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Abstract. Given two automorphisms of a group G, one is interested in knowing
whether they are conjugate in the automorphism group of G, or in the abstract
commensurator of G, and how these two properties may differ. When G is the
fundamental group of a closed orientable surface, we present a uniform finiteness
theorem for the class of pseudo-Anosov automorphisms. We present an explicit
example of a commensurably conjugate pair of pseudo-Anosov automorphisms of
a genus 3 surface, that are not conjugate in the Mapping Class Group, and we also
show that infinitely many independent automorphisms of hyperbolic orbifolds have
class number equal to one.

1. Introduction: commensurated conjugacy

WhenG is a group (or any structure), a natural problem is to classify the conjugacy
classes in its automorphism group Aut pGq. A familiar example is G “ Zn, for which
Aut pGq » GLnpZq.

The abstract commensurator Comm pGq of G is the group of equivalence classes
of isomorphisms between two finite index subgroups of G, where two such auto-
morphisms φ1, φ2 are declared to be equivalent if they agree on further finite index
subgroups.

There is a natural homomorphism from Aut pGq to Comm pGq. It need not be
injective, but in many cases of interest it is. In general, Comm pGq is much larger
than the image of Aut pGq. In our familiar example, Comm pZnq » GLnpQq. Of
course, conjugation in GLnpQq is more easily understood than in GLnpZq.

For a group G, and φ P Aut pGq, we define its commensurated-conjugacy class to
be the set of automorphisms of G that are conjugate to φ in Comm pGq, and we say
that these automorphisms are commensurably conjugate to φ. Any commensurated-
conjugacy class is a union of Aut pGq-conjugacy classes.

Questions. When are the commensurated-conjugacy class strictly larger than Aut pGq-
conjugacy classes? When do they consist of finitely many Aut pGq-conjugacy classes?
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We call the number of Aut pGq-conjugacy classes in the commensurated-conjugacy
class of φ, the class number of φ. This terminology is suggested and supported by
our familiar example, as we explain now.

Let G “ Zn, so that Aut pGq “ GLnpZq, and Comm pGq “ GLnpQq. Choose
φ P GLnpZq such that its characteristic polynomial χ P ZrXs is irreducible over Z.
All ψ P GLnpZq with the same characteristic polynomial as φ are conjugate to φ in
GLnpCq, hence in GLnpQq as well. Thus, they are commensurably conjugate. The
Latimer-MacDuffee theorem [8, 14] states that the GLnpZq-conjugacy classes of such
elements are in correspondence with the ideal classes of the ring ZrXs{pχq. Their
cardinality, which is the order of the ideal class group of the ring, is called the class
number of the ring. In other words, the class number of φ in our sense, is the class
number of the ring ZrXs{pχq. In particular, by Minkowski’s bound on ideal classes,
it is finite for all φ P GLnpZq, and it is greater than 2 if and only if the ring is not a
principal ideal domain.

It is worth mentioning that finiteness of class numbers is not true in general. A
countable group in which the class number of an automorphism is not finite is the
infinite direct product of copies of Z{3: the automorphisms that are identity on
finitely many copies, and flips on all the other copies, are all commensurably equal,
but not conjugate.

We turn our attention to non-abelian counterparts of the groups Zn. There are
two celebrated and important such classes: finite rank non-abelian free groups, and
fundamental groups of surfaces of higher genus. In this work we will consider the
later.

