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Abstract. We prove the existence of Cannon-Thurston maps for simply and

doubly degenerate surface Kleinian groups. As a consequence we prove that
connected limit sets of finitely generated Kleinian groups are locally connected.
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1. Introduction

Let Γ be a finitely generated Kleinian group, i.e. a finitely generated discrete sub-
group of Isom(H3)(= PSl2(C)), the isometry group of hyperbolic 3-space. Then
Γ acts on the boundary Riemann sphere S2 (of H3) by conformal automorphisms.
The limit set of Γ, denoted by ΛΓ, is the collection of accumulation points of any
Γ-orbit in S2. The limit set is independent of the Γ-orbit chosen. In particular, for
any z ∈ ΛΓ, the orbit Γ.z is dense in ΛΓ. The complement S2 \ ΛΓ is called the
domain of discontinuity of Γ and is denoted DΓ. The action of Γ on DΓ is properly
discontinuous. Thus, the limit set ΛΓ may be thought of as the locus of chaotic
dynamics for the action of Γ on S2 and it would be desirable to ‘tame’ it.

Motivation and Statement of Results:
Towards this, Thurston raises the following question (see [Thu82, Problem 14]):

Question 1.1. Suppose Γ has the property that (H3 ∪ DΓ)/Γ is compact. Then
is it true that the limit set of any other Kleinian group Γ′ isomorphic to Γ is the
continuous image of the limit set of Γ, by a continuous map taking the fixed points
of an element γ to the fixed points of the corresponding element γ′?

Essentially the same question is raised by Cannon and Thurston in Section 6 of
[CT85, CT07] in the specific context of surface Kleinian groups:

Question 1.2. Suppose that a surface group π1(S) acts freely and properly discon-
tinuously on H3 by isometries such that the quotient manifold has no accidental

parabolics. Does the inclusion ĩ : S̃ → H3 extend continuously to the boundary?

The authors of [CT85] point out that for a simply degenerate surface Kleinian
group, this is equivalent, via the Caratheodory extension Theorem, to asking if
the limit set is locally connected. The most general question in this context is the
following:

Question 1.3. Let Γ be a finitely generated Kleinian group such that the limit set
ΛΓ is connected. Is ΛΓ locally connected?

It is a classical fact of general topology that a compact, connected, locally con-
nected metric space X is homeomorphic to a Peano continuum, i.e. X is a con-
tinuous image of the closed interval [0, 1]. Hence, asking if the limit set is locally
connected is equivalent to asking if there is some parametrization by [0, 1]. Ques-
tion 1.1 makes this precise by asking for an explicit parametrization. For surface
Kleinian groups, Question 1.2 asks for a parametrization of ΛΓ by a circle. In this
paper, we give a positive answer to Question 1.2.

Theorems 7.1 and 8.6: Let ρ be a representation of a surface group H(= π1(S))
into PSl2(C) without accidental parabolics. Let M denote the (convex core of)
H3/ρ(H). Further suppose that i : S → M , taking parabolic to parabolics, induces

a homotopy equivalence. Then the inclusion ĩ : S̃ → M̃ of universal covers extends
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continuously to a map î : Ŝ → M̂ between the compactifications of universal covers.
Hence the limit set of ρ(H) is locally connected.

In [Mj10b] we extend the techniques of this paper to answer Question 1.1 affir-
matively. The continuous boundary extensions above are called Cannon-Thurston
maps.

Combining Theorems 7.1 and 8.6 with a theorem of Anderson and Maskit [AM96],
we have the following affirmative answer to Question 1.3:

Theorem 8.9: Let Γ be a finitely generated Kleinian group with connected limit
set Λ. Then Λ is locally connected.

Note that the limit set of a finitely generated Kleinian group Γ is connected if
and only if the boundary of the convex core of H3/Γ is incompressible away from
cusps.

Relationship with The Ending Lamination Theorem:
Seminal work of Minsky [Min10] and Brock-Canary-Minsky [BCM12], building on
work of Masur-Minsky [MM99, MM00], has resolved Thurston’s Ending Lamina-
tion Conjecture. The Ending Lamination Theorem roughly says that for a simply
or doubly degenerate surface Kleinian group Γ without accidental parabolics, the
isometry type of the manifold M = H3/Γ is determined by its end-invariants. For
a doubly degenerate group, the end-invariants are two ending laminations, one each
for the two geometrically infinite ends of M . For a simply degenerate group, the
end-invariants are an ending lamination corresponding to the geometrically infinite
end of M and a conformal structure corresponding to the geometrically finite end
of M . The ending lamination corresponding to a geometrically infinite end may be
regarded as a purely topological piece of data associated to the end. Thus, in the
context of geometrically infinite Kleinian groups, the Ending Lamination Theorem
roughly says that ‘Topology implies Geometry’: an analog of Mostow Rigidity for
infinite covolume Kleinian groups.

Theorems 7.1 and 8.6 prove the existence of Cannon-Thurston maps for surface
Kleinian groups, but leave unanswered the question about the point preimages of
these maps. In [Mj07], we relate the point preimages of Cannon-Thurston maps for
simply and doubly degenerate surface Kleinian groups to ending laminations. In
particular, the ending lamination corresponding to a degenerate end can be recov-
ered from the Cannon-Thurston map. More generally, since topological conjugacies
are compatible with Cannon-Thurston maps, a topological conjugacy of Γ− ac-
tions on limit sets comes from a biLipschitz homeomorphism of quotient manifolds.
Hence the Ending Lamination Theorem [Min10, BCM12] in conjunction with The-
orems 7.1 and 8.6 and the main result of [Mj07] show that the geometry of M can
be recovered from the action of Γ on the limit set ΛΓ. This justifies the slogan:
‘Dynamics on the Limit Set determines Geometry in the Interior.’

History:
Several authors have contributed to the theme of this paper. We shall give below a
brief account of the history of the problem along with some further developments
that use the results of this paper.

Cannon and Thurston [CT07], Minsky [Min94], Alperin, Dicks and Porti [ADP99],
Cannon and Dicks [CD02, CD06], Klarreich [Kla99], McMullen [McM01], Bowditch
[Bow02, Bow07] and the author [Mit98b, Mit98a, Mj09, Mj11, Mj10a, Mj05] have
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obtained partial positive answers to Questions 1.1 and 1.2. We describe some of
this history in brief.

In [Abi76], Abikoff gave an approach to a negative answer to Question 1.3. How-
ever, around 1980, Thurston realized that this approach would not work. Then,
in a foundational paper, Cannon and Thurston [CT85] gave the first examples fur-
nishing a positive answer to Question 1.1 for geometrically infinite surface Kleinian
groups; hence the term ‘Cannon-Thurston map’. In approximate chronological or-
der, the existence of Cannon-Thurston maps in the context of Kleinian groups was
proven

(1) by Floyd [Flo80] for geometrically finite Kleinian groups.
(2) by Cannon and Thurston [CT85] [CT07] for fibers of closed hyperbolic 3

manifolds fibering over the circle and for simply degenerate groups with
asymptotically periodic ends.

(3) by Minsky [Min94] for closed surface groups of bounded geometry (see also
[Mit98b, Mj10a]).

(4) by the author [Mit98b], and independently by Klarreich [Kla99] using dif-
ferent methods, for hyperbolic 3-manifolds of bounded geometry with an
incompressible core and without parabolics.

(5) by Alperin-Dicks-Porti [ADP99] for fibers of the figure eight knot comple-
ment regarded as a fiber bundle over the circle.

(6) by McMullen [McM01] for punctured torus groups (see also [Mj11]).
(7) by Bowditch [Bow02, Bow07] for punctured surface groups of bounded ge-

ometry (see also [Mj09]).
(8) by Miyachi [Miy02] for handlebody groups of bounded geometry (see also

[Sou06]).
(9) by the author [Mj09] for hyperbolic 3-manifolds of bounded geometry with

core incompressible away from cusps.
(10) by the author [Mj11, Mj05] for special unbounded geometries.

Further Developments:
In [Mj07], we give an explicit parametrization of the limit set of a surface Kleinian
group by describing the point pre-images of the Cannon-Thurston map and relat-
ing them to ending laminations. In a further followup paper [Mj10b], we answer
Question 1.1 affirmatively and completely for all finitely generated Kleinian groups,
using some preliminary work in [DM10]. The techniques of this paper can thus be
strengthened to show that Cannon-Thurston maps exist in general for finitely gen-
erated Kleinian groups, thus answering a conjecture of McMullen [McM01].

Acknowledgments: I would like to thank Jeff Brock, Dick Canary and Yair Min-
sky for their help during the course of this work. In particular, Minsky and Canary
brought a couple of critical gaps in previous versions of this paper to my notice.
I would also like to thank Benson Farb for innumerable exciting conversations on
relative hyperbolicity when we were graduate students. I would like to thank Car-
oline Series and Al Marden for a number of comments and corrections and King-
shook Biswas for comments that have improved the exposition. Special thanks are
due to the referee for not unwelcome pressure to re-organize a couple of unwieldy
manuscripts ([Mj05] and [Mj06]) into a relatively more streamlined version and also
for painstakingly going through all the details and making several important and
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constructive suggestions. A major revision of this paper was done when the author
was visiting Universite Paris-Sud (Orsay) under the ARCUS Indo-French program.

Dedication: This paper is fondly dedicated to Gadai and Sarada for their support
and indulgence.

1.1. Broad Scheme of Proof. Let M be a hyperbolic 3-manifold homotopy
equivalent to a closed hyperbolic surface S. We think of S as an embedded in-

compressible surface in M . Let S̃ and M̃(= H3) denote the universal covers of

S,M respectively and ĩ : S̃ → M̃ the inclusion of universal covers.

Given a hyperbolic geodesic segment λ in S̃ lying outside a large ball about a

fixed reference point o ∈ S̃, our aim is to show that the geodesic in H3 joining
the endpoints of ĩ(λ) lies outside a large ball about ĩ(o) in H3. This is sufficient to
prove the existence of Cannon-Thurston maps (Lemma 1.8). Instead of proving this
directly, our objective will be to construct a set Lλ (called a ‘ladder’) containing

ĩ(λ) such that

(1) If λ lies outside a large ball in S̃, then the ladder Lλ lies outside a a large ball

in M̃ . It is much easier to show (and follows from an essentially elementary
argument) that Lλ lies outside a a large ball than to find the exact (or even

approximate) location of the geodesic in H3 joining the endpoints of ĩ(λ).
Hence this approach.

(2) Lλ is quasiconvex with respect to a modified (pseudo) metric dG on M̃ ,
thus forcing the dG geodesic joining the endpoints of λ to lie dG−close to
Lλ.

(3) The pseudometric dG is constructed in such a way that Lλ still controls (cf.
Lemma 2.5) the location of the hyperbolic geodesic βh in H3 joining the

endpoints of ĩ(λ), thus forcing βh to lie outside a large ball in H3.

For ease of notation we shall often identify any point or subset of S̃ with its
image under ĩ.

1.1.1. The Ladder: One of the main steps in proving the sufficient condition of
Lemma 1.8 (and hence concluding the existence of Cannon-Thurston maps) is to
construct a quasiconvex ‘hyperbolic ladder’ as in [Mit98b] and [Mit98a] containing
λ. Suppose that a sequence {Si} of disjoint, equispaced, embedded, bounded geom-
etry surfaces exiting an end E of M has been ‘judiciously’ constructed. We shall
describe a little later what ‘judicious’ means. We think of {Si} as a sequence of
surfaces exiting a vertical end E. Identify S with the base surface S0.

Choose a basepoint in S and fix a lift p of the base-point in S̃ as the origin. Let
r be a quasigeodesic ray in M , starting at p, exiting E and making linear progress

as it exits E. Suppose λ = [a, b] ⊂ S̃ is a geodesic in the intrinsic metric on S̃
joining two lifts a(= a0) and b(= b0) of p. Let ra, rb be the lifts of r starting at a, b

respectively. Let ai (resp. bi) be the point at which ra (resp. rb) intersects S̃i. Let

λi be the geodesic in the intrinsic metric on S̃i joining ai, bi. The ladder associated
to the sequence {Si} and the geodesic λ is Lλ =

⋃
i λi. To prove quasiconvexity of

Lλ we construct a retraction Πλ of
⋃

i S̃i onto Lλ =
⋃

i λi by defining Πλ on S̃i as

the nearest point retraction onto λi in the intrinsic metric on S̃i. We would like to
ensure that Πλ is coarsely Lipschitz. The construction of Lλ and Πλ is detailed in
Section 5.
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The ladder Lλ has the following property that we want: If λ lies outside a large

ball about the origin in S̃, then Lλ lies outside a large ball about the origin in M̃ .
This construction works exactly for 3-manifolds of bounded geometry, where the

Si’s may be chosen such that

(1) Equispaced Condition: the regions between Si and Si+1 are uniformly
biLipschitz to Si × [0, 1] (for all i).

(2) Quasi-isometry Condition: The map from S̃i to S̃i+1 that takes (x, i) to
(x, i+ 1) is a uniform quasi-isometry.

Both of these break down in general. In fact, quasiconvexity of Lλ is not in

general true in the hyperbolic metric on M̃ for the choice of the sequence {Si} we
describe below.

