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ABSTRACT. There are two frameworks for mating Kleinian groups with rational
maps on the Riemann sphere: the algebraic correspondence framework due to
Bullett-Penrose-Lomonaco [BP94] [BLL20a] and the simultaneous uniformization
mating framework of [MM23a)]. The current paper unifies and generalizes these
two frameworks in the case of principal hyperbolic components. To achieve this,
we extend the mating framework of [MM23a] to genus zero hyperbolic orbifolds
with at most one orbifold point of order v = 3 and at most one orbifold point of
order two. We give an explicit description of the resulting conformal matings in
terms of uniformizing rational maps. Using these rational maps, we construct
correspondences that are matings of such hyperbolic orbifold groups (including
the modular group) with polynomials in principal hyperbolic components. We
also define an algebraic parameter space of correspondences and construct an
analog of a Bers slice of the above orbifolds in this parameter space.
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1. INTRODUCTION

Fatou [Fat29] observed an empirical similarity between the behavior of two com-
plex one-dimensional dynamical systems: one coming from iteration of polynomials,
the other from Kleinian groups. This was developed into a systematic dictionary
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by Sullivan [Sul85] (see also [McM94, McM95| IMcM98|, MS98, [Pil03, LM97] etc.).
Fatou’s original suggestion [Fat29] of developing a unified framework for treating
these two kinds of dynamical systems in terms of correspondences (multi-valued
maps with holomorphic local branches) was pursued by Bullett and his co-authors in
[BP94| [Bul00, BHOO, BHOT7, BL20al BL20bl BL22]. A new conformal matings frame-
work based on orbit-equivalence was developed by the authors recently [MM23a]
adapting the theme of Bers’ simultaneous uniformization (in the context of Kleinian
groups, [Ber60]) and mating (in the context of polynomial and rational dynamics,
[Dou83, [Hub12]). The conformal matings framework of [MM23a] (see [MM23b]
for a brief account of this framework) furnished new examples of mateable groups;
however, two fundamental questions remained unanswered:

Question 1.1.

(1) Identify the class of analytic functions obtained via the mating process of
[MM23a].

(2) Is there a relationship between the Bullett-Penrose-Lomonaco correspon-
dences of [BP94, [Bul00l, BL20al [BL20D, BL22] and the matings in [MM23a] ?

A primary aim of this paper is to answer both these questions by

(1) characterizing the class of analytic functions obtained via the mating process
of [MM23al, and

(2) establishing an equivalence between the two notions of matings coming from
correspondences and simultaneous uniformization.

The class of orbifolds. Before we state the main theorems of the paper, let us
describe the general class of orbifolds (equivalently, Fuchsian groups) that are the
principal players in the game. The family of correspondences most extensively studied
by Bullett and his collaborators exhibit matings of the modular group PSLy(Z) and
quadratic polynomial/rational maps. On the other hand, the conformal matings
framework of [MM23a] applies to Bowen-Series maps of Fuchsian punctured sphere
groups, possibly with an order two elliptic element. In this paper, we work with the
following collection of finite volume hyperbolic orbifolds that includes both these as
special cases:

S := hyperbolic orbifolds of genus zero with

(1) at least one puncture,
(2) at most one order two orbifold point,
(3) at most one order v > 3 orbifold point.

Going up/going down and conformal matings. It should be pointed out at
the outset that the modular group does not fit into the conformal matings framework
of [MM23a] as the existence of an order three orbifold point forces its Bowen-Series
map to be discontinuous. To circumvent this obstacle, one can pass to a v—fold
cyclic cover 3 of & € S such that the Bowen-Series map Ags of the Fuchsian group

uniformizing 5 (equipped with suitable fundamental domains) only has controlled
discontinuities. Remarkably, all these points of discontinuity disappear when one
passes to appropriate factors of these Bowen-Series maps. Heuristically, passing to
a factor dynamical system (going down) can be thought of as the dual of passing to
a cyclic cover of ¥ (going up). This gives rise to continuous factor Bowen-Series
maps Aff}?s (see Figures |1 and . This construction is detailed in Section
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FI1GURE 1. Going up and going down

A key feature of a factor Bowen-Series map, one that lies at the heart of the
construction of conformal matings, is that its restriction on the unit circle St is
topologically conjugate to z%|g1, where

d

(%) = 1—2v-xorp(X) if X has an order v > 3 orbifold point,
o )1- 2Xorb(X) if 2 does not have an order v > 3 orbifold point.

Our first main theorem extends the conformal mating construction of [MM23al
to genus zero orbifolds in the above class.

Theorem A (Conformal matings of Factor Bowen-Series maps with polynomials).
Let X € S, and P be a complex polynomial in the principal hyperbolic component Hy
of degree d polynomials. Then the factor Bowen-Series map A%BS and the polynomial
P are conformally mateable. Moreover, the conformal mating is unique up to Mobius
conjugacy.

We direct the reader to Section [3] for the precise notion of conformal mating
and Theorem for the proof of their existence. There are two special cases of
Theorem [A] that need special mention:

(1) The case where ¥ has no order v(> 3) orbifold points. This is treated
in Section [2.3] and was dealt within the conformal matings framework of
[MM23a).

(2) The case where 3 has exactly one cusp, i.e. it is the (2, v, 00) orbifold of
genus zero. This is treated in Section [2:4] The case v = 3 was extensively
studied within the correspondence framework by Bullett and his collab-
orators starting with [BP94] and culminating in [BL20al [BL20D, [BT.22].
The case v = 4 was examined in [BF05]. Theorem [A]in combination with
Theorem [B] unifies and generalizes these examples to arbitrary v > 3. A set
of necessary conditions of a completely different flavor for general v > 3 was
given in [Bul00, [BHOQ].

Rational uniformization of conformal matings. The next result (see Corol-
lary 7 which plays the role of a bridge between conformal matings and algebraic
correspondences, answers the first part of Question The existence of the rational
function R in the proposition below is established via a new application of the
relationship of anti-holomorphic maps with quadrature domains [LLMMIS].

Proposition 1.2 (Rational uniformization of conformal matings). Let ¥ € S, let
P be a complex polynomial in the principal hyperbolic component Hy, let F: Q — C
be the conformal mating of A%BS and P, and let n(z) = 1/z. Then, there exist

o a Jordan domain © with n(0D) = D, and

o a degree d + 1 rational map R of(a that maps ® homeomorphically onto Q,
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such that F = Rono (Rlz)~*. In particular, we have
(1.1) FoR=Ron.

The construction of the rational uniformizing map R above is detailed in Section [4]

especially Sections [4.2] and

From conformal matings to algebraic correspondences. Thanks to the alge-
braic description of the conformal mating given in Relation above, one can
pull back such a conformal mating by the branches of R~! to obtain an algebraic
correspondence € on the Riemann sphere C. The next main theorem of the paper
(see Theorem gives a positive answer to the second part of Question

Theorem B (Mating genus zero orbifolds with polynomials as correspondences).
Let ¥ € S, and P be a complex polynomial in the principal hyperbolic component
Ha of degree d poAlynomz'als. Then, there exist an algebraic correspondence € on the
Riemann sphere C defined by the equation

(1.2) W _o,

and a €—invariant partition C =T uKk such that the following hold.
(1) On '7~', the dynamics of € is orbit-equivalent to the action of a group of

conformal automorphisms acting properly discontinuously. Further, 7-/ ¢
s btholomorphic to 2.

(2) K can be written as the union of two copies K1, Ka of K(P) (where K(P) is
the filled Julia set of P), such that K1 and Ks intersect in finitely many points.
Furthermore, € has a forward (respectively, backward) branch carrying Ky
(respectively, 162) onto itself with degree d, and this branch is conformally
conjugate to P : K(P) — K(P).

We remark that the Relation connects two dynamical planes: one cor-
responding to the conformal mating or F—plane, and one corresponding to the
correspondence or €—plane. The rational map R mediates the connection between
these two planes. This is elaborated upon in Section

The following diagram summarizes the discussion above in terms of interconnec-
tions among the objects that are mated, the resulting conformal matings, and the
associated correspondences.

Teich(X) x Hy

Combination via Conformal class of dynamics
orbit equivalence on invariant subsets

M c

Moduli space of
correspondences

Moduli space of
conformal matings

\
Uniformization + Pullback by rational map,

FIGURE 2. Flow-chart of interconnections

Theorem [Blestablishes an exact translation between the Bullett-Penrose-Lomonaco
correspondence framework [BP94] [Bul00, [BL20a, [BL20b) BL.22] and the conformal
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matings framework of [MM23a]. In particular, we obtain a different way of con-
structing the Bullett-Penrose-Lomonaco correspondences, starting from matings
(See Section |8 for details). The matings framework is complex analytic in nature,
as opposed to the more algebraic flavor of the correspondence framework. The
analytic setup has greater flexibility, giving new examples of correspondences that
combine Fuchsian punctured sphere groups (possibly with some elliptic elements)
and polynomials in principal hyperbolic components.

Correspondences as character variety and a new Bers slice. We turn now
to the final theme of this paper. The existence of the rational map R allows us
to look at the space of matings algebraically parametrized by the coefficients of R.
Extending the Sullivan dictionary to the present setup, we have the following;:

e The algebraic equation (1.2) shows that correspondences are parametrized
by the quasi-projective variety Ratq41(C), the space of rational maps R of
degree exactly equal to (d+1). In the context of correspondences, Raty1(C)

plays the role of the representation variety. The quotient Ratq11(C) S~
by the equivalence relation

R~M20ROM1,

where R € Ratq11(C), Mo € PSLy(C), and M; belongs to the centralizer
of n(z) = 1/z in PSLy(C), plays the role of the character variety (see
Section @

e There is a complex-analytic realization of the Teichmiiller space of punctured
spheres (more generally, genus zero orbifolds as in Theorem within the

space Ratd"rl((c)/w . This gives the analog of a Bers slice (see Section .

Theorem [C] below makes this precise:

Theorem C (Bers slices of genus zero orbifolds in spaces of correspondences). Let
Yo €S and d:=d(Xg). Then, the Teichmiiller space Teich(Xg) can be biholomorphi-
cally embedded in a space of bi-degree d:d algebraic correspondences on C such that
each resulting correspondence is a mating of some % € Teich(Xg) and the polynomial
24 (in the sense of Theorem @

Notation. For the convenience of the reader, we set forth some basic notation that
will be used throughout.

n(z) :=1/z,17(2) =1/z, u(2) =2.

The topological closure of a set X < C is denoted by X or cl X.

D* .= (@\ﬁ

mg: R/Z — R/Z, 6 — db.

For a meromorphic map f: U — @, the set of critical points of f is denoted
by crit(f).

Acknowledgments: We are grateful to Tien-Cuong Dinh for posing to us the first
part of Question We thank an anonymous referee of [MM23b| for posing the
second part of Question We also thank Yusheng Luo for helpful conversations.
This research was supported in part by the International Centre for Theoretical
Sciences (ICTS) during the course of the program - ICTS Probabilistic Methods in
Negative Curvature (code: ICTS/pmnc-2023/02).
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2. FACTOR BOWEN-SERIES MAPS

We will now study Bowen-Series maps associated with appropriate cyclic covers
of genus zero orbifolds. These maps have mild discontinuities. However, one can
pass to factors of these Bowen-Series maps such that the factors are continuous.
The construction of factor Bowen-Series maps is the first key step in the proofs of
our main theorems.

2.1. Factor Bowen-Series map for a base group. Let n,p be two positive

integers with np > 3. For r € {1,---,n}, denote the counter-clockwise arc
e ,esnt St by J,.. Note that .J; is the counter-clockwise arc of S* connecting
247 2

1 to e, and the various J,. are obtained by rotating .J; successively by angle =
about the origin. We set w := ele", and M, :D - D,z — wz.
Further, for r € {1,--- ,n}, consider the chain of p bi-infinite hyperbolic geodesics

277r(7‘ Dy Zin(s=1) 2im(r=—0) | zins

C.s:=¢e e e 7 o se{l,--- p}

)

. . . 2im(r—1) 2im(r—1) 27«
Forany r € {1,--- ,n}, the geodesic C,.; hasits endpointsat e~ »  ande = +

and the other C’T s are obtained by rotating C,. 1 successively by angle 2” about the
origin (see Figure [3)). The geodesics C,. s induce a partition of the arc J into p arcs
Jr1,+ , Jrp, where J, ; is the arc of Sl of length 27; connecting the endpoints of
Crs.

The bi-infinite geodesics Cy. 5, 7 € {1,--- ,n}, s€{1,---,p}, bound a closed ideal
np—gon (in the topology of D), which we call II. We will now introduce Mobius
maps of the disk that pair the sides of II. To do so, we will exploit the symmetry M,
of II. Specifically, we will prescribe the side-pairings for C 1, -- , C1, explicitly, and
conjugate these side-pairing transformations by powers of M., to define pairings for
the other sides of II. Let us denote the diameter of S' with endpoints at +e™ by £.
Now observe that the Mobius map g, s obtained by post-composing the reflection in
C1,s with the reflection in ¢ carries C s to Ci p11—s. In particular, g1 py1—s = gf;
Note that when p is odd, then g, 5] is an involution with a fixed point on €} DL

By the Poincaré polygon theorem the Mobius maps

s :M:;_l ogl,SOM{;(T—l)’ re {1’ 777/}’ S E {17 7p}

generate a Fuchsian group I'y, p, and II is a closed fundamental domain for the
I’ p—action on D. Moreover, D e Tpnp is biholomorphic to

e a sphere with %2 + 1 punctures for p even, and

e a sphere with @ + 1 punctures and n order two orbifold points for p odd.

Remark 2.1. 1) The integer p can be thought of as the number of ‘pockets’ in each
sector of angular width 27/n. On the other hand, the integer n plays the role of v
appearing in the definition of the class S of genus zero orbifolds (see Section .

2) When n > 3, the orbifold D / Tnyp is an n—fold cyclic cover of a base genus
zero orbifold ¥ € § with |p/2] + 1 pu’nctures7 zero/one order two orbifold point
depending on the parity of p, and an order n orbifold point.
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We now look at the Bowen-Series map Ap® , equipped with the above fundamental
domain and side-pairing transformations (cf. [BS79]). By definition, the map

AR?,;» : ﬁ\ it Il — D

acts as g, s on the closure of the hyperbolic half-plane enclosed by the geodesic C 4
and the arc J, 5 (see Figure . It is now easily checked that Agip is continuous on
Sl\{‘/I7 and the left and right-hand limits of AR?’F at the points of /1 lie in the
set /1. We will now use this fact to pass to a factor of A?f’p that is continuous
everywhere.

