicit descriptions of sets in a σ-field in terms
of the sets in an underlying field, the following theorem says we can do so upto a set of
very small µ-measure when the measure is σ-finite on the field.

Theorem 3.13 (Approximation theorem). Let (Ω,F , µ) be a measure space and let F0

be a field of subsets of Ω such that σ(F0) = F . Assume that µ is σ-finite on F0, and let
ε > 0 be given. If A ∈ F and µ(A) <∞, there is a set B ∈ F0 such that µ(A∆B) < ε.
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Proof. The proof follows directly from the construction of the measure in the extension
part of the proof of the Carathéodory extension theorem when µ is finite (why?). Oth-
erwise consider the decomposition of µ as

∑
n µn where µn(·) := µ(· ∩ An) with An ∈ F0

satisfying µ(An) <∞.

Since µn is a finite measure on F , for any A ∈ F , there exists a set Bn ∈ F0 such that
µn(A∆Bn) < ε2−n. Since

µn(A∆Bn) = µ((A∆Bn) ∩ An) = µ((A∆(Bn ∩ An)) ∩ An) = µn(A∆(Bn ∩ An)),

and Bn ∩ An ∈ F0, we may assume Bn ⊂ An (here we used the hypothesis that µ is
σ-finite on F0, not just on F). If C =

⋃
nBn, then C ∩ An = Bn, so that

µn(A∆C) = µ((A∆C) ∩ An) = µ((A∆Bn) ∩ An) = µn(A∆Bn),

hence

µ(A∆C) =
∑
n

µn(A∆C) < ε. But
⋃

1≤k≤N

Bk \ A ↑ C \ A as N →∞,

and A −
⋃

1≤k≤nBk ↓ A \ C. If A ∈ F and µ(A) < ∞, it follows from the continuity of
measures on finite measure sets that µ(A∆

⋃
1≤k≤nBk) → µ(A∆C) as N → ∞, hence is

less than ε for large enough N . Set B =
⋃

1≤k≤nBk ∈ F0.

Suggested reading. Sections 1.2.3–1.3.12 in Probability and Measure Theory by Robert
B. Ash and Catherine A. Doléans-Dade.
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