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Abstract. There are two frameworks for mating Kleinian groups with rational

maps on the Riemann sphere: the algebraic correspondence framework due to
Bullett-Penrose-Lomonaco [BP94, BL20a] and the simultaneous uniformization

mating framework of [MM23a]. The current paper unifies and generalizes these

two frameworks in the case of principal hyperbolic components. To achieve this,
we extend the mating framework of [MM23a] to genus zero hyperbolic orbifolds

with at most one orbifold point of order ν ě 3 and at most one orbifold point of
order two. We give an explicit description of the resulting conformal matings in
terms of uniformizing rational maps. Using these rational maps, we construct

correspondences that are matings of such hyperbolic orbifold groups (including
the modular group) with polynomials in principal hyperbolic components. We
also define an algebraic parameter space of correspondences and construct an

analog of a Bers slice of the above orbifolds in this parameter space.
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1. Introduction

Fatou [Fat29] observed an empirical similarity between the behavior of two com-
plex one-dimensional dynamical systems: one coming from iteration of polynomials,
the other from Kleinian groups. This was developed into a systematic dictionary
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by Sullivan [Sul85] (see also [McM94, McM95, McM98, MS98, Pil03, LM97] etc.).
Fatou’s original suggestion [Fat29] of developing a unified framework for treating
these two kinds of dynamical systems in terms of correspondences (multi-valued
maps with holomorphic local branches) was pursued by Bullett and his co-authors in
[BP94, Bul00, BH00, BH07, BL20a, BL20b, BL22]. A new conformal matings frame-
work based on orbit-equivalence was developed by the authors recently [MM23a]
adapting the theme of Bers’ simultaneous uniformization (in the context of Kleinian
groups, [Ber60]) and mating (in the context of polynomial and rational dynamics,
[Dou83, Hub12]). The conformal matings framework of [MM23a] (see [MM23b]
for a brief account of this framework) furnished new examples of mateable groups;
however, two fundamental questions remained unanswered:

Question 1.1.

(1) Identify the class of analytic functions obtained via the mating process of
[MM23a].

(2) Is there a relationship between the Bullett-Penrose-Lomonaco correspon-
dences of [BP94, Bul00, BL20a, BL20b, BL22] and the matings in [MM23a]?

A primary aim of this paper is to answer both these questions by

(1) characterizing the class of analytic functions obtained via the mating process
of [MM23a], and

(2) establishing an equivalence between the two notions of matings coming from
correspondences and simultaneous uniformization.

The class of orbifolds. Before we state the main theorems of the paper, let us
describe the general class of orbifolds (equivalently, Fuchsian groups) that are the
principal players in the game. The family of correspondences most extensively studied
by Bullett and his collaborators exhibit matings of the modular group PSL2pZq and
quadratic polynomial/rational maps. On the other hand, the conformal matings
framework of [MM23a] applies to Bowen-Series maps of Fuchsian punctured sphere
groups, possibly with an order two elliptic element. In this paper, we work with the
following collection of finite volume hyperbolic orbifolds that includes both these as
special cases:

S :“ hyperbolic orbifolds of genus zero with

(1) at least one puncture,
(2) at most one order two orbifold point,
(3) at most one order ν ě 3 orbifold point.

Going up/going down and conformal matings. It should be pointed out at
the outset that the modular group does not fit into the conformal matings framework
of [MM23a] as the existence of an order three orbifold point forces its Bowen-Series
map to be discontinuous. To circumvent this obstacle, one can pass to a ν´fold

cyclic cover rΣ of Σ P S such that the Bowen-Series map ABS
rΣ

of the Fuchsian group

uniformizing rΣ (equipped with suitable fundamental domains) only has controlled
discontinuities. Remarkably, all these points of discontinuity disappear when one
passes to appropriate factors of these Bowen-Series maps. Heuristically, passing to
a factor dynamical system (going down) can be thought of as the dual of passing to
a cyclic cover of Σ (going up). This gives rise to continuous factor Bowen-Series
maps AfBS

rΣ
(see Figures 1 and 4). This construction is detailed in Section 2.
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rΣ ABS
rΣ

Σ AfBS
rΣ

cover factor

Figure 1. Going up and going down

A key feature of a factor Bowen-Series map, one that lies at the heart of the
construction of conformal matings, is that its restriction on the unit circle S1 is
topologically conjugate to zd|S1 , where

d ” dpΣq :“

#

1´ 2ν ¨ χorbpΣq if Σ has an order ν ě 3 orbifold point,

1´ 2χorbpΣq if Σ does not have an order ν ě 3 orbifold point.

Our first main theorem extends the conformal mating construction of [MM23a]
to genus zero orbifolds in the above class.

Theorem A (Conformal matings of Factor Bowen-Series maps with polynomials).
Let Σ P S, and P be a complex polynomial in the principal hyperbolic component Hd

of degree d polynomials. Then the factor Bowen-Series map AfBS
rΣ

and the polynomial

P are conformally mateable. Moreover, the conformal mating is unique up to Möbius
conjugacy.

We direct the reader to Section 3 for the precise notion of conformal mating
and Theorem 3.2 for the proof of their existence. There are two special cases of
Theorem A that need special mention:

(1) The case where Σ has no order νpě 3q orbifold points. This is treated
in Section 2.3, and was dealt within the conformal matings framework of
[MM23a].

(2) The case where Σ has exactly one cusp, i.e. it is the p2, ν,8q orbifold of
genus zero. This is treated in Section 2.4. The case ν “ 3 was extensively
studied within the correspondence framework by Bullett and his collab-
orators starting with [BP94] and culminating in [BL20a, BL20b, BL22].
The case ν “ 4 was examined in [BF05]. Theorem A in combination with
Theorem B unifies and generalizes these examples to arbitrary ν ě 3. A set
of necessary conditions of a completely different flavor for general ν ě 3 was
given in [Bul00, BH00].

Rational uniformization of conformal matings. The next result (see Corol-
lary 4.10), which plays the role of a bridge between conformal matings and algebraic
correspondences, answers the first part of Question 1.1. The existence of the rational
function R in the proposition below is established via a new application of the
relationship of anti-holomorphic maps with quadrature domains [LLMM18].

Proposition 1.2 (Rational uniformization of conformal matings). Let Σ P S, let

P be a complex polynomial in the principal hyperbolic component Hd, let F : Ω Ñ pC
be the conformal mating of AfBS

rΣ
and P , and let ηpzq “ 1{z. Then, there exist

‚ a Jordan domain D with ηpBDq “ BD, and

‚ a degree d` 1 rational map R of pC that maps D homeomorphically onto Ω,
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such that F ” R ˝ η ˝ pR|Dq
´1. In particular, we have

(1.1) F ˝R “ R ˝ η.

The construction of the rational uniformizing map R above is detailed in Section 4,
especially Sections 4.2 and 4.2.

From conformal matings to algebraic correspondences. Thanks to the alge-
braic description of the conformal mating given in Relation (1.1) above, one can
pull back such a conformal mating by the branches of R´1 to obtain an algebraic

correspondence C on the Riemann sphere pC. The next main theorem of the paper
(see Theorem 5.17) gives a positive answer to the second part of Question 1.1:

Theorem B (Mating genus zero orbifolds with polynomials as correspondences).
Let Σ P S, and P be a complex polynomial in the principal hyperbolic component
Hd of degree d polynomials. Then, there exist an algebraic correspondence C on the

Riemann sphere pC defined by the equation

(1.2)
Rpwq ´Rp1{zq

w ´ 1{z
“ 0,

and a C´invariant partition pC “ rT \ rK such that the following hold.

(1) On rT , the dynamics of C is orbit-equivalent to the action of a group of

conformal automorphisms acting properly discontinuously. Further,
rT

äC
is biholomorphic to Σ.

(2) rK can be written as the union of two copies rK1, rK2 of KpP q (where KpP q is

the filled Julia set of P ), such that rK1 and rK2 intersect in finitely many points.

Furthermore, C has a forward (respectively, backward) branch carrying rK1

(respectively, rK2) onto itself with degree d, and this branch is conformally
conjugate to P : KpP q Ñ KpP q.

We remark that the Relation (1.1) connects two dynamical planes: one cor-
responding to the conformal mating or F´plane, and one corresponding to the
correspondence or C´plane. The rational map R mediates the connection between
these two planes. This is elaborated upon in Section 5.

The following diagram summarizes the discussion above in terms of interconnec-
tions among the objects that are mated, the resulting conformal matings, and the
associated correspondences.

TeichpΣq ˆHd

M
Moduli space of

conformal matings

C
Moduli space of
correspondences

Combination via
orbit equivalence

Uniformization ` Pullback by rational map

Conformal class of dynamics
on invariant subsets

Figure 2. Flow-chart of interconnections

Theorem B establishes an exact translation between the Bullett-Penrose-Lomonaco
correspondence framework [BP94, Bul00, BL20a, BL20b, BL22] and the conformal
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matings framework of [MM23a]. In particular, we obtain a different way of con-
structing the Bullett-Penrose-Lomonaco correspondences, starting from matings
(See Section 8 for details). The matings framework is complex analytic in nature,
as opposed to the more algebraic flavor of the correspondence framework. The
analytic setup has greater flexibility, giving new examples of correspondences that
combine Fuchsian punctured sphere groups (possibly with some elliptic elements)
and polynomials in principal hyperbolic components.

Correspondences as character variety and a new Bers slice. We turn now
to the final theme of this paper. The existence of the rational map R allows us
to look at the space of matings algebraically parametrized by the coefficients of R.
Extending the Sullivan dictionary to the present setup, we have the following:

‚ The algebraic equation (1.2) shows that correspondences are parametrized
by the quasi-projective variety Ratd`1pCq, the space of rational maps R of
degree exactly equal to pd`1q. In the context of correspondences, Ratd`1pCq
plays the role of the representation variety. The quotient Ratd`1pCqä„
by the equivalence relation

R „M2 ˝R ˝M1,

where R P Ratd`1pCq,M2 P PSL2pCq, and M1 belongs to the centralizer
of ηpzq “ 1{z in PSL2pCq, plays the role of the character variety (see
Section 6).

‚ There is a complex-analytic realization of the Teichmüller space of punctured
spheres (more generally, genus zero orbifolds as in Theorem B) within the

space Ratd`1pCqä„ . This gives the analog of a Bers slice (see Section 7).

Theorem C below makes this precise:

Theorem C (Bers slices of genus zero orbifolds in spaces of correspondences). Let
Σ0 P S and d :“ dpΣ0q. Then, the Teichmüller space TeichpΣ0q can be biholomorphi-

cally embedded in a space of bi-degree d:d algebraic correspondences on pC such that
each resulting correspondence is a mating of some Σ P TeichpΣ0q and the polynomial
zd (in the sense of Theorem B).

Notation. For the convenience of the reader, we set forth some basic notation that
will be used throughout.

‚ ηpzq :“ 1{z, η´pzq “ 1{z, ιpzq “ z.

‚ The topological closure of a set X Ă pC is denoted by X or clX.

‚ D˚ :“ pCzD.
‚ md : R{ZÑ R{Z, θ ÞÑ dθ.

‚ For a meromorphic map f : U Ñ pC, the set of critical points of f is denoted
by critpfq.

Acknowledgments: We are grateful to Tien-Cuong Dinh for posing to us the first
part of Question 1.1. We thank an anonymous referee of [MM23b] for posing the
second part of Question 1.1. We also thank Yusheng Luo for helpful conversations.
This research was supported in part by the International Centre for Theoretical
Sciences (ICTS) during the course of the program - ICTS Probabilistic Methods in
Negative Curvature (code: ICTS/pmnc–2023/02).
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2. Factor Bowen-Series maps

We will now study Bowen-Series maps associated with appropriate cyclic covers
of genus zero orbifolds. These maps have mild discontinuities. However, one can
pass to factors of these Bowen-Series maps such that the factors are continuous.
The construction of factor Bowen-Series maps is the first key step in the proofs of
our main theorems.

2.1. Factor Bowen-Series map for a base group. Let n, p be two positive
integers with np ě 3. For r P t1, ¨ ¨ ¨ , nu, denote the counter-clockwise arc
>
e

2iπpr´1q
n , e

2iπr
n Ă S1 by Jr. Note that J1 is the counter-clockwise arc of S1 connecting

1 to e
2iπ
n , and the various Jr are obtained by rotating J1 successively by angle 2π

n

about the origin. We set ω :“ e
2iπ
n , and Mω : DÑ D, z ÞÑ ωz.

Further, for r P t1, ¨ ¨ ¨ , nu, consider the chain of p bi-infinite hyperbolic geodesics

Cr,s :“ e
2iπpr´1q

n `
2iπps´1q

np , e
2iπpr´1q

n ` 2iπs
np , s P t1, ¨ ¨ ¨ , pu.

For any r P t1, ¨ ¨ ¨ , nu, the geodesic Cr,1 has its endpoints at e
2iπpr´1q

n and e
2iπpr´1q

n ` 2iπ
np ,

and the other Cr,s are obtained by rotating Cr,1 successively by angle 2π
np about the

origin (see Figure 3). The geodesics Cr,s induce a partition of the arc Jr into p arcs
Jr,1, ¨ ¨ ¨ , Jr,p, where Jr,s is the arc of S1 of length 2π

np connecting the endpoints of

Cr,s.
The bi-infinite geodesics Cr,s, r P t1, ¨ ¨ ¨ , nu, s P t1, ¨ ¨ ¨ , pu, bound a closed ideal

np´gon (in the topology of D), which we call ΠΠΠ. We will now introduce Möbius
maps of the disk that pair the sides of ΠΠΠ. To do so, we will exploit the symmetry Mω

of ΠΠΠ. Specifically, we will prescribe the side-pairings for C1,1, ¨ ¨ ¨ , C1,p explicitly, and
conjugate these side-pairing transformations by powers of Mω to define pairings for

the other sides of ΠΠΠ. Let us denote the diameter of S1 with endpoints at ˘e
iπ
n by `.

Now observe that the Möbius map g1,s obtained by post-composing the reflection in

C1,s with the reflection in ` carries C1,s to C1,p`1´s. In particular, g1,p`1´s “ g´1
1,s .

Note that when p is odd, then g1, p`1
2

is an involution with a fixed point on C1, p`1
2

.

By the Poincaré polygon theorem, the Möbius maps

gr,s :“Mr´1
ω ˝ g1,s ˝M

´pr´1q
ω , r P t1, ¨ ¨ ¨ , nu, s P t1, ¨ ¨ ¨ , pu

generate a Fuchsian group Γn,pΓn,pΓn,p, and ΠΠΠ is a closed fundamental domain for the

Γn,pΓn,pΓn,p´action on D. Moreover, DäΓn,pΓn,pΓn,p
is biholomorphic to

‚ a sphere with np
2 ` 1 punctures for p even, and

‚ a sphere with npp´1q
2 ` 1 punctures and n order two orbifold points for p odd.

Remark 2.1. 1) The integer p can be thought of as the number of ‘pockets’ in each
sector of angular width 2π{n. On the other hand, the integer n plays the role of ν
appearing in the definition of the class S of genus zero orbifolds (see Section 1).

2) When n ě 3, the orbifold DäΓn,pΓn,pΓn,p
is an n´fold cyclic cover of a base genus

zero orbifold ΣΣΣ P S with tp{2u ` 1 punctures, zero/one order two orbifold point
depending on the parity of p, and an order n orbifold point.
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We now look at the Bowen-Series map ABS
Γn,pΓn,pΓn,p

equipped with the above fundamental

domain and side-pairing transformations (cf. [BS79]). By definition, the map

ABS
Γn,pΓn,pΓn,p : Dz int Π ÝÑ D

acts as gr,s on the closure of the hyperbolic half-plane enclosed by the geodesic Cr,s
and the arc Jr,s (see Figure 3). It is now easily checked that ABS

Γn,pΓn,pΓn,p
is continuous on

S1z
n
?

1, and the left and right-hand limits of ABS
Γn,pΓn,pΓn,p

at the points of n
?

1 lie in the

set n
?

1. We will now use this fact to pass to a factor of ABS
Γn,pΓn,pΓn,p

that is continuous

everywhere.

Figure 3. Left: The fundamental domain ΠΠΠ of Γ4,3Γ4,3Γ4,3 is the polygon having the
geodesics Cr,s, r P t1, 2, 3, 4u, s P t1, 2, 3u, as its edges. The Bowen-Series map
ABS

Γ4,3Γ4,3Γ4,3
, which commutes with Mi, acts on the arcs J1,1, J1,2, J1,3 as g1,1, g1,2, g1,3.

The map ABS
Γ4,3Γ4,3Γ4,3

is continuous away from the fourth roots of unity. The pre-images of

the vertical and horizontal radial lines under g1,s are displayed in green. Identifying
the radial lines at angle 0, π{2 under Mi and uniformizing the resulting cone yields
the factor Bowen-Series map AfBS

Γ4,3Γ4,3Γ4,3
. Right: The factor Bowen-Series map AfBS

Γ4,3Γ4,3Γ4,3

is defined outside of the ideal triangle with vertices at the third roots of unity,
and is a degree 11 covering of S1. It maps all the green curves to the radial line
at angle 0, and hence has three critical points each of multiplicity three (at the
valence four vertices of the green graph).

Consider the bordered (orbifold) Riemann surfaces

Q :“ D
äxMωy

, Q1 :“

`

Dz intΠΠΠ
˘

äxMωy
,

and note that a closed fundamental domain for the action of xMωy on D is given by

tz P D : 0 ď arg z ď
2π

n
u Y t0u.

