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6 The Riesz-Markov Representation Theorem

In the ensuing few lectures, we will discuss a very important result in analysis which
is going mark our transition from measure theory to functional analysis. This result
characterizes the linear functionals on a locally compact Hausdorff space X as integrals
with respect to regular complex Borel measures. Recall that we motivated the definition
of Lebesgue integrals as “continuous” linear functionals on the linear space of measurable
functions. The Riesz-Markov theorem makes that heuristic precise.

Let us start with some warm up drills on function spaces, in particular two special
subspaces of C(K) — the space of all continuous functions on a topological space K.
Based on whether the codomain is C or R, the corresonding spaces will be denoted as
C·(K,R) or C·(K,C) in the sequel. Unless specifically mentioned, the statements involving
C·(K) are supposed to hold for both C·(K,R) and C·(K,C).

Definition 6.1 (The spaces Cc(K) and C0(K)). For any topological space K, we denote
by Cc(K) the set of complex-valued continuous functions on K with compact support,
i.e.,

Cc(K) :=
{
f ∈ C(K) : {x ∈ K : |f(x)| > 0} is compact

}
.

We further define,

C0(K) := {f ∈ C(K) : for all ε > 0, {x ∈ K : |f(x)| ≥ ε} is compact} .

Recall from a previous lecture that a normed linear space (X, ‖ · ‖) over a scalar field
K = R or C is simply a K-vector space equipped with a norm ‖ · ‖. As before, all the
statements about normed linear spaces in the sequel will be assumed to hold for both
K = R and C unless mentioned otherwise.
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Exercise 6.2. Show that both Cc(K) and C0(K) are normed linear spaces under the sup
norm ‖ · ‖∞ defined as ‖f‖∞ := sup{|f(x)| : x ∈ K}. Furthermore, Cc(K) is a subspace
of C0(K).

Henceforth, we will assume Cc(K) and C0(K) to be equipped with the sup norm. A
subspace of (X, ‖ · ‖X) is a normed linear space (Y, ‖ · ‖Y ) where Y is a linear subspace of
X and ‖ · ‖Y is ‖ · ‖ restricted to Y . The following is an important notion in the study of
normed linear spaces.

Definition 6.3 (Linear isometry). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two normed linear
spaces. A linear map T : X 7→ Y is called a (linear) isometry if ‖Tx‖Y = ‖x‖X for all
x ∈ X. In plain words, an isometry is an injective, linear map that preserves norms. If
T : (X, ‖·‖X) 7→ (Y, ‖·‖Y ) is an isometry, we say that (X, ‖·‖X) is isometrically embedded
inside (Y, ‖ · ‖Y ).

In this note, we will be exclusively invested in the case when K is locally compact
Hausdorff. As illustrated by the simple result below, there are good enough reasons for
that!

Lemma 6.4. Let K be locally compact Hausdorff space that is not compact and denote
by K := K ∪ {∞} the one-point compactification of K. For any f ∈ C(K), define Tf
to be the function on K defined as Tf(x) = f(x) when x ∈ K and Tf(∞) = 0. Then a
function f ∈ C(K) lies in C0(K) iff Tf ∈ C(K). This justifies the sobriquet “the space
of functions vanishing at ∞” for C0(K). Also, the map T : C0(K) 7→ C(K) is a linear
isometry.

Proof. Exercise.

Remember that a normed linear space is called a Banach space if the underlying metric
space is complete.

Lemma 6.5. Cc(K) is a dense subspace of C0(K) when K is Hausdorff. Consequently,
Cc(K) is not a Banach space in general.

Proof. Let f ∈ C0(K) and F ε := {x ∈ K : |f(x)| ≥ ε} ⊂⊂ K (“⊂⊂” is the notation for
“compactly contained”, i.e., the left-hand side is a compact set) where ε > 0. Observe
that

F ε ⊂ int(F ε/2) ⊂ F ε/2 ⊂⊂ K.

F ε/2 is a compact Hausdorff space and hence is normal. Also F ε is a closed subspace
of F ε/2 which is disjoint from F ε/2 \ int(F ε/2). Hence by Urysohn’s lemma, there exists
a continuous φ : F ε/2 7→ [0, 1] such that φ|F ε ≡ 1 and φ|F ε/2\int(F ε/2) ≡ 0. By pasting
lemma, φ can be extended to a continuous function (also denoted by φ) on K such
that φ|K\F ε/2 ≡ 0. The lemma now follows upon noticing that g := fφ ∈ Cc(K) and
‖f − g‖∞ ≤ ε.
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Definition 6.6 (Linear functionals and the dual space X∗). Let (X, ‖ · ‖) be a normed
linear space. A linear functional on X is just a linear map f : X 7→ K. We denote by X∗

the linear space of all continuous linear functionals on X.