FIGURE 3. Left: The fundamental domain II of I'y 3 is the polygon having the
geodesics Cy 5, 7 € {1,2,3,4}, s € {1,2,3}, as its edges. The Bowen-Series map
ABS , which commutes with M;, acts on the arcs Ji 1, J1,2,J1,3 as ¢1,1, 91,2, 91,3-
The map AB4S is continuous away from the fourth roots of unity. The pre-images of
the vertical and horizontal radial lines under g, s are displayed in green. Identifying
the radial lines at angle 0, 7/2 under M; and uniformizing the resulting cone yields
the factor Bowen-Series map AfBS Right: The factor Bowen-Series map AfBS

is defined outside of the ideal trlangle with vertices at the third roots of umty7
and is a degree 11 covering of S!. It maps all the green curves to the radial line
at angle 0, and hence has three critical points each of multiplicity three (at the
valence four vertices of the green graph).

Consider the bordered (orbifold) Riemann surfaces

D _ (D\intII
=P ny = P 2
and note that a closed fundamental domain for the action of (M) on D is given by
— 2
{zeD: 0<argz < %}U{O}
Thus, @ is biholomorphic to the surface obtained from the above fundamental domain

by identifying the radial line segments {r : 0 < r < 1} and {re*s" : 0 <r < 1} by
M,.
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By construction, the Bowen-Series map A{?Sp commutes with M,,, and hence it

can be pushed forward via the quotient map q: D — Q to define a map
qo AR?’I, oq l: 0, — Q.

Note that the map 2 — 2" yields a conformal isomorphism £ between the (bordered)
surfaces @ and D. Finally, we set

S i—go(aoARS, 0q7 ) 06! i Py, = £(Q1) » D.
Note that AfBSp S! — S!is an orientation-preserving covering map of degree np — 1
(see Figure | By [LMMN20| Lemma 3.7], the map AfBS |Sl is expansive. Moreover,

AfBS has p critical points at £(q(g1,5(0))), s € {1,--- ,p} and each of them has
multlpllclty n — 1. All these critical points are rnapped to 0.

Definition 2.2. We call the map AfBS :Dr,, — D the factor Bowen-Series map
of I'n p equipped with the fundamental domam IL

2.2. Deformations and moduli spaces of factor Bowen-Series maps. Re-
call that the Teichmiiller space Teich(I'yp) of I'np is the space of Mébius con-
jugacy classes of discrete, faithful, strongly type-preserving representations of

ID)/1-\1“9) ~ Ty p into Aut(D) = PSLy(R). In fact, any such representation
p:Tnp — I'is given by p(g) = ¢, ogowljl7 g € T p, where 1), is a quasiconformal
homeomorphism of C that preserves D. We can and will require that 1,(1) = 1.
We denote by Teich”(T'pp) the collection of (p : Tpp — I') € Teich(T'pp) that
commute with conjugation by M, i.e.

P(MwOQOMgl):MwOP(Q)O ‘:17 gern,p'

This is equivalent to requiring that the associated quasiconformal map ), commutes
with M,,.

For each (p : Tpnp — T') € Teich”(Tpnyp), the associated Bowen-Series map
ABS =9, 0 A?f’p o4, commutes with M, and thus can be pushed forward via

the quotient map q : D — Q. As in the previous section, this gives rise to a map
ABS .— ¢ (qulE}S oq_l) o t:Dp - D,

that is quasiconformally conjugate to qu?fp-

Definition 2.3. For (p : Ty, p — I') € Teich” (T’ p) induced by the quasiconformal

map v,, the map A%BS : Dr — D is called the factor Bowen-Series map of T
equipped with the fundamental domain v, (II).

The group f‘n’p generated by I'p p and M., is an index n extension of ' . Clearly,
the set
~ 27
M:={zell: 0<argz< —} u{0}
n

is a closed fundamental domain for the action of f‘n’p on D. Tt follows that 4 P
is biholomorphic to
e a sphere with £ + 1 punctures and an order n orbifold point for p even, and

e a sphere with % punctures, an order two orbifold point and an order n orbifold
point for p odd.
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The space of factor Bowen-Series maps constructed above is parametrized by
Teich® Ty p), which in turn can be identified with the Teichmiiller space Teich(T',, ;).
Specifically, for the representation (p : I'pp — T') € Teich® (T p), we define

T := (T, M),
and associate with p the representation
(p:Typ —T') € Teich(T'y, ), where plr,, =plr,, and p(M,) = M,,.

Thus, Teich”(T'pp) is the same as the Teichmiiller space of the orbifold group
Ihp=Tapx <M, >.

Remark 2.4. 1) The orbifold D/I‘ is a base genus zero orbifold ¥ € S with
|p/2] + 1 punctures, zero/one order two orbifold point depending on the parity of p,
and an order n orbifold point when n > 3 (cf. Remark [2.1)). Thus, any X € Teich(X)
is uniformized by some Fuchsian group I' € Teich(T',, ;).

2) The fact that the chosen fundamental domain and side-pairings of the base

group I'pp admit a 27/n rotation symmetry and that the representations (p :
Ipp — T) € Teich” (T, p) respect this symmetry, together imply that the orbifolds

/T have an order n isometry. Quotienting by this isometry yields an n—fold
(branched) covering D/F — D/f.

D/ p s APS

coverl lfactor

D/f AfFBS

F1GURE 4. Covering orbifolds and factor Bowen-Series maps

We summarize the main properties of factor Bowen-Series maps below.

Proposition 2.5.

(1) A%BS : St — St is a piecewise analytic, orientation-preserving, expansive,
cz:lvirlirg map of degree np — 1. In particular, it is topologically conjugate to
2"P St.

(2) The restriction APS (AfBS)i1 (Dr) — Dr has degree np — 1.

(3) The restriction AfBS : (AfBS) (D\Dr) — D\Dr has degree np. If n > 2
there are p critical points of APS | each of multiplicity n—1, in (AfFBS)f1 (D\Dr).
All these critical points are mapped to the unique critical value 0 of ATPS.

Proof. Tt is enough to verify the assertions for the base map AfBS We endow the
bordered Riemann surface Q with a preferred choice of complex coordlnateb via its
identification with {z € D: 0 < argz < 2%} U {0} (with the boundary radial lines
glued together).
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Fi1cUure 5. Displayed is the dynamical plane of the factor Bowen-Series map A{.Eii

and the partition of S given by the arcs Ji , := £(q(J7 ,)) (cf. Figure3). Pulling
this partition back by A?is yields a Markov partition for the map.

,3

1) The facts that A?fp is continuous on S'\{/1 and the left and right-hand
limits of A?Sp at the points of ¥/1 lie in the set {/1 together imply that ZES,, =
go Aﬁ?p oq~! is continuous.

Let us partition each arc J; , = S', s € {1,---,p}, into sub-arcs J , - -- ,Jf;(s),
where each Ji  is a connected component of some gii(Jr), ie{l,--- ,m(s)},
r€{l,---,n}. Then, with the above choice of coordinates on Q,

. Z?fp acts as a Mdbius map h; s (called a piece of Z?fp) on q(Ji ,); specifi-
cally, h; s is a composition of g; s with a power of M,,,
e h;s(q(Ji,)) is the union of finitely many sub-arcs from the collection
{a(Jis) :sefl, - p}}
(See Figure [5|for the £é—images of the arcs q(J{ ;) in S, for n = 4,p = 3.) It follows
that with the above choice of coordinates on Q, the map ZI]?,?,. is a piecewise Mobius,

. . . . —BS
orientation-preserving, covering map of 0Q. The statement that Ap,  :0Q — 0Q

has degree np — 1 follows from the fact that all but finitely many points in S!
have np — 1 preimages under the map AR?F (since A?Sp maps each arc J, s to

SN int J; p41-s). Finally, expansivity of Z?Sp 20 is a consequence of the fact that
each g1 s has derivative larger than one on int Jj g, for s € {1,--- ,p} (cf. [LMMN20|
Lemma 3.8]).

—= —BS
Since £ : Q@ — D is a biholomorphism, the properties of AR.,, listed in the

. . —BS .
previous paragraph imply that the map A{\lisp =¢o AR.,,‘O“Q o0& 1.8 > Shis
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a piecewise analytic (not piecewise Mobius when n > 1), orientation-preserving,
expansive, covering map of degree np — 1.

2) and 3) The Bowen-Series map A?f'p sends the hyperbolic half-plane bounded
by the geodesic C; s and the arc J; s = S! to the complement of the hyperbolic half-
plane bounded by the geodesic Cy ;41— and the arc Jy p11-5 = S, s € {1, , p}.
Hence, the region D\Dr is covered np times by Arﬂ.ii, while Dr is covered np — 1
times.

To locate the critical points of Agii

D at angles 2% j € {0, -+ ,n—1}, by P. Note that Af?;sp maps each §(q(gf;(”P))) to
the line segment [0, 1] and sends §(q(gf;(0))) to 0, for s € {1,--- ,p} (see Figures
and . It follows that for each s € {1,---,p}, the point {(q(gfi(O))) is a critical

point of multiplicity n — 1 with associated critical value 0. ([

, let us denote the union of the radial lines in

2.3. Special case I: continuous Bowen-Series maps. In [MM23al [MM23h)],
Bowen-Series maps of Fuchsian punctured sphere groups (possibly with an order
two orbifold point) equipped with special fundamental domains were studied. These
maps, which are covering maps of S!, are contained in the class of maps constructed
in Section

2.3.1. Bowen-Series maps of Fuchsian punctured sphere groups. Let n = 1 and
p = 4 be an even integer. Then D/Pn,p is a sphere with £ + 1 punctures, and

for (p : Tpp — I') € Teich”(Typ) = Teich(Tpp), the map APS agrees with the
standard Bowen-Series map ABS of I' equipped with the fundamental domain 1, (II)
(see [MM23al §3] and Figure @(left)). This map restricts to a C!, expansive, degree
p — 1 covering of S'. Moreover, it has no critical points in its domain of definition
Dr.

2.3.2. Bowen-Series maps of Fuchsian groups uniformizing punctured spheres with
an order two orbifold point. Let n = 1 and p > 3 be an odd integer. Then

D Tnp is a sphere with p—;’l

for (p : Tpp —> I') € Teich®(Typ) = Teich(T'pp), the map APS agrees with the
standard Bowen-Series map ABS of ' equipped with the fundamental domain P, (II)
(see [MM23al, §3] and Figure @l(‘right)). This map restricts to a C!, expansive, degree
p — 1 covering of S'. Moreover, it has no critical points in its domain of definition
Dr.

punctures and an order two orbifold point, and

2.4. Special case II: fully ramified factor Bowen-Series maps. We now look
at the case when p = 1 and n > 3 is any integer. By construction, for r € {1,--- ,n},
the map g, is an involution with an elliptic fixed point on C;. ;. Moreover, D ya Tpp
is a sphere with one puncture and n order two orbifold points. The correspondiﬁg
index n extension f‘nyp is a classical Hecke group, which uniformizes a genus zero
orbifold with exactly one puncture, exactly one order two orbifold point and exactly
one order n orbifold point. In particular, Teich(f‘n,p) is a singleton, and hence
the factor Bowen-Series map associated with I'p , (equipped with the fundamental
n—gon II) is rigid.

The map Arﬂ.isp restricts to a C'!, expansive, degree n — 1 covering of S'. Further,
this map has a fmique critical point of multiplicity n — 1 (see Figure[7)).
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-1
91,2

FIGURE 6. The preferred fundamental hexagon (respectively, pentagon) of
I'y6 (respectively, of I'y5), which uniformizes a four times punctured sphere
(respectively, a sphere with three punctures and an order two orbifold point), is
shown. The action of the corresponding Bowen-Series maps on these arcs are
also marked.

g1,1

Cll

Cs1

N

FIGURE 7. Left: The fundamental domain II of I'y; is the polygon having the
geodesics Cy1, 7 € {1,2,3,4}, as its edges. The Bowen-Series map A?f’l, which
commutes with M;, acts as g1,; on the arc J; ;. The pre-images of the vertical
and horizontal radial lines under g;,; are displayed in green. Right: The factor
Bowen-Series map Af\]isl is defined outside of an ideal monogon with its vertex at
1, and is a degree three covering of S'. It has a unique critical point of multiplicity
three at the valence four vertex of the green graph.
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3. CONFORMAL MATINGS OF FACTOR BOWEN-SERIES MAPS WITH POLYNOMIALS

The goal of this section is to prove Theorem[A] In fact, we will prove a more general
statement that allows the polynomials to lie in arbitrary hyperbolic components in
the connectedness locus.

3.1. The notion of conformal mating. Let n,p be two positive integers with
np = 3, and P be a monic, centered complex polynomial of degree d := np — 1
with a connected and locally connected Julia set. Recall that there exists a unique
conformal map
Yp : C\D — By (P) := C\K(P)

(called the Béttcher coordinate of P) that conjugates z? to P, and is tangent to the
identity map near infinity (cf. [Mil06l Theorem 9.1]).

We now define the notion of topological /conformal mating of P and APS| where
I' € Teich®(Tpnp). As J(P) is locally connected, 1p extends continuously to
S' to yield a semi-conjugacy between z%|s: and P|7¢py- On the other hand, the
quasiconformal conjugacy 1, between I'y, » and I' induces a quasiconformal conjugacy
1Zp between A{"]ii, and APS. Also recall that by Proposition there exists a
homeomorphism b : S — S' that conjugates 2% to Agii,' We normalize h so that it
sends the fixed point 1 of z¢ to the fixed point 1 of Af?fp. Let us now consider the
disjoint union (P) LD and the map

P ABS . K(P)uDr — K(P)uD,
(PLABS) [y = P, (P L APS) |p, = AIBS,

Let ~, (here ‘m’ stands for mating) be the equivalence relation on K(P)| |D
generated by

(3.1) Up(2) ~m U,(h(2)), for all z e S

The map P 1y APS descends to a continuous map P1LA®S to the quotient
K(P) LD := (KP)uD)/~n =~ S~

The map PLABS is called the topological mating of P and A{PS. We say that P
and APS are conformally mateable if the topological 2—sphere IC(P) LD admits a
complex structure that turns the topological mating P_IJ_AfFBS into a holomorphic
map.

