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AN EXPOSITION OF AMALGAMATION GEOMETRY AND

SPLIT GEOMETRY
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Abstract. This is an expository paper, aimed at giving a leisurely account

of some model geometries associated to surface Kleinian groups. We describe
the notion of manifolds of amalgamation geometry and its generalization, split
geometry. We show that the limit set of any surface group of split geometry
is locally connected, by constructing a natural Cannon-Thurston map.
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1. Introduction

In [Mj06] we prove the existence of Cannon-Thurston maps for arbitrary surface
Kleinian groups without accidental parabolics. The proof proceeds by constructing
a coarse model geometry, called split geometry, satisfied by all associated hyperbolic
3-manifolds. In this paper we give an expository account of the model geometries
that go into [Mj06].

1.1. Questions, Conjectures and Statement of Results. In Section 6 of [CT85],
Cannon and Thurston raise the following problem:

Question 1.1. Suppose a closed surface group π1(S) acts freely and properly dis-

continuously on H3 by isometries. Does the inclusion ĩ : S̃ → H3 extend continu-
ously to the boundary?

The authors of [CT85] point out that for a simply degenerate group, this is
equivalent to asking if the limit set is locally connected.

In [McM01], McMullen makes the following more general conjecture:

Conjecture 1.2. For any hyperbolic 3-manifold N with finitely generated funda-
mental group, there exists a continuous, π1(N)-equivariant map

F : ∂π1(N) → Λ ⊂ S2
∞

where the boundary ∂π1(N) is constructed by scaling the metric on the Cayley
graph of π1(N) by the conformal factor of d(e, x)−2, then taking the metric com-
pletion. (cf. Floyd [Flo80])

The author raised the following question in his thesis [Mit97] (see also [Bes04]):

Question 1.3. Let G be a hyperbolic group in the sense of Gromov acting freely
and properly discontinuously by isometries on a hyperbolic metric space X. Does
the inclusion of the Cayley graph i : ΓG → X extend continuously to the (Gromov)
compactifications?

A similar question may be asked for relatively hyperbolic groups (in the sense of
Gromov [Gro85] and Farb [Far98]).

The question for relatively hyperbolic groups unifies all the above questions and
conjectures.

In this paper we describe a model geometry we call amalgamation geometry
which is, in a way, a considerable generalization of the notion of i-bounded geometry
introduced in [Mj05b]. We then further generalize it by weakening the hypothesis
to the notion of split geometry. For ease of exposition we shall restrict ourselves to
surfaces without punctures (parabolics). The main Theorem of this paper is the
following.
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Theorem 8.3: Let ρ : π1(S) → PSL2(C) be a faithful representation of a surface
group with or without punctures, and without accidental parabolics. Let M =
H3/ρ(π1(S)) be of split geometry. Let i be an embedding of S in M that induces a

homotopy equivalence. Then the embedding ĩ : S̃ → M̃ = H3 extends continuously
to a map î : D2 → D3. Further, the limit set of ρ(π1(S)) is locally connected.

1.2. History. In [Abi76], Abikoff (1976) claimed that limit sets of simply degener-
ate surface Kleinian groups were never locally connected. Thurston and Kerckhoff
found a flaw in his proof in about 1980.

The first major positive result was proved by Cannon and Thurston [CT85]
[CT07] for hyperbolic 3-manifolds fibering over the circle with fiber a closed surface
group.

This was generalized by Minsky who proved the Cannon-Thurston result for
bounded geometry Kleinian closed surface groups [Min94].

An alternate approach was given by the author in [Mit98b] proving the Cannon-
Thurston result for hyperbolic 3-manifolds of bounded geometry without parabolics
and with freely indecomposable fundamental group. A different approach based on
Minsky’s work was given by Klarreich [Kla99]. In [Mit98a] we gave some further
extensions to the domain of Gromov-hyperbolic groups (see also [MP10]).

Bowditch [Bow07] [Bow02] proved the Cannon-Thurston result for punctured
surface Kleinian groups of bounded geometry. In [Mj09] we extended Bowditch’s
results to 3 manifolds of bounded geometry whose cores are incompressible away
from cusps (see also [Mj10a]).

McMullen [McM01] proved the Cannon-Thurston result for punctured torus
groups, using Minsky’s model for these groups [Min99]. In [Mj05b] we identified a
large-scale coarse geometric structure involved in the Minsky model for punctured
torus groups (and called it i-bounded geometry). We gave a proof for models of
i-bounded geometry.

In this paper, we define amalgamation geometry and prove the Cannon-Thurston
result for models of amalgamation geometry. We then weaken this assumption to
what we call split geometry and prove the Cannon-Thurston property for such
geometries. In [Mj06] we show that the Minsky model for general simply or totally
degenerate surface groups [Min02] [BCM04] gives rise to a model of split geometry.
This shows that all surface groups have the Cannon-Thurston property and hence
have locally connected limit sets. In [Mj10b] we extend the results of [Mj06] to all
finitely generated Kleinian groups. In [DM10b], [Mj07] and [DM10a] we describe
point-preimages of Cannon-Thurston maps.

2. Preliminaries and Amalgamation Geometry

2.1. Hyperbolic Metric Spaces. We start off with some preliminaries about
hyperbolic metric spaces in the sense of Gromov [Gro85]. For details, see [CDA90],
[GdlH90]. Let (X, d) be a hyperbolic metric space. The Gromov boundary of X,
denoted by ∂X, is the collection of equivalence classes of geodesic rays r : [0,∞) →
Γ with r(0) = x0 for some fixed x0 ∈ X, where rays r1 and r2 are equivalent if

sup{d(r1(t), r2(t))} < ∞. Let X̂=X ∪ ∂X denote the natural compactification of
X topologized the usual way(cf.[GdlH90] pg. 124).

Definition 2.1. A subset Z of X is said to be k-quasiconvex if any geodesic
joining points of Z lies in a k-neighborhood of Z. A subset Z is quasiconvex if it
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is k-quasiconvex for some k. (For simply connected real hyperbolic manifolds this is
equivalent to saying that the convex hull of the set Z lies in a bounded neighborhood
of Z. We shall have occasion to use this alternate characterization.)
A map f from one metric space (Y, dY ) into another metric space (Z, dZ) is said
to be a (K, ǫ)-quasi-isometric embedding if

1

K
(dY (y1, y2))− ǫ ≤ dZ(f(y1), f(y2)) ≤ KdY (y1, y2) + ǫ

If f is a quasi-isometric embedding, and every point of Z lies at a uniformly bounded
distance from some f(y) then f is said to be a quasi-isometry. A (K, ǫ)-quasi-
isometric embedding that is a quasi-isometry will be called a (K, ǫ)-quasi-isometry.

A (K, ǫ)-quasigeodesic is a (K, ǫ)-quasi-isometric embedding of a closed inter-
val in R. A (K,K)-quasigeodesic will also be called a K-quasigeodesic.

Let (X, dX) be a hyperbolic metric space and Y be a subspace that is hyperbolic
with the inherited path metric dY . By adjoining the Gromov boundaries ∂X and

∂Y to X and Y , one obtains their compactifications X̂ and Ŷ respectively.
Let i : Y → X denote inclusion.

Definition 2.2. Let X and Y be hyperbolic metric spaces and i : Y → X be an

embedding. A Cannon-Thurston map î from Ŷ to X̂ is a continuous extension
of i.

The following lemma (Lemma 2.1 of [Mit98a]) says that a Cannon-Thurston map
exists if for all M > 0 and y ∈ Y , there exists N > 0 such that if λ lies outside
an N ball around y in Y then any geodesic in X joining the end-points of λ lies
outside the M ball around i(y) in X. For convenience of use later on, we state this
somewhat differently.

Lemma 2.3. A Cannon-Thurston map from Ŷ to X̂ exists if the following condi-
tion is satisfied:

Given y0 ∈ Y , there exists a non-negative functionM(N), such thatM(N) → ∞
as N → ∞ and for all geodesic segments λ lying outside an N -ball around y0 ∈ Y
any geodesic segment in ΓG joining the end-points of i(λ) lies outside theM(N)-ball
around i(y0) ∈ X.

The above result can be interpreted as saying that a Cannon-Thurston map exists
if the space of geodesic segments in Y embeds properly in the space of geodesic
segments in X.

2.2. Amalgamation Geometry. We start with a hyperbolic surface S without
punctures. The hyperbolic structure is arbitrary, but it is important that a choice
be made.

The Amalgamated Building Block

For the construction of an amalgamated block B, I will denote the closed interval
[0, 3]. We will describe a geometry on S × I. B has a geometric core K with
bounded geometry boundary and a preferred geodesic γ(= γB) of bounded length.

There will exist ǫ0, ǫ1, D (independent of the block B) such that the following
hold:
1) B is identified with S × I
2) B has a geometric core K identified with S × [1, 2]. (K, in its intrinsic path
metric, may be thought of, for convenience, as a convex hyperbolic manifold with
boundary consisting of pleated surfaces. But we will have occasion to use geometries
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that are only quasi-isometric to such geometries when lifted to universal covers. As
of now, we do not impose any further restriction on the geometry of K.)
3) γ is homotopic to a simple closed curve on S × {i} for any i ∈ I
4) γ is small, i.e. the length of γ is bounded above by ǫ0
5) The intrinsic metric on S × i (for i = 1, 2) has bounded geometry, i.e. any
closed geodesic on S × {i} has length bounded below by ǫ1. Further, the diameter
of S × {i} is bounded above by D. (The latter restriction would have followed
naturally had we assumed that the curvature of S × {i} is hyperbolic or at least
pinched negative.)
6) There exists a regular neighborhood Nk(γ) ⊂ K of γ which is homeomorphic to
a solid torus, such that Nk(γ) ∩ S × {i} is homeomorphic to an open annulus for
i = 1, 2. We shall have occasion to denote Nk(γ) by Tγ and call it the Margulis
tube corresponding to γ.
7) S × [0, 1] and S × [1, 2] are given the product structures corresponding to the
bounded geometry structures on S × {i}, for i = 1, 2 respectively.

We next describe the geometry of the geometric core K. K − Tγ has one or two
components according as γ does not or does separate S. These components shall be
called amalgamation components of K. Let K1 denote such an amalgamation

component. Then a lift K̃1 of K1 to K̃ is bounded by lifts T̃γ of Tγ . The union of

such a lift K̃1 along with the lifts T̃γ that bound it will be called an amalgamation

component of K̃.

Note that two amalgamation components of K̃, if they intersect, shall do so along

a lift T̃γ of Tγ . In this case, they shall be referred to as adjacent amalgamation
components.

In addition to the above structure of B, we require in addition that there exists
C > 0 (independent of B) such that

• Each amalgamation component of K̃ is C-quasiconvex in the intrinsic metric on

K̃.

Note 1: Quasiconvexity of an amalgamation component follows from the fact that
any geometric subgroup of infinite index in a surface group is quasiconvex in the
latter. The restriction above is therefore to ensure uniform quasiconvexity. We shall

strengthen this restriction further when we describe the geometry of M̃ , where M
is a 3-manifold built up of blocks of amalgamation geometry and those of bounded
geometry by gluing them end to end. We shall require that each amalgamation

component is uniformly quasiconvex in M̃ rather than just in K̃.
Note 2: So far, the restrictions on K are quite mild. There are really two re-
strictions. One is the existence of a bounded length simple closed geodesic whose
regular neighborhood intersects the bounding surfaces of K in annuli. The second
restriction is that the two boundary surfaces of K have bounded geometry.

The copy of S × I thus obtained, with the restrictions above, will be called a
building block of amalgamated geometry or an amalgamation geometry
building block, or simply an amalgamation block.

Thick Block
Fix constants D, ǫ and let µ = [p, q] be an ǫ-thick Teichmuller geodesic of length

less than D. µ is ǫ-thick means that for any x ∈ µ and any closed geodesic η in the
hyperbolic surface Sx over x, the length of η is greater than ǫ. Now let B denote
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the universal curve over µ reparametrized such that the length of µ is covered in
unit time. Thus B = S × [0, 1] topologically.
B is given the path metric and is called a thick building block.
Note that after acting by an element of the mapping class group, we might as

well assume that µ lies in some given compact region of Teichmuller space. This is
because the marking on S×{0} is not important, but rather its position relative to
S×{1} Further, since we shall be constructing models only upto quasi-isometry, we
might as well assume that S × {0} and S × {1} lie in the orbit under the mapping
class group of some fixed base surface. Hence µ can be further simplified to be a
Teichmuller geodesic joining a pair (p, q) amongst a finite set of points in the orbit
of a fixed hyperbolic surface S.

The Model Manifold

Note that the boundary of an amalgamation block Bi consists of S×{0, 3} and the
intrinsic path metric on each such S×{0} or S×{3} is of bounded geometry. Also,
the boundary of a thick block B consists of S × {0, 1}, where S0, S1 lie in some
given bounded region of Teichmuller space. The intrinsic path metrics on each such
S × {0} or S × {1} is the path metric on S.

