
Combination Theorems in Groups, Geometry
and Dynamics

Mahan Mj and Sabyasachi Mukherjee

AbstractThe aimof this article is to give a survey of combination theorems occurring
in hyperbolic geometry, geometric group theory and complex dynamics, with a
particular focus on Thurston’s contribution and influence in the field.

Key words: Kleinian group, hyperbolic group, flaring, holomorphic mating, simul-
taneous uniformization, double limit theorem

1

Mahan Mj
School of Mathematics Tata Institute of Fundamental Research, Mumbai-400005 India, e-mail:
mahan@math.tifr.res.in

Sabyasachi Mukherjee
School of Mathematics Tata Institute of Fundamental Research, Mumbai-400005 India, e-mail:
sabya@math.tifr.res.in

1

mahan@math.tifr.res.in
sabya@math.tifr.res.in




Contents

Combination Theorems in Groups, Geometry and Dynamics . . . . . . . . . . 1
Mahan Mj and Sabyasachi Mukherjee

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Klein-Maskit combination for Kleinian groups . . . . . . . . . . . . . . . . . 4
3 Simultaneous uniformization and Quasi-Fuchsian Groups . . . . . . . . 7

3.1 Topologies on space of representations . . . . . . . . . . . . . . . . 7
3.2 Simultaneous uniformization . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Geodesic Laminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Thurston’s combination theorem for Haken manifolds . . . . . . . . . . . 11
4.1 Non-fibered Haken 3-manifolds . . . . . . . . . . . . . . . . . . . . . . 12
4.2 The double limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Combination theorems in geometric group theory: hyperbolic
groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Trees of spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Metric Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Relatively hyperbolic combination theorems . . . . . . . . . . . 21
5.4 Effective quasiconvexity and flaring . . . . . . . . . . . . . . . . . . 23

6 Combination theorems in geometric group theory: cubulations . . . 25
7 Holomorphic dynamics and polynomial mating . . . . . . . . . . . . . . . . 27

7.1 Historical comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Mating of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Combining rational maps and Kleinian groups . . . . . . . . . . . . . . . . . 32
8.1 Mating anti-polynomials with reflection groups . . . . . . . . 32
8.2 Mating polynomials with Kleinian groups . . . . . . . . . . . . . 41

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3



4 Contents

1 Introduction

The aim of this survey is to give an eclectic account of combination theorems in
hyperbolic geometry, geometric group theory and complex dynamics. Thurston’s
contribution and influence in the theme is pervasive, and we will only be able to
touch upon some of these aspects. The hope in writing this survey is therefore only to
whet the appetite of the reader and provide some references to more detailed articles
and surveys.

Combination theorems have a long history, going back to Klein’s paper from
1883 [Kle83]. A major subsequent development in terms of combination theorems
for Kleinian groups is due to Maskit [Mas65b, Mas68, Mas71, Mas93, Mas80].
In the 1970’s and 80’s, a phase transition occurred in the theory with the ad-
vent of Thurston and his proof of hyperbolization of atoroidal Haken manifolds
[Thu86a, Thu86b, Thu86c, Ota01, Ota98, Kap01b]. Thurston’s work has had a deep
and profound influence on hyperbolic geometry ever since, and has provided a tem-
plate for related developments in geometric group theory and complex dynamics. In
geometric group theory, Bestvina and Feighn [BF92] isolated the coarse geometric
features of Thurston’s combination theorem and proved a highly influential combina-
tion theorem for Gromov-hyperbolic groups [Gro85], spawning considerable activity
and several generalizations [Dah03, Ali05, MR08, MS12, Gau16]. Finally, in a rela-
tively recent major development leading to a resolution of Thurston’s virtual Haken
conjecture by Agol and Wise [Ago13, Wis21], Haglund and Wise [HW12] proved a
combination theorem for virtually special cubulable hyperbolic groups [HW08].

In a closely related theme, Fatou had already observed similarities between limit
sets of Kleinian groups and Julia sets of rational maps in the 1920s [Fat29, p. 22]:
‘L’analogie remarqueé entre les ensembles de points limites des groupes Kleineens
et ceux qui sont constitués par les frontières des régions de convergence des itérées
d’une fonction rationnelle ne parait d’ailleurs pas fortuite et il serait probablement
possible d’en faire la syntése dans une théorie générale des groupes discontinus
des substitutions algrébriques.’ The theory of mating, developed by Douady and
Hubbard [Dou83] extends the notion of a combination theorem from the world of
Kleinian groups to that of complex dynamics. This theme too bears the tell-tale
stamp of Thurston. In fact, Thurston’s topological characterization of rational maps
is an invaluable tool in constructing such matings [DH93, Shi00].

2 Klein-Maskit combination for Kleinian groups

A discrete subgroup Γ of PSL2(C) is called a Kleinian group. The limit set of the
Kleinian group Γ, denoted byΛΓ, is the collection of accumulation points of a Γ-orbit
Γ · z for some z ∈ Ĉ. ΛΓ is independent of z. It may be thought of as the locus of
chaotic dynamics of Γ on Ĉ, i.e. for Γ non-elementary and any z ∈ ΛΓ, Γ · z is dense
in ΛΓ. We shall identify the Riemann sphere Ĉ with the sphere at infinity S2 of H3.
The complement of the limit set Ĉ\ΛΓ is called the domain of discontinuityΩ(Γ) of
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Γ. If the Kleinian group Γ is torsion-free, it acts freely and properly discontinuously
on Ω(Γ) with a Riemann surface quotient.

Definition 1 A set D is called a partial fundamental domain for Γ, if

1. D , ∅,
2. D ⊂ Ω(Γ), and
3. g(D) ∩ D = ∅, for all g ∈ Γ, g , 1.

If, further,
⋃

g∈Γ g.D = Ω(Γ), then D is called a fundamental domain for Γ.

The story of combination theorems starts with the following theorem of Klein:

Theorem 1 (Klein combination theorem) [Kle83] Let Γ1,Γ2 be Kleinian groups
with fundamental domains D1,D2 respectively. Assume that the interior of D1 (resp.
D2) contains the boundary and exterior of D2 (resp. D1).Then the group Γ generated
by Γ1,Γ2 is Kleinian, and D = D1 ∩ D2 is a fundamental domain for Γ.

In the 1960’s, Maskit started working on extending the Klein combination Theo-
rem 1 to a more general setup. Maskit’s work on combination theorems for Kleinian
groups started with the following.

Theorem 2 (Klein-Maskit combination theorem for free product with amal-
gamation) [Mas65a] Let Γ1,Γ2 be Kleinian groups with domains of discontinuity
Ω1,Ω2 respectively. Let H = Γ1 ∩ Γ2. Let D1,D2,∆ be partial fundamental do-
mains for Γ1,Γ2,H respectively. For i = 1,2, set Ei = H.Di . Denote the interior of
D = E1 ∩ E2 ∩ ∆ by D′. If

1. D′ , ∅,
2. E1 ∪ E2 = Ω1 ∪Ω2.

Then the group Γ generated by Γ1,Γ2 is Kleinian, D′ is a partial fundamental domain
for Γ, Γ = Γ1 ∗H Γ2 is the free product amalgamation of Γ1,Γ2 along H. Further,
gD ∩ D = ∅, for all g ∈ Γ, g , 1.

In [Mas65b], Maskit strengthened the above theorem by determining precisely a
fundamental domain for the group.

Theorem 3 (Klein-Maskit combination theorem for free product with amal-
gamation) [Mas65b] Let Γ1,Γ2 be Kleinian groups with domains of discontinuity
Ω1,Ω2 respectively. Let H ⊂ Γ1 ∩ Γ2. such that H is either cyclic or consists only
of the identity. Let D1,D2,∆ be fundamental domains for Γ1,Γ2,H respectively. For
i = 1,2, set Ei = H.Di . Denote the interior of D = E1 ∩ E2 ∩ ∆ by D′. Suppose
E1 ∪ E2 = Ω(H) and that D′ , ∅. Assume further that there is a simple closed curve
γ, contained in int(E1 ∪ E2) ∪ ΛH such that γ is invariant under H; the closure of
γ ∩ ∆ is contained in int(E1 ∩ E2) and γ separates both E1 \ E2 and E2 \ E1. Then
the group Γ generated by Γ1,Γ2 is Kleinian, Γ = Γ1 ∗H Γ2, and D is a fundamental
domain for G.
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Subsequently, in [Mas68, Mas71], Maskit upgraded Theorem 3 to the following.
We start with two Kleinian groups Γ1,Γ2 with H ⊂ Γ1 ∩ Γ2, where H , Γ1,Γ2.
We are also given a simple closed curve γ dividing the Riemann sphere Ĉ into two
closed topological discs, B1 and B2, where Bi is precisely invariant under H in Γi .
More precisely, Bi is H−invariant, and if g ∈ Γi \ H, then g(Bi) ∩ Bi = ∅. Then
Γ = 〈Γ1,Γ2〉, the group generated by Γ1 and Γ2 is also a Kleinian group. What really
needs to be proved in all these cases is the discreteness of Γ.

In all these cases, Maskit shows that Γ = Γ1 ∗H Γ2, i.e. Γ = 〈Γ1,Γ2〉 equals the
free product with amalgamation of Γ1,Γ2 along H. Further, by carefully choosing
fundamental domains for Γ1,Γ2 one can ensure that their intersection will be a
fundamental domain for Γ. Thus, the basic hypothesis guaranteeing discreteness of
Γ can be summarized as follows:

1. The disks B1 and B2 are both invariant under H.
2. The (Γ1 \ H)−translates of B1 are disjoint disks in B2.
3. The (Γ2 \ H)−translates of B2 are disjoint disks in B1.

There is also a version of the Klein-Maskit combination theorem for HNN exten-
sions. We are given a single group Γ0, with two subgroups H1 and H2, two closed
disks B1 and B2, which have disjoint projections to Ω(Γ0)/Γ0, where

1. Hi preserves Bi ,
2. there exists a Möbius transformation h mapping the outside of B1 onto the inside

of B2 and conjugating H1 to H2.

Maskit then shows that Γ = 〈Γ0, h〉 is a Kleinian group. Also Γ = Γ0∗H is the
HNN-extension of G0 along H, where the two inclusions of H map to H1,H2 and
h is the stable letter conjugating one to the other. Further, by carefully choosing a
fundamental domain D for Γ0, one can ensure that D \ (B1 ∪ B2) is a fundamental
domain for Γ.

Maskit weakens the hypotheses further in [Mas93], allowing translates of the
closed disks B1,B2 to have common boundary points. However, in [Mas93] he
requires that such points of intersection also be ordinary points of our original
group. In [Mas93], it is also shown that Γ is geometrically finite if and only if the
original groups are so. The basic topological tool used in the proof is a Jordan curve
γ in Ĉ and its translates under a Kleinian group. The standard hypothesis in these
papers is the ‘almost disjointness’ of γ from all its translates. More precisely, if
g(γ) ∩ γ , ∅, then it is required that g(γ) is entirely contained in the closure of one
of the open disks bounded by γ. Thus, a substantial amount of the technical difficulty
in [Mas71, Mas93] comes from controlling the points of intersection g(γ) ∩ γ.

To conclude this section, we refer the reader to

1. Work of Li-Ohshika-Wang [LOW09, LOW15] for generalizations of the Klein-
Maskit combination theorems to higher dimensions.

2. Work of Dey, Kapovich and Leeb [DKL14] for a combination theorem for Anosov
subgroups, a natural class of discrete subgroups of higher rank Lie groups that
generalizes convex cocompact subgroups of PSL2(C).
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3 Simultaneous uniformization and Quasi-Fuchsian Groups

The aim of this section is to give a brief account of Bers’ simultaneous uniformization
theorem. The reason is 2-fold. First, it provides the context for Thurston’s double
limit theorem in Section 4.2. Second, it is the Kleinian group analog for the Douady-
Hubbard mating construction [Dou83], and more generally the original motivation
for the mating constructions in Section 8.

Fix a surface S. The collection of all representations ρ : π1(S) → PSL2(C) up to
conjugacy (in PSL2(C)) is called the character variety and is represented as R(S).
We note in passing that the appropriate quotient by PSL2(C) of the space of all
representations ρ : π1(S) → PSL2(C) is the GIT quotient. This is needed in order to
obtain the structure of a variety on R(S).

3.1 Topologies on space of representations

For future reference, we summarize here a natural collection of topologies on the
space of discrete faithful ρ : π1(S) → PSL2(C). The algebraic topology is the
topology of pointwise convergence on elements of π1(S):

Definition 2 We shall say that a sequence of representations ρn : π1(S) → PSL2(C)
converges algebraically to ρ∞ : π1(S) → PSL2(C) if for all g ∈ π1(S), ρn(g) →
ρ∞(g) in PSL2(C).

The collection of conjugacy classes of discrete faithful representations of π1(S)
into PSL2(C) equipped with the algebraic topology is denoted as AH(S). Thus,
AH(S) ⊂ R(S) comes naturally equipped with a complex analytic structure. The
space of discrete faithful representations of π1(S) into PSL2(R) equipped with the
algebraic topology is precisely the Teichmüller space. Thus, the Teichmüller space
sits ‘diagonally’ in AH(S).

For analyzing convergence from a geometric point of view, the natural topology
is the geometric topology, or equivalently, the Gromov-Hausdorff topology.

Definition 3 Let ρn : Γ → PSL2(C) be a sequence of discrete, faithful represen-
tations of a finitely generated, torsion-free, nonabelian group Γ. Thus, ρn(Γ) is a
sequence of closed subsets of PSL2(C). If G ⊂ PSL2(C) is a closed subgroup, such
that ρn(Γ) converges to G in the Gromov-Hausdorff topology, then ρn(Γ) is said to
converge geometrically to G, and G is called the geometric limit.

Definition 4 Gn converges strongly to G if Gn converges to G both algebraically
and geometrically.
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3.2 Simultaneous uniformization

Definition 5 Let ρ : π1(S) → PSL2(C) be a discrete faithful representation such that
the limit set of G = ρ(π1(S)) is a topological circle in S2. Then G is said to be quasi-
Fuchsian. The collection of conjugacy classes of quasi-Fuchsian representations is
denoted as QF(S).