Consider a closed orientable surface Σ of genus g ě 2. The extended Mapping
Class group of Σ is the homeomorphism group of Σ quotiented by its component of
identityHomeopΣq{Homeo0pΣq. By the Dehn-Nielsen-Baer theorem, it is isomorphic
to the outer automorphism group of π1pΣq. However in order to make sense of
commensuration, one must work at the level of automorphisms rather than outer
automorphisms – in particular one needs a base point p in Σ. We have:

Aut pπ1pΣ, pqq� Out pπ1pΣqq
„
ÝÑMCG˚pΣq

The Nielsen-Thurston classification of mapping classes of Σ distinguishes finite
order mapping classes, reducible mapping classes, and pseudo-Anosovs, which are
the correct objects for any consideration about irreducibility. We will say that an
automorphism is a pseudo-Anosov if its image in the Mapping Class group under
the above surjective homomorphism is a pseudo-Anosov. We establish the following
uniform finiteness for class numbers of pseudo-Anosov automorphisms.
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Theorem 1.1. If φ is a pseudo-Anosov automorphism of the fundamental group of
a closed orientable surface of genus g ě 2, its class number is finite, bounded above
by pp168pg ´ 1qq!q2g.

We think that it is striking that our bound does not depend on φ. For comparison,
in the case of Aut pZ2q » GL2pZq, by [8, 14], one encounters class numbers of certain
rings of integers of real quadratic fields, which are conjectured to have interesting
(but elusive) behavior: Gauss’ class number problem conjectures that infinitely many
such class numbers are 1, but Cohen and Lenstra’s heuristics [4] suggest that these
numbers are nevertheless unbounded when the field extension varies among real
quadratic extensions.

Finiteness of the class number of a pseudo-Anosov is not a surprise. Here is a simple
argument. Given φ a pseudo-Anosov automorphism on a surface Σ, the stretch factor,
or entropy, lim

nÑ8
log |φnpgq|{n does not depend on g ‰ 1 in the fundamental group, nor

on the metric up to quasi-isometry. Hence it is an invariant of the commusurated-
conjugacy class of φ. It also equals the translation length of φ in the Teichmüller
space of the associated surface, and there are finitely many conjugacy classes of a
pseudo-Anosov that can have such translation length, hence can possibly be in the
commensurated-conjugacy class of φ. This argument does not, however, provide any
uniform bound.

Our upper bound is very likely non-optimal. It seems that an optimal bound would
be given by the value of a subgroup-growth function of certain orbifold. These are
difficult to estimate sharply [10].

Examples of commensurably conjugate automorphisms that are not conjugate are
not immediate. Our result and methods however suggest a ’recipe’ for producing
examples of non-conjugate pseudo-Anosov automorphisms that are commensurably
conjugate. We explain this recipe, illustrated with one explicit example.

Theorem 1.2. Let Σ be a closed orientable surface of genus 3, with a base point
p, and G “ π1pΣ, pq. There exist φ and ψ pseudo-Anosov automorphisms of G that
are commensurably conjugate but whose images in Aut pG{rG,Gsq are not commen-
surably conjugate. In particular φ and ψ are not conjugate in Aut pGq.

Gauss famously conjectures (in his ’class number problem’) that infinitely many
real quadratic extensions of Q have class number equal to one. We observe that in
our non-abelian analogue, the corresponding question can be settled.

Theorem 1.3. There are infinitely many automorphisms of hyperbolic 2-orbifolds,
that do not have any non-trivial power that are commensurably conjugate to each
other, and that have class number one.



4 FRANÇOIS DAHMANI AND MAHAN MJ

It is tempting to conjecture that, for each hyperbolic surface, the pseudo-Anosov
automorphisms of class number one are generic for random walks in the automor-
phism group.
Acknowledgments. The first author would like to thank Edgar Bering for his insights,
the invaluable support of the IHES for a visiting Carmin position, and the CMLS.

2. Mapping tori

Lemma 2.1. If φ, ψ are automorphisms of G in the same commensurated-conjugacy
class, there exists H,H 1 of finite index in G, and an isomorphism α : H Ñ H 1 such
that, ψpHq “ H,φpH 1q “ H 1, ψ|H “ α´1 ˝ φ ˝ α|H , where |H denotes restriction to
H .

Proof. Let rαs P Comm pGq such that in Comm pGq, rψs “ rαs´1rφsrαs. Realize rαs
by an isomorphism α : T1 Ñ T2 for T1, T2 finite index subgroups of G.