The technical tool we shall use to address this issue in this paper is electric geome-
try and relative hyperbolicity (Section 2). LetH = {Hi} be a collection of quasicon-
vex subsets of H3. The electric (pseudo) metric obtained by electrocuting elements
of H essentially allows one to travel for free within any Hi. However, this metric
has the crucial feature that electric geodesics control hyperbolic geodesics (Lemma
2.5) and hence allows recovery of hyperbolic geodesics from electric geodesics. We
emphasize that it is quasiconvexity of Hi’s that allows this recovery.

1.1.2. A motivational special case of Split Geometry: We describe first a special
case of the model geometry of a geometrically infinite unbounded geometry end E.
This will be a particular case of what is referred to as ‘split geometry’ later on in
the paper, and is representative in a sense to be explicated. (The model geometry
described here was called ‘graph amalgamation geometry’ in [Mj05]). Suppose we
have the following situation:

(1) there exists a sequence {Si} of disjoint, embedded, bounded geometry sur-
faces exiting E. These are ordered in a natural way along E, i.e. i < j
implies that Sj is contained in the unbounded component of E \ Si. The
topological product region between Si and Si+1 is denoted Bi.

(2) corresponding to each such product region Bi, there exists a Margulis tube
Ti such that Ti ⊂ Bi. Further, Ti ∩ Si and Ti ∩ Si+1 are annuli on Si and
Si+1 respectively, with core curves homotopic to the core curve of Ti.

We think of the Margulis tube Ti as ‘splitting’ the block Bi and hence the surfaces
Si and Si+1. (See figure below.) The complementary components Kij of Bi \ Ti
and their lifts K̃ij to Ẽ will play a special role later.
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Figure: A special case of split geometry

Note that we have no control on the geometry of the complementary components
Kij . So the only thing we can do with them is to electrocute them and lose the
geometry contained within any such component. Electrocuting Kij ’s forces Si and
Si+1 to be equispaced (about distance one apart from each other). It is in this
modified electric metric that the sequence {Si} satisfies both the Equispaced Con-
dition and the Quasi-isometry Condition above and the ladder construction can go
through.

It will turn out that the universal covers K̃ij ⊂ Ẽ are quasiconvex in a certain
weak sense. Thus, we can electrocute such components and still hope to recover
hyperbolic geodesics from electric geodesics using Lemma 2.5.

1.1.3. Choice of the sequence of surfaces: We shall first describe a couple of restric-
tive assumptions on a degenerate end that reduce it to the above model geometry.
We shall then state (very briefly) how one needs to modify the above model to
obtain a model geometry for a general degenerate end.
The Special Case: We give a brief sketch of the simplifying assumptions on a
general degenerate end that leads us to a model geometry and a choice of a sequence
{Si} as above. First one needs a linear order on incompressible (but not necessarily
embedded) surfaces in E. It is at this stage that we need Minsky’s model mani-
fold from [Min10], and more generally the hierarchy machinery from [MM00]. The
model manifold of [Min10] does not quite furnish a sequence of complete surfaces
exiting E, but rather a sequence of pants decompositions of S exiting E. A sequence
{Pm} of pants decompositions of S exiting E means the following. Fix an isometry
type P of a pair of pants. Let τm denote the simple multicurve on S forming the
boundary curves of the pants decomposition Pm. Then the complement of a thin
(open) annular neighborhood of τm in S can be identified with Pm. We demand
that this complementary region (identified with Pm) can be embedded in E such
that Pm with the inherited metric is of uniformly bounded geometry, i.e. each pair
of pants (component) in Pm is uniformly biLipschitz to P. We demand further that
each such embedding of Pm can be extended to a topological embedding Sm of S
and these topological embeddings {Sm} exit the end E.

The sequence {Pm} of (boundary curves of) pants decompositions exiting E is
often referred to as a resolution. The sequence {Pm} in [Min10] is chosen in such a
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way that the boundary curves of the pants decompositions {Pm} occurring in the
resolution have short geodesic realization in E.

Each pants decomposition gives a simplex in the curve complex CC(S) of the
surface S. Hence the resolution furnishes a special kind of a path of simplices in
CC(S). Associated to such a path is a geodesic of simplices in CC(S) called a tight
geodesic [Min10]. A tight geodesic furnishes a ‘tight sequence’ · · · , τi, τi+1, · · · of
multicurves on the surface S. (Note the difference between the suffixes i and m
at this stage. This indicates that we are actually passing to a subsequence.) This
material is detailed in Section 3.

Simplifying Assumption 1: Assume, for simplicity, that for all i, the length of
exactly one curve in τi is sufficiently small, less than the Margulis constant in
particular.

Call the short curve τi for convenience. The surface Si corresponds (roughly) to
the first occurrence of the vertex τi in the resolution. Since τi is short, the Margulis
tube Ti corresponding to it splits both Si and Si+1.

Simplifying Assumption 2: Assume further that that the surfaces Si have injectivity
radius uniformly bounded below, i.e. the tube Ti is trapped entirely between Si

and Si+1.

The product region Bi between Si and Si+1 will be called a split block as it is
split by Ti. This situation (an end E satisfying Simplifying Assumptions 1 and 2)
gives us the model geometry (special case of split geometry) described above.

The General Case: The construction of the sequence {Si} in general (without
the simplifying assumptions of the special case) is described in detail in Section 4.1.
Here we content ourselves by providing a couple of caveats.

Note first that Bi\Ti might be very far from a metric product. Thus electrocution
is a necessity to make the Si’s equispaced.

We point out further that in general (when Simplifying Assumption 2 is no longer
valid) the Margulis tube Ti may not be entirely contained in Bi, but may extend
into Bi+1 or Bi−1. As a result the surface Si may have a thin part contained
entirely in Ti, destroying the product structure of Bi.

To address this issue, we shall excise the interiors of Margulis tubes and ‘weld’
the ‘vertical sides’ (see previous figure) of Ti together. The resulting manifold
is called the welded model manifold Mwel. Mwel is thus a quotient space of M
homeomorphic toM itself. In the previous schematic figure, the thick dark vertical
rectangle denotes a section of the Margulis tube Ti. The quotient map identifies
the vertical sides of this vertical rectangle and collapses the horizontal I−direction
to a point (Ti should be thought of as a product of the dark vertical rectangle with
a circle). We shall also construct a new (pseudo) metric dtel on Bi after welding
the vertical sides (the ‘welded blocks’). This process is called tube electrocution and
is carried out on the welded model manifold Mwel rather than the model manifold
itself in Section 4.3. The pseudometric dtel on the welded manifold Mwel roughly
gives zero length to all horizontal circles of Ti and a uniformly bounded length to
the vertical direction.

1.1.4. Split Geometry and Graph Quasiconvexity: Lifts K̃ of components of Bi \Ti
to the universal cover M̃wel are called split components. We construct an auxiliary

metric dG called the graph (pseudo) metric on M̃wel by electrocuting the family
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of split components in M̃wel. What this means is that for each split component

K̃ ⊂ M̃wel we attach a copy of K̃ × [0, 12 ], identifying K̃ × {0} with K̃ ⊂ M̃wel

and equipping K̃ ×{ 1
2} with the zero metric. (This is slightly different from Farb’s

coning construction [Far98].) A crucial fact we prove in Sections 4.4 and 4.6 is that

the hyperbolic convex hull CH(K̃) has uniformly bounded diameter in the graph

metric dG. We describe this by saying that K̃ is uniformly graph-quasiconvex as any

hyperbolic geodesic joining points in K̃ lies in a uniformly bounded neighborhood

of K̃ in the dG-metric. It follows that (M̃wel, dG) is a (Gromov)-hyperbolic metric

space. Equivalently, M̃wel is weakly hyperbolic relative to the collection of split
components. Note that we cannot in general use strong relative hyperbolicity as

two adjacent split components K̃1, K̃2 ⊂ M̃wel intersect along a lift of a welded
Margulis tube. This issue is responsible for much of the strife in the Recovery Step
below (Sections 6.4 and 6.5).

Gromov-hyperbolicity of (M̃wel, dG) ensures quasiconvexity of the ladder Lλ in

(M̃wel, dG) whose construction is described above. This is proven in Section 5.

1.1.5. Recovery of Hyperbolic Geodesics: There is a fair bit of technical difficulty
at this stage. The graph metric is constructed on the welded model manifold. So
we have to have a way of getting back to the model manifold from the welded
model manifold. To do this, we note that the complement of the Margulis tubes in
the model manifold and the complement of the welded tubes in the welded model
manifold are the same. This allows us to construct a pseudometric quasi-isometric
to dG on the model manifold M itself. Abusing notation slightly, we call this
pseudometric dG also.

The split components of M̃ are obtained from those of M̃wel by adjoining certain

Margulis tubes. Weak relative hyperbolicity of M̃ relative to the collection of
split components gives us control over hyperbolic geodesics in terms of geodesics

in (M̃wel, dG). The process of recovering a hyperbolic geodesic from a geodesic in

(M̃wel, dG) is detailed in Sections 6.4 and 6.5. A more detailed sketch of the scheme
of recovery is given in Section 6.1.

1.1.6. A Flowchart of Main Ideas: Here is a mnemonic flow-chart of the above
scheme that may be useful:

• M̃ −→ M̃wel (welding)

• M̃wel −→ (M̃wel, dtel) (tube-electrocution)

• (M̃wel, dtel) −→ (M̃wel, dG) (split-component-electrocution)

• (M̃wel, dG) −→ (M̃, dG) −→ M̃ (recovery)

The principal purpose behind carrying out each of these steps is given below in
brief:

• Welding allows us to construct a sequence of bounded geometry surfaces
exiting the end(s) of Mwel, though such a sequence might not exist in M .
The sequence of bounded geometry surfaces permits us to construct the

ladder Lλ in M̃wel.
• Tube electrocution and split-component-electrocution ensure both the Eq-
uispaced Condition and the Quasi-isometry condition. In a certain sense
therefore, the two electrocution steps allow us to reduce the problem to
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a model satisfying Conditions (1) and (2) of the bounded geometry case.
We can (as in the bounded geometry case) show that Lλ is quasiconvex in

(M̃wel, dG).

• Quasiconvexity of Lλ furnishes a dG−quasigeodesic in M̃wel contained in
Lλ joining the end-points of λ.

• Finally, the recovery step allows us to come back from (M̃wel, dG) to M̃ via

(M̃, dG).

1.1.7. Outline of the paper: We recall the notions of relative hyperbolicity and elec-
tric geometry (cf. [Far98]) in Section 2 and derive some consequences that will be
useful in this paper. In Section 3, we collect together features of the model man-
ifold constructed by Minsky in [Min10] and proven to be a biLipschitz model for
simply and doubly degenerate manifolds by Brock-Canary-Minsky in [BCM12]. In
Section 4, we select out a sequence of split surfaces from the split surfaces occur-
ring in the model manifold and proceed to ‘fill’ the intermediate spaces between
successive split surfaces by special blocks homeomorphic to S × I. This gives us
a ‘split geometry’ model for simply and doubly degenerate manifolds. We make
crucial use of electric geometry and relative hyperbolicity at this stage. In Section
5, we construct a quasiconvex (Gromov) ‘hyperbolic ladder’ in the (Gromov) hyper-
bolic electric space constructed in Section 4 and use it to construct a quasigeodesic
in the electric metric joining the endpoints of λ. In Section 6, we recover infor-
mation about the hyperbolic geodesic joining the endpoints of λ from the electric
geodesic constructed in Section 5. In Section 7 we put all the ingredients together
to prove the existence of Cannon-Thurston maps for closed surface Kleinian groups
(Theorem 7.1). In Section 8 we describe the modifications necessary for punctured
surfaces.

1.1.8. Notation: We shall in general use N (resp. Nh) to denote (the convex core
of) a simply or doubly degenerate hyperbolic 3-manifold without (resp. with) cusps.
For a manifold Nh with cusps, N will also denote Nh minus an open neighborhood
of the cusps. M will denote the model manifold (Section 3).

Similarly S (resp. Sh) shall denote a closed (resp. finite volume with cusps)
hyperbolic surface. For a surface Sh with cusps, S will also denote Sh minus an
open neighborhood of the cusps. We shall sometimes use S to denote a biLipschitz
homeomorphic image of a hyperbolic S. Thus M,N will both be homeomorphic to
S × J where J = [0,∞) or R according as N is simply or doubly degenerate.

Since we shall not have specific need for manifolds with cusps till the last Section
of this paper, N will denote (the convex core of) a simply or doubly degenerate
hyperbolic 3-manifold without cusps unless otherwise mentioned.
d will denote the hyperbolic (or biLipschitz to hyperbolic) metric on S. dM will

denote the metric on the model manifold.

1.2. Gromov Hyperbolic Metric Spaces and Cannon-Thurston Maps. We
start off with some preliminaries about hyperbolic metric spaces in the sense of
Gromov [Gro85]. For details, see [CDP90], [GdlH90]. Let (X, dX) be a (Gromov)
hyperbolic metric space. The Gromov boundary of X, denoted by ∂X, is the
collection of equivalence classes of geodesic rays r : [0,∞) → X with r(0) = x0 for
some fixed x0 ∈ X, where rays r1 and r2 are equivalent if sup{dX(r1(t), r2(t))} <∞.
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Let X̂ = X ∪ ∂X denote the natural compactification of X topologized the usual
way (cf.[GdlH90] pg. 124).

We denote the k-neighborhood of a subset Z of (X, dX) by Nk(Z, dX) or simply
Nk(Z) when dX is understood.