Note that QF(S) is contained in AH(S) and hence inherits a complex analytic
structure. The domain of discontinuityΩ of a quasi-Fuchsian G consists of two open
invariant disks Ω1,Ω2. Hence the quotient Ω/G is the disjoint union Ω1/G tΩ2/G.
Hence we have a map τ : QF(S) → Teich(S) × Teich(S), where Teich(S) denotes
the Teichmüller space of S. The Bers simultaneous Uniformization Theorem
asserts:

Theorem 4 [Ber60, Ber61] τ : QF(S) → Teich(S)×Teich(S) is a homeomorphism.

Hence, given any two conformal structures T1,T2 on a surface, there is a unique
discrete quasi-Fuchsian G whose limit set ΛG is topologically a circle, and the
quotient of whose domain of discontinuity is T1 t T2. See Figure 1 below [Kab16],
where the inside and the outside of the Jordan curve correspond to Ω1,Ω2.

Fig. 1 Quasi-Fuchsian group limit set

We refer to [Hub06] for a proof of Theorem 4 and summarize the main ideas
here. Theorem 4 is essentially complex analytic in nature and goes back to an under-
standing of the Beltrami partial differential equation due to Morrey. Let KS denote
the canonical bundle of the Riemann surface S (if S has punctures as a hyperbolic
surface, we regard them as marked points in the complex analytic category).
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Definition 6 A Beltrami differential on S is an L∞ section of K−1
S ⊗ KS , where KS

denotes the complex conjugate of KS . The space of Beltrami differentials on S will
be denoted as Db(S)

The local expression for an element of Db(S) in a complex analytic chart U ⊂ S
is thus given by µ dz

dz , where µ ∈ L∞(U) is called a Beltrami coefficient.

Definition 7 A quasiconformal map between two Riemann surfaces S1 and S2 is
a homeomorphism φ : S1 → S2 having locally square-integrable weak partial
derivatives such that

µ =
φz
φz

satisfies | |µ| |∞ < 1. Here, µ is called the Beltrami coefficient of φ.

The first major ingredient in the proof of Theorem 4 is the Measurable Riemann
mapping theorem. As pointed out by Hubbard in [Hub06, p. 149], the Beltrami
coefficient µ really represents an almost-complex structure on U and the Measur-
able Riemann mapping theorem (due to Ahlfors-Bers-Morrey) below ensures its
integrability to a complex structure.

Theorem 5 (Measurable Riemann Mapping Theorem) [Hub06, Theorem 4.6.1]
Existence of quasiconformal maps: Let U ⊂ C be open. Let µ ∈ L∞(U) satisfying
| |µ| |∞ < 1 . Then there exists a quasiconformal mapping f : U → C solving the
Beltrami equation

∂ f
∂z
= µ

∂ f
∂z

.

Uniqueness of quasiconformalmaps: If g is another quasiconformal solution to the
Beltrami equation above, then there exists a univalent analytic function φ : f (U) →
C such that g = φ ◦ f .

The rest of this brief account of Theorem 4 follows [GS20] which captures the
relevant conformal geometry. Recall that we have fixed a base Riemann surface S.
Let Γ < PSL2(R) be a (base) Fuchsian group uniformizing S. Let S′ be an arbitrary
point in the Teichmüller space of the underlying topological surface. Theorem 4 then
associates to S′ a quasiconformal mapΦ : Ĉ→ Ĉ fixing the three points 0,1,∞, and
conjugating the action of Γ to that of a Kleinian group Γ(S,S′), such that

1. Φ is conformal on the lower half-plane.
2. Γ(S,S′) leaves invariant the images of the lower and upper half-planes.
3. The quotient of the lower half-plane by Γ(S,S′) is S.
4. The quotient of the upper half-plane by Γ(S,S′) is S′.

To prove the existence of aΦ as above, we first note that the Teichmüller space can
be identified (via Theorem 5) with Beltrami differentials on S with norm bounded
by one. Let µ be the Beltrami differential on S corresponding to S′. Next. lift µ
to the upper half plane. Extend to a Beltrami coefficient µ0 on Ĉ by defining it
to be identically zero on the lower half plane. The map Φ above is then given by
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the normalized solution to the Beltrami equation with the Beltrami coefficient µ0.
Invariance of µ0 under Γ ensures the existence of an isomorphism ρ : Γ → Γ(S,S′)
to the desired Kleinian group Γ(S,S′) such that

Φ ◦ g = ρ(g) ◦ Φ,

for all g ∈ Γ.

3.3 Geodesic Laminations

We turn now to the hyperbolic geometry of quasi-Fuchsian groups.

Definition 8 A geodesic lamination on a hyperbolic surface is a foliation of a closed
subset with geodesics.

Ageodesic lamination on a surfacemay further be equippedwith a transverse (pos-
itive) measure to obtain a measured lamination. The space of measured (geodesic)
laminations on S is then a positive cone in a vector space and is denoted asML(S).
It can be projectivized to obtain the space of projectivized measured laminations
PML(S). It was shown by Thurston [FLP79] that

Theorem 6 PML(S) is homeomorphic to a sphere and can be adjoined toTeich(S)
compactifying the latter to a closed ball.

Definition 9 [Thu80][Definition 8.8.1] A pleated surface in a hyperbolic three-
manifold N is a complete hyperbolic surface S of finite area, together with an
isometric map f : S → N such that every x ∈ S is in the interior of some geodesic
segment which is mapped by f to a straight line segment. Also, f must take every
cusp of S to a cusp of N

The pleating locus of the pleated surface f : S → M is the set γ ⊂ S consisting of
those points in the pleated surface which are in the interior of unique line segments
mapped to line segments.

Proposition [Thu80][Proposition 8.8.2] The pleating locus γ is a geodesic lamina-
tion on S. The map f is totally geodesic in the complement of γ. �

The geometry of quasi-Fuchsian groups and their relationship with geodesic
laminations arises out of the geometry of the convex core that we now describe.

Definition 10 Let Γ be an infinite Kleinian group and let Λ ⊂ Ĉ denote its limit set.
The convex hull of Λ is the smallest non-empty closed convex subset of H3 whose
set of accumulation points in Ĉ equalsΛ. We denote the convex hull ofΛ by CH(Λ).

The convex hull CH(Λ) of a Kleinian group Γ is invariant under Γ. The quotient
CH(Λ)/Γ ⊂ H3/Γ is called the convex core of the hyperbolic 3-manifold M = H3/Γ.
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For a quasi-Fuchsian group Γ = ρ(π1(S)), the convex core is homeomorphic to a
product S × [a, b] (the Fuchsian case corresponds to a = b). The hyperbolic distance
between S × {a} and S × {b} is a measure of the geometric complexity of Γ. In
[Thu80][Ch. 8], Thurston further shows:

Proposition Let M be a complete hyperbolic 3-manifold corresponding to a quasi-
Fuchsian group Γ, and let CC(M) denote its convex core. Then each component of
the convex core boundary ∂CC(M) is a pleated surface. �

4 Thurston’s combination theorem for Haken manifolds

The material in this section provides the core inspiration for most combination
theorems that came subsequently.

Definition 11 [Hem04] A properly embedded surface (F, ∂F) ⊂ (M, ∂M) in a 3-
manifold M with boundary ∂M (possibly empty) is said to be incompressible if
the inclusion map i : (F, ∂F) ⊂ (M, ∂M) induces an injective homomorphism of
fundamental groups i∗ : π1(F) → π1(M). Further, we require that for every boundary
component γ of ∂F, i∗ : π1(γ) → π1(∂M) is injective. (The second condition is
automatic when F is not a disk.)

An embedded incompressible surface (F, ∂F) ⊂ (M, ∂M) is said to be boundary
parallel if F can be isotoped into ∂M keeping ∂F ⊂ ∂M fixed.

A compact 3-manifold M (possibly with boundary ∂M) is said to be Haken if

1. π2(M) = 0.
2. There exists an embedded incompressible surface (F, ∂F) that is not boundary

parallel.

M is said to be atoroidal if π1(M) contains no Z ⊕ Z subgroups. M is said to
be acylindrical if any embedded incompressible annulus in (M, ∂M) is boundary
parallel.

We summarize Thurston’s celebrated hyperbolization theorem now and then give
a brief account of the ingredients that go into the proof.

Theorem 9 [Thu86a, Thu86b, Thu86c] Let M be a compact atoroidal Haken 3-
manifold. Then M is hyperbolic.

There is a version of Theorem 9 for 3-manifolds with torus boundary components
also. But, in the interests of exposition,we shall largely focus on the compact atoroidal
case. The proof of Theorem 9 breaks into two principal pieces:

1. M is compact atoroidal Haken and does not fiber over S1. This case will be
described in Section 4.1.

2. M fibers over the circle with fiber F. This case will be described in Section 4.2.
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4.1 Non-fibered Haken 3-manifolds

There are a number of detailed expositions for the compact atoroidal Haken non-
fibered case and we point out [Ota98, Kap01b, McM90] in particular.

It is a fundamental fact of 3-manifold topology [Hem04, Chapter 13] that any
Haken manifold admits a Haken hierarchy. Cutting (M, ∂M) open along (F, ∂F)
gives us a new (possibly disconnected) atoroidal 3-manifold with boundary. The cut
open manifold is automatically Haken, and we can proceed inductively. At the last
stage, we are left with a finite collection of balls, and these are clearly hyperbolic.

Thus, in order to prove Theorem 9 in the non-fibered case, an essential step is the
following:

Theorem 10 [Ota98] Let M1 be an acylindrical atoroidal 3-manifold with non-
empty incompressible boundary ∂M1 such that its interior admits a complete hyper-
bolic metric. Let τ : ∂M1 → ∂M1 be an orientation-reversing involution. Then the
interior of M = M1/τ admits a complete hyperbolic metric.

To prove Theorem 10, a first tool is the following generalization of Theorem 4:

Theorem 11 Let M1 be a compact 3-manifold with boundary such that

1. The interior of M1 admits a complete hyperbolic metric.
2. No component of ∂M1 is homeomorphic to a torus or a sphere.

Then the space of complete hyperbolic metrics on M1 is given by Teich(∂M1).

Let ∂M1 = tiΣi , where each Σi is a surface of genus greater than one. Then
Teich(∂M1) =

∏
i Teich(Σi). Fix a complete hyperbolic structure on M1 (the ex-

istence of such a structure is guaranteed by the hypothesis of Theorem 11). This
is equivalent to a discrete faithful representation ρ : π1(M1) → PSL2(C). Let
Γ = ρ(π1(M1)). Then each Σi ⊂ ∂M1 gives (via inclusion) a conjugacy class of
quasi-Fuchsian subgroups of Γ. Thus the involution τ of Theorem 10 induces a map

σ : Teich(∂M1) → Teich(∂M1).

The map σ is called the skinning map. The existence of a complete hyperbolic
structure on M = M1/τ is equivalent to the existence of a fixed point of the skinning
map σ, as such a fixed point ensures an isometric gluing. Thurston’s fixed point
theorem can now be stated as the following: If M is atoroidal then σ has a fixed
point. It now follows from the Klein-Maskit combination theorem (Section 2) that
M admits a complete hyperbolic structure. The acylindricity hypothesis of Theorem
10 guarantees that M is atoroidal, completing an outline of the proof of Theorem 10.

An effective method of proving the existence of a fixed point of the skinning
map σ was taken by McMullen in [McM90]. As mentioned in [Ota98] Hubbard had
observed that the analytical formula for the coderivative of the skinning map relates
it to the Theta operator in Teichmüller theory. McMullen studies the fixed point
problem via | |Dσ | |, the norm of the derivative of the skinning map. He reproves
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Theorem 10 by showing that if M1 is acylindrical, then there exists c < 1 such that
| |Dσ | | < c guaranteeing a solution to the gluing problem.

Both Thurston’s fixed-point theorem and McMullen’s estimates in [McM90] are
easiest to state when M1 is acylindrical. However, both approaches can be refined
to conclude hyperbolicity of M so long as M1 is not of the form S × I and τ glues
S × {0} to S × {1}. The excluded case is that of 3-manifolds fibering over the circle
and involves a completely different approach that we describe now.

4.2 The double limit theorem

We shall follow [Ota01] to give an outline of the steps involved in the hyperboliza-
tion of 3-manifolds fibering over the circle. Recall (Theorem 6) that the space of
projectivized measured laminations PML(S) compactifies Teich(S). Thurston’s
double limit theorem may be thought of as an extension of the simultaneous uni-
formization Theorem 4 to the case where the pair (τ1, τ2) of Riemann surfaces
in Teich(S) × Teich(S) is replaced by a pair (`1, `2) ∈ Teich(S) × Teich(S), where
Teich(S) = Teich(S)∪PML(S) denotes the Thurston compactification ofTeich(S)
as in Theorem 6.

Dual to any measured lamination ` ∈ ML(S) there is an action of π1(S) on
an R−tree. An R−tree is a geodesic metric space such that any two distinct points
are joined by a unique arc isometric to an interval in R. We refer to [Bes02] for
an expository account of group actions on R−trees and convergence of Γ−spaces,
and mention only the following theorem. Fix a group Γ. A triple (X,o, ρ) is called
a based Γ−space if o ∈ X is a base-point, and Γ acts on X via a homomorphism
ρ : Γ→ Isom(X) from Γ to the isometry group Isom(X) of X .

Theorem 12 [Bes02][Theorem 3.3] Let (Xi,oi, ρi) be a convergent sequence of
based Γ-spaces such that

1. Each Xi is δ hyperbolic, for some δ ≥ 0.
2. there exists g ∈ Γ such that the sequence di = dXi (oi, ρi(g)(oi)) is unbounded.

Then there is a based R-tree (T,o) and an isometric action ρ : Γ → Isom(T) such
that (Xi,oi, ρi) → (T,o, ρ).

Further, the (pseudo)metric on the R−tree T is obtained as the limit of pseudo-
metrics d(Xi ,oi ,ρi )

di
.

Finally, we shall need the following theorem of Skora [Sko96] on the structure of
groups admitting small actions on R−trees.