The model manifold of amalgamation geometry is obtained from S×J (where
J is a sub-interval of R, which may be semi-infinite or bi-infinite. In the former
case, we choose the usual normalization J = [0,∞) ) by first choosing a sequence
of blocks Bi (thick or amalgamated) and corresponding intervals Ii = [0, 1] or [0, 3]
according as Bi is thick or amalgamated. The metric on S × Ii is then declared
to be that on the building block Bi. Implicitly, we are requiring that the surfaces
along which gluing occurs have the same metric. Thus we have,

Definition 2.4. A manifold M homeormorphic to S × J , where J = [0,∞) or
J = (−∞,∞), is said to be a model of amalgamation geometry if

1) there is a fiber preserving homeomorphism from M to S̃×J that lifts to a quasi-
isometry of universal covers
2) there exists a sequence Ii of intervals (with disjoint interiors) and blocks Bi

where the metric on S × Ii is the same as that on some building block Bi

3)
⋃

i Ii = J
4) There exists C > 0 such that for all amalgamated blocks B and geometric cores

K ⊂ B, all amalgamation components of K̃ are C-quasiconvex in M̃

The last restriction (4) above is a global restriction on the geometry of amalga-

mation components, not just a local one (i.e. quasiconvexity in M̃ rather than B̃
is required.)

The figure below illustrates schematically what the model looks like. Filled
squares correspond to solid tori along which amalgamation occurs. The adjoining
piece(s) denote amalgamation blocks of K. The blocks which have no filled squares
are the thick blocks and those with filled squares are the amalgamated blocks
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Figure 1: Model of amalgamated geometry (schematic)

Definition 2.5. A manifold M homeomorphic to S × J , where J = [0,∞) or
J = (−∞,∞), is said to have amalgamated geometry if there exists K, ǫ > 0
and a model manifold M1 of amalgamation geometry such that
1) there exists a homeomorphism φ from M to M1. This induces from the block
decomposition of M1 a block decomposition of M .
2) We require in addition that the induced homeomorphism φ̃ between universal
covers of blocks is a (K, ǫ) quasi-isometry.

We shall usually suppress the homeomorphism φ and takeM itself to be a model
manifold of amalgamation geometry.

Note: We shall later have occasion to introduce a different model, called the
graph model

3. Relative Hyperbolicity

In this section, we shall recall first certain notions of relative hyperbolicity due
to Farb [Far98], Klarreich [Kla99] and the author [Mj05b]. Using these, we shall
derive certain Lemmas that will be useful in studying the geometry of the universal
covers of building blocks.

3.1. Electric Geometry. We start with a surface S (assumed hyperbolic for the
time being) of (K, ǫ) bounded geometry, i.e. S has diameter bounded by K and
injectivity radius bounded below by ǫ. Let σ be a simple closed geodesic on S.
Replace σ by a copy of σ × [0, 1], by cutting open along σ and gluing in a copy
of σ × [0, 1] = Aσ. (This is like ‘grafting’ but we shall not have much use for this
similarity in this paper.) Let SG denote the grafted surface. SG − Aσ has one or
two components according as σ does not or does separate S. Call these amalga-
mation component(s) of S We shall denote amalgamation components as SA.
We construct a pseudometric on SG, by declaring the metric on each amalgamation
component to be zero and to be the product metric on Aσ. Thus we define:

• the length of any path that lies in the interior of an amalgamation component to
be zero
• the length of any path that lies in Aσ to be its (Euclidean) length in the path
metric on Aσ

• the length of any other path to be the sum of lengths of pieces of the above two
kinds.
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This allows us to define distances by taking the infimum of lengths of paths
joining pairs of points and gives us a path pseudometric, which we call the electric
metric on SG. The electric metric also allows us to define geodesics. Let us call
SG equipped with the above pseudometric (SGel, dGel) (to be distinguished from a
‘dual’ construction of an electric metric Sel used in [Mj05b], where the geodesic σ,
rather than its complementary component(s) is electrocuted.)

Important Note: We may and shall regard S as a graph of groups with vertex
group(s) the subgroup(s) corresponding to amalgamation component(s) and edge

group Z, the fundamental group of Aσ. Then S̃ equipped with the lift of the above
pseudometric is quasi-isometric to the tree corresponding to the splitting on which
π1(S) acts.

We shall be interested in the universal cover S̃Gel of SGel. Paths in SGel and S̃Gel

will be called electric paths (following Farb [Far98]). Geodesics and quasigeodesics
in the electric metric will be called electric geodesics and electric quasigeodesics
respectively.

Definition 3.1. A path γ : I → Y in a path metric space Y is a K-quasigeodesic
if we have

L(β) ≤ KL(A) +K

for any subsegment β = γ|[a, b] and any rectifiable path A : [a, b] → Y with the same
endpoints.

γ is said to be an electric K, ǫ-quasigeodesic in S̃Gel without backtracking if γ is

an electric K-quasigeodesic in S̃Gel and γ does not return to any any lift S̃A ⊂ S̃Gel

(of an amalgamation component SA ⊂ S) after leaving it.

We collect together certain facts about the electric metric that Farb proves in
[Far98]. NR(Z) will denote the R-neighborhood about the subset Z in the hyper-
bolic metric. Ne

R(Z) will denote the R-neighborhood about the subset Z in the
electric metric.

Lemma 3.2. (Lemma 4.5 and Proposition 4.6 of [Far98])

(1) Electric quasi-geodesics electrically track hyperbolic geodesics: Given P > 0,

there exists K > 0 with the following property: For some S̃Gel, let β be any
electric P -quasigeodesic without backtracking from x to y, and let γ be the
hyperbolic geodesic from x to y. Then β ⊂ Ne

K(γ).

(2) Hyperbolicity: There exists δ such that each S̃Gel is δ-hyperbolic, indepen-
dent of the curve σ whose lifts are electrocuted.

Note: As pointed out before, SGel is quasi-isometric to a tree and is therefore
hyperbolic. The above assertion holds in far greater generality than stated. We
discuss this below.

We consider a hyperbolic metric space X and a collection H of (uniformly)
C-quasiconvex uniformly separated subsets, i.e. there exists D > 0 such that for
H1, H2 ∈ H, dX(H1, H2) ≥ D. In this situation X is hyperbolic relative to the
collection H. The result in this form is due to Klarreich [Kla99]. We give the
general version of Farb’s theorem below and refer to [Far98] and Klarreich [Kla99]
for proofs.
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Lemma 3.3. (See Lemma 4.5 and Proposition 4.6 of [Far98] and Theorem 5.3
of Klarreich [Kla99]) Given δ, C,D there exists ∆ such that if X is a δ-hyperbolic
metric space with a collection H of C-quasiconvex D-separated sets. then,

(1) Electric quasi-geodesics electrically track hyperbolic geodesics: Given P > 0,
there exists K > 0 with the following property: Let β be any electric P -
quasigeodesic from x to y, and let γ be the hyperbolic geodesic from x to y.
Then β ⊂ Ne

K(γ).

(2) γ lies in a hyperbolic K-neighborhood of N0(β), where N0(β) denotes the
zero neighborhood of β in the electric metric.

(3) Hyperbolicity: X is ∆-hyperbolic.

A special kind of geodesic without backtracking will be necessary for universal

covers S̃Gel of surfaces with some electric metric. Let σ, Aσ be as before.

Let λe be an electric geodesic in some (S̃Gel, dGel). Then, each segment of λe
between two lifts Ãσ of Aσ (i.e. lying inside a lift of an amalgamation component)
is required to be perpendicular to the bounding geodesics. We shall refer to these
segments of λe as amalgamation segments because they lie inside lifts of the
amalgamation components.

Let a, b be the points at which λe enters and leaves a lift Ãσ of Aσ. If a, b lie
on the same side, i.e. on a lift of either σ × {0} or σ × {1}, then we join a, b by

the geodesic joining them. If they lie on opposite sides of Ãσ, then assume, for
convenience, that a lies on a lift of σ × {0} and b lies on a lift of σ × {1}. Then we
join a to b by a union of 2 geodesic segments [a, c] and [d, b] lying along σ̃×{0} and

σ̃×{1} respectively (for some lift Ãσ), along with a ‘horizontal’ segment [c, d], where

[c, d] ⊂ Ãσ projects to a segment of the form {x} × [0, 1] ⊂ σ × [0, 1]. We further
require that the sum of the lengths d(a, c) and d(d, b) is the minimum possible. The
union of the three segments [a, c], [c, d], [d, b] shall be denoted by [a, b]int and shall
be referred to as an interpolating segment.See figure below.

a

b

c d

Figure 2: Interpolating segment

The union of the amalgamation segments along with the interpolating segments
gives rise to a preferred representative of a quasigeodesic without backtracking join-
ing the end-points of λGel. Such a representative of the class of λGel shall be called
the canonical representative of λGel. Further, the underlying set of the canon-
ical representative in the hyperbolic metric shall be called the electro-ambient
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representative λq of λe. Since λq turns out to be a hyperbolic quasigeodesic
(Lemma 3.5 below), we shall also call it an electro-ambient quasigeodesic. See
Figure 3 below:

Figure 3:Electro-ambient quasigeodesic

Remark: We note first that if we collapse each lift of Aσ along the I(= [0, 1])-
fibers, (and thus obtain a geodesic that is a lift of σ), then λGel becomes an electric

geodesic λel in the universal cover S̃el of Sel. Here Sel denotes the space obtained
by electrocuting the geodesic σ (See Section 3.1 of [Mj05b].

Let c : SG → S be the map that collapses I-fibers, i.e. it maps the annulus

Aσ = σ × I to the geodesic σ by taking (x, t) to x. The lift c̃ : S̃G → S̃ collapses
each lift of Aσ along the I(= [0, 1])-fibers to a geodesic that is a lift of σ). Also it

takes λGel to an electric geodesic λel in the universal cover S̃el of Sel (that λel is an

electric geodesic in S̃el follows easily, say from normal forms). These were precisely

the electro-ambient quasigeodesics in the space S̃el (See Section 3.1 of [Mj05b] for
definitions).

Remark: The electro-ambient geodesics in the sense of [Mj05b] and those in
the present paper differ slightly. The difference is due to the grafting annulus Aσ

that we use here in place of σ. What is interesting is that whether we electrocute σ
(to obtain Sel) or its complementary components (to obtain SGel), we obtain very
nearly the same electro-ambient geodesics. In fact modulo c, they are the same.

We now recall a Lemma from [Mj05b]:

Lemma 3.4. (See Lemma 3.7 of [Mj05b] ) There exists (K, ǫ) such that each

electro-ambient representative λel of an electric geodesic in S̃el is a (K, ǫ) hyperbolic
quasigeodesic.

Since c̃ is clearly a quasi-isometry, it follows easily that:

Lemma 3.5. There exists (K, ǫ) such that each electro-ambient representative λGel

of an electric geodesic in S̃Gel is a (K, ǫ) hyperbolic quasigeodesic.

In the above form, electro-ambient quasigeodesics are considered only in the con-
text of surfaces, closed geodesics on them and their complementary (amalgamation)
components. A considerable generalization of this was obtained in [Mj05b], which

will be necessary while considering the global geometry of M̃ (rather than the

geometry of B̃, for an amalgamated building block B).
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Definition 3.6. Given a collection H of C-quasiconvex, D-separated sets and a
number ǫ we shall say that a geodesic (resp. quasigeodesic) γ is a geodesic (resp.
quasigeodesic) without backtracking with respect to ǫ neighborhoods if γ does not
return to Nǫ(H) after leaving it, for any H ∈ H. A geodesic (resp. quasigeodesic) γ
is a geodesic (resp. quasigeodesic) without backtracking if it is a geodesic (resp.
quasigeodesic) without backtracking with respect to ǫ neighborhoods for some ǫ ≥ 0.

Note: For strictly convex sets, ǫ = 0 suffices, whereas for convex sets any ǫ > 0
is enough.

Let X be a δ-hyperbolic metric space, and H a family of C-quasiconvex, D-
separated, collection of subsets. Then by Lemma 3.3, Xel obtained by electrocuting
the subsets in H is a ∆ = ∆(δ, C,D) -hyperbolic metric space. Now, let α =
[a, b] be a hyperbolic geodesic in X and β be an electric P -quasigeodesic without
backtracking joining a, b. Replace each maximal subsegment, (with end-points p, q,
say) starting from the left of β lying within some H ∈ H by a hyperbolic geodesic
[p, q]. The resulting connected path βq is called an electro-ambient representative
in X.

In [Mj05b] we noted that βq need not be a hyperbolic quasigeodesic. However, we
did adapt Proposition 4.3 of Klarreich [Kla99] to obtain the following:

Lemma 3.7. (See Proposition 4.3 of [Kla99], also see Lemma 3.10 of [Mj05b])
Given δ, C,D,P there exists C3 such that the following holds:
Let (X, d) be a δ-hyperbolic metric space and H a family of C-quasiconvex, D-
separated collection of quasiconvex subsets. Let (X, de) denote the electric space
obtained by electrocuting elements of H. Then, if α, βq denote respectively a hy-
perbolic geodesic and an electro-ambient P -quasigeodesic with the same end-points,
then α lies in a (hyperbolic) C3 neighborhood of βq.