Thus, Q is biholomorphic to the surface obtained from the above fundamental domain

by identifying the radial line segments tr : 0 ď r ď 1u and tre
2πi
n : 0 ď r ď 1u by

Mω.
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By construction, the Bowen-Series map ABS
Γn,pΓn,pΓn,p

commutes with Mω, and hence it

can be pushed forward via the quotient map q : DÑ Q to define a map

q ˝ABS
Γn,pΓn,pΓn,p ˝ q

´1 : Q1 Ñ Q.

Note that the map z ÞÑ zn yields a conformal isomorphism ξ between the (bordered)
surfaces Q and D. Finally, we set

AfBS
Γn,pΓn,pΓn,p :“ ξ ˝

´

q ˝ABS
Γn,pΓn,pΓn,p ˝ q

´1
¯

˝ ξ´1 : DΓn,pΓn,pΓn,p :“ ξpQ1q Ñ D.

Note that AfBS
Γn,pΓn,pΓn,p

: S1 Ñ S1 is an orientation-preserving covering map of degree np´1

(see Figure 3). By [LMMN20, Lemma 3.7], the map AfBS
Γn,pΓn,pΓn,p

|S1 is expansive. Moreover,

AfBS
Γn,pΓn,pΓn,p

has p critical points at ξpqpg1,sp0qqq, s P t1, ¨ ¨ ¨ , pu, and each of them has

multiplicity n´ 1. All these critical points are mapped to 0.

Definition 2.2. We call the map AfBS
Γn,pΓn,pΓn,p

: DΓn,pΓn,pΓn,p Ñ D the factor Bowen-Series map

of Γn,pΓn,pΓn,p equipped with the fundamental domain ΠΠΠ.

2.2. Deformations and moduli spaces of factor Bowen-Series maps. Re-
call that the Teichmüller space TeichpΓn,pΓn,pΓn,pq of Γn,pΓn,pΓn,p is the space of Möbius con-
jugacy classes of discrete, faithful, strongly type-preserving representations of

π1

´

DäΓn,pΓn,pΓn,p

¯

– Γn,pΓn,pΓn,p into AutpDq – PSL2pRq. In fact, any such representation

ρ : Γn,pΓn,pΓn,p ÝÑ Γ is given by ρpgq “ ψρ ˝g ˝ψ
´1
ρ , g P Γn,pΓn,pΓn,p, where ψρ is a quasiconformal

homeomorphism of pC that preserves D. We can and will require that ψρp1q “ 1.
We denote by TeichωpΓn,pΓn,pΓn,pq the collection of pρ : Γn,pΓn,pΓn,p ÝÑ Γq P TeichpΓn,pΓn,pΓn,pq that
commute with conjugation by Mω, i.e.

ρpMω ˝ g ˝M
´1
ω q “Mω ˝ ρpgq ˝M

´1
ω , g P Γn,pΓn,pΓn,p.

This is equivalent to requiring that the associated quasiconformal map ψρ commutes
with Mω.

For each pρ : Γn,pΓn,pΓn,p ÝÑ Γq P TeichωpΓn,pΓn,pΓn,pq, the associated Bowen-Series map
ABS

Γ ” ψρ ˝ A
BS
Γn,pΓn,pΓn,p

˝ ψ´1
ρ commutes with Mω, and thus can be pushed forward via

the quotient map q : DÑ Q. As in the previous section, this gives rise to a map

AfBS
Γ :“ ξ ˝

`

q ˝ABS
Γ ˝ q´1

˘

˝ ξ´1 : DΓ Ñ D,

that is quasiconformally conjugate to AfBS
Γn,pΓn,pΓn,p

.

Definition 2.3. For pρ : Γn,pΓn,pΓn,p ÝÑ Γq P TeichωpΓn,pΓn,pΓn,pq induced by the quasiconformal

map ψρ, the map AfBS
Γ : DΓ Ñ D is called the factor Bowen-Series map of Γ

equipped with the fundamental domain ψρpΠΠΠq.

The group pΓΓΓn,p generated by Γn,pΓn,pΓn,p and Mω is an index n extension of Γn,pΓn,pΓn,p. Clearly,
the set

pΠΠΠ :“ tz P ΠΠΠ : 0 ď arg z ď
2π

n
u Y t0u

is a closed fundamental domain for the action of pΓΓΓn,p on D. It follows that Dä
pΓpΓpΓn,p

is biholomorphic to

‚ a sphere with p
2 ` 1 punctures and an order n orbifold point for p even, and

‚ a sphere with p`1
2 punctures, an order two orbifold point and an order n orbifold

point for p odd.
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The space of factor Bowen-Series maps constructed above is parametrized by

TeichωpΓn,pΓn,pΓn,pq, which in turn can be identified with the Teichmüller space TeichppΓΓΓn,pq.
Specifically, for the representation pρ : Γn,pΓn,pΓn,p ÝÑ Γq P TeichωpΓn,pΓn,pΓn,pq, we define

pΓ :“ xΓ,Mωy,

and associate with ρ the representation

ppρ : pΓΓΓn,p ÝÑ pΓq P TeichppΓΓΓn,pq, where pρ|Γn,pΓn,pΓn,p ” ρ|Γn,pΓn,pΓn,p and pρpMωq “Mω.

Thus, TeichωpΓn,pΓn,pΓn,pq is the same as the Teichmüller space of the orbifold group
pΓΓΓn,p “ Γn,pΓn,pΓn,p¸ ăMω ą.

Remark 2.4. 1) The orbifold Dä
pΓΓΓn,p

is a base genus zero orbifold ΣΣΣ P S with

tp{2u` 1 punctures, zero/one order two orbifold point depending on the parity of p,
and an order n orbifold point when n ě 3 (cf. Remark 2.1). Thus, any Σ P TeichpΣΣΣq

is uniformized by some Fuchsian group Γ P TeichppΓΓΓn,pq.

2) The fact that the chosen fundamental domain and side-pairings of the base
group Γn,pΓn,pΓn,p admit a 2π{n rotation symmetry and that the representations pρ :
Γn,pΓn,pΓn,p ÝÑ Γq P TeichωpΓn,pΓn,pΓn,pq respect this symmetry, together imply that the orbifolds
DäΓ have an order n isometry. Quotienting by this isometry yields an n´fold

(branched) covering DäΓ ÝÑ
Dä

pΓ.

DäΓ ABS
Γ

Dä
pΓ AfBS

Γ

cover factor

Figure 4. Covering orbifolds and factor Bowen-Series maps

We summarize the main properties of factor Bowen-Series maps below.

Proposition 2.5.

(1) AfBS
Γ : S1 Ñ S1 is a piecewise analytic, orientation-preserving, expansive,

covering map of degree np´ 1. In particular, it is topologically conjugate to
znp´1|S1 .

(2) The restriction AfBS
Γ :

`

AfBS
Γ

˘´1
pDΓq Ñ DΓ has degree np´ 1.

(3) The restriction AfBS
Γ :

`

AfBS
Γ

˘´1
pDzDΓq Ñ DzDΓ has degree np. If n ě 2,

there are p critical points of AfBS
Γ , each of multiplicity n´1, in

`

AfBS
Γ

˘´1
pDzDΓq.

All these critical points are mapped to the unique critical value 0 of AfBS
Γ .

Proof. It is enough to verify the assertions for the base map AfBS
Γn,pΓn,pΓn,p

. We endow the

bordered Riemann surface Q with a preferred choice of complex coordinates via its
identification with tz P D : 0 ď arg z ď 2π

n u Y t0u (with the boundary radial lines
glued together).
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J1
1,1

J2
1,1

J3
1,1J4

1,1
J1

1,2

J2
1,2

J3
1,2

J4
1,2

J5
1,2

J1
1,3

J2
1,3

J3
1,3

J4
1,3

Figure 5. Displayed is the dynamical plane of the factor Bowen-Series map AfBS
Γ4,3Γ4,3Γ4,3

and the partition of S1 given by the arcs Ji1,s :“ ξpqpJ i1,sqq (cf. Figure 3). Pulling

this partition back by AfBS
Γ4,3Γ4,3Γ4,3

yields a Markov partition for the map.

1) The facts that ABS
Γn,pΓn,pΓn,p

is continuous on S1z
n
?

1 and the left and right-hand

limits of ABS
Γn,pΓn,pΓn,p

at the points of n
?

1 lie in the set n
?

1 together imply that A
BS

Γn,pΓn,pΓn,p :“

q ˝ABS
Γn,pΓn,pΓn,p

˝ q´1 is continuous.

Let us partition each arc J1,s Ă S1, s P t1, ¨ ¨ ¨ , pu, into sub-arcs J1
1,s, ¨ ¨ ¨ , J

mpsq
1,s ,

where each J i1,s is a connected component of some g´1
1,spJrq, i P t1, ¨ ¨ ¨ ,mpsqu,

r P t1, ¨ ¨ ¨ , nu. Then, with the above choice of coordinates on Q,

‚ A
BS

Γn,pΓn,pΓn,p acts as a Möbius map hi,s (called a piece of A
BS

Γn,pΓn,pΓn,p) on qpJ i1,sq; specifi-
cally, hi,s is a composition of g1,s with a power of Mω,

‚ hi,spqpJ
i
1,sqq is the union of finitely many sub-arcs from the collection

tqpJ1,sq : s P t1, ¨ ¨ ¨ , puu.

(See Figure 5 for the ξ´images of the arcs qpJ i1,sq in S1, for n “ 4, p “ 3.) It follows

that with the above choice of coordinates on Q, the map A
BS

Γn,pΓn,pΓn,p is a piecewise Möbius,

orientation-preserving, covering map of BQ. The statement that A
BS

Γn,pΓn,pΓn,p : BQÑ BQ
has degree np ´ 1 follows from the fact that all but finitely many points in S1

have np ´ 1 preimages under the map ABS
Γn,pΓn,pΓn,p

(since ABS
Γn,pΓn,pΓn,p

maps each arc Jr,s to

S1z int Jr,p`1´s). Finally, expansivity of A
BS

Γn,pΓn,pΓn,p |BQ is a consequence of the fact that

each g1,s has derivative larger than one on int J1,s, for s P t1, ¨ ¨ ¨ , pu (cf. [LMMN20,
Lemma 3.8]).

Since ξ : Q Ñ D is a biholomorphism, the properties of A
BS

Γn,pΓn,pΓn,p listed in the

previous paragraph imply that the map AfBS
Γn,pΓn,pΓn,p

” ξ ˝ A
BS

Γn,pΓn,pΓn,p |BQ ˝ ξ
´1 : S1 Ñ S1 is
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a piecewise analytic (not piecewise Möbius when n ą 1), orientation-preserving,
expansive, covering map of degree np´ 1.

2) and 3) The Bowen-Series map ABS
Γn,pΓn,pΓn,p

sends the hyperbolic half-plane bounded

by the geodesic C1,s and the arc J1,s Ă S1 to the complement of the hyperbolic half-
plane bounded by the geodesic C1,p`1´s and the arc J1,p`1´s Ă S1, s P t1, ¨ ¨ ¨ , pu.

Hence, the region DzDΓ is covered np times by AfBS
Γn,pΓn,pΓn,p

, while DΓ is covered np´ 1

times.
To locate the critical points of AfBS

Γn,pΓn,pΓn,p
, let us denote the union of the radial lines in

D at angles 2jπ
n , j P t0, ¨ ¨ ¨ , n´1u, by P . Note that AfBS

Γn,pΓn,pΓn,p
maps each ξpqpg´1

1,spPqqq to

the line segment r0, 1s and sends ξpqpg´1
1,sp0qqq to 0, for s P t1, ¨ ¨ ¨ , pu (see Figures 3

and 5). It follows that for each s P t1, ¨ ¨ ¨ , pu, the point ξpqpg´1
1,sp0qqq is a critical

point of multiplicity n´ 1 with associated critical value 0. �

2.3. Special case I: continuous Bowen-Series maps. In [MM23a, MM23b],
Bowen-Series maps of Fuchsian punctured sphere groups (possibly with an order
two orbifold point) equipped with special fundamental domains were studied. These
maps, which are covering maps of S1, are contained in the class of maps constructed
in Section 2.2.

2.3.1. Bowen-Series maps of Fuchsian punctured sphere groups. Let n “ 1 and

p ě 4 be an even integer. Then DäΓn,pΓn,pΓn,p
is a sphere with p

2 ` 1 punctures, and

for pρ : Γn,pΓn,pΓn,p ÝÑ Γq P TeichωpΓn,pΓn,pΓn,pq ” TeichpΓn,pΓn,pΓn,pq, the map AfBS
Γ agrees with the

standard Bowen-Series map ABS
Γ of Γ equipped with the fundamental domain ψρpΠΠΠq

(see [MM23a, §3] and Figure 6(left)). This map restricts to a C1, expansive, degree
p´ 1 covering of S1. Moreover, it has no critical points in its domain of definition
DΓ.

2.3.2. Bowen-Series maps of Fuchsian groups uniformizing punctured spheres with
an order two orbifold point. Let n “ 1 and p ě 3 be an odd integer. Then
DäΓn,pΓn,pΓn,p

is a sphere with p`1
2 punctures and an order two orbifold point, and

for pρ : Γn,pΓn,pΓn,p ÝÑ Γq P TeichωpΓn,pΓn,pΓn,pq ” TeichpΓn,pΓn,pΓn,pq, the map AfBS
Γ agrees with the

standard Bowen-Series map ABS
Γ of Γ equipped with the fundamental domain ψρpΠΠΠq

(see [MM23a, §3] and Figure 6(right)). This map restricts to a C1, expansive, degree
p´ 1 covering of S1. Moreover, it has no critical points in its domain of definition
DΓ.

2.4. Special case II: fully ramified factor Bowen-Series maps. We now look
at the case when p “ 1 and n ě 3 is any integer. By construction, for r P t1, ¨ ¨ ¨ , nu,

the map gr,1 is an involution with an elliptic fixed point on Cr,1. Moreover, DäΓn,pΓn,pΓn,p
is a sphere with one puncture and n order two orbifold points. The corresponding

index n extension pΓΓΓn,p is a classical Hecke group, which uniformizes a genus zero
orbifold with exactly one puncture, exactly one order two orbifold point and exactly

one order n orbifold point. In particular, TeichppΓΓΓn,pq is a singleton, and hence
the factor Bowen-Series map associated with Γn,pΓn,pΓn,p (equipped with the fundamental
n´gon ΠΠΠ) is rigid.

The map AfBS
Γn,pΓn,pΓn,p

restricts to a C1, expansive, degree n´ 1 covering of S1. Further,

this map has a unique critical point of multiplicity n´ 1 (see Figure 7).
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ΠpΓ1,6q

C1,1

C1,6

C1,2

C1,5

C1,3

C1,4

g1,1

g´1
1,1

g1,2

g´1
1,2

g1,3

g´1
1,3

ΠpΓ1,5q

C1,1

C1,5

C1,2

C1,4

C1,3

g1,1

g´1
1,1

g1,2

g´1
1,2

g1,3

Figure 6. The preferred fundamental hexagon (respectively, pentagon) of
Γ1,6Γ1,6Γ1,6 (respectively, of Γ1,5Γ1,5Γ1,5), which uniformizes a four times punctured sphere
(respectively, a sphere with three punctures and an order two orbifold point), is
shown. The action of the corresponding Bowen-Series maps on these arcs are
also marked.

C1,1

C4,1

C2,1

C3,1

g1,1

Figure 7. Left: The fundamental domain Π of Γ4,1Γ4,1Γ4,1 is the polygon having the
geodesics Cr,1, r P t1, 2, 3, 4u, as its edges. The Bowen-Series map ABS

Γ4,1Γ4,1Γ4,1
, which

commutes with Mi, acts as g1,1 on the arc J1,1. The pre-images of the vertical
and horizontal radial lines under g1,1 are displayed in green. Right: The factor
Bowen-Series map AfBS

Γ4,1Γ4,1Γ4,1
is defined outside of an ideal monogon with its vertex at

1, and is a degree three covering of S1. It has a unique critical point of multiplicity
three at the valence four vertex of the green graph.
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3. Conformal matings of factor Bowen-Series maps with polynomials

The goal of this section is to prove Theorem A. In fact, we will prove a more general
statement that allows the polynomials to lie in arbitrary hyperbolic components in
the connectedness locus.

3.1. The notion of conformal mating. Let n, p be two positive integers with
np ě 3, and P be a monic, centered complex polynomial of degree d :“ np ´ 1
with a connected and locally connected Julia set. Recall that there exists a unique
conformal map

ψP : pCzDÑ B8pP q :“ pCzKpP q
(called the Böttcher coordinate of P ) that conjugates zd to P , and is tangent to the
identity map near infinity (cf. [Mil06, Theorem 9.1]).

We now define the notion of topological/conformal mating of P and AfBS
Γ , where

Γ P TeichωpΓn,pΓn,pΓn,pq. As J pP q is locally connected, ψP extends continuously to
S1 to yield a semi-conjugacy between zd|S1 and P |J pP q. On the other hand, the
quasiconformal conjugacy ψρ between Γn,pΓn,pΓn,p and Γ induces a quasiconformal conjugacy
pψρ between AfBS

Γn,pΓn,pΓn,p
and AfBS

Γ . Also recall that by Proposition 2.5, there exists a

homeomorphism h : S1 Ñ S1 that conjugates zd to AfBS
Γn,pΓn,pΓn,p

. We normalize h so that it

sends the fixed point 1 of zd to the fixed point 1 of AfBS
Γn,pΓn,pΓn,p

. Let us now consider the

disjoint union KpP q \ D and the map

P \AfBS
Γ : KpP q \DΓ Ñ KpP q \ D,

`

P \AfBS
Γ

˘

|KpP q “ P,
`

P \AfBS
Γ

˘

|DΓ
“ AfBS

Γ .

