On Discreteness of Commensurators

Mahan Mj, Department of Mathematics, RKM Vivekananda University.

イロト イポト イヨト イヨト

2

Summary and Motivation

Theorem

(Margulis) An irreducible lattice Γ in a semi-simple Lie group L is arithmetic iff the commensurator Comm(Γ) is dense.

Comm(Γ) = { $g \in L : g\Gamma g^{-1} \cap \Gamma$ is of finite index in both $\Gamma, g\Gamma g^{-1}$ } **Question:** (Shalom) If Γ is a Zariski dense, infinite covolume discrete subgroup of a semi-simple Lie group *L*, describe Comm(Γ). (i.e. Is it discrete?)

Summary and Motivation

Theorem

(Margulis) An irreducible lattice Γ in a semi-simple Lie group L is arithmetic iff the commensurator Comm(Γ) is dense.

Comm(Γ) = { $g \in L : g\Gamma g^{-1} \cap \Gamma$ is of finite index in both $\Gamma, g\Gamma g^{-1}$ } **Question:** (Shalom) If Γ is a Zariski dense, infinite covolume discrete subgroup of a semi-simple Lie group *L*, describe Comm(Γ). (i.e. Is it discrete?)

Summary and Motivation

Theorem

(Margulis) An irreducible lattice Γ in a semi-simple Lie group L is arithmetic iff the commensurator Comm(Γ) is dense.

$\mathsf{Comm}(\Gamma) = \{g \in L : g\Gamma g^{-1} \cap \Gamma \text{ is of finite index in both } \Gamma, g\Gamma g^{-1}\}$

Question: (Shalom) If Γ is a Zariski dense, infinite covolume, discrete subgroup of a semi-simple Lie group *L*, describe Comm(Γ). (i.e. Is it discrete?)

Summary and Motivation

Theorem

(Margulis) An irreducible lattice Γ in a semi-simple Lie group L is arithmetic iff the commensurator Comm(Γ) is dense.

Comm(Γ) = { $g \in L : g\Gamma g^{-1} \cap \Gamma$ is of finite index in both $\Gamma, g\Gamma g^{-1}$ } **Question:** (Shalom) If Γ is a Zariski dense, infinite covolume, discrete subgroup of a semi-simple Lie group *L*, describe Comm(Γ). (i.e. Is it discrete?)

Answer: (M-) Yes, if

a) The limit set $\Lambda_{\Gamma} \subset \partial_{F}G$ (=Furstenberg boundary) is not invariant under a simple factor, OR b) Γ is finitely generated and $G = PSL_{2}(\mathbb{C})$.

Theorem

(Greenberg '74) If Γ is a Zariski dense, finitely generated, infinite covolume, discrete subgroup of $G = PSL_2(\mathbb{C})$, and $\Lambda_{\Gamma} \neq S^2_{\infty}$ then Comm(Γ) is discrete.

Answer: (M-) Yes, if

a) The limit set $\Lambda_{\Gamma} \subset \partial_{F}G$ (=Furstenberg boundary) is not invariant under a simple factor, OR b) Γ is finitely generated and $G = PSL_{2}(\mathbb{C})$.

Theorem

(Greenberg '74) If Γ is a Zariski dense, finitely generated, infinite covolume, discrete subgroup of $G = \text{PSL}_2(\mathbb{C})$, and $\Lambda_{\Gamma} \neq \mathbb{S}^2_{\infty}$ then $\text{Comm}(\Gamma)$ is discrete.

<ロン <回と < 注入 < 注入 < 注入 = 注

Summary and Motivation

Non-full Limit Sets Non-full Limit Sets–Higher Rank Full Limit Sets–Kleinian Groups Cannon-Thurston Relations Cannon-Thurston Relations (Contd.) Totally Degenerate Surface Groups

Theorem

(Leininger, Long, Reid, '09) If Γ is a Zariski dense, finitely generated, infinite covolume, discrete subgroup of $G = \text{PSL}_2(\mathbb{C})$, such that Γ is non-free and without parabolics, then $\text{Comm}(\Gamma)$ is discrete.

Also under somewhat weaker assumptions (LLR).