Note: The above Lemma will be needed while considering geodesics in M̃ .

3.2. Electric isometries. Recall that SG is a grafted surface obtained from a
(fixed) hyperbolic metric by grafting an annulus Aσ in place of a geodesic σ.

Now let φ be any diffeomorphism of SG that fixes Aσ pointwise and (in case
(SG − Aσ) has two components) preserves each amalgamation component as a
set, i.e. φ sends each amalgamation component to itself. Such a φ will be called
a component preserving diffeomorphism. Then in the electrocuted surface
SGel, any electric geodesic has length equal to the number of times it crosses Aσ. It
follows that φ is an isometry of SGel. (See Lemma 3.12 of [Mj05b] for an analogous
result in Sel.) We state this below.

Lemma 3.8. Let φ denote a component preserving diffeomorphism of SG. Then φ
induces an isometry of (SGel, dGel).

Everything in the above can be lifted to the universal cover S̃Gel. We let φ̃ de-

note the lift of φ to S̃Gel. This gives

Lemma 3.9. Let φ̃ denote a lift of a component preserving diffeomorphism φ to

(S̃Gel, dGel). Then φ̃ induces an isometry of (S̃Gel, dGel).
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3.3. Nearest-point Projections. We need the following basic lemmas from [Mit98b]
and [Mj05b].

The following Lemma says nearest point projections in a δ-hyperbolic metric
space do not increase distances much.

Lemma 3.10. (Lemma 3.1 of [Mit98b]) Let (Y, d) be a δ-hyperbolic metric space
and let µ ⊂ Y be a C-quasiconvex subset, e.g. a geodesic segment. Let π : Y → µ
map y ∈ Y to a point on µ nearest to y. Then d(π(x), π(y)) ≤ C3d(x, y) for all
x, y ∈ Y where C3 depends only on δ, C.

The next lemma says that quasi-isometries and nearest-point projections on
hyperbolic metric spaces ‘almost commute’.

Lemma 3.11. (Lemma 3.5 of [Mit98b])Suppose (Y1, d1) and (Y2, d2) are δ-hyperbolic.
Let µ1 be some geodesic segment in Y1 joining a, b and let p be any vertex of Y1.
Also let q be a vertex on µ1 such that d1(p, q) ≤ d2(p, x) for x ∈ µ1. Let φ be a
(K, ǫ) - quasiisometric embedding from Y1 to Y2. Let µ2 be a geodesic segment in
Y2 joining φ(a) to φ(b) . Let r be a point on µ2 such that d2(φ(p), r) ≤ d2(φ(p), x)
for x ∈ µ2. Then d2(r, φ(q)) ≤ C4 for some constant C4 depending only on K, ǫ
and δ.

For our purposes we shall need the above Lemma for quasi-isometries from S̃a to

S̃b for two different hyperbolic structures on the same surface. We shall also need
it for electrocuted surfaces.

Yet another property that we shall require for nearest point projections is that
nearest point projections in the electric metric and in the ‘almost hyperbolic’ metric

(coming as a lift of the metric on SG) almost agree. Let S̃G = Y be the universal
cover of a surface with the grafted metric. Equip Y with the path metric d as
usual. Then Y is quasi-isometric to the hyperbolic plane. Recall that dGel de-
notes the electric metric on Y obtained by electrocuting the lifts of complementary
components. Now, let µ = [a, b] be a geodesic on (Y, d) and let µq denote the
electro-ambient quasigeodesic joining a, b (See Lemma 3.4). Let π denote the near-
est point projection in (Y, d). Tentatively, let πe denote the nearest point projection
in (Y, dGel). Note that πe is not well-defined. It is defined upto a bounded amount
of discrepancy in the electric metric de. But we would like to make πe well-defined
upto a bounded amount of discrepancy in the metric d.

Definition 3.12. Let y ∈ Y and let µq be an electro-ambient representative of
an electric geodesic µGel in (Y, dGel). Then πe(y) = z ∈ µq if the ordered pair
{dGel(y, πe(y)), d(y, πe(y))} is minimized at z.

The proof of the following Lemma shows that this gives us a definition of πe which
is ambiguous by a finite amount of discrepancy not only in the electric metric but
also in the hyperbolic metric.

Lemma 3.13. There exists C > 0 such that the following holds. Let µ be a hy-
perbolic geodesic joining a, b. Let µGel be an electric geodesic joining a, b. Also let
µq be the electro-ambient representative of µGel. Let πh denote the nearest point
projection of Y onto µ. d(πh(y), πe(y)) is uniformly bounded.

Proof: This Lemma is similar to Lemma 3.16 of [Mj05b], but its proof is some-

what different. For the purposes of this lemma we shall refer to the metric on S̃G

as the hyperbolic metric whereas it is in fact only quasi-isometric to it.
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[u, v] and [u, v]q will denote respectively the hyperbolic geodesic and the electro-
ambient quasigeodesic joining u, v. Since [u, v]q is a quasigeodesic by Lemma 3.4, it
suffices to show that for any y, its hyperbolic and electric projections πh(y), πe(y)
almost agree.

First note that any hyperbolic geodesic η in S̃G is also an electric geodesic. This

follows from the fact that (S̃G, dGel) maps to a tree T (arising from the splitting
along σ) with the pullback of every vertex a set of diameter zero in the pseudometric

dGel. Now if a path in S̃G projects to a path in T that is not a geodesic, then it must
backtrack. Hence, it must leave an amalgamating component and return to it. Such

a path can clearly not be a hyperbolic geodesic in S̃G (since each amalgamating
component is convex).

Next, it follows that hyperbolic projections automatically minimize electric dis-
tances. Else as in the preceding paragraph, [y, πh(y)] would have to cut a lift of
σ̃ = σ̃1 that separates [u, v]q. Further, [y, πh(y)] cannot return to σ̃1 after leaving
it. Let z be the first point at which [y, πh(y)] meets σ̃1. Also let w be the point
on [u, v]q ∩ σ̃1 that is nearest to z. Since amalgamation segments of [u, v]q meeting
σ̃1 are perpendicular to the latter, it follows that d(w, z) < d(w, πh(y)) and there-
fore d(y, z) < d(y, πh(y)) contradicting the definition of πh(y). Hence hyperbolic
projections automatically minimize electric distances.

Further, it follows by repeating the argument in the first paragraph that [y, πh(y)]
and [y, πe(y)] pass through the same set of amalgamation components in the same
order; in particular they cut across the same set of lifts of σ̃. Let σ̃2 be the last
such lift. Then σ̃2 forms the boundary of an amalgamation component S̃A whose
intersection with [u, v]q is of the form [a, b] ∪ [b, c] ∪ [c, d], where [a, b] ⊂ σ̃3 and
[c, d] ⊂ σ̃4 are subsegments of two lifts of σ and [b, c] is perpendicular to these two.
Then the nearest-point projection of σ̃2 onto each of [a, b], [b, c], [c, d] has uniformly
bounded diameter. Hence the nearest point projection of σ̃2 onto the hyperbolic

geodesic [a, d] ⊂ S̃A has uniformly bounded diameter. The result follows. 2

3.4. Coboundedness and Consequences. In this Section, we collect together a
few more results that strengthen Lemmas 3.2 and 3.3.

Definition 3.14. A collection H of uniformly C-quasiconvex sets in a δ-hyperbolic
metric space X is said to be mutually D-cobounded if for all Hi, Hj ∈ H, πi(Hj)
has diameter less than D, where πi denotes a nearest point projection of X onto
Hi. A collection is mutually cobounded if it is mutually D-cobounded for some
D.

Lemma 3.15. Suppose X is a δ-hyperbolic metric space with a collection H of C-
quasiconvex K-separated D-mutually cobounded subsets. There exists ǫ0 = ǫ0(C,K,D, δ)
such that the following holds:

Let β be an electric P -quasigeodesic without backtracking and γ a hyperbolic ge-
odesic, both joining x, y. Then, given ǫ ≥ ǫ0 there exists D = D(P, ǫ) such that

(1) Similar Intersection Patterns 1: if precisely one of {β, γ} meets an ǫ-
neighborhood Nǫ(H1) of an electrocuted quasiconvex set H1 ∈ H, then the
length (measured in the intrinsic path-metric on Nǫ(H1) ) from the entry
point to the exit point is at most D.
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(2) Similar Intersection Patterns 2: if both {β, γ} meet some Nǫ(H1) then the
length (measured in the intrinsic path-metric on Nǫ(H1) ) from the entry
point of β to that of γ is at most D; similarly for exit points.

Summarizing, we have:
• If X is a hyperbolic metric space and H a collection of uniformly quasiconvex
mutually cobounded separated subsets, then X is hyperbolic relative to the col-
lection H and satisfies Bounded Penetration, i.e. hyperbolic geodesics and electric
quasigeodesics have similar intersection patterns in the sense of Lemma 3.15.

The relevance of co-boundedness comes from the following Lemma which is es-
sentially due to Farb [Far98].

Lemma 3.16. Let Mh be a hyperbolic manifold of i-bounded geometry, with Mar-

gulis tubes Ti ∈ T and horoballs Hj ∈ H. Then the lifts T̃i and H̃j are mutually
co-bounded.

The proof given in [Far98] is for a collection of separated horospheres, but the
same proof works for neighborhoods of geodesics and horospheres as well.

A closely related theorem was proved by McMullen (Theorem 8.1 of [McM01]).
As usual, NR(Z) will denote the R-neighborhood of the set Z.

Let H be a locally finite collection of horoballs in a convex subset X of Hn (where
the intersection of a horoball, which meets ∂X in a point, withX is called a horoball
in X).

Definition 3.17. The ǫ-neighborhood of a bi-infinite geodesic in Hn will be called
a thickened geodesic.

Theorem 3.18. [McM01] Let γ : I → X \
⋃

H be an ambient K-quasigeodesic
(for X a convex subset of Hn) and let H denote a uniformly separated collection
of horoballs and thickened geodesics. Let η be the hyperbolic geodesic with the same
endpoints as γ. Let H(η) be the union of all the horoballs and thickened geodesics in
H meeting η. Then η ∪H(η) is (uniformly) quasiconvex and γ(I) ⊂ BR(η ∪H(η)),
where R depends only on K.

4. Universal Covers of Building Blocks and Electric Geometry

4.1. Graph Model of Building Blocks. Amalgamation Blocks

Given a geodesic segment λ ⊂ S̃ and a basic amalgamation building block B, let

λ = [a, b] ⊂ S̃ × {0} be a geodesic segment, where S̃ × {0} ⊂ B̃.

We shall now build a graph model for B̃ which will be quasi-isometric to an
electrocuted version of the original model, where amalgamation components of the
geometric core K are electrocuted.

S̃×{0} and S̃×{3} are equipped with hyperbolic metrics. S̃×{1} and S̃×{2} are
grafted surfaces with electric metric obtained by electrocuting the amalgamation

components. This constructs 4 ‘sheets’ of S̃ comprising the ‘horizontal skeleton’ of

the ‘graph model’ of B̃. Now for the vertical strands. On each vertical element of
the form x× [0, 1] and x× [2, 3] put the Euclidean metric.

To do this precisely, one needs to take a bit more care and perform the construc-

tion in the universal cover. For each amalgamation component of K̃ (recall that
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such a component is a lift of an amalgamation component of K to the universal

cover along with bounding lifts T̃σ of the Margulis tubes). For each such component

K̃i we construct K̃i× [0, 1/2], so that any two copies K̃i× [0, 1/2] and K̃j × [0, 1/2]

intersect (if at all they do) only along the original bounding lifts T̃σ of the Margulis

tubes. In particular the copies K̃i × [0, 1/2] intersect K̃ along K̃i × {0}. Next put

the zero metric on each copy of K̃i × {1/2}.
This construction is very closely related to the ‘coning’ construction introduced

by Farb in [Far98].

The resulting copy of B̃ will be called the graph model of an amalgamation
block.

Next, we give an I-bundle structure to K that preserves the grafting annulus.
Thus Aσ × [1, 2] has a structure of a Margulis tube. Let φ denote a map from
S × {1} to S × {2} mapping (x, 1) to (x, 2). Clearly there is a bound lB on the
length in K of x × [1, 2] as x ranges over S × {1}. That is to say that the core K
has a bounded thickness. This bound depends on the block B we are considering.

Let φ̃ denote the lift of φ to K̃ Then φ̃ is a (k, ǫ)-quasi-isometry where k, ǫ depend
on the block B.

Thick Block

For a thick block B = S̃× [0, 1], recall that B is the universal curve over a ‘thick’
Teichmuller geodesic λTeich = [a, b] of length less than some fixed D > 0. Each
S ×{x} is identified with the hyperbolic surface over (a+ x

b−a
) (assuming that the

Teichmuller geodesic is parametrized by arc-length).
Here S×{0} is identified with the hyperbolic surface corresponding to a, S×{1}

is identified with the hyperbolic surface corresponding to b and each (x, a) is joined
to (x, b) by a segment of length 1.