Let „m (here ‘m’ stands for mating) be the equivalence relation on KpP q
Ů

D
generated by

(3.1) ψP pzq „m
pψρphpzqq, for all z P S1.

The map P \AfBS
Γ descends to a continuous map PKKAfBS

Γ to the quotient

KpP q KK D :“
`

KpP q \ D
˘

{ „m – S2.

The map PKKAfBS
Γ is called the topological mating of P and AfBS

Γ . We say that P

and AfBS
Γ are conformally mateable if the topological 2´sphere KpP qKKD admits a

complex structure that turns the topological mating PKKAfBS
Γ into a holomorphic

map.
Here is an equivalent formulation (cf. [PM12, Definition 4.14]).

Definition 3.1. The maps P and AfBS
Γ are conformally mateable if there exist a

continuous map F : DompF q Ĺ pCÑ pC (called a conformal mating of AfBS
Γ and P )

that is complex-analytic in the interior of DompF q and continuous maps

XP : KpP q Ñ pC and XΓ : DÑ pC,

conformal on intKpP q and D (respectively), satisfying

(1) XP pKpP qq Y XΓ

`

D
˘

“ pC,
(2) DompF q “ XP pKpP qq Y XΓpDΓq,
(3) XP ˝ P pzq “ F ˝ XP pzq, for z P KpP q,
(4) XΓ ˝A

fBS
Γ pwq “ F ˝ XΓpwq, for w P DΓ, and

(5) XP pzq “ XΓpwq if and only if z „m w where „m is the equivalence relation
on KpP q \ D defined by Relation (3.1).
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The semi-conjugacies XP ,XΓ are called the mating semi-conjugacies associated with
the conformal mating F of P and AfBS

Γ . When mating semi-conjugacies are injective,
they are simply referred to as mating conjugacies.

3.2. Existence of conformal matings. Let pρ : Γn,pΓn,pΓn,p ÝÑ Γq P TeichωpΓn,pΓn,pΓn,pq
and P a monic, centered, hyperbolic complex polynomial of degree d “ np ´ 1
with a connected Julia set. We now state and prove a generalization of [MM23a,
Theorem 3.6].

Theorem 3.2. There exists a conformal mating F of P : KpP q Ñ KpP q and
AfBS

Γ : DΓ Ñ D. Moreover, F is unique up to Möbius conjugacy.

We will start with a technical lemma.

Definition 3.3. An orientation-preserving homeomorphism H : U Ñ V between

domains in the Riemann sphere pC is called a David homeomorphism if it lies in the
Sobolev class W 1,1

loc pUq and there exist constants C,α, ε0 ą 0 with

σptz P U : |µHpzq| ě 1´ εuq ď Ce´α{ε, ε ď ε0.(3.2)

Here σ is the spherical measure, and µH “
BH{Bz
BH{Bz is the Beltrami coefficient of H

(see [AIM09, Chapter 20] for more background on David homeomorphisms).

Lemma 3.4. The circle homeomorphism h continuously extends to a David homeo-
morphism of D.

Proof. We will use the notation introduced in Proposition 2.5. In particular, we
endow Q with a preferred choice of complex coordinates via its identification with
tz P D : 0 ď arg z ď 2π

n u Y t0u (with the boundary radial lines glued together).
The partition of BQ into the arcs

tqpJ i1,sq : s P t1, ¨ ¨ ¨ , pu, i P t1, ¨ ¨ ¨ ,mpsquu

does not necessarily give a Markov partition for A
BS

Γn,pΓn,pΓn,p since the map may send both
endpoints of such a partition piece to 1. However, we can refine the above partition

by pulling it back under A
BS

Γn,pΓn,pΓn,p , and this produces a Markov partition tIku.

Each piece hi,s|Ik of A
BS

Γn,pΓn,pΓn,p extends conformally as hi,s to a neighborhood of Ik in

rQ, where rQ is the double of Q and Ik Ă qpJ i1,sq. Finally, since the pieces of A
BS

Γn,pΓn,pΓn,p

are Möbius (with respect to the preferred coordinates on Q), which send round disks

to round disks, we can choose round disk neighborhoods Uk Ă rQ of the interiors
of the Markov partition pieces int Ik (intersecting BQ orthogonally) such that if

A
BS

Γn,pΓn,pΓn,ppIkq Ą Ak1 , then A
BS

Γn,pΓn,pΓn,ppUkq Ą Uk1 .

The properties of A
BS

Γn,pΓn,pΓn,p listed in the previous paragraph imply that the map

AfBS
Γn,pΓn,pΓn,p

” ξ ˝A
BS

Γn,pΓn,pΓn,p |BQ ˝ ξ
´1 : S1 Ñ S1 is a piecewise analytic orientation-preserving

expansive covering map of degree d ě 2 admitting a Markov partition tξpIkqu
satisfying conditions (4.1) and (4.2) of [LMMN20, Theorem 4.12]. Moreover, each
periodic breakpoint of its piecewise analytic definition is symmetrically parabolic
(see [LMMN20, Definition 4.6, Remark 4.7]). By [LMMN20, Theorem 4.12], the
orientation-preserving homeomorphism h : S1 Ñ S1 that conjugates the map zd|S1

to AfBS
Γn,pΓn,pΓn,p

|S1 (and sends 1 to 1) extends continuously as a David homeomorphism

of D. �
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Proof of Theorem 3.2. As J pP q is locally connected, ψP extends to a continuous
surjection ψP : S1 Ñ J pP q semi-conjugating zd to P . Also note that since P is
hyperbolic with connected Julia set, B8pP q is a John domain and J pP q is removable
for W 1,1 functions [JS00, Theorem 4].

Let us set hΓ :“ pψρ ˝ h : DÑ D. By construction, hΓ is a David homeomorphism
of D and conjugates zd|S1 to AfBS

Γ |S1 . Consider the topological dynamical system

rF pwq :“

"

P on KpP q,
ψP ˝ η ˝ h

´1
Γ ˝AfBS

Γ ˝ hΓ ˝ η ˝ ψ
´1
P on ψP

`

η
`

h´1
Γ pDΓq

˘˘

Ă B8pP q,

where ηpzq “ 1{z. By equivariance properties of hΓ : S1 Ñ S1 and ψP : S1 Ñ J pP q,
the two definitions agree on J pP q. We denote the domain of rF by Domp rF q

We define a Beltrami coefficient µ on the sphere as follows. On KpP q we set µ to
be the standard complex structure. On B8pP q, we set µ to be the pullback of the
standard complex structure (on D) under the map hΓ ˝ η ˝ ψ

´1
P . Since hΓ ˝ η ˝ ψ

´1
P

is a David homeomorphism (by [LMMN20, Proposition 2.5 (part iv)]), it follows

that µ is a David coefficient on pC. It is easy to check that µ is rF´invariant.
The David Integrability Theorem (see [Dav88], [AIM09, Theorem 20.6.2, p. 578])

provides us with a David homeomorphism H : pCÑ pC such that the pullback of the

standard complex structure under H is equal to µ. Conjugating rF by H, we obtain
the map

F :“ H ˝ rF ˝ H´1 : HpDomp rF qq Ñ pC.

We set DompF q :“ HpDomp rF qq.
We proceed to show that F is holomorphic on int DompF q. As J ppq isW 1,1´removable,

it follows from [LMMN20, Theorem 2.7] that HpJ pP qq is locally conformally re-
movable. Hence, it suffices to show that F is holomorphic on the interior of
DompF qzHpJ pP qq. Indeed, this would imply that the continuous map F is holo-
morphic on int DompF q away from the finitely many critical points of F . One can
then conclude that F is holomorphic on int DompF q using the Riemann removability
theorem.

To this end, first observe that both the maps hΓ ˝ η ˝ ψ
´1
P and H are David

homeomorphisms on B8pP q straightening µ|B8pP q. By [AIM09, Theorem 20.4.19,

p. 565], the map hΓ ˝ η ˝ ψ
´1
P ˝ H´1 is conformal on HpB8pP qq. It now follows

from the definitions of rF and F that F is holomorphic on HpB8pP qq X int DompF q.
Similarly, both the identity map and the map H are David homeomorphisms on each
component of intKpP q straightening µ. Once again by [AIM09, Theorem 20.4.19,

p. 565], H is conformal on each component of intKpP q. By definition of rF and F ,
it now follows that F is holomorphic on each interior component of HpKpP qq. This
completes the proof of the fact that F is holomorphic on the interior of DompF q.

Finally, we set XP :“ H : KpP q Ñ pC and XΓ :“ H ˝ ψP ˝ η ˝ h
´1
Γ : DÑ pC. It is

readily checked that these maps satisfy the requirements of Definition 3.1. Thus, F
is a conformal mating of P and AfBS

Γ .
Now suppose that there is another conformal mating F1 of P and AfBS

Γ . Then
the respective mating semi-conjugacies paste together to yield a homeomorphism

of pC which is conformal away from HpJ pP qq and conjugates F to F1. Conformal
removability of HpJ pP qq now implies that this homeomorphism is a Möbius map;
i.e., F and F1 are Möbius conjugate. �
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4. Conformal matings and rational uniformization

With the conformal matings of factor Bowen-Series maps and polynomials at
our disposal (Theorem 3.2), we now take up the task of recognizing the class
of holomorphic maps that arise in this process and answering the first part of
Question 1.1. We carry this out in Subsections 4.2 and 4.3, where a generalization
of Proposition 1.2 is established. The resulting algebraic description of matings in
terms of uniformizing rational maps serves as a connecting link between conformal
matings (Section 3) and correspondences (to be dealt with in Section 5). Finally in
Section 4.4, we investigate the structure of the critical points of the uniformizing
rational maps. This structure will play a crucial role in studying the dynamics of
the associated correspondences in Section 5.

Throughout this section, we will work with a representation pρ : Γn,pΓn,pΓn,p ÝÑ
Γq P TeichωpΓn,pΓn,pΓn,pq and a monic, centered, hyperbolic complex polynomial P of
degree d “ np ´ 1 with a connected Julia set. As in Theorem 3.2, the unique
conformal mating of P and AfBS

Γ will be denoted by F . The associated mating
semi-conjugacies are denoted by XP and XΓ (see Definition 3.1). Moreover, ψP , ψρ
denote the Böttcher coordinate for P , and the quasiconformal homeomorphism that
defines the representation ρ, respectively.

4.1. Lamination model of domain of conformal matings.

Proposition 4.1. DompF q is homeomorphic to the quotient of D under an equiva-
lence relation given by a finite lamination. In particular,

(1) DompF q is connected, and
(2) int DompF q has finitely many connected components and each of them is a

Jordan domain.

Proof. Recall that DzDΓ is the interior of a topological ideal p´gon. Since XΓ is
conformal on D and extends continuously to S1, it follows that the complement of
DompF q is a topological disk and hence DompF q is a full continuum. Moreover, XΓ

can introduce at most finitely many identifications on the boundary of DzDΓ (namely,
at the p ideal boundary points of DzDΓ). It follows that DompF q is homeomorphic
to the quotient of D under a finite lamination. �

We will now give an explicit description of the finite lamination appearing in the
statement of Proposition 4.1. This will be useful in determining the topology of
DompF q.

Let us denote the set of p ideal boundary points of DzDΓ on S1 by SΓ. Under

the circle homeomorphism hΓ “ pψρ ˝ h that conjugates zd to AfBS
Γ , the set SΓ is

pulled back to the set

Ap :“ t
i

p
: i P t0, ¨ ¨ ¨ , p´ 1uu

(here we identify S1 with R{Z). More precisely, if p is even (respectively, odd), the
two points (respectively, one point) of SΓ that are (respectively, is) fixed by AfBS

Γ

correspond to 0, p2p “
1
2 (respectively, corresponds to 0), and the 2´cycles of AfBS

Γ

in SΓ correspond to the 2´cycles ˘ i
p , i P t1, ¨ ¨ ¨ , tp´1

2 uu, of md.

Definition 4.2. We define the equivalence relation LP on Ap as: θ1 „P θ2 if and
only if the external dynamical rays of P at angles θ1, θ2 land at the same point
of J pP q.
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We remark that the above equivalence relation is unlinked. One can view LP as a
finite lamination on D by joining the two points of an equivalence class by a bi-infinite
hyperbolic geodesic. We define leaves, gaps and polygons of this lamination in the
usual way. By the construction of F , the landing point of the external dynamical ray
of P at angle θ is identified with hΓp´θq. Hence, the landing points of the external
dynamical rays of P at angles in Ap are identified with points in SΓ. The following
result easily follows from the above discussion.

Lemma 4.3. The connected components of int DompF q correspond bijectively to
the gaps of the lamination LP . Moreover, two components of int DompF q touch at
a point if and only if the corresponding gaps of LP are cobordant on a leaf or a
polygon.

Figure 8. Various laminations LP and corresponding topological models of
DompF q for p “ 10.

Remark 4.4. The topology of DompF q depends on the equivalence relation LP and
the integer p, but not on the integer n.

Definition 4.5. For a gap G of the lamination LP , the set of points of Ap that lie

on G but are not endpoints of any leaf of L is denoted by cusppGq.

Recall from [Mil06, §18] that the periods of the external dynamical rays landing
at a periodic point of J pP q are equal. Thus, if 0 or 1{2 belongs to a non-trivial
equivalence class of LP , then this class must be t0, 1{2u. On the other hand,

if i
p and j

p (where i, j P t1, ¨ ¨ ¨ , tp´1
2 uu) lie in the same equivalence class, then

mdp
i
p q “ ´

i
p and mdp

j
p q “ ´

j
p must do so as well. It follows that the gaps of the

lamination LP either intersect the real line, or come in complex conjugate pairs
(see Figure 8). We enumerate the gaps of LP as G1, ¨ ¨ ¨ ,Gl,G1,˘, ¨ ¨ ¨ ,Gm,˘, and
label the corresponding components of int DompF q as Ω1, ¨ ¨ ¨ ,Ωl,Ω1,˘, ¨ ¨ ¨ ,Ωm,˘,
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where Gi are the real-symmetric gaps and Gj,˘ are the complex-conjugate gaps of
LP . Thus,

DompF q “

˜

l
ď

i“1

Ωi

¸

ď

˜

m
ď

j“1

Ωj,` Y Ωj,´

¸

.

4.2. Explicit description of real-symmetric matings via rational uniformiza-
tions. In this subsection, we will give a concrete description of the mating between
AfBS

Γn,pΓn,pΓn,p
and PPP , where PPP is a real-symmetric polynomial of degree d “ np ´ 1 with

a connected Julia set (assuming that the mating exists). The characterization of
such matings will be based on the following lemma. We recall the notation ιpzq “ z,

η´pzq “ 1{z, and D˚ “ pCzD.

Lemma 4.6. Let Ω Ă pC be a simply connected domain with locally connected

boundary. Suppose further that f : Ω Ñ pC is a continuous function such that

(1) f is meromorphic on Ω, and
(2) f ” ι on BΩ.

Then there exists a rational map R : pCÑ pC that carries D univalently onto Ω and
pι ˝ fq |Ω ” R ˝ η´ ˝ pR|Dq

´1
.

Proof. As Ω is simply connected with locally connected boundary, there exists
a conformal isomorphism ϕ : D Ñ Ω that extends to a continuous surjection
ϕ : S1 Ñ BΩ. We will show that ϕ extends to a meromorphic map of the Riemann
sphere, and hence is a rational map. To this end, we define

R : pCÑ pC, R ”

#

ϕ, on D,
pι ˝ fq ˝ ϕ ˝ η´, on D˚.

By our assumption, ι ˝ f ” id on BΩ. This fact, combined with continuity of ϕ

and f , implies that R is continuous on pC. Moreover, R is meromorphic away from
S1. It follows from the conformal removability of analytic arcs that R is a global
meromorphic function. Therefore, R is a rational map that takes D injectively onto
Ω. Finally, by construction of R, we have that pι ˝ fq ˝ R ˝ η´ ” R on D˚, and

hence, pι ˝ fq ” R ˝ η´ ˝ pR|Dq
´1

on Ω “ RpDq. �

Remark 4.7. Domains Ω satisfying the conditions of Lemma 4.6 are examples of so-
called quadrature domains, and the associated maps f are called Schwarz functions.
The characterization of such domains given in Lemma 4.6 is a special case of
[AS76, Theorem 1], where a similar result is proven without the local connectedness
assumption. However, we will not need this more general statement in this paper.

With the above preparatory lemma at our disposal, we now proceed to prove the
main result of this subsection. Let us denote the conformal mating of PPP : KpPPP q Ñ
KpPPP q and AfBS

Γn,pΓn,pΓn,p
: DΓn,pΓn,pΓn,p Ñ D by FFF . Following the convention of Section 4.1, we

will label the components of int DompFFF q as

tΩΩΩα : α P Iu,

where

I :“ I1 \ I2, with I1 :“ t1, ¨ ¨ ¨ , lu, I2 :“ tp1,`q, p1,´q, ¨ ¨ ¨ , pm,`q, pm,´qu.
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We will also use the map

κ : I Ñ I,

#

i ÞÑ i, for i P I1,

pj,˘q ÞÑ pj,¯q, for pj,˘q P I2.