ヘロト 人間 ト ヘヨト ヘヨト

Summary and Motivation

Non-full Limit Sets Non-full Limit Sets–Higher Rank Full Limit Sets–Kleinian Groups Cannon-Thurston Relations Cannon-Thurston Relations (Contd.) Totally Degenerate Surface Groups

Theorem

(Leininger, Long, Reid, '09) If Γ is a Zariski dense, finitely generated, infinite covolume, discrete subgroup of $G = \text{PSL}_2(\mathbb{C})$, such that Γ is non-free and without parabolics, then $\text{Comm}(\Gamma)$ is discrete.

Also under somewhat weaker assumptions (LLR).

ヘロト 人間 ト ヘヨト ヘヨト

Summary and Motivation

Non-full Limit Sets Non-full Limit Sets–Higher Rank Full Limit Sets–Kleinian Groups Cannon-Thurston Relations Cannon-Thurston Relations (Contd.) Totally Degenerate Surface Groups

Theorem

(Leininger, Long, Reid, '09) If Γ is a Zariski dense, finitely generated, infinite covolume, discrete subgroup of $G = \text{PSL}_2(\mathbb{C})$, such that Γ is non-free and without parabolics, then $\text{Comm}(\Gamma)$ is discrete.

Also under somewhat weaker assumptions (LLR).

くロト (過) (目) (日)

Non-full Limit sets

- Γ Zariski-dense infinite covolume subgroup of a semi-simple Lie group L = Isom(X).
- X a rank one symmetric space.
- Let $\overline{\text{Comm}(\Gamma)}$ be the closure of $\text{Comm}(\Gamma)$.
- L_0 = connected component of the identity, with Lie algebra I_0 -invariant under adjoint representation.

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

Non-full Limit sets

- Γ Zariski-dense infinite covolume subgroup of a semi-simple Lie group L = Isom(X).
- X a rank one symmetric space.
- Let $\overline{\text{Comm}(\Gamma)}$ be the closure of $\text{Comm}(\Gamma)$.
- L_0 = connected component of the identity, with Lie algebra I_0 -invariant under adjoint representation.

Non-full Limit sets

- Γ Zariski-dense infinite covolume subgroup of a semi-simple Lie group L = Isom(X).
- X a rank one symmetric space.
- Let $\overline{\text{Comm}(\Gamma)}$ be the closure of $\text{Comm}(\Gamma)$.
- L_0 = connected component of the identity, with Lie algebra I_0 -invariant under adjoint representation.

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

Non-full Limit sets

- Γ Zariski-dense infinite covolume subgroup of a semi-simple Lie group L = Isom(X).
- X a rank one symmetric space.
- Let $\overline{\text{Comm}(\Gamma)}$ be the closure of $\text{Comm}(\Gamma)$.
- L_0 = connected component of the identity, with Lie algebra I_0 -invariant under adjoint representation.

くロト (過) (目) (日)

- (CRUCIAL!) If L_0 is non-compact, then $\Lambda_{L_0} = \Lambda_{\overline{\text{Comm}(\Gamma)}} = \Lambda_{\Gamma}$ is invariant under L_0 .
- Zariski density implies $L_0 = L$. Hence $\Lambda_{\Gamma} = \partial X$.
- L_0 compact. L_0 fixes some point $x \in X$. L_0 is normal in L. Therefore L_0 fixes all $x \in X$. Therefore L_0 is trivial.

イロン 不同 とくほ とくほ とう

- (CRUCIAL!) If L_0 is non-compact, then $\Lambda_{L_0} = \Lambda_{\overline{\text{Comm}(\Gamma)}} = \Lambda_{\Gamma}$ is invariant under L_0 .
- Zariski density implies $L_0 = L$. Hence $\Lambda_{\Gamma} = \partial X$.
- L_0 compact. L_0 fixes some point $x \in X$. L_0 is normal in L. Therefore L_0 fixes all $x \in X$. Therefore L_0 is trivial.

<ロ> <同> <同> <同> <同> <同> <同> <同> <

- (CRUCIAL!) If L_0 is non-compact, then $\Lambda_{L_0} = \Lambda_{\overline{\text{Comm}(\Gamma)}} = \Lambda_{\Gamma}$ is invariant under L_0 .
- Zariski density implies $L_0 = L$. Hence $\Lambda_{\Gamma} = \partial X$.
- L_0 compact. L_0 fixes some point $x \in X$. L_0 is normal in L. Therefore L_0 fixes all $x \in X$. Therefore L_0 is trivial.

