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The best mathematics uses the whole mind, embraces human
sensibility, and is not at all limited to the small portion of our
brains that calculates and manipulates symbols. Through
pursuing beauty we find truth, and where we find truth we
discover incredible beauty.
– William Thurston (October 30, 1946 – August 21, 2012)
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Hyperbolic metric spaces:

Triangles are thin: [a,b] ⊂ Nδ([a, c] ∪ [b, c]).
For a tree, δ = 0.
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Note that limbs get smaller and smaller in order to fit in R2.

Accumulates to a Cantor set.
ENTER FRACTALS.
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Groups = Symmetries
Cayley graph of a (discrete) group G = 〈g1, · · · ,gk : r1, · · · , rs〉
V = {g ∈ G}; E = {(a,b) : a−1b ∈ {g1, · · · ,gk}}.

F2

Boundaries of hyperbolic groups are fractals.
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G = 〈a,b, c|a2,b2, c2, (ab)2, (bc)4, (ca)6〉

Reflections in a hyperbolic triangle with angles π
2 ,

π
4 ,

π
6 .
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Relative problem:

H ⊂ G hyperbolic subgroup of a hyperbolic group.
i : ΓH → ΓG inclusion of Cayley graphs.
Does i extend to a continuous map between the fractal
boundaries?
Answer is "No" in this generality. (Baker-Riley 2013)
But an analogous (and much more classical) problem arises
when a hyperbolic group acts by symmetries (isometries) on H3

– 3 dimensional hyperbolic space.
H3 = {(x , y , z) : z > 0} equipped with metric ds2 = dx2+dy2+dz2

z2 .
Boundary is C ∪ {∞}.
If action is nice on H3, then geometer’s instinct tells us to take a
quotient.
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Z ⊕ Z acts on R2 to give torus S1 × S1.
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Return to 3 dimensional problem.
Discrete subgroup G of group of Mobius transformations
Mob(Ĉ) = PSL2(C) = Isom(H3).
Quotient: Fundamental group of a hyperbolic manifold
M3 = H3/G.
S2 = Ĉ is the ‘ideal’ boundary of H3.
Mob(Ĉ) is given by z → az+b

cz+d .

Mahan Mj Hyperbolic Geometry and Fractals



Return to 3 dimensional problem.
Discrete subgroup G of group of Mobius transformations
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Mob(Ĉ) = PSL2(C) = Isom(H3).
Quotient: Fundamental group of a hyperbolic manifold
M3 = H3/G.
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Theorem:
There is an exact dictionary between
1) The dynamics of G on S2 = Ĉ, –Fractal.
2) The geometry of M3 – Hyperbolic Geometry.
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Limit set ΛG = Set of accumulation points in Ĉ of G.o for some
(any) o ∈ H3.
Hence for the (2,4,6)−group or the double torus (octagonal
tiling) group, limit set = round equatorial circle.
The intrinsic boundary (a circle) embeds as a round circle in S2.
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Deform:
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Limit set is the locus of chaotic dynamics of the G−action on
S2.
i : ΓG → H3 sending g ∈ G to g.o ∈ H3.
Does i extend to a continuous map between the circle
boundary of G and its limit set?
A continuous map as above (if it exists) is called a
Cannon-Thurston map.
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Theorem
(M-) There exist Cannon-Thurston maps for finitely generated
(3d) Kleinian groups.

Theorem
(M-) Connected limit sets of f.g. (3d) Kleinian groups are locally
connected.

Second follows from first using a result of Anderson-Maskit.
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Theorem
Ending Lamination Theorem: (Brock-Canary-Minsky)
Asymptotic topology (at infinity) of M determines geometry of
M.

Theorem
(M-) The asymptotic topology is determined by the
Cannon-Thurston map.

Theorem
Chaotic dynamics on boundary determines and is determined
by the geometry of M.
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