The resulting model of B̃ is called a graph model of a thick block.
Metrics on graph models are called graph metrics.

Admissible Paths

Admissible paths consist of the following :

1) Horizontal segments along some S̃×{i} for i = {0, 1, 2, 3} (amalgamated blocks)
or i = {0, 1} (thick blocks).
2) Vertical segments x× [0, 1] or x× [2, 3] for amalgamated blocks or x× [0, 1] for
thick blocks.
3) Vertical segments of length ≤ lB joining x × {1} to x × {2} for amalgamated
blocks.

4.2. Construction of Quasiconvex Sets for Building Blocks. In the next

section, we will construct a set Bλ containing λ and a retraction Πλ of M̃ onto it.
Πλ will have the property that it does not stretch distances much. This will show

that Bλ is quasi-isometrically embedded in M̃ .
In this subsection, we describe the construction of Bλ restricted to a building

block B.

Construction of Bλ(B) - Thick Block

Let the thick block be the universal curve over a Teichmuller geodesic [α, β]. Let
Sα denote the hyperbolic surface over α and Sβ denote the hyperbolic surface over
β.
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First, let λ = [a, b] be a geodesic segment in S̃. Let λB0 denote λ× {0}.

Next, let ψ be the lift of the ’identity’ map from S̃α to S̃β . . Let Ψ denote
the induced map on geodesics and let Ψ(λ) denote the hyperbolic geodesic joining
ψ(a), ψ(b). Let λB1 denote Ψ(λ)× {1}.

For the universal cover B̃ of the thick block B, define:

Bλ(B) =
⋃

i=0,1 λBi

Definition 4.1. Each S̃ × i for i = 0, 1 will be called a horizontal sheet of B̃
when B is a thick block.

Construction of Bλ(B) - Amalgamation Block

First, recall that λ = [a, b] is a geodesic segment in S̃. Let λB0 denote λ× {0}.
Next, let λGel denote the electric geodesic joining a, b in the electric pseudo-

metric on S̃ obtained by electrocuting lifts of σ. Let λB1 denote λGel × {1}.

Third, recall that φ̃ is the lift of a component preserving diffeomorphism φ to S̃
equipped with the electric metric dGel. Let Φ̃ denote the induced map on geodesics,

i.e. if µ = [x, y] ⊂ (S̃, dGel), then Φ̃(µ) = [φ(x), φ(y)] is the geodesic joining
φ(x), φ(y). Let λB2 denote Φ(λGel)× {2}.

Fourthly, let Φ(λ) denote the hyperbolic geodesic joining φ(a), φ(b). Let λB3

denote Φ(λ)× {3}.

For the universal cover B̃ of the thin block B, define:

Bλ(B) =
⋃

i=0,··· ,3 λBi

Definition 4.2. Each S̃ × i for i = 0 · · · 3 will be called a horizontal sheet of B̃
when B is a thick block.

Construction of Πλ,B - Thick Block

On S̃×{0}, let ΠB0 denote nearest point projection onto λB0 in the path metric

on S̃ × {0}.

On S̃×{1}, let ΠB1 denote nearest point projection onto λB1 in the path metric

on S̃ × {1}.

For the universal cover B̃ of the thick block B, define:

Πλ,B(x) = ΠBi(x), x ∈ S̃ × {i}, i = 0, 1

Construction of Πλ,B - Amalgamation Block

On S̃×{0}, let ΠB0 denote nearest point projection onto λB0. Here the nearest

point projection is taken in the path metric on S̃×{0} which is a hyperbolic metric
space.

On S̃ × {1}, let ΠB1 denote the nearest point projection onto λB1. Here the
nearest point projection is taken in the sense of the definition preceding Lemma
3.13, i.e. minimizing the ordered pair (dGel, dhyp) (where dGel, dhyp refer to electric
and hyperbolic metrics respectively.)

On S̃ × {2}, let ΠB2 denote the nearest point projection onto λB2. Here, again
the nearest point projection is taken in the sense of the definition preceding Lemma
3.13.

Again, on S̃ × {3}, let ΠB3 denote nearest point projection onto λB3. Here the

nearest point projection is taken in the path metric on S̃×{3} which is a hyperbolic
metric space.
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For the universal cover B̃ of the thin block B, define:

Πλ,B(x) = ΠBi(x), x ∈ S̃ × {i}, i = 0, · · · , 3

Πλ,B is a retract - Thick Block
The proof for a thick block is exactly as in [Mit98b] and [Mj05b]. We omit it

here.

Lemma 4.3. (Lemma 4.1 of [Mj05b] There exists C > 0 such that the following
holds:
Let x, y ∈ S̃ × {0, 1} ⊂ B̃ for some thick block B. Then d(Πλ,B(x),Πλ,B(y)) ≤
Cd(x, y).

Πλ,B is a retract - Amalgamation Block
The main ingredient in this case is Lemma 3.13.

Lemma 4.4. There exists C > 0 such that the following holds:

Let x, y ∈ S̃×{0, 1, 2, 3} ⊂ B̃ for some amalgamated block B. Then dGel(Πλ,B(x),Πλ,B(y)) ≤
CdGel(x, y).

Proof: It is enough to show this for the following cases:

1) x, y ∈ S̃ × {0} OR x, y ∈ S̃ × {3}.
2) x = (p, 0) and y = (p, 1) for some p
3) x, y both lie in the geometric core K
4) x = (p, 2) and y = (p, 3) for some p.

Case 1: This follows from Lemma 3.10

Case 2 and Case 4: These follow from Lemma 3.13 which says that the
hyperbolic and electric projections of p onto the hyperbolic geodesic [a, b] and the
electro-ambient geodesic [a, b]ea respectively ‘almost agree’. If πh and πe denote
the hyperbolic and electric projections, then there exists C1 > 0 such that

dGel(πh(p), πe(p)) ≤ C1

Hence

dGel(Πλ,B((p, i)),Πλ,B((p, i+ 1))) ≤ C1 + 1, for i = 0, 2.

Case 3: This follows from the fact that K in the graph model with the electric
metric is essentially the tree coming from the splitting. Further, by the properties
of πe, each amalgamation component projects down to a set of diameter zero. Hence

dGel(Πλ,B(p),Πλ,B(q)) ≤ C1 + 1

Choosing C as the maximum of these constants, we are through. 2

5. Construction of Quasiconvex Sets and Quasigeodesics

5.1. Construction of Bλ and Πλ. Given a manifold M of amalgamated geom-
etry, we know that M is homeomorphic to S × J for J = [0,∞) or (−∞,∞).
By definition of amalgamated geometry, there exists a sequence Ii of intervals and
blocks Bi where the metric on S × Ii coincides with that on some building block
Bi. Denote:
• Bµ,Bi

= Biµ

• Πµ,Bi
= Πiµ
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Now for a block B = S × I (thick or amalgamated), a natural map ΦB may be

defined taking µ = Bµ,B ∩ S̃ × {0} to a geodesic Bµ,B ∩ S̃ × {k} = ΦB(µ) where
k = 1 or 3 according as B is thick or amalgamated. Let the map ΦBi

be denoted
as Φi for i ≥ 0. For i < 0 we shall modify this by defining Φi to be the map that

takes µ = Bµ,Bi
∩ S̃ × {k} to a geodesic Bµ,Bi

∩ S̃ × {0} = Φi(µ) where k = 1 or 3
according as B is thick or amalgamated.

We start with a reference block B0 and a reference geodesic segment λ = λ0 on

the ‘lower surface’ S̃ × {0}. Now inductively define:
• λi+1 = Φi(λi) for i ≥ 0
• λi−1 = Φi(λi) for i ≤ 0
• Biλ = Bλi

(Bi)
• Πiλ = Πλi,Bi

• Bλ =
⋃

iBiλ

• Πλ =
⋃

i Πiλ

Recall that each S̃ × i for i = 0 · · ·m is called a horizontal sheet of B̃, where
m = 1 or 3 according as B is thick or amalgamated. We will restrict our attention

to the union of the horizontal sheets M̃H of M̃ with the metric induced from the
graph model.

Clearly, Bλ ⊂ M̃H ⊂ M̃ , and Πλ is defined from M̃H to Bλ. Since M̃H is a

‘coarse net’ in M̃ (equipped with the graph model metric), we will be able to get

all the coarse information we need by restricting ourselves to M̃H .
By Lemmas 4.3 and 4.4, we obtain the fact that each Πiλ is a retract. Hence

assembling all these retracts together, we have the following basic theorem:

Theorem 5.1. There exists C > 0 such that for any geodesic λ = λ0 ⊂ S̃ × {0} ⊂

B̃0, the retraction Πλ : M̃H → Bλ satisfies:

Then dGel(Πλ,B(x),Πλ,B(y)) ≤ CdGel(x, y) + C.

Note 1 For Theorem 5.1 above, note that all that we really require is that the

universal cover S̃ be a hyperbolic metric space. There is no restriction on M̃H . In
fact, Theorem 5.1 would hold for general stacks of hyperbolic metric spaces with
blocks of amalgamated geometry.

Note 2: MH has been built up out of graph models of thick and amalga-
mated blocks and have sheets that are electrocuted along geodesics.

We want to make Note 1 above explicit. We first modify the definition of amal-
gamation geometry as follows, retaining only local quasiconvexity.
Definition: A manifold M homeormorphic to S × J , where J = [0,∞) or J =
(−∞,∞), is said to be a model of weak amalgamation geometry if

1) there is a fiber preserving homeomorphism fromM to S̃×J that lifts to a quasi-
isometry of universal covers
2) there exists a sequence Ii of intervals (with disjoint interiors) and blocks Bi

where the metric on S × Ii is the same as that on some building block Bi. Each
block is either thick or has amalgamation geometry.
3)

⋃
i Ii = J

4) There exists C0 > 0 such that for all amalgamated blocks Bi and geometric cores

C ⊂ Bi, all amalgamation components of C̃ are C0-quasiconvex in B̃i
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Then as a consequence of the proof of Theorem 5.1, we have the following Corol-
lary.

Corollary 5.2. Let M be a model manifold of weak amalgamation geometry.
There exists C > 0 such that the following holds:

Given any geodesic λ ⊂ S̃ × {0}, let Bλ, Πλ be as before. Then for λ = λ0 ⊂

S̃ × {0} ⊂ B̃0, the retraction Πλ : M̃H → Bλ satisfies:

Then dGel(Πλ,B(x),Πλ,B(y)) ≤ CdGel(x, y) + C.

In fact, all that follows in this section may just as well be done for model mani-
folds of weak amalgamation geometry. We shall make this explicit again at the end
of this entire section.

Bur before we proceed, we would like to deduce one further Corollary of Theorem
5.1, which shall be useful towards the end of the paper. Instead of constructing
vertical hyperbolic ladders Bλ for finite geodesic segments, first note that λ might
as well be bi-infinite. Next, we would like to construct such a Bλ equivariantly
under the action of Z. That is to say, we would like to construct a vertical annulus
in the manifold M homeomorphic to S × R.

To do this, we start with a simple closed geodesic σ on S × {0}. Instead of
performing the construction in the universal cover, homotop σ into S×{i} for each
level i. Let σi denote the shortest electro-ambient geodesic in the free homotopy
class of σ × {i} in the path pseudometric on S × {i}. Now let Bσ denote the set
Bσ =

⋃
i σ̃i. Then the proof of Theorem 5.1 ensures the quasiconvexity of Bσ in

the graph-metric. Finally, since Bσ has been constructed to be equivariant under
the action of the surface group, its quotient in M is an embedded ‘quasi-annulus’
APσ which partitions the manifold locally. We use the term ‘quasi-annulus’ because
APσ is a collection of disjoint circles at different levels. We finally conclude:

Corollary 5.3. Let M be a model manifold of weak amalgamation geometry.
There exists C > 0 such that the following holds:
Given any simple closed geodesic σ ⊂ S × {0}, let Bσ be as above. Then its
quotient, the embedded quasi-annulus APσ above is C-quasiconvex in M with the
graph metric.

Another Corollary will be used later. Suppose Σ = Σ × {0} be a subsurface of
S ×{0} with geodesic boundary components σ1 · · ·σk. Let Σi be the subsurface of
S × {i} that is bounded by σ1

i · · ·σ
k
i . Let BΣ =

⋃
i Σi.

Corollary 5.4. Let M be a model manifold of weak amalgamation geometry.
There exists C > 0 such that the following holds:
Given any subsurface Σ ⊂ S × {0} with geodesic boundary components, let BΣ be
as above. Then BΣ is C-quasiconvex in M with the graph metric.

5.2. Heights of Blocks. Recall that each geometric core C ⊂ B is identified with
S × I where each fibre {x} × I has length ≤ lC for some lC , called the thickness of
the block B. If C ⊂ Bi for one of the above blocks Bi, we shall denote lC as li.