Here is an equivalent formulation (cf. [PM12, Definition 4.14]).

Definition 3.1. The maps P and APS are conformally mateable if there exist a

continuous map F: Dom(F) & C — C (called a conformal mating of ABS and P)
that is complex-analytic in the interior of Dom(F) and continuous maps

Xp: K(P) NG and Xp :ﬁ%@,
conformal on int IC(P) and D (respectively), satisfying
(1) Xp (K(P)) v Xr (D) = C,
(2) Dom(F) = Xp(K(P)) u Xr(Dr),
(3) XpoP(z) =FoXp(z), forze(P),
(4) Xro Al;BS(w) = FoXr(w), forweDr, and
(5) Xp(z) = Xr(w) if and only if z ~, w where ~, is the equivalence relation
on K(P) u D defined by Relation (3.1)).
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The semi-conjugacies X p, Xr are called the mating semi-conjugacies associated with
the conformal mating F' of P and A}BS. When mating semi-conjugacies are injective,
they are simply referred to as mating conjugacies.

3.2. Existence of conformal matings. Let (p : I'pp — I') € Teich®(T'yp)
and P a monic, centered, hyperbolic complex polynomial of degree d = np — 1
with a connected Julia set. We now state and prove a generalization of [MM23al
Theorem 3.6].

Theorem 3.2. There exists a conformal mating F of P : K(P) — K(P) and
A%BS : Dr — . Moreover, F' is unique up to Mobius conjugacy.

We will start with a technical lemma.

Definition 3.3. An orientation-preserving homeomorphism H : U — V between
domains in the Riemann sphere C is called a David homeomorphism if it lies in the

Sobolev class I/Vli)cl (U) and there exist constants C, a, g9 > 0 with

(3.2) o({zeU:|uu(z)| =1—¢c}) < Ce ¥, e<ep.

Here o is the spherical measure, and g = gg?gj is the Beltrami coefficient of H

(see [AIMO09, Chapter 20] for more background on David homeomorphisms).

Lemma 3.4. The circle homeomorphism b continuously extends to a David homeo-
morphism of D.

Proof. We will use the notation introduced in Proposition In particular, we

endow Q with a preferred choice of complex coordinates via its identification with

{zeD: 0<argz < 2%} U {0} (with the boundary radial lines glued together).
The partition of 0Q into the arcs

{q(‘]i,s) tS€ {17 t 7p}ai € {13 T ,m(s)}}

. . —BS .
does not necessarily give a Markov partition for Ap , since the map may send both
endpoints of such a partition piece to 1. However, we can refine the above partition

by pulling it back under ZESP, and this produces a Markov partition {Ij}.
Each piece h; s|5, of ZESP extends conformally as h; s to a neighborhood of I, in

O, where Q is the double of Q and I, © q(J{ ;). Finally, since the pieces of ZESP
are Mobius (with respect to the preferred coordinates on Q), which send round disks
to round disks, we can choose round disk neighborhoods Uy < Q of the interiors
of the Markov partition pieces int I, (intersecting 0Q orthogonally) such that if
ZES,:: (Ik) D Ay, then ZES,;: (Uk) D Uy

The properties of ZI]?SP listed in the previous paragraph imply that the map
A{Efp =¢o leéi,, log 0 €71 : St — St is a piecewise analytic orientation-preserving
expansive covering map of degree d > 2 admitting a Markov partition {{(Ij)}
satisfying conditions (4.1) and (4.2) of [LMMN20, Theorem 4.12]. Moreover, each
periodic breakpoint of its piecewise analytic definition is symmetrically parabolic
(see [LMMN20], Definition 4.6, Remark 4.7]). By [LMMN20, Theorem 4.12], the
orientation-preserving homeomorphism b : S — S! that conjugates the map z%|s:

to AIflisp|Sl (and sends 1 to 1) extends continuously as a David homeomorphism
of D. O
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Proof of Theorem[3.4 As J(P) is locally connected, ¢ p extends to a continuous
surjection 1p : S' — J(P) semi-conjugating 2? to P. Also note that since P is
hyperbolic with connected Julia set, By, (P) is a John domain and J (P) is removable
for Wh! functions [JSO0, Theorem 4].

Let us set hr := 12,, oh:D — D. By construction, hr is a David homeomorphism
of D and conjugates 2%|g: to ABS|ci. Consider the topological dynamical system

Flw) = { " on K-
= wponobilo ABSohronoup! on vp (1 (b5t (D)) < Bu(P),

where 7)(z) = 1/z. By equivariance properties of hr : St — S! and ¢p : St — J(P),
the two definitions agree on J(P). We denote the domain of F by Dom(ﬁ )

We define a Beltrami coefficient 1 on the sphere as follows. On IC(P) we set u to
be the standard complex structure. On By (P), we set u to be the pullback of the
standard complex structure (on D) under the map hrono w;l. Since hrono 1/1131
is a David homeomorphism (by [LMMN2(, Proposition 2.5 (part iv)]), it follows
that p is a David coeflicient on C. It is easy to check that pu is F—invariant.

The David Integrability Theorem (see [Dav8§|, [AIM09, Theorem 20.6.2, p. 578])
provides us with a David homeomorphism $) : C — C such that the pullback of the
standard complex structure under $) is equal to pu. Conjugating F by $, we obtain
the map

F:i=foFop! :j’J(Dom(ﬁ)) - C.

We set Dom(F') := $(Dom(F)).

We proceed to show that F is holomorphic on int Dom(F). As J(p) is W1 —removable,
it follows from [LMMN20, Theorem 2.7] that $(J(P)) is locally conformally re-
movable. Hence, it suffices to show that F is holomorphic on the interior of
Dom(F)\$(J(P)). Indeed, this would imply that the continuous map F is holo-
morphic on int Dom(F) away from the finitely many critical points of F. One can
then conclude that F' is holomorphic on int Dom(F') using the Riemann removability
theorem.

To this end, first observe that both the maps hr ono ngl and $ are David
homeomorphisms on By (P) straightening p|g_ (p). By [AIM09, Theorem 20.4.19,
p. 565], the map hr oo ¥p' o H! is conformal on H(B(P)). It now follows
from the definitions of F' and F that F is holomorphic on (B (P)) M int Dom(F).
Similarly, both the identity map and the map $ are David homeomorphisms on each
component of int I(P) straightening p. Once again by [AIM09, Theorem 20.4.19,
p. 565], § is conformal on each component of int K(P). By definition of F' and F,
it now follows that F' is holomorphic on each interior component of $(K(P)). This
completes the proof of the fact that F' is holomorphic on the interior of Dom(F).

Finally, we set Xp := $ : K(P) — C and X := Hopponobr’ : D — C. It is
readily checked that these maps satisfy the requirements of Definition [3.1] Thus, F
is a conformal mating of P and APS.

Now suppose that there is another conformal mating F; of P and A%BS. Then
theArespective mating semi-conjugacies paste together to yield a homeomorphism
of C which is conformal away from $(J(P)) and conjugates F' to F;. Conformal
removability of H(J(P)) now implies that this homeomorphism is a Mobius map;
i.e., F and F; are Mobius conjugate. [
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4. CONFORMAL MATINGS AND RATIONAL UNIFORMIZATION

With the conformal matings of factor Bowen-Series maps and polynomials at
our disposal (Theorem , we now take up the task of recognizing the class
of holomorphic maps that arise in this process and answering the first part of
Question We carry this out in Subsections and where a generalization
of Proposition [I.2]is established. The resulting algebraic description of matings in
terms of uniformizing rational maps serves as a connecting link between conformal
matings (Section |3) and correspondences (to be dealt with in Section . Finally in
Section [£.4] we investigate the structure of the critical points of the uniformizing
rational maps. This structure will play a crucial role in studying the dynamics of
the associated correspondences in Section

Throughout this section, we will work with a representation (p : T'pp —
I') € Teich”(Tpp) and a monic, centered, hyperbolic complex polynomial P of
degree d = np — 1 with a connected Julia set. As in Theorem the unique
conformal mating of P and A®S will be denoted by F. The associated mating
semi-conjugacies are denoted by Xp and Xr (see Definition . Moreover, ¥ p, ¥,
denote the Bottcher coordinate for P, and the quasiconformal homeomorphism that
defines the representation p, respectively.

4.1. Lamination model of domain of conformal matings.

Proposition 4.1. Dom(F) is homeomorphic to the quotient of D under an equiva-
lence relation given by a finite lamination. In particular,

(1) Dom(F) is connected, and
(2) int Dom(F') has finitely many connected components and each of them is a
Jordan domain.

Proof. Recall that D\Dr is the interior of a topological ideal p—gon. Since Xr is
conformal on D and extends continuously to S', it follows that the complement of
Dom(F) is a topological disk and hence Dom(F') is a full continuum. Moreover, Xr
can introduce at most finitely many identifications on the boundary of D\Dr (namely,
at the p ideal boundary points of D\Dr). It follows that Dom(F') is homeomorphic
to the quotient of D under a finite lamination. O

We will now give an explicit description of the finite lamination appearing in the
statement of Proposition This will be useful in determining the topology of
Dom(F).

Let us denote the set of p ideal boundary points of D\Dr on S! by Sp. Under
the circle homeomorphism hr = 1Zp o b that conjugates z% to APS the set Sr is
pulled back to the set

Ap:={1%:ie{0,---7p—1}}

(here we identify S' with R/Z). More precisely, if p is even (respectively, odd), the
two points (respectively, one point) of Sr that are (respectively, is) fixed by APS

correspond to 0, £ = 1 (respectively, corresponds to 0), and the 2—cycles of Alﬂgs

2p 2 _
in Sp correspond to the 2—cycles iz%, ief{l, -, [%J}, of my.

Definition 4.2. We define the equivalence relation Lp on A, as: 6, ~p 6, if and
only if the external dynamical rays of P at angles 61,60 land at the same point

of J(P).
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We remark that the above equivalence relation is unlinked. One can view Lp as a
finite lamination on D by joining the two points of an equivalence class by a bi-infinite
hyperbolic geodesic. We define leaves, gaps and polygons of this lamination in the
usual way. By the construction of F', the landing point of the external dynamical ray
of P at angle 0 is identified with hr(—6). Hence, the landing points of the external
dynamical rays of P at angles in A, are identified with points in Sp. The following
result easily follows from the above discussion.

Lemma 4.3. The connected components of int Dom(F') correspond bijectively to
the gaps of the lamination Lp. Moreover, two components of int Dom(F) touch at
a point if and only if the corresponding gaps of Lp are cobordant on a leaf or a

PR
oG g

F1GURE 8. Various laminations £p and corresponding topological models of
Dom(F) for p = 10.

Remark 4.4. The topology of Dom(F') depends on the equivalence relation £p and
the integer p, but not on the integer n.

Definition 4.5. For a gap G of the lamination L£p, the set of points of .4, that lie
on G but are not endpoints of any leaf of £ is denoted by cusp(G).

Recall from [Mil06l §18] that the periods of the external dynamical rays landing
at a periodic point of J(P) are equal. Thus, if 0 or 1/2 belongs to a non-trivial
equivalence class of Lp, then this class must be {0,1/2}. On the other hand,
if % and % (where 4,j € {1,---,|E1]}) lie in the same equivalence class, then
md(%) = —1% and md(%) = —1% must do so as well. Tt follows that the gaps of the
lamination Lp either intersect the real line, or come in complex conjugate pairs
(see Figure . We enumerate the gaps of Lp as Gi,---,G;,G1,+,- - ,Gm,+, and
label the corresponding components of int Dom(F') as Q1,--- ,Q;, Q1+, -+, Q.+,
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where G; are the real-symmetric gaps and G; 1 are the complex-conjugate gaps of

Lp. Thus,
l
Dom(F) = <U Ql> U (

m
i=1 j

Usmunj,_).
=1

j=

4.2. Explicit description of real-symmetric matings via rational uniformiza-
tions. In this subsection, we will give a concrete description of the mating between
A{‘]isp and P, where P is a real-symmetric polynomial of degree d = np — 1 with
a connected Julia set (assuming that the mating exists). The characterization of
such matings will be based on the following lemma. We recall the notation ¢(z2) = Z,
n~(z) = 1/z, and D* = C\D.

Lemma 4.6. Let Q = C be a simply connected domain with locally connected
boundary. Suppose further that f : Q — C is a continuous function such that

(1) f is meromorphic on Q, and

(2) f=1ondQ.

Then there exists a rational map R : C — C that carries D univalently onto 2 and
(tof)la=Ron o(Rlp)™".

Proof. As Q is simply connected with locally connected boundary, there exists
a conformal isomorphism ¢ : D — € that extends to a continuous surjection
@ : St — 0Q. We will show that ¢ extends to a meromorphic map of the Riemann
sphere, and hence is a rational map. To this end, we define

R:@—N@, R= . onD,
(tof)opon™, on D*.

By our assumption, ¢ o f = id on 0f). This fact, combined with continuity of ¢
and f, implies that R is continuous on C. Moreover, R is meromorphic away from
S!. Tt follows from the conformal removability of analytic arcs that R is a global
meromorphic function. Therefore, R is a rational map that takes I injectively onto
Q. Finally, by construction of R, we have that (1o f)o Ron~™ = R on D*, and
hence, (1o f)=Ron~ o (Rlp) " on Q = R(D). O

Remark 4.7. Domains () satisfying the conditions of Lemma are examples of so-
called quadrature domains, and the associated maps f are called Schwarz functions.
The characterization of such domains given in Lemma is a special case of
[AST6, Theorem 1], where a similar result is proven without the local connectedness
assumption. However, we will not need this more general statement in this paper.

With the above preparatory lemma at our disposal, we now proceed to prove the
main result of this subsection. Let us denote the conformal mating of P : K(P) —
K(P) and A{lisp : Dr,, — D by F. Following the convention of Section 4.1, we

will label the components of int Dom(F’) as
{Qo :a eI},
where

IT:=Tyul,, with Z;:={1,---,1}, Zo:={(1,+),(1,-),---,(m,+),(m,—)}.
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We will also use the map

kT T, 2|—>z, for?’e_Il, -
(Jai) — (.77+)a for (.77i) EIQ.

Lemma 4.8. There exist rational maps R, a € Z, of@ such that for each o

(1) L(Qa) = Qﬁ(a); L
(2) R, maps D injectively onto Q,,
(3) toRy =R, (o0, and

(4) Flg: =Ry ono (Ralg) ™

Proof. We first claim that Dom(F) is real-symmetric and F ot =0 F.

