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Abstract

We consider the percolation of vacant set of random interlacements in dimensions three
and higher, and derive lower bounds on the truncated two-point function for all but the
corresponding critical parameter u∗. These bounds are sharp to principal exponential order,
and match the upper bounds derived in a companion article [12]. In dimension three, our
results imply that the two-point function grows at an atypical rate, with a logarithmic
correction and a precise pre-factor that converges to 0 as the parameter u approaches the
critical point u∗ from either side. A particular challenge comes from the combined effects
of lack of monotonicity when dealing with truncation in the super-critical phase and the
precise (rotationally invariant) control we seek in dimension three. These rely on rather fine
estimates for hitting probabilities of the random walk in arbitrary direction e, which witness
this invariance at the discrete level, and preclude straightforward applications of projection
arguments.
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1 Introduction

We consider the vacant set of random interlacements (Vu)u>0 on Zd in dimensions d ≥ 3 and its
percolative properties (see [20]). As shown in the successive works [20, 19, 24, 18], the random set
Vu, which is decreasing in u, undergoes a percolation phase transition across a non-degenerate
threshold u∗ = u∗(d) ∈ (0,∞) for all d ≥ 3. This transition entails that whenever u < u∗, there
exists a unique infinite cluster in Vu with probability one. In stark contrast, for all u > u∗ the
connected components (clusters) of Vu are finite almost surely.

We now come to the statement of our main result which concerns the truncated two-point
function of (Vu)u>0. To this end let

(1.1) τ tr
u (x, y) = P[x

Vu←→ y, x
Vu
6←→ ∞], for x, y ∈ Zd and u ∈ (0,∞).

Note that τ tr
u (x, y) = τ tr

u (y, x) and that τ tr
u (x, y) = τ tr

u (0, y − x) ≡ τ tr
u (y − x) by translation

invariance of Vu. When u > u∗ the ‘truncation’ {0 6←→ ∞ in Vu} has probability one and can

be safely omitted, so that τ tr
u (x) = P[0

Vu←→ x] ≡ τu(x), the usual two-point function. When

u < u∗ however, τu(x) ≥ P[0
Vu←→ ∞]2 > 0, which does not decay at all. the next result gives

sharp asymptotics for τ tr
u at large distances.

In a recent work [8] (see Theorem 1.2, i) and (1.15) there), drawing upon the companion
articles [9, 10], it was shown that τu(x) decays stretched-exponentially fast in the sub-critical
regime u > u∗. In the super-critical regime u > u∗, on the other hand, [8, Theorem 1.2] together
with the disconnection estimate in [24] yields a similar bound on a related but strictly smaller
quantity, namely where the disconnection in (1.1) happens at an intensity v < u. The main
object of this paper is to obtain ‘sharp’ lower bounds on τ tr

u (x). In the sequel, we write | · | for
the Euclidean distance on Zd.

Theorem 1.1. For all u 6= u∗,

(1.2) lim inf
|x|→∞

log |x|
|x|

log τ tr
u (x) ≥ −π

3
(
√
u−
√
u∗)

2, d = 3.

When d ≥ 4, for all u 6= u∗, there exists C = C(u, d) ∈ (0,∞) such that for all x ∈ Zd,

(1.3) log τ tr
u (x) ≥ −C|x|.

Combined with Theorem 1.4 in the companion article [12], this implies

Corollary 1.2. For all u 6= u∗,

(1.4) lim
|x|→∞

log |x|
|x|

log τ tr
u (x) = −π

3
(
√
u−
√
u∗)

2, d = 3.

When d ≥ 4, for all u 6= u∗, there exist C = C(u, d) and c = c(u, d) ∈ (0,∞) such that for all
x ∈ Zd,

(1.5) −c |x| ≥ log τ tr
u (x) ≥ −C |x|.
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We now make a few comments and highlight some aspects of the proof focussing entirely on
dimension 3 which is our prime interest in this paper. One of the main obstacles is the non-
monotonic nature (as functions of u) of the function τ tr

u . Theorem 1.1 will follow from a more
general result, Theorem 3.1, which yields a lower bound on the probability of a class of events
Au(x, δ), that, roughly speaking, allow to connect the |x|δ-neighborhoods of 0 and x ∈ Zd by a
sufficiently “straight” cluster (i.e. efficiently in diameter) in the vacant set Vu, which is isolated
from infinity (eventually, δ ↓ 0). The event Au(x, δ) in fact more involved, it also entails the
flexibility to perform local surgeries near 0 and x (borrowing a technique recently introduced in
[9]), which normally would follow by application of the FKG-inequality, which however fails to
apply when the event in question is not monotone.

Theorem 3.1 has a lot of mileage, in allowing us to deduce Theorem 1.1, along with other
interesting results, among which, bounds on the so-called truncated one-arm events, see Re-
mark 3.2. Another case in point is the following ‘local uniqueness’ event LU and variants
thereof, which play a prominent role in the proof: for u, v, ε > 0, with Br denoting the ball of
radius r > 0 around 0, let

(1.6) LUu,v
r,ε

def.
=

{
(B(1+ε)r \Br/2) ∩ Vu has at least one crossing cluster,

(Br \Br/2) ∩ Vv has at most one crossing cluster

}
.

Notice that the event LUu,v
r,ε becomes unfavorable compared to the ‘unsprinkled’ version LUu,u

r,ε

when v < u. Events of this type arise naturally from monotone couplings involving non-
monotone events like LUu,u

r,ε etc. and as such are quite instrumental in understanding the
properties of Vu in the super-critical phase (see, e.g. [15, 3, 21, 23, 8, 9, 10, 17]).

The study of LUu,v
ε for v < u (and in fact the more general event considered in Theorem 3.1)

proceeds through a change of probability method, that involves a carefully designed tilt P̃f of the
canonical law P of the interlacement point process. As within classical large deviation theory,
the gyst is for the change of measure to simultaneously make the event of interest likely (i.e. with
probability of order unity rather than, say, the right-hand side of (1.2)), all the while retaining
good control on the Radon-Nikodym derivative it induces, which eventually leads to lower bounds
as in (1.2). A similar but simpler tilting technique than the one we employ here was used by
Li and Sznitman in [14] to study the (monotone) disconnection event from a box in the regime
u < u∗, see also [22] for other contexts. In the present case, the function f : Zd → R induces
a tilt on labelled trajectories entering the interlacement set which acts as a Doob-transform for
the trajectories, in a manner that depends on the label (here working with labeled trajectories
is intimately linked to the fact that the event (1.6) requires working simultaneously at different
levels), in order to induce a propitious spatially modulated level u(x), for which we now give
some heuristics.

Roughly speaking, the effect of the function f we choose is to create a ‘corridor’ T 1 and
concentric interface T 2, in which the new vacant sets Ṽu, resp. Ṽv declared under P̃f look
slightly super-, resp. sub-critical. That is, f is designed so as to roughly ensure that for any
0 < v ≤ u, and small ε > 0

(1.7) Ṽu|T 1

law
≈ Vu∗−ε, Ṽv|T 2

law
≈ Vu∗+ε.

The rationale behind (1.7) is that the opposite requirements appearing in (1.6) become typical at
the effective new levels u∗± ε; indeed connection in Vu is likely below u∗, whereas disconnection
is above u∗. The way (1.7) is made precise is by developing couplings allowing to compare tilted
and untilted interlacements; see Proposition 6.1. These couplings boil down to rather precise
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comparison estimates between tilted and untilted harmonic quantities for the random walk (see
for instance Proposition 7.3) below, which make the “effective levels” u∗ ± ε appear, and are
ultimately responsible for our choice of tilting function f . One technical point is that the tilting
function f is typically not the discrete blow-up of a continuous analogue, which makes proving
these comparison estimates somewhat involved.

The remaining bit is to control the relative entropy H(P̃f |P) between P̃f and P, and with it
the derivative between the two measures. This eventually follows from (killed) capacity estimates
for the tube regions T 1 and T 2, somewhat similar in spirit to those that arose in [11] in the
context of the Gaussian free field. However, unlike the setup of [11], which dealt with one-arm
events (in the present context this would mean choosing T i, i = 1, 2 to be axis-aligned), the
efficient connection between 0 and x underlying (1.2) follows the Euclidean distance, hence the
sets T 1 and T 2 are oblique and directed towards e = x

|x| . This setup is paramount in order to

yield (1.2) and it precludes the use of certain projection arguments (onto subsets of coordinates)
used in [11]. Rather than following a route suggested in [11, Remark 5.17,2)], which would resort
to dyadic coupling to Brownian motion, we develop robust techniques, which could be adapted,
e.g. to the setup of [5] and involve certain (non-standard) martingale arguments, see also Fig. 1
and the proof of Proposition 2.1. These are of independent interest.

We now describe how this article is organized. Section 2 isolates an estimate on the hitting
probability for an obliquely aligned cylinder pertaining to the problem discussed above. In
Section 3 we state our general lower bound in Theorem 3.1 and deduce from it our main result,
namely Theorem 1.1 above. The rest of the paper is devoted to the proof of Theorem 3.1.
Section 4 introduces the tilting functions f of interest, along with the tilted interlacement
measure P̃f they induce. Theorem 3.1 is then reduced to two results, Propositions 4.1 and 4.2,
from which the proof of Theorem 3.1 is readily concluded. Proposition 4.1 is the control on
the relative entropy H(P̃f |P). It is proved in Section 5 which draws upon, among others, the
aforementioned hitting probability estimate for ‘oblique corridors’ given by Proposition 2.1 in
Section 2. Proposition 4.2 asserts that the event of interest in Theorem 3.1 becomes typical under
the tilted measure. The proof of Proposition 4.2 spans Sections 6 and 7. The key ingredient is
a coupling between tilted and untilted interlacements at suitable levels that makes precise the
above heuristics.

Our convention regarding constants is as follows. Throughout the article c, c′, C, C ′, . . . de-
note generic constants with values in (0,∞) which are allowed to change from place to place. All
constants may implicitly depend on the dimension d ≥ 3. Their dependence on other parameters
will be made explicit. Numbered constants are fixed when first appearing within the text.

2 Hitting probability for oblique sets

We present an upper bound on the hitting probability of a cylinder aligned along any arbitrary
direction in R3. This bound becomes effective when the distance between the underlying starting
point and the cylinder is of lower order than its length which renders the ‘standard’ estimate
obtained using bounds on capacity and Green’s function (see, e.g. (2.3) below) trivial (i.e. ≥ 1).
A similar estimate was obtained in [11, (2.25)] for axis-aligned cylinders. The main feature of our
bound is that it holds uniformly in all directions which is consistent with the rotational invariance
apparent in (1.2) and (1.4). The argument in [11] relied heavily on projection arguments, whose
straightforward application is precluded when the cylinders are oblique. We proceed using a
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(different) martingale argument which inherits the required (rotational) symmetry from the
large distance behavior of the Green’s function (see (2.10) below) rather than the Brownian
motion, the corresponding scaling limit, as suggested in [11, Remark 5.17,2)]. Consequently, our
method could be adapted to very general class of graphs; see, e.g. [5].

Below and in the remainder of the article, we write Px for the canonical law of the continuous-
time random walk on Zd, d ≥ 3, with starting point x ∈ Zd and mean one exponential holding
times. We write X = (Xt)t≥0 for the canonical process under Px. For K ⊂ Zd, we introduce the

stopping time HK = inf{t ≥ 0 : Xt ∈ K}, TK = HZd\K and H̃K = inf{t ≥ 0 : Xt ∈ K and ∃s ∈
[0, t] s.t. Xs 6= X0}. For U ⊂ Zd, we write gU for the Green’s function of the walk killed when
exiting U , i.e.

(2.1) gU (x, y) = Ex

[ ∫ TU

0
1{Xt = y}dt

]
, x, y ∈ Zd

which is symmetric and finite, and for K ⊂ U we denote by eK,U for the equilibrium measure
of K relative to U ,

(2.2) eK,U (y) = Py[H̃K > TU ]1{y∈K}.

Its total mass is denoted by capU (K), the capacity of K (relative to U). We omit U from the
notation in (2.1) and (2.2) whenever U = Zd (with TZd =∞ by convention). An application of
the strong Markov property yields the formula

(2.3) Py[HK < TU ] =
∑
z∈K

gU (y, z)eK,U (z),

valid for all y ∈ Zd and K finite set.
We write | · | for the Euclidean norm and denote by d(·, ·) the Euclidean distance between

sets. Let x ∈ Zd \ {0} and e = x
|x| . For a point z ∈ Rd, let [z] ∈ Zd be a point achieving d(z,Zd).