Definition 1.4. A subset Z of (X, dX) is said to be k-quasiconvex if any geo-
desic joining points of Z lies in a k-neighborhood Nk(Z, dX) of Z. A subset Z is
quasiconvex if it is k-quasiconvex for some k.

For simply connected real hyperbolic manifolds this is equivalent to saying that
the convex hull CH(Z) of the set Z lies in a bounded neighborhood of Z. We shall
have occasion to use this alternate characterization.

Definition 1.5. A map f from one metric space (Y, dY ) into another metric space
(Z, dZ) is said to be a (K, ǫ)-quasi-isometric embedding if

1
K
(dY (y1, y2))− ǫ ≤ dZ(f(y1), f(y2)) ≤ KdY (y1, y2) + ǫ

If f is a quasi-isometric embedding, and every point of Z lies at a uniformly
bounded distance from some f(y) then f is said to be a quasi-isometry.

A (K, ǫ)-quasi-isometric embedding that is a quasi-isometry will be called a
(K, ǫ)-quasi-isometry.

A (K, ǫ)-quasigeodesic is a (K, ǫ)-quasi-isometric embedding of a closed in-
terval in R. A (K,K)-quasigeodesic will also be called a K-quasigeodesic. A
(K,K)-quasigeodesic will simply be called a K-quasigeodesic

We shall say that two paths α, β in X ‘C-track’ each other in A ⊂ X if α ∩ A
and β ∩ A lie in a C neighborhood of each other. The following Lemma says that
quasigeodesics starting and ending close by track each other.

Lemma 1.6. [GdlH90] Let (X, d) be a δ-hyperbolic metric space. Then for any
K, ǫ,D there exists C = C(δ,K, ǫ,D) such that if α, β are two (K, ǫ)-quasi-geodesics
whose starting points (as also ending points) are at most D apart, then α ⊂
NC(β, d).

The conclusion of Lemma 1.6 above is also summarized by saying that α, β
C−fellow travel each other and this property of quasi-geodesics is called the C−fellow
traveler property.

Let (X, dX) be a (Gromov) hyperbolic metric space and Y be a subspace that is
(Gromov) hyperbolic with the inherited path metric dY . By adjoining the Gromov

boundaries ∂X and ∂Y to X and Y , one obtains their compactifications X̂ and Ŷ
respectively.

Let i : Y → X denote inclusion.

Definition 1.7. LetX and Y be (Gromov) hyperbolic metric spaces and i : Y → X

be an embedding. A Cannon-Thurston map î from Ŷ to X̂ is a continuous
extension of i.

The following lemma (Lemma 2.1 of [Mit98a]) says that a Cannon-Thurston map
exists if for all M > 0 and y ∈ Y , there exists N > 0 such that if λ lies outside
an N ball around y in Y then any geodesic in X joining the end-points of λ lies
outside the M ball around i(y) in X. For convenience of use later on, we state this
somewhat differently and include the proof from [Mj10a] for completeness.
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Lemma 1.8. A Cannon-Thurston map from Ŷ to X̂ exists if the following condi-
tion is satisfied:
Given y0 ∈ Y , there exists a non-negative function M(N), such that M(N) → ∞
as N → ∞ and for all geodesic segments λ lying outside an N -ball around y0 ∈ Y
any geodesic segment in X joining the end-points of i(λ) lies outside the M(N)-ball
around i(y0) ∈ X.

Proof. Suppose i : Y → X does not extend continuously . Since i is proper, there

exist sequences xm, ym ∈ Y and p ∈ ∂Y , such that xm → p and ym → p in Ŷ , but

i(xm) → u and i(ym) → v in X̂, where u, v ∈ ∂X and u 6= v.
Since xm → p and ym → p, any geodesic in Y joining xm and ym lies outside

an Nm-ball y0 ∈ Y , where Nm → ∞ as m → ∞. Any bi-infinite geodesic in X
joining u, v ∈ ∂X has to pass through some M -ball around i(y0) in X as u 6= v.
There exist constants c and L such that for all m > L any geodesic joining i(xm)
and i(ym) in X passes through an (M + c)-neighborhood of i(y0). Since (M + c) is
a constant not depending on the index m this proves the lemma. �

The above result can be interpreted as saying that a Cannon-Thurston map exists
if the space of geodesic segments in Y embeds properly in the space of geodesic
segments in X.

2. Relative Hyperbolicity

In this section, we shall recall first certain notions of relative hyperbolicity due
to Farb [Far98], Klarreich [Kla99], Bowditch [Bow97] and the author [Mj11].

2.1. Electric Geometry. We collect together certain facts about the electric met-
ric that Farb proves in [Far98].

Definition 2.1. Given a metric space (X, dX) and a collection H of subsets, let
E(X,H) = X

⊔
H∈H(H × [0, 12 ]) be the identification space obtained by identifying

(h, 0) ∈ H × [0, 12 ] with h ∈ X. Each {h} × [0, 12 ] is declared to be isometric to the

interval [0, 12 ] and H × { 1
2} is equipped with the zero metric.

A path σ : I → E(X,H) is said to be distinguished if σ(I) ∩ {h} × (0, 12 ) is

either empty or all of {h} × (0, 12 ). The distance between two points in E(X,H) is
defined to be the infimum of the lengths of distinguished paths between them.

The resulting pseudo-metric space E(X,H) is the electric space associated to
X and the collection H.
We shall say that E(X,H) is constructed from X by electrocuting the collection
H and the induced pseudo-metric de will be called the electric metric.
If E(X,H) is (Gromov) hyperbolic, we say that X is weakly hyperbolic relative
to H.

The notion of electrocution above is slightly different from the coning construc-
tion introduced by Farb in [Far98], inasmuch as Farb [Far98]) collapses H × { 1

2}
to a point. Thus ours is a geometric (as opposed to topological) version of Farb’s
construction. All paths in E(X,H) will henceforth be assumed to be distinguished.

If X is a geodesic metric space and each H ∈ H is closed, then (E(X,H), de) is a
geodesic (pseudo) metric space. Geodesics and quasigeodesics in (E(X,H), de) will
be referred to as electric geodesics and electric quasigeodesics respectively.
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Note that since E(X,H) = X
⊔

H∈H(H × [0, 12 ]), X can be naturally identified
with a subspace of E(X,H). Paths in (X, dX) (in particular geodesics and quasi-
geodesics) can therefore be regarded as paths in E(X,H).

A collection H of subsets of (X, dX) is said to be D-separated if dX(H1, H2) ≥ D
for all H1, H2 ∈ H;H1 6= H2. D-separatedness is only a technical restriction as the
collection {H × { 1

2} : H ∈ H} is 1-separated in E(X,H).

Definition 2.2. Given a collection H of C-quasiconvex, D-separated sets in a
(Gromov) hyperbolic metric space (X, dX) and a number ǫ we shall say that a
geodesic (resp. quasigeodesic) γ is a geodesic (resp. quasigeodesic) without back-
tracking with respect to ǫ− neighborhoods if γ does not return to Nǫ(H, dX) after
leaving it, for any H ∈ H. A geodesic (resp. quasigeodesic) γ is a geodesic (resp.
quasigeodesic) without backtracking if it is a geodesic (resp. quasigeodesic) without
backtracking with respect to ǫ neighborhoods for ǫ = 0.

Notation: For any pseudo metric space (Z, ρ) and A ⊂ Z, we shall use the notation
NR(A, ρ) = {x ∈ Z : ρ(x,A) ≤ R} as for metric spaces.

Lemma 2.3. (Lemma 4.5 and Proposition 4.6 of [Far98]; Theorem 5.3 of [Kla99];
[Bow97])
Given δ, C,D there exists ∆ such that if (X, dX) is a δ-hyperbolic metric space with
a collection H of C-quasiconvex D-separated sets. then,
1) Electric quasi-geodesics electrically track (Gromov) hyperbolic geodesics: For
all P > 0, there exists K > 0 such that if β is any electric P -quasigeodesic from x
to y, and γ is a geodesic in (X, dX) from x to y, then β ⊂ NK(γ, de).
2) γ ⊂ NK((N0(β, de)), dX).
3) Relative Hyperbolicity: X is weakly hyperbolic relative to H. E(X,H) is ∆-
hyperbolic.

Let (X, dX) be a δ-hyperbolic metric space, and H a family of C-quasiconvex,
D-separated, collection of subsets. Then X is weakly hyperbolic relative to H
[Bow97]. Let α = [a, b] be a geodesic in (X, dX) and β an electric quasigeodesic
without backtracking (in E(X,H)) joining a, b. Order from the left the collection of
maximal subsegments of β contained entirely in some H× 1

2 for some H ∈ H. Since
β is a distinguished path (by our blanket assumption about paths in E(X,H)), any
such maximal subsegment can be extended by adjoining vertical subsegments at
its end-points to obtain a path of the form {p} × [0, 12 ] ∪ [p × 1

2 , q ×
1
2 ] ∪ {q} ×

[0, 12 ]. We shall refer to these subpaths of β as extended maximal subsegments.
Replace, as per the above ordering, extended maximal subsegment with end-points
p, q (say) by a geodesic [p, q] in (X, dX). (Note here that as per the definition
of E(X,H), (p, 0) ∈ E(X,H) is identified with p ∈ X; similarly for (q, 0) and q.)
The resulting connected path βq is called an electro-ambient representative of β
in X. Also, if β is an electric P -quasigeodesic (resp. (K, ǫ)-quasigeodesic) without
backtracking (in E(X,H)), then βq is called an electro-ambient P -quasigeodesic
(resp. electro-ambient (K, ǫ)-quasigeodesic). If β is an electric geodesic (i.e.
a (1, 0)-quasigeodesic) without backtracking (in E(X,H)), then βq is simply called
an electro-ambient quasigeodesic.

Remark 2.4. We emphasize a point about the terminology we use here. An
electro-ambient quasigeodesic in our sense is the same as an electro-ambient (1, 0)-
quasigeodesic, not an electro-ambient (K, ǫ)-quasigeodesic for some K, ǫ.
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Note that βq need not be a (Gromov) hyperbolic quasigeodesic. However, the
proof of Proposition 4.3 of Klarreich [Kla99] gives the following.

Lemma 2.5. (See Proposition 4.3 of [Kla99], also see Lemma 3.10 of [Mj11]) Given
δ, C,P there exists C3 such that the following holds:
Let (X, dX) be a δ-hyperbolic metric space and H a family of C-quasiconvex, col-
lection of quasiconvex subsets. Let (E(X,H), de) denote the electric space obtained
by electrocuting elements of H. Then, if α, βq denote respectively a (Gromov) hy-
perbolic geodesic and an electro-ambient P -quasigeodesic with the same end-points
in X, then α lies in a (Gromov hyperbolic dX−) C3 neighborhood of βq.

For the convenience of the reader, we illustrate the content of Lemma 2.5 by the
figure below:

Figure: Hyperbolic geodesic lies in a neighborhood of an electro-ambient quasigeodesic

In the above figure, the straight line below indicates a hyperbolic geodesic, and
the broken line built up of curves depicts an electro-ambient quasigeodesic.

Proof of Lemma 2.5: The proof follows Proposition 4.3 of Klarreich [Kla99]
closely. Let α = [a, b](⊂ X) be a geodesic and let β = ab(⊂ E(X,H)) be an electric
P -quasigeodesic with the same end-points. Further, suppose that, for each H ∈ H,
β ∩ (H × { 1

2}) is

a) a maximal subsegment of β contained in H × { 1
2},

b) β ∩ (H × { 1
2}) is a geodesic in H × { 1

2} with respect to the intrinsic metric on

H(= H × { 1
2}).

For the purposes of this proof, we shall need to deal with two metrics (more
precisely a metric and a pseudometric) on the topological space E(X,H):
a) The first is the electric (pseudo) metric de described above.
b) The other is the (genuine) metric on X

⋃
H∈HH × [0, 12 ] obtained as a quotient

space of X along with copies of H × [0, 12 ]. We call this metric dq.

Thus de is obtained from dq by redefining distance between points on H × { 1
2}

to be zero.
Recall that (by construction) the electro-ambient quasigeodesic βq is obtained

from β by ”projecting” maximal subsegments of β to X. It therefore suffices to
show that α lies in a (uniformly) bounded neighborhood of β in (E(X,H), dq).

Let a = a0, a1, · · · , an, an+1 = b be a sequence of points on β such that for all
i, a2ia2i+1(⊂ ab) are maximal subsegments in Hi × { 1

2} for some Hi ∈ H. Also,
assume that n is maximal, i.e. for all i, a2i−1a2i is a union of three segments:
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a) a vertical segment of the form a2i−1×[0, 12 ] traced from a2i−1×{ 1
2} to a2i−1×{0},

b) a geodesic in (X, dX) from a2i−1 (identified with a2i−1 × {0}) to a2i (identified
with a2i × {0}),
c) a vertical segment of the form a2i × [0, 12 ] traced from a2i × {0} to a2i × { 1

2}.

Note first that the collection {H × { 1
2}}, H ∈ H is automatically 1− separated.

Hence de(a2i−1, a2i) ≥ 1.
With this setup, the proof is a small reworking of Proposition 4.3 of [Kla99].

Choose an R > 0. Let z ∈ [a, b] be a point for which no point of β = ab lies within
R of z. Let (p, q) be a maximal subsegment of [a, b] containing z such that no point
of β = ab lies within R of (p, q).