Instead of considering all the horizontal sheets, we would now like to consider

only the boundary horizontal sheets, i.e. for a thick block we consider S̃×{0, 1}

and for a thin block we consider S̃ × {0, 3}. The union of all boundary horizontal
sheets will be denoted by MBH .
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Observation 1: M̃BH is a ‘coarse net’ in M̃ in the graph model, but not in
the model of amalgamated geometry.

In the graph model, any point can be connected by a vertical segment of length
≤ 2 to one of the boundary horizontal sheets.

However, in the model of amalgamated geometry, there are points within amal-
gamation components which are at a distance of the order of li from the boundary

horizontal sheets. Since li is arbitrary, M̃BH is no longer a ‘coarse net’ in M̃
equipped with the model of amalgamated geometry.

Observation 2: M̃H is defined only in the graph model, but not in the model
of amalgamated geometry.

Observation 3: The electric metric on the model of amalgamated geometry on

M̃ obtained by electrocuting amalgamation components is quasi-isometric to the

graph model of M̃ .

Bounded Height of Thick Block

Let µ ⊂ S̃×{0}B̃i be a geodesic in a (thick or amalgamated) block. Then there

exists a (Ki, ǫi)- quasi-isometry ψi ( = φi for thick blocks) from S̃×{0} to S̃×{1}
and Ψi is the induced map on geodesics. Hence, for any x ∈ µ, ψi(x) lies within
some bounded distance Ci of Ψi(µ). But x is connected to ψi(x) by

Case 1 - Thick Blocks: a vertical segment of length 1
Case 2 - Amalgamated Blocks: the union of

1) two vertical segments of length 1 between S̃ × {i} and S̃ × {i+ 1} for i = 0, 2
2) a horizontal segment of length bounded by (some uniform) C ′ (cf. Lemma 3.4)

connecting (x, 1) to a point on the electro-ambient geodesic Bλ(B) ∩ S̃ × {1}
3) a vertical segment of electric length zero in the graph model connecting (x, 1)
to (x, 2). Such a path has to travel through an amalgamated block in the model of
amalgamated geometry and has length less than li, where li is the thickness of
the ith block Bi.
4) a horizontal segment of length less than C ′ (Lemma 3.4) connecting (φi(x), 3)

to a point on the hyperbolic geodesic Bλ(B) ∩ S̃ × {3}

Thus x can be connected to a point on x′ ∈ Ψi(µ) by a path of length less than
g(i) = 2 + 2C ′ + li. Recall that λi is the geodesic on the lower horizontal surface

of the block B̃i. The same can be done for blocks B̃i−1 and going down from λi to
λi−1. What we have thus shown is:

Lemma 5.5. There exists a function g : Z → N such that for any block Bi (resp.
Bi−1), and x ∈ λi, there exists x′ ∈ λi+1 (resp. λi−1) for i ≥ 0 (resp. i ≤ 0),
satisfying:

d(x, x′) ≤ g(i)

5.3. Admissible Paths. We want to define a collection of Bλ-elementary ad-
missible paths lying in a bounded neighborhood of Bλ. Bλ is not connected.
Hence, it does not make much sense to speak of the path-metric on Bλ. To remedy
this we introduce a ‘thickening’ (cf. [Gro93]) of Bλ which is path-connected and
where the paths are controlled. A Bλ-admissible path will be a composition of
Bλ-elementary admissible paths.
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Recall that admissible paths in the graph model of bounded geometry consist of
the following :

1) Horizontal segments along some S̃×{i} for i = {0, 1, 2, 3} (amalgamated blocks)
or i = {0, 1} (thick blocks).

2) Vertical segments x× [0, 1] or x× [2, 3] for amalgamated blocks, where x ∈ S̃.
3) Hyperbolic geodesic segments of length ≤ lB in K ⊂ B joining x×{1} to x×{2}
for amalgamated blocks.
4) Vertical segments of length 1 joining x× {0} to x× {1} for thick blocks.

We shall choose a subclass of these admissible paths to define Bλ-elementary
admissible paths.

Bλ-elementary admissible paths in the thick block
Let B = S× [i, i+1] be a thick block, where each (x, i) is connected by a vertical

segment of length 1 to (x, i + 1). Let φ be the map that takes (x, i) to (x, i + 1).

Also Φ is the map on geodesics induced by φ. Let Bλ ∩ B̃ = λi ∪λi+1 where λi lies

on S̃ × {i} and λi+1 lies on S̃ × {i + 1}. πj , for j = i, i + 1 denote nearest-point

projections of S̃×{j} onto λj . Next, since φ is a quasi-isometry, there exists C > 0
such that for all (x, i) ∈ λi, (x, i + 1) lies in a C-neighborhood of Φ(λi) = λi+1.
The same holds for φ−1 and points in λi+1, where φ

−1 denotes the quasi-isometric

inverse of φ from S̃ × {i+ 1} to S̃ × {i}. The Bλ-elementary admissible paths

in B̃ consist of the following:
1) Horizontal geodesic subsegments of λj , j = {i, i+ 1}.
2) Vertical segments of length 1 joining x× {0} to x× {1}.
3) Horizontal geodesic segments lying in a C-neighborhood of λj , j = i, i+ 1.

Bλ-elementary admissible paths in the amalgamated block
Let B = S× [i, i+3] be an amalgamated block, where each (x, i+1) is connected

by a geodesic segment of zero electric length and hyperbolic length ≤ C(B) (due
to bounded thickness of B) to (φ(x), i + 2) (Here φ can be thought of as the map

from S̃ × {i + 1} to .S̃ × {i + 2} that is the identity on the first component. Also
Φ is the map on canonical representatives of electric geodesics induced by φ. Let

Bλ∩B̃ =
⋃

j=i···i+3
λj where λj lies on S̃×{j}. πj denotes nearest-point projection

of S̃×{j} onto λj (in the appropriate sense - hyperbolic for j = i, i+3 and electric
for j = i + 1, i + 2). Next, since φ is an electric isometry, but a hyperbolic quasi-
isometry, there exists C > 0 (uniform constant) and K = K(B) such that for
all (x, i) ∈ λi, (φ(x), i + 1) lies in an (electric) C-neighborhood and a hyperbolic
K-neighborhood of Φ(λi+1) = λi+2. The same holds for φ−1 and points in λi+2,

where φ−1 denotes the quasi-isometric inverse of φ from S̃×{i+2} to S̃×{i+1}.
Again, since λi+1 and λi+2 are electro-ambient quasigeodesics, we further note

that there exists C > 0 (assuming the same C for convenience) such that for all
(x, i) ∈ λi, (x, i+1) lies in a (hyperbolic) C-neighborhood of λi+1. Similarly for all
(x, i+2) ∈ λi+2, (x, i+3) lies in a (hyperbolic) C-neighborhood of λi+3. The same
holds if we go ‘down’ from λi+1 to λi or from λi+3 to λi+2. The Bλ-elementary

admissible paths in B̃ consist of the following:
1) Horizontal subsegments of λj , j = {i, · · · i+ 3}.
2) Vertical segments of length 1 joining x× {j} to x× {j + 1}, for j = i, i+ 2.
3) Horizontal geodesic segments lying in a hyperbolic C-neighborhood of λj , j =
i, · · · i+ 3.
4) Horizontal hyperbolic segments of electric length ≤ C and hyperbolic length
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≤ K(B) joining points of the form (φ(x), i+2) to a point on λi+2 for (x, i+1) ∈ λi+1.
5) Horizontal hyperbolic segments of electric length ≤ C and hyperbolic length ≤
K(B) joining points of the form (φ−1(x), i+1) to a point on λi+1 for (x, i+2) ∈ λi+2.

Definition: A Bλ-admissible path is a union of Bλ-elementary admissible paths.
The following lemma follows from the above definition and Lemma 5.5.

Lemma 5.6. There exists a function g : Z → N such that for any block Bi, and x

lying on a Bλ-admissible path in B̃i, there exist y ∈ λj and z ∈ λk where λj ⊂ Bλ

and λk ⊂ Bλ lie on the two boundary horizontal sheets, satisfying:

d(x, y) ≤ g(i)
d(x, z) ≤ g(i)

Let h(i) = Σj=0···ig(j) be the sum of the values of g(j) as j ranges from 0 to i
(with the assumption that increments are by +1 for i ≥ 0 and by −1 for i ≤ 0).
Then we have from Lemma 5.6 above,

Corollary 5.7. There exists a function h : Z → N such that for any block Bi, and

x lying on a Bλ-admissible path in B̃i, there exist y ∈ λ0 = λ such that:

d(x, y) ≤ h(i)

Important Note: In the above Lemma 5.6 and Corollary 5.7, it is important
to note that the distance d is hyperbolic, not electric. This is because the number
li occurring in elementary paths of type 5 and 6 is a hyperbolic length depending
only on i (in Bi).

Next suppose that λ lies outside BN (p), the N -ball about a fixed reference point

p on the boundary horizontal surface S̃ × {0} ⊂ B̃0. Then by Corollary 5.7, any x

lying on a Bλ-admissible path in B̃i satisfies

d(x, p) ≥ N − h(i)

Also, since the electric, and hence hyperbolic ‘thickness’ (the shortest distance
between its boundary horizontal sheets) is ≥ 1, we get,

d(x, p) ≥ |i|

Assume for convenience that i ≥ 0 (a similar argument works, reversing signs
for i < 0). Then,

d(x, p) ≥ min{i,N − h(i)}

Let h1(i) = h(i) + i. Then h1 is a monotonically increasing function on the
integers. If h−1

1 (N) denote the largest positive integer n such that h(n) ≤ m, then
clearly, . h−1

1 (N) → ∞ as N → ∞. We have thus shown:

Lemma 5.8. There exists a function M(N) : N → N such that M(N) → ∞ as
N → ∞ for which the following holds:

For any geodesic λ ⊂ S̃ × {0} ⊂ B̃0, a fixed reference point p ∈ S̃ × {0} ⊂ B̃0 and
any x on a Bλ-admissible path,

d(λ, p) ≥ N ⇒ d(x, p) ≥M(N).

As pointed out before, the discussion and Lemmas of the previous two subsections
go through just as well in the context of weak amalgamation geometry manifolds.
We make this explicit in the case of Lemma 5.8 above.
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Corollary 5.9. Let M be a model manifold of weak amalgamation geometry.
Then there exists a function M(N) : N → N such that M(N) → ∞ as N → ∞ for
which the following holds:

Given any geodesic λ ⊂ S̃×{0}, let Bλ be as before. For λ ⊂ S̃×{0} ⊂ B̃0, a fixed

reference point p ∈ S̃ × {0} ⊂ B̃0 and any x on a Bλ-admissible path,

d(λ, p) ≥ N ⇒ d(x, p) ≥M(N).

5.4. Joining the Dots. Recall that admissible paths in a model manifold of
bounded geometry consist of:

1) Horizontal segments along some S̃ × {i} for i = {0, 1, 2, 3} (thin blocks) or
i = {0, 1} (thick blocks).
2) Vertical segments x× [0, 1] or x× [2, 3] for amalgamated blocks.
3) Vertical segments of length ≤ li joining x × {1} to x × {2} for amalgamated
blocks.
4) Vertical segments of length 1 joining x× {0} to x× {1} for thick blocks.

Our strategy in this subsection is:

•1 Start with an electric geodesic βe in M̃Gel joining the end-points of λ.
•2 Replace it by an admissible quasigeodesic, i.e. an admissible path that is a quasi-
geodesic.
•3 Project the intersection of the admissible quasigeodesic with the horizontal sheets
onto Bλ.
•4 The result of step 3 above is disconnected. Join the dots using Bλ-admissible
paths.