We now introduce certain discretized cylindrical sets, namely

T (x) = T (x, 0) = {[je] : 0 ≤ j ≤ d|x|e},
T (x, r) = {y ∈ Zd : d(y, T (x)) ≤ r}, r ≥ 0.

(2.4)

In the sequel, ∂K
def.
= {x ∈ K : d(x,Kc) = 1} denotes the inner vertex boundary of K ⊂ Zd

whereas ∂outK
def.
= ∂(Zd \K) its outer boundary.

Proposition 2.1. For all δ, ε ∈ (0, 1), |x| ≥ C(δ, ε), if d = 3,

(2.5) inf
y/∈T (x,|x|δ)

Py[HT (x,|x|(1−ε)δ) =∞] ≥ cδε.

Proof. We abbreviate T = T (x), T 2 = T (x, |x|δ(1−ε)) and T 3 = T (x, |x|δ) throughout this proof.
Let us start with a few reduction steps. By a straightforward application of the strong Markov
property at time HT 3 it is enough to show (2.5) for y ∈ ∂outT 3. For |x| ≥ C(δ), we can write
∂outT 3 ⊂ S ∪ L, where, writing R = |x|δ and ` = {te : t ∈ R} with e = x/|x| and tacitly
embedding Zd ⊂ Rd in writing expressions such as d(z, `) below, we set

L def.
=
{
z ∈ T (x, 4R) \ T 3 : d(z, `) ≥ R

4

}
,

S def.
= ∂outT 3 \ L.

(2.6)
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One can reduce the case y ∈ S to the case y ∈ L, as explained at the end of the proof. We now
focus on y ∈ L. For such y, we will in fact show a stronger statement, with T 2 in (2.5) replaced
by a certain enlargement T̃ 2 ⊃ T 2, which we now introduce. This enlargement will later have a
‘uniformizing’ effect on the martingale we consider, cf. (2.8) and (2.12) below.

e

˜
T

˜
T

z

Figure 1 – A configuration of cylinders in a generic direction e = x/|x|. We
illustrate a sample path contributing to the martingale Mt introduced in (2.8). The

point z varies over all of T̃ , which includes the two ‘stablilizing’ rods (dashed). These
are used to achieve the desired uniformity for the lower bound in (2.12). In reality,
all lines and rectangles drawn are replaced by lattice approximations, cf. (2.4)-(3.1).

Recalling the notation [z] from around (2.4) and for K ⊂ Zd, let

(2.7) K̃
def.
= K ∪

{
[je] : j ∈ Z ∩

(
[−|x|, 0] ∪ [|x|, 2|x|]

)}
.

In words, K̃ is obtained from K by adding two ‘rods’ of length roughly |x| each, extending from
near 0 and x in opposite directions parallel to e. Abbreviating T (x) ≡ T for the set from (2.4)
in the sequel, let

(2.8) Mt =
∑
z∈T̃

g(Xt, z),

and define the stopping time τ = H
T̃ 2 ∧ TU = T

U\T̃ 2 with U given by (4.1).

Since g(·, z) is harmonic outside z and using the fact that T̃ ⊂ T̃ 2 it readily follows that
(Mt∧τ )t≥0 is a martingale under Py for all y ∈ L. We will need to separately consider the

extremities Ext(T̃ ) ⊂ T̃ , defined as follows. Let x± ∈ T̃ where x+ = [2|x|e] = [2x] and
x− = [−|x|e] = [−x] and

(2.9) Ext(T̃ )
def.
= {z ∈ T̃ : d(z, x+) ∧ d(z, x−) ≤ |x|/2}.

With these definitions, the following hold.
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Claim 2.2 (d = 3). Let

(2.10) c1 = lim
|x|→∞

|x|−1g(0, x)(= 3
2π )

(see, e.g. [13, Theorem 1.5.4]). For |x| ≥ C(δ, ε), one has:

for all z ∈ L: Ez[M0] ≤ 2c1(1− (1− 0.1ε)δ) log |x|,(2.11)

for all z ∈ T̃ 2 \ Ext(T̃ ): Ez[M0] ≥ 2c1(1− (1− 0.9ε)δ) log |x|.(2.12)

The proof of both (2.11) and (2.12) requires slight care owing to discrete effects. To avoid
disrupting the flow of reading the proof is postponed to the end of this section. Suppose now
that Claim 2.2 holds. We proceed to show (2.5) for y ∈ L. Since |Mt∧τ | ≤ C Py-a.s., the optional
stopping theorem applies and yields, upon neglecting the (positive) contributions stemming from
both the event {H

T̃ 2 > TU} and otherwise from the case where Xτ = XH
T̃2

belongs to Ext(T̃ ),
that for all |x| ≥ C(δ, ε) and y ∈ L,

(2.13) 2c1(1− (1− 0.1ε)δ) log |x|
(2.11)

≥ Ey[M0]

= Ey[Mτ ]
(2.12)

≥ Py
[
H
T̃ 2 ≤ TU , Xτ /∈ Ext(T̃ )

]
· 2c1(1− (1− 0.9ε)δ) log |x|.

By definition of T̃ and Ext(T̃ ), see (2.7) and (2.9), see also (3.1) one has that d(T (x, 4R),Ext(T̃ )) ≥
|x|
4 when |x| ≥ C(δ, ε). By [11, Lemma 2.2 and Remark 2.3] (or using (5.5) below), one knows

that cap
(
Ext(T̃ )

)
≤ C |x|

log |x| . By (2.3), it thus follows that

(2.14) sup
y∈T (x,4R)

Py
[
H

Ext(T̃ )
<∞

]
≤ C(log |x|)−1 → 0 as |x| → ∞.

Using (2.14) one deduces in particular that Py
[
H
T̃ 2 ≤ TU , Xτ ∈ Ext(T̃ )

]
≤ 0.2c1δε for y ∈ L

whenever |x| ≥ C(δ, ε). Using this together with (2.13) and the fact that T2 ⊂ T̃2 by (2.8), it
follows that

(2.15) Py[HT 2 ≤ TU ] ≤ Py[HT̃ 2 ≤ TU ] ≤ 1− 2c1

( 0.8δε

1− (1− 0.9ε)δ
− 0.1δε

)
,

for all y ∈ L and |x| ≥ C(δ, ε). With a similar calculation as in (2.14), one finds that
supz∈Zd Pz[TU < HT 2 <∞]→ 0 as |x| → ∞. Combining with (2.15), one deduces the bound in
(2.5) uniformly in y ∈ L.

To complete the proof of (2.5) it thus remains to treat the case y ∈ S in (2.5). To deal with
this, we now argue that

(2.16) inf
y∈S

Py[HL < HT 2 ] ≥ c.

Once (2.16) is shown, (2.5) follows by applying the strong Markov property at time HL and
combining (2.16) with the lower bound on Py[HT 2 = ∞] for y ∈ L already derived. We show
(2.16) using a chaining argument. Let y ∈ S. By definition, see (2.6) and (3.1) for any such
y we can find a finite number of boxes Bi = B(xi,

R
100), 1 ≤ i ≤ n (with n uniform in y) such

that B1 3 y, Bi+1 and Bi have a non-empty overlap containing a translate of B(0, R
300) for all

1 ≤ i < n, Bn ⊂ L and lastly B(xi,
R
10) ∩ T2 = ∅ for all 1 ≤ i ≤ n. Then, using [17, (A.4)] with

the choice δ = 1, one readily infers that infz∈Bi Pz[HBi+1 < HT 2 ] ≥ c for all 1 ≤ i < n. Applying
the strong Markov property repeatedly, (2.16) follows as Bn ⊂ L.
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We now give the proof of the estimates (2.11) and (2.12), for which the stabilizing effect of
the extension T̃ comes into effect.

Proof of Claim 2.2. Recall Mt from (2.8), which involves summation along the oblique line T̃ ,
see (2.4) regarding T = T (x) and (2.7) regarding its extension T̃ ⊃ T . As before, with | · |
denoting the Euclidean norm, let e = x

|x| for x 6= 0, and viewing Zd ⊂ Rd, consider the line

` = {te : t ∈ R}. Given z /∈ `, define yz ∈ ` as the point minimizing the distance to z, so that,
with 〈·, ·〉 denoting the standard inner product,

(2.17) 〈z − yz, e〉 = 0

and let jz ∈ Z be such that |je− yz| is minimized when j = jz. In particular, it follows that

(2.18) |jze− yz| ≤ C.

From this, one obtains that for all y ∈ T̃ , i.e. for all y of the form y = [je] for some j ∈
Z ∩ [−|x|, 2|x|], and z ∈ Zd, abbreviating dz = d(z, `) (recall that d(·, ·) refers to the Euclidean
distance between sets), whence dz = |z − yz|, that

(2.19) |y − z| = |[je]− z| ≥ |je− z| − C

(∗)
=
√
|je− yz|2 + d2

z − C ≥ dz

√
1 +

((|j − jz| − C1) ∨ 0)2

d2
z

− C,

where we used in deriving (∗) that yz − e is collinear with e, whence 〈je− yz, z − yz〉 = 0, and
in the last step that |je− yz| ≥ |j − jz| − |jze− yz| ≥ |j − jz| −C using (2.18). Now if z ∈ L as
in (2.11), then in view of (2.6) one has that jz ∈ [−|x|/2, 3|x|/2e] whenever |x| ≥ C(δ, ε). For
such z, let Ik = {j ∈ Z : |j − jz| − C1 ∈ [kdz, (k + 1)dz)} and K = 2|x|/dz, so that

(2.20) {j ∈ Z : [je] ∈ T̃} \ [jz − 2C2, jz + 2C2] ⊂
K⋃
k=1

Ik

It follows that for z ∈ L and |x| ≥ C ′(δ, ε), recalling Mt from (2.8), one has

(2.21) (1 + ε
103

)−1Ez[M0]
(2.10)

≤ c1

∑
y∈T̃

1

|z − y|

(2.20)

≤ C + c1

K∑
k=1

∑
y∈T̃

1{y = [je] for a j ∈ Ik}
|z − y|

(2.19)

≤ C + c1d
−1
z

K∑
k=1

|Ik|
1√

1 + k2 − C
dz

.

Now, using the fact that c|x|δ ≤ dz = d(z, `) ≤ C|x|δ for all x and z ∈ L one infers that the last
fraction in (2.21) is at most (1 + ε

103
)k−1 for |x| ≥ C(δ), that K ≤ C|x|1−δ and that |Ik| = 2dz

for any such k. Substituting these bounds into (2.21), the bound (2.11) readily follows upon
performing the harmonic sum and using that

∑
1≤k≤K

1
k ≤ 1 + logK.

To obtain (2.12), one proceeds similarly with a few modifications, which we now highlight.
It is here that the extension T̃ bears its fruits over T and allows a not too wasteful estimate (in

7



particular, one correctly producing the pre-factor 2 appearing on the right-hand side of (2.12)).
One readily derives a companion bound to (2.19), yielding that for all z ∈ Zd and j ∈ Z,

(2.22) |[je]− z| ≤ dz

√
1 +

(|j − jz|+ C2)2

d2
z

+ C.

The fact that jz as defined above (2.18) continues to range in [−|x|/2, 3|x|/2e] when z ∈ T̃ 2 \
Ext(T̃ ) as in (2.12) follows readily using the definition of Ext(T̃ ) in (2.9). Thus, in view of the
definition of T̃ in (2.7), if one sets K ′ = c|x|/dz for sufficiently small c and defines I ′k = {j ∈ Z :
|j − jz| ∈ [kdz, (k + 1)dz)}, then one obtains the inclusion

(2.23) {j ∈ Z : [je] ∈ T̃} ⊃
K′⋃
k=1

I ′k.

Equipped with (2.22) and (2.23), now playing the role of (2.19) and (2.20), respectively, one
readily performs a computation akin to (2.21), using among others the complementary bound
stemming from (2.10) as well as the fact that the sets I ′k are disjoint, to conclude (2.12).

3 Generalized lower bound

We now state a general lower bound on a certain class of events involving simultaneous connection
and disconnection events in the vacant set. The precise statement is given in Theorem 3.1
below. The event of interest in Theorem 3.1 (cf. (3.5)) has three distinguishing features, which
together allow for various interesting consequences. First, it is quantitative in the sense that
connection and disconnection are implemented in specific (tubular) regions introduced below.
Second, the event allows a small amount of unfavorable sprinkling between the levels involved
in the connection and disconnection events (parametrized by η > 0 below). Third, it leaves the
flexibility for a good event Gu(x), see (3.4), which in practice allows for local surgery around
0 and x: indeed, the event in Theorem 3.1 only connects their r1-neighborhhood, where r1 is
chosen below, see (3.2).