<ロ> <同> <同> <同> <同> <同> <同> <同> <

Non-full Limit sets-Higher Rank

Theorem

(Benoist '97) Let $\Gamma \subset G = \text{Isom}(X)$ be a Zariski dense subgroup. Then Λ_{Γ} is the unique minimal closed Γ -invariant subset of the Furstenberg boundary G/P.

This Theorem allows us to push through the crucial step in the previous page.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

- Λ_{Γ} is invariant under L_0 .
- L_0 is a (virtual) factor.

Non-full Limit sets-Higher Rank

Theorem

(Benoist '97) Let $\Gamma \subset G = \text{Isom}(X)$ be a Zariski dense subgroup. Then Λ_{Γ} is the unique minimal closed Γ -invariant subset of the Furstenberg boundary G/P.

This Theorem allows us to push through the crucial step in the previous page.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

- Λ_{Γ} is invariant under L_0 .
- L_0 is a (virtual) factor.

Non-full Limit sets-Higher Rank

Theorem

(Benoist '97) Let $\Gamma \subset G = \text{Isom}(X)$ be a Zariski dense subgroup. Then Λ_{Γ} is the unique minimal closed Γ -invariant subset of the Furstenberg boundary G/P.

This Theorem allows us to push through the crucial step in the previous page.

• Λ_{Γ} is invariant under L_0 .

L₀ is a (virtual) factor.

Non-full Limit sets-Higher Rank

Theorem

(Benoist '97) Let $\Gamma \subset G = \text{Isom}(X)$ be a Zariski dense subgroup. Then Λ_{Γ} is the unique minimal closed Γ -invariant subset of the Furstenberg boundary G/P.

This Theorem allows us to push through the crucial step in the previous page.

- Λ_{Γ} is invariant under L_0 .
- L_0 is a (virtual) factor.

Non-full Limit sets-Higher Rank

Theorem

(Benoist '97) Let $\Gamma \subset G = \text{Isom}(X)$ be a Zariski dense subgroup. Then Λ_{Γ} is the unique minimal closed Γ -invariant subset of the Furstenberg boundary G/P.

This Theorem allows us to push through the crucial step in the previous page.

- Λ_{Γ} is invariant under L_0 .
- L_0 is a (virtual) factor.

Full Limit Sets–Kleinian Groups For the rest of the talk, Γ -f.g. Kleinian group with $\Lambda_{\Gamma} = \mathbb{S}^2_{\infty}$. Then *G* (as an abstract group) is hyperbolic relative to its parabolic subgroups.

For concreteness: G = surface group with or without parabolics.

Full Limit Sets–Kleinian Groups For the rest of the talk, Γ -f.g. Kleinian group with $\Lambda_{\Gamma} = \mathbb{S}_{\infty}^2$. Then G (as an abstract group) is hyperbolic relative to its parabolic subgroups.

For concreteness: G = surface group with or without parabolics.

Theorem (M–) *G*–f.g. Kleinian group. $i : \Gamma_G \to \mathbb{H}^3$ identifies Cayley graph of *G* with orbit of a point in \mathbb{H}^3 .

Then *i* extends continuously to a map $\hat{i} : \Gamma_G \to \mathbb{D}^3$, where Γ_G denotes the (relative) hyperbolic compactificaton of Γ_G . Let ∂i denote the restriction of \hat{i} to the boundary $\partial \Gamma$ of Γ . Then $\partial i(a) = \partial i(b)$ for $a \neq b \in \partial \Gamma$ if and only if a, b are either ideal end-points of a leaf of an ending lamination of G, or ideal boundary points of a complementary ideal polygon.

イロト イヨト イヨト イ

Theorem (M–) G–f.g. Kleinian group. $i : \Gamma_G \to \mathbb{H}^3$ identifies Cayley graph of G with orbit of a point in \mathbb{H}^3 . Then i extends continuously to a map $\hat{i} : \widehat{\Gamma_G} \to \mathbb{D}^3$, where $\widehat{\Gamma_G}$ denotes the (relative) hyperbolic compactification of Γ_G . Let ∂i denote the restriction of \hat{i} to the boundary $\partial \Gamma$ of Γ . Then $\partial i(a) = \partial i(b)$ for $a \neq b \in \partial \Gamma$ if and only if a, b are either ideal end-points of a leaf of an ending lamination of G, or ideal boundary points of a complementary ideal polygon.