Let p1 ∈ ab and q1 ∈ ab be points in ab closest to p, q respectively (with respect to
the metric dq). Let p1q1 be the subpath of ab between p1, q1. Also, let aj , · · · , aj+l

be the collection of vertices in ab between p1, q1. Then the proof of Proposition 4.3
of [Kla99] shows that there exists R0 depending on δ, C,P such that for all R ≥ R0,
l(= (j + l) − j) is bounded in terms of R, δ, C,P . (This is essentially because l
grows like dX(p, q)eR, cf. [Far98].) Let l(R) be this bound for l.

Choosing R = R0, we find that (p, q) is contained in a (2R0 + (l(R0) + 4)δ)−
neighborhood of β = ab. This completes the proof. 2

Definition 2.6. [Far98] Two paths β, γ in (X, dX) with the same endpoints are
said to have similar intersection patterns with H if there exists D > 0, depending
only on (X,H), such that:

• Similar Intersection Patterns 1: If precisely one of {β, γ} meets some H ∈
H, then the dX -distance from the first entry point to the last exit point is
at most D.

• Similar Intersection Patterns 2: If both {β, γ} meet some H ∈ H, then
the distance from the first entry point of β to that of γ is at most D, and
similarly for the last exit points.

Definition 2.7. [Far98] Suppose that X is weakly hyperbolic relative to H. Sup-
pose that any two electric quasigeodesics without backtracking and with the same
endpoints have similar intersection patterns with H. Then (X,H) is said to satisfy
bounded penetration and X is said to be strongly hyperbolic relative to H.

The next condition ensures that (X,H) is strongly hyperbolic relative to H.

Definition 2.8. A collection H of sets in a δ-hyperbolic metric space X is said to
be uniformly D-separated if d(Hi, Hj) ≥ D for all Hi, Hj ∈ H;Hi 6= Hj .
A collection H of uniformly C-quasiconvex sets in a δ-hyperbolic metric space X is
said to be mutually D-cobounded if for all Hi, Hj ∈ H, πi(Hj) has diameter less
than D, where πi denotes a nearest point projection of X onto Hi. A collection is
mutually cobounded if it is mutually D-cobounded for some D.

Coboundedness ensures strong relative hyperbolicity.

Lemma 2.9. ([Far98] Proposition 4.6, [Bow97]) Let (X, dX) be a (Gromov) hyper-
bolic metric space and H a collection of ǫ-neighborhoods of uniformly quasiconvex
mutually cobounded uniformly separated subsets. Then X is strongly hyperbolic
relative to the collection H. Furthermore quasigeodesics without backtracking in
(X, dX) and (E(X,H), de) have similar intersection patterns with elements of H.
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Applications of Lemma 2.9 follow.

Lemma 2.10. Let Mh be a hyperbolic manifold. Let T and H denote respectively a
collection of Margulis tubes and horoballs that are disjoint from one another. Then

the elements of T ∪ H are mutually co-bounded. Hence M̃h is strongly hyperbolic
relative to the collection T ∪ H.

Lemma 2.11. Let Sh be a hyperbolic surface, with a finite collection of disjoint
simple closed geodesics σi and cusps Hj. Let S denote the collection of lifts σ̃i to H2

and let H denote the collection of lifts H̃j. Then the elements of S∪H are mutually

co-bounded. Hence S̃h is strongly hyperbolic relative to the collection S ∪ H.

A closely related theorem was proved by McMullen (Theorem 8.1 of [McM01]).
Let H be a locally finite collection of horoballs in a convex subset X of Hn (where
the intersection of a horoball, which meets ∂X in a point, withX is called a horoball
in X).

Definition 2.12. The ǫ-neighborhood of a bi-infinite geodesic in Hn will be called
a thickened geodesic.

Theorem 2.13. [McM01] For K,D ≥ 1, ǫ ≥ 0 there exists R ≥ 0 such that the
following holds:
Let X be a convex subset of Hn and let H denote a uniformly D-separated collection
of horoballs and thickened geodesics. Let Y = X \

⋃
H∈HH and γ : I → Y be a

(K, ǫ)-quasigeodesic in Y . Let η be the geodesic in X with the same endpoints as
γ. Let H(η) be the union of all the horoballs and thickened geodesics in H meeting
η. Then η ∪ H(η) is R−quasiconvex and γ(I) ⊂ BR(η ∪ H(η)). (The hyperbolic
metric on Hn is understood.)

2.2. Electric Geometry for Surfaces. We now specialize to surfaces. Let S be
a hyperbolic surface with diameter bounded above by K. It follows that injectivity
radius is bounded below by some ǫ = ǫ(K). Let σ be a finite collection of disjoint
simple closed geodesics on S. Component(s) of S \ σ will be called the amalga-
mation component(s) of (S, σ). We shall denote an amalgamation components
by SA. Let (SGel, dGel) = E(S, SA) be obtained from S by electrocuting SA’s
and let the universal cover of (SGel, dGel) with the lifted pseudometric be denoted

(S̃Gel, dGel). A slightly different path pseudometric may be constructed on S̃ by
declaring that
1) the length of any path that lies in the interior of an amalgamation component
is zero
2) the length of any path that crosses σ once has length one
3) the length of any other path is the sum of lengths of pieces of the above two kinds.

This pseudometric differs from (S̃Gel, dGel) by at most one (due to the initial and
final segments of length half). We shall ignore this difference (cf Lemma 2.23).

The fundamental group π1(S) may be regarded as a graph of groups with vertex
group(s) the subgroup(s) π1(SA) corresponding to amalgamation component(s) and

cyclic edge groups Z corresponding to σ. Then (S̃Gel, dGel) is quasi-isometric to
the Bass-Serre tree of the splitting.

Continuous paths in SGel and S̃Gel will be called electric paths. Continuous
geodesics and quasigeodesics in the electric metric will be called electric geodesics
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and electric quasigeodesics respectively. We specialize Definition 2.2 to the present
context, where it is slightly more restrictive.

Definition 2.14. An electric path γ ⊂ S̃Gel is said to be an electricK-quasigeodesic

in (S̃Gel, dGel) without backtracking if γ is aK-quasigeodesic in (S̃Gel, dGel) and

γ does not return to any lift S̃A(⊂ S̃Gel) of an amalgamation component SA ⊂ S
after leaving it.

We now specialize the notion of an electro-ambient quasigeodesic to the context
of surfaces.

Definition 2.15. An electric geodesic λe without backtracking in (S̃Gel, dGel) is
called an electro-ambient quasigeodesic if

a) each segment of λe lying inside a single lift S̃A meets the boundary ∂S̃A at most

twice and is perpendicular to ∂S̃A whenever they meet. We shall refer to these
segments of λe as amalgamation segments.
b) If a, b be the points of intersection of two distinct amalgamation segments of λe
with a lift σ̃ of σ, then λe ∩ σ̃ is equal to [a, b], the geodesic segment in σ̃ joining
a, b. Such pieces [a, b] shall be referred to as interpolating segments.
The underlying path of an electro-ambient quasigeodesic of the electro-ambient

quasigeodesic in the hyperbolic metric on S̃ shall be called the electro-ambient
representative λq of λe.

See Figure below, where the bold line indicates the electro-ambient quasigeodesic
and the thin lines the geodesics σ̃.

Figure:Electro-ambient quasigeodesic

The next Lemma justifies the terminology.

Lemma 2.16. (See Lemma 3.7 of [Mj11]) There exists (K, ǫ) such that each electro-

ambient representative λq of an electric geodesic in (S̃Gel, dGel) is a (K, ǫ) hyperbolic
quasigeodesic.

Proof. Let (Sel, del) denote the surface S with the (collection of) geodesics σ elec-

trocuted. Note that the electro-ambient quasigeodesics in (S̃Gel, dGel) coincide with

those in the universal cover (S̃el, del). Hence it suffices to show that electro-ambient

quasigeodesics in (S̃el, del) are uniform hyperbolic quasigeodesics.
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Let λh denote the hyperbolic geodesic joining the end-points of λe. By Lemmas
2.9 and 2.11, λh and λe, and hence λh and λq have similar intersection patterns
with Nǫ(σ̃) for some small ǫ > 0 and any lift σ̃ of (an element of) σ. Also, λh and
λq track each other off the collection Nǫ(σ̃). Further, each interpolating segment
of λq being a hyperbolic geodesic, it follows (from the ‘K-fellow-traveler’ property
of hyperbolic geodesics starting and ending near each other, Lemma 1.6) that each
interpolating segment of λq lies within a (K + 2ǫ) neighborhood of λh for some
fixed K > 0. Again, since each segment of λq that does not meet an electrocuted
geodesic that λh meets is of uniformly bounded length (bounded by C say), we
have finally that λq lies within a (K+C+2ǫ) neighborhood of λh. Finally, since λq
is an electro-ambient representative, it does not backtrack. Hence the Lemma. �

2.3. Electric isometries.

Definition 2.17. Let S be any hyperbolic surface and σ a collection of disjoint
simple closed geodesics on S. A diffeomorphism φ of S will be called a component
preserving diffeomorphism if it fixes σ pointwise and preserves each amalgama-
tion component as a set, i.e. φ sends each amalgamation component of (S, σ) to
itself.

Lemma 2.18. Let φ denote a component preserving diffeomorphism of SG. Then
φ induces an isometry of (SGel, dGel).

Proof. In the electrocuted surface (SGel, dGel), any electric geodesic λe has length
equal to the number of times it crosses σ. Any component preserving diffeomor-
phism φ preserves the intersection pattern of λe with amalgamation components.
Hence φ is an isometry of (SGel, dGel). �

The proof of Lemma 2.18 goes through verbatim after lifting to the universal

cover (S̃Gel, dGel). We let φ̃ denote the lift of φ to (S̃Gel, dGel). This gives

Lemma 2.19. Let φ̃ denote a lift of a component preserving diffeomorphism φ to

(S̃Gel, dGel). Then φ̃ induces an isometry of (S̃Gel, dGel).

2.4. Nearest-point Projections. The next Lemma says nearest point projections
in a δ-hyperbolic metric space do not increase distances much. This is a standard
fact (See Lemma 3.1 of [Mit98b] for instance).

Lemma 2.20. Let (Y, dY ) be a δ-hyperbolic metric space and let µ ⊂ Y be a C-
quasiconvex subset, e.g. a geodesic segment. Let π : Y → µ map y ∈ Y to a point
on µ nearest to y. Then dY (π(x), π(y)) ≤ C3dY (x, y) for all x, y ∈ Y where C3

depends only on δ, C.

The next lemma (from [Mit98b]) says that quasi-isometries and nearest-point
projections on (Gromov) hyperbolic metric spaces ‘almost commute’.

Lemma 2.21. (Lemma 3.5 of [Mit98b]) Suppose (Y1, d1) and (Y2, d2) are δ-hyperbolic.
Let µ1 be some geodesic segment in Y1 joining a, b and let p be any point of Y1.
Also let q be a point on µ1 such that d1(p, q) ≤ d2(p, x) for all x ∈ µ1. Let φ be a
(K, ǫ) - quasiisometric embedding from Y1 to Y2. Let µ2 be a geodesic segment in
Y2 joining φ(a) to φ(b) . Let r be a point on µ2 such that d2(φ(p), r) ≤ d2(φ(p), x)
for x ∈ µ2. Then d2(r, φ(q)) ≤ C4 for some constant C4 depending only on K, ǫ
and δ.
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We shall need the above Lemma for quasi-isometries from S̃a to S̃b for two differ-
ent biLipschitz metrics on the same surface. We shall also need it for electrocuted
surfaces.

Another property that we shall require for nearest point projections is that near-

est point projections in the hyperbolic metric on S̃ and that in the electric metric

(S̃Gel, dGel) almost agree. To make this precise we make the following definition.

The hyperbolic metric on S as well as S̃ will be denoted by d.

Definition 2.22. Let y ∈ (S̃, d) and let µq be an electro-ambient representative

of an electric geodesic µGel in (S̃Gel, dGel). Then πe(y) = z ∈ µq if the ordered
pair {dGel(y, πe(y)), d(y, πe(y))} is minimized at z in the lexicographical order on
(R+ ∪ {0})× (R+ ∪ {0}).

The proof of the following Lemma shows that this gives us a definition of πe
which is ambiguous up to a finite amount of discrepancy not only in the electric
metric but also in the hyperbolic metric.

Lemma 2.23. Fix a hyperbolic surface S. For all ǫ > 0, there exists C > 0
such that if σ is a finite collection of disjoint simple closed geodesics such that
d(σi, σj) ≥ ǫ for all σi 6= σj ∈ σ, then the following holds.

Let µ be a hyperbolic geodesic in (S̃, d) joining u, v ∈ S̃. Let (SGel, dGel) be the
electric space obtained from S by electrocuting the amalgamation components of

(S, σ). Let µGel be an electric geodesic in (S̃Gel, dGel) joining u, v and let µq be its

electro-ambient representative. Let πh denote the nearest point projection of (S̃, d)
onto µ. Then d(πh(y), πe(y)) ≤ C.

Proof. Let [u, v] and [u, v]q denote respectively the hyperbolic geodesic and the

electro-ambient quasigeodesic joining u, v ∈ S̃. Since [u, v]q is a hyperbolic quasi-

geodesic by Lemma 2.16, the nearest point projection of y ∈ (S̃, d) onto [u, v] and
[u, v]q almost agree in the hyperbolic metric d. Thus, abusing notation slightly let

πh denote nearest point projection of (S̃, d) onto [u, v]q. Hence it suffices to show

that for any y ∈ S̃, its hyperbolic and electric projections πh(y), πe(y) onto [u, v]q
almost agree. See figure below, where we denote πh(y), πe(y) by p, q respectively.