Theorem 1.1, as well as various other interesting lower bounds (see for instance Remark 3.2),
are then derived in the remainder of this section, using Theorem 3.1 as crucial ingredient.
Theorem 1.1 follows rather straightforwardly once one implements a suitable surgery to connect
0 and x (without spoiling disconnection).

We will work with some special cylindrical sets (recall (2.4)) which will play a role in the
sequel. To this end, let x ∈ Zd \ {0} (eventually this will correspond to the point x appearing
in the statement of Theorem 1.1) and δ ∈ (0, 1

6). Our construction involves the nested sets

T 1 ⊂ · · · ⊂ T 6, where

T i = T (x, (|x| ∨ 100)iδ), 1 ≤ i ≤ 5, T 6 = T (x, 4(|x| ∨ 100)5δ),
(3.1)

which implicitly depend on x and δ. Let

(3.2) r0 = r0(x, δ)
def.
= 100 ∨ |x|

δ

100
, r1 = r

1/4
0 .

In the sequel (`uy)y∈Zd,u>0 denotes the occupation time field of the interlacement point process;

for its explicit definition cf. (6.1) below. In what follows we consider, for u > 0, x ∈ Zd,
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δ ∈ (0, 1) and η ∈ [0, 1) (often kept implicit in our notation), a generic event Gu of the form
Gu =

⋂
i∈I G

u
Bi

, where (Bi : i ∈ I) is a finite sequence of boxes of radius 10r1 with centers
in T (x). It may well be Bi = Bj for some i 6= j. We further assume that GB = GuB can be
expressed measurably in terms of (at most) two local occupation fields (`vy)y∈B and (`wy )y∈B,

where v, w ∈ {u(1− k
4η
√
δ) : k = 0, 1, 2, 3, 4} with v > w, and that GB is increasing in (`vy)y∈B

and decreasing in (`wy )y∈B.

Theorem 3.1. Let Gu be of the above form and define, for u 6= u∗, η ∈ [0, 1), x ∈ Zd and
δ ∈ (0, 1), the event

(3.3) Au(x, δ) =
{
Gu, B(0, r1)

Vu∩T 1

←−−−→ B(x, r1), T 4
Vu(1−η

√
δ)

6←→ ∂T 5
}
.

For u > u∗, A
u(x, δ) is declared as in (3.3) but omitting the disconnection event. If

(3.4) lim
|x|→∞

|I| · sup
i

P[(GuBi)
c] = 0, for all u ∈ [2−1u∗, 2u∗],

then for all u 6= u∗, 0 ≤ η ≤ c2, one has when d = 3 that

(3.5) lim inf
δ↓0

lim inf
|x|→∞

log |x|
|x|

logP
[
Au(x, δ)

]
≥ −π

3

(√
u∗ −

√
u(1− Cη)

)2
.

As a first consequence of Theorem 3.1, we derive the asserted lower bound on the truncated
two-point function τ tr

u from (1.1). The event Gu will thereby allow for local surgeries (around
0 and x) at affordable multiplicative cost. This will notably involve a sprinkled finite energy
technique recently developed in [9, Section 3].

Proof of Theorem 1.1. We first prove (1.2), and start with the case u > u∗. For x ∈ Zd and
δ > 0, abbreviating Bx = B(x, r1) with r1 as in (3.2) and applying the FKG-inequality for Vu
yields that

(3.6) logP[0
Vu←→ x] ≥ logP[B0

Vu←→ Bx, (B0 ∪Bx) ⊂ Vu] ≥ logP[B0
Vu←→ Bx]− ucap(B0 ∪Bx).

By subadditivity, cap(B0∪Bx) ≤ C|x|δd/4. Thus for all δ < 4
d , the second term on the right hand

side vanishes when multiplied with log |x|
|x| in the limit when |x| → ∞. The event {B0

Vu←→ Bx} is

clearly implied by the event in (3.3) (in absence of the disconnection event since u > u∗) for the
trivial choice Gu(x) = Ω, the space on which P is defined, and (1.2)-(1.3) thus follow for u > u∗
using (3.5) upon letting first |x| → ∞ and then δ ↓ 0.

For u < u∗, the absence of monotonicity of the event appearing in (1.1) precludes the
application of the FKG-inequality. To address this issue we make use of the event Gu. For
y ∈ Zd, let Ay ⊂ Ãy denote the annuli defined as Ay = B(x, 6r1)\B(x, 4r1) and Ãy = B(y, 7r1)\
B(x, 3r1). By choice of r1 in (3.2) and in view of (3.1), we have that (Ã0 ∪ Ãx) ⊂ T 1, as will
be needed for the event defined momentarily in (3.7) to satisfy the assumptions of Theorem 3.1.
Let η ∈ (0, c2) be small enough so that u

1−η < u∗. We will eventually apply Theorem 3.1 with
v = u

1−η
√
δ

(< u∗) in place of u. To this effect, let

(3.7) Gv(x)
def.
=

⋂
z∈{0,x}

G1
z ∩G2

z ∩G3
z

9



where, setting v2 = v(1− η
√
δ

2 ) so that u < v2 < v(< u∗), we define

G1
z

def.
=

⋂
y,y′∈Iv2 ∩Az

{
y
Iv ∩ Ãz←−−−→ y′

}
,

G2
z

def.
=
{

(Iv2 \ Iu) ∩B(z, 2r1) 6= ∅
}
, and G3

z
def.
=

⋂
y∈B(z,9r1)

{`vy ≤ r1},
(3.8)

and `v· denote the (discrete) occupation time field of random interlacements at level v. As we
now briefly elaborate, one readily checks that the event Gv = Gv(x) is of the form required by
Theorem 3.1, for a choice of boxes Bi, i ∈ I, with |I| = 6, each centered at 0 or x. For instance,
the event G1

0 in (3.8) can be represented as GvB with B = B(0, 10r1) (⊂ T 1) and expressed as a
function increasing in (`vx)x∈B and decreasing in (`v2x )x∈B. The other events appearing in (3.8)
are dealt with similarly.

As r1 = r1(x)→∞ as |x| → ∞, the fact that (3.4) holds with v in place of u (for any v > 0)
follows by standard arguments, see in particular [7, Theorem 5.1] to deal with G1

z. Thus, all in
all, (3.5) yields for d = 3 that

(3.9) lim inf
δ↓0

lim inf
|x|→∞

log |x|
|x|

logP
[
Gv(x), B(0, r1)

Vv∩T 1

←−−−→ B(x, r1), T 4
Vu
6←→ ∂T 5

]
≥ −π

3

(√
u∗ −

√
u(1− Cη)

)2
,

for all sufficiently small η > 0, with Gv as in (3.7) and obvious amendments when d ≥ 4.
As now explain, the event Gv allows to obtain the bound

(3.10)
(
τ tr
u (x) ≥

)
P
[
0
Vu∩T 1

←−−−→ x, T 4
Vu
6←→ ∂T 5

]
≥ e−Cr2d1 P

[
Gv(x), B(0, r1)

Vv∩T 1

←−−−→ B(x, r1), T 4
Vu
6←→ ∂T 5

]
,

valid for all d ≥ 3, δ ∈ (0, c) and η ∈ (0, c(u)). Once (3.10) is shown, taking logarithms, using
(3.10) and (3.2), the desired lower bound in (1.2) for u < u∗ follows upon taking successively
the limits |x| → ∞ (for fixed δ < 1

2d), then δ ↓ 0 and finally η ↓ 0. To obtain (1.3) one proceeds
similarly but simply fixes any admissible value of η > 0, for instance η = c2 ∧ (1− 2u

u+u∗
).

It remains to argue that (3.10) holds. The events Giz defined in (3.8) correspond to those
appearing in [9, (3.8)] for the choices B = B(z, r1) and u1 = u2 = u3 = v, 2δ1 = δ2 = η

√
δv.

In particular, the intersection G1
z ∩G2

z ∩G3
z implies the event referred to as F̃B therein (see for

instance [9, (3.9)] or [9, Remark 3.2]), on which the conclusions of [9, Proposition 3.1] hold for
r = r1 and with (v, u) above corresponding to (u, u − δ) therein. In particular, this entails the
following. Let B̂ = B(z, 8r1) and ω−

B̂
denote the point measure obtained from ω =

∑
i δ(w∗i ,ui)

,

the canonical interlacement point measure, by removing from each trajectory w∗i intersecting B̂

all excursions between B̂ and ∂outB̂. Then abbreviating by F = σ(ω−
B̂
, Iv ∩ B̂), one has by [9,

(3.2)] that F̃B ∈ F and moreover that

(3.11) P
[
B ⊂ Vu

∣∣F ]1
F̃B
≥ e−Cr2d1 , B = B(z, r1), z ∈ {0, x}.

Thus, returning to the probability on the right-hand side of (3.10), using for fixed z (say z =
0) the inclusion G1

z ∩ G2
z ∩ G3

z ⊂ F̃B, observing that each of the events G1
x, G2

x, G3
x, F̃B,
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{B(0, r1)
Vv∩T 1

←−−−→ B(x, r1)} and {T 4 Vu←→ ∂T 5} is F-measurable (with regards to Gix, using that
100r1 ≤ |x|), applying (3.11) allows to enforce the event {B(0, r1) ⊂ Vu} at the cost of a

multiplicative factor eCr1
2d

. Repeating the procedure for z = x (which now also includes the
event {B(0, r1) ⊂ Vu} ∈ F , where the latter follows using again that 100r1 ≤ |x|) yields the
desired connection between 0 and x in Vu, and (3.10) follows. This completes the verification of
(1.2).

We now prove (1.3), which is far simpler. Let ` ⊂ Zd denote a connected set of minimal
cardinality intersecting both 0 and x. Thus |x| ≤ |`| ≤ C|x|, where |`| denotes the cardinality
of `. Defining Σ = ∂B(`, 1) we note that any unbounded path intersecting ` must also intersect
Σ. Let N u denote the number of trajectories of the interlacement at level u intersecting Σ, a
Poisson variable with mean u · cap(Σ). By subadditivity of the capacity, one has that cap(Σ) ≤
|Σ| ≤ C|x|, whence

(3.12) τ tr
u (x) ≥ P[` ⊂ Vu, Σ ⊂ Iu] ≥ cue−Cu|x|P

[
` ⊂ Vu, Σ ⊂ Iu

∣∣N u = 1
]
,

where the first inequality is an inclusion by construction of ` and on account of the above
observation on Σ. Moreover, in bounding P[N u = 1] from below to obtain the second inequality,
we also used that cap(Σ) ≥ cap({0}) ≥ c. Now, the conditional probability on the right-hand
side of (3.12) is bounded from below by

inf
z∈Σ

Pz[range(X) ⊃ Σ, range(X) ∩ ` = ∅],

whereX is the simple random walk starting from z under Pz. We claim that the latter probability
is bounded from below by e−C|x|, which, if true and when substituted in (3.12), completes the
proof. The former can be seen as follows. Fix a deterministic path γ contained in Σ starting in
z ∈ Σ whose range covers Σ (which is a connected set). One can choose γ in such a way that
its length is bounded by C|x|, uniformly in z. Forcing X to follow this path in its first steps
ensures that range(X) ⊃ Σ, at a cost bounded from below by (2d)−C|x|. Upon completing this
requirement, one forces X at a similar cost to move away from Σ without intersecting ` following
another deterministic path until reaching distance |x| from Σ. For z′ at distance |x| from Σ,
denoting by HΣ the entrance time in Σ one readily infers that, as |x| → ∞,

Pz′ [HΣ <∞] ≤ C|x|2−dcap(Σ) ≤ C ′|x|3−d → 0.

The assertion now follows by applying the Markov property for X and combining the various
ingredients.

Remark 3.2 (one-arm estimates). 1) By picking x = Ne1, one immediately infers from The-
orem 1.1 similar bounds for the (truncated) one-arm probability, by which for all u 6= u∗,

for d = 3 : lim inf
N→∞

logN

N
logP[0

Vu←→ ∂BN , 0
Vu
6←→ ∞] ≥ −π

3
(
√
u−
√
u∗)

2,(3.13)

for d ≥ 4 : lim inf
N→∞

1

N
logP[0

Vu←→ ∂BN , 0
Vu
6←→ ∞] ≥ −C(u).(3.14)

2) The following lower bound, which both i) localizes the disconnection from ∞, and ii)
allows for a small unfavorable sprinkling can be useful in applications and is of independent
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interest (see below (1.6)). Let δ ∈ (0, 1) and Tδ = [−N δ, N + N δ] × [−N δ, N δ]d−1. Then
for all u < u∗ and 0 ≤ η < c2 ∧ (1− u

u∗
), when d = 3, one has that

(3.15) lim inf
δ↓0

lim inf
N→∞

logN

N
logP

[
0
Vu∩Tδ←−−−→ Ne1, T2δ

Vu(1−η
√
δ)

6←→ ∂T3δ

]
≥ −π

3

(√
u∗ −

√
u(1− Cη)

)2
.