Proof of claim. The real-symmetry property of P implies that ¢ o ¥)p o ¢ conjugates
2% to P and is tangent to the identity map near infinity. By uniqueness of Béttcher
coordinates, we have that ¢ o ¢p o1 = ¥p; i.e., yp commutes with ¢.

The orientation-preserving topological conjugacy b : S' — S! between 2% and
A{‘]ii, sends the fixed point 1 of z¢ to the fixed point 1 of Af‘]ii. Since both z¢

and Agisp are real-symmetric maps (i.e., they commute with ¢), it follows that

tohor:S' — S!is also an orientation-preserving topological conjugacy between z?

and AP sending 1 to 1. Thus, g:= (coho¢)~ oh:S" — S' commutes with z¢,
and carries the fixed point 1 of z¢ to itself. Due to this commutation property, the
orientation-preserving circle homeomorphism g acts as the identity on the m—th
pre-images of 1 under z?, for m > 1. Since the iterated pre-images of 1 under
2% are dense in S', it follows that g is the identity map on S!. Therefore, b is
real-symmetric. By [LMMN20, Remark 2.4], the David extension of h to D is real-
symmetric. Moreover, as ip is real-symmetric, it follows that the David coefficient p
appearing in the construction of Theorem [3.2]is also real-symmetric. The uniqueness
part of David Integrability Theorem (see [Dav88|, [AIM09, Theorem 20.6.2, p. 578])
then implies that the David homeomorphism § solving the Beltrami equation with
coefficient p is real-symmetric, from which real-symmetry of F' follows. O

Due to real-symmetry of F', the escaping and non-escaping sets of F' and the
associated mating semi-conjugacies are real-symmetric. It follows that if Q, is a
component of int Dom(F), then +(Qq) = Qy(a)-

Note that by the description of the M6bius maps g1, given in Subsection E
the factor Bowen-Series map Aﬂii acts as the complex conjugation map ¢ on the
boundary of E\Drn’ - By the real-symmetry property of the mating semi-conjugacies,
it follows that F also acts as ¢ on the boundary of Dom(F'). Also observe that since
odDom(F) is the image of the boundary of D\Dr under the continuous map Xr, it
is locally connected. Thus, the restriction of F' to the closure of each component of
int Dom(F') satisfies the hypothesis of Lemma Therefore, for each o € Z, there
exists a rational map R, of C such that R, :D — Q, is a conformal isomorphism.
Moreover, by Lemma [£.6] we have

(4.1) (LoF)la, =Raon™ o (Ralp) ™"
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Since () = Ly (a), the uniqueness of Riemann maps implies that the uniformiz-
ing rational maps R,, can be chosen so that 1o R, = Ry (q) © ¢.

D s,

Lol

~ Rutay ~

C—%C
These relations, combined with those in (4.1]), imply that F|m =R nono
(Ra|ﬁ)_1- U

Suppose that the global degree of the rational map R, (where o € 7) is d,.-
By Lemma we have d, = dj(,). The above commutative diagrams imply
that F : F7 (Qy(a)) N Qa — Qy(q) is a branched covering of degree d, — 1, and
F:F~1(int QZ(a)) NnQ, — int QZ(Q) is a branched covering of degree d,. As both

—1
P: K(P) - K(P) and ADS (A{l?fp) (Dr,,,) — Dr.,, are degree d maps, it

follows that F : F~1(Dom(F)) — Dom(F) is a branched covering of degree d.
This implies that

l m
(4.2) Dida=>di+2- > dj =d+1.
i=1 j=1

ael

4.3. Quasiconformal conjugations of real-symmetric matings. We now look
at real-symmetric hyperbolic components in connectedness loci of polynomials. Any
polynomial P in such a hyperbolic component is quasiconformally conjugate to a
real-symmetric hyperbolic polynomial P with a connected Julia set (cf. [MS98]).

Proposition 4.9. Let (p : T'pp —> T') € Teich®(Tpp) and P be a polynomial
lying in a real-symmetric hyperbolic component in the connectedness locus of degree
d polynomials. Further let F' be the conformal mating of P and A%BS, and Q,
a € Z, be the components of int Dom(F) (where the labeling follows the convention
of Section ,

Then, for all a € I, there exist Jordan domains ®, and rational maps R, of
degree do, (with do = dy()) of C such that

(1) 7(0Da) = Dr(a),

)
(2) Ra aps D, injectively onto Qg
(3) Flg Ry(ayono (Ra ‘;Da) L and
(4) ZQEI =d+1.

Proof. Note that P is quasiconformally conjugate to some real-symmetric hyperbolic
polynomial P of degree d, and AfBS is quasiconformally conjugate to AfBS It follows
that the conformal mating F of P and A®S| which is unique up to MObIUb conjugacy,
is quasiconformally conjugate to the conformal mating F' of P and AfBS Let Q,, R,
be as in Lemma [£.8l

Suppose that ¥ is a quasiconformal homeomorphism such that F = U o F o U1,
We set p := U*(ug) = 00/, ¥ (here, po is the trivial Beltrami coefficient). As
the holomorphic map F' preserves pg, we have that p is an F'—invariant Beltrami
coefficient. We pull p back by R, to obtain Beltrami coefficients p, := R (u).
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Let us first work with & = ¢ € Z;. Since F(R;(z)) = R;(n(z)) for z € D, the
invariance of p under F' translates to the n—invariance of p;. Let ¥; be a quasi-
conformal map solving the Beltrami equation Wlth coefficient p,;. By construction,
the quasiregular map R; := Vo R; o ¥ 1.C-C preserves the standard complex
structure, and is thus a rational map. Also, ¥, ono \I/i_l is a Mobius involution,
and hence can be chosen to be n after possibly post-composing ¥; with a M&bius
map. Set ©; := ¥, (D), and Q; := ¥(Q;) = R;(D;). Since D is mapped inside out
by n, it follows that ©; is also mapped inside out by 7. In particular, ®; is a Jordan
domain such that 0®; is n—invariant (see Figure E[)

n([ R -
T

1 R Dr

FiGURE 9. Illustrated is the proof of Proposition

(Di, 10) —— (D, ) 2 (@i ) — (i p10)
N A
(C»/Jo) — ((C»/ii) (C N) ((C No)

As R; is injective on D, we conclude that R; is injective on the closed Jordan disk
D, (which is mapped inside out by 7), and F' can be written as R; oo (Rilz-)~"
on ;.

Now we turn our attention to o = (j, +) € Z. Let ¥; 1 be quasiconformal maps
solving the Beltrami equations with coefficient y; +. As before, it follows from the
construction that the quasiregular maps R; + := WoR; o \IJ;}_r : C — C preserve
the standard complex structure, and hence they are rational maps of C.

The relation FoR; . =R;=oon (onD) and the definition of ¥; 4 imply that
Ujzonol, + preserve the standard complex structure, and hence they are Mébius
maps After pos&bly post-composing ¥; + with Mobius maps we can assume that

¥; 4+ fix 0,1, and o0. Then, the M&bius maps V;zonoW, % send 0 to o0, o to
0, and 1 to 1. It follows that ¥; z ono \Il] 3+ =n. We set ”}3]7 = U, +(D), and
Qi+ :=9(Q, 1) =R;+(D;+). Since D is mapped inside out by 7, it follows that
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D,.+ is mapped onto C\D, + by 7. In particular, ®, + are Jordan domains such
that n(09;+) = 09; 1.

As R; 1 are injective on D, we conclude that R; + are injective on the closed
Jordan disk D; +. Moreover, we have

F=UoFovy!
=Vo(Rjzono(Rj+lp) )ow!
= (VoR;z 0¥ 3)o(¥zonoWi)o (V.o (R,

=Rjzono(Rj+ls. )7

on Qj,i'
Finally, the last item follows from Relation (4.2) at the end of Section ]

Note that any polynomial in the principal hyperbolic component H4 is quasicon-
formally conjugate to a real-symmetric hyperbolic polynomial.

Corollary 4.10. Let P € Hq and T € Teich”(Tpp). Then, there exist

(1) a Jordan domain © with n(0D) = 0D, and
(2) a degree d + 1 rational map R of C that is injective on D,

such that the conformal mating F of P and APS is given by
Rono(Rlg)~':R®)— C.

4.4. Critical points of uniformizing rational maps. We continue to use the
notation of Proposition Our aim in this subsection is to give a complete
description of the critical points of the uniformizing rational maps R,, o € Z, given
by Proposition [£.9] As we shall see in Proposition [£:14] the critical points of R,
can be organized into three categories:
e the critical points of R, on 09, which come from cusps of the group
[ =T x{M,),
e the critical points of R, in R;*(7), which are associated with the order n
elliptic element of I', when n > 3, and
e the critical points of R, in R;'(K), which correspond to the critical points
of P in K(P).
To make book-keeping easier, we denote the domain of R, (this is a copy of the
Riemann sphere) by ((A:a, and denote points in Ca by (z,a). Note that ©, < Ca.
Let us now consider the disjoint union

o= |_| @a ~ C x 7,
ael
and define the maps
R: 4—C, (z,a) — Ry (2),
and
Mo Tt (2,0) > (5(2), K@),

Note that R is a branched covering of degree np, and 7, is a homeomorphism. We

also set
D= |_| Da-

ael
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The dynamical plane of F splits into the following invariant subsets:
K=K(F):=Xp(K(P)) and T =T(F):=ZXr(D),

which we term the non-escaping set and the escaping/tiling set of F (respectively).
By definition, the action of F on K (respectively, T) is conformally conjugate to
Pl (py (respectively, ABS . Dp — D). We also denote the common boundary of K
and T by A = A(F), and call it the limit set of F.

Note that the boundary of

Dom(F) = | J Ra(@a) = R(D)
ael
meets A at finitely many points, each of which is either fixed or 2—periodic under
F. We denote the set of these points by Sg, and note that

Sr = Xr(Sr)

(see Section for the definition of St). We denote the set of points in Sp that
do not disconnect A(F) (or equivalently, are not cut-points of dDom(F)) by S7"P.
Finally, we set

Se = (Ralon.) " (Sk N 0Qy) .

It is easy to see that 0Dom(F)\SF is a union of finitely many non-singular analytic
arcs. Indeed, 0Dom(F)\SF is the image of finitely many hyperbolic geodesics of
D under Xr o ¢ (where &(w) = w™). Moreover, since APS admits an analytic
continuation to a neighborhood of Dr\Sr, it follows that F' admits an analytic
continuation to a neighborhood of Dom(F)\Sp.

Recall that the global degree of the rational map R, a € Z, is denoted by d,,.

Lemma 4.11.
(1) F(SF) = SF.
(2) Each point of Sp™* is a critical value of some R, with an associated critical
point on 09D,,.
(3) n(Sa) = Sn(a)-
(4) do = nqa, where qq is the number of components of S'\A, on G, N S!
(boundary taken in D).

Proof. 1) Note that APS carries the set St onto itself. Thanks to the semi-conjugacy
between A5 and F (via Xr), we conclude that F(Sr) = Sp.

2) Since ABS does not admit an analytic continuation in a neighborhood of any
point of Sp, the map F' does not admit an analytic continuation in a neighborhood
of any point of Sp. Suppose that z € S lies on the boundary of Q, only. The
fact that F|g—is given by Ry ) ono (RMK)’1 implies that (Ralg-)~" does not
extend complex-analytically to a neighborhood of x. This forces x to be a critical
value of R, with a corresponding critical point on 09,.

3) This follows from item (1) and the relation Flaq, = Ry(a) 010 (Ralon.) '

4) The relation F|qo, = Ry () 010 (Ralo,)”! implies that

F: Fﬁl(QH(Q)) N Dy — Qn(a)

is a branched covering of degree d, — 1.
Let g, be the number of components of S'\A, on G, N S*. Note that under the
map mg (which models the dynamics of P on J(P)) each arc of S"\ A, is wrapped
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onto the whole circle (n — 1) times and onto the complement of the closure of its
complex conjugate arc once. Hence, mq(0G, N S') covers Gk(a) N St exactly

(n=1)qa + (@a — 1) = nga — 1
times. It follows that A(F) n Q, covers A(F) N (4 exactly (ng, — 1) times under
the map F. Since the limit set of F' is completely invariant, we conclude that
F: Ffl(QK(a)) N Qo —> Qyy(q) is a degree (ng, — 1) branched covering. Therefore,
do = NQq. O

Lemma 4.12.

(1) crit(Rlp) = &, and (Rlon) *(SE"P) < crit(R) n 0D. The points of
(Ralon, ) H(SE"P) correspond bijectively to the points of cusp(Gy ).
(2) F(Sp™PndQy) = Sp™n0Qy(a). The involution n carries (R oo, ) H(SE")

)7 (S5)

(3) The critical points of R, in @\@7,JK correspond bijectively to the critical points
of Fin Q. (q) (counted with multiplicities). In particular, R has p distinct
critical points, each of multiplicity n—1, in R~*(T)\D, and all these critical
points are mapped by R to the same point in T. On the other hand, R has
d—1=np—2 critical points in R~ (K)\D.

onto (RH(Q) |(71)K(a

Proof. 1) The first statement follows from injectivity of R, |, . The proof of part (2)
of Lemma shows that the pre-images of the points of S7."*" N 0Q, under R, oo,
are critical points of R,. The statement that the points of (Ra|oo,) ' (SE ") corre-
spond bijectively to the points of cusp(G,) is a trivial consequence of Definition
2) The real-symmetry property of the lamination £p implies that if 6 € cusp(G,),
then mgy(0) = —0 € cusp(Gy(a)) (see Section . Under the mating semi-conjugacy
Xp, this translates to the fact that if z € S;°° N 0Qq, then F(z) € SE™ N 0Q ().
In light of the relation Flsq, = Ry(a)© 1o (Ralon,) ™", we conclude that 7 sends
(Ralon.) " (S5 1 092,) 00 (Rugoylon, o)) (SE A 00 (0).