Theorem (M–) G–f.g. Kleinian group. $i : \Gamma_G \to \mathbb{H}^3$ identifies Cayley graph of G with orbit of a point in \mathbb{H}^3 . Then i extends continuously to a map $\hat{i} : \widehat{\Gamma_G} \to \mathbb{D}^3$, where $\widehat{\Gamma_G}$ denotes the (relative) hyperbolic compactification of Γ_G . Let ∂i denote the restriction of \hat{i} to the boundary $\partial \Gamma$ of Γ . Then $\partial i(a) = \partial i(b)$ for $a \neq b \in \partial \Gamma$ if and only if a, b are either ideal end-points of a leaf of an ending lamination of G, or idea boundary points of a complementary ideal polygon.

Theorem (M–) *G*–f.g. Kleinian group. $i : \Gamma_G \to \mathbb{H}^3$ identifies Cayley graph of *G* with orbit of a point in \mathbb{H}^3 . Then *i* extends continuously to a map $\hat{i} : \widehat{\Gamma_G} \to \mathbb{D}^3$, where $\widehat{\Gamma_G}$ denotes the (relative) hyperbolic compactificaton of Γ_G . Let ∂i denote the restriction of \hat{i} to the boundary $\partial \Gamma$ of Γ . Then $\partial i(a) = \partial i(b)$ for $a \neq b \in \partial \Gamma$ if and only if *a*, *b* are either ideal end-points of a leaf of an ending lamination of *G*, or ideal boundary points of a complementary ideal polygon.

・ロト ・ 同 ト ・ ヨ ト

Cannon-Thurston Relations A **Cannon-Thurston map** \hat{i} from \hat{G} to \hat{X} is a continuous extension of i. The restriction of \hat{i} to ∂G will be denoted by ∂i . The map ∂i induces a relation \mathcal{R}_{CT} on ∂G where $x \sim y$ if $\partial i(x) = \partial i(y)$ for $x, y \in \partial G$. *Distinct* pairs of points identified by ∂i will be denoted as \mathcal{R}_{CT}^2 , which is a subset of $\partial^2(G)$. \mathcal{R}_{CT} is a closed relation on ∂G

.emma

Suppose G acts on X without accidental parabolics If $(x, y) \in \mathbb{R}_{CT}$ and $x \neq y$, then x cannot be a pole of G.

Cannon-Thurston Relations A **Cannon-Thurston map** \hat{i} from \hat{G} to \hat{X} is a continuous extension of i. The restriction of \hat{i} to ∂G will be denoted by ∂i . The map ∂i induces a relation \mathcal{R}_{CT} on ∂G where $x \sim y$ if $\partial i(x) = \partial i(y)$ for $x, y \in \partial G$. *Distinct* pairs of points identified by ∂i will be denoted as \mathcal{R}_{CT}^2 , which is a subset of $\partial^2(G)$.

 \mathcal{R}_{CT} is a closed relation on ∂G

.emma

Suppose G acts on X without accidental parabolics If $(x, y) \in \mathbb{R}_{CT}$ and $x \neq y$, then x cannot be a pole of G.

Cannon-Thurston Relations A **Cannon-Thurston map** \hat{i} from \hat{G} to \hat{X} is a continuous extension of i. The restriction of \hat{i} to ∂G will be denoted by ∂i . The map ∂i induces a relation \mathcal{R}_{CT} on ∂G where $x \sim y$ if $\partial i(x) = \partial i(y)$ for $x, y \in \partial G$. *Distinct* pairs of points identified by ∂i will be denoted as \mathcal{R}_{CT}^2 , which is a subset of $\partial^2(G)$. \mathcal{R}_{CT} is a closed relation on ∂G

_emma

Suppose G acts on X without accidental parabolics If $(x, y) \in \Re_{CT}$ and $x \neq y$, then x cannot be a pole of G.