Figure:Electric and hyperbolic projections.
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First note that any hyperbolic geodesic η in S̃ is also an electric geodesic in

(S̃Gel, dGel). This follows from the fact that (S̃Gel, dGel) maps to the Bass-Serre
tree T of the splitting of S along σ, such that the pre-image of every vertex is a

set of diameter zero in the pseudometric dGel. If a path in (S̃Gel, dGel) projects to
a path in T that is not a geodesic, then it must backtrack. Hence, it must leave
an amalgamating component and return to it. Such a path can clearly not be a

hyperbolic geodesic in (S̃Gel, dGel) since each amalgamating component is convex.
Next, it follows that hyperbolic projections automatically minimize electric dis-

tances. Else as in the preceding paragraph, [y, πh(y)] would have to cut a lift σ̃1 of
σ that separates [u, v]q. Further, [y, πh(y)] cannot return to σ̃1 after leaving it. Let
z be the first point at which [y, πh(y)] meets σ̃1 (the intersection point of the dotted
line with σ̃1 in the figure above). Also let w be the point on [u, v]q∩ σ̃1 that is near-
est to z. Since amalgamation segments of [u, v]q meeting σ̃1 are perpendicular to
the latter, it follows that d(w, z) < d(w, πh(y)) and therefore d(y, z) < d(y, πh(y))
contradicting the definition of πh(y). Hence hyperbolic projections automatically
minimize electric distances.

Further, it follows by repeating the argument in the first paragraph that [y, πh(y)]
and [y, πe(y)] pass through the same set of amalgamation components in the same
order; in particular they cut across the same set of lifts of σ̃. Let σ̃2 be the last

such lift. Then σ̃2 forms the boundary of an amalgamation component S̃A whose
intersection with [u, v]q is of the form [a, b] ∪ [b, c] ∪ [c, d], where [a, b] ⊂ σ̃3 and
[c, d] ⊂ σ̃4 are subsegments of two lifts of σ and [b, c] is perpendicular to these two.
Then the nearest-point projection of σ̃2 onto each of [a, b], [b, c], [c, d] has uniformly
bounded diameter. Hence the nearest point projection of σ̃2 onto the hyperbolic

geodesic [a, d] ⊂ S̃A has uniformly bounded diameter. The result follows. �

3. The Minsky Model

In this section we summarize the notions and facts from [Min10], [BCM12] and
[MM00] that we shall need. Let C(S) and P(S) denote respectively the curve
complex and pants complex of a compact surface S, possibly with boundary, with
the usual modifications for surfaces of small complexity (see [MM00] for details).

Split level Surfaces
For our purposes, a pants decomposition of S will be a disjoint collection of 3-holed
spheres P1, · · · , Pn embedded in S such that S \

⋃
i Pi is a disjoint collection of

non-peripheral annuli in S, no two of which are homotopic. We shall conflate a
pants decomposition of S with the collection of (isotopy classes of) non-peripheral
boundary curves of P1, · · · , Pn. Thus when we refer to a pair of pants in a pants
decomposition P1, · · · , Pn of S we are referring to one of the Pi’s, and when we
refer to a curve in a pants decomposition of S we are referring to one of the non-
peripheral boundary curves of one of the Pi’s.

Let N be the convex core of a simply or doubly degenerate hyperbolic 3-manifold
minus an open neighborhood of the cusp(s).
N is homeomorphic to S × [0,∞) or S × R according as N is simply or doubly

degenerate, where S is a compact surface, possibly with boundary.
Let θ, ω be positive real numbers. A neighborhood Nǫ(γ) of a closed geodesic

γ(⊂ N) is called a (θ, ω)-thin tube if the length of γ is less than θ and the length
of the shortest geodesic on ∂Nǫ(γ) is greater than ω.
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Let T denote a collection of disjoint, uniformly separated (θ, ω)-thin tubes in N
such that all Margulis tubes in N belong to T ; in particular θ is greater than the
Margulis constant. Let M be a 3-manifold biLipschitz homeomorphic to N and let
M(0) be the image of N \

⋃
T∈T Int(T ) inM under the biLipschitz homeomorphism

F . Let ∂M(0) (resp. ∂M) denote the boundary of M(0) (resp. M).
Let (Q, ∂Q) be the unique hyperbolic pair of pants such that each component of

∂Q has length one. Q will be called the standard pair of pants. An isometrically
embedded copy of (Q, ∂Q) in (M(0), ∂M(0)) will be said to be flat.

Definition 3.1. A split level surface associated to a pants decomposition {Q1, · · · , Qn}
of S in M(0) ⊂M is an embedding f : ∪i(Qi, ∂Qi) → (M(0), ∂M(0)) such that
1) Each f(Qi, ∂Qi) is flat
2) f extends to an embedding (also denoted f) of S into M such that the interior
of each annulus component of f(S \

⋃
iQi) lies entirely in F (

⋃
T∈T Int(T )).

The class of all topological embeddings from S toM that agree with a split level
surface f associated to a pants decomposition {Q1, · · · , Qn} on Q1 ∪ · · · ∪Qn will
be denoted by [f ].

We define a partial order ≤E on the collection of split level surfaces in an end E
of M as follows:
f1 ≤E f2 if there exist gi ∈ [fi], i = 1, 2, such that g2(S) lies in the unbounded
component of E \ g1(S).

Tight geodesics
The complexity of a compact surface S = Sg,b of genus g and b boundary components
is defined to be ξ(Sg,b) = 3g + b.

For any simplex α ∈ C(Y ), γα will denote a collection of disjoint simple closed
curves on S representing the (homotopy classes) of vertices of α. A pair of simplices
α, β in C(Y ) are said to fill an essential subsurface Y of S if all non-trivial non-
peripheral curves in Y have essential intersection with at least one of γα or γβ ,
where we assume that representatives γα and γβ have been chosen to intersect each
other minimally.

Given arbitrary simplices α, β in C(S), form a regular neighborhood of γα ∪ γβ ,
and fill in all disks and one-holed disks to obtain Y which is said to be filled by
α, β.

For a subsurface X ⊆ Z let ∂Z(X) denote the relative boundary of X in Z, i.e.
those boundary components of X that are non-peripheral in Z.

Definition 3.2. Let Y be an essential subsurface in S. If ξ(Y ) > 4, a sequence
of simplices {vi}i∈I ⊂ C(Y ) (where I is a finite or infinite interval in Z) is called
tight if
1) For any vertices wi of vi and wj of vj where i 6= j, dC1(Y )(wi, wj) = |i− j|,
2) Whenever {i−1, i, i+1} ⊂ I, vi represents the relative boundary ∂Y F (vi−1, vi+1).
If ξ(Y ) = 4 then a tight sequence is the vertex sequence of a geodesic in C(Y ).
A tight geodesic g in C(Y ) consists of a tight sequence v0, · · · , vn, and two simplices
in C(Y ), I = I(g) and T = T(g), called its initial and terminal markings such that
v0 (resp. vn) is a sub-simplex of I (resp. T). The length of g is n. vi is called a
simplex of g. Y is called the domain or support of g and is denoted as Y = D(g).
g is said to be supported in D(g).

We denote the obvious linear order in g as vi < vj whenever i < j.
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A geodesic supported in Y with ξ(Y ) = 4 is called a 4-geodesic.
Given a surface W with ξ(W ) ≥ 4 and a simplex v in C(W ) we say that Y is a

component domain of (W, v) if Y is a component of W \ collar(v), where collar(v)
denotes a thin collar neighborhood of the simple closed curves.

If g is a tight geodesic with domain D(g), we call Y ⊂ S a component domain
of g if for some simplex vj of g, Y is a component domain of (D(g), vj).

Hierarchies
The next definition is based on [MM00], describing certain special paths in P(S)
and component domains associated to them. Paths in P(S) will be maps h from
intervals I in Z into P(S) such that h(i), h(i+ 1) are adjacent vertices of P(S) for
all i, i + 1 ∈ I. We reverse the logic of the exposition in [MM00] slightly here by
defining a hierarchy path in P(S) first and then associating a hierarchy of tight
geodesics to it.

Definition 3.3. A hierarchy path in P(S) joining pants decompositions P1 and
P2 is a path ρ : [0, n] → P (S) joining ρ(0) = P1 to ρ(n) = P2 such that
1) There is a collection {Y } of essential, non-annular subsurfaces of S, called com-
ponent domains for ρ, such that for each component domain Y there is a connected
interval JY ⊂ [0, n] with ∂Y ⊂ ρ(j) for each j ∈ JY .
2) For a component domain Y , there exists a tight geodesic gY supported in Y such
that for each j ∈ JY , there is an α ∈ gY with α ∈ ρ(j).
A hierarchy path in P(S) is a sequence {Pn}n of pants decompositions of S such
that for any Pi, Pj ∈ {Pn}n, i ≤ j, the finite sequence Pi, Pi+1, · · · , Pj−1, Pj is a
hierarchy path joining pants decompositions Pi and Pj .
The collection H of tight geodesics gY supported in component domains Y of ρ will
be called the hierarchy of tight geodesics associated to ρ.

The notion of hierarchy in Definition 3.3 above is a special case of ‘hierarchies
without annuli’ described in [MM00]. The next definition allows us to associate the
extra piece of data coming from tight geodesics supported in component domains
of a hierarchy path ρ to the hierarchy path ρ.

Definition 3.4. A slice of a hierarchy H associated to a hierarchy path ρ is a
set τ of pairs (h, v), where h ∈ H and v is a simplex of h, satisfying the following
properties:

(1) A geodesic h appears in at most one pair in τ .
(2) There is a distinguished pair (hτ , vτ ) in τ , called the bottom pair of τ . We

call hτ the bottom geodesic.
(3) For every (k,w) ∈ τ other than the bottom pair, D(k) is a component

domain of (D(h), v) for some (h, v) ∈ τ .

A resolution of a hierarchy H associated to a hierarchy path ρ : I → P(S) is
a sequence of slices τi = {(hi1, vi1), (hi2, vi2), · · · , (hini

, vini
)} (for i ∈ I, the same

indexing set) such that the set of vertices of the simplices {vi1, vi2, · · · , vini
} is

the same as the set of the non-peripheral boundary curves of the pairs of pants in
ρ(i) ∈ P(S).

Minsky Blocks (Section 8.1 of [Min10])
A tight geodesic in H supported in a component domain of complexity 4 is called
a 4-geodesic and an edge of a 4-geodesic in H is called a 4-edge.
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Given a 4-edge e in H, let g be the 4-geodesic containing it, and let D(e) be
the domain D(g). Let e− and e+ denote the initial and terminal vertices of e. As
usual, let collar v denote a small collar neighborhood of v in D(e).

To each e a Minsky block B(e) is assigned as as follows:

B(e) = (D(e)× [−1, 1]) \ ( collar (e−)× [−1,−1/2)∪ collar (e+)× (1/2, 1]).

That is, B(e) is the product D(e)× [−1, 1], with solid-torus trenches dug out of its
top and bottom boundaries, corresponding to the two vertices e− and e+ of e.

The gluing boundary of B(e) is

∂±B(e) ≡ (D(e) \ collar(e±))× {±1}.

The gluing boundary is a union of three-holed spheres. The rest of the boundary
is a union of annuli. The top (resp. bottom) gluing boundaries of B(e) are (D(e) \
collar(e+))× {1} (resp. (D(e) \ collar(e−))× {−1}.

The Model and the bi-Lipschitz Model Theorem
The following Theorem summarizes and paraphrases what we need in this paper
from the bi-Lipschitz Model Theorem of Minsky [Min10] and Brock-Canary-Minsky
[BCM12]. (See Theorem 8.1 of [Min10] in particular.)

Theorem 3.5. [Min10] [BCM12] Let N be the convex core of a simply or doubly
degenerate hyperbolic 3-manifold minus an open neighborhood of the cusp(s). Let
S be a compact surface, possibly with boundary, such that N is homeomorphic to
S × [0,∞) or S × R according as N is simply or doubly degenerate. There exist
L ≥ 1, θ, ω, ǫ, ǫ1 > 0, a collection T of (θ, ω)-thin tubes containing all Margulis
tubes in N , a 3-manifold M , and an L-biLipschitz homeomorphism F : N → M
such that the following holds.
Let M(0) = F (N \

⋃
T∈T Int(T )) and let F (T ) denote the image of the collection

T under F . Let ≤E denote the partial order on the collection of split level surfaces
in an end E of M . Then there exists a sequence Si of split level surfaces associated
to pants decompositions Pi exiting E such that

(1) Si ≤E Sj if i ≤ j.
(2) The sequence {Pi} is a hierarchy path in P(S).
(3) If Pi ∩ Pj = {Q1, · · ·Ql} then fi(Qk) = fj(Qk) for k = 1 · · · l, where fi, fj

are the embeddings defining the split level surfaces Si, Sj respectively.
(4) For all i, Pi ∩ Pi+1 = {Qi,1, · · ·Qi,l} consists of a collection of l pairs of

pants, such that S \ (Qi,1 ∪ · · · ∪Qi,l) has a single non-annular component
of complexity 4. Further, there exists a Minsky block Wi and an isometric
map Gi of Wi into M(0) such that fi(S \ (Qi,1 ∪ · · · ∪Qi,l) (resp. fi+1(S \
(Qi,1 ∪ · · · ∪ Qi,l)) is contained in the bottom (resp. top) gluing boundary
of Wi.