3) The first statement follows from the relation Flq,_ ., = Ra om0 (Ri(a)|,0)) "

(recall that n carries D) onto @\E) The remaining claims are consequences
of the facts that F' has d — 1 = np — 2 critical points in K (coming from the d — 1
critical points of P in IC(P)) and p critical points, each of multiplicity n — 1, in T
(coming from the p critical points of APS in Dr). Moreover, F' maps all the p(n — 1)
critical points in 7 to the same critical value since APS sends all of its p(n — 1)
critical points in Dr to the origin. ([l

We will conclude this section with a refined version of part (1) of Lemma The
proof will go through an intermediate lemma about the structure of the lamination

Lp.

Lemma 4.13. The lamination Lp contains no polygon; i.e., each equivalence class
of Lp contains at most two elements.

Proof. By Lemma we have that
2do — 2 = # crit(Ra) = # cusp(Ga) + # crit(Fla,.,),
for each a € Z. Summing this inequality over a € Z, we get that

2 (2d,, —2) = 2 # crit(R,) = Z (# cusp(Ga) + # crit(Fla,.,)) -

ael ael ael
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Taking into account the relation d, = ng, (where g, is the number of components
of S"\A, on dG, N S') and the facts that S'\A, has p components, Lp has # T
many gaps, and F' has a total of

mp—2)+pn—1)=2np—p—2

critical points in int Dom(F) (since P has np — 2 critical points in K(P) and APS
has p(n — 1) critical points in Dr), we can rewrite the above inequality as

Mmp—2-#T> Z#cusp(ga)-i-(?np—]?—?)'
ael

Thus,
(4.3) p+2 = 2-# T+ ) # cusp(Ga).

ael
We claim that Inequality is satisfied only if the lamination L£p contains no
polygon. To see this, first note that if # Z = 1; i.e., when the lamination is empty,
then cusp(Gi) consists of p points, and hence the two sides of the inequality coincide.
Now, the introduction of a k—gon in the lamination (or a leaf, when k = 2) adds
k — 1 gaps and kills k cusps. For k > 2, this procedure increases the right side of
Inequality by 2(k —1) — k = k — 2 > 0. Clearly, this violates the inequality,
which proves that each equivalence class of Lp contains at most two elements. [

In the next proposition, we record the locations of all the critical points of R,.

Proposition 4.14.
(1) R has no critical points in D.
(2) crit(R) n 0D = (Rlon) 1 (SE"P). Consequently, n maps crit(Ry) N 0D,
bijectively to crit(R,(q)) N 0D (q)-
(3) R has p distinct critical points, each of multiplicity n — 1, in R™*(T)\D,
and all these critical points are mapped by R to the same point in T. On
the other hand, R has d —1 = np — 2 critical points in R~ (K)\D.

Proof. The first and third items follow from Lemma It remains to prove the
second part.
Since each equivalence class of Lp is a point or a leaf, it is easy to see that

2-#I+Z#cusp(ga)=p+2.

ael
This implies, by the proof of Lemma that
(4.4) DT (# (crit (Ra) n 0D4) — # cusp (Ga)) = 0.

ael

By part (1) of Lemma [£.12] we have that # (crit(Ry) n 0D4) — # cusp(Ga) = 0
for each o € Z, and hence by Relation (1.4, # (crit(R,) n 0D4) = # cusp(Ga) for
each o € Z. Since the points of (R,|on,) ' (Sp"F) correspond bijectively to the
points of cusp(Gy), we conclude that (Ry o0, ) (Sp"F N 082) = crit(Ras) N 0D,.
The second statement now follows from part (2) of Lemma m ]

The next corollary follows from Proposition [£.14] and the observation that if
Lp = &, then int Dom(F) is a Jordan domain and hence no point of Sg disconnects
dDom/(F).
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Corollary 4.15. If Lp = &, then Q := int Dom(F) is connected, the degree
of R := Ry is d+ 1 = np, and the set of critical points of R on 09 is given by
S:=39 = (Rloo)~*(SF). In particular, R has p critical points on 0D, d—1 = np—2
critical points in R™Y(KC)\D, and p distinct critical points, each of multiplicity n — 1,
in R7Y(T)\D. All the p(n — 1) critical points of R in R™1(T)\D are mapped to the
same critical value. N

Moreover, depending on whether p is even/odd, exactly two/one points of S are
fixed by n and the others form 2—cycles under .

Proof. We only need to justify the last statement. To this end, observe that
depending on whether p is even/odd, exactly two/one points of Sg are fixed by F,
and the others form 2—cycles under F. Since F' = Rono (R|5)", it follows that
depending on whether p is even/odd, exactly two/one points of S are fixed by n
and the others form 2—cycles under 7. O

Remark 4.16. Lemma[4.13|and Proposition [4.14] can also be proved by looking at the
real-symmetric map F that F' is quasiconformally conjugate to. For Lemma |4.13
note that the only singularities on the boundaries of the Jordan quadrature domains
Q, are (inward) conformal cusps (cf. [Sak91]), and hence more than two such
quadrature domains cannot touch at a point.

For Proposition first observe that if y € 0D, \(Raloo,) " (Sk N 0Q4) were
a critical point of R, then (Ra|m)*1 would not extend analytically to a neigh-
borhood of R, (y) € Q4 \SF, which contradicts the fact that R, admits an analytic
continuation to a neighborhood of Q,\Sr. Finally, if R, had a critical point
y € (Raloo.) (SF\SE"P), then R, (¢! (y)) would be a conformal cusp of 04,
while R, (¥;1(y)) would also be a touching point of 0, and Qs for some § # «;
which is impossible.

5. CORRESPONDENCES ASSOCIATED WITH CONFORMAL MATINGS

We will now use the algebraic representation of conformal matings F' in terms
of uniformizing rational maps R to define algebraic correspondences €, and study
their dynamical properties to complete the proof of Theorem [B] thus answering
the second part of Question It turns out that the dynamics of € is intimately
related to that of F: the mating structure in the F'—plane can be lifted via R to
obtain the desired mating structure in the €—plane.

5.1. The case of principal hyperbolic components. Let n,p be positive inte-
gers with np > 3. Suppose that (p : Tpp — I') € Teich®(Tpnyp), P € Hpp—1, and
F : Q — C be the conformal mating of A%BS and P. Further, let R,® be as in
Corollary Finally, we set S := 1 = (R|on) *(Sr).

We will define a holomorphic correspondence € < CxC (i.e., a multi-valued map
with holomorphic local branches) of bi-degree d:d as (cf. [DS06]):

R(w) — R(n(2))
w —1(z)
The following observations show that € is obtained by lifting F' and its appropriate

backward branches via the rational map R.

e Fix z€®. Then, F(R(z)) = R(n(z)), and hence,
(5.2) (z,w) e € <= R(w) = R(n(z)) = F(R(z)).

(5.1) (z,w) e € =0.
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e Now fix z € C\®D. Then, F(R(n(z))) = R(2); ie.,
(5-3) (z,w) € € = R(w) = R(n(2)) = F'(R(2)),

where F~1 is a suitable backward branch of F.

5.1.1. Dynamical partition for €. The invariant partition of the dynamical plane of
F, given by KC and T, can be pulled back by R to produce an invariant partition of
the dynamical plane of the correspondence €. More precisely, we set

K:=RYK), T:=RYT).

We call these sets the non-escaping set and the tiling set of the correspondence €.
Note that the common boundary of I and T is given by

A:= R7Y(A).
We call A the limit set of €.

Proposition 5.1.
W) (T =T, and n(K) = K. N N ~
(2) Let (z,w) € €. Then z € T (respectively, z € K) if and only if w € T
(respectively, w € K).

~

Proof. 1) It suffices to show that n(K) = K.

Let us fist assume that z € © A K. Then, R(z) € K and R(5(z)) = F(R(z)). As
K is invariant under F, it follows that R(1(z)) € K. We conclude that 7(z) € K.

Next let z € K\D. Then, R(z) € K and F(R(n(z))) = R(z). As K is backward
invariant under F, it follows that R(n(z)) € K. We conclude that n(z) € K.

2) It suffices to show that if z € T (respectively, if z € IE), thenw e T (respectively,
w e K).

To this end, first suppose that z € ®, which implies that R(w) = R(n(z)) =
F(R(2)). Now let z € T (respectively, z € K). The F—invariance of T (respectively,
K) implies that R(w) € T (respectively, R(w) € K). Hence, w € T (respectively,
w e K).

Next suppose that z € @\5, which implies that F(R(w)) = R(z). Now let
zeT (respectively, z € I%) The backward invariance of T (respectively, K) under
F implies that R(w) € T (respectively, R(w) € K). Hence, w € T (respectively,
w € K). O

The main result of this subsection is the following theorem, which ties up
our framework of mating factor Bowen-Series maps of genus zero orbifolds with
polynomials in principal hyperbolic components with the Bullett-Penrose mating
phenomenon. We recall the notation = (T'y M, from Section

Theorem 5.2. The correspondence € defined by Equation (5.1)) is a mating of P
and ¥ := D/f in the following sense.

(1) The dynamics of € on T is equivalent to the action of a group
iy {1y = Z/2Z +7/(np)Z
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of conformal automorphisms of T. Here, T is a conformal automorphism of
T of order np such that 7P induces an order n conformal automorphism on
each component of T.

Moreover, thewabove group action is properly discontinuous, and the

quotient orbifold T/@ is biholomorphic to X.

(2) The correspondence € has a forward branch carrying KD onto itself with
degree np — 1, and this branch is conformally conjugate to P : K(P) —
K(P). On the other hand, € has a backward branch carrying K\D onto
itself with degree np — 1, and this branch is also conformally conjugate to

P:K(P) — K(P).

The proof of this theorem will be given in the next three subsections. In
Subsections and - we will study the group structure of € on 'T which

will allow us to identify the conformal structure of the quotient orbifold / ¢ In

Subsection u we will analyze the dynamics of suitable branches of ¢ on K, which
will reveal the polynomial structure of the correspondence.

5.1.2. Group structure in €. By Corollary there is a unique critical value of
R in T when n > 2 and no critical value when n = 1. Moreover, the fiber of this
critical value (under R) consists of p distinct points, each of which is a critical
point of multiplicity n — 1. As T is simply connected, a routine application of the
Riemann-Hurwitz formula on the branched covering R : 7 — T shows that 7 is the
union of p disjoint open topological disks Uy, --- ,U,—1. We can enumerate these
components so that n(U;) = Up—1—;, i € Z/pZ. Moreover, each U; contains a unique
critical point (of multlphclty n — 1) of R and maps onto 7 with degree n. We now
study the topology of AT (the topological closure of T in (C)

Lemma 5.3.
p—1
(1) T = U Uj; is connected, where each U; is a Jordan domain that is mapped

with de;]r(e)e n onto T by R,
(2) U; n Uity is a single point belonging to S, and
B) UinUj =g if|j—il #1.
Here, i,j € Z/pZ.

Proof. We set TV := @\ﬁ Note that cl 7\TY is a connected set. In fact, it is the
union of p closed topological disks (i.e., closures of Jordan domains) Xy, -+, Xp—1
such that

¢ 0X; ndT° = R(U,; n 0D),

e X; n X, is a single point belonging to Sr, and

o X;nX; =gif |j—i| #1, where i,j € Z/pZ.
(See Figure [10] (right).) The inverse branch (R|z)~! carries each X; to a closed
topological disk Y; in ®. The boundary of each of these pulled back closed
disks Y; contains (the closure of) a component of 0D\S. Hence the boundary
of (Rlz) H(clT\T?) = UY_,Y; contains all of 9. In fact, (R|z) ' (cIT\T") con-
tains a relative neighborhood in D of each point in 0D\S (see Figure [10| (left)).
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Since n(T) = T and c1T n D = (R|z) (I T\T?), we conclude that
AT = (Rlg) " (AT\T°) | n((Rl5) (A T\T?)).
Finally, that fact that S is n—invariant implies that
e Ui n Uiy is a single point belonging to S,
e UinU; = if|j—i| # 1, where i,j € Z/pZ, and
o oIT =J_, U, is connected.
(See Figure [10] (left).) O

K

FIGURE 10. The dynamical planes of F' and € are displayed, where P € Hs5 and
I' € Teich” (F1,6)~

Figure Right: The dynamical plane of the conformal mating F' of some P € Hj5
and some I' € Teich“(I'1,6) is depicted. The bounded complementary component of
the limit set (in red) is the tiling set. The light blue points on 0T° comprise Sf.
The components X1, -, Xg of cl ’7~'\T0 are marked. Left: The dynamical plane of
¢ is shown. The bounded Jordan domain enclosed by the blue curve is ®, and the
six light blue points marked on it constitute S. The rational map R carries the
interior of the blue curve on the left figure (i.e., the domain ©) homeomorphically
onto the exterior of the blue hexagon in the right figure (i.e., the domain €2). The
part of the non—escaping set of € inside D (respectively, outside D) is marked as l%l
(respectively, as ICQ) it is carried by R univalently (respectlvely, as a 5 : 1 branched
cover) onto K. The sets IC1 and ’CQ intersect in . On the other hand, the tiling
set of € is the union of six Jordan domains, each of which has the union of a red
and a green curve (connecting two consecutive points of §) as its boundary. The
R—pre-image of T is shaded, and the closed topological disks Y; = (R|z) ™" (X;)
are marked.

Proposition 5.4. There exists a conformal automorphism T of’7~' such that
7 =id, and R"Y(R(2)) = {z,7(2), - , 7P (2} V 2z T.

Proof. Let ® : D x Z/pZ —> T be a conformal isomorphism that sends (0, j) to the
unique critical point (of multiplicity n — 1) of R in U}, for j € Z/pZ. Recall that
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Xr : D — T is a conformal isomorphism that conjugates A5 to F, and hence sends
the unique critical value 0 of AfPS to the unique critical value of R in 7~ (which is
also the unique critical value of F'in 7). Thus,

R:=X7'cRo®:DxZ/pZ — D

is a holomorphic branched covering of degree np, that restricts to a degree n branched
covering D x {j} — D and carries (0, j) to 0 with local degree n. Thus, after possibly
pre-composing ® with a rotation on each D x {j}, we can write R as

(w,j) —w", weDb, jeZ/pZ.
Let us now define a conformal automorphism

4+ 1 f €40, ,p—2
F D X Zfpl— D x TfpZ,  (w,f) > 4 (I T for g {0, p—2)
(e"» w,0), for j=p—1.

It is readily checked that
T = 1d7 and Eil(é(why)) = {(’LU,‘]),%\'/(UJ,]), e 7%’”1)71(“}7]‘)} v ('lU,j) € DXZ/pZ
The desired automorphism 7 of T is now given by ® o Fo &1, O

Remark 5.5. Note that by construction, 7(U;) = Ujt1, j € Z/pZ. Moreover, 7P
restricts to an order n conformal automorphism on each U;.