Cannon-Thurston Relations

A **Cannon-Thurston map** \hat{i} from \hat{G} to \hat{X} is a continuous extension of i. The restriction of \hat{i} to ∂G will be denoted by ∂i . The map ∂i induces a relation \mathcal{R}_{CT} on ∂G where $x \sim y$ if $\partial i(x) = \partial i(y)$ for $x, y \in \partial G$. *Distinct* pairs of points identified by ∂i will be denoted as \mathcal{R}_{CT}^2 , which is a subset of $\partial^2(G)$.

 \mathcal{R}_{CT} is a closed relation on ∂G

Lemma

Suppose G acts on X without accidental parabolics If $(x, y) \in \mathbb{R}_{CT}$ and $x \neq y$, then x cannot be a pole of G.

イロン イロン イヨン イヨン

Cannon-Thurston Relations (Contd.) Density of Orbits of cosets of \Re_{CT} in the Hausdorff metric:

Let $K \subset \mathcal{R}_{CT}$ be a coset (equivalence class) of the relation. Let $C_c(\partial G)$ denote the space of closed subsets of ∂G with the Hausdorff metric.

Then for all $x \in \partial G$, the singleton set $\{x\}$ is an accumulation point of $\{g.K : g \in G\}$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Cannon-Thurston Relations (Contd.)

Density of Orbits of cosets of \Re_{CT} in the Hausdorff metric: Let $K \subset \Re_{CT}$ be a coset (equivalence class) of the relation.

Let $C_c(\partial G)$ denote the space of closed subsets of ∂G with the Hausdorff metric.

Then for all $x \in \partial G$, the singleton set $\{x\}$ is an accumulation point of $\{g.K : g \in G\}$.

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

Cannon-Thurston Relations (Contd.)

Density of Orbits of cosets of $\mathcal{R}_{\textit{CT}}$ in the Hausdorff metric:

Let $K \subset \mathfrak{R}_{CT}$ be a coset (equivalence class) of the relation.

Let $C_c(\partial G)$ denote the space of closed subsets of ∂G with the Hausdorff metric.

Then for all $x \in \partial G$, the singleton set $\{x\}$ is an accumulation point of $\{g.K : g \in G\}$.

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

Cannon-Thurston Relations (Contd.)

Density of Orbits of cosets of \mathcal{R}_{CT} in the Hausdorff metric:

Let $K \subset \Re_{CT}$ be a coset (equivalence class) of the relation.

Let $C_c(\partial G)$ denote the space of closed subsets of ∂G with the Hausdorff metric.

Then for all $x \in \partial G$, the singleton set $\{x\}$ is an accumulation point of $\{g.K : g \in G\}$.

Cannon-Thurston Relations (Contd.) $\overline{f} \in \text{Comm}(G)$ implies $f \in \text{Homeo}(\partial G)$.

"Non-proof": Pull Comm(G)-action back to ∂G . Then Comm(G) preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of L-discrete. Let f_n be a sequence of homeomorphisms of (∂G , d) that preserves the cosets of \Re_{CT} , where d denotes some visual metric.

Let $\overline{f_n}$ denote the induced homeomorphisms of Λ_G .

If $f_n \to id$ in the uniform topology on $Homeo(\partial G)$ then $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$.

Conversely, if $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$ then for every pole $p \in \partial G$, $d(p, f_n(p)) \to 0$.

イロン イロン イヨン イヨン

Cannon-Thurston Relations (Contd.)

 $\overline{f} \in \text{Comm}(G) \text{ implies } f \in \text{Homeo}(\partial G).$

"Non-proof": Pull Comm(G)-action back to ∂G . Then $\overline{\text{Comm}(G)}$ preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of L–discrete.

Let f_n be a sequence of homeomorphisms of $(\partial G, d)$ that preserves the cosets of \mathcal{R}_{CT} , where d denotes some visual metric.

Let $\overline{f_n}$ denote the induced homeomorphisms of Λ_G .

If $f_n \to id$ in the uniform topology on $Homeo(\partial G)$ then $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$.

Conversely, if $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$ then for every pole $p \in \partial G$, $d(p, f_n(p)) \to 0$.

・ロット (雪) (き) (ほ)

Cannon-Thurston Relations (Contd.)

 $\overline{f} \in \text{Comm}(G) \text{ implies } f \in \text{Homeo}(\partial G).$

"Non-proof": Pull Comm(G)-action back to ∂G . Then $\overline{\text{Comm}(G)}$ preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of L–discrete. Let f_n be a sequence of homeomorphisms of (∂G , d) that

preserves the cosets of \mathcal{R}_{CT} , where *d* denotes some visual metric.