Theorem 13 [Sko96] Let S be a finite area hyperbolic surface. Suppose π1(S) acts
non-trivially on an R−tree T , such that for every cusp P of S, π1(P) fixes a point in
T . Then the stabilizer of each non-degenerate arc of T contains no free subgroup of
rank 2 if and only if the action is dual to an element ofML(S).
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An action of π1(S) on an R−tree T such that the stabilizer of each non-degenerate
arc of T contains no free subgroup of rank 2 is called a small action. Morgan and
Shalen [MS84, MS88a, MS88b] constructed a compactification of the variety R(S)
by the space of projectivized length functions arising from small actions of π1(S) on
R−trees. Skora’s theorem 13 allows us to replace PML(S) in Theorem 6 by such
length functions.

With this background in place we return to an outline of Thurston’s double limit
theorem [Thu86b] following Otal [Ota01]. Let (τ+i , τ

−
i ) ∈ Teich(S) × Teich(S) be

a sequence of points converging to (`+, `−) ∈ Teich(S) × Teich(S). By Theorem 4,
we can identify Teich(S) × Teich(S) with QF(S) and hence assume that (τ+i , τ

−
i ) ∈

QF(S). For convenience of exposition, we assume that `+, `− are both in PML(S) (a
similar statement holds if only one of `+, `− lies in PML(S)). Assume further that
`+, `− fill S, i.e. each component of S \ (`+ ∪ `−) is either simply connected or else
is topologically a punctured disk. Let ρi : π(S) → PSL2(C) be the quasi-Fuchsian
representation corresponding to (τ+i , τ

−
i ) ∈ QF(S) and let Γi = ρi(π(S)). Thurston’s

double limit theorem now says:

Theorem 14 [Thu86b] Under the above assumptions, there exists a Kleinian group
Γ such that Γi converges to Γ in AH(S).

We sketch Otal’s proof following [Ota01] and argue by contradiction. If Γi di-
verges, then Theorem 12 shows that there is a limiting small action of π1(S) on an
R−tree T . By Theorem 13 such a small action is dual to a measured lamination ` on
S.

It is then shown in [Ota01] that any measured lamination that intersects ` essen-
tially is realizable in T . Hence at least one of `+ and `− must be realizable in T ,
since the two together fill S. Without loss of generality, suppose `+ is realizable in
T . This allows us to approximate `+ by simple closed curves σ on S and estimate
the translation length li(σ) of σ in H3/Γi . The estimate thus obtained contradicts
a classical estimate of li(σ) due to Ahlfors obtained in terms of the length of the
geodesic realization of σ in τ+i and τ−i . This final contradiction proves Theorem 14.

Finally, to hyperbolize an atoroidal 3-manifold fibering over the circle with mon-
odromy φ, one picks a base Riemann surface τ, and sets τ+i = φ

i(τ) and τ−i = φ
−i(τ).

Then `+, `− turn out to be the stable and unstable laminations of φ. The 3-manifold
M obtained from the double limit theorem is easily seen to be invariant under φ, and
hence M admits a quotient which is the required hyperbolic 3-manifold.

5 Combination theorems in geometric group theory: hyperbolic
groups

The fundamental combination theorem in the context of hyperbolic groups in the
sense of Gromov [Gro85] is due to Bestvina and Feighn [BF92]. The theorem was
motivated by Thurston’s combination Theorem 9. In the context of geometric group
theory, free products with amalgamation and HNN extensions can be treated on
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a common footing by passing to the universal cover and looking at the resulting
Bass-Serre tree of spaces [SW79]. Thus, while the main combination theorem of
[BF92] provides only a weaker conclusion than Theorem 9 inasmuch as it establishes
Gromov-hyperbolicity, the context is considerably more general and works for trees
of spaces. It turns out that the sufficient condition in [BF92] are also necessary and
this converse direction was established by Gersten [Ger98], Bowditch [Bow07] and
others. The paper [BF92] spawned considerable activity in geometric group theory
and have been giving rise to a number of combination theorems [Dah03, Ali05,
MR08, GH09, GW11, MS12, Gau16, MO21] right up to the time of writing this
article. A forthcoming book of Kapovich and Sardar [KS21] furnishes a definitive
account and rather general versions of the material in Sections 5.1 and 5.2.

5.1 Trees of spaces

The framework of [BF92] is that of a tree of spaces. We follow the exposition in
[Mj20] to define the relevant notions.

Definition 12 [BF92] Let (X, d) be a geodesic metric space. Let T be a simplicial
tree. Let V(T) and E(T) denote the vertex set and edge set of T respectively. Then
P : X → T is said to be a tree of geodesic metric spaces satisfying the quasi-
isometrically embedded condition (or simply, the qi condition) if there exists a map
P : X → T , and constants K ≥ 1, ε ≥ 0 satisfying the following:

1. ∀v ∈ V(T), Xv = P−1(v) ⊂ X equipped with the induced path metric dv is
a geodesic metric space Xv . Also, the inclusion maps iv : Xv → X are uni-
formly proper, i.e. ∀M > 0, v ∈ T and x, y ∈ Xv , there exists N > 0 such that
d(iv(x), iv(y)) ≤ M implies dv(x, y) ≤ N .

2. Let e = [v1, v2] ∈ E(T) with initial and final vertices v1 and v2 respectively (we
assume that all edges have length 1). Let Xe be the pre-image under P of the
mid-point of e. There exist continuous maps fe : Xe×[v1, v2] → X , such that
fe |Xe×(v1 ,v2) is an isometry onto the pre-image of the interior of e equipped with
the path metric de.
Further, we demand that fe is fiber-preserving, i.e. projection to the second co-
ordinate in Xe×[v1, v2] corresponds via fe to projection to the tree P : X → T .

3. fe |Xe×{v1 } and fe |Xe×{v2 } are (K, ε)-quasi-isometric embeddings into Xv1 and Xv2

respectively. We shall often use the shorthand fe,v1 and fe,v2 for fe |Xe×{v1 } and
fe |Xe×{v2 } respectively.

We shall refer to K, ε as the constants or parameters of the qi-embedding condition.

If there exists δ > 0 such that the vertex and edge spaces Xv,Xe above are all
δ-hyperbolic metric spaces for all vertices v and edges e of T , then P : X → T will
be called a tree of hyperbolic metric spaces.

Definition 13 [BF92] A continuous map f : [−k, k]×I → X is called a hallway of
length 2k if it satisfies the following:
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1. f −1(∪Xv : v ∈ T) = {−k, · · · , k}×I
2. f is transverse, relative to condition (1) to ∪eXe.
3. f maps i×I to a geodesic in Xv for some vertex space Xv .

Definition 14 [BF92] A hallway f : [−k, k]×I → X is said to be ρ-thin if

d( f (i, t), f (i + 1, t)) ≤ ρ

for all i, t.
A hallway f : [−m,m]×I → X is called λ-hyperbolic if

λl( f ({0} × I)) ≤ max {l( f ({−m} × I)), l( f ({m} × I))}.

The girth of the hallway is defined to be the quantity

mini {l( f ({i} × I))}.

A hallway is essential if the edge path in T resulting from projecting the hallway
under P ◦ f onto T does not backtrack (and is therefore a geodesic segment in the
tree T).

Definition 15 (Hallways flare condition [BF92]:) The tree of spaces, X , is said to
satisfy the hallways flare condition if there exist λ > 1 and m ≥ 1 such that the
following holds:
∀ρ > 0 there exists H(= H(ρ)) such that any ρ-thin essential hallway of length 2m
and girth at least H is λ-hyperbolic.

The constants λ,m are referred to as the constants or parameters of the hallways
flare condition. If, further, the constant ρ is fixed, then H will also be called a constant
or parameter of the hallways flare condition.

With these notions in place, we can state themain geometric combination theorem
of [BF92]:

Theorem 15 Let P : X → T be a tree of hyperbolic spaces satisfying the qi-
embedded condition (as in Definition 12). Further, suppose that the hallways flare
condition (as in Definition 15) is satisfied. Then X is hyperbolic.

The proof of Theorem15 in [BF92] proceeds by establishing a linear isoperimetric
inequality ensuring hyperbolicity.We shall indicate a different proof scheme below in
the special case that the edge-to-vertex inclusion maps are uniform quasi-isometries
rather than qi-embeddings. The forthcoming book [KS21] provides a new proof as
well.
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5.2 Metric Bundles

The notion of a metric bundle [MS12] adapts the idea of a fiber bundle to a coarse
geometric context.We shall describe below themain combination theoremof [MS12]
which is an analog of Theorem 15 in this context.

Definition 16 Let (X, dX ) and (B, dB) be geodesic metric spaces. Let c,K ≥ 1 be
constants and h : R+ → R+ a function. P : X → B is called an (h, c,K)− metric
bundle if

1. P is 1-Lipschitz.
2. For each z ∈ B, Fz = P−1(z) is a geodesic metric space with respect to the path

metric dz induced from (X, dX ). We refer to Fz as the fiber over z.
We further demand that the inclusion maps iz : (Fz, dz) → X are uniformly
metrically proper as measured with respect to h, i.e. for all z ∈ B and u, v ∈ Fz ,
dX (iz(u), iz(v)) ≤ N implies that dz(u, v) ≤ f (N).

3. For z1, z2 ∈ B with dB(z1, z2) ≤ 1, let γ be a geodesic in B joining them. Then
for any z ∈ γ and x ∈ Fz , there is a path in p−1(γ) of length at most c joining x
to both Fz1 and Fz2 .

4. For z1, z2 ∈ B with dB(z1, z2) ≤ 1 and γ ⊂ B a geodesic joining them, let
φ : Xz1 → Xz2 , be any map such that for all x1 ∈ Xz1 there is a path of length at
most c in P−1(γ) joining x1 to φ(x1). Then φ is a K−quasi-isometry.

If in addition, there exists δ′ such that each Xz is δ′−hyperbolic, then P : X → B
is called an (h, c,K)− metric bundle of δ′−hyperbolic spaces (or simply a metric
bundle of hyperbolic spaces if the constants are implicit).

It is pointed out in [MS12] that condition (4) follows from the previous three (with
suitable K); but it is more convenient to have it as part of our definition.

A closely related notion of a metric graph bundle often turns out to be more
useful:

Definition 17 [MS12, Definition 1.2] Suppose X and B are metric graphs and f :
N → N is a proper function. We say that X is an f -metric graph bundle over B if
there exists a surjective simplicial map π : X → B such that the following hold.

1. For all b ∈ V(B), Fb := π−1(b) is a connected subgraph of X. Moreover, the
inclusion maps Fb → X, b ∈ V(B) are uniformly metrically proper as measured
by f .

2. For all adjacent vertices b1, b2 ∈ V(B), any x1 ∈ V(Fb1 ) is connected by an edge
to some x2 ∈ V(Fb2 ).

For all b ∈ V(B), Fb is called the fiber over b and its path metric is denoted by
db . It is pointed out in [MS12] that any metric bundle is quasi-isometric to a metric
graph bundle, where the quasi-isometry coarsely preserves fibers and restricts to a
quasi-isometry of fibers. Condition (2) of Definition 17 immediately shows that if
π : X → B is a metric graph bundle then for any points v,w ∈ V(B) we have
Hd(Fv,Fw) < ∞.
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Example Let
1→ N → G→ Q→ 1

be an exact sequence of finitely generated groups. Choose a finite generating set of
N and extend it to a finite generating set of G. The image of the finite generating set
of G in Q under the quotient map is then a generating set of Q. This gives a natural
simplicial map P : ΓG → ΓQ between the respective Cayley graphs. This is the
prototypical example of a metric graph bundle. The fibers are all copies of ΓN . �

Definition 18 Suppose X is an f -metric graph bundle over B. Given k ≥ 1 and a
connected subgraph A ⊂ B, a k-qi section over A is a map s : A → X such that s
is a k-qi embedding and π ◦ s is the identity map on A.

For any hyperbolic metric space F with more than two points in its Gromov
boundary ∂F, there is a coarsely well-defined barycenter map

φ : ∂3F → F

mapping an unordered triple (a, b, c) of distinct points in ∂F to a centroid of the ideal
triangle spanned by (a, b, c). We shall say that the barycenter map φ : ∂3F → F is
N−coarsely surjective if F is contained in the N-neighborhood of the image of φ.
A K−qi-section σ : B → X is a K−qi-embedding from B to X such that P ◦ σ is
the identity map. The following guarantees the existence of qi-sections for metric
bundles:

Proposition [MS12, Section 2.1] Given δ,N, c,K ≥ 0 and proper f : N→ N, there
exists K0 such that the following holds.
Let P : X → B be an ( f , c,K)-metric bundle of δ−hyperbolic spaces such that all
barycenter maps φb : ∂3Fb → Fb are N−coarsely surjective, Then through each
point of X , there exists a K0-qi section.

A similar statement holds for metric graph bundles. �

The following gives the analog of Definition 15 in the context of metric bundles
and metric graph bundles:

Definition 19 Let P : X → B be a metric bundle or a metric graph bundle. P : X →
B is said to satisfy a flaring condition if ∀k ≥ 1, there exist λk > 1 and nk,Mk ∈ N
such that the following holds:
Let γ : [−nk,nk] → B be a geodesic and let γ̃1 and γ̃2 be two k-qi sections of γ in
X . If dγ(0)(γ̃1(0), γ̃2(0)) ≥ Mk , then

λk .dγ(0)(γ̃1(0), γ̃2(0)) ≤ max{dγ(nk )(γ̃1(nk), γ̃2(nk)), dγ(−nk )(γ̃1(−nk), γ̃2(−nk))}.

The following Theorem is the analog of Theorem 15 in the context of metric
(graph) bundles.
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Theorem 18 Suppose that P : X → B is a metric bundle or a metric graph bundle
such that all fibers Fz are uniformly hyperbolic, and the barycenter maps are uni-
formly coarsely surjective. Equivalently, by Proposition 17, there exists ρ ≥ 1 such
that for every x ∈ X, there exists a ρ−qi section s : B → X passing through x, i.e.
s ◦ P(x) = x.

Then if X satisfies the qi-embedded condition and the flaring condition (as in
Definition 19) corresponding to ρ−qi sections, then X is hyperbolic.

Conversely, if X is hyperbolic, then as a metric bundle or metric graph bundle,
X satisfies the flaring condition.