Since rψs “ rαs´1rφsrαs, there is a further finite index subgroup Y1 of T1 on which
α´1 ˝ φ ˝ α “ ψ. Let Y2 “ αpY1q. Observe that ψpY1q must be in T1 but is perhaps
not Y1.

Let H denote the intersection of all subgroups in the Aut pGq-orbit of Y1, and H 1

its image under α. They continue to be of finite index. By construction, ψ preserves
H (as well as every automorphism). We still have α´1 ˝φ ˝α “ ψ after to restriction
H. It follows that φpH 1q “ H 1.

�

Given φ P Aut pGq, set xtφy to be an abstract infinite cyclic group, and consider
Γφ “ G¸φ xtφy. In this semi-direct product, we say that G is the fiber.

Lemma 2.2. If φ, ψ are automorphisms of G in the same commensurated-conjugacy
class, then, Γφ and Γψ are commensurable by a homomorphism commensurating the
fiber.

Proof. Let H,H 1 be the subgroups obtained in the previous Lemma. We make semi-
direct products H ¸ψ xsy and H 1 ¸φ xqy. These two groups are isomorphic by an
isomorphism restricting to α on H and sending s on q. Moreover these two groups
embed as finite index subgroups of Γφ and Γψ sending s and q respectively to tψ and
tφ. �

3. Surface groups and pseudo-Anosov automorphisms

Recall that in a group A, an element a is in the A-commensurator of a subgroup
B if aBa´1 XB has finite index in B.
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Lemma 3.1. Let G be the fundamental group of a closed orientable surface of genus
g ě 2. If φ and ψ are automorphisms of G in the same commensurated-conjugacy
class, and if φ determines a pseudo-Anosov mapping class, then ψ does as well.

Proof. By Thurston’s hyperbolization of mapping tori, the group Γφ is isomorphic
to a lattice in PSL2C, hence it is word-hyperbolic. Therefore Γψ is as well, by
the quasi-isometry induced by the commensuration. Hence ψ determines a pseudo-
Anosov mapping class. �

Lemma 3.2. There are faithful representations ρφ, ρψ of Γφ and Γψ into PSL2pCq,
such that for all h P H, ρψphq “ ρφpαphqq and ρφptφq “ ρψptψq.

Moreover, given ρφ, the representation ρψ satisfying the above is unique.

Proof. Consider the two uniform lattice representations ρφ, ρψ of Γφ and Γψ, respec-
tively, into PSL2C.

The images contain isomorphic uniform sublattices, images of H¸xsy and H 1¸xqy
(following the notation of Lemma 2.2). Through the isomorphism between these two
groups, one may see them as lattice representations of the same group H ¸ xsy.
Therefore, by Mostow rigidity, one may conjugate ρψ so that for all h P H, ρψphq “
ρφpαphqq and also ρψpqq “ ρφpsq.

Uniqueness follows also from Mostow rigidity: two such representations ρψ, ρ
1
ψ

must be conjugate by a conjugator centralizing ρψpHq, but this later group is Zariski
dense in PSL2pCq, hence its centralizer is the center of PSL2pZq which is trivial. �

Lemma 3.3. Assume ψ1, ψ2 are both automorphisms of G, in the commensurated-
conjugacy class of φ.

If ρψ1pGq “ ρψ2pGq, then ψ1, ψ2 are in the same AutpGq-conjugacy class.

Proof. Since ρψ1ptψ1q “ ρψ2ptψ2q, therefore ρ´1ψ1
˝ ρψ2 is an automorphism of G that

tautologically conjugates the automorphism of G given by ρ´1ψ1
˝ adρψ1 ptψ1 q ˝ ρψ1 to

ρ´1ψ2
˝ adρψ1 ptψ1 q ˝ ρψ2 . �

The following lemma is not crucial, but we record it.