The end product is an electric quasigeodesic built up of Bλ admissible paths.
Now for the first two steps:

• Since B̃ (for a thick block B) has thickness 1, any path lying in a thick block can

be perturbed to an admissible path lying in B̃, changing the length by at most a
bounded multiplicative factor.
• For B amalgamated, we decompose paths into horizontal paths lying in some

S̃ × {j}, for j = 0, · · · 3 and vertical paths of types (2) or (3) above. This can be

done without altering electric length within S̃× [1, 2]. To see this, project any path

ab beginning and ending on S̃ × {1, 2} onto S̃ × {1} along the fibers. To connect
this to the starting and ending points a, b, we have to at most adjoin vertical seg-
ments through a, b. Note that this does not increase the electric length of ab, as
the electric length is determined by the number of amalgamation blocks that ab
traverses.
• For paths lying in S̃ × [0, 1] or S̃ × [2, 3], we can modify the path into an admis-
sible path, changing lengths by a bounded multiplicative constant. The result is
therefore an electric quasigeodesic.
• Without loss of generality, we can assume that the electric quasigeodesic is one
without back-tracking (as this can be done without increasing the length of the
geodesic - see [Far98] or [Kla99] for instance).
• Abusing notation slightly, assume therefore that βe is an admissible electric quasi-
geodesic without backtracking joining the end-points of λ.
This completes Steps •1 and •2.
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• Now act on βe ∩ M̃H by Πλ. From Theorem 5.1, we conclude, by restricting

Πλ to the horizontal sheets of M̃Gel that the image Πλ(βe) is a ‘dotted electric
quasigeodesic’ lying entirely on Bλ. This completes step 3.
• Note that since βe consists of admissible segments, we can arrange so that two

nearest points on βe ∩ M̃H which are not connected to each other form the end-
points of a vertical segment of type (2), (3) or (4). Let Πλ(βe) ∩ Bλ = βd, be the
dotted quasigedoesic lying on Bλ. We want to join the dots in βd converting it into
a connected electric quasigeodesic built up of Bλ-admissible paths.
• For vertical segments of type (4) joining p, q (say), Πλ(p),Πλ(q) are a bounded hy-
perbolic distance apart. Hence, by the proof of Lemma 4.3, we can join Πλ(p),Πλ(q)
by a Bλ-admissible path of length bounded by some C0 (independent of B, λ).
• For vertical segments of type (2) joining p, q, we note that Πλ(p),Πλ(q) are a
bounded hyperbolic distance apart. Hence, by the proof of Lemma 4.4, we can join
Πλ(p),Πλ(q) by a Bλ-admissible path of length bounded by some C1 (independent
of B, λ).
• This leaves us to deal with case (3). Such a segment consists of a segment lying
within a lift of an amalgamation block. Such a piece has electric length one in the
graph model. Its image, too, has electric length one (See for instance, Case (3) of
the proof of Lemma 4.4, where we noted that the projection of any amalgamation
component lies within an amalgamation component).

After joining the dots, we can assume further that the quasigeodesic thus ob-
tained does not backtrack (cf [Far98] and [Kla99]).

Putting all this together, we conclude:

Lemma 5.10. There exists a function M(N) : N → N such that M(N) → ∞ as
N → ∞ for which the following holds:

For any geodesic λ ⊂ S̃ × {0} ⊂ B̃0, and a fixed reference point p ∈ S̃ × {0} ⊂ B̃0,
there exists a connected electric quasigeodesic βadm without backtracking, such that
• βadm is built up of Bλ-admissible paths.
• βadm joins the end-points of λ.
• d(λ, p) ≥ N ⇒ d(βadm, p) ≥M(N).

Proof: The first two criteria follow from the discussion preceding this lemma.
The last follows from Lemma 5.8 since the discussion above gives a quasigeodesic
built up out of admissible paths. 2

As in the previous subsections, Lemma 5.10 goes through for weak amalgama-
tion geometry. We state this below:

Corollary 5.11. Suppose that M is a manifold of weak amalgamation geom-
etry. There exists a function M(N) : N → N such that M(N) → ∞ as N → ∞
for which the following holds:

For any geodesic λ ⊂ S̃ × {0} ⊂ B̃0, and a fixed reference point p ∈ S̃ × {0} ⊂ B̃0,
there exists a connected electric quasigeodesic βadm without backtracking, such that
• βadm is built up of Bλ-admissible paths.
• βadm joins the end-points of λ.
• d(λ, p) ≥ N ⇒ d(βadm, p) ≥M(N).

5.5. Admissible Quasigeodesics and Electro-ambient Quasigeodesics. Def-
inition: We next define (as before) a (k, ǫ) electro-ambient quasigeodesic γ in M̃
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relative to the amalgamation components K̃ to be a (k, ǫ) quasigeodesic in the

graph model of M̃ such that in an ordering (from the left) of the amalgamation

components that γ meets, each γ ∩ K̃ is a (k, ǫ) - quasigeodesic in the induced

path-metric on K̃.

This subsection is devoted to extracting an electro-ambient quasigeodesic βea
from a Bλ-admissible quasigeodesic βadm. βea shall satisfy the property indicated
by Lemma 5.10 above. We shall prove this Lemma under the assumption of (strong)
amalgamation geometry. However, a weaker assumption (which we shall discuss
later, while weakening amalgamation geometry to graph amalgamation geome-
try) is enough for the main Lemma of this subsection to go through.

Lemma 5.12. There exist κ, ǫ and a function M ′(N) : N → N such that M ′(N) →
∞ as N → ∞ for which the following holds:

For any geodesic λ ⊂ S̃ × {0} ⊂ B̃0, and a fixed reference point p ∈ S̃ × {0} ⊂ B̃0,
there exists a (κ, ǫ) electro-ambient quasigeodesic βea without backtracking, such
that
• βea joins the end-points of λ.
• d(λ, p) ≥ N ⇒ d(βea, p) ≥M ′(N).

Proof: From Lemma 5.10, we have a Bλ - admissible quasigeodesic βadm and
a function M(N) without backtracking satisfying the conclusions of the Lemma.
Since βadm does not backtrack, we can decompose it as a union of non-overlapping
segments β1, · · · βk, such that each βi is either an admissible (hyperbolic) quasi-
geodesic lying outside amalgamation components, or a Bλ-admissible quasigeodesic

lying entirely within some amalgamation component K̃i. Further, since βadm does
not backtrack, we can assume that all Ki’s are distinct.

We modify βadm to an electro-ambient quasigeodesic βea as follows:
1) βea coincides with βadm outside amalgamation components.
2) There exist κ, ǫ such that if some βi lies within an amalgamation component

K̃i then, by uniform quasiconvexity of the Ki’s, it may be replaced by a (κ, ǫ)

(hyperbolic) quasigeodesic βea
i joining the end-points of βi and lying within K̃i.

The resultant path βea is clearly an electro-ambient quasigeodesic without back-
tracking. Next, each component βea

i lies in a Ci neighborhood of βi, where Ci

depends only on the thickness li of the amalgamation component Ki.
We let C(n) denote the maximum of the values of Ci for Ki ⊂ Bn. Then, as in

the proof of Lemma 5.8, we have for any z ∈ βea ∩Bn,

d(z, p) ≥ max (n,M(N)− C(n))

Again, as in Lemma 5.8, this gives us a (new) function M ′(N) : N → N such
that M ′(N) → ∞ as N → ∞ for which
• d(λ, p) ≥ N ⇒ d(βea, p) ≥M ′(N).

This prove the Lemma. 2

Note: We have essentially used the following two properties of amalgamation
components in concluding Lemma 5.12:

(1) any path lying inside an amalgamation component K̃ may be replaced by a
(uniform) hyperbolic quasigeodesic joining its end-points and lying within
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the same K̃

(2) Each electro-ambient quasigeodesic joining the end-points of an admissible

quasigeodesic in K̃ ⊂ B̃n lies in a (hyperbolic) C(n)-neighborhood of the
latter.

We shall have occasion to use this when we discuss graph-quasiconvexity.

6. Cannon-Thurston Maps for Surfaces Without Punctures

It is now time to introduce hyperbolicity of M̃ , global quasiconvexity of amal-
gamation components, (and hence) model manifolds of (strong) amalgamation ge-
ometry. We shall assume till the end of this section that

1) there exists a hyperbolic manifold M and a homeomorphism from M̃ to S̃ × R.

We identify M̃ with S̃ × R via this homeomorphism.

2) S̃ × R admits a quasi-isometry g to a model manifold of amalgamated geometry
3) g preserves the fibers over Z ⊂ R

We shall henceforth ignore the quasi-isometry g and think of M̃ itself as the
universal cover of a model manifold of amalgamated geometry.

6.1. Electric Geometry Revisited. We note the following properties of the pair

(X,H) where X is the graph model of M̃ and H consists of the amalgamation
components. There exist C,D,∆ such that
1) Each amalgamation component is C-quasiconvex.
2) Any two amalgamation components are 1-separated.

3) M̃Gel = XGel is ∆-hyperbolic, (where M̃Gel = XGel is the electric metric on

M̃ = X obtained by electrocuting all amalgamation components, i.e. all members
of H).
4) Given K, ǫ, there exists D0 such that if γ be a (K, ǫ) hyperbolic quasigeodesic
joining a, b and if β be a (K, ǫ) electro-ambient quasigeodesic joining a, b, then γ
lies in a D0 neighborhood of β.

The first property follows from the definition of a manifold of amalgamation
geometry.

The second follows from the construction of the graph model.
The third follows from Lemma 3.3.
The fourth follows from Lemma 3.7.

6.2. Proof of Theorem. We shall now assemble the proof of the main Theorem.

Theorem 6.1. Let M be a 3 manifold homeomorphic to S × J (for J = [0,∞) or
(−∞,∞)). Further suppose that M has amalgamated geometry, where S0 ⊂ B0 is

the lower horizontal surface of the building block B0. Then the inclusion i : S̃ → M̃

extends continuously to a map î : Ŝ → M̂ . Hence the limit set of S̃ is locally
connected.

Proof: Suppose λ ⊂ S̃ lies outside a large N -ball about p. By Lemma 5.12 we
obtain an electro-ambient quasigeodesic without backtracking βea lying outside an
M(N)-ball about p (where M(N) → ∞ as N → ∞).

Suppose that βea is a (κ, ǫ) electro-ambient quasigeodesic. Note that κ, ǫ depend

on ‘the Lipschitz constant’ of Πλ and hence only on S̃ and M̃ .
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From Property (4) above, (or Lemma 3.7) we find that if βh denote the hyper-

bolic geodesic in M̃ joining the end-points of λ, then βh lies in a (uniform) C ′

neighborhood of βea.
Let M1(N) = M(N) − C ′. Then M1(N) → ∞ as N → ∞. Further, the

hyperbolic geodesic βh lies outside anM1(N)-ball around p. Hence, by Lemma 2.3,

the inclusion i : S̃ → M̃ extends continuously to a map î : Ŝ → M̂ .
Since the continuous image of a compact locally connected set is locally connected

(see [HY61] ) and the (intrinsic) boundary of S̃ is a circle, we conclude that the

limit set of S̃ is locally connected.
This proves the theorem. 2

7. Weakening the Hypothesis I: Graph Quasiconvexity and Graph

Amalgamation Geometry

We now proceed to weaken the hypothesis of amalgamation geometry in the
hope of capturing all Kleinian surface groups. Recall that in the definition of
amalgamation geometry, two criteria were used - local and global quasiconvexity of
amalgamation components. We shall retain local quasiconvexity, and replace global
quasiconvexity by a weaker condition which we shall term graph quasicon-
vexity. The rationale behind this terminology shall be made clear later. We first
modify the definition of amalgamation geometry as follows, retaining only local
quasiconvexity. We first recall the definition of weak amalgamation geometry.
A manifold M homeormorphic to S×J , where J = [0,∞) or J = (−∞,∞), is said
to be a model of weak amalgamation geometry if

1) there is a fiber preserving homeomorphism fromM to S̃×J that lifts to a quasi-
isometry of universal covers
2) there exists a sequence Ii of intervals (with disjoint interiors) and blocks Bi

where the metric on S × Ii is the same as that on some building block Bi. Each
block is either thick or has amalgamation geometry.
3)

⋃
i Ii = J

4) There exists C > 0 such that for all amalgamated blocks Bi and geometric cores

K ⊂ Bi, all amalgamation components of K̃ are C-quasiconvex in B̃i

Definition 7.1. An amalgamation component K ⊂ Bn is said to be (m. κ )
graph - quasiconvex if there exists a κ-quasiconvex (in the hyperbolic metric)
subset CH(K) containing K such that
1) CH(K) ⊂ NG

m(K) where NG
m(K) denotes the m neighborhood of K in the graph

model of M .
2) For each K there exists CK such that K is CK-quasiconvex in CH(K).

Since the quasiconvex sets (thought of as convex hulls of K) lie within a bounded
distance from K in the graph model we have used the term graph-quasiconvex.

Definition 7.2. A manifold M of weak amalgamation geometry is said to be a
model of graph amalgamation geometry if there exist m,κ such that each amal-
gamation geometry component is (m,κ) -graph - quasiconvex.

AmanifoldN is said to have graph amalgamation geometry if there is a level-
preserving homeomorphism from N to a model manifold of graph amalgamation
geometry that lifts to a quasi-isometry at the level of universal covers.
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Note: As before, we proceed with the assumption that for surfaces with punc-
tures, S corresponds to a complete hyperbolic surface Sh minus a neighborhood of
the cusps with horocycles electrocuted. Further, M corresponds to Mh minus a
neighborhood of the cusps with resultant horospheres partially electrocuted.

Now, let us indicate the modifications necessary to carry out the proof of the
Cannon-Thurston Property for manifolds of graph amalgamation geometry (sup-
pressing the quasi-isometry to a model manifold). As in Theorem 6.1, the proof
consists of two steps:
1) Constructing a quasiconvex set Bλ in an auxiliary electric space (the graph
model ), and from this an admissible electric quasigeodesic β.
2) Recovering from β and its intersection pattern, information about the hyperbolic
geodesic joining its end-points.

The first step is the same as that for models of amalgamation geometry as it goes
through for weak amalgamation geometry. Then from Corollary 5.2 we have:

Step 1A: Given λ ⊂ S̃×{0}, construct Bλ, Πλ as before. There exists C > 0 such

that the the retraction Πλ : M̃H → Bλ satisfies:
dGel(Πλ(x),Πλ(y)) ≤ CdGel(x, y) + C, where dGel denotes the metric in the graph
model.