5.2.1 Ladders

A tool that has turned out to be considerably useful in the context of both trees
of spaces and metric bundles is the notion of a ladder. In particular, for our proof
of Theorem 18 (sketched in Section 5.2.2), we shall use it. The notion is related
to, but different from that of a hallway. Ladders were introduced in [Mit98b] in
the context of trees of spaces and in [Mit98a] in the context of groups. Instead of
going through the construction in detail, we extract the relevant features from the
ladder construction of [Mit98b, Mit98a]. The following is a restatement of [Mit98b,
Theorem 3.6] reformulated to emphasize the connection with hallways.

Theorem 19 Given δ ≥ 0,K ≥ 1, ε ≥ 0 there exists D such that the following holds.
We consider one of the two following situations:

1. P : X → T is a tree of δ−hyperbolic spaces as in Definition 12 with parameters
K, ε . Let Fv be a vertex space,

2. P : X → B is a metric bundle or metric graph bundle, and Fv is a fiber.

In both cases, the intrinsic metric on Fv is denoted by dv . Then for every geodesic
segment µ ⊂ (Fv, dv) there exists a D−qi-embedded subset Lµ of X such that the
following holds.

1. Fv ∩ Lµ = µ,
2. (a) For P : X → T a tree of hyperbolic metric spaces and every w ∈ T , Fw ∩Lµ

is either empty or a geodesic µw in (Fw, dw). Further, there exists a subtree
T1 ⊂ T such that the collection of vertices w ∈ T satisfying Fw ∩Lµ , ∅ equals
the vertex set of T1.
(b) For P : X → B a metric bundle or metric graph bundle, Fw∩Lµ is a geodesic
µw in (Fw, dw).

3. There exists ρ0 ≥ 1 such that through every z ∈ Lµ, there exists a ρ0−qi-section
σz of [v,P(z)] contained in Lµ satisfying

σz(P(z)) = z, σz(v) ∈ µ.

Further, there exists a D−coarse Lipschitz retraction Πµ : X → Lµ, i.e.
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1. d(Πµ(x),Πµ(y)) ≤ Dd(x, y) + D, ∀ x, y ∈ X ,
2. Πµ(x) = x, ∀ x ∈ Lµ.

The qi-embedded set Lµ is called a ladder in [Mit98a, Mit98b]. Theorem 19
shows in particular that there is a (2D,2D)− quasigeodesic of (X, dX ) joining the
end-points of µ and lying on Lµ.

Remark Note that in Theorem 19, we have not assumed that X is hyperbolic: no
assumptions on the global geometry of X are necessary here. �

5.2.2 Idea behind the proof of Theorem 18

We focus on the metric graph bundle case for convenience. Theorem 19 guarantees
that for any pair of points x, y in a metric graph bundle X, there exist

1. Qi-sections Σx,Σy through x, y.
2. A ladder L(x, y) bounded by Σx,Σy . In fact, in this case (as shown in [Mit98a,

MS12]), L(x, y) ∩ Fb equals a geodesic in Fb joining Σx(b),Σy(b) (here we are
abusing notation slightly by identifying the qi-sections Σx,Σy with their images).

Thus, for every x, y ∈ X there are preferred quasigeodesics in X contained
in L(x, y). We have not used the flaring condition so far. The flaring condition
guarantees hyperbolicity of L(x, y). We shall return to this shortly. Hyperbolicity
of L(x, y) ensures (by the Morse Lemma) that all quasigeodesics in L(x, y) joining
x, y are in a bounded neighborhood of each other. This gives a family of paths in X,
one for every pair x, y. We then use a path-families argument following Hamenstadt
[Ham05] and a criterion due to Bowditch to conclude that X is hyperbolic.

We return to the proof of hyperbolicity ofL(x, y). We note thatL(x, y) is a bundle
over B where the fibers are intervals. The flaring condition is inherited by L(x, y)
with slightly worse constants. Thus, we are reduced to proving Theorem 18 in the
special case that fibers are intervals. To do this, we decompose the ladder L(x, y)
using qi-sections contained in L(x, y) into a finite number of ladders ‘stacked one
on top of another’. Thus, there exist disjoint sections Σx = Σ0,Σ1, · · · ,Σn = Σy and
ladders Li bounded by Σi−1,Σi such that distinct Li’s have disjoint interiors. The
ubiquity of qi-sections allows us to ensure that each of these smaller ladders has
bounded girth (in the spirit of Definition 14), i.e. Σi−1,Σi are at a bounded distance
from each other along some fiber Fb and flare away from each other as one goes to
infinity in B. A further path families argument following [Ham05] allows us to prove
that L(x, y) is hyperbolic.

A word about the proof sketch above. Note that we use only the 1-dimensional
property of quasigeodesics flaring and path families to prove the combination theo-
rem in this case, as opposed to the more ‘2-dimensional’ area argument of [BF92].
This has been considerably refined in [KS21] to give a new path-families proof of
Theorem 15.
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5.3 Relatively hyperbolic combination theorems

We refer the reader to [Far98, Gro85, Bow12] for the basics of relative hyperbolicity.
Theorem 15 was generalized to the context of trees of relatively hyperbolic spaces
in two different ways:

1. Using an acylindricity hypothesis in [Dah03] and [Ali05]. This is in the spirit of
Theorem 10.

2. Using the flaring condition in [MR08, Gau16]. This in the spirit of Theorem 14.

5.3.1 Relatively hyperbolic combination theorem using acylindricity

Let G be hyperbolic relative to a finite collection P = {P1, · · · ,Pk} of parabolic
subgroups. Let ∂hG denote the Bowditch boundary of G. Let H ⊂ G be a relatively
quasiconvex subgroup [Hru10]. We shall give Dahmani’s version of the combination
theorem [Dah03] below. Let ΛH ⊂ ∂hG denote the limit set of H. A relatively
quasiconvex subgroups H is full relatively quasi-convex if it is quasi-convex and
if, for any infinite sequence gn ∈ G in distinct left cosets of H, the intersection
∩ngn(ΛH ) is empty.

Lemma 1 [Dah03, Lemma 1.7] Let G be hyperbolic relative to a finite collection
P = {P1, · · · ,Pk} of parabolic subgroups. Let H be a full relatively quasi-convex
subgroup. Let P be a conjugate of one of the Pi’s. Then P ∩ H is either finite, or of
finite index in P.

Definition 20 [Sel97] The action of a group G on a tree T is k−acylindrical for some
k ∈ N if the stabilizer of any geodesic of length k in T is finite. The action of a group
G on a tree T is acylindrical if it is k−acylindrical for some k ∈ N

A finite graph of groups is said to be acylindrical, if the action on the associated
Bass-Serre tree is acylindrical.

Then Dahmani’s combination theorem states:

Theorem 21 [Dah03] Let G be the fundamental group of an acylindrical finite
graph of relatively hyperbolic groups, whose edge groups are full quasi-convex
subgroups of the adjacent vertex groups. Let G be the family of images of the
maximal parabolic subgroups of the vertex groups, and their conjugates in G. Then
G is strongly hyperbolic relative to G.

The approach in [Dah03] is quite different from that of [BF92]. From theBowditch
boundaries of the vertex and edge groups, a metrizable compact space Z is con-
structed in such a way that G naturally acts on Z . It is then shown that this action
is a convergence action. Finally, it is shown that the action is geometrically finite,
forcing G to have a relatively hyperbolic structure.

The Bass-Serre tree of G has vertex groups Gv and edge groups Ge. Hence,
associated to the Bass-Serre tree T there is a natural tree (T) of compact spaces
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given by ∂hGv and ∂hGe. The set Z is built [Dah03, Section 2] from these copies
of ∂hGv and ∂hGe. Suppose e = [v1, v2] is an edge of T . For all such edges e, glue
together ∂hGv1 and ∂hGv2 along the limit set ∂hGe. The relevant identification space
is thus obtained from the set tv∈V (T )∂hGv by identifying pairs of points according
to the images of ∂hGe. Finally, the base tree T encodes (infinite) directions that are
‘transverse’ to all the vertex spaces. The set Z is then obtained from topologizing
∂T ∪ tv∈V (T )∂hGv/ ∼, where ∼ is the equivalence relation given by edge spaces.

Alibegovic [Ali05] proves a similar combination theorem for relatively hyperbolic
groups following the original strategy of Bestvina and Feighn in Theorem 15 using
the linear isoperimetric inequality characterization of hyperbolicity.

5.3.2 Relatively hyperbolic combination theorem using flaring

We next define a tree of relatively hyperbolic spaces in general.

Definition 21 [MR08] A tree P : X → T of geodesic metric spaces is said to
be a tree of relatively hyperbolic metric spaces if in addition to the conditions of
Definition 12

(4) each vertex space Xv is strongly hyperbolic relative to a collection of subsetsHv

and each edge space Xe is strongly hyperbolic relative to a collection of subsets
He. The sets Hv,α ∈ Hv or He,α ∈ He are referred to as horosphere-like sets.

(5) the maps fe,vi above, for i = 1,2, are strictly type-preserving. That is, for i = 1,2
and for any Hvi ,α ∈ Hvi , f −1

e,vi
(Hvi ,α), is either empty or equals some He,β ∈ He.

Further, for all He,β ∈ He, there exists v and Hv,α, such that fe,v(He,β) ⊂ Hv,α.
(6) There exists δ > 0 such that each E(Xv,Hv) is δ-hyperbolic (here, E(Xv,Hv)

denotes the electric space obtained from Xv by electrifying all the horosphere-
like sets inHv).

(7) The induced maps of the coned-off edge spaces into the coned-off vertex spaces
f̂e,vi : E(Xe,He) → E(Xvi ,Hvi ) (i = 1,2) are uniform quasi-isometries. This is
called the qi-preserving electrification condition

We state conditions (4) and (6) in conjunction by saying that Xv is strongly
δ−hyperbolic relative toHv .

We explain condition (7) briefly. Given the tree of spaces P : X → T with vertex
spaces Xv and edge spaces Xe there exists a naturally associated tree whose vertex
spaces are the electrified spaces E(Xv,Hv) and edge spaces are the electrified spaces
E(Xe,He) obtained by electrifying the respective horosphere like sets. Condition (4)
of the above definition ensures that we have natural inclusion maps of edge spaces
E(Xe,He) into adjacent vertex spaces E(Xv,Hv). The resulting tree of coned-off
spaces P : TC(X) → T is referred to simply as the induced tree of coned-off
spaces. The cone locus of TC(X) is the forest given by the following:

1. the vertex setV(TC(X)) consists of the cone-points {cv,α in the vertex spaces Xv

resulting from the electrification operation of the horosphere-like sets Hv,α ∈ Hv .
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2. the edge set E(TC(X)) consists of the cone-points {ce,α in the edge set Xe

resulting from the electrification operation of the horosphere-like sets He,α ∈ He..
Each connected component of the cone-locus is a maximal cone-subtree. The

collection of maximal cone-subtrees is denoted by CT and elements of CT are
denoted as CTα. Note that each maximal cone-subtree CTα naturally gives rise to a
treeCTα of horosphere-like subsets depending onwhich cone-points arise as vertices
and edges of CTα. The metric space that CTα gives rise to is denoted as Cα. We refer
to any such Cα as a maximal cone-subtree of horosphere-like spaces. The induced
tree of horosphere-like sets is denoted by

gα : Cα → CTα .

The collection of these maps will be denoted as G. The collection of the maximal
cone-subtree of horosphere-like spaces Cα is denoted as C. Note thus that each CTα
thus appears both as a subset of TC(X) as well as the underlying tree of Cα.

Definition 22 (Cone-bounded hallways strictly flare condition:)
An essential hallway of length 2k is cone-bounded if f (i × ∂I) lies in the cone-

locus for i = {−k, · · · , k}.
The tree of spaces, X , is said to satisfy the cone-bounded hallways flare condition

if there are numbers λ > 1 and k ≥ 1 such that any cone-bounded hallway of length
2k is λ-hyperbolic, where λ, k are called the constants or parameters of the strict
flare condition.

We now state the combination theorem for relative hyperbolicity using the flaring
condition.

Theorem 22 [MR08, Gau16] Let P : X → T be a tree of uniformly relatively
hyperbolic spaces in the sense of Definition 21 satisfying the qi-embedded condition,
such that the resulting tree of coned-off spaces satisfies

1. the hallways flare condition,
2. the cone-bounded hallways flare condition.

Then X is hyperbolic relative to themaximal cone-subtrees of horosphere-like spaces.

5.4 Effective quasiconvexity and flaring

We now state a couple of theorems along the lines of Theorem 15 and 18 ensuring
quasiconvexity of a subspace of a vertex space. The first, due to Ilya Kapovich
[Kap01a] is in the setup of an acylindrical graph of groups:

Theorem 23 Let G be a finite acylindrical graph of groups where all vertex and edge
groups are hyperbolic and edge-to-vertex inclusions are quasi-isometric embeddings.
Let T ⊂ G be a maximal subtree. Let G denote the group corresponding to the tree
T . (By Theorem 15, G is hyperbolic.) Then each vertex group Gv of G is quasiconvex
in G.
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Next, we shall consider in a unified way the two following situations:

1. P : X → T is a tree of hyperbolic metric spaces satisfying the qi-embedded
condition with constants K, ε and the hallways flare condition with parameters
λ0,m0. Further, if ρ0 is given we shall assume an additional constant H0 as a lower
bound for girths of ρ0−thin hallways.

2. P : X → B is a metric bundle or a metric graph bundle satisfying the flaring
condition with constants as i Definitions 16, 17, 19.

Also (Xv, dv) will, be a vertex space of X (in the tree of spaces case) or P−1(v)
equipped with the induced metric in the metric (graph) bundle case.

Definition 23 Let P : X → T be a tree of hyperbolic spaces. Let Y ⊂ (Xv, dv)
be a C−quasiconvex subset of (Xv, dv). We say that Y flares in all directions with
parameter K if for any geodesic segment [a, b] ⊂ (Xv, dv) with a, b ∈ Y and any
ρ−thin hallway f : [0, k] × I → X satisfying

1. ρ ≤ ρ0,
2. f ({0} × I) = [a, b],
3. l([a, b]) ≥ K ,
4. k ≥ K ,

the length of f ({k} × I) satisfies

l( f ({k} × I)) ≥ λl([a, b]).