(5) For each flat pair of pants Q in a split level surface Si there exists an iso-
metric embedding of Q×[−ǫ, ǫ] intoM(0) such that the embedding restricted
to Q× {0} agrees with fi restricted to Q.

(6) For each T ∈ T , there exists a split level surface Si associated to pants de-
compositions Pi such that the core curve of T is isotopic to a non-peripheral
boundary curve of Pi. The boundary F (∂T ) of F (T ) with the induced met-
ric dT from M(0) is a Euclidean torus equipped with a product structure
S1 × S1

v , where any circle of the form S1 × {t} ⊂ S1 × S1
v is a round circle

of unit length and is called a horizontal circle; and any circle of the form
{t} × S1

v is a round circle of length lv and is called a vertical circle.
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(7) Let g be a tight geodesic other than the bottom geodesic in the hierarchy H
associated to the hierarchy path {Pi}, let D(g) be the support of g and let
v be a boundary curve of D(g). Let Tv be the tube in T such that the core
curve of Tv is isotopic to v. If a vertical circle of (F (∂Tv), dTv

) has length
lv less than nǫ1, then the length of g is less than n.

Since the above statement is culled out of a large amount of material, particularly
from [Min10], we give specific references here.
M(0) (resp. M) above is denoted by Mν(0) (resp. Mν) in Section 8 of [Min10].
The collection F (T ) is denoted by U in [Min10] and is called the set of tubes in
Mν .
The hierarchyH in Item (7) of Theorem 3.5 is constructed in Lemma 5.13 of [Min10]
(see also Theorem 4.6 of [MM00]) and the hierarchy path of Item (2) is obtained
from it by constructing a resolution sweeping through it in Lemma 5.8 of [Min10].
(We have thus reversed the logical order of hierarchies and hierarchy paths in our
treatment.)
The estimate on the length of g in Item (7) of Theorem 3.5 comes from Equation
9.6 of [Min10] which gives estimates on meridian coefficients.
The Euclidean structure of F (T ) for T ∈ T in Item (6) comes from gluing together
the internal blocks (as well as boundary blocks) described in Section 8.1 and in
Theorem 8.1 of [Min10].
Theorem 8.1 of [Min10] further describes the construction of split level surfaces and
Items (1), (3) and (4) follow from it.
Item (5) simply ensures the existence of uniform product neighborhoods and follows
from the fact that Minsky blocks are glued by isometries on their 3-holed sphere
boundary components. In fact ǫ = 1

4 suffices.
Finally [BCM12] ensures that the model constructed in [Min10] is indeed biLipschitz
homeomorphic to N .

We use the notation of Theorem 3.5 in the rest of this subsection, fixing N,M .

Lemma 3.6. Given l > 0 there exists n ∈ N such that the following holds.
Let v be a vertex in the hierarchy H such that the length of the core curve of the
Margulis tube Tv corresponding to v is greater than l. Next suppose (h, v) ∈ τi
for some slice τi of the hierarchy H such that h is supported on Y , and D is a
component of Y \ collar v. Also suppose that h1 ∈ H such that D is the support of
h1. Then the length of h1 is at most n.

Proof. Let α be a meridian curve on F (∂Tv) such that F−1(α) bounds a totally
geodesic disk in Tv.

By Item (6) of Theorem 3.5, F (∂Tv) is a metric product S1 × S1
v . Choose

horizontal and vertical curves αh, αv on F (∂Tv). Then α is homologous to (nαh +
αv) for some integer n. Hence l(α) ≥ lv, where l(α) is the length of α and lv denotes
the length of the vertical circle. Since F is an L-biLipschitz homeomorphism by
Theorem 3.5, it follows that l(F−1(α)) ≥ lv

L
. Let ∆ be the totally geodesic disk

bounded by F−1(α). Then the radius rv of ∆ is bounded below by sinh−1( lv
L
).

Let lc denote the length of the core curve cv of Tv. Then any geodesic on ∂Tv
homotopic to cv in Tv has length bounded below by lv

L
lc.

Also l(F−1(αh)) ≤ L and F−1(αh) is homotopic to the core curve cv.

Hence lv
L
lc ≤ L. It follows that lv ≤ L2

lc
≤ L2

l
. The Lemma now follows from

Item (7) of Theorem 3.5. �
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One last fallout of the Minsky model (Theorem 8.1 of [Min10] again) that we
shall need is the following.

Lemma 3.7. Given l > 0 and n ∈ N, there exists L2 ≥ 1 such that the following
holds:
Let Si, Sj (i < j) be split level surfaces associated to pants decompositions Pi, Pj

such that
a) (j − i) ≤ n
b) Pi ∩ Pj is a (possibly empty) pants decomposition of S \ W , where W is an
essential (possibly disconnected) subsurface of S such that each component Wk of
W has complexity ξ(Wk) ≥ 4.
c)For any k with i < k < j, and (gD, v) ∈ τk for D ⊂ Wi for some i, no curve in
v has a geodesic realization in N of length less than l.
Then there exists an L2-biLipschitz embedding G :W × [−1, 1] →M , such that
1) W admits a hyperbolic metric given by W = Q1 ∪ · · · ∪Qm where each Qi is a
flat pair of pants.
2) W × [−1, 1] is given the product metric.
3) fi(Pi \ Pi ∩ Pj) ⊂W × {−1} and fj(Pj \ Pi ∩ Pi) ⊂W × {1}.

Idea of Proof: What the Lemma above says is that if a ‘thick’ piece of the
manifold N is trapped between split level surfaces Si, Sj , then it is biLipschitz to
a product region on the support of the hierarchy path between Si, Sj . This follows
from the construction of the model in Section 8.2 of [Min10] along with Equation
9.6 of [Min10]. The lower bound on lengths of hierarchy curves in hypothesis (c)
ensures an upper bound on the twist coefficient ([hv] in Equation 9.6 of [Min10])
exactly as in the proof of Lemma 3.6. Hence the ‘full hierarchy’ path (including
annuli in the sense of [MM00]) between Si, Sj equipped with markings is of length
bounded in terms of l, n. This guarantees the existence of a biLipschitz product
region as required. Since this is the only place where we shall require full hierarchies
and twist coefficients in this paper, and since the rest of the proof of Lemma 3.7
follows Lemma 3.6, we omit the details, referring the interested reader to Section
8.2 of [Min10]. (See also [MM00] where a quasi-isometry is constructed between
the mapping class group and the full marking complex. Interpreted in these latter
terms there is a bounded length element in the mapping class group MCG(W )
taking the marking on Si ∩W to the marking on Sj ∩W .) 2

4. Split Geometry

4.1. Constructing Split Level Surfaces. The aim of this subsection is to extract
a special sequence of split level surfaces from the sequence of split level surfaces
constructed in Theorem 3.5. The main point is to ensure that successive split level
surfaces are separated by a definite amount inM(0). We continue with the notation
of Theorem 3.5 in this subsection.

Fix an l > 0. The precise value of l will be less than the Margulis constant for
hyperbolic 3-manifolds and will be determined by the Drilling Theorem 4.21 to be
used in the next subsection. We shall henceforth refer to Margulis tubes that have
core curve of length ≤ l as thin Margulis tubes and the corresponding vertex v
as a thin vertex.

For convenience start with a doubly degenerate surface group. Let ρ(i) = {Pi}
be a hierarchy path provided by Item (2) of Theorem 3.5. Let H be the hierarchy
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of tight geodesics associated to {Pi} and · · · , τi−1, τi, τi+1, · · · be a resolution. Let
Si be the split level surface corresponding to Pi and let τi be the slice whose
vertices comprise the curves in Pi. Let Ss

i denote the collection of flat pairs of
pants occurring in the image of Si in M(0). The metric on the model manifold
and the induced path metric on M(0) will be denoted by dM and will be called the
model metric. Thus Si is an embedding and Ss

i is the image in M(0) of a collection
of pairs of pants.

Definition 4.1. A curve v in H is l-thin if the core curve of the Margulis tube Tv
has length less than or equal to l.
A curve v is said to split a pair of split level surfaces Si and Sj (i < j) if v occurs
as a vertex in both τi and τj−1.
A pair of split level surfaces Si and Sj (i < j) is said to be an l-thin pair if there
exists an l-thin curve v such that v occurs as a vertex in both τi and τj−1.
A pair of split level surfaces Si and Sj (i < j) is said to be an l-thin pair on a
component domain D if
a) Pi ∩ Pj is a pants decomposition of S \D, none of whose curves are l-thin.
b) There exists a tight geodesic gD ∈ H supported on D such that (gD, u) ∈ τk for
all i < k < j, where the multicurve u contains an l-thin curve. (Here D could be S
itself.) Further we demand that the initial and final vertices of gD consist of curves
contained in (the boundary curves of) Pi, Pj respectively.

A pair of split level surfaces Si and Sj (i < j) is said to be an l-thick pair (or
an l-thick pair on S) if no curve v ∈ τk is l-thin for i < k < j.

In fact in criterion (b) of the definition of an l-thin pair on a component domain
D, we might as well have assumed that the initial and final markings of gD, I(gD)
and T(gD) respectively, are precisely Pi, Pj . This is the case when the markings
are complete in the sense of [Min10].

By Definition 3.3, Item (1), the set J(v) = {i : v ∈ ρ(i)} is an interval. Consider
the family of intervals {J(v) : v ∈ gH}, where gH is the distinguished main geodesic
(bottom geodesic) for the hierarchy H. Then

⋃
v{J(v) : v ∈ gH} = Z. This follows

from
the fact that each τi has a simple closed curve corresponding to some vertex in

gH .
Any pair vi, vi+1 of simplices (multicurves) which form successive vertices of the

base geodesic gH are at a distance of 1 from each other by tightness of gH .

Selecting Split Level Surfaces
We shall now construct a subset I of Z by selecting a subsequence of the elements
{Pi} of the hierarchy path. Let τmi

be the first slice in the resolution such that
(gH , vi) ∈ τmi

. Let I1 = {mi : i ∈ Z}. We shall now expand the set I1 if necessary
as follows.

If some curve in vi is l-thin, then we declare that [mi,mi+1] ∩ I = {mi,mi+1},
i.e. no integer strictly between mi,mi+1 is added to I1.

More generally, for any j ∈ Z \ I1, choose i such that mi < j < mi+1.
Then j ∈ I2 if and only if there exists k

a) either with j < k ≤ mi+1 such that Sj , Sk form an l-thin pair on some component
domain D.
b) or with k < j ≤ mi+1 such that Sk, Sj form an l-thin pair on some component
domain D.
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Finally set I = I1 ∪ I2. Then I = {· · · , ni−1, ni, ni+1, · · · } inherits a linear order
from Z such that j < k implies nj < nk.

Note that the same construction works for simply degenerate groups if we replace
Z by N.

The next few Propositions identify some of the features of the selection I. The
main point is to show that the sequence of split level surfaces Sni

makes definite
progress out an end.

Proposition 4.2. Let I = {· · · , ni−1, ni, ni+1, · · · } be as above. There exists a
positive integer N0 such that for all i,
a) either (Sni

, Sni+1
) is an l-thin pair on some component domain D

b) or (Sni
, Sni+1

) is an l-thick pair and ni+1 − ni ≤ N0.

Proof. Suppose that (Sni
, Sni+1

) is not an l-thin pair on some component domain.
Then, by the construction of I and Lemma 3.6, there exists N1(= N1(l)) such

that for all k with ni < k < ni+1, if τk = {(hk1, vk1), (hk2, vk2), · · · , (hkmk
, vkmk

)},
the length of the tight geodesic hki satisfies l(hki) ≤ N1. Further, none of the
curves in vki are l-thin, ensuring l-thickness of the pair (Sni

, Sni+1
).

Note that mk ≤ ξ(S) where ξ(S) is the complexity of S. Also the number of
component domains in W \ collar(v) for W = D(hki) is certainly bounded above
by the number of pairs of pants in a pants decomposition of S and hence by ξ(S).

Therefore (ni+1−ni) is bounded above byN
ξ(S)
1 ×· · ·×N

ξ(S)
1 (ξ(S) times). Choosing

N0 = N
ξ(S)2

1 we are done. �

The next Proposition asserts that between two successive split level surfaces Smi

and Smi+1
selected from the base geodesic, our selection process ‘interpolates’ a

uniformly bounded number of new split level surfaces. Equivalently the cardinality
of the set (I2 ∩ [mi,mi+1]) is uniformly bounded.

Proposition 4.3. Let I = {· · · , ni−1, ni, ni+1, · · · } and I1 = {· · · ,mi−1,mi,mi+1, · · · }
be as above. There exist a positive integer N2 such that for all i, if nj = mi and
nk = mi+1 then k − j ≤ N2.