Again, from Corollary 5.11 we have:
Step 1B:
There exists a function M(N) : N → N such that M(N) → ∞ as N → ∞ for which
the following holds:

For any geodesic λ ⊂ S̃ × {0} ⊂ B̃0, and a fixed reference point p ∈ S̃ × {0} ⊂ B̃0,
there exists a connected Bλ-admissible quasigeodesic βadm without backtracking,
such that
• βadm is built up of Bλ-admissible paths.
• βadm joins the end-points of λ.
• d(λ, p) ≥ N ⇒ d(βadm, p) ≥M(N). (d is the ordinary, non-electric metric.)

Summary of Step 2:
Now we come to the second step: recovering a hyperbolic geodesic from an
electric geodesic.

This step can be further subdivided into two parts. In the first part we construct
a second auxiliary space M2 by electrocuting the elements CH(K). We show that

the spaces M̃1 and M̃2 are quasi-isometric. In fact we show that the identity map on
the underlying subset is a quasi-isometry. This step requires only the first condition
in the definition of graph quasiconvexity. The second stage extracts information
about an electro-ambient quasi-geodesic in M̃2 from an admissible path in M̃1.
It is at this second stage that we require the second condition: (not necessarily
uniform) quasi-convexity of amalgamation components.

We now furnish the details.

Step 2A:
Let M1 denote M with the graph metric obtained by electrocuting amalgamation
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components. Next, let M2 denote M with an electric metric obtained by electro-
cuting the family of sets CH(K) (for amalgamation components K) appearing in
the definition of graph amalgamation geometry.

Lemma 7.3. The identity map on the underlying set M from M1 to M2 induces

a quasi-isometry of universal covers M̃1 and M̃2.

Proof: Let d1, d2 denote the electric metrics on M̃1 and M̃2. Since K ⊂ CH(K)
for every amalgamation component, we have right off

d1(x, y) ≤ d2(x, y) for all x, y ∈ M̃

To prove a reverse inequality with appropriate constants, it is enough to show
that each set CH(K) (of diameter one in M2) has uniformly bounded diameter
in M1. To see this, note that by definition of graph-quasiconvexity, there exists n
such that for all K and each point a in CH(K), there exists a point b ∈ K with
d1(x, y) ≤ n. Hence by the triangle inequality,

d2(x, y) ≤ 2n+ 1 for all x, y ∈ C̃H(K)

Therefore,

d2(x, y) ≤ (2n+ 1)d1(x, y) for all x, y ∈ M̃

This proves the Lemma. 2

Step 2B:
Now let βadm denote an admissible Bλ quasigeodesic in M̃1, which does not back-
track relative to the amalgamation components. By Lemma 7.3 above, βadm is a
quasigeodesic in M̃2. As in Lemma 5.12, using the Note following it, we conclude:

There exists a κ, ǫ-electro-ambient quasigeodesic βea in M̃2 (as opposed to M̃1,
which is what we needed in the amalgamation geometry case). (See Lemma 5.12. )

Note that in M̃2, we electrocute the lifts of the sets CH(K) rather than K̃’s.
We thus obtain, as in Lemma 5.12 a function M ′(N) : N → N such that

M ′(N) → ∞ as N → ∞ for which the following holds:

For any geodesic λ ⊂ S̃ × {0} ⊂ B̃0, and a fixed reference point p ∈ S̃ × {0} ⊂ B̃0,
there exists a (κ, ǫ) electro-ambient quasigeodesic βea without backtracking, such
that
• βea joins the end-points of λ.
• d(λ, p) ≥ N ⇒ d(βea, p) ≥M ′(N).

Finally, as in the proof of Theorem 6.1, we use Lemma 3.7 to conclude that the
hyperbolic geodesic in M̃ joining the end-points of λ lies in a uniform hyperbolic
neighborhood of βea. This gives us Theorem 6.1 with graph amalgamation
geometry replacing amalgamation geometry.

Theorem 7.4. Let M be a 3 manifold homeomorphic to S × J (for J = [0,∞)
or (−∞,∞)). Further suppose that M has graph amalgamation geometry, where
S0 ⊂ B0 is the lower horizontal surface of the building block B0. Then the inclusion

i : S̃ → M̃ extends continuously to a map î : Ŝ → M̂ . Hence the limit set of S̃ is
locally connected.
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8. Weakening the Hypothesis II: Split Geometry

In this section, we shall weaken the hypothesis of graph amalgamation geometry
further to include the possibility of Margulis tubes cutting across the blocks Bi. But
before we do this, let us indicate a straightforward generalization of amalgamation
geometry or graph amalgamation geometry

8.1. More Margulis Tubes in a Block. A straightforward generalization of
Theorem 6.1 (or Theorem 7.4) is to the case where more than one Margulis tube
is allowed per block B, and each of these tubes splits the block B locally. On the
surface S, this corresponds to a number of disjoint (uniformly) bounded length
curves. As before we require that each amalgamation component be uniformly
quasiconvex (or graph quasiconvex) in M̃ for the proof of Theorem 6.1 (or Theorem
7.4) to go through. See the figure below for a schematic rendering of the model
block of amalgamation geometry.

Figure 4:Building Block for Generalized Amalgamation Geometry

8.2. Motivation for Split Geometry. So far, we have assumed that the bound-
aries of amalgamated geometry blocks or graph amalgamated geometry blocks are
all of bounded geometry. This assumption needs to be relaxed to accommodate
general surface Kleinian groups. Before we define the objects of interest, we shall
first informally analyse what went into the construction of the hyperbolic ladder
Bλ. We require:
1) Horizontal surfaces Si, all abstractly homeomorphic to each other
2) A block decomposition M = ∪Bi, where Bi−1 ∩Bi = Si

3) Given a geodesic λi ⊂ S̃i, we require a (uniformly) large-scale retract πi of S̃i

onto λi and a prescription to construct λi+1 ⊂ S̃i+1. Thus, starting with λ0 ⊂ S̃0,
we first construct π0 and then inductively construct the pairs (λi, πi).
4) Each block Bi has an auxiliary metric or pseudometric which induces the given
path metrics on Si−1, Si.

We want to relax the assumption that Si’s have bounded geometry, while re-
taining the essential properties of bounded geometry. As elsewhere in this paper
we invoke the following (uncomfortably dictatorial) policy that we have adopted:

Policy: Electrocute anything that gives trouble.

What this policy means is that whenever some construction possibly gives rise to
non-uniformity of some parameter(s), locate the source of non-uniformity and elec-
trocute it. Then, at the end of the game, re-instate the original geometry by using
comparison properties between ordinary hyperbolic geometry and electric geometry.
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Thus, each Si is now allowed to have a pseudometric where a finite number of
disjoint, bounded length (uniformly, independent of i) collection of simple closed

geodesics are electrocuted. Then, instead of geodesics λi ⊂ S̃i, we shall require the
λi to be only electro-ambient geodesics. This will allow us to go ahead with the
construction of Bλ.

One further comment as to how this solves the problem. Let us fix a small
(less than Margulis constant) ǫ0. Given any hyperbolic surface Sh, we can simply
electrocute thin parts, i.e. tubular neighborhoods of short (less than ǫ0) geodesics
with boundaries of length ǫ0. Alternately, we can first cut out the interiors of
these thin parts. Next, corresponding to each Margulis annulus that has been cut
out, glue the corresponding boundary components of length ǫ0 together, and then
electrocute the resulting closed curves.

This construction is adapted to the construction of split level surfaces in Minsky
[Min02], and Brock-Canary-Minsky [BCM04].

8.3. Definitions. Topologically, a split subsurface Ss of a surface S is a (possi-
bly disconnected, proper) subsurface with boundary such that S − Ss consists of a
non-empty family of non-homotopic annuli, which in turn are not homotopic into
the boundary of Ss.

Geometrically, we assume that S is given some finite volume hyperbolic struc-
ture. A split subsurface Ss of S has bounded geometry, i.e.
1) each boundary component of Ss is of length ǫ0, and is in fact a component of
the boundary of Nk(γ), where γ is a hyperbolic geodesic on S, and Nk(γ) denotes
its k-neighborhood.
2) For any closed geodesic β on S, either β ⊂ S − Ss, or, the length of any compo-
nent of β ∩ (S − Ss) is greater than ǫ0.

Topologically, a split block Bs ⊂ B = S × I is a topological product Ss × I for
some connected Ss. However, its upper and lower boundaries need not be Ss × 1
and Ss × 0. We only require that the upper and lower boundaries be split subsur-
faces of Ss. This is to allow for Margulis tubes starting (or ending) within the split
block. Such tubes would split one of the horizontal boundaries but not both. We
shall call such tubes hanging tubes. See figure below:

Figure 6: Split Block with hanging tubes

Geometrically, we require that the metric on a split block induces a path metric
on its upper and lower horizontal boundary components, which are subsurfaces



32 M. MJ

of Ss × ∂I, such that each horizontal boundary component is a (geometric) split
surface. Further, the metric on Bs induces on each vertical boundary component
of a Margulis tube ∂Ss × I the product metric. Each boundary component for
Margulis tubes that ‘travel all the way from the lower to the upper boundary’ is an
annulus of height equal to length of I. We demand further that hanging tubes have
length uniformly bounded below by η0 > 0. Further, each such annulus has cross
section a round circle of length ǫ0. This leaves us to decide the metric on lower and
upper boundaries of hanging tubes. Such boundaries are declared to have a metric
equal to that on S1 × [−η, η], where S1 is a round circle of length ǫ0 and η is a
sufficiently small number.

Note: In the above definition, we do not require that the upper (or lower)
horizontal boundary of a split block Bs be connected for a connected Bs. This
happens due to the presence of hanging tubes.

We further require that the distance between horizontal boundary components
is at least 1, i.e. for a component R of Ss d(R × 0, R × 1) ≥ 1. We define the
thickness of a split block to be the supremum of the lengths of x×I for x ∈ Ss and
demand that it be finite (which holds under all reasonable conditions, e.g. a smooth
metric; however, since we shall have occasion to deal with possibly discontinuous
pseudometrics, we make this explicit). We shall denote the thickness of a split block
Bs by lB .

Each component of a split block shall be called a split component. We further
require that the ‘vertical boundaries’ (corresponding to Euclidean annuli) of split
components be uniformly (independent of choice of a block and a split component)
quasiconvex in the corresponding split component.

Note that the boundary of each split block has an intrinsic metric that is flat
and corresponds to a Euclidean torus.

A lift of a split block to the universal cover of the block B = S × I shall be
termed a split component of B̃.
Remark: The notion of split components we deal with here is closely related to
the notion of bands described by Bowditch in [Bow05a], [Bow05b] and also to the
notion of scaffolds introduced by Brock, Canary and Minsky in [BCM04].

We define awelded split block to be a split block with identifications as follows:
Components of ∂Ss×0 are glued together if and only if they correspond to the same
geodesic in S − Ss. The same is done for components of ∂Ss × 1. A simple closed
curve that results from such an identification shall be called a weld curve. For
hanging tubes, we also weld the boundary circles of their lower or upper boundaries
by simply collapsing S1 × [−η, η] to S1 × {0}.

This may be done topologically or geometrically while retaining Dehn twist in-
formation about the curves. To record information about the Dehn twists, we have
to define (topologically) a map that takes the lower boundary of a welded split
block to the upper boundary. We define a map that takes x× 0 to x× 1 for every
point in Ss. This clearly induces a map from the lower boundary of a welded split
block to its upper boundary. However, this is not enough to give a well-defined
map on paths. To do this, we have to record twist information about weld curves.
The way to do this is to define a map on transversals to weld curves. The map is
defined on transversals by recording the number of times a transversal to a weld
curve γ × 0 twists around γ × 1 on the upper boundary of the welded split block.
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(A related context in which such transversal information is important is that of
markings described in Minsky [Min02].)

Let the metric product S1 × [0, 1] be called the standard annulus if each
horizontal S1 has length ǫ0. For hanging tubes the standard annulus will be taken
to be S1 × [0, 1/2].

Next, we require another pseudometric on B which we shall term the tube-
electrocuted metric. We first define a map from each boundary annulus S1 × I
(or S1 × [0, 1/2] for hanging annuli) to the corresponding standard annulus that is
affine on the second factor and an isometry on the first. Now glue the mapping
cylinder of this map to the boundary component. The resulting ‘split block’ has
a number of standard annuli as its boundary components. Call the split block Bs

with the above mapping cylinders attached, the stabilized split block Bst.
Glue boundary components of Bst corresponding to the same geodesic together

to get the tube electrocuted metric on B as follows. Suppose that two boundary
components of Bst correspond to the same geodesic γ. In this case, these boundary
components are both of the form S1 × I or S1 × [0, 1

2
] where there is a projection

onto the horizontal S1 factor corresponding to γ. Let S1
l × J and S1

r × J denote
these two boundary components (where J denotes I or [0, 1

2
]). Then each S1 ×{x}

has length ǫ0. Glue S1
l × J to S1

r × J by the natural ‘identity map’. Finally, on
each resulting S1 × {x} put the zero metric. Thus the annulus S1 × J obtained
via this identification has the zero metric in the horizontal direction S1 × {x} and
the Euclidean metric in the vertical direction J . The resulting block will be called
the tube-electrocuted block Btel and the pseudometric on it will be denoted as
dtel. Note that Btel is homeomorphic to S × I. The operation of obtaining a tube
electrocuted block and metric (Btel, dtel) from a split block Bs shall be called tube
electrocution.