Lemma 3.4. Assume ψ1, ψ2 are both automorphisms of G, in the commensurated-
conjugacy class of φ. If ψ1, ψ2 are in the same AutpGq-conjugacy class of φ, then
ρψ1pGq “ ρψ2pGq.

In particular, if ψ is conjugate to φ by α P Aut pGq, on the entire G, then ρψ “
ρφ ˝α on G, while in comparison with the previous case, the equality held only after
restriction to H.

Proof. The groups Γψ1 and Γψ2 are isomorphic by an isomorphism that sends the
fiber to the fiber and tψ1 to tψ2 . Therefore, there is a representation ρ1ψ2

of Γψ2 that
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has the same image as ρψ1 . Further, the fibers have same image, as do tψ1 , tψ2 . Since
ρψ1ptψ1q “ ρφptφq, this representation satisfies the properties required for ρψ2 (as
defined in Lemma 3.2). By uniqueness of ρψ2 from Lemma 3.2, ρψ2 “ ρ1ψ2

and we
have the result. �

Let ψ be in the commensurated-conjugacy class of φ. The representation ρψ sends
G to a subgroup of PSL2pCq that is normalized by ρφptφq and intersects ρφpGq in
a common finite index subgroup. After passing to a further common finite index
subgroup Y , we may assume that Y is normal in the group generated by ρφpGq Y
ρψpGq, hence the quotient xρφpGq Y ρψpGqy{Y is isomorphic to a quotient of the
abstract free product ρφpGq{Y ˚ ρψpGq{Y . In principle this could still be infinite.
However, this is not the case, as we argue below.

Observe that the limit set of ρφpGq in the sphere at infinity is the whole sphere
BH3, since it is a normal subgroup in a lattice. Since it has infinite index in the said
lattice, it has infinite co-volume in its action on H3. We may apply [9, Theorem
1.1], or [11, Theorem 3.5], to obtain that the pPSL2Cq-commensurator of ρφpGq is a
uniform lattice Λφ containing ρφpΓφq.

Proposition 3.5. For all ψ in the commensurated-conjugacy class of φ, the group
xρφpGq Y ρψpGq Y tρφptφquy is a uniform lattice that surjects onto Z with kernel
xρφpGq Y ρψpGqy.

In particular, xρφpGq Y ρψpGqy is virtually a hyperbolic surface group.

Proof. Every element of ρψpGq is in the pPSL2Cq-commensurator of ρφpGq since the
later has a finite index subgroup which is a normal finite index subgroup of ρψpGq.
Therefore, ρψpGq Ă Λφ, and xρφpGq Y ρψpGq Y tρφptφquy Ă Λφ. Since it contains the
uniform lattice ρφpΓφq, it is also a uniform lattice.

The obvious map sending ρφptφq to 1 and ρφpGq Y ρψpGq to 0 extends to a homo-
morphism to Z.

By Selberg’s lemma, there is a torsion free finite index subgroup F of xρφpGq Y
ρψpGqy. Observe, though it is not directly useful, that the finite index of F is
uniformly bounded, if Selberg’s lemma is applied to Λφ. Considering the quotient of
H3 by F , the Tameness Theorem and Canary’s Covering Theorem imply classically
that F is a closed surface group. Observe that the conclusion can be also drawn from
Stallings’ Theorem [13] applied to a torsion-free finite index subgroup of xρφpGq Y
ρψpGq Y tρφptφquy, which projects onto Z with finitely generated kernel.

It follows that xρφpGqY ρψpGqy is virtually the fundamental group of a hyperbolic
surface, on which φ and ψ extend to an automorphism (by adρφptφq).

�
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Proposition 3.6. Given ρφ, there is a subgroup F0 of Λφ that contains ρφpGq as a
finite index subgroup, that is normalized by ρφptφq and that contains all images ρψpGq
for ψ in the commensurated conjugacy class of φ.

The subgroup F0 is virtually a hyperbolic surface group, and it contains finitely
many finite index subgroups isomorphic to G.

This number is an upper bound for the class number of φ.