Lemma 4.8. There exist rational maps RRRα, α P I, of pC such that for each α

(1) ιpΩΩΩαq “ ΩΩΩκpαq,

(2) RRRα maps D injectively onto ΩΩΩα,
(3) ι ˝RRRα “ RRRκpαq ˝ ι, and

(4) FFF |ΩΩΩα ” RRRκpαq ˝ η ˝ pRRRα|Dq
´1.

Proof. We first claim that DompF q is real-symmetric and F ˝ ι “ ι ˝ F .

Proof of claim. The real-symmetry property of PPP implies that ι ˝ ψPPP ˝ ι conjugates
zd to PPP and is tangent to the identity map near infinity. By uniqueness of Böttcher
coordinates, we have that ι ˝ ψPPP ˝ ι “ ψPPP ; i.e., ψPPP commutes with ι.

The orientation-preserving topological conjugacy h : S1 Ñ S1 between zd and
AfBS

Γn,pΓn,pΓn,p
sends the fixed point 1 of zd to the fixed point 1 of AfBS

Γn,pΓn,pΓn,p
. Since both zd

and AfBS
Γn,pΓn,pΓn,p

are real-symmetric maps (i.e., they commute with ι), it follows that

ι ˝ h ˝ ι : S1 Ñ S1 is also an orientation-preserving topological conjugacy between zd

and AfBS
Γn,pΓn,pΓn,p

sending 1 to 1. Thus, g :“ pι ˝ h ˝ ιq´1 ˝ h : S1 Ñ S1 commutes with zd,

and carries the fixed point 1 of zd to itself. Due to this commutation property, the
orientation-preserving circle homeomorphism g acts as the identity on the m´th
pre-images of 1 under zd, for m ě 1. Since the iterated pre-images of 1 under
zd are dense in S1, it follows that g is the identity map on S1. Therefore, h is
real-symmetric. By [LMMN20, Remark 2.4], the David extension of h to D is real-
symmetric. Moreover, as ψPPP is real-symmetric, it follows that the David coefficient µ
appearing in the construction of Theorem 3.2 is also real-symmetric. The uniqueness
part of David Integrability Theorem (see [Dav88], [AIM09, Theorem 20.6.2, p. 578])
then implies that the David homeomorphism H solving the Beltrami equation with
coefficient µ is real-symmetric, from which real-symmetry of FFF follows. �

Due to real-symmetry of FFF , the escaping and non-escaping sets of FFF and the
associated mating semi-conjugacies are real-symmetric. It follows that if ΩΩΩα is a
component of int DompFFF q, then ιpΩΩΩαq “ ΩΩΩκpαq.

Note that by the description of the Möbius maps g1,s given in Subsection 2.1,
the factor Bowen-Series map AfBS

Γn,pΓn,pΓn,p
acts as the complex conjugation map ι on the

boundary of DzDΓn,pΓn,pΓn,p . By the real-symmetry property of the mating semi-conjugacies,
it follows that F also acts as ι on the boundary of DompFFF q. Also observe that since
BDompF q is the image of the boundary of DzDΓ under the continuous map XΓ, it
is locally connected. Thus, the restriction of FFF to the closure of each component of
int DompFFF q satisfies the hypothesis of Lemma 4.6. Therefore, for each α P I, there

exists a rational map RRRα of pC such that RRRα : DÑ ΩΩΩα is a conformal isomorphism.
Moreover, by Lemma 4.6, we have

(4.1) pι ˝FFF q |ΩΩΩα ” RRRα ˝ η
´ ˝ pRRRα|Dq

´1
.
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Since ιpΩΩΩαq “ ΩΩΩκpαq, the uniqueness of Riemann maps implies that the uniformiz-
ing rational maps RRRα can be chosen so that ι ˝RRRα “ RRRκpαq ˝ ι.

D ΩΩΩα

pC pC

η

RRRα

FFF

RRRκpαq

These relations, combined with those in (4.1), imply that FFF |ΩΩΩα ” RRRκpαq ˝ η ˝

pRRRα|Dq
´1. �

Suppose that the global degree of the rational map RRRα (where α P I) is dα.
By Lemma 4.8, we have dα “ dκpαq. The above commutative diagrams imply

that FFF : FFF´1pΩΩΩκpαqq XΩΩΩα ÝÑ ΩΩΩκpαq is a branched covering of degree dα ´ 1, and

FFF : FFF´1pintΩΩΩcκpαqq XΩΩΩα ÝÑ intΩΩΩcκpαq is a branched covering of degree dα. As both

PPP : KpPPP q Ñ KpPPP q and AfBS
Γn,pΓn,pΓn,p

:
´

AfBS
Γn,pΓn,pΓn,p

¯´1

pDΓn,pΓn,pΓn,pq Ñ DΓn,pΓn,pΓn,p are degree d maps, it

follows that FFF : FFF´1pDompFFF qq ÝÑ DompFFF q is a branched covering of degree d.
This implies that

(4.2)
ÿ

αPI
dα “

l
ÿ

i“1

di ` 2 ¨
m
ÿ

j“1

dj,` “ d` 1.

4.3. Quasiconformal conjugations of real-symmetric matings. We now look
at real-symmetric hyperbolic components in connectedness loci of polynomials. Any
polynomial P in such a hyperbolic component is quasiconformally conjugate to a
real-symmetric hyperbolic polynomial PPP with a connected Julia set (cf. [MS98]).

Proposition 4.9. Let pρ : Γn,pΓn,pΓn,p ÝÑ Γq P TeichωpΓn,pΓn,pΓn,pq and P be a polynomial
lying in a real-symmetric hyperbolic component in the connectedness locus of degree
d polynomials. Further let F be the conformal mating of P and AfBS

Γ , and Ωα,
α P I, be the components of int DompF q (where the labeling follows the convention
of Section 4.1).

Then, for all α P I, there exist Jordan domains Dα and rational maps Rα of

degree dα (with dα “ dκpαq) of pC such that

(1) ηpBDαq “ BDκpαq,

(2) Rα maps Dα injectively onto Ωα,
(3) F |Ωα ” Rκpαq ˝ η ˝ pRα|Dα

q´1, and

(4)
ř

αPI dα “ d` 1.

Proof. Note that P is quasiconformally conjugate to some real-symmetric hyperbolic
polynomial PPP of degree d, and AfBS

Γ is quasiconformally conjugate to AfBS
Γn,pΓn,pΓn,p

. It follows

that the conformal mating F of P and AfBS
Γ , which is unique up to Möbius conjugacy,

is quasiconformally conjugate to the conformal mating FFF of PPP and AfBS
Γn,pΓn,pΓn,p

. Let ΩΩΩα,RRRα
be as in Lemma 4.8.

Suppose that Ψ is a quasiconformal homeomorphism such that F “ Ψ ˝FFF ˝Ψ´1.
We set µ :“ Ψ˚pµ0q “ BzΨ{BzΨ (here, µ0 is the trivial Beltrami coefficient). As
the holomorphic map F preserves µ0, we have that µ is an FFF´invariant Beltrami
coefficient. We pull µ back by RRRα to obtain Beltrami coefficients µα :“ RRR˚αpµq.
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Let us first work with α “ i P I1. Since FFF pRRRipzqq “ RRRipηpzqq for z P D, the
invariance of µ under FFF translates to the η´invariance of µi. Let Ψi be a quasi-
conformal map solving the Beltrami equation with coefficient µi. By construction,

the quasiregular map Ri :“ Ψ ˝RRRi ˝Ψ´1
i : pCÑ pC preserves the standard complex

structure, and is thus a rational map. Also, Ψi ˝ η ˝ Ψ´1
i is a Möbius involution,

and hence can be chosen to be η after possibly post-composing Ψi with a Möbius
map. Set Di :“ ΨipDq, and Ωi :“ ΨpΩΩΩiq “ RipDiq. Since D is mapped inside out
by η, it follows that Di is also mapped inside out by η. In particular, Di is a Jordan
domain such that BDi is η´invariant (see Figure 9).

D

Di

η

η

Ψi Ψ

RRRi

Ri

FFF

F

Ωi

ΩΩΩi

Figure 9. Illustrated is the proof of Proposition 4.9.

pDi, µ0q pD, µiq pΩΩΩi, µq pΩi, µ0q

ppC, µ0q ppC, µiq ppC, µq ppC, µ0q

η

Ψ´1
i

η

RRRi

FFF

Ψ

F

Ψ´1
i RRRi Ψ

As RRRi is injective on D, we conclude that Ri is injective on the closed Jordan disk
Di (which is mapped inside out by η), and F can be written as Ri ˝ η ˝ pRi|Di

q´1

on Ωi.
Now we turn our attention to α “ pj,˘q P I2. Let Ψj,˘ be quasiconformal maps

solving the Beltrami equations with coefficient µj,˘. As before, it follows from the

construction that the quasiregular maps Rj,˘ :“ Ψ ˝RRRj,˘ ˝Ψ´1
j,˘ : pCÑ pC preserve

the standard complex structure, and hence they are rational maps of pC.
The relation FFF ˝RRRj,˘ “ RRRj,¯ ˝ ˝η (on D) and the definition of Ψj,˘ imply that

Ψj,¯ ˝ η ˝Ψ´1
j,˘ preserve the standard complex structure, and hence they are Möbius

maps. After possibly post-composing Ψj,˘ with Möbius maps, we can assume that

Ψj,˘ fix 0, 1, and 8. Then, the Möbius maps Ψj,¯ ˝ η ˝ Ψ´1
j,˘ send 0 to 8, 8 to

0, and 1 to 1. It follows that Ψj,¯ ˝ η ˝ Ψ´1
j,˘ ” η. We set Dj,˘ :“ Ψj,˘pDq, and

Ωj,˘ :“ ΨpΩΩΩj,˘q “ Rj,˘pDj,˘q. Since D is mapped inside out by η, it follows that
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Dj,˘ is mapped onto pCzDj,¯ by η. In particular, Dj,˘ are Jordan domains such
that ηpBDj,˘q “ BDj,¯.

As RRRj,˘ are injective on D, we conclude that Rj,˘ are injective on the closed

Jordan disk Dj,˘. Moreover, we have

F “ Ψ ˝FFF ˝Ψ´1

“ Ψ ˝ pRRRj,¯ ˝ η ˝ pRRRj,˘|Dq
´1q ˝Ψ´1

“ pΨ ˝RRRj,¯ ˝Ψ´1
j,¯q ˝ pΨj,¯ ˝ η ˝Ψ´1

j,˘q ˝ pΨj,˘ ˝ pRRRj,˘|Dq
´1 ˝Ψ´1q

“ Rj,¯ ˝ η ˝ pRj,˘|Dj,˘
q´1

on Ωj,˘.
Finally, the last item follows from Relation (4.2) at the end of Section 4.2. �

Note that any polynomial in the principal hyperbolic component Hd is quasicon-
formally conjugate to a real-symmetric hyperbolic polynomial.

Corollary 4.10. Let P P Hd and Γ P TeichωpΓn,pΓn,pΓn,pq. Then, there exist

(1) a Jordan domain D with ηpBDq “ BD, and

(2) a degree d` 1 rational map R of pC that is injective on D,

such that the conformal mating F of P and AfBS
Γ is given by

R ˝ η ˝ pR|Dq
´1 : RpDq Ñ pC.

4.4. Critical points of uniformizing rational maps. We continue to use the
notation of Proposition 4.9. Our aim in this subsection is to give a complete
description of the critical points of the uniformizing rational maps Rα, α P I, given
by Proposition 4.9. As we shall see in Proposition 4.14, the critical points of Rα
can be organized into three categories:

‚ the critical points of Rα on BDα, which come from cusps of the group
pΓ “ Γ¸ xMωy,

‚ the critical points of Rα in R´1
α pT q, which are associated with the order n

elliptic element of Γ, when n ě 3, and
‚ the critical points of Rα in R´1

α pKq, which correspond to the critical points
of P in KpP q.

To make book-keeping easier, we denote the domain of Rα (this is a copy of the

Riemann sphere) by pCα, and denote points in pCα by pz, αq. Note that Dα Ă pCα.
Let us now consider the disjoint union

U :“
ğ

αPI

pCα – pCˆ I,

and define the maps

R : U ÝÑ pC, pz, αq ÞÑ Rαpzq,

and

η˚ : U ÝÑ U, pz, αq ÞÑ pηpzq, κpαqq.

Note that R is a branched covering of degree np, and η˚ is a homeomorphism. We
also set

D :“
ğ

αPI
Dα.
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The dynamical plane of F splits into the following invariant subsets:

K ” KpF q :“ XP pKpP qq and T ” T pF q :“ XΓpDq,

which we term the non-escaping set and the escaping/tiling set of F (respectively).
By definition, the action of F on K (respectively, T ) is conformally conjugate to
P |KpP q (respectively, AfBS

Γ : DΓ Ñ D). We also denote the common boundary of K
and T by Λ ” ΛpF q, and call it the limit set of F .

Note that the boundary of

DompF q “
ď

αPI
RαpDαq “ RpDq

meets Λ at finitely many points, each of which is either fixed or 2´periodic under
F . We denote the set of these points by SF , and note that

SF “ XΓpSΓq

(see Section 4.1 for the definition of SΓ). We denote the set of points in SF that
do not disconnect ΛpF q (or equivalently, are not cut-points of BDompF q) by Scusp

F .
Finally, we set

rSα :“ pRα|BDαq
´1 pSF X BΩαq .

It is easy to see that BDompF qzSF is a union of finitely many non-singular analytic
arcs. Indeed, BDompF qzSF is the image of finitely many hyperbolic geodesics of
D under XΓ ˝ ξ (where ξpwq “ wn). Moreover, since AfBS

Γ admits an analytic
continuation to a neighborhood of DΓzSΓ, it follows that F admits an analytic
continuation to a neighborhood of DompF qzSF .

Recall that the global degree of the rational map RRRα, α P I, is denoted by dα.

Lemma 4.11.

(1) F pSF q “ SF .
(2) Each point of Scusp

F is a critical value of some Rα with an associated critical
point on BDα.

(3) ηprSαq “ rSκpαq.

(4) dα “ nqα, where qα is the number of components of S1zAp on BGα X S1

(boundary taken in D).

Proof. 1) Note that AfBS
Γ carries the set SΓ onto itself. Thanks to the semi-conjugacy

between AfBS
Γ and F (via XΓ), we conclude that F pSF q “ SF .

2) Since AfBS
Γ does not admit an analytic continuation in a neighborhood of any

point of SΓ, the map F does not admit an analytic continuation in a neighborhood
of any point of SF . Suppose that x P Scusp

F lies on the boundary of Ωα only. The
fact that F |Ωα is given by Rκpαq ˝ η ˝ pRα|Dα

q´1 implies that pRα|Dα
q´1 does not

extend complex-analytically to a neighborhood of x. This forces x to be a critical
value of Rα with a corresponding critical point on BDα.

3) This follows from item (1) and the relation F |BΩα ” Rκpαq ˝ η ˝ pRα|BDα
q´1.

4) The relation F |Ωα ” Rκpαq ˝ η ˝ pRα|Dαq
´1 implies that

F : F´1pΩκpαqq X Ωα ÝÑ Ωκpαq

is a branched covering of degree dα ´ 1.
Let qα be the number of components of S1zAp on BGα X S1. Note that under the

map md (which models the dynamics of P on J pP q) each arc of S1zAp is wrapped
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onto the whole circle pn´ 1q times and onto the complement of the closure of its
complex conjugate arc once. Hence, mdpBGα X S1q covers BGκpαq X S1 exactly

pn´ 1qqα ` pqα ´ 1q “ nqα ´ 1

times. It follows that ΛpF q XΩα covers ΛpF q XΩκpαq exactly pnqα´ 1q times under
the map F . Since the limit set of F is completely invariant, we conclude that
F : F´1pΩκpαqq X Ωα ÝÑ Ωκpαq is a degree pnqα ´ 1q branched covering. Therefore,
dα “ nqα. �

Lemma 4.12.

(1) critpR|Dq “ H, and pR|BDq
´1pScusp

F q Ă critpRq X BD. The points of
pRα|BDα

q´1pScusp
F q correspond bijectively to the points of cusppGαq.

(2) F pScusp
F XBΩαq “ Scusp

F XBΩκpαq. The involution η carries pRα|BDαq
´1pScusp

F q

onto pRκpαq|BDκpαq
q´1pScusp

F q.

(3) The critical points of Rα in pCzDα correspond bijectively to the critical points
of F in Ωκpαq (counted with multiplicities). In particular, R has p distinct

critical points, each of multiplicity n´1, in R´1pT qzD, and all these critical
points are mapped by R to the same point in T . On the other hand, R has
d´ 1 “ np´ 2 critical points in R´1pKqzD.

Proof. 1) The first statement follows from injectivity of Rα|Dα
. The proof of part (2)

of Lemma 4.11 shows that the pre-images of the points of Scusp
F XBΩα under Rα|BDα

are critical points of Rα. The statement that the points of pRα|BDαq
´1pScusp

F q corre-
spond bijectively to the points of cusppGαq is a trivial consequence of Definition 4.5.

2) The real-symmetry property of the lamination LP implies that if θ P cusppGαq,
then mdpθq “ ´θ P cusppGκpαqq (see Section 4.1). Under the mating semi-conjugacy
XP , this translates to the fact that if x P Scusp

F X BΩα, then F pxq P Scusp
F X BΩκpαq.