However, the space C0(K) is Banach when K is also locally compact.

Lemma 6.7. C0(K) is a Banach space when K is locally compact Hausdorff.

Proof. WhenK is compact, C0(K) = C(K) which is clearly complete w.r.t. the sup metric
due to properties of uniform convergence. If K is not compact, we use the isometry T
from Lemma 6.4 and notice that T (C0(K)) is a closed subspace of C(K) and hence is
complete.

When X is a subspace of C(K), there is a natural notion of positivity of linear func-
tionals on X.

Definition 6.8 (Positive linear functionals). Let X be a subspace of C(K). A linear
functional Λ on X is positive if Λf ≥ 0 whenever f ≥ 0.

We are now ready to state the first version of Riesz-Markov theorem, also called the
Riesz–Markov–Kakutani representation theorem.

Theorem 6.9 (Riesz–Markov–Kakutani representation theorem). Let K be a locally com-
pact Hausdorff space and Λ be a positive linear functional on Cc(K). Then there is a
unique Radon measure µ on K such that

Λf =

∫
fdµ (6.1)

for each f ∈ Cc(K).

Proof. The proof of this theorem will occupy a big chunk of this note. Let us clarify a
simple fact first which says that it suffices to prove the result when K = C.

Claim. Any positive linear functional Λ on Cc(K,C) also lies in Cc(K,R), i.e., it maps
real-valued (continuous) functions on K to real numbers. Consequently, it suffices to
prove (6.1) over R.

Proof of Claim. If f ∈ Cc(K,R), then both f+ and f− lie in Cc(K). Consequently,
Λf = Λf+ − Λf− ∈ R.

Step I. Uniqueness of µ.

As is often the case in this business, the proof of uniqueness is simpler. We will use the
following basic lemma.
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Lemma 6.10. Let K be a locally compact Hausdorff space and S ⊂⊂ U ⊂ K where U
is open. Then there exists a function f ∈ Cc(K) satisfying IS ≤ f ≤ IU and supp(f) :=
{x ∈ K : |f(x)| > 0} ⊂ U .

Proof. Since K is locally compact Hausdorff, there is an open set V with compact closure
satisfying S ⊂ V ⊂ V ⊂ U (why?). The lemma now follows from a similar argument as
used in the proof of Lemma 6.7.

Using Lemma 6.10, we can prove

Lemma 6.11. Let K be a locally compact Hausdorff space and let µ be a Radon measure
on K. If U ⊂ K is open, then

µ(U) = sup

{∫
fdµ : f ∈ Cc(K), supp(f) ⊂ U and 0 ≤ f ≤ IU

}
.

Proof. Let us denote the supremum on the right-hand side by s. By monotonicity of
integrals, we have

µ(U) ≥ s.

On the other hand, for any S ⊂⊂ U , let f ∈ Cc(K) be given by Lemma 6.10 for S and
U . Consequently,

s ≥
∫
fdµ ≥

∫
IS dµ = µ(S).

By regularity of µ, we then get

s ≥ sup {µ(S) : S ⊂⊂ U} = µ(U).

Now assume that µ and ν are two Radon measures satisfying (6.1). By Lemma 6.11,
µ(U) = ν(U) for all U ⊂ K open. By regularity of µ and ν, it then follows that µ = ν.

Step II. Construction of an outer measure µ∗.

Define a set function µ∗ on the open subsets of K by

µ∗(U) = sup {Λf : f ∈ Cc(K,R), supp(f) ⊂ U and 0 ≤ f ≤ IU} , (6.2)

and extend this to P(K) by

µ∗(A) = inf {µ∗(U) : U ⊂ K is open and A ⊂ U} . (6.3)

We now proceed to check the conditions of an outer measure. Since ∅ is itself an open
set, we get µ(∅) = 0. The monotonicity is clear from the definition of µ∗.

Finally, we come to the subadditivity. We will need the following result.

Lemma 6.12. Let f ∈ Cc(K) and U1 . . . , Un be open subsets of K such that supp(f) ⊂⋃n
i=1 Ui. Then there are functions f1, . . . , fn ∈ Cc(K) such that f = f1 + . . . + fn and

supp(fi) ⊂ Ui for each i. Also, f1, . . . , fn can be chosen to be nonnegative if f is.
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We will return to the proof of Lemma 6.12 shortly and complete the proof of subad-
ditivity assuming it. Suppose for the moment that the subadditivity holds for countable
collections of open sets. For ε > 0 and n ≥ 1, let Un ⊃ An be an open set such that

µ∗(Un) ≤ µ∗(An) + ε2−n.