Proof. Take the collection of all ρψpGq for all possible representation ψ as above
commensurating ρφpGq. Index them over the integers, let G0 “ ρφpGq and for each i
let Gi “ xGi´1 Y ρψipGqy. This sequence of subgroups of Λφ is a sequence of groups
containing ρφpGq as a finite index subgroup, and normalized by ρφptφq. The previous
argument shows that, up to bounded finite index, this corresponds to a sequence of
decreasing finite covers of hyperbolic surfaces, and thus must terminate, by decrease
of the genus. Since the index is uniformly bounded, the sequence is stationary. Let
F0 be the union of all Gi, thus the first part of the lemma holds. Considering Euler
characteristic, all finite index subgroups of F0 that are isomorphic to G have the
same index, and the second part is just counting given index subgroups. The third
part is a consequence of Lemma 3.3. �

Lemma 3.7. The group F0 is a hyperbolic 2-orbifold group.
More generally, anytime a group F0 is a finitely generated kernel of an homomor-

phism to Z of a uniform lattice in PSL2pCq, it is a hyperbolic 2-orbifold group.

Proof. As already mentionned, such a group F0 contains as finite index subgroup,
the fundamental group of a closed orientable surface of genus ě 2.

Therefore there exists a finite index normal subgroup K of F0 that is a such
hyperbolic surface group. One has an exact sequence

1 Ñ K Ñ F0 Ñ QÑ 1

where Q is finite. Choosing a set-theoretic section ξ : Q Ñ F0, we obtain a map
Q Ñ Aut pKq by realizing each ξpqq by adξpqq. This is not necessarily a homomor-
phism (since ξpqq could be changed by any element of ξpqqK), but it descends to a
homomorphism ϕ : QÑ Out pKq.

We first argue that this homomorphism is injective. If q P Qzt1u is sent to the
identity, then adξpqq equals conjugation by some k P K, hence qk´1 is in the centralizer
of K. However, as K is Zariski dense in PSL2pCq (which has trivial center), it has
trivial centralizer.

By the Dehn-Nielsen-Baer theorem, Out pKq is isomorphic to the extended Map-
ping Class Group of the surface Σ of which K is the fundamental group. By the
Nielsen realization theorem [7], there is a hyperbolic metric on Σ, a subgroup S of

the finite group of (metric) symmetries of S, an identification K
»
Ñ π1pΣ, vq (for a

base point v P Σ with trivial S-stabilizer), and an isomorphism ϕpQq
„
Ñ S in a way
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that the action of S by outer-automorphisms on π1pΣ, vq is the equivariant image of
the action of ϕpQq by outer-automorphisms on K.

Consider now the orbifold quotient Σ of Σ under the action of S. We claim that
its orbifold fundamental group (with base point v̄) is isomorphic to the extension F0.
Indeed, it is also a group extension of the form

1 Ñ π1pΣq Ñ π1pΣq Ñ S Ñ 1

with the same representation S Ñ Out pπ1pΣqq as ϕ for F0. Since the center of K is
trivial, the classification of extensions (see for instance [3, Coro. IV(6.8)]) indicates
that there is only one extension of K by Q, realizing ϕ, up to equivalence. Therefore
π1pΣ, v̄q » F0, and F0 is a 2-orbifold group. �

Being commensurable with a hyperbolic surface group, the orbifold of which F0

is the fundamental group is an orbifold that carries a hyperbolic metric. It must
be of area greater than that of the smallest orbifold (the quotient of H2 by the the
Coxeter triangle group p2, 3, 7q), which is π{42. On the other hand, if χpGq is the
Euler characteristic of G, it is the fundamental group of a hyperbolic surface of area
´2πχpGq. We record this in the following.

Corollary 3.8. The index of subgroups of F0 that are of finite index and isomorphic
to G is bounded above by ´84χpGq, or 168pg ´ 1q. Here g is the genus of a surface
Σ with fundamental group G.