Proof. Let k ∈ I. So Sk is a split level surface interpolated between Smi
and Smi+1

for some k withmi < k < mi+1. Let the corresponding slice τk = {(hk1, vk1), (hk2, vk2), · · · , (hkmk
, vkmk

)}.
Then there exists a unique ‘subslice’ τ0k = {(hk1, vk1), (hk2, vk2), · · · , (hkrk , vkrk)},
with rk ≤ mk such that the length of the tight geodesic hki satisfies l(hki) ≤ N1

for all i ≤ rk and Sk is a split level surface.
Since the total number of such choices is bounded above by N0 by the proof of

Proposition 4.2, and for each such choice at most two (by the construction of I2
above) split level surfaces are introduced, it follows that the total number of l-thin

split level surfaces Sk with mi < k < mi+1 is bounded above by 2N0 = 2N
ξ(S)2

1 .
Choosing N2 = 2N0 we are done. �

Lemma 4.4. There exists n such that each thin curve splits at most n split level
surfaces in the sequence {Sni

: i ∈ I}.

Proof. Since, for any i the number of split level surfaces Sni
between Smi

and Smi+1

(mi,mi+1 ∈ I1) is at most N2 by Proposition 4.3, it suffices to prove that any thin
curve splits a uniformly bounded number of Smi

’s.
If a curve v splits both Smi

and Smj
, then v belongs to both the pants decom-

position Pmi
and Pmj−1.
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Suppose (gS , vmk
) ∈ τmk

for k = i, j, where gS denotes the bottom geodesic of
the hierarchy H. Then the distance between vmi

and vmj
in C(S) is at most 3 by

tightness, i.e. |i− j| ≤ 3. Taking n = 3N2, we are through. �

Pushing split level Surfaces Apart
We shall now use Item (5) of Theorem 3.5 to ‘thicken’ each of the Sni

’s if necessary,
so that successive split level surfaces can be arranged to be uniformly separated.
Recall that Ss

i is the collection of flat embedded pairs of pants inM(0) correspond-
ing to the split level surface Si.

Definition 4.5. A pair of split level surfaces Si and Sj (i < j) is said to be k-
separated if
a) for all x ∈ Ss

i , d(x, S
s
j ) ≥ k

b)Similarly, for all x ∈ Ss
j , d(x, S

s
i ) ≥ k.

Lemma 4.6. Let I = {· · · , ni−1, ni, ni+1, · · · } be as above. There exist k0 > 0 and
a sequence of split level surfaces Σi and a positive integer N0 such that for all i,
(Σi,Σi+1) is k0-separated and
a) either (Σi,Σi+1) is an l-thin pair on some component domain D
b) or (Σi,Σi+1) is an l-thick pair and ni+1 − ni ≤ N0.

Proof. By Proposition 4.2, the sequence {Sni
}i satisfies one of the alternatives (a)

or (b). It remains to modify {Sni
}i such that (Sni

, Sni+1
) are k0-separated for some

k0 > 0 and all i.
By Item (5) of Theorem 3.5, there exists ǫ > 0 such that for all flat pairs of pants

Qi in S
s
ni

there exists an isometric embedding Hi : Qi × [−ǫ, ǫ] into M(0).
Also, by Lemma 4.4, there exists n ∈ N such that if Qk ∈ Pni

∩ Pnj
, then

|i− j| ≤ n. Further the collection {i ∈ I : Qk ∈ Pni
} = IQk

is an interval in Z. Let
ǫ2 = ǫ

n
. If IQk

= [ak, bk] ⊂ Z, define Qks = Hk|Qk×sǫ2 . Note that (bk − ak) ≤ n.
For each embedding fni

defining the split level surface Sni
, and Qk ∈ Pni

∩ Pnj

for some j 6= i, let IQk
= [ak, bk] and s = (ni−ak). Then define f ′ni

|Qk
= Hk|Qk×sǫ2 .

Now, let Σi be the split level surface defined by f ′ni
|Qk

, whenever Qk ∈ Pni
.

Choosing k0 = ǫ2, it follows that successive split level surfaces are k0-separated. �

Let Tl denote the collection of tubes in T whose core curves have length less than
l. Also let M(l) = M(0)

⋃
T∈T \Tl

F (T ) denote the union of M(0) and all l-thick

tubes.

Definition 4.7. An L-biLipschitz split surface in M(l) associated to a pants
decomposition {Q1, · · · , Qn} of S and a collection {A1, · · · , Am} of complementary
annuli in S is an embedding f : ∪iQi

⋃
∪iAi →M(l) such that

1) the restriction f : ∪i(Qi, ∂Qi) → (M(0), ∂M(0)) is a split level surface.
2) the restriction f : Ai →M(l) is an L-biLipschitz embedding.
3) f extends to an embedding (also denoted f) of S intoM such that the interior of
each annulus component of f(S \ (∪iQi

⋃
∪iAi)) lies entirely in F (

⋃
T∈Tl

Int(T )).

Note: The difference between a split level surface and a split surface is that the
latter may contain biLipschitz annuli in addition to flat pairs of pants.

Let Σs
i denote the union of the collection of flat pairs of pants and biLipschitz

annuli in the image of the embedding Σi.

Theorem 4.8. Let N,M,M(0), S, F be as in Theorem 3.5 and E an end of M .
For any l less than the Margulis constant, let M(l) = {F (x) : injradx(N) ≥ l}.
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Fix a hyperbolic metric on S such that each component of ∂S is totally geodesic of
length one (this is a normalization condition). There exist L1 ≥ 1, ǫ1 > 0, n ∈ N,
and a sequence Σi of L1-biLipschitz, ǫ1-separated split surfaces exiting the end E
of M such that for all i, one of the following occurs:

(1) An l-thin curve splits the pair (Σi,Σi+1), i.e. the associated split level
surfaces form an l-thin pair.

(2) there exists an L1-biLipschitz embedding

Gi : (S × [0, 1], (∂S)× [0, 1]) → (M,∂M)

such that Σs
i = Gi(S × {0}) and Σs

i+1 = Gi(S × {1})

Finally, each l-thin curve in S splits at most n split level surfaces in the sequence
{Σi}.

Proof. By Lemma 4.6, there exists k > 0, a positive integer N0 and a sequence of
split level surfaces Σ0

i such that for all i, (Σ0
i ,Σ

0
i+1) is k-separated and

a) either (Σ0
i ,Σ

0
i+1) is an l-thin pair on some component domain D

b) or (Σ0
i ,Σ

0
i+1) is an l-thick pair and ni+1 − ni ≤ N0.

(We add the superscript 0 to indicate that we are still dealing with split level
surfaces and not split surfaces.)

In Case (a), there exists an l-thin curve splitting the pair of split level surfaces
(Σ0

i ,Σ
0
i+1).

In Case (b), let Pni
, Pni+1

be the pants decompositions associated to Σ0
i ,Σ

0
i+1

and let Pni
∩ Pni+1

be a (possibly empty) pants decomposition of S \W , where W
is an essential (possibly disconnected) subsurface of S such that each component
Wk of W has complexity ξ(Wk) ≥ 4. Hence by Lemma 3.7, there exists L2 ≥ 1 and
an L2-biLipschitz embedding G :W × [−1, 1] →M , such that
1) W admits a hyperbolic metric given by W = Q1 ∪ · · · ∪Qm where each Qi is a
flat pair of pants.
2) W × [−1, 1] is given the product metric.
3) fni

(Pni
\ Pni

∩ Pni+1
) ⊂W × {−1} and fni+1

(Pni+1
\ Pni

∩ Pi) ⊂W × {1}.
Also, from the proof of Lemma 4.6, there exists ǫ > 0 such that for all i, there

exits an isometric embedding Hni
: (Pni

∩Pni+1
)× [0, ǫ] →M such that Hni

(Pni
∩

Pni+1
)× {0} ⊂ fni

(Pni
) and Hni

(Pni+1
∩ Pni+1

)× {ǫ} ⊂ fni+1
(Pni+1

).
Finally since (Σ0

i ,Σ
0
i+1) is an l-thick pair, there exists standard annuli A1, · · ·Ap,

L3 = L3(l) ≥ 1, ǫ1 > 0 and L3−biLipschitz embeddings Γj : Aj × [−1, 1] →⋃
T∈T \Tl

F (Int(T )) such that

a) S = ∪kPk

⋃
∪jAj is the union of the pairs of pants above along with the annuli

Aj .
b) fni

restricted to Aj agrees with Γj restricted to Aj × {−1}.
c) fni+1

restricted to Aj agrees with Γj restricted to Aj × {1}.

Pasting these maps
i) G :W × [−1, 1] →M ,

ii) fni
(Pni

\ Pni
∩ Pni+1

) ⊂W × {−1},
iii) Hni

: (Pni
∩ Pni+1

)× [0, ǫ] →M , and
iv) Γj : Aj × [−1, 1] →

⋃
T∈T \Tl

F (Int(T ))
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along the common boundaries, we obtain an L1-biLipschitz embedding

Gi : (S × [0, 1], (∂S)× [0, 1]) → (M,∂M)

such that the split surfaces Σs
i = Gi(S × {0}) and Σs

i+1 = Gi(S × {1}).
Lemma 4.4 now proves the final assertion. �

Pairs of split surfaces satisfying Alternative (1) of Theorem 4.8 will be called
an l-thin pair of split surfaces (or simply a thin pair if l is understood). Similarly,
pairs of split surfaces satisfying Alternative (2) of Theorem 4.8 will be called an
l-thick pair

(or simply a thick pair) of split surfaces.

Remark 4.9. The notion of split surface could be made a bit more general. We
might as well require a split surface to be a (uniformly) biLipschitz embedding of
a bounded geometry subsurface of S containing a pants decomposition. Theorem
4.8 then summarizes the consequences of the Minsky model that we shall need in
this paper. We have thus constructed the following from the Minsky model:
1) A sequence of split surfaces Ss

i exiting the end(s) ofM , whereM is marked with
a homeomorphism to S × J (J is R or [0,∞) according as M is totally or simply
degenerate). Ss

i ⊂ S × {i}.
2) A collection of Margulis tubes T in N with image F (T ) in M (under the biLip-
schitz homeomorphism between N and M). We refer to the elements of F (T ) also
as Margulis tubes.
3) For each complementary annulus of Ss

i with core σ, there is a Margulis tube
T ∈ T whose core is freely homotopic to σ such that F (T ) intersects Ss

i at the
boundary. (What this roughly means is that there is an F (T ) that contains the
complementary annulus.) We say that F (T ) splits Ss

i .
4) There exist constants ǫ0 > 0,K0 > 1 such that for all i, either there exists a
Margulis tube splitting both Ss

i and Ss
i+1, or else Si(= Ss

i ) and Si+1(= Ss
i+1) have

injectivity radius bounded below by ǫ0 and bound a thick block Bi, where a thick
block is defined to be a K0−biLipschitz homeomorphic image of S × I.
5) F (T ) ∩ Ss

i is either empty or consists of a pair of boundary components of Ss
i

that are parallel in Si.
6) There is a uniform upper bound n = n(M) on the number of surfaces that F (T )
splits.
For easy reference later on, a model manifold satisfying conditions (1)-(6) above is
said to have weak split geometry.

We have isolated the features of weak split geometry in Remark 4.9 above so as
to emphasize the point that it is possible to make a definition independent of the
Minsky model and the hierarchy machinery.1 This will be useful for easy referencing
in [Mj07] and [MS11]. In fact a strengthening of weak split geometry will be enough
to guarantee the existence of Cannon-Thurston maps as we shall see below.

4.2. Split Blocks.

Definition 4.10. Let (Σs
i ,Σ

s
i+1) be a thick pair of split surfaces in M . The closure

of the bounded component of M \ (Σs
i ∪ Σs

i+1) will be called a thick block.

1This was our original approach to the main Theorem of this paper: Prove it for more and
more general model geometries, e.g. bounded geometry [Mj10a], i-bounded geometry [Mj11],
amalgamation geometry and split geometry [Mj05]. Finally prove that the Minsky model satisfies
split geometry [Mj06].
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Note that a thick block is uniformly biLipschitz to the product S × [0, 1] and
that its boundary components are Σs

i ,Σ
s
i+1.

Definition 4.11. Let (Σs
i ,Σ

s
i+1) be an l-thin pair of split surfaces in M and F (Ti)

be the collection of l-thin Margulis tubes that split both Σs
i ,Σ

s
i+1. The closure of the

union of the bounded components of M \ ((Σs
i ∪ Σs

i+1)
⋃

T∈Ti
F (T )) will be called

a split block. Equivalently, the closure of the union of the bounded components of
M(l) \ (Σs

i ∪ Σs
i+1) is a split block.

Topologically, a split block Bs is a topological product Ss × I for some not
necessarily connected Ss. However, its upper and lower boundaries need not be
Ss × 1 and Ss × 0. We only require that the upper and lower boundaries be split
subsurfaces of Ss. This is to allow for Margulis tubes starting (or ending) within
the split block. Such tubes would split one of the horizontal boundaries but not
both. We shall call such tubes hanging tubes. Connected components of split
blocks are called split components. By l-thinness, there is a non-empty collection
of l-thin Margulis tubes, called splitting tubes, splitting a split block. For each
splitting tube F (T ) of a split block Bs, the intersection (Bs ∩F (T )) ⊂M is called
the vertical boundary of the splitting tube. Note that the vertical boundary of
a splitting tube is the union of two disjoint annuli.

See figure below, where the left split component has four hanging tubes and
the right split component has two hanging tubes. The vertical space between the
components is the place where an l-thin Margulis tube splits the split block into
two split components.