The estimate (3.15) follows by a slight modification of the above proof of Theorem 1.1,
which we now explain. Inspecting that proof, one chooses x = Ne1 and replaces the

occurrences of v2 and u when defining the events Giz in (3.8) by v2 := v(1 − η
√
δ

4 ) and

v3 := v(1 − η
√
δ

2 ), respectively. The resulting events are still of the form required above
Theorem 3.1, and (3.4) continues to hold. Following (3.10) and the subsequent arguments,
these choices effectively allow to replace u by v3 in (3.11). Together with the connection
event in Vv ∩ T 1 appearing on the right of (3.10), this leads to a connection between 0
and Ne1 at level v3 > u, where u is the level of disconnection in (3.10). The lower bound
(3.15) then readily follows after a straightforward reparametrization.

When d ≥ 4, (3.15) remains true upon making the following amendments. The factor
logN appearing on the left-hand side is removed and the sets Tδ, T2δ and T3δ, are replaced
by [0, N ]× {0}d−1, [0, N ]× {0}d−1 and ∂([0, N ]× [−1, 1]d−1), respectively. The bound on
the right-hand side is then replaced by −C(η, u); this bound follows directly by inspection
of the proof of (1.3), for the choice x = Ne1 (see the argument around (3.12)).

4 The tilted measure P̃f
The remaining sections are devoted to the proof of Theorem 3.1. In the present section we
introduce a certain tilt of the measure which will effectively render the event appearing in
Theorem 3.1 typical. The tilted interlacement measure P̃f is introduced in (4.9) below. It
depends on a profile function f which corresponds to a carefully chosen spatial modulation of
the intensity. The key features of the measure P̃f are given by Propositions 4.1 and 4.2 below,
from which Theorem 3.1 is deduced at the end of the present section.

We start by introducing a minimal amount of notation that will be needed from here onwards.
Recall the tubes T i = T i(x) from (3.1), which depend on a choice of point x ∈ Zd \ {0} and
δ ∈ (0, 1). In view of (3.1), one has the inclusions

(T 1 ⊂ · · · ⊂)T 6 ⊂ U, where U = B(0, 103|x|).(4.1)

We now introduce

(4.2) F = {f0, f1}

where f0, f1 : Zd → R+ are defined as follows. For ε ∈ (0, u∗10 ∧ 1) and u > u∗, let

f0(y) ≡ fu;ε
0 (y) = 1−

(
1−

√
u∗ − ε
u

)
h0(y),(4.3)

12



where h0(y) = Py[HT 1 < TU ] (see above (2.1) for notation) and similarly for 0 < v ≤ u < u∗ let

f1(y) ≡ fv,u;ε
1 (y) = 1 +

(√u∗ + ε

v
− 1
)
h2(y)−

(√u∗ + ε

v
−
√
u∗ − ε
u

)
h1(y),(4.4)

where h1(y) = Py[HT 2 < TT 3 ], h2(y) = Py[HT 6 < TU ]. For later purposes, we record that

f0(y) =

{√
u∗−ε
u x ∈ T 1

1 x /∈ U
(4.5)

and that

f1(y) =


√

u∗−ε
u , x ∈ T 2√

u∗+ε
v , x ∈ T 6 \ T 3

1 x /∈ U

(4.6)

In particular, any function f ∈ F is finite, strictly positive and identically equal to 1 outside of
a finite set.

In light of this, we can now define a tilted interlacement measure P̃f for f ∈ F , which we
introduce next. The following construction is essentially the same as in [14, Section 2], to which
we frequently refer, except that we retain information on the labels u for reasons related to
the function f1 and the non-monotonicity of the event of interest in the supercritical phase.
Let W+, resp. W denote the space of infinite, resp. bi-infinite continuous-time transient Zd-
valued trajectories, with finitely many jumps in bounded intervals of times. We write Xt, t ∈ R
(resp. t ≥ 0) for the canonical coordinates on W (resp. W+). Identifying trajectories w,w′ ∈W
using the equivalence relation w ∼ w′ if w(·) = w′(· + t) for some t ∈ R yields the space
W ∗ = W\ ∼ of trajectories modulo time-shift and the canonical projection π : W → W ∗. We
write W ∗U ⊂ W ∗ for the set of trajectories entering U . If w∗ ∈ W ∗U , we write s+

U (w∗) for the
trajectory in W+ obtained by considering any w ∈ W such that π∗(w) = w∗ and restricting w
to the trajectory in W+ obtained after w first enters U .

With these notations, we then introduce, for f ∈ F , the function Ff : W+ → R defined as

Ff (w) =

∫ ∞
0

Vf (w(s))ds, Vf = −∆f

f
(4.7)

where ∆f(x) = 1
2d

∑
|e|=1 f(x + e) − f(x) for f : Zd → R denotes the discrete Laplacian. The

integral (4.7) is well-defined for any f ∈ F because Vf = 0 outside U , a finite set and the
trajectory w is transient. In turn, the function Ff in (4.7) induces a function F ∗f on W ∗× (0,∞)
given by

F ∗f (w∗, v) =

{
Ff (s+

U (w∗)) whenever (w∗, v) ∈W ∗U × [0, u])

0 otherwise.
(4.8)

with U as in (3.1). The function F ∗f defines the exponential tilt of the interlacement measure
P, as follows. The measure P is formally defined on the space Ω = {ω =

∑
i δ(w∗i ,ui)

: w∗i ∈
W ∗, ui ∈ (0,∞) for all i ≥ 0, and ω(W ∗K × [0, u]) < ∞ for all K ⊂⊂ Zd and u > 0}. For
suitable G : W ∗ × (0,∞) we write 〈ω,G〉 for the canonical pairing, i.e. the integral of G with
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respect to the point measure ω ∈ Ω. In particular, one readily checks from (4.8) that 〈ω, F ∗f 〉
leads to a finite sum and hence is well-defined. We then define the measure P̃f via the Radon-
Nikodym derivative

dP̃f
dP

= e〈ω,F
∗
f 〉.(4.9)

We now gather a few essential features of P̃f , which will be used in the sequel. By a slight

adaptation of [14, Proposition 2.1], one has for each f ∈ F that P̃f defined by (4.9) is a
probability measure. Moreover, denoting by ν ⊗ λ the intensity measure on W ∗ × (0,∞) of the
interlacement process ω under P, where λ denotes Lebesgue measure, one has that the canonical
point measure ω under P̃f is a Poisson point process with intensity measure eF

∗
f (ν ⊗ λ).

The measure P̃f retains an interlacement-like character. In particular, we will use the fol-
lowing fact in the sequel. For ω =

∑
i δ(w∗i ,ui)

∈ Ω and K ⊂⊂ Zd, let

µK(ω) =
∑
i≥0

δ(s+K(w∗i ),ui)
1{w∗i ∈W ∗K},

a locally finite (by definition of Ω) point measure on W+×R+. In words, µK retains all labeled
trajectories (w∗i , ui) in the support of ω which enter K, and replaces w∗i for such points by the
forward trajectory s+

K(w∗i ) ∈ W+ obtained after w∗i first enters K. Then (see [14, (2.9)] for a
similar result),

(4.10) under P̃f , µK(ω) is a PPP on W+ × R+ with intensity measure P̃ fẽK ⊗ λ

where P̃ fẽK =
∑

x ẽK(x)P̃ fx , which we proceed to define. The measure P̃ fx is given by

dP̃ fx
dPx

=
1

f(x)
e
∫∞
0 Vf (Xs)ds(4.11)

with Vf as in (4.7). On account of [14, Lemma 1.2 and Corollary 1.3], P̃ fx is a probability

measure for all f ∈ F , and the canonical process (Xt)t≥0 under P̃ fx is a Markov chain on Zd

with reversible measure λ̃(x) = f2(x), x ∈ Zd, whose semi-group on L2(λ̃) is given by (et∆̃)t≥0

where ∆̃h(x) = 1
2d

∑
|e|=1

f(x+e)
f(x) (h(x + e) − h(x)), for h ∈ L2(λ̃). The equilibirum measure ẽK

appearing in (4.10) is defined as

(4.12) ẽK(x) = ẽK(x) = P̃ fx [H̃K =∞]1K(x)f(x)
( 1

2d

∑
|e|=1

f(x+ e)
)
, for x ∈ Zd.

For later reference, we record that, upon introducing the tilted Green’s function

(4.13) g̃(x, y) =
1

f(y)2
Ẽfx

[ ∫ ∞
0

1{Xs = y}ds
]
,

one has in analogy with (2.3) that

(4.14) 1 =
∑
y∈K

g̃(x, y)ẽK(y), for all x ∈ K.

Following are the two key properties of the measure P̃f defined by (4.9). The first is a bound

on the cost of tilting by f in terms of the relative entropy H(P̃f |P)
def.
= Ẽf

[dP̃f
dP
]
.
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Proposition 4.1. There exists C3 ∈ (0,∞) such that for all u < u∗, if d = 3, the bound

(4.15) lim sup
δ↓0

lim sup
ε↓0

lim sup
|x|→∞

log |x|
|x|

H(P̃f |P) ≤ C3(
√
u−
√
u∗)

2(1 + Cη)

holds for f = f
u(1−η

√
δ),u;ε

1 and all η ∈ [0, c). For u > u∗, (4.15) remains valid for f = fu;ε
0 with

η = 0 on the right-hand side. Moreover, one can choose C3 = π
3 .

The second characteristic feature of the measure P̃f is the mass it assigns to the event
Au(x, δ) from (3.3), which involves the event Gu. In the next proposition all assumptions on Gu

made in Theorem 3.1 are tacitly assumed to hold; in particular, this includes (3.4). Recall the
dependence of Au(x, δ) on the sprinkling parameter η ∈ [0, 1) when u < u∗, which is implicit in
our notation.

Proposition 4.2. For all δ ∈ (0, 1), u 6= u∗, η ∈ [0, c) and ε ∈ (0, u∗(1 ∧ η
√
δ

10 )),

lim
|x|→∞

P̃f [Au(x, δ)] = 1 holds for

{
u > u∗ with f = fu;ε

0

u < u∗ with f = f
u(1−η

√
δ),u;ε

1 .
(4.16)

The proofs of Propositions 4.1 and 4.2 are postponed to later sections. We now conclude the
proof of Theorem 3.1 using these two results.

Proof of Theorem 3.1. Let u > u∗ and f = fu;ε
0 for ε > 0. Since P̃f is absolutely continuous

with respect to P in view of (4.9), one classically obtains by Jensen’s inequality (see for instance
the discussion following (2.7) in [2] for a proof) that for all x ∈ Zd and δ ∈ (0, 1),

(4.17) logP[Au(x, δ)] ≥ log(P̃f [Au(x, δ)])−
H(P̃f |P) + e−1

P̃f [Au(x, δ)]
.

Multiplying by log |x|
|x| on both sides of (4.17) and subsequently letting first |x| → ∞, ε ↓ 0 and

δ ↓ 0, the claim (3.5) (with η = 0) follows upon inserting the bounds (4.15) and (4.16) on the

right-hand side of (4.17). For u < u∗, the proof is analogous but choosing f = f
u(1−η

√
δ),u;ε

1

instead, and the conclusions hold for all 0 ≤ η < c.

5 Relative entropy estimate

In the previous section, the proof of Theorem 3.1 was completed, subject to the validity of two
results, stated as Propositions 4.1 and 4.2. In the present section we prove Proposition 4.1.
As will turn out, the estimate on the relative entropy will involve bounding potential theoretic
quantities related to the tubes T i, which recall are oriented towards x

|x| . Importantly, the bounds

derived need to be sufficiently sharp to make the correct (rotationally invariant!) functional log |x|
|x|

in (4.15) appear in the large-scale limit. This is a somewhat delicate matter when x is in generic
position and one cannot exploit (lattice) symmetries.

We start with some preparation. For f : Zd → R, we consider the Dirichlet form E(f, f)
associated to the random walk, defined as

(5.1) E(f, f) =
1

2

∑
|x−y|=1

1

2d
(f(x)− f(y))2,
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where the sum ranges over all points x, y ∈ Zd satisfying the constraint. Let H2 = {f : Zd →
R : E(f, f) < ∞}. For f, g ∈ H2, the energy E(f, g) is declared by polarization. Recall the
functions f0 = fu;ε

0 and f1 = fv,u;ε
1 from (4.3)-(4.4), which depend implicitly on both x ∈ Zd and

δ ∈ (0, 1) via the choice of sets T i and U , cf. (3.1) and (4.1), entering their definition. Recall
the notation for the (relative) capacity from below (2.2).