Similarly, let P : X → B be a metric bundle or metric graph bundle with
hyperbolic fiber. Let Y ⊂ Xv be quasiconvex. Further, assume that there is a ρ−qi
section through every x ∈ X (cf. the second hypothesis of Theorem 18).

We say that Y flares in all directions with parameter K ≥ 0,D ≥ 1, λ > 1 if the
following holds:
Let γ : [0,D] → B be a geodesic such that γ(0) = v and let γ̃1 and γ̃2 be two ρ-qi
lifts (sections) of γ in X. If dv(γ̃1(0), γ̃2(0)) ≥ K , then we have

λ.dv(γ̃1(0), γ̃2(0)) ≤ dγ(D)(γ̃1(D), γ̃2(D)).

We can now state the a Proposition guaranteeing quasiconvexity of subsets of
vertex spaces.

Proposition [Mj20] Given K,C, there exists C0 such that the following holds.
Let P : X → T and Xv be as in Theorem 19 above. If Y is a C−quasiconvex subset
of (Xv, dv) and flares in all directions with parameter K , then Y is C0−quasiconvex
in (X, dX ).

Conversely, given C0, there exist K,C such that the following holds.
For P : X → T and Xv as above, if Y ⊂ Xv is C0−quasiconvex in (X, dX ), then it is
a C−quasiconvex subset in (Xv, dv) and flares in all directions with parameter K . �

A similar statement holds for metric (graph) bundles.
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Proposition Given K,D, λ,C, there exists C0 such that the following holds.
Let P : X → B be a metric (graph) bundle and Xv be as in Definition 23. If Y is a
C−quasiconvex subset of (Xv, dv) and flares in all directions with parameters K,D, λ,
then Y is C0−quasiconvex in (X, dX ).

Conversely, given C0, there exist K,D, λ,C such that the following holds.
For P : X → B a metric (graph) bundle and Xv as above, if Y ⊂ Xv is
C0−quasiconvex in (X, dX ), then it is a C−quasiconvex subset in (Xv, dv) and flares
in all directions with parameters K,D, λ. �

6 Combination theorems in geometric group theory: cubulations

We turn now to the remarkable work during the last decade on special cube com-
plexes. We refer to [HW08] for the basics of special cube complexes. Let G denote
a finite graph, RAAG(G) the right-angled Artin group associated to G, and S(G) its
Salvetti complex. A cube complex C is said to be special if there exists a combina-
torial local isometry from C to S(G) for some finite graph G. By Agol’s resolution
of Wise’s conjecture in [Ago13] (see Theorem 30 below), hyperbolic groups that
are virtually special are precisely those that act geometrically on a CAT(0) cube
complex. We give a brief account of some of the combination theorems that have
been proved around this theme.

In [HW10], Hsu and Wise proved the precursor of all virtually special combi-
nation theorems by showing that if a hyperbolic group G splits as a finite graph of
finitely generated free groups with cyclic edge groups, then G is virtually special.
In [HW15b], they later generalized this to amalgamated products of free groups
over a finitely generated malnormal subgroup. A landmark combination theorem
due to Haglund and Wise concerns the combination of hyperbolic virtually special
cubulable groups along malnormal quasiconvex subgroups:

Theorem 26 [HW12] Let A,B,M be compact virtually special cube complexes.
Suppose that GA = π1(A), GB = π1(B), and GM = π1(M) are hyperbolic. Let
M

iA
−→ A, and M

iB
−→ B be local isometries of cube complexes such that iA∗(GM ) and

iB∗(GM ) are quasiconvex andmalnormal inGA andGB respectively. Let X = A∪M B
be the cube complex obtained by gluing A and B together along M using M × [0,1].
Then X is virtually special.

Theorem 26 generalizes earlier work of Wise [Wis02] where he showed that any
2-complex built by amalgamating (in terms of fundamental group) two finite graphs
along a malnormal immersed graph is virtually special. Theorem 26 is also a crucial
ingredient in Wise’s proof of the virtual specialness of hyperbolic groups admitting
a quasiconvex hierarchy. This is very much in the spirit of the Haken hierarchy for
Haken 3-manifolds and Thurston’s hyperbolization of such manifolds (cf. Section
4.1).
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Theorem 27 [Wis21] Let G be a hyperbolic group admitting a quasiconvex hier-
archy. Then G is the fundamental group of a compact non-positively curved cube
complex that is virtually special.

We list below some of the important consequences of Theorem 27. The following
resolved a conjecture of Baumslag:
Theorem 28 [Wis21] Every one-relator group with torsion is virtually special.

In the context of hyperbolic 3-manifolds, Wise showed the following.
Theorem 29 [Wis21] Compact hyperbolic Haken manifolds are virtually special.

Using work of Kahn and Markovic [KM12], Bergeron and Wise [BW12] proved
that all hyperbolic 3-manifolds can be cubulated, i.e. they act geometrically on
CAT(0) cube complexes. This led Wise to conjecture that hyperbolic groups that
act geometrically on CAT(0) cube complexes are virtually special. The following
celebrated theorem of Agol resolved this conjecture affirmatively:
Theorem 30 [Ago13] Hyperbolic groups acting geometrically on CAT(0) cube com-
plexes are virtually special.

A flurry of activity ensued in trying to show that several naturally defined hyper-
bolic groups are, in fact, cubulable. In [HW16, HW15a], Hagen and Wise proved
that hyperbolic groups G admitting an exact sequence of the form

1→ Fn → G→ Z→ 1

are cubulable. (Here Fn denotes the free group on n generators.) Hence, by Agol’s
Theorem 30, such groups G are virtually special. In a different direction, Manning,
the first author and Sageev [MMS19] showed that there exist cubulable hyperbolic
groups G admitting an exact sequence of the form

1→ π1(S) → G→ Fn → 1,

where S is a closed surface of genus greater than one. Again, by Agol’s Theorem 30,
such groups G are virtually special.

Finally, we mention work of Przytycki and Wise [PW18], who proved the virtual
specialness of fundamental groups of 3-manifolds whose JSJ decomposition has
both a hyperbolic as well as a Seifert-fibered piece. 3-manifolds admitting such a JSJ
decomposition are called mixed. As a consequence of their result, the authors show
that mixed manifolds virtually fiber.

The proof in [PW18] proceeds by first showing that there are enough codimen-
sion one surface subgroups to ensure cubulability. This is established by combining
surfaces coming from the graph manifold pieces with those coming from hyper-
bolic pieces. Once cubulability has been established, the malnormal special quotient
theorem [Wis21] (see also [AGM16]) is used to establish specialness of the cube
complex thus built. In this section, we have given only a cursory treatment of a
topic that, starting with [Sag95] has undergone tremendous development over the
last two decades. We refer the reader to the books [AFW15] and [Wis12] for a more
comprehensive treatment.
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7 Holomorphic dynamics and polynomial mating

Before entering the theme of combination theorems in holomorphic dynamics,we say
a fewwords on the history of the subject, and sketch briefly some of the philosophical
parallels between holomorphic dynamics and Kleinian groups and some of the
developments inspired by this synergy. These will also serve as a motivation for
combination theorems involving complex polynomials and Kleinian groups that we
will discuss later in the section.

7.1 Historical comments

The study of dynamics of rational maps on the Riemann sphere started with ground-
breaking work of Fatou and Julia [Fat19, Fat20a, Fat20b, Fat26, Jul18, Jul22] in
the 1920s. The subject remained dormant for several decades barring a handful of
important contributions, most notably by Siegel [Sie42] and Brolin [Bro65]. Around
the 1970s, the availability of computers allowed Feigenbaum and Mandelbrot to per-
form numerical experiments on finer structures of dynamical and parameter planes
of real/complex-analytic maps. Their pioneering discoveries infused fresh blood into
the field, and gave rise to problems and conjectures that played pivotal roles in the
development of the modern theory of holomorphic dynamics.

A revolutionary contribution came fromSullivan, who introduced quasiconformal
methods into the study of rational dynamics to prove nonexistence of wandering
domains in the Fatou set for rational maps [Sul85]. The seminal work of Douady
and Hubbard on the dynamics of quadratic polynomials and the structure of the
Mandelbrot set [DH85, DH84] turned out to be equally fundamental in that the
techniques devised by them were robust enough to be applied to the study of a wide
variety of holomorphic dynamical systems.

Sullivan proposed a dictionary between Kleinian groups and rational dynamics
that was motivated by various common features shared by them [Sul85, p. 405]. In
addition to the apparent similarities between the topological structures of the limit
set (respectively, the domain of discontinuity) of a Kleinian group and the Julia set
(respectively, the Fatou set) of a rational map, there are deeper similarities between
the techniques employed in proving various statements in these two parallel worlds.
In fact, in the same paper, Sullivan gave a new proof of Ahlfors’ finiteness theorem
which closely parallels the proof of the ‘no wandering Fatou component’ theorem
for rational maps.

Around the same time, Thurston proved a topological characterization for an
important class of rational maps [DH93]. This result, which is a philosophical
analog of the hyperbolization of atoroidal Haken 3-manifolds, has given rise to a
wealth of rich and beautiful results that we will not be touching upon in this survey
(see [Ree16, §9] and the references therein).

We should emphasize that the aforementioned dictionary is not an automatic
method for translating results in one setting to the other, but rather an inspiration
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for results and proof techniques. We now list a few prominent pieces of work mo-
tivated by this dictionary. In [LM97], Lyubich and Minsky constructed “an explicit
object that plays for a rational map the role played by the hyperbolic 3-orbifold
quotient of a Kleinian group”. Bullett and Penrose constructed matings of holomor-
phic quadratic polynomials and the modular group as holomorphic correspondences
[BP94]. Sullivan and McMullen introduced Teichmüller spaces of conformal dy-
namical systems in the spirit of Teichmüller spaces of Riemann surfaces in [SM98].
McMullen established conceptual connections between renormalization ideas used
in holomorphic dynamics and the study of 3-manifolds fibering over the circle
[McM98]. Pilgrim proved a canonical decomposition theorem for Thurston maps
as an analog of the torus decomposition theorem for 3-manifolds [Pil03]. Another
noteworthy development in the framework of the above dictionary is the recent work
of Luo [Luo19, Luo21a, Luo21b], where results in rational dynamics were proved
using techniques that are closely related to Thurston’s work on 3-manifolds.

We refer the reader to [Mil06, CG93] for a basic introduction to rational dynamics,
to [Lyu17] for a comprehensive account on the dynamics of quadratic polynomials
and the Mandelbrot set, to the recent survey article by Rees on major advances in
the field [Ree16], and a survey by DeZotti on connections between holomorphic
dynamics and other branches of mathematics [DeZ20].

7.2 Mating of polynomials

The operation of polynomial mating, which was introduced by Douady in [Dou83],
constructs a rational map on Ĉ by combining the actions of two complex polynomi-
als. Since the first appearance of the notion, several closely related definitions and
perspectives have been put forward. In this survey, we will follow the route adopted
in [PM12] (see [Roe12] for the original formulation and some historical comments,
and [Mil04] for a lucid account of the mating construction along with a detailed
worked out example).

To define the operation of polynomial mating formally, we need to introduce
some terminology. The Fatou set of a rational map R, denoted by F (R), is the
largest open subset of Ĉ on which the sequence of iterates {R◦n}n≥0 forms a normal
family. Its complement is called the Julia set, and is denoted by J(R). For a complex
polynomial P, the filled Julia set (i.e., the set of points with bounded forward orbits)
and the basin of attraction of infinity (i.e., the complement of the filled Julia set) are
denoted by K(P) and B∞(P), respectively. We refer the reader to [Mil06] for basic
topological and dynamical properties of these sets.

A rational map R is called postcritically finite if each of its critical points has a
finite forward orbit. R is called hyperbolic if each of its critical points converges to
an attracting cycle under forward iteration.

If P is a monic, centered polynomial of degree d with a connected Julia set,
then there exists a conformal map φP : Ĉ \ D → B∞(P) that conjugates zd to P,
and satisfies φ′P(∞) = 1 [Mil06, Theorem 9.1, Theorem 9.5]. We will call φP the
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Böttcher coordinate for P. Furthermore, if ∂K(P) = J(P) is locally connected,
then φP extends to a semiconjugacy between zd |S1 and P |J(P). In this case, the map
φP : S1 → J(P) is called the Carathéodory loop/semi-conjugacy for J(P).

Now let P1,P2 be twomonic polynomials of the same degree d ≥ 2with connected
and locally connected filled Julia sets. We consider the disjoint unionK(P1)tK(P2)
and the map

P1 t P2 : K(P1) t K(P2) → K(P1) t K(P2),
P1 t P2 |K(P1) = P1, P1 t P2 |K(P2) = P2.

Let ∼ be the equivalence relation on K(P1) t K(P2) generated by φP1 (z) ∼ φP2 (z),
for all z ∈ S1. It is easy to check that ∼ is P1 t P2−invariant, and hence it descends
to a continuous map P1⊥⊥P2 to the quotient K(P1)⊥⊥K(P2) := (K(P1) t K(P2)) /∼
(see [PM12, §4.1] for details). The map P1⊥⊥P2 is called the topological mating of
the polynomials P1,P2. Moreover, ifK(P1)⊥⊥K(P2) is homeomorphic to a 2-sphere,
we say that the topological mating is Moore-unobstructed. We refer the reader to
[PM12, Theorem 2.12] for the statement of Moore’s theorem, which provides a
general sufficient condition for the quotient of S2 under an equivalence relation to
be a topological 2−sphere, and to [PM12, Proposition 4.12] for a useful application
of Moore’s theorem giving a sufficient condition for the topological mating of P1,P2
(as above) to be Moore-unobstructed (note that the conditions of Moore’s theorem
are not necessary, see [BM17, Example 13.18]). By [PM12, Proposition 4.3], if
the topological mating of P1,P2 is not Moore obstructed (i.e., if K(P1)⊥⊥K(P2) �
S2), then P1⊥⊥P2 is topologically conjugate to an orientation-preserving branched
covering of S2. The following definition relates the topological mating to rational
maps of Ĉ. We refer the reader to [DH93] for the notion of Thurston equivalence
appearing below.