It follows that the forward branches of € on 7 are given by the conformal
automorphisms 7 on,--- , 7" Loy,

Proposition 5.6. The dynamics of € on T is equivalent to the action of the group
y«{t)y = Z/2Z +«7/(np)Z
of conformal automorphisms of T.

Proof. The tiling set T is dynamically tessellated. We call T° (closure taken in T)
the rank one tile (where T9 = ([A:\ﬁ), and connected components of F~"(T0) tiles
of rank m. A connected component of the pre-image of a rank m tile of 7 under R
is called a rank m tile of 7. N

We have already observed that the forward branches of € on 7T are given by
Ton,-, 7"~ on. Furthermore, 7 = (72 o) o (T on)~!, and hence

<TO7’],~-- 7Tnp—1 077> = <77?T>'
It now remains to justify that (1, 7) is the free product of the cyclic groups (n)
and (7). This will be done by applying a ping-pong type argument using the tiling
structure of 7.
To this end, first note that any relation in (n,7) other than n? = id and 7" = id
can be reduced to one of the form

(5.4) (Tkl op)o---o (Tkr on) =id,
(5.5) (Tt om)o---o(r* on) =,

where r > 1 and kq, -+ , k. € {1,--- ,np — 1}.
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Case 1: Let us first assume that there exists a relation of the form (5.4)) in {(n, 7).
We claim that (7%/ o) maps a tile T of rank s in T\D to a tile of rank (s + 1) in

T\D.

Proof of claim. By Relation (5.3), we have that F(R(n(z))) = R(z) for z € T\D.
Hence, F' maps R(n(%)) to a rank s tile in 7. It follows that R(n(¥)) is a rank
(s+1) tile in 7, and hence (%) is a rank (s + 1) tile in 7 A D. As R is injective on
D, the non-trivial deck transformation 7% of R carries 77(%) to a tile of rank (s + 1)
in 7\D. 0
Hence, the group element on the left of Relation maps a tile of rank 0 in T to
a tile of rank r > 1. Clearly, such an element cannot be the identity map.

Case 2: Now we consider a relation of the form in {(1,m). Bach (7% on) maps
%\i) to itself. Hence, the group element on the left of Relation maps 7~’\’D to
itself, while  maps 7~'\’D to 7 A D. This shows that there cannot exist a relation of

the form (5.5)) in {7, 7).

We conclude that 7% = id and 7P = id are the only relations in (n, 7), and hence
1y =y« 1) = L/27 + Z/(np)Z. O

5.1.3. The quotient orbifold.
Proposition 5.7. The group {n)={T) acts properly discontinuously on 7. Moreover,
the quotient orbifold 7—/<77> (T 18 btholomorphic to X = D/f.

Proof. We set 70 .= R™Y(T?). Note that TO consists of p components, one in each
Ui, i € Z/pZ. Further, let

Go = {f € ={7): f(Uo) = U}
be the stabilizer subgroup of Uy in {n)={7). As the cyclic group () acts transitively
on the components of T, it suffices to show that G acts properly discontinuously
on Uy and that Uo / Go is biholomorphic to X.

Note that the maps £ and R in the vertical arrows of the following commutative
diagram are degree n branched coverings.

(D,0) o, (Uo, o)

.f:w»—»w“J/ J{R

(D,0) —% (T, R())

Moreover, ¢ (respectively, R) has an (n — 1)—fold critical point at 0 (respectively,
at xg) with the associated critical value at 0 (respectively, at R(x)). Recall also
that 0 € D (respectively, R(z¢)) is the unique critical value of A®S (respectively,
of F'in T). Since the conformal map Xr conjugates APS to F, it follows that Xr
sends 0 to R(zg). Hence, Xr lifts to a conformal isomorphism fgf : D — Uy that
maps 0 to zg.

By construction, i\l: maps int 1, (II) conformally onto ’_ﬁg; = T0 Uy. After
possibly pre-composing %1: with a power of M,,, we can assume that % takes the
bi-infinite geodesic 1,(C1,1) < 0¥, (II) onto 0D N Uy < 85“;9;. Since 7P restricts to
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an order n automorphism of the np—gon Tgo that fixes the unique critical point zq
of R (of multiplicity n — 1) in Uy and has derivative w at this fixed point (this follows
from the construction of 7 in Proposition , the above construction implies that
%\1/‘ conjugates M, to 7P.

Let us set N R s

& = X (v, () < T7,,

where II is the fundamental domain of f‘n,p =Ty p x (M) introduced in Subsec-
tion The set & is a closed sector (in the topology of Up) based at zy whose
sides are geodesics in the hyperbolic metric of Uy. Moreover, R is injective on the
interior of & and maps the two geodesics emanating from x( to the line segment
Z{F(O, 1) in T

It is not hard to see using the actions of the generators 77 on of the group (n)*{(T)
on the tiles of 7 that & is a closed fundamental domain for the Gy—action on Uy.
In particular, G acts properly discontinuously on Uy.

We now proceed to identify the quotient Uo / Go Each 77 o 1) stabilizes some

component U; of 7. All these maps, conjugated by suitable powers of 7, give
elements of Gy that act as side-pairing transformations on the boundary of the

np—gon 1; 80. Combined with the map 7P, (a subset of) these maps pair the sides of

G&. Finally, %1: conjugates these side-pairing transformations for the sector & to the

side-pairing transformations p(g11),--- ,p(g1,p), M for the fundamental domain
Y, (II) of ['=Tx (My). It now follows that UO/GO is biholomorphic to the
quotient D/f. O

Remark 5.8. Not just the group f‘, the representation p : IA‘W, T (see Section
is also recovered from € via the side-pairing transformations of & described in the
proof of Proposition [5.7]

5.1.4. Polynomial structure in €. We now set I%l =KD and I%g = I%\CD The
description of 7 given in Section can be used to study the structure of Ky and
Ks.

Lemma 5.9.
(1) ﬁlmﬁﬁzﬁQOGQ:ﬁlmﬁgzg.
(2) K2 = 77(’%12' N
(3) R carries Ky (respectively, Ko) homeomorphically (respectively, as a degree
np — 1 branched cover) onto K.
(4) K is connected.

Proof. 1) By definition, K; n 0© = {z € 0D : R(z) € K}, for i € {1,2}. Recall
from Section that 0 = R(0D) meets K precisely at the finite set Sp. Hence,
Kin oD = (Rlon) H(Sr) = S, for i € {1,2}. Since K1 n Ky < 0D, it now follows
that ’%1 M I%Q = §

2) The n—invariance of K (see Proposition implies that (K n D) = K\D. By
Lemma m, (S) = S. The result now follows from these facts and the description
of K;n oD, ie {1,2}, given in the previous part.

3) As R is a homeomorphism from © onto Q and K < , it follows that
Ki=RYK)nD = (Rlz) ' (K). Hence, R carries K1 homeomorphically onto K.
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Since R is a global branched covering of degree np, it now follows that it maps
Ky = R7Y(K)\D as a degree np — 1 branched cover onto K.

4) Connectivity of K, combined with parts (2) and (3) of this lemma, implies
that both l%l and IEQ are connected. Since l%l N l%g =9 # (, we conclude that
K= I%l U ’%2 is connected. O

Proposition 5.10.

(1) Ky is forward invariant, and hence, K, is backward invariant under €.

(2) € has a forward branch carrying l%l onto itself with degree np — 1, and this
branch is conformally conjugate to P : K(P) — K(P).

(3) € has a backward branch carrying Ko onto itself with degree np — 1, and
this branch is conformally conjugate to P : IC(P) — K(P).

Proof. 1) This follows immediately from Lemma and the definition of €.

2) Let us set V := R7Y(Q)\D, and define g : V — D as the composition of
R:V — Qand (R|§)71 : Q — ©. By definition, g is a degree np — 1 branched
covering satisfying Rog = R on V. It follows that

gon:Ki— K
is a degree np — 1 forward branch of the correspondence.
Clearly, the forward branch (g o n)] &, is topologically conjugate (conformally

on the interior) to Flx = Rono (R|,g:1)_1 via the univalent map R : K1 — K.

The result now follows from the above discussion and the fact that F : K — K is

topologically conjugate (conformally on the interior) to P : K(P) — K(P) via Xp.
3) It is easy to see that the map

nog:n0(R|5)_1OR:I%2—>I€2

is a backward branch of the correspondence € carrying IEQ onto itself with degree
np — 1. Finally, n restricts to a conformal conjugacy between the backward branch

(nog)|g, and the forward branch (gon)g, - O
Proof of Theorem[5.3. Follows from Propositions and O

5.2. The general case. In this subsection, we will associate an algebraic corre-
spondence with the conformal mating

F:|JRa(®s) —C
ael

of the factor Bowen-Series map APS| where (p:Tpp — I') € Teich” (Typ), and a
polynomial P lying in any real-symmetric (not necessarily principal) hyperbolic
component in the connectedness locus of degree np — 1 polynomials (see Proposi-
tion .

Let us recall some notation (from Section that will be used in this section.

e The domain of R, is denoted by @a, and points in @a are denoted by (z, ).

In particular, ©, < C,.
U = |_|a€IA(Ca.
R: 44— C, (2,a) — Ry(2), is a branched covering of degree np.
Ne U — 8 (z,a) — (n(2), k(a)), is a homeomorphism.

D =l,erDa-
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The conformal mating F' gives rise to a holomorphic correspondence on il as
follows. For «, 8 € Z, define
~ ~ . Rﬁ(w) - Rn(a) (’I’}(Z))

Copi= {(z,w)eC, xCp: w—1(2) =0}, if k(a) = B,

and
Copi= {(z,w) € Cq x Cg : Rg(w) — Ryay(n(2)) =0}, if s(a) # B.
The union of the algebraic curves €, s can be written succinctly as
R(uz) — R(1s(w1))
uz — 7+ (1)

(The division in Equation ([5.6) makes sense since the numerator and the denominator

(5.6) {(ug,ug) e U x 84 :

— 0}

can be viewed as points of C.) The first and second coordinate projection maps
7¢ and 75 from €. 5 onto C, and Cg define a holomorphic (in fact, algebraic)
correspondence from C, onto Cg (cf. [DS06]):

Ca.8
e,

Combining all these holomorphic correspondences for various «, 8 € Z, we obtain
a holomorphic correspondence on i defined by the reducible curve 3}, ;&4 5. We
denote this correspondence by €,.

In order to capture the mating structure of the correspondence, we need to pass
to a quotient of 4. To this end, we endow 4l with the following finite equivalent
relation:

Ca

For z € Sy c Cq andwegﬂc@g,
(z,0) ~y (w,B) <= Ru,(z) = Rg(w).

The fact that Dom(F) is the quotient of D by a finite lamination (see Proposition |4.1)
and that R, |sp, is injective (for all o € T) imply that

W = u/NW

has the structure of a compact, simply connected, noded Riemann surface. By
definition, the map R : 4 — C descends to a map

R:9—C.
Note that R is also a degree np branched covering. Abusing notation, we denote the

image of a set X < 4l (respectively, a point p € {l) under the quotient map {4 — 3
by X (respectively, p).

Lemma 5.11. The homeomorphism ny : 4 — LU descends to a homeomorphism
7:0 — 2.

Proof. Let us suppose that (z,a) ~y (w,B); ie., z € ga,w € §5, and R,(z) =
Rg(w). We need to show that n.(z, @) ~w ns(w, 8).
To this end, note that

~

na(2,0) = (n(2), 5(@)) € Sy(ay,  and  nu(w, B) = (n(w), £(B)) € Si(s)
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(by Lemma [4.11)). Now, Ry (q)(n(2)) = F(Ra(2)) = F(Rg(w)) = Ry(s)(n(w)), and
hence 74 (2, @) ~w s (w, B). H

Thus, the correspondence €, on 4 also descends to a correspondence on 25. We
denote this correspondence by €.

5.2.1. Dynamical partition for €. As in Section [5.1.1] we define
K:=RYK), T:=RYT).
The proof of Proposition [5.1] applies mutatis mutandis to the current setting and
implies the following result.
Proposition 5.12.
(1) #(T) =T, and ii(K) = K.
(2) Let (uy,uz) € €. Thenuy € T (respectively, uy € K) if and only if ug e T
(respectively, us € KC).
5.2.2. Group structure in €. Thanks to the description of the critical points of Rin
R™Y(T)\D given in Proposition the arguments of Subsections and
apply mutatis mutandis to the general situation and imply the following results.
Proposition 5.13.
(1) T is the union of p disjoint topological disks Uy, --- ,U,—1, where each U;
contains a unique critical point (of multiplicity n — 1) of R and is mapped
onto T with degree n.
(2) There exists a conformal automorphism 7 of T such that
" =id, and R (R(2)) = {z,7(2),--- , 7" Y (2)} V z € T.
Hence, the forward branches of € on T are giwen by the conformal automor-
phisms T o7, , TP o7,
(3) The dynamics of € on T is equivalent to the action of the group
1y =~ Z)2Z «7/(np)Z
of conformal automorphisms of T.
(4) The group {1y = {T) acts properly discontinuously on T. Moreover, the
quotient orbifold T/<7v’> (T is biholomorphic to X = D/f.

5.2.3. Polynomial structure in €. We set

5= 5.

a€l
Note that 7 maps D onto 20 \ D, and preserves S. As in Section we set
Ki:=Kn®Dand Ky :=K\ D.
Lemma 5.14. We have that ’EQ = 77(/%1), and 161 8 162 =S,
Proof. The first statement follows from the fact that 7\7/(16) — K. For the second

statement, first observe that

KinKs={uedd: R) ek}
The result is now a consequence of the fact that R(S) = Sp < K and R(0D \ S) =
dDom(F)\Sp < T. O
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Finally, Proposition naturally generalizes to the current setting.
Proposition 5.15.

(1) Ky is forward invariant, and hence, K, is backward invariant under €.

(2) € has a forward branch carrying l%l onto itself with degree np — 1, and this
branch is conformally conjugate to P : K(P) — K(P).

(3) € has a backward branch carrying l%g onto itself with degree np — 1, and
this branch is also conformally conjugate to P : IC(P) — K(P).