Lemma 5.1. For all u, ε > 0 and 0 < v ≤ u, one has f0, f1 ∈ H2. Moreover, for |x| ≥ C(δ),

E(f0, f0) = u−1
(√
u−
√
u∗ − ε

)2
capU (T 1),(5.2)

E(f1, f1) = v−1
[(√

u∗ + ε−
√
v
)2

capU (T 6) +
(√
u∗ + ε−

√
v/u
√
u∗ − ε

)2
capT 3(T 2)

]
.(5.3)

Proof. On account of (4.5), (4.6) and (4.1), the functions f0, f1 are constant outside the finite
set U hence the sum in (5.1) is effectively finite, whence f0, f1 ∈ H2. We now show (5.3). The
proof of (5.2) is similar, but simpler.

Introducing the shorthands α = (u∗+εv )1/2 − 1 and β = (u∗+εv )1/2 − (u∗−εu )1/2, the formula
(4.4) defining f1 reads f1 − 1 = αh2 − βh1. The functions h1(x) = Px[HT 2 < TT 3 ] and h2(x) =
Px[HT 6 < TU ] have the property that for any neighboring pair of points x, y ∈ Zd, h1(x) = h1(y)
or h2(x) = h2(y) whenever |x| ≥ C(δ); indeed for such x we may assume in view of (3.1) that
the 1-neighborhood of T 3 is contained in T 6. It follows that h2(x) = h2(y) = 1 whenever at
least one of the neighbors x, y lies in T3, whereas h1(x) = h1(y) = 0 whenever x, y /∈ T3. All in
all, it follows that E(h1, h2) = 0. Hence,

(5.4) E(f1, f1) = E(f1 − 1, f1 − 1) = α2E(h2, h2) + β2E(h1, h1).

The claim (5.3) now follows from (5.4) using the classical fact that capU (K) = E(V, V ) with
V (x) = Px[HK < TU ] for all U ⊂⊂ Zd, K ⊂ U , K 6= ∅.

Next we collect bounds for the relative capacities involved in Lemma 5.1. The proof of (5.7)
below crucially involves Proposition 2.1.

Lemma 5.2. For all δ ∈ (0, 1
2), |x| ≥ C(δ) and i = 1, . . . , 6, when d = 3,

cap(T i) ≤ (1 + Cδ)
π|x|

3 log |x|
,(5.5)

capU (T i) ≤
(

1 +
C

log |x|

)
cap(T i),(5.6)

capT 3(T 2) ≤ Cδ−1cap(T 2).(5.7)

Proof. The bound (5.5) can be obtained by combining [16, (2.24)] and [11, Lemma 2.2] (see,
e.g., [6, below (5.9)] for a similar argument). Next, we aim to show (5.6). To do this, consider
y /∈ U and notice that minz∈∂Ti |y − z| ≥ 9|x| on account of (4.1) whence g(y, z) ≤ C|x|−1

for z ∈ T i. Using this, a last-exit decomposition, and (5.5), it follows that Py[HT i < ∞] ≤
C|x|−1cap(T i) ≤ C ′(log |x|)−1. For z ∈ T i, decomposing the (bare) equilibrium measure of T i

over the exit location of U and feeding this bound yields that

Px[H̃T i =∞] =
∑
y∈∂U

Px[H̃T i > TU , XTU = y]Py[HT i =∞] ≥
(

1− C

log |x|

)
Px[H̃T i > TU ]
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Summing both sides over x ∈ T i and rearranging yields (5.6). It remains to prove (5.7). Using
the inequality

(5.8) eT 2(z) ≥ eT 2,T 3(z) inf
y/∈T 3

Py[HT 2 =∞]

valid for all z ∈ supp(eT 2), which follows readily from (2.2) upon applying the strong Markov
property at time TT 3 , one obtains (5.7) by summing (5.8) over z and using Proposition 2.1.

Equipped with Lemmas 5.1 and 5.2, we are ready to proceed with the:

Proof of Proposition 4.1. Let f ∈ F as in (4.2). The relative entropy H(P̃f |P) can be recast as

(5.9) H(P̃f |P) = Ẽf
[dP̃f

dP

]
(4.9)
= Ẽf

[
〈ω, F ∗f 〉

] (4.10)
= uẼfẽU [Ff (X)],

where in applying (4.10) one notes that the Poisson variable 〈ω, F ∗f 〉 depends on ω ‘through’ µU
in view of (4.7), (4.8) and since Vf vanishes outside U . By definition of Ff in (4.7) one obtains,
noting that all sums below are effectively finite, that

(5.10) ẼfẽU [Ff (X)] =

∫ ∞
0

ẼfẽU [Vf (Xs)]ds
(4.13)

=
∑
y,z

ẽU (y)g̃(y, z)f2(z)Vf (z)

(4.14)
=

∑
z

f2(z)Vf (z)
(4.7)
=
∑
z

f(z)(−∆f)(z)
(5.1)
= E(f, f),

where the last equality follows by a discrete version of the Gauss-Green theorem, see for instance

[1, Theorem 1.24]. We now focus on the case u < u∗, whence f = f
u(1−η

√
δ),u;ε

1 . The case u > u∗
follows by a similar resoning, simply using (5.2) instead of (5.3) in what follows. Combining
(5.9), (5.10) and (5.3) with the choice v = u(1 − η

√
δ) for η ∈ [0, 1], and subsequently feeding

the bounds (5.6)-(5.7) in combination with (5.5), one finds that

H(P̃f |P) ≤ 1 + Cδ

1− η
√
δ

C3|x|
log |x|

[(√
u∗ + ε−

√
u(1− η

√
δ)
)2(

1 +
C

log |x|

)
+ Cδ−1

(√
u∗ + ε−

√
(1− η

√
δ)(u∗ − ε)

)2
]
,

for all u, ε > 0, η ∈ [0, c) and |x| ≥ C(δ). Multiplying by log |x|
|x| on both sides, the desired bound

(4.15) follows upon taking the successive limits |x| → ∞, ε ↓ 0 and δ ↓ 0, using for the term
in the second line that |1 −

√
1− x| ≤ Cx for 0 < x < c with x = η

√
δ, which upon squaring

precludes the explosion of the factor δ−1 in the limit δ ↓ 0.

6 Coupling tilted interlacements

The remainder of this article deals with the proof of Proposition 4.2, which concerns the effect
of the tilted measure P̃f introduced in Section 4. Towards this goal, we first show that the tilted
interlacements can be controlled locally in terms of regular interlacements but with a modified
(and spatially inhomogenous) intensity close to u∗. Herein enter the specifics in our choice of
tilt f from Section 4.
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The control is stated in terms of a coupling between the corresponding occupation time fields,
which appears in Proposition 6.1. This is the main result of this section. From Proposition 6.1
we first deduce Proposition 4.2. The proof of Proposition 6.1 then occupies the remainder of
Section 6, and relies on two key intermediate results, Lemmas 6.2 and 6.3. The former compares
certain entrance laws for tilted vs. untilted walk, while the latter exhibits concentration of certain
associated excursion counts. Both of these results hinge on fine properties of the tilted random
walk measure P̃ fx . Their proofs are given separately in Section 7.

Recall that, for a realization ω =
∑

i δ(w∗i ,ui)
∈ Ω of the Poisson process (declared under

either P or P̃f , cf. (4.9)), one introduces the occupation time at level u > 0 and x ∈ Zd as

(6.1) `ux = `ux(ω) =
∑
i:ui≤u

∫ ∞
−∞

1{w∗i (t) = x} dt.

To distinguish between the two possible reference measures, we will henceforth write ˜̀u
· to refer

to a random field having the same law as `u· under P̃f (the choice of f will always be clear from
the context). We consider boxes

(6.2) Bz
i = B

(
z, r

(i+2)/8
1

)
, for z ∈ Zd and i ∈ {1, . . . , 4},

where r0 is given by (3.2). We will almost exclusively consider centers z ∈ Γ = Γint ∪ Γext,
where Γint = T (x) and Γext = ∂T 4, with T (x) and T 4 as in (2.4) and (3.1). Note that, with the
choices of radii in (6.2), whenever |x| ≥ C(δ) we have that Bz

i ⊂ Bz
4 ⊂ T 1 for all z ∈ Γint, and

Bz
i ⊂ (T 5 \ T 3) for all z ∈ Γext. The following proposition essentially asserts that the effect of

tilting is to make the law of the (tilted) occupation times at level u look slightly supercritical in
the region T 1, i.e. roughly like untilted interlacement occupation times at level u∗ − O(ε), and
slightly subcritical in the region T 3 \ T 2.

Proposition 6.1. For all δ ∈ (0, 1), ε ∈ (0, u∗10 ∧ 1) and η ∈ [0, c3), the following holds.

i) If u < u∗ and z ∈ Γext, then with f = fv,u;ε
1 , v = u(1 − η

√
δ) and abbreviating B = Bz

1 ,

there exists a coupling QB of (`
u∗+

1
2
ε

x )x∈B, (`
u∗+

3
2
ε

x )x∈B (each under P) and (˜̀v
x)x∈B (having

the same law as (`vx)x∈B under P̃f by above convention), such that for c̃ = c̃(u, δ, ε, η),

(6.3) QB
[
`
u∗+

1
2
ε

x ≤ ˜̀v
x ≤ `

u∗+
3
2
ε

x , x ∈ B
]
≥ 1− e−c̃rc̃0 .

ii) If u < u∗ and z ∈ Γint, with si(t) = t(1 − γi)σi for γi ∈ [0, 1), σi ∈ {±1}, i = 1, 2, there

exists a coupling QB of (`
si(u∗− 2k−1

2
ε)

x )x∈B, k,i∈{1,2} and (˜̀si(u)
x )x∈B,i=1,2, such that

(6.4) QB
[
`
si(u∗− 3

2
ε)

x ≤ ˜̀si(u)
x ≤ `si(u∗−

1
2
ε)

x , x ∈ B, i = 1, 2
]
≥ 1− e−c̃rc̃0 ,

for c̃ = c̃(u, δ, ε, η, γi, σi). If u > u∗, then for all z ∈ Γint there exists a coupling QB with

the same properties, but with f = fu;ε
0 now underlying the marginal law of (˜̀si(u)

x )x∈B,i=1,2.

With the aid of Proposition 6.1, we first give the proof of Proposition 4.2.

Proof of Proposition 4.2. We will freely (and tacitly) assume that various statements hold for
|x| ≥ C(δ), which is no loss of generality in view of (4.16) since the latter concerns the limit
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|x| → ∞ only. Let u < u∗ and f = fv,u;ε
1 with v = u(1 − η

√
δ) and η ∈ [0, c4) as for the

conclusions of Proposition 6.1 to hold. The following conclusions will always hold uniformly in

η as above, δ ∈ (0, 1) and ε ∈ (0, u∗(1∧ η
√
δ

10 )), as postulated in the statement of Proposition 4.2.
Using Proposition 6.1 we argue separately that

lim
|x|→∞

P̃f [T 4 Vv←→ ∂T 5] = 0,(6.5)

lim
|x|→∞

P̃f [Gu, B(0, r1)
Vu∩T 1

←−−−→ B(x, r1)] = 1.(6.6)

Recalling Au(x, δ) from (3.3), the claim (4.16) for u > u∗ immediately follows from (6.5) and
(6.6). To obtain (6.5) applying the relevant coupling from Proposition 6.1,i), one finds that for
all z ∈ Γint, with B = Bz

1 ,

P̃f [z
Vv←→ ∂B] = QB[z

{˜̀v· =0}←−−−→ ∂B]
(6.3)

≤ QB[z
{`
u∗+1

2 ε
· =0}←−−−−−−→ ∂B] + e−c|x|

c′(δ)

= P
[
z
Vu∗+

1
2 ε←−−−→ ∂B

]
+ e−cr

c̃
0 ≤ Ce−c|x|c

′(δ)
,

where the last step follows using [8, Theorem 1.2,i)] and recalling that r0 ≥ c|x|δ. Applying a

union bound over z ∈ ∂T 4(= Γext) and using the previous bound on P̃f [z
Vv←→ ∂B] yields (6.5).

To deal with (6.6), we use part ii) of Proposition 6.1. We consider the two events appearing in
(6.6) separately, and start with the connection event appearing there. Throughout the rest of
the proof, constants may implicitly depend on all of u, δ, ε, η.