Let $\overline{f_n}$ denote the induced homeomorphisms of Λ_G .

If $f_n \to id$ in the uniform topology on $Homeo(\partial G)$ then $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$.

Conversely, if $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$ then for every pole $p \in \partial G$, $d(p, f_n(p)) \to 0$.

ヘロト 人間 とくほとくほと

Cannon-Thurston Relations (Contd.)

 $\overline{f} \in \text{Comm}(G) \text{ implies } f \in \text{Homeo}(\partial G).$

"Non-proof": Pull Comm(G)-action back to ∂G . Then $\overline{\text{Comm}(G)}$ preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of L-discrete.

Let f_n be a sequence of homeomorphisms of $(\partial G, d)$ that preserves the cosets of \mathcal{R}_{CT} , where *d* denotes some visual metric.

Let $\overline{f_n}$ denote the induced homeomorphisms of Λ_G .

If $f_n \to id$ in the uniform topology on $Homeo(\partial G)$ then $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$. Conversely, if $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$

・ロト ・ 同ト ・ ヨト ・ ヨト

then for every pole $p \in \partial G$, $d(p, f_n(p)) \rightarrow 0$.

Cannon-Thurston Relations (Contd.)

 $\overline{f} \in \text{Comm}(G) \text{ implies } f \in \text{Homeo}(\partial G).$

"Non-proof": Pull Comm(G)-action back to ∂G . Then $\overline{\text{Comm}(G)}$ preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of L-discrete.

Let f_n be a sequence of homeomorphisms of $(\partial G, d)$ that preserves the cosets of \mathcal{R}_{CT} , where *d* denotes some visual metric.

Let $\overline{f_n}$ denote the induced homeomorphisms of Λ_G .

If $f_n \to id$ in the uniform topology on $Homeo(\partial G)$ then $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$.

Conversely, if $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$ then for every pole $p \in \partial G$, $d(p, f_n(p)) \to 0$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Cannon-Thurston Relations (Contd.)

 $\overline{f} \in \text{Comm}(G) \text{ implies } f \in \text{Homeo}(\partial G).$

"Non-proof": Pull Comm(G)-action back to ∂G . Then $\overline{\text{Comm}(G)}$ preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of L-discrete.

Let f_n be a sequence of homeomorphisms of $(\partial G, d)$ that preserves the cosets of \mathcal{R}_{CT} , where *d* denotes some visual metric.

Let $\overline{f_n}$ denote the induced homeomorphisms of Λ_G .

If $f_n \to id$ in the uniform topology on $Homeo(\partial G)$ then $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$.

Conversely, if $\overline{f_n} \to id$ in the uniform topology on $Homeo(\Lambda_G)$ then for every pole $p \in \partial G$, $d(p, f_n(p)) \to 0$.

・ロト ・回 ト ・ヨト ・ヨト

Totally Degenerate Surface Groups

Lemma

Let $\overline{f_n} \in Comm(H)$ be a sequence of commensurators converging to the identity in $Isom(\mathbb{H}^3)$ and let f_n be the induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S)(=S^1)$ of the group $\pi_1(S)$. Then $f_n \to Id \in Homeo(S^1)$.

Proof Idea Follows.

Totally Degenerate Surface Groups

Lemma

Let $\overline{f_n} \in Comm(H)$ be a sequence of commensurators converging to the identity in $Isom(\mathbb{H}^3)$ and let f_n be the induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S)(=S^1)$ of the group $\pi_1(S)$. Then $f_n \to Id \in Homeo(S^1)$.

Proof Idea Follows.

Totally Degenerate Surface Groups

Lemma

Let $\overline{f_n} \in Comm(H)$ be a sequence of commensurators converging to the identity in $Isom(\mathbb{H}^3)$ and let f_n be the induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S)(=S^1)$ of the group $\pi_1(S)$. Then $f_n \to Id \in Homeo(S^1)$.

イロト イポト イヨト イヨト

Proof Idea Follows.

Totally Degenerate Surface Groups

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Totally Degenerate Surface Groups

Theorem

Let *H* be a totally degenerate surface Kleinian group. Then the commensurator Comm(H) of *H* is discrete in $\text{PSL}_2(\mathbb{C})$.