Next, fix a hyperbolic structure on a Riemann surface S and construct the metric
product S × R. Fix further a positive real number l0.

Definition 8.1. An annulus A will be said to be vertical if it is of the form σ×J
for σ a geodesic of length less than l0 on S and J = [a, b] a closed sub-interval of
R. J will be called the vertical interval for the vertical annulus A.
A disjoint collection of annuli is said to be a vertical system of annuli if each
annulus in the collection is vertical.

The above definition is based on a definition due to Bowditch [Bow05a],[Bow05b].
Suppose now that S × R is equipped with a vertical system A of annuli. We

shall call z ∈ R

1) a beginning level if z is the lower bound of a vertical interval for some annulus
A ∈ A.
2) an ending level if z is the lower bound of a vertical interval for some annulus
A ∈ A.
3) an intermediate level if z is an interior point of a vertical interval for some
annulus A ∈ A.

In the figure below (where for convenience, all appropriate levels are marked
with integers), 2, 5, 11 and 14 are beginning levels, 4, 7, 13 and 16 are ending levels,
3, 6, 9, 12 and 15 are intermediate levels. We shall also allow Dehn twists to occur



34 M. MJ

while going along the annulus.

Figure 6: Vertical Annulus Structure

A slight modification of the vertical annulus structure will sometimes be useful.
Replacing each geodesic γ on S by a neighborhood Nǫ(γ) for sufficiently small ǫ,

we obtain a vertical Margulis tube structure after taking products with vertical
intervals. The family of Margulis tubes shall be denoted by T and the union of their
interiors as IntT . The union of IntT and its horizontal boundaries (corresponding
to neighborhoods of geodesics γ ⊂ S ) shall be denoted as Int+T .

Thick Block
Fix constants D, ǫ and let µ = [p, q] be an ǫ-thick Teichmuller geodesic of length

less than D. µ is ǫ-thick means that for any x ∈ µ and any closed geodesic η in the
hyperbolic surface Sx over x, the length of η is greater than ǫ. Now let B denote
the universal curve over µ reparametrized such that the length of µ is covered in
unit time. Thus B = S × [0, 1] topologically.
B is given the path metric and is called a thick building block.
Note that after acting by an element of the mapping class group, we might as

well assume that µ lies in some given compact region of Teichmuller space. This is
because the marking on S×{0} is not important, but rather its position relative to
S×{1} Further, since we shall be constructing models only upto quasi-isometry, we
might as well assume that S × {0} and S × {1} lie in the orbit under the mapping
class group of some fixed base surface. Hence µ can be further simplified to be a
Teichmuller geodesic joining a pair (p, q) amongst a finite set of points in the orbit
of a fixed hyperbolic surface S.

Weak Split Geometry
A manifold S ×R equipped with a vertical Margulis tube structure is said to be

a model of weak split geometry, if it is equipped with a new metric satisfying
the following conditions:
1) S× [m,m+1]∩ IntT = ∅ (for m ∈ Z ⊂ R) implies that S× [m,m+1] is a thick
block.
2) S × [m,m+1]∩ IntT 6= ∅ (for m ∈ Z ⊂ R) implies that S× [m,m+1]− Int+T
is (geometrically) a split block.
3) There exists a uniform upper bound on the lengths of vertical intervals for ver-
tical Margulis tubes
4) The metric on each component Margulis tube T of T is hyperbolic
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Note 1: Dehn twist information can still be implicitly recorded in a model of weak
split geometry by the Dehn filling information corresponding to tubes T .
Note 2: The metric on a model of weak split geometry is possibly discontinuous
along the boundary tori of Margulis tubes. If necessary, one could smooth this out.
But we would like to carry on with the above metric.

Removing the interiors of Margulis tubes and tube electrocuting each block, we
obtain a new pseudo-metric on M called the tube electrocuted metric dtel on
M . The pseudometric dtel may also be lifted to M̃ .

The induced pseudometric on S̃i’s shall be referred to as split electric metrics.
The notions of electro-ambient metrics, geodesics and quasigeodesics go through in
this context.

Next, we shall describe a graph metric on M̃ which is almost (but not quite)

the metric on the nerve of the covering of M̃ by split components (where each edge
is assigned length 1). This is not strictly true as thick blocks are retained with their
usual geometry in the graph metric. However the analogy with the nerve is exact
if all blocks have weak split geometry.

For each split component K̃ assign a single vertex vK and construct a cone of
height 1/2 with base K̃ and vertex vK . The metric on the resulting space (coned-off
or electric space in the sense of Farb [Far98]) shall be called the graph metric on

M̃ .

The union of a split component of B̃ and the lifts of Margulis tubes (to M̃) that

intersect its boundary shall be called a split amalgamation component in M̃ .

Definition 8.2. A split amalgamation component K is said to be (m. κ)–graph
quasiconvex if there exists a κ-quasiconvex (in the hyperbolic metric) subset CH(K)
containing K such that

(1) CH(K) ⊂ NG
m(K) where NG

m(K) denotes the m neighborhood of K in the
graph metric on M .

(2) For each K there exists CK such that K is CK-quasiconvex in CH(K).

A model manifold M of weak split geometry is said to be a model of split ge-
ometry if there exist m,κ such that each split amalgamation component is (m,κ)
- graph quasiconvex.

8.4. The Cannon-Thurston Property for Manifolds of Split Geometry.
We shall first extract information about geodesics in the tube electrocuted model.
As with Theorem 6.1 and Theorem 7.4, the proof splits into two parts:
Step 1: Construction of Bλ and its quasiconvexity in an auxiliary graph metric.
The end-product of this step is an electro-ambient quasigeodesic in the graph model
Step 2: Extraction of information about a hyperbolic geodesic and its intersection
pattern with blocks from the electro-ambient quasigeodesic constructed in Step 1
above.

Details of Step 1:
Step 1A: Construction of Bλ

It is at this stage that the construction differs somewhat from the construction of
Bλ for manifolds of graph amalgamated geometry.
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We start with the (tube-electrocuted) metric dtel on the model manifold of split
geometry. Then there exists a sequence of split surfaces Si exiting the end(s).

Recall that in the construction ofBλ (for all preceding cases) we are not interested

in the metric on each S̃i per se, but in geodesics on S̃i.
The metric dtel on the model manifold induces the split electric metric on each

Si obtained by electrocuting theweld curves. The natural geodesics to consider on
S̃i are therefore the electro-ambient quasigeodesics where the electrocuted subsets
correspond to geodesics representing the weld curves.

Thus we start off with a hyperbolic geodesic λ in S̃0 joining a, b say. We let λ0
denote the electro-ambient quasigeodesic joining a, b in the split electric metric on
S̃0. Now construct Bλ inductively as follows:

• Each split block Bi and hence B̃i comes equipped with a (topological) product

structure. Thus there is a canonical map Φi : S̃i → S̃i+1 which maps each (x, i) to
a point (x, i + 1) by lifting the map from Si to Si+1 (i ≥ 0 corresponding to the
product structure).

• Next, if λi is an electro-ambient quasi-geodesic in the split electric metric on S̃i

joining (a, i) and (b, i) we let λi+1 denote the electro-ambient quasigeodesic in the

split-electric metric on S̃i+1 joining (a, i + 1) and (b, i + 1). This gives us a pre-
scription for constructing λi+1 from λi for i ≥ 0. Similarly, for i ≤ 0 (in the totally
degenerate case) we can construct λi−1 from λi. Then as before, define

Bλ =
⋃

i λi

• Again, πi : S̃i → λi is defined as the retraction that minimizes the ordered pair
of distances in the split electric metric and the hyperbolic metric (without elec-
trocuting weld curves). Πλ is obtained in the graph metric by defining it on the

horizontal sheets S̃i as

Πλ(x) = πi(x) for x ∈ S̃i.

• Then as before we conclude that in the graph model for M̃ , with the metric dGel,
Πλ does not stretch distances much, i.e. there exists a uniform C ≥ 0 such that

dGel(Πλ(x),Πλ(y)) ≤ CdGel(x, y) + C

Step 1B: Construction of admissible quasigedoesic
The above construction of Πλ may be used to construct a Bλ- admissible quasi-
geodesic βadm in the tube-electrocuted model. As before we have:
There exists a function M(N) : N → N such that M(N) → ∞ as N → ∞ for which
the following holds:

For any geodesic λ ⊂ S̃ × {0} ⊂ B̃0, and a fixed reference point p ∈ S̃ × {0} ⊂ B̃0,
there exists a connected Bλ-admissible quasigeodesic βadm without backtracking,
such that
• βadm is built up of Bλ-admissible paths.
• βadm joins the end-points of λ.
• If d(λ, p) ≥ N then for any x ∈ βadm− IntT , d(x, p) ≥M(N). (d is the ordinary,
hyperbolic, or non-electric metric.)
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Step 2: Recovering a quasigeodesic in the tube electrocuted model from
an admissible quasigeodesic
We now follow the proof of Theorem 7.4.

Step 2A: As in Step 2A in the proof of Theorem 7.4 we construct a second auxiliary
space M2 by electrocuting the elements CH(K) for split components K. The

spaces M̃1 and M̃2 are quasi-isometric by uniform graph quasiconvexity of split
components. In fact the identity map on the underlying subset is a quasi-isometry
as in Lemma 7.3.

Step 2B Next, as in Step 2B in the proof of Theorem 7.4, we extract information
about an electro-ambient quasi-geodesic in M̃2 from an admissible path in M̃1. It
is at this second stage that we require the condition that split components are (not
necessarily uniformly) quasi-convex in the hyperbolic metric, and hence in the tube
electrocuted metric dtel.

We may assume that βadm does not backtrack relative to the split components.
From Step 2A above, βadm is a quasigeodesic in M̃2. Then we conclude:

There exists a κ, ǫ-electro-ambient quasigeodesic βtea in M̃2 (Note that in M̃2,

we electrocute the lifts of the sets CH(K) rather than K̃’s).
We finally obtain a function M ′(N) : N → N such that M ′(N) → ∞ as N → ∞

for which the following holds:

For any geodesic λ ⊂ S̃ × {0} ⊂ B̃0, and a fixed reference point p ∈ S̃ × {0} ⊂ B̃0,
there exists a (κ, ǫ) electro-ambient quasigeodesic βtea (in the tube electrocuted
metric) without backtracking, such that
• βtea joins the end-points of λ.
• If λ lies outside a large ball about a fixed reference point p ∈ S̃0, then each point
of βtea ∩ (M̃ − IntT ) also lies outside a large ball about p.

Step 3: Recovering a hyperbolic geodesic from the tube electrocuted
quasigeodesic βtea
This is a new step that comes from the extra phenomenon of tube electrocution
which makes the metric dtel an ‘intermediate’ metric between the hyperbolic metric
d and the graph metric dGel.

Observe that lifts of Margulis tubes to (M̃, dGel) have uniformly bounded diam-
eter in the metric dGel and consequently in the metric dtel by uniform boundedness
of vertical intervals of vertical Margulis tubes. Hence the tube electrocuted metric
dtel on M̃ is quasi-isometric to the metric dfe where lifts of Margulis tubes are elec-
trocuted (i.e. fully electrocuted rather than just tube electrocuted, and hence each

tube has diameter 1). Let M̃fe denote M̃ equipped with this new metric. Then
geodesics without backtracking in the tube electrocuted metric become (uniform)

quasi-geodesics without backtracking in M̃fe.

Note: It is at this (rather late) stage that we need to assume that M̃ is a hyperbolic
metric space.

Let γh denote a hyperbolic geodesic joining the end-points of βtea and hence
λ. By Lemma 3.15, γh and βtea track each other off Margulis tubes. Hence γh ∩
(M̃ − IntT ) lies outside a large ball about p. In particular, this is true for entry
and exit points of γh with respect to Margulis tubes. This implies (See for instance
Lemma 7.3 of [Mj05b] ) that the parts of λh lying within Margulis tubes also lie
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outside large balls about p. As before, by Lemma 2.3 we infer the Cannon-Thurston
property for manifolds of split geometry.

Theorem 8.3. Let M be a 3 manifold homeomorphic to S × J (for J = [0,∞) or
(−∞,∞)). Further suppose that M has split geometry, where S0 ⊂ B0 is the lower

horizontal surface of the building block B0. Then the inclusion i : S̃ → M̃ extends

continuously to a map î : Ŝ → M̂ . Hence the limit set of S̃ is locally connected.
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