Proof. The proof is similar to that of Proposition We only give a proof of the
second statement. N
The forward branch of € carrying K onto itself (with degree np — 1) acts as

o5 ) = ((Ros) (R 0(:1) 5).

where (z,a) € K1, and Ry(a)(n(2)) € Q. Tt is easy to see from the construction
that R : K1 — K is a homeomorphism. We claim that é| &, is a conjugating map
between b and F|c. To this end, note that

~

F(R(z,0)) = F(Ra(2)) = Rya)(n(2)),

and

~ ~

R(o(z.0)) = 7 (Ralo) " (Rt 000) ) = R (012

It follows that }v2|,51 ob=Fo é|/€1 To complete the proof, we note that Fc is
conformally conjugate to P|i(py via the mating conjugacy Xp. O

We summarize the above results in the following theorem.

Theorem 5.16. The correspondence € on 20 defined by Equation (5.6) is a mating
of P and X := ]D)/f in the following sense.

(1) The dynamics of € on T is equivalent to the action of a group
=ty = Z/2Z «Z/(np)Z

of conformal automorphisms of T. Here, T is a conformal automorphism of
T of order np such that TP induces an order n conformal automorphism on
each component of T.

Moreover, theNabove group action is properly discontinuous, and the

quotient orbifold T/Q: is biholomorphic to X.

(2) The correspondence € has a forward branch carrying KD onto itself with
degree np — 1, and this branch is conformally conjugate to P : K(P) —
K(P). On the other hand, € has a backward branch carrying K \ ® onto

itself with degree np — 1, and this branch is also conformally conjugate to
P:K(P)— K(P).

Proof. The first statement is the content of Proposition [5.13 and the second one is
the content of Proposition [5.15 (]

We are now ready to prove a slightly more general version of Theorem [Blannounced
in the introduction.
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Theorem 5.17. Let ¥ be a hyperbolic orbifold of genus zero with arbitrarily many
(at least one) punctures, at most one order two orbifold point, and at most one order
v = 3 orbifold point. Further, let P be a polynomial in a real-symmetric hyperbolic
component of degree 1 — 2v - xorh(X) (respectively, 1 — 2xorb(2)) polynomials if ¥
has (respectively, does not have) an order v orbifold point.

Then, there exist a holomorphic correspondence € on a compact, szmply connected
(possibly noded) Riemann surface 20 and a €—invariant partition 1 = T UK such
that the following hold.

(1) On '7~', the dynamics of € is orbit-equivalent to the action of a group of

conformal automorphisms acting properly discontinuously. Further, T/¢
s bitholomorphic to X.

(2) K can be written as the union of two copies K1,K2 of K(P) (where K(P) is
the filled Julia set of P ), such that K1 and Ks intersect in finitely many pomts
Furthermore, € has a forward (respectively, backward) branch carrying IC1
(respectively, l%g ) onto itself with degree np—1, and this branch is conformally

conjugate to P : KK(P) — KC(P).
In particular, if P lies in a principal hyperbolic component, then 20 = @; i.e., €is
an algebraic correspondence on the Riemann sphere.

Proof. Let us assume that ¥ has d; > 1 punctures, 5 € {0,1} order two orbifold
points, and d3 € {0, 1} order v > 3 orbifold points. The condition that ¥ is hyperbolic
is equivalent to the requirement that

5 1
Yorb(Z) = 2 — &, _52_53(1_;) <0.

1 if d43=0,
n =
v if 63 =1.

266 —-1) i sy =0,
)28, =1 if Sy =1.

We set

Further, we set

Note that when d3 = 0, then
5
172X0rb(2)=172(2751f52)=25l+52f3=p71=np71,

(as m = 1 in this case). On the other hand, when d3 = 1, then

) 1
].—QV'Xorb(Z)—1—2V(1—51—52+ —) =29 +vde—2v—1=vp—1=np—1

(as n = v in this case). Moreover, the restriction on xorh(X) implies that np > 3.
By construction, D e T is homeomorphic to ¥ (as orbifolds). It follows that
n.p

there exists I'y, € Teich(f‘n,p) such that D / I's. is biholomorphic to 3. The result
now follows by applying Theorems and on the pair I'y, P. [



38 MAHAN MJ AND SABYASACHI MUKHERJEE

6. A CHARACTER VARIETY AND A SIMULTANEOUS UNIFORMIZATION LOCUS

In this section, we will put the results of the previous sections together to justify
the diagram (Figure[2)) furnished in the introduction. Along the way, we will put
an algebraic structure on the moduli space of our correspondences in terms of the
coefficients of the uniformizing rational maps. The construction of this space of
correspondences will lay the foundation for the proof of Theorem |C| (see Section @

We recall that n,p are positive integers with np > 3, and d := np — 1. For
(p:Tpp — T) € Teich® (Ty,p), the conformal mating of APS and P € H,4 is denoted
by F:Q — C. The associated mating semi-conjugacies are denoted by Xp and X
(see Definition . Further, let R,® be as in Corollary

6.1. Moduli space of marked matings. Recall that a conformal mating F :
Q- C of ABS and P is unique up to Mdbius conjugacy, where T' € Teich” (Tnp)
and P € Hq. A marked conformal mating is a pair (F = APS 1L P, Xr(1)). Two
such pairs are equivalent if there is a Mobius map that conjugates the conformal
matings respecting the marked fixed points. The collection of equivalence classes of
marked conformal matings will be referred to as the moduli space of marked matings
associated with Teich” (I'y,p) and Hq. We denote this space by

M = M (Teich” (Tpnp), Ha) -
We have a natural map
E1: Teich’(Tpp) x Hg — M
(T,P) — [F:=ABS1P xr(1)].

Let us now fix a conformal mating F' = APSI P Q — C. By Corollary
there exist a Jordan domain ® (with 9(0®) = 09) and a degree (d + 1) rational
map R of C that maps D injectively onto Q, such that F|g = Rono (R|5)"".
Clearly, conjugating F' by a M6bius map amounts to post-composing R with the
same Mobius map. We will now show that when a particular F' is chosen, the
associated rational map R is essentially unique.

We denote the centralizer of n in PSLy(C) by C(n).

Proposition 6.1. Let F': Q — C bea conformal mating of A5 and P. Suppose
further that there exist pairs (R1,D1), (Re, D2) with the following properties.

(1) ©; a Jordan domain with n(09;) = 09;,

(2) Rilz; is injective,

(4) F|§ = R»L omno (Ri|©7i)71’ fOT 1€ {1,2}
Then, there exists a Mobius map M € C(n) such that M(D1) = Dy and Ry = ReoM.
Proof. We define

(Ralz;) " o Ri(2), if €D,

M:C—C, 22— b
: {77 o (Ralo,) o Ryon(z), if ze C\D;.

Since (Ra|oo,) ' o Ry : 091 — D4 conjugates n|so, to 17]ao,, it follows that the
piecewise definitions of M agree continuously, and hence M is a homeomorphism of
the Riemann sphere that commutes with 1. Moreover, M is conformal away from
the Jordan curve 09;.
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The facts that dQ\Sg is a union of finitely many non-singular analytic arcs
(see Section [4.4) and that R; has no critical point on 0D\(R1|sn,) (Sr) (by
Corollary |4.15)) together imply that 00, is a piecewise non-singular analytic curve.
In particular, 09 is conformally removable. It now follows that M is a Mobius
map commuting with 7. Moreover, the definition of M implies that M (D) = D5
and Ry = Ryo M. [l

After possibly pre-composing with z — —z, we can and will assume that

R(1) = Xxp(1).

6.2. Space of correspondences as character variety. Let us consider the space
% of all correspondences of the form

R(w) — R(n(2))
w —1(2)
where R € Ratg.1(C). Note that the space €, which is parametrized by the quasi-

projective variety Ratq41(C), defines an ambient space in which the correspondences
produced by Theorem [5.2] live.

Definition 6.2. (cf.[BP94 §2]) We say that two correspondences €1, €5 in € are
equivalent if there exists M € C(n) (where C(n) is the centralizer of  in PSL2(C))
such that

(6.1) (z,w)e € — =0,

(z,w) €€ < (Mz, Mw)e€ Cs.

Remark 6.3. Suppose that the correspondences €, &; are equivalent in the sense of
Definition If ¢ is a local holomorphic branch of €;, then M oo M~! is a local
holomorphic branch of €,. Thus, the branches of two equivalent correspondences
are Mc6bius conjugate.

A routine computation using Equation and Definition shows that two
distinct correspondences €, €5 € € defined by Ry, Rs € Ratyy1(C) are equivalent if
and only if R; = Ry o M, for some M € C(n). On the other hand, replacing R by
M o R, for M € PSLs(C), produces the same correspondence €.

Therefore, the space of equivalence classes of correspondences in % is parametrized

by the quotient Ratq1(C) / ~ under the equivalence relation
R ~ Mso Ro My,

where R € Ratgy;1(C), My € PSLy(C), and My € C(n). The space Rath((C)/N
with its algebraic structure, can be regarded as an analog of the character variety
for surface groups (cf. [Kap01] §4.3], [LMS83]).

6.3. A simultaneous uniformization locus of correspondences. According
to Section [6.1} the rational maps R associated with the conformal matings in M
are well-defined only up to pre-composition with M6bius maps in C'(n) and post-
composition with arbitrary Moébius maps. In light of the discussion in Section [6.2
each marked conformal mating in the moduli space M defines an equivalence class

of correspondences in Ratg1(C) / ~ via Equation (6.1]), where R is the rational
uniformizing map of Corollary normalized so that R(1) = Xr(1). Thus, we
have a well-defined map

M — Rath(C)/N
[F=APSULP xp(1)] — [€].
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We denote the image of =5 in the ‘character variety’ Ratg11(C) / ~ by
C = C (Teich®(Tnp), Ha) ,

and call it the moduli space of correspondences associated with Teich”(I'pp) and
H,. Note that the space C can be seen as a locus of simultaneous uniformizations
of marked groups in Teich® (', ) and polynomials in H,.

6.4. Intrinsic description of the mating structure of correspondences. Let
¢ € C. By construction, there exists (I, P) € Teich”(I'n,p) x Hq such that Zy o
E1(T", P) = €. Let R be a rational map generating the correspondence €. By our
normalization, R(1) = Xr(1).

Recall that while the correspondence € was defined solely in terms of the rational
map R (via Equation (6.1)), the dynamical partition for € was given in terms of
F = A%BSJLP, or equivalently, in terms of the rational map R and the Jordan domain
®. We will now expound how the complete dynamical structure of € (including
the limit, tiling, and non-escaping sets of € and the domain ©) can be recovered
directly from R.

Since the iterated F—preimages of Xr(1) are dense in the limit set A of F (this
follows from the fact that the iterated P—preimages of any point on 7 (P) are dense
in J(P)), it follows that the grand orbit of 1 under the correspondence € is dense
in the limit set A of €. Hence, the limit set of € can be recovered from R (without
knowledge of the domain D).

The tiling set 7 of € can now be recognized as the union of the connected
components of @\7\ on which € acts properly discontinuously (with torsion points,
when n > 1). The closures of the other two components of @\7\ comprise K. On one
of these two components, the map R is injective, while R maps the other component
with degree d. The closure of the former (respectively, the latter) component is lval
(respectively, K3).

Thanks to the description of the closure of T given in Lemma we know
that the components Uy, - -+ ,Up_; of 7 are Jordan domains, and they form a chain
such that neighboring components touch at critical points of R that lie on A. We
now consider the Jordan curve J obtained by connecting the critical points of R
on A consecutively by hyperbolic geodesics in the components U;. By the proof of
Proposition [5.7} the map R is injective on one of the complementary components of
J, and this component coincides with ® (see Figure .

Thus, we can reconstruct 2, I%, ’7~', and A from the rational map R. Clearly, the
set TO < T (which is the union of the rank zero tiles in the tiling set of €) and

hence the set T; 80 =70~ Up can also be reconstructed from the above data.

The proof Proposition [5.7] also Sh/E)\VZS that when the topological disk Uj is
uniformized by the unit disk, the set T((}O corresponds to an ideal np—gon P in D
that admits the rotation M, as a symmetry. Moreover, pulling back a sector of angle
27 /n in P (with geodesic boundary) under this uniformization yields a fundamental

A

domain & for the €—action on 7 equipped with side-pairing transformations.

This defines a marking on the quotient 7-/ ¢ This marked Riemann surface is
biholomorphic to

e a sphere with £ + 1 punctures and an order n orbifold point for p even, and
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p+1

5= punctures, an order two orbifold point and an order n orbifold

e a sphere with
point for p odd.

~

In other words, the correspondence € determines a unique element of Teich(I';, ;) =
Teich® (Tp,p).

Finally, by Proposition an appropriate branch of € on 161 is conformally
conjugate to the action of a polynomial in H4 on its filled Julia set. In fact, such a
polynomial is uniquely determined when we require that the conjugacy sends the
fixed point 1 of this correspondence branch to the landing point of the external
dynamical ray at angle 0 for the polynomial.

The above recipe defines a map

Eg: C —> Teich®(Tpp) x Hq

that is, by construction, the inverse of the map =5 o Z;. This completes the
justification of the commutative diagram (Figure |2)) presented in the introduction.

7. A BERS SLICE FOR GENUS ZERO ORBIFOLDS

We continue to use the notation of Section [6] Recall that in that section, we
constructed a simultaneous uniformization locus C = C (Teich®(I'y ), Hq) in the

‘character variety’ Ratg41(C) / ~ of bi-degree d:d algebraic correspondences on C
defined by Equation . The space C is the analog of the quasi-Fuchsian space
in our setup. Our next goal is to manufacture a complex-analytic slice in this
simultaneous uniformization locus such that the polynomial component is frozen to
be P(z) := z% (in Hgq), while the marked groups run through Teich”(T'y ). This is
akin to Bers’ original construction of the Bers slice in the quasi-Fuchsian locus (cf.
[Mar16, §5.10]).

7.1. The Bers embedding. With the natural identification of Teich” (I'y p) with
Teich® (T p) x {P}, the map
Ep 08 : Teich“(Tpp) x {P} — C
gives rise to a map
B : Teich”(T'pp) — C
(See Subsections for the definitions of =1, Es.)

Remark 7.1. From the discussion in this section, it will follow that the map 8 can

be thought of as an analog of the ‘Bers embedding’ of Teich(I',, ,) into the (analog
of the) ‘quasi-Fuchsian space’ C, where the latter sits inside the (analog of the)

‘character variety’ Ratq1(C) S~

We will now show that the image of the map B can be identified with a subset
of CF, where

L := dim¢ (Teich® (T p)) = dime (Teich(f‘nyp)) .