Definition 24 [PM12, Definition 4.4] Let the topological mating of P1⊥⊥P2 be
Moore-unobstructed, and h : K(P1)⊥⊥K(P2) → S

2 be a homeomorphism.

1. The polynomials P1,P2 are called combinatorially mateable if they are postcriti-
cally finite and if the branched covering h ◦ P1⊥⊥P2 ◦ h−1 : S2 → S2 is Thurston
equivalent to a rational map R.

2. The polynomials P1,P2 are called conformally/geometrically mateable if the
homeomorphism h can be so chosen that R = h ◦ P1⊥⊥P2 ◦ h−1 : S2 → S2

is a rational map and h is conformal on the interior of K(P1)⊥⊥K(P2).

Conversely, a rational map R is said to be combinatorially (respectively, con-
formally) a mating if there exist polynomials P1,P2 satisfying the corresponding
property above with R = h ◦ P1⊥⊥P2 ◦ h−1.

The following equivalent definition of conformal mating is often useful in practice
(see [PM12, §4.7] for other definitions). In fact, this definition can be easily adapted
for the other frameworks of combination theorems that we will discuss in this section
(compare Definition 30).
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Definition 25 [PM12, Definition 4.14] A rational map R : Ĉ→ Ĉ of degree d ≥ 2
is said to be the conformal mating of two degree d monic, centered, polynomials
P1 and P2 with connected and locally connected filled Julia sets if and only if there
exist continuous maps

ψ1 : K(P1) → Ĉ and ψ2 : K(P2) → Ĉ,

conformal on intK(P1), intK(P2), respectively, such that

1. ψ1(K(P1))
⋃
ψ2(K(P2)) = Ĉ,

2. ψi ◦ Pi = R ◦ ψi , for i ∈ {1,2}, and
3. ψ1(z) = ψ2(w) if and only if z ∼ w, where ∼ is the equivalence relation defined

above.

With the above notions of mating in place, we can now mention the first major
results on mateability of complex polynomials. In fact, these provided the first main
application of Thurston’s theorem on topological characterization for rational maps.
The following theorem completely answers the question of conformal mateability of
postcritically finite quadratic polynomials (see [DH85, DH84] for a detailed study
of the Mandelbrot set, or [Mil00] for a quick introduction).

Theorem 31 [Ree92, Tan92, Shi00] Let P1(z) = z2 + c1 and P2(z) = z2 + c2 be
two postcritically finite quadratic polynomials. Then P1 and P2 are conformally
mateable if and only if c1 and c2 do not belong to conjugate limbs of the Mandelbrot
set.

Among other earlyworks onmatings of postcritically finite polynomials, we ought
tomention thework of Shishikura and Tanwhich highlighted additional complexities
that are absent in the quadratic setting, but arise for cubic rational maps [SL00].

In [Tan97], Tan described the dynamics of postcritically finite cubic Newtonmaps
(these maps, which are obtained by plugging in complex polynomials in Newton’s
classical root-finding method, form an important and well-studied class of rational
maps), and exhibited in the process the fact that a large subclass of such maps
are matings. (See also the more recent work [AR16] for a description of certain
postcritically infinite cubic Newton maps as matings.)

The next theorem, due to Yampolsky and Zakeri, was the first existence result for
conformal matings of polynomials that are not ‘close cousins’ of postcritically finite
ones. A quadratic polynomial P is said to have a bounded type Siegel fixed point if
it has a fixed point z0 with P′(z0) = e2πiθ such that the continued fraction expansion
of θ ∈ R/Z has uniformly bounded partial fractions.

Theorem 32 [YZ01] Suppose P1,P2 are quadratic polynomials which are not anti-
holomorphically conjugate and each of which has a bounded type Siegel fixed point.
Then P1 and P2 are conformally mateable.

The question of unmating a rational map; i.e., deciding whether a given rational
map appears as the mating of two polynomials (and if so, whether such a decomposi-
tion is unique) has also been studied by various authors. For a general combinatorial
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characterization of hyperbolic, postcritically finite rational maps arising as matings,
see [Mey14, Theorem 4.2]. The situation is a bit more subtle for non-hyperbolic
rational maps, as discussed in the same paper. However, the next theorem gives a
positive answer to the unmating question for a class of postcritically finite rational
maps:

Theorem 33 [Mey09, Theorem 1.1] Let R : Ĉ→ Ĉ be a postcritically finite rational
map such that its Julia set is the whole sphere. Then every sufficiently high iterate
R◦n of R arises as a mating (i.e., is topologically conjugate to the topological mating
of two polynomials).

We refer the reader to the excellent survey article [Mey14] for more on this topic.
Matings of geometrically finite polynomials (i.e., a polynomial whose postcrit-

ical set intersects the Julia set in a finite set, or equivalently, if every critical point
is either preperiodic, or attracted to an attracting or parabolic cycle) were studied
by Haïssinsky and Tan using techniques of David homeomorphisms. They showed
that two geometrically finite polynomials P1 and P2 with connected Julia sets and
parabolic periodic points are mateable if and only if the postcritically finite polyno-
mials T(P1),T(P2) canonically associated to P1,P2 (such that T(Pi) and Pi have
topologically conjugate Julia set dynamics, i = 1,2) are mateable [HT04, Theo-
rem D] (cf. [LMMN20, Theorem 5.2]).

Mating of anti-holomorphic polynomials. Let us now mention a class of anti-
holomorphic polynomials (anti-polynomials for short) for which a complete solu-
tion to the conformal mating problem is known. These are the so-called critically
fixed anti-polynomials; i.e., anti-polynomials that fix all of their critical points. The
proof of the following theorem crucially uses [PL98, Theorem 3.2], which in many
situations, facilitates the application of Thurston’s topological characterization of
rational maps.

Theorem 34 [LLM20, Theorem1.3] LetP1 andP2 be two (marked) anti-polynomials
of equal degree d ≥ 2, where P1 is critically fixed and P2 is postcritically finite,
hyperbolic. Then there is an anti-rational map R that is the conformal mating of P1
and P2 if and only if there is no Moore obstruction.

In the opposite direction, the question of unmating critically fixed anti-rational
maps was also settled in [LLM20, Theorem 1.2], and examples of shared matings
were demonstrated (cf. [Ree10]).

Remark 1) Combined with [LLM20, Lemma 4.20], Theorem 34 yields an effective
procedure to decide conformal mateability of a critically fixed anti-polynomial P1
and a postcritically finite, hyperbolic anti-polynomial P2. This is particularly useful
in applying Theorem 45 below to concrete examples.

2) It is worthmentioning that the abovemating (respectively, unmating) results for
critically fixed anti-polynomials (respectively, anti-rational maps) serve as a precise
philosophical counterpart of the double limit theorem for Kleinian reflection groups
in the complex dynamics world (see the discussion before [LLM20, Theorem 1.3]
and [LLM20, §4.3]). �
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To conclude, we list a few relevant works that we did not touch upon in this survey:
[MT12, ES12, Ché12, CPT12, BEK12a, Sha19]. A good part of the mating theory
discussed above carries over to the setting of Thurston maps (i.e., postcritically
finite, orientation-preserving branched coverings of S2), for which we encourage the
reader to consult [BM17, BD18]. Several beautiful visual illustrations of polynomial
matings can be found in [Ché]. For a list of open questions on polynomial matings,
we refer the reader to [BEK+12b].

8 Combining rational maps and Kleinian groups

In this Section, we will expound recently developed frameworks for combining
polynomials (respectively, anti-polynomials) with Kleinian (respectively, reflection)
groups.

8.1 Mating anti-polynomials with reflection groups

Following [LMM20, LMMN20], we introduce in Subsection 8.1.1 a class ofKleinian
reflection groups (called necklace reflection groups) central to the mating construc-
tion, and associate a map (called the Nielsen map) to each necklace reflection group
that is orbit equivalent to the group. In Subsection 8.1.2, we formalize the notion
of conformal mating of a necklace group and an anti-polynomial. It turns out that
such conformal matings are realized as Schwarz reflection maps associated with
quadrature domains; these objects are defined in Subsection 8.1.3. Subsection 8.1.4
summarizes some of the main results of [LLMM18a, LLMM18b, LMM20], where
various explicit examples of Schwarz reflection maps were shown to be confor-
mal matings of necklace groups and anti-polynomials. Finally in Subsection 8.1.5,
we state a general combination theorem for necklace groups and anti-polynomials
proved in [LMMN20].

8.1.1 Necklace reflection groups

A circle packing is a connected collection of oriented circles in C with disjoint
interiors (where the interior is determined by the orientation). Up to a Möbius map,
we can always assume that no circle of the circle packing contains∞ in its interior;
i.e., the interior of each circle C of the circle packing can be assumed to be the
bounded complementary component intC of C. Combinatorially, a circle packing
can be described by its contact graph, where we associate a vertex to each circle,
and connect two vertices by an edge if and only if the two associated circles touch.
By the Koebe-Andreev-Thurston circle packing theorem [Thu80, Corollary 13.6.2],
every connected, simple, planar graph is the contact graph of some circle packing.
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Definition 26 A necklace reflection group is a group generated by reflections in the
circles of a finite circle packing whose contact graph is 2-connected and outerplanar;
i.e., the contact graph remains connected if any vertex is deleted, and has a face
containing all the vertices on its boundary.

Note that since a necklace reflection group is a discrete subgroup of the group of
all Möbius and anti-Möbius automorphisms of Ĉ, definitions of limit set and domain
of discontinuity can be easily extended to necklace reflection groups. By [LLM20,
Proposition 3.4], the limit set of a necklace reflection group is connected. Moreover,
for a necklace reflection group Γ generated by reflections in the circlesC1, · · · ,Cd+1,
the set

FΓ := Ĉ \ ©­«
d+1⋃
i=1

intCi

⋃
j,k

(Cj ∩ Ck)
ª®¬

is a fundamental domain for the Γ−action on Ω(Γ) [LMM20, Proposition 2.14].
To a necklace reflection group Γ, one can associate a piecewise anti-Möbius

reflection map ρΓ that plays an important role in the mating construction.

Definition 27 [LMM20, Definition 2.29], [LMMN20, Definition 6.6] Let Γ be a
necklace reflection group generated by reflections {ri}d+1

i=1 in circles {Ci}
d+1
i=1 . We

define the associated Nielsen map ρΓ by:

ρΓ :
d+1⋃
i=1

intCi → Ĉ, z 7−→ ri(z) if z ∈ intCi .

The next proposition underscores the intimate dynamical connection between a
necklace group Γ and its Nielsen map ρΓ.

Proposition [LMM20, Proposition 2.31] Let Γ be a necklace reflection group. The
map ρΓ is orbit equivalent to Γ on Ĉ; i.e., for any two points z,w ∈ Ĉ, there exists
g ∈ Γ with g(z) = w if and only if there exist non-negative integers n1,n2 such that
ρ◦n1
Γ
(z) = ρ◦n2

Γ
(w). �

The simplest examples of necklace reflection groups are regular ideal polygon
reflection groups.

Definition 28 Consider the Euclidean circles C1, · · · ,Cd+1 where Cj intersects S1

at right angles at the roots of unity exp ( 2πi ·(j−1)
d+1 ), exp ( 2πi · jd+1 ). (By [VS93, Part II,

Chapter 5, Theorem 1.2], the group generated by reflections in these circles is
discrete.) We denote this group by Γd+1.

Note that ρΓd+1 restricts to an expansive degree d orientation-reversing covering
of S1. By [CR80], there exists a homeomorphism Ed of the circle that conjugates
ρΓd+1 to zd . The conjugacy Ed serves as a connecting link between reflection groups
and quadratic anti-polynomials.
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8.1.2 Conformal mating of anti-polynomials and necklace groups

The precise meaning of conformal matings of the Nielsen map of a necklace group
and an anti-polynomial is given below. The definition is an adaptation of the classical
definition of conformal matings of two polynomials.

Let Γ be a necklace group generated by reflections in circles C1, · · · , Cd+1.
The unbounded component of the domain of discontinuity Ω(Γ) is Γ−invariant
[LMM20, Proposition 2.28], and we denote it by Ω∞(Γ). We also set K(Γ) :=
C \Ω∞(Γ). According to [LMM20, Proposition 2.36], the restriction of ρΓ toΩ∞(Γ)
is conformally conjugate to the ρΓd+1−action on Ĉ \ D, and (the inverse of) this
conformal conjugacy continuously extends to yield a semiconjugacy φΓ : S1 →
Λ(Γ) = ∂K(Γ) between ρΓd+1 |S1 and ρΓ |Λ(Γ) such that φΓ(1) is the point of tangential
intersection ofC1 andCd+1. Recall also that Ed : S1 → S1 is a topological conjugacy
between ρΓd+1 |S1 and z 7→ zd |S1 .

Let P be a monic, centered, anti-polynomial of degree d such that J(P) is con-
nected and locally connected. Denote by φP : D∗ → B∞(P) the Böttcher coordinate
for P such that φ′P(∞) = 1. We note that since ∂K(P) = J(P) is locally connected
by assumption, it follows that φP extends to a semiconjugacy between z 7→ zd |S1

and P |J(P).
The equivalence relation below specifies a gluing of K(Γ) with K(P) along

their boundaries. The presence of the topological conjugacy Ed in the definition
of the equivalence relation ensures that the maps ρΓ and P fit together to produce
a continuous map on the resulting topological 2-sphere (when there is no Moore
obstruction).

Definition 29 We define the equivalence relation ∼ on K(Γ) t K(P) generated by
φΓ(t) ∼ φP(Ed(t)) for all t ∈ S1.

The following definition essentially says that an anti-holomorphic map F (defined
on a subset of the Riemann sphere) is a conformal mating of Γ and P if there
are continuous semi-conjugacies from K(Γ),K(P) into the dynamical plane of F
(conformal on the interiors) such that the images fill up thewhole sphere and intersect
only along their boundaries as prescribed by the equivalence relation ∼ (compare
Definition 25).