In light of the relation F |BΩα ” Rκpαq ˝ η ˝ pRα|BDα
q´1, we conclude that η sends

pRα|BDα
q´1pScusp

F X BΩαq onto pRκpαq|BDκpαq
q´1pScusp

F X BΩκpαqq.

3) The first statement follows from the relation F |Ωκpαq ” Rα ˝η ˝pRκpαq|Dκpαq
q´1

(recall that η carries Dκpαq onto pCzDα). The remaining claims are consequences
of the facts that F has d´ 1 “ np´ 2 critical points in K (coming from the d´ 1
critical points of P in KpP q) and p critical points, each of multiplicity n´ 1, in T
(coming from the p critical points of AfBS

Γ in DΓ). Moreover, F maps all the ppn´1q
critical points in T to the same critical value since AfBS

Γ sends all of its ppn ´ 1q
critical points in DΓ to the origin. �

We will conclude this section with a refined version of part (1) of Lemma 4.12. The
proof will go through an intermediate lemma about the structure of the lamination
LP .

Lemma 4.13. The lamination LP contains no polygon; i.e., each equivalence class
of LP contains at most two elements.

Proof. By Lemma 4.12, we have that

2dα ´ 2 “ # critpRαq ě # cusppGαq `# critpF |Ωκpαqq,

for each α P I. Summing this inequality over α P I, we get that
ÿ

αPI
p2dα ´ 2q “

ÿ

αPI
# critpRαq ě

ÿ

αPI

`

# cusppGαq `# critpF |Ωκpαqq
˘

.
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Taking into account the relation dα “ nqα (where qα is the number of components
of S1zAp on BGα X S1) and the facts that S1zAp has p components, LP has # I
many gaps, and F has a total of

pnp´ 2q ` ppn´ 1q “ 2np´ p´ 2

critical points in int DompF q (since P has np´ 2 critical points in KpP q and AfBS
Γ

has ppn´ 1q critical points in DΓ), we can rewrite the above inequality as

2np´ 2 ¨# I ě
ÿ

αPI
# cusppGαq ` p2np´ p´ 2q.

Thus,

(4.3) p` 2 ě 2 ¨# I `
ÿ

αPI
# cusppGαq.

We claim that Inequality (4.3) is satisfied only if the lamination LP contains no
polygon. To see this, first note that if # I “ 1; i.e., when the lamination is empty,
then cusppG1q consists of p points, and hence the two sides of the inequality coincide.
Now, the introduction of a k´gon in the lamination (or a leaf, when k “ 2) adds
k ´ 1 gaps and kills k cusps. For k ą 2, this procedure increases the right side of
Inequality (4.3) by 2pk ´ 1q ´ k “ k ´ 2 ą 0. Clearly, this violates the inequality,
which proves that each equivalence class of LP contains at most two elements. �

In the next proposition, we record the locations of all the critical points of Rα.

Proposition 4.14.

(1) R has no critical points in D.
(2) critpRq X BD “ pR|BDq

´1pScusp
F q. Consequently, η maps critpRαq X BDα

bijectively to critpRκpαqq X BDκpαq.

(3) R has p distinct critical points, each of multiplicity n ´ 1, in R´1pT qzD,
and all these critical points are mapped by R to the same point in T . On
the other hand, R has d´ 1 “ np´ 2 critical points in R´1pKqzD.

Proof. The first and third items follow from Lemma 4.12. It remains to prove the
second part.

Since each equivalence class of LP is a point or a leaf, it is easy to see that

2 ¨# I `
ÿ

αPI
# cusppGαq “ p` 2.

This implies, by the proof of Lemma 4.13, that

(4.4)
ÿ

αPI
p# pcrit pRαq X BDαq ´# cusp pGαqq “ 0.

By part (1) of Lemma 4.12, we have that # pcritpRαq X BDαq ´# cusppGαq ě 0
for each α P I, and hence by Relation (4.4), # pcritpRαq X BDαq “ # cusppGαq for
each α P I. Since the points of pRα|BDα

q´1pScusp
F q correspond bijectively to the

points of cusppGαq, we conclude that pRα|BDαq
´1pScusp

F X BΩαq “ critpRαq X BDα.
The second statement now follows from part (2) of Lemma 4.12. �

The next corollary follows from Proposition 4.14 and the observation that if
LP “ H, then int DompF q is a Jordan domain and hence no point of SF disconnects
BDompF q.
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Corollary 4.15. If LP “ H, then Ω :“ int DompF q is connected, the degree
of R :“ R1 is d ` 1 “ np, and the set of critical points of R on BD is given by
rS :“ rS1 “ pR|BDq

´1pSF q. In particular, R has p critical points on BD, d´1 “ np´2
critical points in R´1pKqzD, and p distinct critical points, each of multiplicity n´ 1,
in R´1pT qzD. All the ppn´ 1q critical points of R in R´1pT qzD are mapped to the
same critical value.

Moreover, depending on whether p is even/odd, exactly two/one points of rS are
fixed by η and the others form 2´cycles under η.

Proof. We only need to justify the last statement. To this end, observe that
depending on whether p is even/odd, exactly two/one points of SF are fixed by F ,
and the others form 2´cycles under F . Since F ” R ˝ η ˝ pR|Dq

´1, it follows that

depending on whether p is even/odd, exactly two/one points of rS are fixed by η
and the others form 2´cycles under η. �

Remark 4.16. Lemma 4.13 and Proposition 4.14 can also be proved by looking at the
real-symmetric map FFF that F is quasiconformally conjugate to. For Lemma 4.13,
note that the only singularities on the boundaries of the Jordan quadrature domains
ΩΩΩα are (inward) conformal cusps (cf. [Sak91]), and hence more than two such
quadrature domains cannot touch at a point.

For Proposition 4.14, first observe that if y P BDαzpRα|BDαq
´1pSF X BΩαq were

a critical point of Rα, then pRα|Dα
q´1 would not extend analytically to a neigh-

borhood of Rαpyq P ΩαzSF , which contradicts the fact that Rα admits an analytic
continuation to a neighborhood of ΩαzSF . Finally, if Rα had a critical point
y P pRα|BDα

q´1pSF zS
cusp
F q, then RRRαpψ

´1
α pyqq would be a conformal cusp of BΩΩΩα,

while RRRαpψ
´1
α pyqq would also be a touching point of BΩΩΩα and BΩΩΩβ for some β ‰ α;

which is impossible.

5. Correspondences associated with conformal matings

We will now use the algebraic representation of conformal matings F in terms
of uniformizing rational maps R to define algebraic correspondences C, and study
their dynamical properties to complete the proof of Theorem B, thus answering
the second part of Question 1.1. It turns out that the dynamics of C is intimately
related to that of F : the mating structure in the F´plane can be lifted via R to
obtain the desired mating structure in the C´plane.

5.1. The case of principal hyperbolic components. Let n, p be positive inte-
gers with np ě 3. Suppose that pρ : Γn,pΓn,pΓn,p Ñ Γq P TeichωpΓn,pΓn,pΓn,pq, P P Hnp´1, and

F : Ω Ñ pC be the conformal mating of AfBS
Γ and P . Further, let R,D be as in

Corollary 4.10. Finally, we set rS :“ rS1 “ pR|BDq
´1pSF q.

We will define a holomorphic correspondence C Ă pCˆ pC (i.e., a multi-valued map
with holomorphic local branches) of bi-degree d:d as (cf. [DS06]):

(5.1) pz, wq P C ðñ
Rpwq ´Rpηpzqq

w ´ ηpzq
“ 0.

The following observations show that C is obtained by lifting F and its appropriate
backward branches via the rational map R.

‚ Fix z P D. Then, F pRpzqq “ Rpηpzqq, and hence,

(5.2) pz, wq P C ðñ Rpwq “ Rpηpzqq “ F pRpzqq.
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‚ Now fix z P pCzD. Then, F pRpηpzqqq “ Rpzq; i.e.,

(5.3) pz, wq P C ðñ Rpwq “ Rpηpzqq “ F´1pRpzqq,

where F´1 is a suitable backward branch of F .

5.1.1. Dynamical partition for C. The invariant partition of the dynamical plane of
F , given by K and T , can be pulled back by R to produce an invariant partition of
the dynamical plane of the correspondence C. More precisely, we set

rK :“ R´1pKq, rT :“ R´1pT q.

We call these sets the non-escaping set and the tiling set of the correspondence C.

Note that the common boundary of rK and rT is given by

rΛ :“ R´1pΛq.

We call rΛ the limit set of C.

Proposition 5.1.

(1) ηprT q “ rT , and ηprKq “ rK.

(2) Let pz, wq P C. Then z P rT (respectively, z P rK) if and only if w P rT
(respectively, w P rK).

Proof. 1) It suffices to show that ηprKq “ rK.

Let us fist assume that z P DX rK. Then, Rpzq P K and Rpηpzqq “ F pRpzqq. As

K is invariant under F , it follows that Rpηpzqq P K. We conclude that ηpzq P rK.

Next let z P rKzD. Then, Rpzq P K and F pRpηpzqqq “ Rpzq. As K is backward

invariant under F , it follows that Rpηpzqq P K. We conclude that ηpzq P rK.

2) It suffices to show that if z P rT (respectively, if z P rK), then w P rT (respectively,

w P rK).
To this end, first suppose that z P D, which implies that Rpwq “ Rpηpzqq “

F pRpzqq. Now let z P rT (respectively, z P rK). The F´invariance of T (respectively,

K) implies that Rpwq P T (respectively, Rpwq P K). Hence, w P rT (respectively,

w P rK).

Next suppose that z P pCzD, which implies that F pRpwqq “ Rpzq. Now let

z P rT (respectively, z P rK). The backward invariance of T (respectively, K) under

F implies that Rpwq P T (respectively, Rpwq P K). Hence, w P rT (respectively,

w P rK). �

The main result of this subsection is the following theorem, which ties up
our framework of mating factor Bowen-Series maps of genus zero orbifolds with
polynomials in principal hyperbolic components with the Bullett-Penrose mating

phenomenon. We recall the notation pΓ “ xΓ,Mωy from Section 2.2.

Theorem 5.2. The correspondence C defined by Equation (5.1) is a mating of P

and Σ :“ Dä
pΓ in the following sense.

(1) The dynamics of C on rT is equivalent to the action of a group

xηy ˚ xτy – Z{2Z ˚ Z{pnpqZ
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of conformal automorphisms of rT . Here, τ is a conformal automorphism of
rT of order np such that τp induces an order n conformal automorphism on

each component of rT .
Moreover, the above group action is properly discontinuous, and the

quotient orbifold
rT

äC is biholomorphic to Σ.

(2) The correspondence C has a forward branch carrying rKXD onto itself with
degree np ´ 1, and this branch is conformally conjugate to P : KpP q Ñ
KpP q. On the other hand, C has a backward branch carrying rKzD onto
itself with degree np´ 1, and this branch is also conformally conjugate to
P : KpP q Ñ KpP q.

The proof of this theorem will be given in the next three subsections. In

Subsections 5.1.2 and 5.1.3, we will study the group structure of C on rT which

will allow us to identify the conformal structure of the quotient orbifold
rT

äC. In

Subsection 5.1.4, we will analyze the dynamics of suitable branches of C on rK, which
will reveal the polynomial structure of the correspondence.

5.1.2. Group structure in C. By Corollary 4.15, there is a unique critical value of
R in T when n ě 2 and no critical value when n “ 1. Moreover, the fiber of this
critical value (under R) consists of p distinct points, each of which is a critical
point of multiplicity n´ 1. As T is simply connected, a routine application of the

Riemann-Hurwitz formula on the branched covering R : rT Ñ T shows that rT is the
union of p disjoint open topological disks U0, ¨ ¨ ¨ , Up´1. We can enumerate these
components so that ηpUiq “ Up´1´i, i P Z{pZ. Moreover, each Ui contains a unique
critical point (of multiplicity n´ 1) of R and maps onto T with degree n. We now

study the topology of cl rT (the topological closure of rT in pC).

Lemma 5.3.

(1) cl rT “
p´1
ď

i“0

Ui is connected, where each Ui is a Jordan domain that is mapped

with degree n onto T by R,

(2) Ui X U i`1 is a single point belonging to rS, and
(3) Ui X Uj “ H if |j ´ i| ‰ 1.

Here, i, j P Z{pZ.

Proof. We set T 0 :“ pCzΩ. Note that cl T zT 0 is a connected set. In fact, it is the
union of p closed topological disks (i.e., closures of Jordan domains) X0, ¨ ¨ ¨ , Xp´1

such that

‚ BXi X BT
0 “ RpUi X BDq,

‚ Xi XXi`1 is a single point belonging to SF , and
‚ Xi XXj “ H if |j ´ i| ‰ 1, where i, j P Z{pZ.

(See Figure 10 (right).) The inverse branch pR|Dq
´1 carries each Xi to a closed

topological disk Yi in D. The boundary of each of these pulled back closed

disks Yi contains (the closure of) a component of BDzrS. Hence the boundary
of pR|Dq

´1pcl T zT 0q “ Y
p
i“1Yi contains all of BD. In fact, pR|Dq

´1pcl T zT 0q con-

tains a relative neighborhood in D of each point in BDzrS (see Figure 10 (left)).
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Since ηprT q “ rT and cl rT XD “ pR|Dq
´1pcl T zT 0q, we conclude that

cl rT “ pR|Dq
´1pcl T zT 0q

ď

η
`

pR|Dq
´1pcl T zT 0q

˘

.

Finally, that fact that rS is η´invariant implies that

‚ Ui X U i`1 is a single point belonging to rS,
‚ Ui X Uj “ H if |j ´ i| ‰ 1, where i, j P Z{pZ, and

‚ cl rT “
Ťp
i“1 Ui is connected.

(See Figure 10 (left).) �

rK2

rK1

K

T 0

Λ
X0

X1

X2

X3

X4

X5

1

´1

R

BD

Y5
Y4Y3

Y2 Y1 Y0

Figure 10. The dynamical planes of F and C are displayed, where P P H5 and
Γ P TeichωpΓ1,6Γ1,6Γ1,6q.

Figure 10. Right: The dynamical plane of the conformal mating F of some P P H5

and some Γ P TeichωpΓ1,6Γ1,6Γ1,6q is depicted. The bounded complementary component of
the limit set (in red) is the tiling set. The light blue points on BT 0 comprise SF .

The components X1, ¨ ¨ ¨ , X6 of cl rT zT 0 are marked. Left: The dynamical plane of
C is shown. The bounded Jordan domain enclosed by the blue curve is D, and the

six light blue points marked on it constitute rS. The rational map R carries the
interior of the blue curve on the left figure (i.e., the domain D) homeomorphically
onto the exterior of the blue hexagon in the right figure (i.e., the domain Ω). The

part of the non-escaping set of C inside D (respectively, outside D) is marked as rK1

(respectively, as rK2); it is carried by R univalently (respectively, as a 5 : 1 branched

cover) onto K. The sets rK1 and rK2 intersect in rS. On the other hand, the tiling
set of C is the union of six Jordan domains, each of which has the union of a red

and a green curve (connecting two consecutive points of rS) as its boundary. The
R´pre-image of T 0 is shaded, and the closed topological disks Yi “ pR|Dq

´1pXiq

are marked.

Proposition 5.4. There exists a conformal automorphism τ of rT such that

τnp “ id, and R´1pRpzqq “ tz, τpzq, ¨ ¨ ¨ , τnp´1pzqu @ z P rT .

Proof. Let ΦΦΦ : DˆZ{pZ ÝÑ rT be a conformal isomorphism that sends p0, jq to the
unique critical point (of multiplicity n ´ 1) of R in Uj , for j P Z{pZ. Recall that
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XΓ : DÑ T is a conformal isomorphism that conjugates AfBS
Γ to F , and hence sends

the unique critical value 0 of AfBS
Γ to the unique critical value of R in T (which is

also the unique critical value of F in T ). Thus,

rR :“ X´1
Γ ˝R ˝ΦΦΦ : Dˆ Z{pZ ÝÑ D

is a holomorphic branched covering of degree np, that restricts to a degree n branched
covering Dˆtju Ñ D and carries p0, jq to 0 with local degree n. Thus, after possibly

pre-composing ΦΦΦ with a rotation on each Dˆ tju, we can write rR as

pw, jq ÞÑ wn, w P D, j P Z{pZ.

Let us now define a conformal automorphism

rτ : Dˆ Z{pZ ÝÑ Dˆ Z{pZ, pw, jq ÞÑ

#

pw, j ` 1q, for j P t0, ¨ ¨ ¨ , p´ 2u

pe
2iπ
n w, 0q, for j “ p´ 1.

It is readily checked that

rτnp “ id, and rR´1p rRpw, jqq “ tpw, jq, rτpw, jq, ¨ ¨ ¨ , rτnp´1pw, jqu @ pw, jq P DˆZ{pZ.

The desired automorphism τ of rT is now given by ΦΦΦ ˝ rτ ˝ΦΦΦ´1. �

Remark 5.5. Note that by construction, τpUjq “ Uj`1, j P Z{pZ. Moreover, τp

restricts to an order n conformal automorphism on each Uj .

It follows that the forward branches of C on rT are given by the conformal
automorphisms τ ˝ η, ¨ ¨ ¨ , τnp´1 ˝ η.

Proposition 5.6. The dynamics of C on rT is equivalent to the action of the group

xηy ˚ xτy – Z{2Z ˚ Z{pnpqZ

of conformal automorphisms of rT .