Lemma 3.9. If g is the genus of a surface Σ with fundamental group G, then the
rank of F0 is at most 2g.

Proof. The group F0 is fundamental group of an orbifold O of which the surface Σ is
a ramified cover. Let Otop be the underlying topological surface of O, and Osing the
collection of singularities of O on Otop. For p a singularity let ep denote the order
of its isotropy group. Classical presentations of 2-orbifolds show that the rank of F0

is at most the rank of the fundamental group of Otop plus the cardinality of Osing.
The surface Σ is a branch cover of Otop. Let N be the degree of the cover. The
Riemann-Hurwitz formula for branch covers of (topological) surfaces gives χpΣq “
NχpOtopq ´

ř

Osingpep ´ 1q. Writing the rank of the (classical) fundamental group of

Otop as rt, one has χpΣq “ Np2´ rtq ´
ř

pep ´ 1q. The rank r of the orbifold group
F0 hence satisfies Nr ď 2N ´ χpΣq ´N

ř

pep ´ 1q `N |Osing| ď 2N ´ χpΣq. Finally
r ď 2` 2pg ´ 1q{N “

2g
N
` 2´ 2

N
. This in turn is less than 2g for g ě 2, N ě 1. �

Corollary 3.10. The number of subgroups of index k in F0 is at most pk!q2g.

Proof. For any index k subgroup, F0 acts by permutation on its k cosets. Therefore,
the map HompF0,Skq Ñ tH,H ă F0u that assigns to every π : F0 Ñ Sk the stabi-
lizer of t1u of the action, surjects HompF0,Skq onto the set of index ď k subgroups
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of F0. There are at most pk!qrankpF0q such homomorphisms. By the previous Lemma
3.9, we obtain the desired bound. �

A slightly better formula for surfaces was actually given by A.D. Mednykh, [10,
Thm. 14.4.1].

We thus obtain a proof of Theorem 1.1 by putting together Proposition 3.6, Corol-
lary 3.8, Corollary 3.10.

However huge, this bound is nonetheless independent of φ, which was perhaps
unexpected. Hence, the bound obtained in Proposition 3.6 is actually uniform over
the elements of Aut pGq that define pseudo-Anosov mapping classes of the surface of
which G is fundamental group.

4. Recipe for commensurably-conjugate mapping classes

In this section we propose a recipe to construct examples, as suggest by the struc-
ture obtained in Proposition 3.6. We will also produce an explicit example, thus
proving Theorem 1.2, in subsection 4.1.

Start with a hyperbolic surface, or 2-orbifold Σ with a base point v. Consider
a single pseudo-Anosov mapping class rΦs, and realize it as an automorphism Φ of
π1pΣ, vq.

Consider two finite sheeted characteristic covers that are of the same degree but
do not correspond to subgroups in the same orbit under the automorphism group
of π1pΣ, vq. For instance, one can be an abelian cover while the other is not. In
fact, it is not necessary that the covers are characteristic, they only need to have
fundamental groups preserved by Φ. It could thus be any cover of degree k, up to
replacing Φ by Φk! (which preserves all subgroups of index k).

Let G1, G2 be the subgroups of π1pΣ, vq that are fundamental groups of the re-
spective covers pΣ1, v1q and pΣ2, v2q.

The mapping class Φ defines φ and φ1, automorphisms of subgroups G1, G2.
Moving up to a common cover of Σ1,Σ2, corresponding the intersection of the

subgroups G1, G2, (which is preserved by Φ), we obtain a subgroup on which φ, φ1

coincide.
Turn φ1 into an automorphism ψ of G1 by picking an isomorphism α : G1 Ñ G2.

Claim 4.1. The automorphisms φ and ψ of the group G1 are in the same commensurated-
conjugacy class in Comm pG1q, but perhaps not conjugate in Aut pG1q.