Then by the montonicity and subadditivity for open sets of µ∗,

µ∗

(⋃
n

An

)
≤ µ∗

(⋃
n

Un

)
≤
∑
n

µ∗(Un) ≤
∑
n

µ∗(An) + ε.

Sending ε→ 0, we conclude the subadditivity.

Let us now finish the proof of subadditivity for open sets. To this end consider a
sequence {Un} of open subsets of K. Let f ∈ Cc(K,R) such that supp(f) ⊂

⋃
n Un and

0 ≤ f ≤ I⋃
n Un . By the compactness of supp(f), there is a positive integer N such that

supp(f) ⊂
⋃

1≤n≤N

Ui.

Lemma 6.12 then implies that there exist nonnegative functions f1, . . . , fN ∈ Cc(K) such
that f =

∑
1≤n≤N fn and supp(fn) ⊂ Un for each 1 ≤ n ≤ N . Clearly fn ≤ IUn since

f ≤ 1 on Un. Therefore,

Λf =
∑

1≤n≤N

Λfn ≤
∑

1≤n≤N

µ∗(Un) ≤
∑
n

µ∗(Un).

Since f is any function in Cc(K,R) satisfying supp(f) ⊂
⋃

n Un and 0 ≤ f ≤ I⋃
n Un , we

deduce the subadditivity by taking supremum over all such f . We now return to the

Proof of Lemma 6.12. Since K is locally compact Hausdorff and supp(f) =: C is compact,
each x ∈ C has a neighborhood Vx such that V x ⊂⊂ Ui for some i. There are points
x1, x2, . . . , xm such that C ⊂ Vx1 ∪ . . . ∪ Vxm . For 1 ≤ i ≤ n, let Ci be the union of those
V xj

which lie in Ui. By Lemma 6.10, there are functions gi satisfying ICi
≤ gi ≤ IUi

such
that supp(gi) ⊂ Ui. Define

ϕ1 = g1

ϕ2 = (1− g1)g2
. . . . . . . . . . . .

ϕn = (1− g1)(1− g2) · · · gn

which are nonnegative functions. Clearly, supp(ϕi) ⊂ supp(gi) ⊂ Ui for each i. Also,

ϕ1 + ϕ2 + . . .+ ϕn = 1− (1− g1)(1− g2) . . . (1− gn)

Since each x ∈ C lies in Ci for some 1 ≤ i ≤ n and gi ≥ ICi
, it follows that

ϕ1 + ϕ2 + . . .+ ϕn = 1.

Now let fi = fϕi for each i.
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Step III. Every Borel subset of K is µ∗-measurable.

Since the class of µ∗-measurable sets is a σ-field, it suffices to prove that all open subsets
of K are µ∗-measurable, i.e.,

µ∗(A) ≥ µ∗(A ∩ U) + µ∗(A ∩ U c) (6.4)

holds for each A ⊂ K and U ⊂ K open. Now by (6.3) there exists, for any ε > 0, an open
set V ⊂ K such that µ∗(V ) < µ∗(A) + ε. Hence if we can show,

µ∗(V ) ≥ µ∗(V ∩ U) + µ∗(V ∩ U c)− 2ε, (6.5)

it would follow that

µ∗(A) + ε ≥ µ∗(V ∩ U) + µ∗(V ∩ U c)− 2ε,

and we would be able to deduce (6.4) as ε is arbitrary.

In order to verify (6.5), let us first consider f1 ∈ Cc(K) such that 0 ≤ f1 ≤ IV ∩U with
supp(f1) ⊂ V ∩U and Λf1 > µ∗(V ∩U)−ε. Such a function exists due to (6.2). Similarly
letting S = supp(f1), we choose a function f2 ∈ Cc(K) such that 0 ≤ f2 ≤ IV ∩Sc

with supp(f2) ⊂ V ∩ Kc and Λf2 > µ∗(V ∩ Sc) − ε. Clearly, 0 ≤ f1 + f2 ≤ IV with
supp(f1 + f2) ⊂ V and hence

µ∗(V ) ≥ Λ(f1 + f2) ≥ µ∗(V ∩ U) + µ∗(V ∩ U c)− 2ε,

thus proving (6.5).
Henceforth we will refer to the restriction of µ∗ to B(K) as µ.

Step IV. Regularity of µ.

The following lemma allows us to compare µ∗(A) and Λf when f either dominates or is
dominated by IA.