Similarly as in (1.6), let LUz(V,V ′) denote the event that B(z, r1/2)\B(z, r1/2) has at least
one crossing cluster in V and that B(z, r1) \ B(z, r1/2) has at most one crossing cluster in V ′.
For any v ≥ u, the joint occurrence of LUz(Vv,Vu) as z varies over Γint = T (x) is seen to imply

E. Let v = u
1−γ , with γ chosen small enough so that v ∨ w < u∗, where w =

u∗− 1
2
ε

1−γ . Applying
Proposition 6.1,ii) with γ1 = 0 and γ2 = γ, σ2 = −1, one finds that for any z ∈ Γint,

(6.7) P̃f [LUz(Vv,Vu)] ≥ P[LUz(Vw,Vu∗−
3
2
ε)]− e−c̃rc̃0 .

But as a straightforward consequence of [8, Theorem 1.2,ii)], which applies because w < u∗, one
obtains that the right-hand side of (6.7) exceeds 1−Ce−c̃rc̃0 . Together with a union bound, this
implies (6.6) in absence of the event Gu, i.e. P̃f [E] → 1 as |x| → ∞, where E = {B(0, r1) ←→
B(x, r1) in Vu ∩ T 1}. To accommodate the presence of Gu in (6.6), recalling its form specified
above Theorem 3.1 and applying a union bound, one sees that it is enough to argue that

(6.8) lim
|x|→∞

|I| · sup
i

P̃f [(GBi)
c] = 0.

This is obtained by combining (3.4) and Proposition 6.1,ii). Indeed, recall to this effect (cf. above
Theorem 3.1) that Bi is a box of radius 10r1 with center z ∈ Γint. By choice of r1 in (3.2) and
in view of (6.2), this means that Bi ⊂ Bz

1 = B. In particular, the event GBi is thus measurable

relative to (˜̀si(u)
x )x∈B,i=1,2, where si(u) = u(1 − γi) for suitable choice of γi ∈ {k4η

√
δ : k =

0, 1, 2, 3, 4}. Assume for concreteness that s1(u) > s2(u), so that GBi is increasing in (˜̀s1(u)
x )x∈B

and decreasing in (˜̀s2(u)
x )x∈B. With (v, w) = (s1(u), s2(u)), (v′, w′) = (s1(u∗− 3

2ε), s2(u∗− 1
2ε)),

it then follows by application of (6.4), using the (separate) monotonicity of GBi = Gv,wBi , that

P̃f [Gv,wBi ] ≥ P[Gv
′,w′

Bi
]− e−c̃rc̃0 .
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The claim (6.8) now follows using (3.4), noting in particular that the assumption ε < u∗
η
√
δ

10
guarantees that v′ > w′.

To deduce (4.16) for u < u∗, one shows (6.6) now with f = fu;ε
0 in exactly the same manner

as above but resorting to the second part of item ii) in Proposition 6.1 instead.

It thus remains to prove Proposition 6.1. We start with some preparation. For z ∈ Γ,
with B = Bz

1 and U = Bz
2 (recall (6.2)) we will consider both for tilted and untilted walks

successive excursions between B and U c. In light of this, we introduce a reference Poisson point
process ηB =

∑
n≥0 δ(ζn,un) governed by the probability measure QB on the state space Ξ×R+,

where Ξ = ΞB,U denotes the space of relevant excursions, i.e. of finite length nearest neighbour
trajectories starting on ∂B, with range contained in U up to their terminal point, a vertex in
U c. The intensity measure of η is νB ⊗ λ, where λ denotes the Lebesgue measure and

νB(·) def.
=
∑
x∈∂B

Px
[
(Xt)0≤t≤TU ∈ ·

]
.(6.9)

Importantly for what is to follow, if f = fv,u;ε
1 for any 0 < v ≤ u < u∗ and ε ∈ (0, u∗10 ∧ 1),

then regardless of the choice of z ∈ Γ, by (4.6) the function function f is constant in the one-
neighborhood of U , which in turn implies that Vf (x) = 0 for all x ∈ U . In view of (4.11), this

means that Px in (6.9) can be freely replaced by P̃ fx , i.e. excursions between B and U c do not
witness the tilt. The same conclusions hold for f = fu;ε

0 , u > u∗ and ε ∈ (0, 1) if z ∈ Γint in
view of (4.5).

We now proceed to define two Markov chains Z = (Zn)n≥1 and Z̃ = (Z̃n)n≥1 on Ξ, as follows.
To this effect, we introduce the entrance distribution and potential of B, for x, y ∈ Zd, as

(6.10) hB(x, y) = Px
[
HB <∞, XHB = y

]
, hB(x) =

∑
y

hB(x, y).

The corresponding tilted quantities h̃B(x, y) and h̃B(x) are obtained by replacing Px by the

tilted measure P̃x ≡ P̃ fx . Both Z and Z̃ are specified in terms of their transition densities π and
π̃ relative to νB in (6.9), that is,

(6.11) Z1
law
= π0(ζ)νB(dζ), P [Zk+1 ∈ dζ|Z1, . . . , Zk] = π(Zk, ζ)νB(dζ), for k ≥ 1

and similarly for Z̃ with π̃ in place of π, where, for ζ = (ζ0, . . . , ζn) ∈ Ξ and with ēB = eB/cap(B)
the normalized equilibrium measure,

(6.12) π0(ζ)
def.
= ēB(ζ0), π(ζ, ζ ′)

def.
= hB(ζn, ζ

′
0) + ēB(ζ ′0)(1− hB)(ζn).

The corresponding tilted transition densities are declared by replacing ēB and hB by their tilted
analogues. One readily sees from (6.11) and (6.12) in combination with the observation made
below (6.9) that Z, resp. Z̃ has the same law as the excursions from B to U c induced by the
interlacement process ω under P, resp. P̃f , when ordering them according to increasing label u
and in order of appearance within a given random walk trajectory in the support of the point
measure ω. The key behind the coupling(s) postulated in Proposition 6.1 is encapsulated in the
following comparison of transition densities.

To state it concisely, it will be convenient to introduce the notation Γf for f ∈ F , as follows.
Recall Γ = Γint ∪ Γext from below (6.2), the set of centers z under consideration, along with
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the boxes Bz
i , 1 ≤ i ≤ 4 defined there. We set Γf0 = Γint and Γf1 = Γ in the sequel. With

this definition, in light of the statement of Proposition 6.1, when working with f ∈ F we only
ever have to deal with boxes B = Bz

1 having centers z ∈ Γf . Note that, albeit implicit in our
notation, the set of centers Γf = Γf (x) depends on x ∈ Zd via the oblique cylinders introduced
in (3.1). These cylinders, as well as the boxes Bz

i , depend on one further parameter δ ∈ (0, 1
6).

Lemma 6.2. For all f ∈ F , x ∈ Zd, z ∈ Γf (x), with Ξ = ΞBz1 ,Bz2 ,

(6.13) sup
ζ,ζ′∈Ξ

{∣∣∣∣ π̃0(ζ)

π0(ζ)
− 1

∣∣∣∣, ∣∣∣∣ π̃(ζ ′, ζ)

π(ζ ′, ζ)
− 1

∣∣∣∣} ≤ Cr−c0 .

The proof of Lemma 6.2 requires some work and is postponed to the next section. The main
issue is that between successive excursions, the walk under P̃x, x ∈ B, may in principle travel
far (with polynomial probability in r0), thereby exploring regions in which the effect of the tilt
is severely felt. An additional source of difficulty stems from the fact that (6.13) requires a
(stronger) control of ratios rather than of mere differences |π̃ − π|.

Assuming Lemma 6.2 to hold, the method of soft local time [15], see also [4] which will be
sufficient for our purposes, allows to define under QB an event Uvn for each integer n ≥ 1 and
v ∈ (0, c) such that, whenever |x| ≥ C(v) (so that the bound in (6.13) is smaller than v

3 ), one
has

QB[Uvn ] ≥ 1− C exp(−cvn), and

on Uvn , for all m ≥ n:
{Z1, . . . , Z(1−v)m} ⊂ {Z̃1, . . . , Z̃(1+4v)m}
{Z̃1, . . . , Z̃(1−v)m} ⊂ {Z1, . . . , Z(1+4v)m}.

(6.14)

To obtain (6.14) one retraces the steps of [4, Lemma 2.1], and the key assumption [4, (2.5)]
appearing in that context is replaced by (6.13).

Next, we attach to each of Z and Z̃ a sequence σ = (σk)k≥1 and σ̃ of labels in {0, 1}, as
follows. We σ1 = σ̃1 = 1 and for each k ≥ 2, the label σk has conditional law given Zk−1, Zk
given by

(6.15) P [σk = 0 |Zk−1, Zk] = 1− P [σk = 1 |Zk−1, Zk] =
hB(Zek−1, Z

i
k)

π(Zk−1, Zk)
,

where Z
i/e
· refer to the initial/end-point of Z·. The prescription for σ̃k is identical to (6.15) but

using h̃B and π̃ instead. The label σ recovers information about the trajectories underlying the
excursions forming Z: the label σk = 1 signals excursions Zk, . . . stemming from a new random
walk trajectory. We henceforth assume that QB is suitably enlarged as to carry the sequences
σ and σ̃ with the correct law, independently of each other conditionally on Z, Z̃.

As a last ingredient, we assume QB to carry additionally two independent Poisson counting
processes nB and ñB on [0,∞) with intensity cap(B) and c̃ap(B), respectively, and write nB(t) =
nB([0, t]) for t ≥ 0, a Poisson variable with mean cap(B)t. We consider the random variables

N u = sup
{
n ≥ 1 :

∑
1≤k≤n σk ≤ nB(u)

}
, u > 0,(6.16)

(with the convention sup ∅ = 0), and similarly Ñ u, using σ̃k and ñB instead. These random
variables admit the following comparison estimates, which depend on the function f underlying
the law of Z̃ determining Ñ u.

[v can be anything]
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Lemma 6.3. For all δ ∈ (0, 1), ε ∈ (0, u∗10 ∧ 1) and η ∈ [0, c4), the following hold.

i) If u < u∗ and z ∈ Γext, then with f = fv,u;ε
1 , v = u(1− η

√
δ),

(6.17) QB
[
(1 + cε)N u∗+

1
2
ε ≤ Ñ v ≤ (1 + cε)−1N u∗+

3
2
ε
]
≥ 1− e−c̃rc̃0 .

ii) If u 6= u∗ and z ∈ Γint, then with si(t) = t(1 − γi)σi for γi ∈ [0, 1), σi ∈ {±1}, i = 1, 2,
one has for f as above when u < u∗ and f = fu;ε

0 when u > u∗ that

(6.18) QB
[
(1 + ε)N si(u∗− 3

2
ε) ≤ Ñ si(u) ≤ (1 + ε)−1N si(u∗− 1

2
ε)
]
≥ 1− e−c̃rc̃0 , i = 1, 2,

for suitable c̃ depending on u, δ, ε, η, γi, σi.

The bounds (6.17) and (6.18) are tailored to our purposes. Underlying them are similar

controls on the behavior of the tilted walk P̃ fx that are also needed to prove (6.13) (essentially
because the relevant quantities π̃ and h̃B also crucially appear in (6.15) and thus govern the law
of the variables (σ̃k)k≥1 entering Ñ u in (6.16)). The proof of Lemma 6.3 thus appears jointly
with that of Lemma 6.2 in the next section. With both Lemmas 6.3 and 6.2 at our disposal, we
are ready to give the short:

Proof of Proposition 6.1. We choose QB the coupling constructed above. Recall from (4.10) the
induced interlacement process µB = µB(ω) (declared under either of P and P̃f ), collecting the
labeled trajectories entering B after their entrance time in B. Observe that under QB, the
random measures

(6.19)
(
ξu, ξ̃v

)
u,v>0

def.
=
( ∑

1≤k≤Nu
δZk ,

∑
1≤k≤Ñ v

δ
Z̃k

)
u,v>0

have the same law as the excursions between B and U c induced by the trajectories in the support
of µB with label at most u and v under P and P̃f , respectively. As can be seen from (6.1), the
occupation time field (`ux)x∈B,u>0 is clearly a measurable function of the excursions induced by

µB(ω) under P, and similarly for (˜̀u
x)x∈B,u>0 under P̃f (recall our notational convention from

below (6.1)). Hence, `ux,
˜̀v
x, x ∈ B, u, v > 0 can be viewed (in law) as functionals of the point

measures in (6.19), as

(6.20) `ux
law
= `x(ξu)

def.
=

∑
1≤k≤Nu

∫ len(Zk)

0
1{Zk(t) = x}dt, x ∈ B, u > 0,

where len(Zk) refers to the length (duration) of the excursion Zk, and similarly for ˜̀u
x. In

particular, QB thus furnishes a coupling of the occupation time fields (`ux,
˜̀v
x : x ∈ B, u, v > 0).