Proof. The tiling set T is dynamically tessellated. We call T 0 (closure taken in T )

the rank one tile (where T 0 “ pCzΩ), and connected components of F´mpT 0q tiles
of rank m. A connected component of the pre-image of a rank m tile of T under R

is called a rank m tile of rT .
We have already observed that the forward branches of C on rT are given by

τ ˝ η, ¨ ¨ ¨ , τnp´1 ˝ η. Furthermore, τ “ pτ2 ˝ ηq ˝ pτ ˝ ηq´1, and hence

xτ ˝ η, ¨ ¨ ¨ , τnp´1 ˝ ηy “ xη, τy.

It now remains to justify that xη, τy is the free product of the cyclic groups xηy
and xτy. This will be done by applying a ping-pong type argument using the tiling

structure of rT .
To this end, first note that any relation in xη, τy other than η2 “ id and τnp “ id

can be reduced to one of the form

(5.4) pτk1 ˝ ηq ˝ ¨ ¨ ¨ ˝ pτkr ˝ ηq “ id,

or

(5.5) pτk1 ˝ ηq ˝ ¨ ¨ ¨ ˝ pτkr ˝ ηq “ η,

where r ě 1 and k1, ¨ ¨ ¨ , kr P t1, ¨ ¨ ¨ , np´ 1u.
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Case 1: Let us first assume that there exists a relation of the form (5.4) in xη, τy.

We claim that pτkj ˝ ηq maps a tile T of rank s in rT zD to a tile of rank ps` 1q in
rT zD.

Proof of claim. By Relation (5.3), we have that F pRpηpzqqq “ Rpzq for z P rT zD.
Hence, F maps RpηpTqq to a rank s tile in T . It follows that RpηpTqq is a rank

ps` 1q tile in T , and hence ηpTq is a rank ps` 1q tile in rT XD. As R is injective on
D, the non-trivial deck transformation τkj of R carries ηpTq to a tile of rank ps` 1q

in rT zD. �

Hence, the group element on the left of Relation (5.4) maps a tile of rank 0 in rT to
a tile of rank r ě 1. Clearly, such an element cannot be the identity map.

Case 2: Now we consider a relation of the form (5.5) in xτ, ηy. Each pτkj ˝ ηq maps
rT zD to itself. Hence, the group element on the left of Relation (5.5) maps rT zD to

itself, while η maps rT zD to rT XD. This shows that there cannot exist a relation of
the form (5.5) in xτ, ηy.

We conclude that η2 “ id and τnp “ id are the only relations in xη, τy, and hence
xη, τy “ xηy ˚ xτy – Z{2Z ˚ Z{pnpqZ. �

5.1.3. The quotient orbifold.

Proposition 5.7. The group xηy˚xτy acts properly discontinuously on rT . Moreover,

the quotient orbifold
rT

äxηy ˚ xτy is biholomorphic to Σ “ Dä
pΓ.

Proof. We set ĂT 0 :“ R´1pT 0q. Note that ĂT 0 consists of p components, one in each
Ui, i P Z{pZ. Further, let

G0 :“ tf P xηy ˚ xτy : fpU0q “ U0u

be the stabilizer subgroup of U0 in xηy˚xτy. As the cyclic group xτy acts transitively

on the components of rT , it suffices to show that G0 acts properly discontinuously

on U0 and that U0äG0
is biholomorphic to Σ.

Note that the maps ξ and R in the vertical arrows of the following commutative
diagram are degree n branched coverings.

pD, 0q pU0, x0q

pD, 0q pT , Rpx0qq

ξ:w ÞÑwn

ĄXΓ

R

XΓ

Moreover, ξ (respectively, R) has an pn´ 1q´fold critical point at 0 (respectively,
at x0) with the associated critical value at 0 (respectively, at Rpx0q). Recall also
that 0 P D (respectively, Rpx0q) is the unique critical value of AfBS

Γ (respectively,
of F in T ). Since the conformal map XΓ conjugates AfBS

Γ to F , it follows that XΓ

sends 0 to Rpx0q. Hence, XΓ lifts to a conformal isomorphism ĂXΓ : D Ñ U0 that
maps 0 to x0.

By construction, ĂXΓ maps intψρpΠΠΠq conformally onto ĄT 0
U0

:“ ĂT 0 X U0. After

possibly pre-composing ĂXΓ with a power of Mω, we can assume that ĂXΓ takes the

bi-infinite geodesic ψρpC1,1q Ă BψρpΠΠΠq onto BDX U0 Ă B
ĄT 0
U0

. Since τp restricts to
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an order n automorphism of the np´gon ĄT 0
U0

that fixes the unique critical point x0

of R (of multiplicity n´1) in U0 and has derivative ω at this fixed point (this follows
from the construction of τ in Proposition 5.4), the above construction implies that
ĂXΓ conjugates Mω to τp.

Let us set
S :“ ĂXΓpψρppΠΠΠqq Ď

ĄT 0
U0
,

where pΠΠΠ is the fundamental domain of pΓΓΓn,p “ Γn,pΓn,pΓn,p ¸ xMωy introduced in Subsec-
tion 2.2. The set S is a closed sector (in the topology of U0) based at x0 whose
sides are geodesics in the hyperbolic metric of U0. Moreover, R is injective on the
interior of S and maps the two geodesics emanating from x0 to the line segment
XΓp0, 1q in T .

It is not hard to see using the actions of the generators τ j ˝η of the group xηy˚xτy

on the tiles of rT that S is a closed fundamental domain for the G0´action on U0.
In particular, G0 acts properly discontinuously on U0.

We now proceed to identify the quotient U0äG0
. Each τ j ˝ η stabilizes some

component Ui of rT . All these maps, conjugated by suitable powers of τ , give
elements of G0 that act as side-pairing transformations on the boundary of the

np´gon ĄT 0
U0

. Combined with the map τp, (a subset of) these maps pair the sides of

S. Finally, ĂXΓ conjugates these side-pairing transformations for the sector S to the
side-pairing transformations ρpg1,1q, ¨ ¨ ¨ , ρpg1,pq,Mω for the fundamental domain

ψρppΠΠΠq of pΓ “ Γ ¸ xMωy. It now follows that U0äG0
is biholomorphic to the

quotient Dä
pΓ. �

Remark 5.8. Not just the group pΓ, the representation pρ : pΓΓΓn,p Ñ pΓ (see Section 2.2)
is also recovered from C via the side-pairing transformations of S described in the
proof of Proposition 5.7.

5.1.4. Polynomial structure in C. We now set rK1 :“ rK XD and rK2 :“ rKzD. The

description of rT given in Section 5.1.2 can be used to study the structure of rK1 and
rK2.

Lemma 5.9.

(1) rK1 X BD “ rK2 X BD “ rK1 X rK2 “ rS.

(2) rK2 “ ηprK1q.

(3) R carries rK1 (respectively, rK2) homeomorphically (respectively, as a degree
np´ 1 branched cover) onto K.

(4) rK is connected.

Proof. 1) By definition, rKi X BD “ tz P BD : Rpzq P Ku, for i P t1, 2u. Recall
from Section 4.4 that BΩ “ RpBDq meets K precisely at the finite set SF . Hence,
rKi X BD “ pR|BDq

´1pSF q “ rS, for i P t1, 2u. Since rK1 X rK2 Ă BD, it now follows

that rK1 X rK2 “ rS.
2) The η´invariance of rK (see Proposition 5.1) implies that ηprKXDq “ rKzD. By

Lemma 4.11, ηprSq “ rS. The result now follows from these facts and the description

of rKi X BD, i P t1, 2u, given in the previous part.
3) As R is a homeomorphism from D onto Ω and K Ă Ω, it follows that

rK1 “ R´1pKq XD “ pR|Dq
´1pKq. Hence, R carries rK1 homeomorphically onto K.
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Since R is a global branched covering of degree np, it now follows that it maps
rK2 “ R´1pKqzD as a degree np´ 1 branched cover onto K.

4) Connectivity of K, combined with parts (2) and (3) of this lemma, implies

that both rK1 and rK2 are connected. Since rK1 X rK2 “ rS ‰ H, we conclude that
rK “ rK1 Y rK2 is connected. �

Proposition 5.10.

(1) rK2 is forward invariant, and hence, rK1 is backward invariant under C.

(2) C has a forward branch carrying rK1 onto itself with degree np´ 1, and this
branch is conformally conjugate to P : KpP q Ñ KpP q.

(3) C has a backward branch carrying rK2 onto itself with degree np ´ 1, and
this branch is conformally conjugate to P : KpP q Ñ KpP q.

Proof. 1) This follows immediately from Lemma 5.9 and the definition of C.
2) Let us set V :“ R´1pΩqzD, and define g : V Ñ D as the composition of

R : V Ñ Ω and
`

R|D
˘´1

: Ω Ñ D. By definition, g is a degree np ´ 1 branched

covering satisfying R ˝ g “ R on V . It follows that

g ˝ η : rK1 Ñ rK1

is a degree np´ 1 forward branch of the correspondence.
Clearly, the forward branch pg ˝ ηq|

rK1
is topologically conjugate (conformally

on the interior) to F |K ” R ˝ η ˝ pR|
rK1
q´1 via the univalent map R : rK1 Ñ K.

The result now follows from the above discussion and the fact that F : K Ñ K is
topologically conjugate (conformally on the interior) to P : KpP q Ñ KpP q via XP .

3) It is easy to see that the map

η ˝ g “ η ˝
`

R|D
˘´1

˝R : rK2 Ñ rK2

is a backward branch of the correspondence C carrying rK2 onto itself with degree
np´ 1. Finally, η restricts to a conformal conjugacy between the backward branch
pη ˝ gq|

rK2
and the forward branch pg ˝ ηq|

rK1
. �

Proof of Theorem 5.2. Follows from Propositions 5.6, 5.7, and 5.10. �

5.2. The general case. In this subsection, we will associate an algebraic corre-
spondence with the conformal mating

F :
ď

αPI
RαpDαq ÝÑ pC

of the factor Bowen-Series map AfBS
Γ , where pρ : Γn,pΓn,pΓn,p Ñ Γq P TeichωpΓn,pΓn,pΓn,pq, and a

polynomial P lying in any real-symmetric (not necessarily principal) hyperbolic
component in the connectedness locus of degree np´ 1 polynomials (see Proposi-
tion 4.9).

Let us recall some notation (from Section 4.4) that will be used in this section.

‚ The domain of Rα is denoted by pCα, and points in pCα are denoted by pz, αq.

In particular, Dα Ă pCα.

‚ U “
Ů

αPI
pCα.

‚ R : U ÝÑ pC, pz, αq ÞÑ Rαpzq, is a branched covering of degree np.
‚ η˚ : U ÝÑ U, pz, αq ÞÑ pηpzq, κpαqq, is a homeomorphism.
‚ D “

Ů

αPI Dα.
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The conformal mating F gives rise to a holomorphic correspondence on U as
follows. For α, β P I, define

Cα,β :“ tpz, wq P pCα ˆ pCβ :
Rβpwq ´Rκpαqpηpzqq

w ´ ηpzq
“ 0u, if κpαq “ β,

and

Cα,β :“ tpz, wq P pCα ˆ pCβ : Rβpwq ´Rκpαqpηpzqq “ 0u, if κpαq ‰ β.

The union of the algebraic curves Cα,β can be written succinctly as

(5.6) tpu1, u2q P Uˆ U :
Rpu2q ´Rpη˚pu1qq

u2 ´ η˚pu1q
“ 0u.

(The division in Equation (5.6) makes sense since the numerator and the denominator

can be viewed as points of pC.) The first and second coordinate projection maps

πα1 and πβ2 from Cα,β onto pCα and pCβ define a holomorphic (in fact, algebraic)

correspondence from pCα onto pCβ (cf. [DS06]):

Cα,β

pCα pCβ .

πα1 πβ2

Combining all these holomorphic correspondences for various α, β P I, we obtain
a holomorphic correspondence on U defined by the reducible curve

ř

α,β Cα,β . We
denote this correspondence by C˚.

In order to capture the mating structure of the correspondence, we need to pass
to a quotient of U. To this end, we endow U with the following finite equivalent
relation:

For z P rSα Ă pCα and w P rSβ Ă pCβ ,

pz, αq „w pw, βq ðñ Rαpzq “ Rβpwq.

The fact that DompF q is the quotient of D by a finite lamination (see Proposition 4.1)
and that Rα|BDα

is injective (for all α P I) imply that

W :“ Uä„w

has the structure of a compact, simply connected, noded Riemann surface. By

definition, the map R : UÑ pC descends to a map

qR : W ÝÑ pC.

Note that qR is also a degree np branched covering. Abusing notation, we denote the
image of a set X Ă U (respectively, a point p P U) under the quotient map U ÝÑW
by X (respectively, p).

Lemma 5.11. The homeomorphism η˚ : U Ñ U descends to a homeomorphism
qη : W ÝÑW.

Proof. Let us suppose that pz, αq „w pw, βq; i.e., z P rSα, w P rSβ , and Rαpzq “
Rβpwq. We need to show that η˚pz, αq „w η˚pw, βq.

To this end, note that

η˚pz, αq “ pηpzq, κpαqq P rSκpαq, and η˚pw, βq “ pηpwq, κpβqq P rSκpβq
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(by Lemma 4.11). Now, Rκpαqpηpzqq “ F pRαpzqq “ F pRβpwqq “ Rκpβqpηpwqq, and
hence η˚pz, αq „w η˚pw, βq. �

Thus, the correspondence C˚ on U also descends to a correspondence on W. We
denote this correspondence by C.

5.2.1. Dynamical partition for C. As in Section 5.1.1, we define

rK :“ qR´1pKq, rT :“ qR´1pT q.
The proof of Proposition 5.1 applies mutatis mutandis to the current setting and
implies the following result.

Proposition 5.12.

(1) qηprT q “ rT , and qηprKq “ rK.

(2) Let pu1, u2q P C. Then u1 P rT (respectively, u1 P rK) if and only if u2 P rT
(respectively, u2 P rK).

5.2.2. Group structure in C. Thanks to the description of the critical points of qR in
qR´1pT qzD given in Proposition 4.14, the arguments of Subsections 5.1.2 and 5.1.3
apply mutatis mutandis to the general situation and imply the following results.

Proposition 5.13.

(1) rT is the union of p disjoint topological disks U0, ¨ ¨ ¨ , Up´1, where each Ui
contains a unique critical point (of multiplicity n´ 1) of qR and is mapped
onto T with degree n.

(2) There exists a conformal automorphism τ of rT such that

τnp “ id, and qR´1p qRpzqq “ tz, τpzq, ¨ ¨ ¨ , τnp´1pzqu @ z P rT .

Hence, the forward branches of C on rT are given by the conformal automor-
phisms τ ˝ qη, ¨ ¨ ¨ , τnp´1 ˝ qη.

(3) The dynamics of C on rT is equivalent to the action of the group

xqηy ˚ xτy – Z{2Z ˚ Z{pnpqZ

of conformal automorphisms of rT .

(4) The group xqηy ˚ xτy acts properly discontinuously on rT . Moreover, the

quotient orbifold
rT

äxqηy ˚ xτy is biholomorphic to Σ “ Dä
pΓ.

5.2.3. Polynomial structure in C. We set

rS :“
ğ

αPI

rSα.

Note that qη maps D onto W z D, and preserves rS. As in Section 5.1.4, we set
rK1 :“ rK XD and rK2 :“ rK z D.

Lemma 5.14. We have that rK2 “ qηprK1q, and rK1 X rK2 “ rS.

Proof. The first statement follows from the fact that qηprKq “ rK. For the second
statement, first observe that

rK1 X rK2 “ tu P BD : qRpuq P Ku.

The result is now a consequence of the fact that qRprSq “ SF Ă K and qRpBD z rSq “
BDompF qzSF Ă T . �
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Finally, Proposition 5.10 naturally generalizes to the current setting.

Proposition 5.15.

(1) rK2 is forward invariant, and hence, rK1 is backward invariant under C.

(2) C has a forward branch carrying rK1 onto itself with degree np´ 1, and this
branch is conformally conjugate to P : KpP q Ñ KpP q.

(3) C has a backward branch carrying rK2 onto itself with degree np ´ 1, and
this branch is also conformally conjugate to P : KpP q Ñ KpP q.

Proof. The proof is similar to that of Proposition 5.10. We only give a proof of the
second statement.

The forward branch of C carrying rK1 onto itself (with degree np´ 1) acts as

b : pz, αq ÞÑ

ˆ

´

Rβ |Dβ

¯´1
`

Rκpαqpηpzqq
˘

, β

˙

,

where pz, αq P rK1, and Rκpαqpηpzqq P Ωβ . It is easy to see from the construction

that qR : rK1 ÝÑ K is a homeomorphism. We claim that qR|
rK1

is a conjugating map

between b and F |K. To this end, note that

F p qRpz, αqq “ F pRαpzqq “ Rκpαqpηpzqq,

and

qR pbpz, αqq “ qR

ˆ

´

Rβ |Dβ

¯´1
`

Rκpαqpηpzqq
˘

, β

˙

“ Rκpαqpηpzqq.

It follows that qR|
rK1
˝ b “ F ˝ qR|

rK1
. To complete the proof, we note that F |K is

conformally conjugate to P |KpP q via the mating conjugacy XP . �

We summarize the above results in the following theorem.

Theorem 5.16. The correspondence C on W defined by Equation (5.6) is a mating

of P and Σ :“ Dä
pΓ in the following sense.

