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Summary and Motivation

Summary and Motivation

(Margulis) An irreducible lattice T in a semi-simple Lie group L
is arithmetic iff the commensurator Comm(I) is dense.

Comm(l) = {g € L: grg~' NT is of finite index in both
rgrg—'}

Question: (Shalom) If I is a Zariski dense, infinite covolume,
discrete subgroup of a semi-simple Lie group L, describe
Comm(T). (i.e. Is it discrete?)
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Answer: (M-) Yes, if

a) The limit set A C 0 G (=Furstenberg boundary) is not
invariant under a simple factor, OR

b) I' is finitely generated and G = PSL,(C).
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Summary and Motivation

Answer: (M-) Yes, if

a) The limit set A C 0 G (=Furstenberg boundary) is not
invariant under a simple factor, OR

b) I' is finitely generated and G = PSL,(C).

(Greenberg '74) IfT is a Zariski dense, finitely generated,
infinite covolume, discrete subgroup of G = PSL,(C), and
Ar # S2. then Comm(T) is discrete.
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(Leininger, Long, Reid, '09) IfT is a Zariski dense, finitely
generated, infinite covolume, discrete subgroup of

G = PSLy(C), such thatT is non-free and without parabolics,
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Summary and Motivation

(Leininger, Long, Reid, '09) IfT is a Zariski dense, finitely
generated, infinite covolume, discrete subgroup of

G = PSLy(C), such thatT is non-free and without parabolics,
then Comm(I') is discrete.

Also under somewhat weaker assumptions (LLR).
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Non-full Limit Sets

Non-full Limit sets
@ [ Zariski-dense infinite covolume subgroup of a
semi-simple Lie group L = Isom(X).
@ X arank one symmetric space.
@ Let Comm(I) be the closure of Comm(I").

@ Ly = connected component of the identity, with Lie algebra
l[p—invariant under adjoint representation.
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Non-full Limit Sets

@ (CRUCIAL)) If Ly is non-compact, then
AL, = ACon(D = Ar is invariant under L.
@ Zariski density implies Ly = L. Hence Ar = 0X.

@ Ly compact. Ly fixes some point x € X. Ly is normal in L.
Therefore L, fixes all x € X. Therefore Ly is trivial.

Mahan Mj



Non-full Limit Sets—Higher Rank

Non-full Limit sets—Higher Rank

(Benoist '97) LetT C G = Isom(X) be a Zariski dense
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Non-full Limit Sets—Higher Rank

Non-full Limit sets—Higher Rank

(Benoist '97) LetT C G = Isom(X) be a Zariski dense
subgroup. Then Ar is the unique minimal closed I -invariant
subset of the Furstenberg boundary G/P.

This Theorem allows us to push through the crucial step in the
previous page.

@ Ar is invariant under L.
@ Ly is a (virtual) factor.
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For the rest of the talk, I'-f.g. Kleinian group with Ar = S2_.
Then G (as an abstract group) is hyperbolic relative to its
parabolic subgroups.
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Full Limit Sets—Kleinian Groups

Full Limit Sets—Kleinian Groups

For the rest of the talk, I'-f.g. Kleinian group with Ar = S2_.
Then G (as an abstract group) is hyperbolic relative to its
parabolic subgroups.

For concreteness: G = surface group with or without parabolics.
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Full Limit Sets—Kleinian Groups

Theorem (M-) G —f.g. Kleinian group. i : T — H? identifies
Cayley graph of G with orbit of a point in H?.
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Full Limit Sets—Kleinian Groups

Theorem (M-) G —f.g. Kleinian group. i : T — H? identifies
Cayley graph of G with orbit of a point in H°.

Then i extends continuously to a map 7 : FG — D3, where FG
denotes the (relative) hyperbolic compactificaton of MG

Let di denote the restriction of 7 to the boundary ar of I'.

Then 0i(a) = 0i(b) for a # b € Jr if and only if a, b are either
ideal end-points of a leaf of an ending lamination of G, or ideal
boundary points of a complementary ideal polygon.
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Cannon-Thurston Relations

Cannon-Thurston Relations L

A Cannon-Thurston map i from G to X is a continuous
extension of i. The restriction of 7 to G will be denoted by di.
The map 0i induces a relation R on 9G where x ~ y if
0i(x) = 0i(y) for x,y € 0G.
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Cannon-Thurston Relations

Cannon-Thurston Relations L

A Cannon-Thurston map i from G to X is a continuous
extension of i. The restriction of 7 to G will be denoted by di.
The map 0i induces a relation R on 9G where x ~ y if
0i(x) = 0i(y) for x,y € 0G.

Distinct pairs of points identified by 9i will be denoted as R2,
which is a subset of 6%(G).

Rt is a closed relation on 0G

Suppose G acts on X without accidental parabolics If
(x,y) € Rer and x # y, then x cannot be a pole of G.
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Cannon-Thurston Relations (Contd.)

Cannon-Thurston Relations (Contd.)

Density of Orbits of cosets of Rq7 in the Hausdorff metric:

Let K € Rc7 be a coset (equivalence class) of the relation.
Let C;(0@G) denote the space of closed subsets of 9G with the
Hausdorff metric.

Then for all x € JG, the singleton set {x} is an accumulation
point of {g.K : g € G}.
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Cannon-Thurston Relations (Contd.)

f € Comm(G) implies f € Homeo(dG).

"Non-proof": Pull Comm(G)-action back to 0G. Then Comm(G)
preserves closed totally disconnected relation. Hence its a
closed totally disconnected subgroup of L—discrete.

Let f, be a sequence of homeomorphisms of (9G, d) that
preserves the cosets of Rqr, where d denotes some visual
metric.

Let f, denote the induced homeomorphisms of Ag.

If f, — id in the uniform topology on Homeo(9G) then f, — id
in the uniform topology on Homeo(Ag).

Conversely, if f, — id in the uniform topology on Homeo(Ag)
then for every pole p € 9G, d(p, f,(p)) — O.
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Totally Degenerate Surface Groups

Let f, € Comm(H) be a sequence of commensurators
converging to the identity in lsom(H3) and let f, be the induced
homeomorphisms on the (relative) hyperbolic boundary

or1(S)(= S") of the group 71(S). Then f, — Id € Homeo(S").
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Totally Degenerate Surface Groups

Totally Degenerate Surface Groups

Let f, € Comm(H) be a sequence of commensurators
converging to the identity in lsom(H3) and let f, be the induced
homeomorphisms on the (relative) hyperbolic boundary

or1(S)(= S") of the group 71(S). Then f, — Id € Homeo(S").

Proof Idea Follows.
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Totally Degenerate Surface Groups

Let H be a totally degenerate surface Kleinian group. Then the
commensurator Comm(H) of H is discrete in PSL,(C).

f, € Comm(H)- sequence of commensurators converging to
the identity in Isom(H?)

f, — induced homeomorphisms on the (relative) hyperbolic
boundary dr(S)(= S)
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By previous Lemma, for any ideal polygon A with boundary in
the ending lamination there exists N = N(A) such that f, fixes
all the vertices of A for all n > N.
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By previous Lemma, for any ideal polygon A with boundary in
the ending lamination there exists N = N(A) such that f, fixes
all the vertices of A for all n > N.

Let zp € S2, be the common image of the end-points of A
under the Cannon-Thurston map.

Choose ideal polygons Ay, -- -, Ak such that the common
images {zi,--- , zx} is Zariski dense in S2..

Hence for all n > maxi_1..x{N(A))}, f, = ld. O
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