We now argue that (6.3) holds (which implicitly entails that z, f and B = Bz
1 have been

chosen accordingly). For two point measures ξ, ξ′ on the excursion space Ξ, as in (6.19) for
instance, we write ξ ≤ ξ′ if supp(ξ) ⊂ supp(ξ′). As follows plainly from (6.20), the occupation
time field is clearly monotone with respect to this order, i.e. ξ ≤ ξ′ implies `(ξ) ≤ `(ξ′). Fix
v = cε with c small enough so that the conclusions of (6.14) hold and 1+4v

1−v ≤ 1 + cε. Let
n = N u∗ . With these choices for v and n, if the event Uvn appearing in (6.14) and the event on

the left-hand side of (6.17) jointly occur (under QB), one deduces using N u∗+
1
2
ε ≥ N u∗ when

applying (6.14) that

{Z1, . . . , ZNu∗+
1
2 ε
}

(6.14)
⊂ {Z̃1, . . . , Z̃

(1+cε)Nu∗+
1
2 ε
}

(6.17)
⊂ {Z̃1, . . . , Z̃Ñ v}.
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With a view towards (6.19), this yields that ξu∗+
1
2
ε ≤ ξ̃v and hence `

u∗+
1
2
ε

x = `x(ξu∗+
1
2
ε) ≤

`x(ξ̃v) = ˜̀v
x for all x ∈ B by monotonicity. The other inequality ˜̀v

x ≤ `
u∗+

3
2
ε

x inherent to the
event in (6.3) is obtained similarly, now exploiting (6.14) together with the second inequality
in (6.17). To conclude the proof of (6.3) it thus suffices to combine the bound on the event in
(6.14), together with a suitable estimate on QB[U cεn=Nu∗ ]. The latter is obtained by combining
(6.14), first for |x| ≥ C(ε) but eventually for all x by possibly adapting the constant c̃, and the
fact (see, for instance, below (7.26)) that QB[N u∗ ≥ 1

2u∗cap(B)] ≥ 1− e−c·cap(B).
The proof of item ii) in Proposition 6.1 follows a similar reasoning as that of item i), now

combining (6.14) and (6.18) to deduce (6.4).

7 Tilted harmonic measure

In this section we prove Lemmas 6.2 and 6.3, which concern the tilted random walk measure P̃ fx
introduced in (4.11). The functions f ∈ F = {f0, f1} are defined (4.2) and implicitly depend
on parameters u, v and ε, as well as on x ∈ Zd and δ ∈ (0, 1

6), which determine the underlying
(oblique) regions T i, cf. (3.1) and (4.3)-(4.4). In order to keep notation reasonable, whenever
the parameters δ, u, v, ε are not further specified below, it is tacitly assumed that the conclusions
hold for all δ ∈ (0, 1

6), ε ∈ (0, u∗10 ∧ 1), and all u > u∗ when f = f0 or all 0 < v ≤ u < u∗ when
f = f1. Recall that, when working with f ∈ F we only have to deal with boxes B = Bz

1 having
centers z ∈ Γf = Γf (x) (see above Lemma 6.2 for notation).

The following result will be key.

Lemma 7.1. For f ∈ F ,

βf (x)
def.
= sup

i=1,2
sup

z∈Γf (x), y∈∂Bzi+1

P̃ fy [HBzi
<∞]→ 0 as |x| → ∞.(7.1)

Proof. For simplicity we assume that i = 2 in the sequel. The other case is treated in the same
way

Let f ∈ F . Recall from (4.7) that Vf = −∆f/f . We will prove with y ranging over⋃
z∈Γf

∂outBz
4 below (noting that this range depends on x ∈ Zd as Γf = Γf (x)) that

(7.2) sup
x,y

Py[If (α)]
α→∞−→ 1, where If (α)

def.
=
{∫ ∞

0
Vf (Xs)ds ≥ −α

}
.

We start by explaining how (7.2) yields the claim. To this effect, first note that, uniformly in
x ∈ Zd, z ∈ Γf (x) and y ∈ ∂outBz

4 , abbreviating Bi = Bz
i , one has by virtue of (6.2) (cf. also

(3.2) regarding r1) that Py[H̃B3 = ∞] ≥ c5. Applying (7.2) we then fix α large enough such
that Py[If (α)] ≥ 1− c5

2 . Using that f ≤ C(u, v, ε), as can be seen by inspection of (4.3), (4.4),

whence
dP̃ fy
dPy

1If (α) ≥ c6(u, v, ε), it thus follows that (uniformly in x, y as above)

(7.3) P̃ fy [HB3 =∞] ≥ P̃ fy [HB3 =∞, If (α)] ≥ c6(Py[HB3 =∞]− Py[If (α)c]) ≥ c5c6

2
.

Now to (7.1). Let β0
f (·) be defined as βf (·) in (7.1) but with ∞ replaced by TBz4 , the exit time

from Bz
4 . We first argue that

βf0 (x)→ 0 as |x| → ∞.(7.4)
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To see this, first observe that, prior to exiting B4 = Bz
4 , the law of the tilted random walk

is identical to that of the simple random walk (indeed Bz
4 ⊂ T 1 whenever z ∈ Γf0 and B4 ⊂

T 1∪ (T 5 \T 3) whenever z ∈ Γf1 , and f0, f1 are constant on these respective sets; cf. (4.5), (4.6)).

In particular this implies for y as in (7.1) that P̃ fy [HB2 < TB4 ] = Py[HB2 < TB4 ] and the latter
is bounded by Py[HB2 < ∞] ≤ r−c1 using standard arguments and the choice of boxes in (6.2).
All in all, (7.4) thus follows.

Consider now the quantity P̃ fy [TB4 ≤ HB2 < ∞]. Applying the strong Markov property at
times TB4 and HB3 ◦ θTB4

, where θt denotes the canonical shift by t > 0, it readily follows for y

as in (7.1) that P̃ fy [TB4 ≤ HB2 < ∞] ≤ βf0 (x) supy′ P̃
f
y′ [HB3 < ∞], with the supremum ranging

over y′ ∈ ∂outB4, whence

(7.5) P̃ fy [HB2 <∞] = P̃ fy [HB2 < TB4 ] + P̃ fy [TB4 ≤ HB2 <∞] ≤ βf0 (x)

1− supy′ P̃
f
y′ [H̃B3 <∞]

.

Applying both (7.4) and using (7.3) to control the denominator in (7.5), (7.1) follows.

It thus remains to prove (7.2). For real-valued V let V − = (−V )∨0. In the rest of the proof
constants c, C, . . . may freely depend on all of u, v and ε (as entering the definition of f ∈ F).
We will show that for all x ∈ Zd and y ∈

⋃
z∈Γf

∂outBz
4 ,

(7.6) Ey

[ ∫ ∞
0

V −f (Xs)ds
]
≤ C.

First we deal with the case of f = f0. Recalling its form from (4.3), see also (4.5) and exploiting
the fact that f0 is harmonic at z ∈ Zd unless z ∈ ∂T 1 ∪ ∂outU , it follows that Vf0(z) vanishes
unless z belongs to this set, whence

(7.7) Ey

[ ∫ ∞
0

V −f0 (Xs)ds
]

= Ey

[ ∫ ∞
0

V −f0 (Xs)1{Xs ∈ ∂T 1 ∪ ∂outU}ds
]

=
∑

z∈∂T 1∪∂outU

V −f0 (z)g(y, z).

Abbreviating c7 = 1 − (u∗−εu )
1
2 ∈ (0, 1) (recall that u > u∗ when f = f0 = fu,ε0 ), so that

f0 = 1− c7h0, we have that for all z ∈ Zd,

Vf0(z) = −∆f0(z)

f0(z)
=

c7∆h0(z)

1− c7h0(z)
=

c7

1− c7h0(z)

1

2d

∑
z′∼z

(h0(z′)− h0(z)).(7.8)

Moreover, if z ∈ ∂outU then h0(z) = Pz[HT 1 < TU ] = 0, which effectively disappears from the
right-hand side of (7.8), so that V −f0 (z) = 0, hence the sum over z ∈ ∂outU can be ignored in

(7.7). Meanwhile, h0(z) = 1 whenever z ∈ ∂T 1, hence (7.7) yields for such z that

(7.9) V −f0 (z) = −Vf0(z) =
c7

1− c7

1

2d

∑
z′∼z

Pz′ [HT 1 ≥ TU ] =
c7

1− c7
Pz[H̃T 1 ≥ TU ],

using the simple Markov property in the last step. By choice of U in (4.1), one readily infers
that infξ /∈U Pξ[HT 1 = ∞] ≥ c, and applying the strong Markov property at time TU , this is

straightforwardly seen to imply that Pz[H̃T 1 ≥ TU ] ≤ c−1eT 1(z) for all z ∈ ∂T 1. Feeding this
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into (7.9) and the resulting bound on V −f0 (z) into (7.7), and using that
∑

z∈∂T 1 eT 1(z)g(y, z) ≤ 1,
(7.6) follows for f = f0.

Now we deal with the case f = f1, see (4.4) for its definition. Using harmonicity, the formula
(7.7) remains correct for f = f1 but the sum on the right now ranges over z ∈ ∂T 2 ∪ ∂outT 3 ∪
∂T 6 ∪ ∂outU . Abbreviating c8 = (u∗+εv )1/2 − 1 and c9 = c7 + c8, so that f1 = 1 + c8h2 − c8h1,
the analogue of (7.8) reads

Vf1(z) = −∆f1(z)

f1(z)
=
c8∆h1(z)− c9∆h2(z)

1 + c9h2(z)− c8h1(z)
, z ∈ Zd.(7.10)

Recalling that h1(z) = Pz[HT 2 < TT 3 ], h2(z) = Pz[HT 6 < TU ], it follows that for z ∈ ∂outT 3,
we have h2(z) = 1,∆h2(z) = 0, h1(z) = 0, so that Vf1(z) ≥ 0 by inspection of (7.10), whence
V −f1 (z) = 0. The same fate applies to z ∈ ∂T 6, using now that h1(z) = 0,∆h1(z) = 0, h2(z) = 1.

Thus, the relevant sum over z in the analogue of (7.7) boils down to z ∈ ∂T 2∪∂outU . One takes
care of z ∈ ∂T 2 in much the same way as z ∈ ∂T 1 in the case of f0, deducing this time that
V −f1 (z) ≤ CeT 2(z) for z ∈ ∂T 2. Finally, for z ∈ ∂outU , we have h1(z) = 0,∆h1(z) = 0, h2(z) = 0,
such that

V −f1 (z) =
c9

2d

∑
z′∼z

Pz′ [HT 6 < TU ] = c9Pz[HT 6 < H̃Uc ].(7.11)

By construction, see (3.1) and (4.1), T 6 ⊂ U/2, where with hopefully obvious notation U/2 is
the box concentric to U with half the radius. Thus bounding Pz[HT 6 < H̃Uc ] ≤ Pz[HU/2 < H̃Uc ]
and by considering the projection of the walk in the direction orthogonal to the face to which
z ∈ ∂outU belongs, a straightforward Gambler’s ruin argument readily yields that Pz[HT 6 <
H̃Uc ] ≤ C|x|−1.

Hence, returning to (7.10), which feeds into (the analogue of) (7.7), yields the desired esti-
mate towards obtaining (7.6), since for all y as in (7.6),∑

z∈∂outU

V −f1 (z)g(y, z) ≤ C

|x|
∑

z∈∂outU

g(y, z) ≤ C ′

|x|
|∂outU ||x|2−d ≤ C ′′,(7.12)

where we have used that |y − z| ≥ c|x| and a standard estimate on the Green’s function.
Overall, this completes the proof of (7.10) for all f ∈ F , and with it the verification of (7.2),
thus concluding the proof.

As an immediate consequence of Lemma 7.1, we obtain the following comparison between
tilted and untilted entrance laws. Extending the notation hB(·, ·), h̃B(·, ·), from (6.10), we define

for B ⊂ B′ ⊂ Zd the quantity h̃B,B′(x, y) = P̃ fx [HB < TB′ , XHB = y] for x, y ∈ Zd, and similarly

hB,B′(x, y) with Px in place of P̃ fx . Thus, h̃B = h̃B,Zd . We will sometimes write h̃fB,B′ = h̃B,B′

or h̃fB = h̃B to insist on the dependence on f .