(1) The dynamics of C on rT is equivalent to the action of a group

xqηy ˚ xτy – Z{2Z ˚ Z{pnpqZ

of conformal automorphisms of rT . Here, τ is a conformal automorphism of
rT of order np such that τp induces an order n conformal automorphism on

each component of rT .
Moreover, the above group action is properly discontinuous, and the

quotient orbifold
rT

äC is biholomorphic to Σ.

(2) The correspondence C has a forward branch carrying rKXD onto itself with
degree np ´ 1, and this branch is conformally conjugate to P : KpP q Ñ
KpP q. On the other hand, C has a backward branch carrying rK z D onto
itself with degree np´ 1, and this branch is also conformally conjugate to
P : KpP q Ñ KpP q.

Proof. The first statement is the content of Proposition 5.13 and the second one is
the content of Proposition 5.15. �

We are now ready to prove a slightly more general version of Theorem B announced
in the introduction.
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Theorem 5.17. Let Σ be a hyperbolic orbifold of genus zero with arbitrarily many
(at least one) punctures, at most one order two orbifold point, and at most one order
ν ě 3 orbifold point. Further, let P be a polynomial in a real-symmetric hyperbolic
component of degree 1´ 2ν ¨ χorbpΣq (respectively, 1´ 2χorbpΣq) polynomials if Σ
has (respectively, does not have) an order ν orbifold point.

Then, there exist a holomorphic correspondence C on a compact, simply connected,

(possibly noded) Riemann surface W and a C´invariant partition W “ rT \ rK such
that the following hold.

(1) On rT , the dynamics of C is orbit-equivalent to the action of a group of

conformal automorphisms acting properly discontinuously. Further,
rT

äC
is biholomorphic to Σ.

(2) rK can be written as the union of two copies rK1, rK2 of KpP q (where KpP q is

the filled Julia set of P ), such that rK1 and rK2 intersect in finitely many points.

Furthermore, C has a forward (respectively, backward) branch carrying rK1

(respectively, rK2) onto itself with degree np´1, and this branch is conformally
conjugate to P : KpP q Ñ KpP q.

In particular, if P lies in a principal hyperbolic component, then W “ pC; i.e., C is
an algebraic correspondence on the Riemann sphere.

Proof. Let us assume that Σ has δ1 ě 1 punctures, δ2 P t0, 1u order two orbifold
points, and δ3 P t0, 1u order ν ě 3 orbifold points. The condition that Σ is hyperbolic
is equivalent to the requirement that

χorbpΣq “ 2´ δ1 ´
δ2
2
´ δ3p1´

1

ν
q ă 0.

We set

n “

#

1 if δ3 “ 0,

ν if δ3 “ 1.

Further, we set

p “

#

2pδ1 ´ 1q if δ2 “ 0,

2δ1 ´ 1 if δ2 “ 1.

Note that when δ3 “ 0, then

1´ 2χorbpΣq “ 1´ 2p2´ δ1 ´
δ2
2
q “ 2δ1 ` δ2 ´ 3 “ p´ 1 “ np´ 1,

(as n “ 1 in this case). On the other hand, when δ3 “ 1, then

1´ 2ν ¨χorbpΣq “ 1´ 2νp1´ δ1´
δ2
2
`

1

ν
q “ 2νδ1` νδ2´ 2ν ´ 1 “ νp´ 1 “ np´ 1

(as n “ ν in this case). Moreover, the restriction on χorbpΣq implies that np ě 3.

By construction, Dä
pΓΓΓn,p

is homeomorphic to Σ (as orbifolds). It follows that

there exists ΓΣ P TeichppΓΓΓn,pq such that DäΓΣ
is biholomorphic to Σ. The result

now follows by applying Theorems 5.2 and 5.16 on the pair ΓΣ, P . �
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6. A character variety and a simultaneous uniformization locus

In this section, we will put the results of the previous sections together to justify
the diagram (Figure 2) furnished in the introduction. Along the way, we will put
an algebraic structure on the moduli space of our correspondences in terms of the
coefficients of the uniformizing rational maps. The construction of this space of
correspondences will lay the foundation for the proof of Theorem C (see Section 7).

We recall that n, p are positive integers with np ě 3, and d :“ np ´ 1. For
pρ : Γn,pΓn,pΓn,p Ñ Γq P TeichωpΓn,pΓn,pΓn,pq, the conformal mating of AfBS

Γ and P P Hd is denoted

by F : Ω Ñ pC. The associated mating semi-conjugacies are denoted by XP and XΓ

(see Definition 3.1). Further, let R,D be as in Corollary 4.10.

6.1. Moduli space of marked matings. Recall that a conformal mating F :

Ω Ñ pC of AfBS
Γ and P is unique up to Möbius conjugacy, where Γ P TeichωpΓn,pΓn,pΓn,pq

and P P Hd. A marked conformal mating is a pair pF “ AfBS
Γ KKP,XΓp1qq. Two

such pairs are equivalent if there is a Möbius map that conjugates the conformal
matings respecting the marked fixed points. The collection of equivalence classes of
marked conformal matings will be referred to as the moduli space of marked matings
associated with TeichωpΓn,pΓn,pΓn,pq and Hd. We denote this space by

M ”M pTeichωpΓn,pΓn,pΓn,pq,Hdq .

We have a natural map

Ξ1 : TeichωpΓn,pΓn,pΓn,pq ˆHd ÝÑ M

pΓ, P q ÞÑ rF :“ AfBS
Γ KKP,XΓp1qs.

Let us now fix a conformal mating F “ AfBS
Γ KKP : Ω Ñ pC. By Corollary 4.10,

there exist a Jordan domain D (with ηpBDq “ BD) and a degree pd ` 1q rational

map R of pC that maps D injectively onto Ω, such that F |Ω ” R ˝ η ˝ pR|Dq
´1.

Clearly, conjugating F by a Möbius map amounts to post-composing R with the
same Möbius map. We will now show that when a particular F is chosen, the
associated rational map R is essentially unique.

We denote the centralizer of η in PSL2pCq by Cpηq.

Proposition 6.1. Let F : Ω Ñ pC be a conformal mating of AfBS
Γ and P . Suppose

further that there exist pairs pR1,D1q, pR2,D2q with the following properties.

(1) Di a Jordan domain with ηpBDiq “ BDi,
(2) Ri|Di

is injective,

(3) RipDiq “ Ω, and
(4) F |Ω ” Ri ˝ η ˝ pRi|Di

q´1, for i P t1, 2u.

Then, there exists a Möbius map M P Cpηq such that MpD1q “ D2 and R1 ” R2˝M .

Proof. We define

M : pCÑ pC, z ÞÑ

#

pR2|D2
q´1 ˝R1pzq, if z P D1,

η ˝ pR2|D2q
´1 ˝R1 ˝ ηpzq, if z P pCzD1.

Since pR2|BD2
q´1 ˝ R1 : BD1 Ñ BD2 conjugates η|BD1

to η|BD2
, it follows that the

piecewise definitions of M agree continuously, and hence M is a homeomorphism of
the Riemann sphere that commutes with η. Moreover, M is conformal away from
the Jordan curve BD1.
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The facts that BΩzSF is a union of finitely many non-singular analytic arcs
(see Section 4.4) and that R1 has no critical point on BD1zpR1|BD1q

´1pSF q (by
Corollary 4.15) together imply that BD1 is a piecewise non-singular analytic curve.
In particular, BD1 is conformally removable. It now follows that M is a Möbius
map commuting with η. Moreover, the definition of M implies that MpD1q “ D2

and R1 ” R2 ˝M . �

After possibly pre-composing with z ÞÑ ´z, we can and will assume that
Rp1q “ XΓp1q.

6.2. Space of correspondences as character variety. Let us consider the space
C of all correspondences of the form

(6.1) pz, wq P C ðñ
Rpwq ´Rpηpzqq

w ´ ηpzq
“ 0,

where R P Ratd`1pCq. Note that the space C , which is parametrized by the quasi-
projective variety Ratd`1pCq, defines an ambient space in which the correspondences
produced by Theorem 5.2 live.

Definition 6.2. (cf.[BP94, §2]) We say that two correspondences C1,C2 in C are
equivalent if there exists M P Cpηq (where Cpηq is the centralizer of η in PSL2pCq)
such that

pz, wq P C1 ðñ pMz,Mwq P C2.

Remark 6.3. Suppose that the correspondences C1,C2 are equivalent in the sense of
Definition 6.2. If ϕ is a local holomorphic branch of C1, then M ˝ϕ ˝M´1 is a local
holomorphic branch of C2. Thus, the branches of two equivalent correspondences
are Möbius conjugate.

A routine computation using Equation (6.1) and Definition 6.2 shows that two
distinct correspondences C1,C2 P C defined by R1, R2 P Ratd`1pCq are equivalent if
and only if R1 ” R2 ˝M , for some M P Cpηq. On the other hand, replacing R by
M ˝R, for M P PSL2pCq, produces the same correspondence C.

Therefore, the space of equivalence classes of correspondences in C is parametrized

by the quotient Ratd`1pCqä„ under the equivalence relation

R „M2 ˝R ˝M1,

where R P Ratd`1pCq,M2 P PSL2pCq, and M1 P Cpηq. The space Ratd`1pCqä„,
with its algebraic structure, can be regarded as an analog of the character variety
for surface groups (cf. [Kap01, §4.3], [LM85]).

6.3. A simultaneous uniformization locus of correspondences. According
to Section 6.1, the rational maps R associated with the conformal matings in M
are well-defined only up to pre-composition with Möbius maps in Cpηq and post-
composition with arbitrary Möbius maps. In light of the discussion in Section 6.2,
each marked conformal mating in the moduli space M defines an equivalence class

of correspondences in Ratd`1pCqä„ via Equation (6.1), where R is the rational
uniformizing map of Corollary 4.10 normalized so that Rp1q “ XΓp1q. Thus, we
have a well-defined map

Ξ2 : M ÝÑ Ratd`1pCqä„

rF “ AfBS
Γ KKP,XΓp1qs ÞÑ rCs.
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We denote the image of Ξ2 in the ‘character variety’ Ratd`1pCqä„ by

C ” C pTeichωpΓn,pΓn,pΓn,pq,Hdq ,

and call it the moduli space of correspondences associated with TeichωpΓn,pΓn,pΓn,pq and
Hd. Note that the space C can be seen as a locus of simultaneous uniformizations
of marked groups in TeichωpΓn,pΓn,pΓn,pq and polynomials in Hd.

6.4. Intrinsic description of the mating structure of correspondences. Let
C P C. By construction, there exists pΓ, P q P TeichωpΓn,pΓn,pΓn,pq ˆ Hd such that Ξ2 ˝

Ξ1pΓ, P q “ C. Let R be a rational map generating the correspondence C. By our
normalization, Rp1q “ XΓp1q.

Recall that while the correspondence C was defined solely in terms of the rational
map R (via Equation (6.1)), the dynamical partition for C was given in terms of
F “ AfBS

Γ KKP , or equivalently, in terms of the rational map R and the Jordan domain
D. We will now expound how the complete dynamical structure of C (including
the limit, tiling, and non-escaping sets of C and the domain D) can be recovered
directly from R.

Since the iterated F´preimages of XΓp1q are dense in the limit set Λ of F (this
follows from the fact that the iterated P´preimages of any point on J pP q are dense
in J pP q), it follows that the grand orbit of 1 under the correspondence C is dense

in the limit set rΛ of C. Hence, the limit set of C can be recovered from R (without
knowledge of the domain D).

The tiling set rT of C can now be recognized as the union of the connected

components of pCzrΛ on which C acts properly discontinuously (with torsion points,

when n ą 1). The closures of the other two components of pCzrΛ comprise rK. On one
of these two components, the map R is injective, while R maps the other component

with degree d. The closure of the former (respectively, the latter) component is ĂK1

(respectively, ĂK2).

Thanks to the description of the closure of rT given in Lemma 5.3, we know

that the components U0, ¨ ¨ ¨ , Up´1 of rT are Jordan domains, and they form a chain

such that neighboring components touch at critical points of R that lie on rΛ. We
now consider the Jordan curve J obtained by connecting the critical points of R

on rΛ consecutively by hyperbolic geodesics in the components Ui. By the proof of
Proposition 5.7, the map R is injective on one of the complementary components of
J, and this component coincides with D (see Figure 10).

Thus, we can reconstruct D, rK, rT , and rΛ from the rational map R. Clearly, the

set ĂT 0 Ă rT (which is the union of the rank zero tiles in the tiling set of C) and

hence the set ĄT 0
U0
“ ĂT 0 X U0 can also be reconstructed from the above data.

The proof Proposition 5.7 also shows that when the topological disk U0 is

uniformized by the unit disk, the set ĄT 0
U0

corresponds to an ideal np´gon P in D
that admits the rotation Mω as a symmetry. Moreover, pulling back a sector of angle
2π{n in P (with geodesic boundary) under this uniformization yields a fundamental

domain S for the C´action on rT equipped with side-pairing transformations.

This defines a marking on the quotient
rT

äC. This marked Riemann surface is
biholomorphic to

‚ a sphere with p
2 ` 1 punctures and an order n orbifold point for p even, and
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‚ a sphere with p`1
2 punctures, an order two orbifold point and an order n orbifold

point for p odd.

In other words, the correspondence C determines a unique element of TeichppΓΓΓn,pq –
TeichωpΓn,pΓn,pΓn,pq.

Finally, by Proposition 5.10, an appropriate branch of C on rK1 is conformally
conjugate to the action of a polynomial in Hd on its filled Julia set. In fact, such a
polynomial is uniquely determined when we require that the conjugacy sends the
fixed point 1 of this correspondence branch to the landing point of the external
dynamical ray at angle 0 for the polynomial.

The above recipe defines a map

Ξ3 : C ÝÑ TeichωpΓn,pΓn,pΓn,pq ˆHd

that is, by construction, the inverse of the map Ξ2 ˝ Ξ1. This completes the
justification of the commutative diagram (Figure 2) presented in the introduction.

7. A Bers slice for genus zero orbifolds

We continue to use the notation of Section 6. Recall that in that section, we
constructed a simultaneous uniformization locus C ” C pTeichωpΓn,pΓn,pΓn,pq,Hdq in the

‘character variety’ Ratd`1pCqä„ of bi-degree d:d algebraic correspondences on pC
defined by Equation (6.1). The space C is the analog of the quasi-Fuchsian space
in our setup. Our next goal is to manufacture a complex-analytic slice in this
simultaneous uniformization locus such that the polynomial component is frozen to
be PPP pzq :“ zd (in Hd), while the marked groups run through TeichωpΓn,pΓn,pΓn,pq. This is
akin to Bers’ original construction of the Bers slice in the quasi-Fuchsian locus (cf.
[Mar16, §5.10]).

7.1. The Bers embedding. With the natural identification of TeichωpΓn,pΓn,pΓn,pq with
TeichωpΓn,pΓn,pΓn,pq ˆ tPPP u, the map

Ξ2 ˝ Ξ1 : TeichωpΓn,pΓn,pΓn,pq ˆ tPPP u ÝÑ C
gives rise to a map

B : TeichωpΓn,pΓn,pΓn,pq ÝÑ C
(See Subsections 6.1, 6.2 for the definitions of Ξ1,Ξ2.)

Remark 7.1. From the discussion in this section, it will follow that the map B can

be thought of as an analog of the ‘Bers embedding’ of TeichppΓΓΓn,pq into the (analog
of the) ‘quasi-Fuchsian space’ C, where the latter sits inside the (analog of the)

‘character variety’ Ratd`1pCqä„ .

We will now show that the image of the map B can be identified with a subset
of CL, where

L :“ dimC pTeichωpΓn,pΓn,pΓn,pqq “ dimC

´

TeichppΓΓΓn,pq
¯

.

Suppose that a correspondence C defined by a degree pd` 1q rational map R (via
Equation (6.1)) lies in the image of B. Then, by Corollary 4.15, the map R has p

critical points on BD, a critical point of multiplicity np´ 2 in int ĂK2, and p distinct

critical points, each of multiplicity n´ 1, in rT zD.
Possibly after pre and post-composing R with elements of Cpηq and PSL2pCq

(respectively), we can assume the following.
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(1) 8 is the unique superattracting fixed point (of local degree d) of the
corresponding conformal mating F ,

(2) 8 P D with Rp8q “ 8,
(3) R1p8q “ 1, and
(4) R1p1q “ 0 with Rp1q “ XΓp1q.

As F maps 8 to itself with local degree np´ 1, it follows that R has an order np´ 1
pole at the origin. The conditions Rp8q “ 8 and R1p8q “ 1 now imply that R is
of the form

Rpzq “
R1pzq

znp´1
,

where R1 is a monic polynomial of degree np. To obtain an explicit form of R1, we
need to consider various cases.

Punctured spheres without orbifold points. In this case, n “ 1 and p is an even
integer. We set p “ 2q, for some q ě 2. We first post-compose R with a translation
to write it as

Rpzq “ z `
a1

z
` ¨ ¨ ¨ `

a2q´1

z2q´1
,

for a1, ¨ ¨ ¨ , a2q´1 P C. Note also that Corollary 4.15 forces the 2q critical points of
R on BD to be of the form

t1,´1, c1,
1

c1
, ¨ ¨ ¨ , cq´1,

1

cq´1
u,

for some c1, ¨ ¨ ¨ , cq´1 P C˚. Differentiating R, one sees that the degree 2q polynomial

Qpzq :“ z2q ´

2q´1
ÿ

j“1

jajz
2q´1´j

has t1,´1, c1,
1
c1
, ¨ ¨ ¨ , cq´1,

1
cq´1

u as its roots. A routine application of Vieta’s

formula now shows that

(7.1) Rpzq “ z `
a1

z
` ¨ ¨ ¨ `

aq´2

zq´2
`
aq
zq
` ¨ ¨ ¨ `

a2q´3

z2q´3
`

1

p2q ´ 1q ¨ z2q´1
,

where

(7.2) a2q´j´1 “ ´
pj ´ 1q

p2q ´ j ´ 1q
aj´1, j P t2, ¨ ¨ ¨ , q ´ 1u.