Lemma 6.13. Let A ⊂ K and f ∈ Cc(K). If IA ≤ f , then µ∗(A) ≤ Λf , while if
0 ≤ f ≤ IA and if A is compact, then Λf ≤ µ∗(A).

Proof. Let IA ≤ f and ε ∈ (0, 1), and define Uε by Uε = {x ∈ K : f(x) > 1 − ε}. Then
Uε is open and covers A, and each g in Cc(K) that satisfies g ≤ IUε also satisfies g ≤ IUε

as f > 1− ε. By the positivity and linearity of Λ it follows that

Λg ≤ 1

1− ε
Λf.

Because Uε is open it follows from (6.2) and the inequality above that

µ∗(Uε) ≤ sup{Λg} ≤ 1

1− ε
Λf.

6



Now recall that A is covered by Uε and that µ∗ is monotonic. It follows from this as well
as that ε can be arbitrarily close to zero that µ∗(A) ≤ Λf as required.

Now suppose that 0 ≤ f ≤ IA and that A is compact. Let U be an open set that
includes A. Then 0 ≤ f ≤ IU and supp(f) ⊂ A ⊂ U and so by (6.2)

Λf ≤ µ∗(U).

Since U is an arbitrary open set that includes A, (6.3) implies that

Λf ≤ µ∗(A).

First we argue the local finiteness of µ which is equivalent to finiteness on compact
sets when the underlying space is locally compact. To this end, for any S ⊂⊂ K, let us
apply Lemma 6.10 to the sets S and K to get a function f ∈ Cc(K) satisfying IS ≤ f .
The first part of Lemma 6.13 then implies µ∗(S) = µ(S) ≤ Λf <∞.

The outer regularity is an immediate consequence of (6.3).

For the inner regularity, observe that

µ∗(U)
(6.2)
= sup {Λf : f ∈ Cc(K,R), supp(f) ⊂ U and 0 ≤ f ≤ IU}

Lemma 6.13,
second part

≤ sup {µ(supp(f)) : f ∈ Cc(K,R), supp(f) ⊂ U and 0 ≤ f ≤ IU} .

Since supp(f) is compact, it then follows from the previous display that

µ(U) ≤ sup {µ(K) : K ⊂⊂ U} .

The reverse inequality, on the other hand, follows from the monotonicity of the outer
measure µ∗.

Step IV. Λf =
∫
fdµ for any f ∈ Cc(K).

Due to same reasons as discussed in the beginning of the proof of Theorem 6.9, it suffices
to prove this equality only for nonnegative functions. The idea is to obtain identical
approximations for both Λf and

∫
fdµ upto arbitrary precision.

Define, for any given ε > 0 and for each positive integer n, a function fn : K 7→ R as
follows:

fn(x) =


0, if f(x) ≤ (n− 1)ε,

f(x)− (n− 1)ε, if (n− 1)ε < f(x) ≤ nε,

ε, if nε < f(x).

It is easy to check that fn ∈ Cc(K) and also f =
∑

n fn. Since f is bounded, there exits
N ∈ N such that fn = 0 for all n > N . Let K0 := supp(f) ⊂⊂ K and each n > 0, let

Kn := {x ∈ K : f(x) ≥ nε}.
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Clearly Kn ⊂ Kn+1 ⊂⊂ K for each n ≥ 0. Also we have the inequality εIKn ≤ fn ≤ εIKn−1

for each n ≥ 1. From Lemma 6.13, we get that

εµ(Kn) ≤ Λfn ≤ εµ(Kn−1).

Similarly by positivity of integrals we get

εµ(Kn) ≤
∫
fndµ ≤ εµ(Kn−1).

Summing both sides of each of these two displays over 1 ≤ n ≤ N , we get∑
1≤n≤N

εµ(Kn) ≤ Λf,

∫
fdµ ≤

∑
0≤n≤N−1

εµ(Kn).

But the length of the interval defined by two sides above is at most

ε
(
µ(K0)− µ(KN)

)
≤ εµ(supp(f))

which can be made arbitrarily close to 0 by sending ε to 0 and thus we have accomplished
our goal.

We end this note with the statement of:

Theorem 6.14. Let K be a locally compact Hausdorff space and Λ be a continuous linear
functional on C0(K). Then there is a unique regular complex Borel measure µ on K such
that

Λf =

∫
fdµ (6.6)

for each f ∈ C0(K). Furthermore, the norm of Λ is the total variation of µ, i.e.,

‖Λ‖ = |µ|(K).

Suggested reading. Sections 2 in Real and Complex Analysis by Walter Rudin.
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