Corollary 7.2. For all f ∈ F , ε0 > 0, δ ∈ (0, 1
6), |x| ≥ C(ε0, δ), z ∈ Γf (x), y ∈ ∂Bz

2 and
y′ ∈ Zd, abbreviating Bi = Bz

i ,

hB1,B3(y, y′) ≤ h̃fB1
(y, y′) ≤ (1 + ε0) min

ỹ∈∂B2

hB1,B3(ỹ, y′).(7.13)
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Proof. The first bound in (7.13) is immediate since h̃fB1
(y, y′) ≥ h̃fB1,B3

(y, y′) = h̃fB1
(y, y′) for

y ∈ ∂Bz
2 , using that X·∧TB4

has the same law under Py and P̃ fy , cf. below (7.4). For the second
bound in (7.13), applying a similar reasoning as used to deduce (7.5) yields that

h̃fB1
(y, y′) ≤ 1

1− βf (x)
max
ỹ∈∂B2

h̃fB1,B3
(ỹ, y′),(7.14)

and the latter quantity equals maxỹ hB1,B3(ỹ, y′). To conclude (7.13), one applies Lemma 7.1 and
uses the fact that maxỹ hB1,B3(ỹ, y′) ≤ (1 + |x|−cδ) minỹ hB1,B3(ỹ, y′), which follows by similar
considerations as e.g. in [14, Lemma 3.5].

Corollary 7.2 will readily yield the part of Lemma 6.2 concerning π̃
π . Dealing with π̃0

π0
,

cf. (6.12) requires a control on the tilted equilibrium measure, which is the object of the next
lemma. This result will also be needed in the course of proving Lemma 6.3. In the sequel it will
be convenient to introduce “effective” levels

ũzf =

{
u if f ∈ F and z ∈ Γint

v if f = f1 and z ∈ Γext

uzf = f2(z)ũzf
(4.5),(4.6)

=

{
u∗ − ε if f ∈ F and z ∈ Γint

u∗ + ε if f = f1 and z ∈ Γext.

(7.15)

Note that (7.15) defines ũzf and uzf for any z ∈ Γf since Γf0 = Γint and Γf1 = Γint∪Γext according
to our definition at the beginning of this section.

Proposition 7.3. For all ε0 ∈ (0, 1), f ∈ F , x ∈ Zd, z ∈ Γf (x) and |x| ≥ C(ε0, δ),

(1− ε0)uzf · cap(Bz
2) ≤ ũzf · c̃apf (Bz

2) ≤ (1 + ε0)uzf · cap(Bz
2), and(7.16)

(1− ε0)uzf · eBz1 (y) ≤ ũzf · ẽBz1 (y) ≤ (1 + ε0)uzf · eBz1 (y), y ∈ Zd.(7.17)

Proof. A bound similar to the first inequality in (7.16) was proved in [14, Proposition 3.1], and
can be obtained within the present setup via similar arguments, essentially with Lemma 7.1 now
playing the role of [14, Lemma 3.3].

We now focus on the second inequality in (7.16), which requires additional arguments. We
begin by noting that, with the effective levels defined in (7.15) and the tilted Green’s function
g̃ as introduced in (4.13), one has the identity

(7.18) ũzf
∑

y,y′∈B2

ẽB2(y)g̃(y, y′)f2(y′) = uzf
∑

y,y′∈B2

eB2(y)g(y, y′),

where g = gZd is the usual Green’s function given by (2.1). To see (7.18), one simply applies
(4.14) to the left-hand side and notices that f2(y′) = f2(z) for all y′ ∈ Bz

2 and similarly (2.3)
to the right-hand side, to conclude that both sides equal uzf |B2|. Roughly speaking, we aim to
argue that the left-hand side is an upper bound for ũzf · c̃apf (Bz

2), while the right-hand side is a
lower bound for uzf · cap(Bz

2). The desired inequality will then follow by means of (7.18).
To this end, using the fact that g̃B3(y, y′) = gB3(y, y′) for any y, y′ ∈ B3 we bound

(7.19)
∑

y,y′∈B2

ẽB2(y)g̃(y, y′) ≥ c̃apf (B2) inf
y∈B2

∑
y′∈B2

gB3(y, y′) = c̃apf (B2)×

inf
y∈B2

∑
y′∈B2

(
g(y, y′)−Ey

[
g(XTB3

, y′)
])
≥ c̃apf (B2) inf

y∈B2

∑
y′∈B2

(
g(y, y′)−C|x|−cδ sup

y′′∈B2

g(y′′, y′)
)
,
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for all |x| ≥ C(δ). Using the fact that uniformly in y ∈ B2,

(7.20)
∑
y′∈B2

g(y, y′) = c10|B2|
2
d (1 + o(1)), as |x| → ∞,

for a suitable constant c10, see e.g. [14, Lemma 1.1.] for a proof, one immediately deduces by
inserting (7.20) into (7.19) and using that f(y′) is constant in B2 that the left-hand side of (7.18)

is bounded from below by c10ũ
z
ff

2(z) · c̃apf (B2)|B2|
2
d (1− ε0), for all |x| ≥ C(δ, ε0). Employing

(7.20) allows to bound the right-hand side of (7.18) from above by c10u
z
f · c̃apf (B2)|B2|

2
d (1+ ε0).

The claim now follows using (7.19) and the fact that uzf = f2(z)ũzf , see (7.15). This completes
the proof of (7.16).

The inequalities (7.17) are a consequence of (7.16) and (7.13), as we now explain. Indeed,
to obtain the desired upper bound for uzf · ẽB1(y), applying the sweeping identity to the sets
B1 ⊂ B2 yields that for all |x| ≥ C ′(ε0, δ),

ẽB1(y) =
∑

y′∈∂B2

ẽB2(y′)h̃B1(y′y)
(7.13)

≤ (1 + ε0/2)c̃apf (B2) min
ỹ′∈∂B2

hB1,B3(ỹ′, y)

(7.16)

≤ (1+ε0)
uzf
ũzf

cap(Bz
2) min

ỹ′∈∂B2

hB1(ỹ′, y) ≤ (1+ε0)
uzf
ũzf

∑
ỹ′∈∂B2

eB2(y′)hB1(ỹ′, y) = (1+ε0)
uzf
ũzf
eB1(y),

where the last step uses again the sweeping identity. The lower bound on ẽB1 in (7.17) is obtained
similarly.

Proof of Lemma 6.2. We first deal with the part of (6.13) concerning π̃0
π0

. Summing (7.17) over
Bz

1 and subsequently using this resulting inequality when dividing by the capacity of Bz
1 yields

an analogue of (6.13) rgarding normalized (tilted and untilted) equilibrium measures. In view
of the definition of π0 in (6.12), the claim follows.

We now show the part of (6.13) concerning π̃
π . To this effect, we first observe that, for all

ε0 > 0, δ ∈ (0, 1
6) and |x| ≥ C(ε0, δ), uniformly in f ∈ F , z ∈ Γf (x), y ∈ ∂Bz

2 and y′ ∈ ∂Bz
1 ,

(1− ε0)ēB1(y′) ≤
h̃fB1

(y, y′)

P̃ fy [HB1 <∞]
≤ (1 + ε0)ēB1(y′);(7.21)

indeed (7.21) follows readily from Corollary 7.2, as we now explain. By applying (7.13), both
in its given form and when summing over y′, one deduces that the ratio in (7.21) and its

untilted analogue
hB1

(y,y′)

Py [HB1
<∞] are comparable up to multiplicative errors of order 1 +O(ε0) when

|x| ≥ C(ε0, δ). Then one uses the fact that the untilted analogue of (7.21), i.e. bounding
hB1

(y,y′)

Py [HB1
<∞] from above and below by (1 ± ε0)ēB1(y′) is classically known, see, for example, [13,

Theorem 2.1.3]. Hence, overall, (7.21) follows.
Now let ζ, ζ ′ ∈ Ξ be two excursions between B = Bz

1 and U c, where U = Bz
2 , cf. around

(6.9) for notation. Rather than dealing with the ratio π̃(ζ,ζ′)
π(ζ,ζ′) directly, we will separately consider

π̃(ζ,ζ′)
ēB1

(ζ′0)
and π(ζ,ζ′)

ēB1
(ζ′0)

, with ζ ′0 ∈ ∂Bz
1 denoting the starting point of ζ ′. Recalling π̃ from (6.12), it

follows, abbreviating y = ζn, y′ = ζ ′0 and with the aid of (7.21) that

π̃(ζ, ζ ′)

ēB1(y′)
=
h̃fB1

(y, y′)

ēB1(y′)
+ 1− hB1(y) ≤ 1 + ε0hB1(y),
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along with a similar lower bound, implying overall that∣∣∣∣ π̃(ζ, ζ ′)

ēB1(y′)
− 1

∣∣∣∣ ≤ ε0hB1(y).(7.22)

The same bound as (7.22) is obtained for π instead of π̃ using the (classical) untilted analogue
of (7.21), see [13, Theorem 2.1.3]. From (7.22) and its version for π, the desired bound on | π̃π −1|
readily follows with ε0 = 1.

The rest of this section is geared towards the proof of Lemma 6.3, which concerns the random
variables N u introduced in (6.16) and their tilted analogue. We first isolate the following result.
Under Px, define the successive return times to B = Bz

1 and departure times from U = Bz
2 as

R1 = HB, and for k ≥ 1, Dk = Rk + TU ◦Rk, Rk+1 = Dk +HB ◦Dk (assuming Rk is finite, and
else set Dk = Rk+1 =∞). Now let

(7.23) τ = τB = sup{k ≥ 1 : Dk <∞}.

The random variable τ counts the number of excursions between B and U c made by the walk.
We write τ̃ for its pendant defined under P̃ fx . Recall π̃0 from (6.12).

Lemma 7.4. For all λ ∈ (−∞, c), f ∈ F , x ∈ Zd, z ∈ Γf (x), with τ = τBz1 ,

(7.24) eλ(1− βf (x)) ≤ Ẽfπ̃0
[
eλτ
]
≤ eλ(1− βf (x))

1− eλβf (x)
, (see (7.1) for βf (x))

Proof. The upper bound is proved in a similar way as [21, Lemma 2.7]. The lower bound is

obtained by bounding Ẽfπ̃0
[
eλτ
]
≥ eλP̃ fπ̃0 [τ = 1].

It remains to give the

Proof of Lemma 6.3. In view of (7.23), and by inspection of (6.15), one observes that if one
defines recursively σ̂1 = 1 and for k ≥ 1 σ̂k+1 = inf{k ≥ σ̂k : σk = 1}, then σ̂k+1 − σ̂k has the
same law as τ under PeB . Moreover, the random variables σ̂k+1− σ̂k, k ≥ 1 are independent and
analogous statements hold for tilted quantities. It follows in view of (6.16) that for all v > 0

(7.25) Ñ v law
=

Θ̃(u)∑
i=1

τ̃i

where τ̃i, i ≥ 1, are i.i.d. with same law as τ̃ under P̃ fπ̃0 , where π̃0 is the normalized tilted

equilibrium measure on B, cf. (6.12), and Θ̃(u) is an independent Poisson variable with mean
u · c̃ap(B). A representation similar to (7.25) can be derived for N u.

We now focus on (6.17); the remaining bounds are obtained similarly. Thus let f = fv,u;ε
1 ,

v = u(1 − η
√
δ) for some u < u∗ and B = Bz

1 for some z ∈ Γext. From (7.25), Lemma 7.4 and
Proposition 7.3, we infer that for λ ∈ (−∞, c), ε0 ∈ (0, 1) and |x| ≥ C(ε0),

(7.26) log Ẽf
[
eλ·Ñ

v]
= v · c̃ap(B)

(
Ẽfπ̃0

[
eλτ
]
− 1
) (7.24)

≤ v · c̃ap(B)
eλ − 1

1− eλβf (x)

(7.17)

≤ (u∗ + ε)cap(B)
(1 + ε0)(eλ − 1)

1− eλβf (x)
,
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where, in applying (7.17), we have summed over y ∈ Zd and used that v · u
z
f

ũzf
= u∗ + ε by

(7.15) (and using that z ∈ Γext with f = f1). A lower bound corresponding to (7.26) can
be derived similarly, along with similar estimates for logE[eλ·N

w
], w > 0, obtained by means

of an obvious analogue of Lemma 7.4 (but no longer requiring Proposition 7.3). Using that
(eλ − 1) ∨ (1− e−λ) ≤ λ(1 +Cλ) for 0 ≤ λ ≤ 1 and applying Chebyshev’s inequality separately

to N u∗+
1
2
ε, Ñ v and N u∗+

3
2
ε, selecting in each case λ = ε0 = cε in (7.26), while using Lemma 7.1

to control βf in (7.26), one ensures that with probability at least 1− e−c̃rc̃0 and for |x| ≥ C(ε, δ),
the inequalities

N u∗+
1
2
ε ≤ cap(B)(u∗ + 5

8ε),

cap(B)(u∗ + 7
8ε) ≤ Ñ

v ≤ cap(B)(u∗ + 9
8ε),

N u∗+
3
2
ε ≥ cap(B)(u∗ + 11

8 ε)

all hold. From this (6.17) immediately follows for sufficiently small choice of c ∈ (0, 1).
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