Definition 30 [LMMN20, Definition 10.16] Let Γ be a necklace group as above, and
let P be a monic, centered anti-polynomial such that J(P) is connected and locally
connected. Further, let Ω ( Ĉ be an open set, and F : Ω→ Ĉ be a continuous map
that is anti-meromorphic on Ω. We say that F is a conformal mating of Γ with P if
there exist continuous maps

ψP : K(P) → Ĉ and ψΓ : K(Γ) → Ĉ,

conformal on intK(P), intK(Γ), respectively, such that

1. ψP(K(P))
⋃
ψΓ(K(Γ)) = Ĉ,
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2. Ω = Ĉ \ ψΓ(FΓ),
3. ψP ◦ P = F ◦ ψP on K(P),
4. ψΓ ◦ ρΓ = F ◦ ψΓ on K(Γ) \ intFΓ, and
5. ψΓ(z) = ψP(w) if and only if z ∼ w where ∼ is as in Definition 29.

Remark For the purposes of mating necklace groups with anti-polynomials, it is
important to work with labeled circle packings, or equivalently, to regard the space
of necklace groups as a space of representations of the ideal polygon reflection
group Γd+1. While we have suppressed this abstraction for ease of exposition, we
refer the reader to [LMM20, §2.2] or [LMMN20, §10.1], where necklace groups
are organized in Bers slices of Γd+1. Although this point of view may seem like
an artificial complication at a first glance, the language of representations turns out
to be an unavoidable technicality in the mating theory. Roughly speaking, different
representations give rise to different ways of gluing the limit set of a necklace group
with the Julia set of an anti-polynomial, and the choice of gluing determines whether
or not a conformal mating exists (compare [LMMN20, Remark 10.21]). �

8.1.3 Schwarz reflection maps

By definition, a domain Ω ( Ĉ satisfying ∞ < ∂Ω and Ω = intΩ is a quadrature
domain if there exists a continuous function σ : Ω → Ĉ such that σ is anti-
meromorphic inΩ and σ(z) = z on the boundary ∂Ω. Such a function σ is unique (if
it exists), and is called the Schwarz reflection map associated with Ω. (See [AS76],
[LM16] and the references therein.)

It iswell known that except for a finite number of singular points (cusps and double
points), the boundary of a quadrature domain consists of finitely many disjoint real
analytic curves [Sak91]. Every non-singular boundary point has a neighborhood
where the local reflection in ∂Ω is well-defined. The (global) Schwarz reflection σ
is an anti-holomorphic continuation of all such local reflections.

Round disks on the Riemann sphere are the simplest examples of quadrature
domains. Their Schwarz reflections are just the usual circle reflections. Further
examples can be constructed using univalent polynomials or rational functions. In
fact, simply connected quadrature domains admit a simple characterization.

Proposition [AS76, Theorem 1] A simply connected domain Ω ( Ĉ with ∞ < ∂Ω
and intΩ = Ω is a quadrature domain if and only if the Riemann uniformization
f : D→ Ω extends to a rational map on Ĉ.

In this case, the Schwarz reflection map σ of Ω is given by f ◦ (1/z) ◦ ( f |D)−1.
Moreover, if the degree of the rational map f is d, then σ : σ−1(Ω) → Ω is a
(branched) covering of degree (d − 1), and σ : σ−1(intΩc) → intΩc is a (branched)
covering of degree d. �
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In [LM16], questions on equilibrium states of certain 2-dimensional Coulomb
gas models were answered using iteration of Schwarz reflection maps associated
with quadrature domains. It transpired from their work that these maps give rise to
dynamical systems that are interesting in their own right. The general situation is as
follows. Given a disjoint collection of quadrature domains, we call the complement
of their union a droplet. Removing the double points and cusps from the boundary of
a droplet yields the desingularized droplet or the fundamental tile. One can then look
at a partially defined anti-holomorphic dynamical system σ that acts on (the closure
of) each quadrature domain as its Schwarz reflection map. Under this dynamical
system, the Riemann sphere Ĉ admits a dynamically invariant partition. The first one
is an open set called the escaping/tiling set, it is the set of all points that eventually
escape to the fundamental tile (on the interior of which σ is not defined). The second
invariant set is the non-escaping set, the complement of the tiling set or equivalently,
the set of all points on which σ can be iterated forever. When the tiling set contains
no critical points of σ, it is often the case that the dynamics of σ on its non-escaping
set resembles that of an anti-polynomial on its filled Julia set, while the σ−action
on the tiling set exhibits features of reflection groups.

8.1.4 Examples of the mating phenomenon

By studying the dynamics and parameter spaces of specific families of Schwarz
reflection maps, one can often recognize such maps as matings of anti-polynomials
and necklace reflection groups. This strategy was successfully implemented in
[LLMM18a, LLMM18b, LMM20]. We collect some results from these papers in
this subsection.

Example 1: The deltoid reflection. We will start with the simplest instance of the
mating phenomenon; namely, the conformal mating of the anti-polynomial z2 and
the ideal triangle reflection group Γ3.

Theorem 39 [LLMM18a, Theorem 1.1] The map f0(z) = 1/z + z2/2 is injective on
D, and henceΩ0 := f0(D) is a simply connected quadrature domain. The associated
Schwarz reflection map σ0 is the unique conformal mating of z2 and Γ3.

Remark A welding homeomorphism is a homeomorphism of the circle that arises
as the composition of a conformal map from the unit disk onto the interior region
of a Jordan curve with a conformal map from the exterior of this Jordan curve onto
the exterior of the unit disk. A complex-analytic corollary of Theorem 39 is that
the circle homeomorphisms E2 is a welding homeomorphism. That the same is true
for each Ed (d ≥ 2) follows from a straightforward higher degree generalization
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Fig. 2 Left: The tessellation of D for the ideal triangle reflection group. Right: The dynamical
plane of the Schwarz reflection map associated with Ω0 = f0(D) (the exterior of a deltoid curve).
The dynamics on the exterior of the bright green fractal curve is conformally conjugate to z2

|D,
while the dynamics on the interior is conformally equivalent to the Nielsen map of Γ3.

of Theorem 39 worked out in [LLMM19, Appendix B] (also compare Theorem 44
below). We refer the reader to [LMMN20, Theorem 5.1] for a general conformal
welding result for circle homeomorphisms conjugating suitable covering maps of
the circle. �

Example 2: The circle and cardioid family. To describe Schwarz reflection maps
that are conformal matings of other quadratic anti-polynomials with the ideal tri-
angle reflection group, we need to recall the Circle and Cardioid family which was
introduced in [LLMM18a, §6]. We consider the fixed cardioid

♥ :=
{
w = z/2 − z2/4 : |z | < 1

}
,

and for each complex number a ∈ C \ (−∞,−1/12), let B(a,ra) be the smallest open
disk containing ♥ centered at a (in other words, {w : |w − a| = ra} is a circumcircle
of the cardioid; see [LLMM18b, Figure 2]). LetΩa := ♥ ∪ B(a,ra)c (where B(a,ra)
is the closed disk {w : |w − a| ≤ ra}), and Ta := Ωc

a. We now define a piecewise
Schwarz reflection dynamical system Fa : Ωa → Ĉ as,

w 7→

{
σ(w) if w ∈ ♥,
σa(w) if w ∈ B(a,ra)c,

where σ is the Schwarz reflection of ♥, and σa is reflection with respect to the circle
∂B(a,ra). The family

S :=
{
Fa : Ωa → Ĉ : a ∈ C \ (−∞,−1/12)

}
is referred to as the C&C family.
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For any a ∈ C \ (−∞,−1/12), ∂Ta has two singular points; namely, the double
point αa where ∂B(a,ra) touches ∂♥, and the cusp point 1

4 . Both of them are fixed
points of Fa. The fundamental tile of Fa is defined asT0

a := Ta \{αa,
1
4 }. A parameter

a ∈ C \ (−∞,−1/12) (equivalently, the corresponding map Fa ∈ S) is said to be
postcritically finite if the unique (simple) critical point 0 of Fa has a finite forward
orbit that does not meet T0

a . The following mating description for postcritically finite
maps in S was given in [LLMM18b].

Fig. 3 Under the bijection χ of Theorem 41, the postcritically finite quadratic anti-polynomial
z2
− 1 corresponds to Fa with a = 0. Left: The filled Julia set of z2

− 1. Right: The part of the
non-escaping set of F0 inside the cardioid (in dark blue) with the critical point 0 marked. Both
maps have a critical cycle of period 2.

Theorem 41 [LLMM18a, §8], [LLMM18b, Theorems 1.1, 1.2] There exists a bijec-
tion χ between postcritically finite maps in S and (the Möbius conjugacy classes of)
postcritically finite quadratic anti-polynomials z2 + c (excluding z2) such that the
postcritically finite map Fa ∈ S is a conformal mating of the ideal triangle reflection
group Γ3 and the quadratic anti-polynomial z2 + χ(a).

Remark For conformal matings ofΓ3 withmore general quadratic anti-polynomials,
and combinatorial relations between the connectedness loci of quadratic anti-
polynomials and the family S, see [LLMM18b]. �

Example 3: The space Σ∗
d
. The family of ‘univalent rational maps’

Σ
∗
d :=

{
g(z) = z +

a1
z
+ · · · +

ad

zd
: ad = −

1
d
and g |

Ĉ\D
is conformal

}
was introduced in [LM14] and studied extensively in [LMM19] in terms of the
associated Schwarz reflection maps.
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Remark The family Σ∗
d
is closely related to the classically studied space Σ of suitably

normalized schlicht functions on Ĉ \ D, see [Dur83, §4.7, §9.6]. �

Combining the pinching deformation theory for Σ∗
d
(developed in [LMM19]) with

tools from holomorphic dynamics, it was proved in [LMM20] that:

Fig. 4 Left: The dynamical plane of the Schwarz reflection map associated with some f ∈ ∂Σ∗4.
Right: The limit set of the corresponding necklace reflection group Γf .

Theorem 44 [LMM20, Theorem A] There is a bijection f 7→ Γf between Σ∗
d
and

the space of necklace reflection groups of rank d + 1 (up to a natural equivalence)
such that the Schwarz reflection map associated with f ∈ Σ∗

d
is a conformal mating

of the anti-polynomial zd with the corresponding necklace group Γf .

8.1.5 The general theorem

We conclude our discussion of combinations of necklace reflection groups and anti-
polynomials with a general existence theorem:

Theorem 45 [LMMN20, Lemma 10.17, Theorem 10.20] Let P be a monic, post-
critically finite, hyperbolic anti-polynomial of degree d, and let Γ be a necklace
group. Then, P and Γ are conformally mateable if and only if K(P) t K(Γ)/∼ is
homeomorphic to S2 (where ∼ is the equivalence relation from Definition 29).

Moreover, if F : Ω→ Ĉ is a conformal mating of Γ and P, then each component of
Ω is a simply connected quadrature domain, and F is the piecewise defined Schwarz
reflection map associated with these quadrature domains.

The hard part of the above theorem is to show that if K(P) t K(Γ)/∼ is homeo-
morphic to S2, then a conformal mating of P and Γ exists. In fact, the condition that
K(P)tK(Γ)/∼ � S2 guarantees the existence of a topological mating on a 2-sphere,
but promoting the topological mating to an anti-holomorphic map lies at the heart
of the difficulty. This goal is achieved in two steps. One first uses Thurston’s topo-
logical characterization theorem to construct a hyperbolic anti-rational map R that
is a conformal mating of P and another postcritically finite (in fact, critically fixed),
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C4

C1

C2

C3

Fig. 5 Bottom left: The circles Ci generate a necklace reflection group Γ. Bottom right: The
dynamical plane of P(z) = z3

− 3i√
2
z; each critical point of which forms a 2-cycle. Top: The

conformal mating of P and the necklace group Γ is given by the piecewise Schwarz reflection map
associated with the disjoint union of three quadrature domains: the exterior of an ellipse, and two
round disks contained in the interior of the ellipse. Each of the two critical points of F forms a
2-cycle. (See [LMMN20, §11.2] for proofs of these statements.)

hyperbolic anti-polynomial PΓ such that the Julia dynamics of PΓ is topologically
conjugate to the limit set dynamics of the Nielsen map ρΓ. The existence of such an
anti-polynomial PΓ follows from [LMM20] or [LLM20], while conformal mateabil-
ity of P and PΓ follows from the general mateability criterion given in Theorem 34 (in
fact, the condition K(P) t K(Γ)/∼ � S2 is equivalent to saying that the topological
mating of P and PΓ is Moore-unobstructed, so Theorem 34 can be applied to produce
R). Finally, to turn R into a conformal mating of P and Γ, one needs to glue Nielsen
maps of ideal polygon reflection groups in suitable invariant Fatou components of
R. The fact that all fixed points of R on its Julia set are hyperbolic while those of a
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Nielsen map are parabolic prohibits the use of purely quasiconformal tools to carry
out this task. This problem is tackled by employing surgery techniques involving
David homeomorphisms: generalizations of quasiconformal homeomorphisms.

Remark Although Theorem 45 guarantees the existence of conformal matings of
suitable anti-polynomials and necklace reflection groups, in general, it may be hard
to find explicit Schwarz reflection maps realizing such conformal matings. However,
in certain low complexity situations, the second statement of the theorem (that the
conformal matings are piecewise Schwarz reflection maps associated with simply
connected quadrature domains) allows one to use Proposition 38 and the desired
dynamical properties to explicitly characterize the conformal matings (see Figure 5
for an illustration, and [LMMN20, §11] for various worked out examples). �

8.2 Mating polynomials with Kleinian groups

This subsection is a summary of [MM21], where a new setup for combination
theorems of complex polynomials and Kleinian surface groups was designed using
the notion of orbit equivalence.

8.2.1 The Fuchsian case

A foundational problem that arises in trying to make sense of what it means to
combine a polynomial P with a Kleinian group Γ is that on one side of the picture
we have the semigroup 〈P〉 generated by P, while on the other side we have a non-
commutative group Γ generated by more than one element. To formulate a precise
notion of mateability between Fuchsian groups and complex polynomials (with
Jordan curve Julia sets), one needs to address this inherent discord between these
two objects, and this leads to the notion of mateable circle maps: single maps A that
capture essential dynamical and combinatorial features of Fuchsian groups acting
on S1. Further, A should also be dynamically compatible with polynomial maps.
Before giving a precise definition of mateable maps, let us outline the underlying
motivation: the following features are required of a mateable map A : S1 → S1.