 $f_n \in Comm(H)$ - sequence of commensurators converging to the identity in Isom(\mathbb{H}^3) f_n - induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S) (= S^1)$

<ロ> (日) (日) (日) (日) (日)

Totally Degenerate Surface Groups

Theorem

Let *H* be a totally degenerate surface Kleinian group. Then the commensurator Comm(H) of *H* is discrete in $\text{PSL}_2(\mathbb{C})$.

 $f_n \in Comm(H)$ - sequence of commensurators converging to the identity in Isom(\mathbb{H}^3) f_n - induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S) (= S^1)$

<ロ> (日) (日) (日) (日) (日)

Totally Degenerate Surface Groups

Theorem

Let *H* be a totally degenerate surface Kleinian group. Then the commensurator Comm(H) of *H* is discrete in $\text{PSL}_2(\mathbb{C})$.

 $\overline{f_n} \in Comm(H)$ - sequence of commensurators converging to the identity in Isom(\mathbb{H}^3)

 f_n – induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S) (= S^1)$

Totally Degenerate Surface Groups

Theorem

Let *H* be a totally degenerate surface Kleinian group. Then the commensurator Comm(H) of *H* is discrete in $\text{PSL}_2(\mathbb{C})$.

 $\overline{f_n} \in Comm(H)$ – sequence of commensurators converging to the identity in Isom(\mathbb{H}^3)

ヘロト ヘ戸ト ヘヨト ヘヨト

 f_n – induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S) (= S^1)$

Totally Degenerate Surface Groups

By previous Lemma, for any ideal polygon Δ with boundary in the ending lamination there exists $N = N(\Delta)$ such that f_n fixes all the vertices of Δ for all $n \ge N$.

Let $z_{\Delta} \in S_{\infty}^2$ be the common image of the end-points of Δ under the Cannon-Thurston map. Choose ideal polygons $\Delta_1, \dots, \Delta_k$ such that the common images $\{z_1, \dots, z_k\}$ is Zariski dense in S_{∞}^2 .

Hence for all $n \ge max_{i=1\cdots k} \{N(\Delta_i)\}, f_n = Id. \square$

Totally Degenerate Surface Groups

By previous Lemma, for any ideal polygon Δ with boundary in the ending lamination there exists $N = N(\Delta)$ such that f_n fixes all the vertices of Δ for all $n \ge N$.

Let $z_{\Delta} \in S_{\infty}^2$ be the common image of the end-points of Δ under the Cannon-Thurston map.

Choose ideal polygons $\Delta_1, \dots, \Delta_k$ such that the common images $\{z_1, \dots, z_k\}$ is Zariski dense in S^2_{∞} . Hence for all $n \ge \max_{i=1\dots k} \{N(\Delta_i)\}, \overline{f_n} = Id.$

<ロ> <同> <同> <同> <同> <同> <同> <同> <

Totally Degenerate Surface Groups

By previous Lemma, for any ideal polygon Δ with boundary in the ending lamination there exists $N = N(\Delta)$ such that f_n fixes all the vertices of Δ for all $n \ge N$.

Let $z_{\Delta} \in S_{\infty}^2$ be the common image of the end-points of Δ under the Cannon-Thurston map.

Choose ideal polygons $\Delta_1, \dots, \Delta_k$ such that the common images $\{z_1, \dots, z_k\}$ is Zariski dense in S^2_{∞} .

Hence for all $n \ge max_{i=1\cdots k} \{N(\Delta_i)\}, f_n = Id. \square$

<ロ> (四) (四) (三) (三) (三)

Totally Degenerate Surface Groups

By previous Lemma, for any ideal polygon Δ with boundary in the ending lamination there exists $N = N(\Delta)$ such that f_n fixes all the vertices of Δ for all $n \ge N$.

Let $z_{\Delta} \in S_{\infty}^2$ be the common image of the end-points of Δ under the Cannon-Thurston map.

Choose ideal polygons $\Delta_1, \dots, \Delta_k$ such that the common images $\{z_1, \dots, z_k\}$ is Zariski dense in S^2_{∞} .

Hence for all $n \ge max_{i=1\cdots k} \{N(\Delta_i)\}, \overline{f_n} = Id. \square$