We identify the rational maps in the image of B (where the normalization of these
rational maps is given by Equations (7.1) and (7.2)) with their q ´ 2 independent
complex coefficients a1, ¨ ¨ ¨ , aq´2. Thus, the image of B can be identified with a
subset of Cq´2.

We also note that as Dä
pΓΓΓ1,2q

is a pq`1q´times punctured sphere, its Teichmüller

space has complex dimension q ´ 2.

Genus zero orbifolds with exactly one orbifold point of order 2 and no orbifold point
of order ν ě 3. In this case, n “ 1 and p is an odd integer. We set p “ 2q ` 1, for
some q ě 2. As in the previous case, we can post-compose R with a translation to
write it as

Rpzq “ z `
a1

z
` ¨ ¨ ¨ `

a2q

z2q
,



MATINGS, CORRESPONDENCES, AND A BERS SLICE 43

for a1, ¨ ¨ ¨ , a2q P C. Moreover, Corollary 4.15 implies that the 2q ` 1 critical points
of R on BD are the form

t1, c1,
1

c1
, ¨ ¨ ¨ , cq,

1

cq
u,

for some c1, ¨ ¨ ¨ , cq P C˚. Differentiating R, one sees that the degree 2q polynomial

Qpzq :“ z2q`1 ´

2q
ÿ

j“1

jajz
2q´j

has t1, c1,
1
c1
, ¨ ¨ ¨ , cq,

1
cq
u as its roots. Once again, a straightforward computation

using Vieta’s formula shows that

(7.3) Rpzq “ z `
a1

z
` ¨ ¨ ¨ `

aq´1

zq´1
`
aq
zq
` ¨ ¨ ¨ `

a2q´2

z2q´2
`

1

2q ¨ z2q
,

where

(7.4) a2q´j “ ´
pj ´ 1q

p2q ´ jq
aj´1, j P t2, ¨ ¨ ¨ , qu.

Thus, with the identification of the rational maps in the image of B (normalized
by Equations (7.3) and (7.4)) with their q ´ 1 independent complex coefficients
a1, ¨ ¨ ¨ , aq´1, the map B can be thought of as taking values in Cq´1.

Further, as Dä
pΓΓΓ1,2q`1

is a genus zero orbifold with pq ` 1q punctures and one

order two orbifold point, its Teichmüller space has complex dimension q ´ 1.

Genus zero orbifolds with exactly one orbifold point of order ν ě 3 and at most
one orbifold point of order 2. In this case, n “ ν ě 3 and p is odd (respectively,
even) depending on whether the orbifold has (respectively, does not have) an order
two orbifold point. Recall that by Corollary 4.15, in addition to the pnp´ 2q´fold
critical point at the origin, the map R has

‚ p distinct critical points on BD, of which one/two are fixed by η (depending
on whether p is odd/even) and the others form 2´cycles under η, and

‚ p distinct critical points, each of multiplicity n´ 1, in rT zD, and all these
critical points are mapped to a common critical value in T .

It will be convenient to post-compose R with a translation such that the critical
value of R in T is at the origin. Then R has precisely p distinct zeroes at a1, ¨ ¨ ¨ , ap,
each of multiplicity n´ 1. Therefore,

Rpzq “
pz ´ a1q

n ¨ ¨ ¨ pz ´ apq
n

znp´1
.

In particular, the coefficients of R can be written in terms of the elementary
symmetric polynomials e1, ¨ ¨ ¨ , ep in a1, ¨ ¨ ¨ , ap. Using (logarithmic) differentiation,
one now easily sees that the p critical points of R on BD are roots of the equation

n

˜

p
ÿ

j“1

aj
z ´ aj

¸

` 1 “ 0,

ðñ Qpzq :“ zp `
p
ÿ

j“1

p´1qjejp1´ njqz
p´j “ 0.

(7.5)
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Since the roots of Q are of the form

t1,´1, c1,
1

c1
, ¨ ¨ ¨ , cq´1,

1

cq´1
u,

when p “ 2q, and of the form

t1, c1,
1

c1
, ¨ ¨ ¨ , cq,

1

cq
u,

when p “ 2q ` 1, we are now reduced to the computations carried out in the
previous two cases. In particular, it follows that if p “ 2q (respectively, p “ 2q ` 1),
the polynomial Q has q ´ 1 (respectively, q) independent coefficients. Since the
coefficients of Q are multiples of the elementary symmetric polynomials e1, ¨ ¨ ¨ , ep
(see Equation (7.5)), we conclude that only q´1 (respectively, q) of these elementary
symmetric polynomials are unconstrained. Hence, the rational map R also has q´ 1
(respectively, q) independent complex coefficients. As in the previous cases, the
image of B can therefore be identified with a subset of Cq´1 (respectively, of Cq).
Finally, we remark that TeichppΓΓΓn,2qq (respectively, TeichppΓΓΓn,2q`1q) has complex
dimension q ´ 1 (respectively, q).

Complex-analyticity of B. The preceding analysis shows that the image of the map

B can be identified with a subset of CL, where L “ dimC

´

TeichppΓΓΓn,pq
¯

.

Recall that the Teichmüller space of an orbifold (or a Fuchsian group) can be
endowed with a complex structure via the Bers simultaneous uniformization theorem.

Specifically, in the statement below, we identify TeichppΓΓΓn,pq with the Bers slice

BppΓΓΓn,pq in the space of quasi-Fuchsian representations of pΓΓΓn,p (see [Mar16, §5.10]).

Proposition 7.2. B : TeichppΓΓΓn,pq ÝÑ CL is a biholomorphism onto its image.

Proof. We recall the notation PPP pzq “ znp´1. Let XPPP : D Ñ pC and XΓn,pΓn,pΓn,p : D Ñ pC
be the mating conjugacies associated with the conformal mating FFF of PPP and AfBS

Γn,pΓn,pΓn,p

(see Definition 3.1).

Each representation ppρ : pΓΓΓn,p Ñ pΓq P BppΓΓΓn,pq (see Section 2.2) is given by

pρpgq “ ψρ ˝ g ˝ ψ
´1
ρ , g P pΓΓΓn,p,

where ψρ is a quasiconformal homeomorphism of pC that is conformal on D˚. More-
over, the quasiconformal maps ψρ depend complex-analytically on representations

pρ P BppΓΓΓn,pq. We define the pΓΓΓn,p´invariant Beltrami coefficient µρ :“ ψ˚ρ pµ0q (where
µ0 is the trivial Beltrami coefficient), and note that µρ also depends complex-
analytically on pρ. We further push µρ forward to the dynamical plane of AfBS

Γn,pΓn,pΓn,p
, and

continue to call it µρ.
It follows that the FFF´invariant Beltrami coefficients

µFFF,ρ :“

#

`

XΓn,pΓn,pΓn,p

˘

˚
pµρq on XΓn,pΓn,pΓn,ppDq,

0 elsewhere,

depend complex-analytically on pρ P BppΓΓΓn,pq. Consequently, the (normalized) qua-
siconformal maps ϕρ solving the Beltrami equation with coefficient µFFF,ρ depend
complex-analytically on pρ. Furthermore, the map ϕρ ˝ FFF ˝ ϕ

´1
ρ is the conformal
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mating of PPP and AfBS
Γ with mating conjugacies ϕρ ˝XPPP and ϕρ ˝XΓn,pΓn,pΓn,p ˝

pψ´1
ρ , where

pψρ is the quasiconformal conjugacy between AfBS
Γn,pΓn,pΓn,p

and AfBS
Γ induced by ψρ.

Let RRR be the normalized rational map associated with the conformal mating
FFF . Let pϕρ be a quasiconformal map solving the Beltrami equation with coefficient
RRR˚pµFFF,ρq. As the Beltrami coefficients RRR˚pµFFF,ρq depend complex-analytically on pρ,
the same is true for the maps pϕρ. By the proof of Proposition 4.9,

Rρ :“ ϕρ ˝RRR ˝ pϕ´1
ρ

is a rational map associated with the conformal mating ϕρ ˝FFF ˝ ϕ
´1
ρ . Since both

families of quasiconformal maps tϕρu
pρPBppΓΓΓn,pq and tpϕρu

pρPBppΓΓΓn,pq depend complex-

analytically on pρ, it follows that the coefficients of Rρ also depend complex-

analytically on pρ. Hence, the map B : BppΓΓΓn,pq ÝÑ CL is complex-analytic.
The existence of the inverse map Ξ3 in Section 6.4 shows that the map B is

injective. Since the complex dimension of TeichppΓΓΓn,pq – BppΓΓΓn,pq is L, it follows that
B is a biholomorphism onto its image (cf. [Ran86, Theorem 2.14]). �

7.2. Proof of Theorem C.

Proof of Theorem C. Note that by construction, the map B sends each representa-

tion pρ : pΓΓΓn,p Ñ pΓ in the Bers slice BppΓΓΓn,pq to a bi-degree pnp´ 1q:pnp´ 1q algebraic

correspondence C on pC that is a mating of znp´1 and Dä
pΓ in the sense of Theo-

rem 5.2. The L complex coefficients of the normalized rational maps R defining these
correspondences C endow the resulting space of correspondences with a complex
manifold structure. By Proposition 7.2, the map B yields a biholomorphism between

the above complex manifold and the Bers slice BppΓΓΓn,pq. �

We conclude this section with the following question.

Question 7.3. Let Σ P S, and L :“ dimCpTeichpΣqq.

(1) Is the image BpTeichpΣqq pre-compact in CL?
(2) Describe the dynamics of the correspondences lying on the boundary of

BpTeichpΣqq. In particular, do Bers boundary groups not treated in [MM23a,
Section 7] arise?

8. Bullett-Penrose-Lomonaco correspondences

As mentioned in the introduction, in the special case n “ 3 and p “ 1, the
correspondences produced by Theorem B belong to the family of bi-degree 2:2
correspondences studied by Bullett-Penrose-Lomonaco [BP94, BL20a, BL20b, BL22].
In this section, we will derive explicit formulae for these correspondences using our
conformal matings framework, and show that they can indeed be brought to the
Bullett-Penrose normal form (see [BP94, Equation 1.1]).

Recall from Section 2.4 that the index three extension pΓΓΓ3,1 of Γ3,1Γ3,1Γ3,1 is Möbius
conjugate to the standard modular group PSL2pZq. In particular, TeichωpΓ3,1Γ3,1Γ3,1q –

TeichppΓΓΓ3,1q is a singleton. Further let P be a polynomial lying in a real-symmetric
hyperbolic component in the connectedness locus of degree np´ 1 “ 2 polynomials;
i.e., P is a quadratic polynomial in a real-symmetric hyperbolic component of the
Mandelbrot set. We denote the conformal mating of AfBS

Γ3,1Γ3,1Γ3,1
and P by F .

Since p “ 1, it follows that the set Ap is a singleton, and hence the lamination
LP is empty (see Section 4.1). Therefore, Ω :“ int DompF q is a Jordan domain. By
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Proposition 4.9, there exist a cubic rational map R and a Jordan domain D with
ηpBDq “ BD such that R carries D injectively onto Ω and F |Ω ” R ˝ η ˝ pR|Dq

´1.
By Corollary 4.15, the map R has a critical point c1 P BD that is fixed under η.
Moreover, the same corollary says that R has a simple critical point c2 P R

´1pKqzD
and a double critical point c3 P R

´1pT qzD.

Also note that rT is a simply connected domain, and R : rT Ñ T is a degree three
branched covering with a double critical point at c3. By Theorem 5.16, the action of

the associated correspondence C on rT is conformally conjugate to the action of the

modular group pΓΓΓ3,1 on D, and C is a mating of P and the modular surface Dä
pΓΓΓ3,1

.

We will now bring the correspondence C to the Bullett-Penrose-Lomonaco normal
form. Let M1,M2 be Möbius maps such that

M1pc1q “ 1, M1pc2q “ ´1, M1pc3q “ 8,

and

M2pRpc1qq “ ´2, M2pRpc2q “ 2, M2pRpc3q “ 8.

We set R1 :“ M2 ˝ R ˝M
´1
1 . Then, R1 has a double critical point at 8 with

the associated critical value also at 8, and hence R1 is a cubic polynomial. An
elementary calculation using the facts that the two finite critical points of R1 are at
˘1 and the associated critical values are at ¯2 now shows that R1puq “ u3 ´ 3u.
We also set

Ω1 “M2pΩq, η1 :“M1 ˝ η ˝M
´1
1 , F1 ”M2 ˝ F ˝M

´1
2 ,

and observe that

F1|Ω1 ”M2 ˝R ˝ η ˝ pR|Dq
´1
˝M´1

2 ” R1 ˝ η1 ˝ pR1|M1pDqq
´1.

Note that the involution η1 fixes 1 and a :“M1p´1q, and hence can be written as

η1puq “
pa`1qu´2a
2u´pa`1q . We will change coordinates so that η1 becomes the involution

z ÞÑ ´z. To this end, we define R2 :“ R1˝M
´1
3 , where M3puq “

u´1
a´u sends the fixed

points 1, a of η1 to 0,8, respectively. The conjugated involution η2 :“M3 ˝η1 ˝M
´1
3

fixes 0,8, and thus can be written as η2pzq “ ´z. Finally,

F1|Ω1 ” R2 ˝M3 ˝ η1 ˝M
´1
3 ˝ pR2|M3˝M1pDqq

´1 ” R2 ˝ η2 ˝ pR2|M3˝M1pDqq
´1.

The associated correspondence (which is obtained by lifting F1 and its backward
branches by R2) is given by

pX,Y q P C ðñ R2pY q ´R2pη2pXqq “ 0, Y ‰ η2pXq

ðñ R1pM
´1
3 pY qq ´R1pM

´1
3 p´Xqq “ 0, Y ‰ ´X

ðñ

ˆ

aY ` 1

Y ` 1

˙3

´ 3

ˆ

aY ` 1

Y ` 1

˙

“

ˆ

´aX ` 1

´X ` 1

˙3

´ 3

ˆ

´aX ` 1

´X ` 1

˙

, Y ‰ ´X

ðñ

ˆ

aY ` 1

Y ` 1

˙2

`

ˆ

aY ` 1

Y ` 1

˙ˆ

aX ´ 1

X ´ 1

˙

`

ˆ

aX ´ 1

X ´ 1

˙2

“ 3.

Thus, the correspondence C belongs to the family of bi-degree 2:2 correspondences
a la Bullett-Penrose-Lomonaco [BP94, BL20a, BL20b].

Remark 8.1. More generally, when p “ 1 and n ě 3, the uniformizing rational maps
R can be chosen as degree n polynomials. The associated correspondences C are

matings of degree pn´ 1q polynomials P and the genus zero orbifold Σ “ Dä
pΓΓΓn,1
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with exactly one puncture, exactly one order two orbifold point, and exactly one

order n ě 3 orbifold point. Note that pΓΓΓn,1 has an index two subgroup ΓΓΓ˚n,1 that
uniformizes the genus zero orbifold Σ˚ with exactly one puncture, exactly two
order n ě 3 orbifold points, and no other orbifold point. The correspondences C
admit index two subcorrespondences that are matings of P ˝2 (polynomials of degree
pn´ 1q2) and orbifolds Σ˚ double covering Σ (cf. [Bul00, §4.3]).

References

[AIM09] K. Astala, T. Iwaniec, and G. Martin. Elliptic partial differential equations and

quasiconformal mappings in the plane, volume 148 of Princeton Mathematical Series.
Princeton Univ. Press, Princeton, NJ, 2009.

[AS76] D. Aharonov and H. S. Shapiro, Domains on which analytic functions satisfy quadrature
identities. J. Analyse Math., 30:39–73, 1976.

[Ber60] L. Bers. Simultaneous uniformization. Bull. Amer. Math. Soc., 66:94–97, 1960.

[BF05] S. Bullett and M. Freiberger. Holomorphic correspondences mating Chebyshev-like
maps with Hecke groups. Ergodic Theory Dynam. Systems, 25:1057–1090, 2005.

[BH00] S. Bullett and W. Harvey. Mating quadratic maps with Kleinian groups via quasicon-
formal surgery. Electron. Res. Announc. Amer. Math. Soc., 6:21-30, 2000.

[BH07] S. Bullett and P. Haissinsky. Pinching holomorphic correspondences. Conform. Geom.

Dyn., 11(2007), 65-89.

[BL20a] S. Bullett and L. Lomonaco. Mating quadratic maps with the modular group II. Invent.
Math., 220:185–210, 2020.

[BL20b] S. Bullett and L. Lomonaco. Mating quadratic maps with the modular group III: the
modular Mandelbrot set. preprint, arxiv.org/abs/2010.04273, 2020.

[BL22] S. Bullett and L. Lomonaco. Dynamics of Modular Matings. Adv. Math., 410, Part B

(2022), 108758.
[BP94] S. Bullett and C. Penrose. Mating quadratic maps with the modular group. Invent.

Math., 115:483–511, 1994.

[BS79] R. Bowen and C. Series. Markov maps associated with Fuchsian groups. Inst. Hautes
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