Write H “ G1XG2. On H, the restrictions of φ and φ1 coincide. Since α˝ψ˝α´1 “
φ1 on G2, we have that φ|H “ α ˝ ψ ˝ α´1|H .

We thus have φ, ψ commensurably conjugated by α´1 on H.
It is not clear which condition would ensure that they are not conjugate in Aut pG1q,

even though one might suspect that this happens somewhat generically.
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4.1. Explicit example. While it appears likely that a construction as above would
give examples of non-conjugated automorphisms, an actual explicit example is nec-
essary to settle the case. Our example will be for two mapping classes on a surface
of genus three.

Proposition 4.2. Let S be a closed orientable surface of genus three, and p P S.
There exist two pseudo-Anosov mapping classes of S that are realized by automor-
phisms of the fundamental group π1pS, pq that are commensurably conjugate, but are
not conjugate in MCGpSq.

In particular they are not conjugate in Autpπ1pS, pq.

Proof. Consider Σ a genus 2 surface, with base point v, and two curves that fill
Σ, µ, λ, with µ separating. Writing π1pΣ, vq “ xα, η, γ, δ |αβα´1β´1 “ γ´1δγδ´1y,
we specify the curve µ to be the commutator and for the sake of being explicit,
λ “ γβδγβα´1δγβ, see Figure 1.

Figure 1. The curve λ used for twisting

Consider the mapping classes obtained by the product of Dehn twists φ “ τnγ1τ
2m
λ .

The construction of Penner-Thurston [12] ensures that, for n,m ąą 1, this defines
a pseudo-Anosov mapping class on Σ.

Consider the two 2-sheeted covers Σ1,Σ2 of Σ whose fundamental groups are the
kernels of the two homomorphisms π1pΣ, vq Ñ Z{2 given by

α, δ ÞÑ 0, β, γ ÞÑ 1

on the one hand, and

α, γ, δ ÞÑ 0 β ÞÑ 1

on the other. These are two surfaces of genus 3, pictured in Figure 2.
In both covers, the twist τµ lifts as a mapping class that is trivial in homology.
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Figure 2. The two covers Σ1,Σ2 of Σ, with the lifts of λ (in green
and orange) and µ (in blue). The second lift of the base point is a
circled white dot.

Observe that in Σ1 the curve λ lifts as two disjoint simple closed curves, but on
Σ2 it lifts to two arcs, that when concatenated make a simple closed curve. In other
words, the squared twist τ 2λ lifts to both covers, as a mapping class.

In Σ2, it lifts as a single Dehn twist over a simple (non-separating) curve. It follows
that in this cover, the mapping class induced by φ induces, on the homology, the
identity plus a rank one endomorphism.

In Σ1, however, λ lifts as a pair of simple closed curves, and τ 2λ lifts as a product
of two Dehn twists over the two disjoint simple closed curves. It is not automatic
that this product would be different in homology as a single Dehn twist, but it turns
out that, by a slightly tedious but simple computation, the action on the homology
of this mapping class is indeed the identity plus a rank 2 endomorphism.

Indeed, in homology of the cover Σ1, one can form an explicit basis, as

pα, β2, γ´1β´1, δ, γ2, βα´1β´1αq,

and the matrix of the homology representation of τλ is the following matrix M in
this basis.
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On the right, M ´ I6 is of rank 2.

M “

¨

˚

˚

˚

˚

˚

˝

´2 ´2 ´1 ´3 4 0
9 4 0 9 ´6 9
9 0 ´2 9 0 18
6 4 2 7 ´8 0
9 3 0 9 ´5 9
0 ´1 ´1 0 2 4

˛

‹

‹

‹

‹

‹

‚

, M ´ I6 “

¨

˚

˚

˚

˚

˚

˝

´3 ´2 ´1 ´3 4 0
9 3 0 9 ´6 9
9 0 ´3 9 0 18
6 4 2 6 ´8 0
9 3 0 9 ´6 9
0 ´1 ´1 0 2 3

˛

‹

‹

‹

‹

‹

‚

Therefore, the two lifts of φ to the two surfaces of genus three are not conjugate
by any isomorphism between the surfaces groups.