1. A must be dynamically compatible with a Fuchsian group Γ. This leads to

a. orbit equivalence between A and Γ.
b. A has to be piecewise Fuchsian.

2. Amust be dynamically compatible with complex polynomials. Hence we demand
the existence of a topological conjugacy between A and the polynomial zd |S1

(where d ≥ 2 is the degree of A),
3. A must be combinatorially compatible with zd leading to a Markov condition,
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4. A must be conformally compatible with zd requiring absence of asymmetri-
cally hyperbolic periodic break-points of A (this is a weaker version of the C1-
condition).

To fulfill the above requirements, we make the following definition.

Definition 31 [MM21, Definitions 2.7, 2.16]

1. A map A : S1 → S1 is called piecewise Möbius if there exist k ∈ N, closed arcs
Ij ⊂ S1, and gj ∈ Aut(D), j ∈ {1, · · · , k}, such that

a. S1 =

k⋃
j=1

Ij,

b. intIm ∩ intIn = ∅ for m , n, and
c. A|Ij = gj .

A piecewise Möbius map is called piecewise Fuchsian if g1, · · · , gk generate a
Fuchsian group, which we denote by ΓA.

2. A map A : S1 → S1 is called piecewise Fuchsian Markov if it is a piecewise
Fuchsian expansive covering map (of degree at least two) such that the pieces
(intervals of definition) of A form a Markov partition for A : S1 → S1.

3. A piecewise FuchsianMarkovmap A is said to bemateable if A is orbit equivalent
to the Fuchsian group ΓA generated by its pieces, and none of the periodic break-
points of A is asymmetrically hyperbolic.

We refer the reader to [MM21, §2] for the definition of the term ‘symmetrically
hyperbolic’, and for a detailed discussion on the necessity of each of the requirements
in the definition of a mateable map.We also note that the expansivity condition above
ensures that amateablemap is topologically conjugate to the polynomial zd (for some
d ≥ 2).

Remark In the anti-holomorphic setting, the role of mateable maps was played by
Nielsen maps of necklace reflection groups (see Subsection 8.1.1). �

The simplest example of a mateable map is given by the classical Bowen-Series
map [Bow79, BS79]. While such a map can be defined for arbitrary Fuchsian groups
equipped with suitable fundamental domains, they are typically discontinuous. How-
ever, it turns out that for Fuchsian groups uniformizing spheres with punctures (pos-
sibly with one/two order two orbifold points), the Bowen-Series map is a covering
map of the circle satisfying the defining properties of a mateable map [MM21, §2].

Higher Bowen-Series maps.More examples of mateable maps are given by higher
Bowen-Series maps of punctured sphere Fuchsian groups (see [MM21, §4] for their
definition and basic properties). As suggested by the name, there are close con-
nections between higher Bowen-Series maps and Bowen-Series maps. Indeed, the
higher Bowen-Series map of a Fuchsian group uniformizing S0,k (a sphere with k
punctures) can be represented as the second iterate of the Bowen-Series map of a
Fuchsian group uniformizing a sphere with roughly k/2 punctures and zero/one/two
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Fig. 6 Left: R is a fundamental domain of a Fuchsian group Γ uniformizing S0,3 with side pairing
transformations g±1

1 , g±1
2 . The canonical extension of the Bowen-Series map of Γ (associated with

R) is defined on D \ intR in terms of g±1
1 , g±1

2 as shown in the figure. Right: The second iterate
of the Bowen-Series map of Γ is a higher Bowen-Series map of the index two subgroup Γ′ =
〈g2

1 , g1g2, g1g
−1
2 〉 ≤ Γ, which uniformizes S0,4. Its canonical extension is defined on the region

enclosed by S1 and the red (hyperbolic) geodesics in terms of h1 = g2
1 , h2 = g1g2, h3 = g1g

−1
2 as

shown in the figure. It maps the boundary of the red polygon onto the boundary of R. The degree
of the Bowen-Series map of Γ (as a circle covering) is 3, so the degree of the higher Bowen-Series
map of Γ′ is 9.

order two orbifold points [MM21, Corollary 5.6] (see Figure 6). Alternatively, a
higher Bowen-Series map of a Fuchsian group is obtained by ‘gluing together’ sev-
eral Bowen-Series maps of the same Fuchsian group with overlapping fundamental
domains [MM21, Proposition 4.5] (see Figure 7).

Every piecewise Fuchsian Markov map A of the circle can be conformally ex-
tended to a canonically defined subset of D (see [MM21, §2.2]). This extension is
termed the canonical extension of A. The following result, which is a conformal com-
bination theorem for punctured sphere Fuchsian groups and hyperbolic polynomials
with Jordan curve Julia sets, can be regarded as an analog of the Bers’ simultaneous
uniformization theorem in the current setting.

Theorem 48 [MM21, Theorem 3.7, Theorem 4.8] The canonical extensions of
Bowen-Series maps and higher Bowen-Series maps of Fuchsian groups uniformiz-
ing punctured spheres (possibly with one/two orbifold points of order two) can be
conformally mated with polynomials lying in principal hyperbolic components (of
appropriate degree).

Remark As in the anti-holomorphic case, there is a key qualitative difference be-
tween the dynamics of Bowen-Series (respectively, higher Bowen-Series) maps on
S1 and the dynamics of polynomials (lying in principal hyperbolic components)
on their Julia set; namely, the former has parabolic fixed points on S1 while all
fixed points of the latter on their Julia sets are repelling. Consequently, the topo-
logical conjugacy between a Bowen-Series (respectively, higher Bowen-Series) map
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g3
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P
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g1(P)

g2(P)

g3(P)

Fig. 7 The quadrilaterals D and P with ideal vertices at 1, 2, 3, 4 and 1, 2−, 3−, 4 (respectively)
together form a fundamental domain of a Fuchsian group Γ uniformizing S0,4 with side pairing
transformations g±1

1 , g±1
2 , g±1

3 . The corresponding higher Bowen-Series map A of Γ acts on the
anti-clockwise arc from 1 to 4 as the Bowen-Series map of Γ associated with the fundamental
domain D ∪ P; while on the clockwise arc from j to j + 1, A equals the Bowen-Series map of Γ
associated with the fundamental domain D ∪ g j (P) (j = 1, 2, 3). The degree of a Bowen-Series
map of Γ (associated with any fundamental domain) is 5, while the degree of a higher Bowen-Series
map of Γ is 9.

and such a polynomial is not quasisymmetric. This forces one to abandon classical
quasiconformal techniques (used in the proof of Bers’ simultaneous uniformization
theorem), and apply David homeomorphisms to prove Theorem 48. �

Moduli space of Fuchsian matings. In the torsion-free case, the only topologi-
cal surfaces that Theorem 48 succeeds to combine with complex polynomials are
punctured spheres (see [MM21, 6.35] for the definition of moduli space of matings
between a topological surface and hyperbolic complex polynomials with Jordan
curve Julia sets). This naturally raises the following questions.

1. Do mateable maps exist for higher genus surfaces (possibly with punctures)?
More precisely, does there exist a mateable map A with D/ΓA � Sg,k , for g ≥ 1?

2. Are Bowen-Series and higher Bowen-Series maps the only mateable maps asso-
ciated with punctured spheres?

In this generality, the above questions remain open. However, [MM21, Theo-
rems 6.18, 6.33] give a complete description of mateable maps satisfying some
natural 2-point conditions over and above orbit equivalence. It turns out that under
these additional hypotheses, punctured spheres are the only topological surfaces that
can be combined with complex polynomials (see [MM21, Theorem 6.36] for a com-
plete description of the interiors of such constrained moduli space of matings). A
major part of the proofs of these theorems is to determine the topology of the surface
D/ΓA from the dynamical properties of a mateable map A, and this is accomplished
by analyzing certain patterns and laminations associated with mateable maps.
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8.2.2 The case of Bers’ boundary groups

We proceed to discuss the structure of the boundaries of the moduli spaces of
Fuchsian matings arising from Theorem 48.

For definiteness, let us fix a base Fuchsian group Γ0 uniformizing S0,k (k ≥ 3). For
each Γ lying on the boundary of the Bers slice B(Γ0), there exists a continuous map
φΓ : S1 → ΛΓ, called the Cannon-Thurston map after [CT07], that semi-conjugates
the action of Γ0 to that of Γ [Mj14a, Mj14b, DM16, Mj17]. In fact, the data of the
ending lamination can be recovered from the Cannon-Thurston map. More precisely,
the group Γ can be obtained by ‘pinching a lamination’ on the surface D/Γ0 (while
keeping the hyperbolic structure on the surface (Ĉ \ D)/Γ0 unchanged), and the
endpoints of the corresponding geodesic lamination on D generate a Γ0−invariant
equivalence relation on S1 which agrees with the one defined by the fibers of the
Cannon-Thurston map φΓ.

Assume further that AΓ0 is a Bowen-Series (respectively, higher Bowen-Series)
map of Γ0. To extend the notion of mateability to a group Γ ∈ ∂B(Γ0), one needs the
limit set of Γ to carry a continuous, piecewise complex-analytic self-map AΓ (that is
orbit equivalent to Γ) defined by the following commutative diagram:

S1 S1

ΛΓ ΛΓ

AΓ0

φΓ φΓ

AΓ

See [MM21, §7.1] for details and an alternative description of AΓ as a uniform limit
of Bowen-Series (respectively, higher Bowen-Series) maps. The map AΓ, if it exists,
is called the Bowen-Series (respectively, higher Bowen-Series) map of Γ and can be
thought of as a mateable map associated with a Bers’ boundary group.

It turns out that the existence of such a map AΓ imposes severe restrictions on
the laminations that can be pinched. The next theorem says that only finitely many
possibilities exist. We call such laminations admissible (see Figure 8 for an example
of an admissible lamination in the Bowen-Series case).

For Γ ∈ ∂B(Γ0), we denote the unique Γ-invariant component of the domain of
discontinuity Ω(Γ) by Ω∞(Γ), and set K(Γ) := Ĉ \ Ω∞(Γ). If Γ admits a Bowen-
Series (respectively, higher Bowen-Series) map AΓ : ΛΓ → ΛΓ, then this map
can be extended as a continuous, piecewise Möbius map to a canonical closed set
K(Γ) \ intRΓ, where RΓ is a ‘pinched’ fundamental domain for the Γ−action on
Ω(Γ) \ Ω∞(Γ) determined by RΓ0 (see [MM21, §7.3]). This canonical extension
is denoted by ÂΓ. The following theorem also demonstrates conformal mateability
of groups Γ ∈ ∂B(Γ0) admitting Bowen-Series/ higher Bowen-Series maps with
polynomials lying in principal hyperbolic components (of suitable degree).

Theorem 50 [MM21, Lemma 7.3, Lemma 7.5, Theorem 7.19] Let Γ0 be a Fuchsian
group uniformizing S0,k . Then, there are only finitelymany quasiconformal conjugacy
classes of groups Γ ∈ ∂B(Γ0) for which the Cannon-Thurston map of Γ semi-
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ĝ−1
2

ĝ3
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ĝ−1
4

ĝ5
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Fig. 8 Left: RΓ0 is a fundamental domain of a Fuchsian group Γ0 uniformizing S0,7 with side
pairing transformations g±1

1 , · · · , g±1
6 . The geodesic lamination L∗ on D/Γ0 consisting of two

simple, closed curves corresponding to the elements g5, g2g
−1
5 ∈ Γ0 is admissible for the Bowen-

Series map AΓ0 . The blue and green geodesics are the connected components of the Γ0−lift of L∗
that intersect RΓ0 . Right: A cartoon of the limit set of a Bers’ boundary group Γ, which is obtained
by pinching L∗. The Γ-action on Ω(Γ) \ Ω∞(Γ) admits a pinched fundamental domain RΓ, and
the canonical extension ÂΓ of the Bowen-Series map of Γ is defined on K(Γ) \ intRΓ. Two of the
components of Ω(Γ) intersecting RΓ are invariant under ÂΓ, while the other two componentsU±

form a 2-cycle. The first return map of ÂΓ onU± are conformally conjugate to higher Bowen-Series
maps of punctured sphere Fuchsian groups. The Möbius maps defining ÂΓ are also marked, where
ĝi is the image of gi under the representation Γ0 → Γ.

conjugates the Bowen-Series (respectively, higher Bowen-Series) map of Γ0 to a
self-map of Λ(Γ) that is orbit equivalent to Γ. These Kleinian groups arise out of
pinching finitely many disjoint, simple, closed curves (on the surface D/Γ0) out of
an explicit finite list. In particular, all such groups Γ are geometrically finite.

Let Γ ∈ ∂B(Γ0) be a group that admits a Bowen-Series (respectively, higher
Bowen-Series) map AΓ. Then the canonical extension ÂΓ : K(Γ)\ intRΓ → K(Γ) can
be conformally mated with polynomials lying in the principal hyperbolic component
of degree 2k − 3 (respectively, (k − 1)2).

We refer the reader to [MM21, Remark 7.20] for a precise definition of confor-
mal mateability of canonical extensions of the Bowen-Series/ higher Bowen-Series
maps with polynomials lying in principal hyperbolic components (the definition is
analogous to Definition 30).

The finiteness part of Theorem 50 underscores the incompatibility between group
invariant geodesic laminations and polynomial laminations (see [Kiw04] for details
on polynomial laminations) by establishing that the equivalence relation on S1 in-
duced by a group invariant geodesic lamination on D is seldom invariant under AΓ0

(since AΓ0 |S1 is topologically conjugate to zd |S1 for some d ≥ 2, invariance under
AΓ0 should be thought of as zd−invariance).

The proof of existence of a conformal mating between ÂΓ : K(Γ) \ intRΓ → K(Γ)
and polynomials lying in principal hyperbolic components has two main steps.
The first one is to topologically realize the action of AΓ |ΛΓ by the dynamics of a
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postcritically finite polynomial PΓ on its Julia set, which is the content of [MM21,
Theorem 7.16]. Once this is achieved, one needs to replace the dynamics of PΓ
on periodic Fatou components by the action of Bowen-Series/ higher Bowen-Series
maps of suitable punctured sphere Fuchsian groups. This involves a rather delicate
surgery technique using David homeomorphisms.
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