Suppose that a correspondence € defined by a degree (d + 1) rational map R (via
Equation ) lies in the image of B. Then, by Corollary the map R has p
critical points on 09, a critical point of multiplicity np — 2 in int I@, and p distinct
critical points, each of multiplicity n — 1, in 7~'\§.

Possibly after pre and post-composing R with elements of C'(n) and PSLy(C)
(respectively), we can assume the following.
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(1) oo is the unique superattracting fixed point (of local degree d) of the
corresponding conformal mating F,
(2) 0 e® with R(w0) = w0,
(3) R/(w0) =1, and
(4) R'(1) = 0 with R(1) = Xp(1).
As F maps oo to itself with local degree np — 1, it follows that R has an order np — 1
pole at the origin. The conditions R(o0) = 00 and R/(®0) = 1 now imply that R is

of the form
o Rl(z)
R(Z) T np-1

where R; is a monic polynomial of degree np. To obtain an explicit form of R, we
need to consider various cases.

Punctured spheres without orbifold points. In this case, n = 1 and p is an even
integer. We set p = 2¢q, for some ¢ > 2. We first post-compose R with a translation
to write it as

a2¢—1

»2q—1"

for ai,--- ,az—1 € C. Note also that Corollary forces the 2q critical points of
R on 09 to be of the form

R(z) =2+ 4o+

1 1
1a_17cl777"' yCq—1y — >
{ e )
for some ¢, - -+, cq—1 € C*. Differentiating R, one sees that the degree 2¢ polynomial
2q—1

Q(z) := 229 — 2 jajzzq_l_j
j=1

has {1,—1, ¢, é, y Cq—1, cq%l} as its roots. A routine application of Vieta’s
formula now shows that
ay Ag—2 aq a2q—3 1
7.1 R(z)=z+—+-+ +d = ,
( ) ( ) 2z 29—2 24 2293 (2(] _ 1) . 22¢-1
where
ji—1 )
(72) a2q—j—1 = ( ) JE {27 yq — 1}

B ED

We identify the rational maps in the image of B (where the normalization of these
rational maps is given by Equations and ) with their ¢ — 2 independent
complex coefficients ay,--- ,a,—2. Thus, the image of ‘B can be identified with a
subset of C972.

We also note that as / fl 2 is a (¢+1)—times punctured sphere, its Teichmiiller

space has complex dimension ¢ — 2.

Genus zero orbifolds with exactly one orbifold point of order 2 and no orbifold point
of order v = 3. In this case, n = 1 and p is an odd integer. We set p = 2¢ + 1, for
some g > 2. As in the previous case, we can post-compose R with a translation to
write it as

T T
R(z)—z+z+ + 2
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for ay,- -+ ,as, € C. Moreover, Corollary implies that the 2¢ + 1 critical points
of R on 09 are the form

1 1
130373"'70577
{ 1 1 q Cq}
for some ¢y, - -+ ,¢q € C*. Differentiating R, one sees that the degree 2¢ polynomial

2q
Q(z) := 22+l _ Z jaszq_j
j=1

has {1, ¢, é, S Cq, Ci} as its roots. Once again, a straightforward computation

q
using Vieta’s formula shows that

. . B B
(7.3) R(z) = z + ottt ottt s 5q - 220"
where
-1 .

(7.4) Azg—j = — 7o—x@j-1, JE€{2,- .q}.

o (2¢—4)"

Thus, with the identification of the rational maps in the image of B (normalized
by Equations (7.3) and (7.4))) with their ¢ — 1 independent complex coeflicients
ai, - ,aq—1, the map B can be thought of as taking values in C7 1.

Further, as D e f\l _ is a genus zero orbifold with (¢ + 1) punctures and one

order two orbifold po’int7 its Teichmiiller space has complex dimension g — 1.

Genus zero orbifolds with exactly one orbifold point of order v = 3 and at most
one orbifold point of order 2. In this case, n = v > 3 and p is odd (respectively,
even) depending on whether the orbifold has (respectively, does not have) an order
two orbifold point. Recall that by Corollary in addition to the (np — 2)—fold
critical point at the origin, the map R has

e p distinct critical points on 09, of which one/two are fixed by 1 (depending
on whether p is odd/even) and the others form 2—cycles under 7, and
e p distinct critical points, each of multiplicity n — 1, in 7’\5, and all these
critical points are mapped to a common critical value in 7.
It will be convenient to post-compose R with a translation such that the critical
value of R in 7 is at the origin. Then R has precisely p distinct zeroes at ay,--- ,ap,
each of multiplicity n — 1. Therefore,

(= o) (s = ay)"

an—l

R(z) =

In particular, the coefficients of R can be written in terms of the elementary
symmetric polynomials ey, - ,ep, in ag,--- ,ap. Using (logarithmic) differentiation,
one now easily sees that the p critical points of R on 090 are roots of the equation

(7.5)
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Since the roots of () are of the form
1

17_170777"'50777a

{ b a1 7 1}

when p = 2¢, and of the form

1 1
1 ey — ... -
{ 7017617 7ancq}7

when p = 2¢ + 1, we are now reduced to the computations carried out in the
previous two cases. In particular, it follows that if p = 2¢ (respectively, p = 2¢ + 1),
the polynomial @ has ¢ — 1 (respectively, ¢) independent coefficients. Since the
coefficients of () are multiples of the elementary symmetric polynomials ey, --- , e,
(see Equation ), we conclude that only ¢—1 (respectively, q) of these elementary
symmetric polynomials are unconstrained. Hence, the rational map R also has ¢ — 1
(respectively, ¢) independent complex coeflicients. As in the previous cases, the
image of B can therefore be identified with a subset of CZ~! (respectively, of C9).
Finally, we remark that Teich(f‘n,gq) (respectively, Teich(f‘n,gqﬂ)) has complex
dimension ¢ — 1 (respectively, q).

Complex-analyticity of B. The preceding analysis shows that the image of the map
B can be identified with a subset of C¥, where L = dim¢ (Teich(f‘mp))

Recall that the Teichmiiller space of an orbifold (or a Fuchsian group) can be
endowed with a complex structure via the Bers s1multaneoub uniformization theorem.
Spec1ﬁcally, in the statement below, we identify Telch(l" p) with the Bers slice

B(l"n ») in the space of quasi-Fuchsian representations of T, p (see [Mar16l §5.10]).
Proposition 7.2. B : Teich(I‘n,p) — CF is a biholomorphism onto its image.

Proof. We recall the notation P(z) = 2"~1. Let Xp : D — C and Xr,, :D— C
be the mating conjugacies associated with the conformal mating F' of P and A{ESP

(see Definition [3.1)).
Each representation (p : T, , — I') € B(T',, ) (see Section is given by

ﬁ(g) = ¢p °g in;la g€ Fn,pa

where v, is a quasiconformal homeomorphism of C that is conformal on D*. More-
over, the quasiconformal maps 1, depend complex-analytically on representations
peEB ( p)- We define the T, n,p—invariant Beltrami coefficient p, := ¥% (o) (where
Lo is the trivial Beltrami coefficient), and note that p, also depends complex-
analytically on p. We further push s, forward to the dynamical plane of Arﬂ‘isp, and
continue to call it p,. ,

It follows that the F'—invariant Beltrami coefficients

- {(%rn,,)* (1) on Zr,, (D)
' 0

elsewhere,

depend complex-analytically on p € B(f‘nyp). Consequently, the (normalized) qua-
siconformal maps ¢, solving the Beltrami equation with coefficient uz , depend
complex-analytically on p. Furthermore, the map ¢, o F o cpfjl is the conformal
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mating of P and AfPS with mating conjugacies ¢, 0 Xp and ¢, o Xr, , o 1@;1, where
4, is the quasiconformal conjugacy between A%isp and APS induced by 1,

Let R be the normalized rational map associated with the conformal mating
F. Let ¢, be a quasiconformal map solving the Beltrami equation with coefficient
R*(pup ). As the Beltrami coefficients R*(uur ,) depend complex-analytically on p,
the same is true for the maps @,. By the proof of Proposition

R, := cpPOROQB;l
is a rational map associated with the conformal mating ¢, o F o 4,0;1. Since both
families of quasi(ionformal maps {Saﬂ}ﬁels(f‘n,p) and {wp}ﬁels(f‘n,p) depend complex-
analytically on p, it follows that the coefficients of R, also depend complex-
analytically on p. Hence, the map B : B(T',, ,) — C¥ is complex-analytic.
The existence of the inverse map Z3 in Section shows that the map ‘B is

injective. Since the complex dimension of Teich(I',, ,) = B(T',, ) is L, it follows that
B is a biholomorphism onto its image (cf. [Ran86, Theorem 2.14]). O

7.2. Proof of Theorem

Proof of Theorem[C] Note that by construction, the map B sends each representa-
tion p : f‘n,p — T’ in the Bers slice B(f‘n,p) to a bi-degree (np — 1):(np — 1) algebraic
correspondence € on C that is a mating of z™~! and D /5 in the sense of Theo-
rem[5.2] The L complex coefficients of the normalized rational maps R defining these
correspondences € endow the resulting space of correspondences with a complex
manifold structure. By Proposition[7:2] the map B yields a biholomorphism between
the above complex manifold and the Bers slice 5 (f‘nm). O

We conclude this section with the following question.

Question 7.3. Let ¥ € S, and L := dimc(Teich(X)).
(1) Is the image B(Teich(X)) pre-compact in C*?
(2) Describe the dynamics of the correspondences lying on the boundary of
B(Teich(X)). In particular, do Bers boundary groups not treated in [MM23al,
Section 7] arise?

8. BULLETT-PENROSE-LOMONACO CORRESPONDENCES

As mentioned in the introduction, in the special case n = 3 and p = 1, the
correspondences produced by Theorem [B| belong to the family of bi-degree 2:2
correspondences studied by Bullett-Penrose-Lomonaco [BP94l [BL.20al, BL20b| [BL.22].
In this section, we will derive explicit formulae for these correspondences using our
conformal matings framework, and show that they can indeed be brought to the
Bullett-Penrose normal form (see [BP94, Equation 1.1]).

Recall from Section that the index three extension f‘3’1 of I's,; is Mobius
conjugate to the standard modular group PSLo(Z). In particular, Teich” (T's,1) =
Teich(f‘gyl) is a singleton. Further let P be a polynomial lying in a real-symmetric
hyperbolic component in the connectedness locus of degree np — 1 = 2 polynomials;
i.e., P is a quadratic polynomial in a real-symmetric hyperbolic component of the
Mandelbrot set. We denote the conformal mating of A;ESI and P by F.

Since p = 1, it follows that the set A, is a singleton, and hence the lamination
Lp is empty (see Section . Therefore,  := int Dom(F') is a Jordan domain. By
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Proposition [£.9] there exist a cubic rational map R and a Jordan domain © with
n(0D) = 0D such that R carries D injectively onto Q and F|o = Rono (Rlo)™'.
By Corollary the map R has a critical point ¢; € 09 that is fixed under 7.
Moreover, the same corollary says that R has a simple critical point c; € R™(K)\D
and a double critical point c3 € R™(T)\D.

Also note that 7 is a simply connected domain, and R : T>Tisa degree three
branched covering with a double critical point at ¢3. By Theorem [5.16] the action of
the associated correspondence € on T is conformally conjugate to the action of the
modular group f‘371 on D, and € is a mating of P and the modular surface ]D)/f\3 x

We will now bring the correspondence € to the Bullett-Penrose-Lomonaco normal
form. Let My, My be Mobius maps such that

Mi(c1) =1, Mi(c2) = —1, Mi(cs) = 0,
and
MQ(R(Cl)) = —27 MQ(R(CQ) = 2, MQ(R(CS) = Q0.
We set Ry := MaoRo Mfl. Then, R; has a double critical point at oo with
the associated critical value also at oo, and hence R; is a cubic polynomial. An
elementary calculation using the facts that the two finite critical points of Ry are at
41 and the associated critical values are at F2 now shows that R;(u) = u?® — 3u.
We also set
Q1 = My(Q), m:=MonoM', Fy=MyoFoM;",
and observe that
Filg, = Myo Rono (Rlo)™ o My = Ryom o (Rilar o)

Note that the involution n; fixes 1 and a := M;(—1), and hence can be written as
m(u) = (2‘1;_137;‘;12)“ We will change coordinates so that 7; becomes the involution

z — —z. To this end, we define Ry := Ry oMgl7 where Mz (u) = =X sends the fixed

a—u

points 1, a of n; to 0,00, respectively. The conjugated involution 7y := Mzon; oM3_1
fixes 0, 00, and thus can be written as 72(z) = —z. Finally,

Filo, = Roo Myon o My o (Ra|apzonn (0)) " = Raom2 o (Ra|agons ()

The associated correspondence (which is obtained by lifting F; and its backward
branches by Rz) is given by

(X,Y) €€ «— Ry(Y) = Ra(na(X)) =0, Y # mp(X)
= Ri(M5'(Y))~ Ri(M5'(=X)) =0, Y # -X

ay +1\° a¥ +1 —aX +1\° —aX +1
— ) 3——)=——F) -3|— ), Y #-X

{:)(Y+1> 3<Y+1> (—X+1) 3<—X+1>’ 7
ay +1\° aY +1 aX —1 aX —1\?

= —— ] + +=——] =3
Y +1 Y+1 X -1 X -1

Thus, the correspondence € belongs to the family of bi-degree 2:2 correspondences
a la Bullett-Penrose-Lomonaco [BP94l [BL.20al, [BL.20b).

Remark 8.1. More generally, when p = 1 and n > 3, the uniformizing rational maps
R can be chosen as degree n polynomials. The associated correspondences € are
matings of degree (n — 1) polynomials P and the genus zero orbifold ¥ = D e T .

n,
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with exactly one puncture, exactly one order two orbifold point, and exactly one
order n > 3 orbifold point. Note that I', ; has an index two subgroup I'}; ; that
uniformizes the genus zero orbifold ¥* with exactly one puncture, exactly two

order n >

3 orbifold points, and no other orbifold point. The correspondences €

admit index two subcorrespondences that are matings of P°? (polynomials of degree
(n —1)?) and orbifolds X* double covering % (cf. [Bul00, §4.3]).
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