To conclude, our explicit example of a pair of pseudo-Anosov automorphisms on
the fundamental group of a surface of genus 3, that are commensurably conjugate,
but not conjugate, are these two lifts of φ. See Figure 2. These are the mapping
classes obtained, in each picture of genus 3 surface, by twisting k times over the pair
of blue curves, and then twisting 2m times along the pair of green and orange curves,
in Σ1, and only m times along the single green-and-orange curve in Σ2. �

5. Infinitely many class number one pseudo-Anosovs

We start this section by a lemma which is well known to specialists.

Lemma 5.1. There exists V0 ą 0, and infinitely many conjugacy classes of maximal
non-arithmetic uniform lattices in PSL2pCq, with co-volume ď V0.

Proof. Take M0 a non-compact, finite volume hyperbolic 3-manifold with one cusp
(a complement of a hyperbolic knot for instance), and consider a sequence Mn of
compact hyperbolic manifolds obtained by deeper and deeper hyperbolic Dehn filling
on M0. Their volumes Vn are bounded above by the volume V0 of the initial manifold,
and accumulate on V0. It follows from a theorem of Borel [2, Theorem 8.2] that
once extracted a subsequence, they have non-arithmetic fundamental group Γn in
PSL2pCq. By another theorem of Borel, on commensurability [2, Main Theorem], for
all these n, there exists a unique biggest uniform lattice Γ`n containing Γn, necessarily
as a finite index subgroup. For each n, the co-volume of Γ`n in H3 divides Vn, and is
larger than a positive constant [5, 6]. Therefore, since Vn accumulates on V0, the Γ`n
are eventually all of different co-volume, hence non-conjugate.

�

We finally prove Theorem 1.3.

Proof. Let us denote Λ0
i , i P N a sequence of representatives of different conjugacy

classes of maximal non-arithmetic uniform lattices in PSL2pCq.
In each Λ0

i , by Agol virtual fibration theorem [1], there is a finite index subgroup
Λ1
i that maps onto Z with finitely generated kernel. Since the index of Λ1

i in Λ0
i is
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finite, the chains of strict inclusion of subgroups from Λ0
i to Λ1

i are finite. Therefore,
there exists a maximal subgroup Λi of Λ0

i , containing Λ1
i , and surjecting on Z (by

an homomorphism πi : Λi Ñ Z). The index of Λ1
i in Λi is necessarily finite, less

than rΛ1
i ,Λ

0
i s, and the kernel of πi has therefore finite index in the fiber of Λ1

i . In
particular it is finitely generated. By Lemma 3.7, it is therefore the fundamental
group of a hyperbolic 2-orbifold. Let Gi be this subgroup, and ti P Λi such that
Λi “ Gi ¸ xtiy.

Denote by φi the automorphism of Gi given by the conjugation by ti.
Let us compute the class number of φi. Let ψi an commensurably conjugated

automorphism, we are to prove that it is conjugate to φi in Aut pGiq. By Proposition
3.5, the lattice Λi lives in a larger lattice containing a copy Mi of the mapping torus of
ψi and surjecting on Z with the fibers of Mi and Λi in the kernel. By Borel Theorem
on commensurability [2], since Λi is non-arithmetic, there is a unique biggest lattice
containing Λi, and it is therefore Λ0

i . Therefore, by maximality of Λi, xMiYΛiy “ Λi,
and it follows from Lemma 3.3 that φi and ψi and conjugated in Aut pGiq. Therefore,
the class number of φi is one.

The same argument also reveals that for i ‰ j, φi and φj do not have any non-
trivial power that are commensurably conjugate: if they did, the mapping tori would
be represented in PLS2pCq in a common lattice that fibers with finitely generated
kernel, and Borel Theorem again ensures that the maximal lattice containing them
is unique, and therefore i “ j. �
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