Figure: Split Components of Split Block with hanging tubes

Observe further that for each hanging tube F (T ), there exists a split surface
Ss (marked with a dotted line in the figure) which intersects the boundary F (∂T )
non-trivially and such that Ss contains an annulus whose core-curve is homotopic
(in M) to the core curve of F (T ). Also, the closure of (F (∂T ) \ Ss) consists of
precisely two annuli called the vertical boundary of the hanging tube. We can
assume further that
a) Ss ∩ F (∂T ) is a biLipschitz annulus called the horizontal boundary of F (T )
in the split block Bs.
b) the union of the vertical and horizontal boundaries of an l−thin hanging tube
F (T ) in Bs is precisely equal to F (T ) ∩Bs.

Note that the whole manifold M is the union of
a) Thick blocks (biLipschitz homeomorphic to S × I)
b) Split blocks (homeomorphic to Ss × I for some split surfaces)
c) l-thin Margulis tubes.
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Also note that the union of thick and split blocks is M(l), which is the comple-
ment (in M) of the union of l-thin Margulis tubes. Each of these Margulis tubes
splits a uniformly bounded number of split blocks and might end in a hanging tube.

4.3. Electrocutions. For any hanging tube or splitting tube F (Tj) in a split block
Bs (with top and bottom split surfaces Σs

k,Σ
s
k+1, say), let Aji = S1 × [0, lji],

(i = 1, 2), be the vertical boundaries (i = 1, 2 correspond to the left and right
vertical annuli in the previous Figure). Let the metric product S1 × [0, 1] be called
the standard annulus for splitting tubes. For hanging tubes the standard annulus
will be S1 × [0, 1/2].

We shall define a welded split block Bwel (homeomorphic to S× [0, 1]) to be a
split block with identifications on vertical boundaries of splitting tubes and hanging
tubes. Let H0

ji : [0, lji] → [0, x] be the unique linear surjective map (scaling) taking
0 to 0 and lji to x, where x is 1 or 1/2 according as F (Tj) is a splitting tube or a
hanging tube. Now define Hji : S

1× [0, lji] → S1× [0, x] by Hji(y, z) = (y,H0
ji(z)).

Finally extend Hj1 ∪ Hj2 continuously to the horizontal boundaries S1 × [−ǫ, ǫ]
of hanging tubes F (Tj) as Lipschitz maps to S1 × {p} by Hj(y, z) = (y, p) where
p is either 0 or 1/2 according as the horizontal boundary of F (Tj) lies at the
bottom or the top of the hanging tube (for instance in the figure, the horizontal
boundary marked with a dotted line lies at the top of a hanging tube). Now glue
the mapping cylinders of Hj1 ∪ Hj2 ∪ Hj (for hanging tubes) and Hj1 ∪ Hj2 (for
splitting tubes) to F (∂Tj)∩B

s to obtain the welded split block Bwel. Note that
Bwel is homeomorphic to S× [0, 1]. The images of the standard annuli in Bwel after
the identification shall simply be called standard annuli in Bwel.

For each hanging tube, there exists one distinguished curve on either Σs
k or

Σs
k+1. When the hanging tube intersects Σs

k+1, this is the image of S1 × {1/2}
contained in the standard annulus after identification. Similarly, when the hanging
tube intersects Σs

k, this is the image of S1 ×{0} contained in the standard annulus
after identification. Again, for each splitting tube, there exists two distinguished
curves, one each on Σs

k and Σs
k+1 - the images of S1 × {0, 1} contained in the

standard annulus after identification. Such simple closed curves shall be called
weld curves. The resulting metric on Bwel will be denoted by dwel.

We shall equip Bwel with a new pseudometric. Equip the standard annulus
S1 × [0, x] (where x is 1 or 1/2) with the product of the zero metric on the S1-
factor and the Euclidean metric on the [0, x] factor. Let (S1 × [0, x], d0) denote the
resulting pseudometric. The tube-electrocuted metric dtel is defined to be the
pseudometric metric that agrees with dwel away from the standard annuli in Bwel

and with d0 on the standard annuli in Bwel. To distinguish it from (Bwel, dwel) we
shall represent the new space and the pseudometric on it by (Btel, dtel). Note that
the underlying topological spaces Bwel and Btel are the same and homeomorphic
to S × [0, 1].

Recall that in defining thick blocks, S was equipped with a fixed hyperbolic
metric. If Σs

k is the bottom split surface of the split block Bs
k and also the top

split surface of a (thick or split) block block Bs
k−1, then the common split surface

Σs
k can be easily extended over complementary annuli to a common uniformly

biLipschitz embedding of S into welded blocks Bwel,k and Bwel,k−1, where we define
Bwel,m = Bm for thick blocks. When Bk−1 is thick, this follows from the fact that
the complementary annuli are uniformly biLipschitz embeddings of S1×[0, 1]. When
Bs

k−1 is split, the mapping cylinder construction above restricted to Σs
k is the same
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whether Σs
k is regarded as the bottom split surface of Bs

k or the top split surface
of Bs

k−1. We shall continue to denote the extended split surface by Σs
k and call

it a split surface in Bwel,k. From now on shall drop the suffix wel from (thick or
split) blocks Bwel,k and denote them simply as Bk. Note that all such extended
split surfaces are homeomorphic to S via uniformly biLipschitz homeomorphisms.

The Welded Model Manifold
Gluing successive welded blocks along common split surfaces we obtain the welded
model manifold (Mwel, dwel) homeomorphic to S × J , where J = R or [0,∞)
according as the original manifold N is doubly or simply degenerate.

It remains to construct the tube-electrocuted pseudometric dtel on Mwel. The
tube electrocuted metrics on successive welded split blocks coincide on the common
split surface. The same is clearly true if the successive blocks are thick.

If a weld curve lies in Σs
k = Bwel,k∩Bwel,k−1 and precisely one of Bwel,k, Bwel,k−1

is a thick block, we fix the convention that for the tube electrocuted metric dtel on
Mwel: All weld curves have length zero.

Gluing successive tube electrocuted blocks using the convention above, we ob-
tain the tube electrocuted manifold (Mtel, dtel). Observe that the underlying
topological manifolds Mwel and Mtel are the same. (The notation (Mwel, dwel) and
(Mtel, dtel) is used to distinguish the metrics.)

The union of the images of the contiguous mapping cylinders of maps Hj1 ∪
Hj2 ∪ Hj (or Hj1 ∪ Hj2) in (Mtel, dtel) associated to a particular l-thin Margulis
tube T (and hence F (T )) is topologically a solid torus T t. Equipped with the
tube electrocuted metric, (T t, dtel) is of diameter at most n by Theorem 4.8. The
collection of all T t’s in (Mtel, dtel) is denoted T t. (We shall continue to use the
same notation T t for the collection of T t’s in (Mwel, dG) to be defined below.)

The images of split components K of Bs in Btel will continue to be called split

components of Btel. A lift K̃ of a split component K of (Btel, dtel) to the universal

cover (B̃tel, dtel) shall be termed a split component of B̃tel.
Let dG be the (pseudo)-metric obtained by electrocuting the collection K of

split components K̃ in (B̃tel, dtel) ⊂ (M̃tel, dtel) as (Btel, dtel) ranges over all split

blocks. dG will be called the the graph metric on M̃tel(= M̃wel). Thus (M̃wel, dG)

is isometric to E(M̃wel,K) with the electric metric.

Remark 4.12. Alternate Description: There is an alternate description of a

pseudometric on M̃ which makes it quasi-isometric to (M̃wel, dG). For each lift

K̃ ⊂ M̃ of a split component K of a split block of M(l) ⊂ M , there are lifts of

l-thin Margulis tubes that share the boundary of K̃ in M̃ . Adjoining these lifts

to K̃ we obtain extended split components. Let K′ denote the collection of

extended split components in M̃ . We continue to denote the collection of split

components in M̃(l) ⊂ M̃ by K. Let M̃(l) denote the lift of M(l) to M̃ . Then the

inclusion of M̃(l) into M̃ gives a quasi-isometry between E(M̃(l),K) and E(M̃,K′)
equipped with the respective electric metrics. This follows from the last assertion
of Theorem 4.8.

Again, by the last assertion of Theorem 4.8, the inclusion of M̃(l) into M̃wel

gives a quasi-isometry between E(M̃(l),K) and E(M̃wel,K)(= (M̃wel, dG)).

Therefore (M̃wel, dG) is quasi-isometric to E(M̃,K′). We shall henceforth identify

E(M̃,K′) with (M̃wel, dG) via this quasi-isometry without explicitly mentioning the
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quasi-isometry. The electric metric on E(M̃,K′) shall therefore be denoted by dG
also. We shall find it easier to use E(M̃,K′) when dealing with all of M̃ , whereas

(M̃wel, dG) will be more useful when dealing with the block structure of M̃wel.

Remark 4.13. Here is the raison d’etre for the two closely related but different
electric spaces. In the ladder construction of Section 5 below, it is important that
a split surface goes ‘all the way across’, i.e. is an embedded copy of S. There
is no canonical way to do this in the model manifold M . In fact for the ladder
construction of Section 5 to work, it is important that a split surface in (Mwel, dwel)
is an embedded copy of S having uniformly bounded geometry. This is simply not
possible in M as Margulis tubes may be arbitrarily thin. On the other hand, we

finally need to control hyperbolic geodesics in Ñ by means of the ladder. Since

M is biLipschitz to N , we can equivalently control them in M̃ . The Alternate

Description above establishes a way of transferring this control from (M̃wel, dG) to

M̃ , which is where we really want the control on geodesics.

The following definition illustrates this passing back and forth between these two
quasi-isometric electric spaces.

Definition 4.14. Let Y ⊂ Ñ and X = F (Y ). X ⊂ M̃ is said to be ∆-graph
quasiconvex if for any hyperbolic geodesic µ joining a, b ∈ Y , F (µ) lies inside

N∆(X, dG) ⊂ E(M̃,K′).

For X a split component, define CH(X) = F (CH(Y )), where CH(Y ) is the

convex hull of Y in Ñ . Then ∆-graph quasiconvexity of X is equivalent to the
condition that diaG(CH(X)) is bounded by ∆′ = ∆′(∆) as any split component

has diameter one in (M̃tel, dG).

4.4. Quasiconvexity of Split Components. We now proceed to show further
that split components are quasiconvex (not necessarily uniformly) in the hyper-
bolic metric, and uniformly quasiconvex in the graph metric, i.e. we need to show
hyperbolic quasiconvexity and uniform graph quasiconvexity of split components.

Hyperbolic Quasiconvexity:
Let N = H3/Γ be a complete hyperbolic 3-manifold. Then [Thu80] there exists

a geometrically finite hyperbolic manifold with compact convex core Ngf and a
strictly type-preserving embedding i of Ngf into N , which is a homotopy equiva-
lence. Then for any boundary component Sh of Ngf , i∗(π1(S

h)) ⊂ π1(N) is called a
peripheral subgroup. In the Theorem below π1(N) will be identified with a Kleinian
group Γ and the peripheral subgroup i∗(π1(S

h)) with a Kleinian subgroup of Γ.

Theorem 4.15. Covering Theorem [Thu80] [Can96] Let N = H3/Γ be a com-
plete hyperbolic 3-manifold. A finitely generated subgroup Γ′ is geometrically infinite
if and only if it contains a finite index subgroup of a geometrically infinite peripheral
subgroup.

We shall now specialize the Thurston-Canary covering theorem 4.15 to the
case under consideration, namely, infinite index free subgroups of surface Kleinian
groups.

Lemma 4.16. Let N be a simply or doubly degenerate hyperbolic 3-manifold ho-
motopy equivalent to a surface equipped with a weak split geometry model M . For
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K a split component, let K̃ be a lift to Ñ . Then there exists C0 = C0(K) such that

the convex hull of K̃ minus cusps lies in a C0-neighborhood of K̃ in Ñ .

Proof. Let Γ = π1(N), and Γ′ = i∗(π1(K))(⊂ Γ).
Then Γ itself is the unique peripheral subgroup. Since Γ′ has infinite index in

Γ, it follows from Theorem 4.15 that Γ′ is geometrically finite. The result follows.
(Cusps need to be excised because the model manifold is biLipschitz homeomorphic
to N minus cusps.) �

Graph Quasiconvexity:
Next, we shall prove that each split component is uniformly graph quasiconvex. We
begin with the following Lemma. Recall that we are dealing with simply or totally
degenerate groups without accidental parabolics.

Lemma 4.17. Let Σ be a component of a proper extended split subsurface Ss
i of S.

Any (non-peripheral) simple closed curve in S appearing in the hierarchy whose free
homotopy class has a representative lying in Σ must have a geodesic representative
in M lying within a uniformly bounded distance of Ss

i in the graph metric dG.

Proof. Suppose a curve v in the hierarchy is homotopic into Σ. Then v is at a
distance of at most 1 in the curve complex from each of the boundary components
of Σ. Since Σ is a proper subsurface of S, the relative boundary ∂S(Σ) 6= ∅. Let
α be such a boundary component. Next, suppose that the geodesic realization of
v in N intersects some block Bs

j (via the correspondence in Alternate Description
4.12). Then v must be at a distance of at most one from some curve σ in the base
geodesic gH forming an element of the pants decomposition of the split surface Ss

j .
By tightness, the distance from α to σ in the curve complex is at most 2. Hence

the distance (≤ |i− j|) of Ss
j from Ss

i (in the dG metric) is ≤ 2n from Lemma 4.4.
Therefore v is realized within a distance 2n of Ss

i in the graph metric dG. �

Recall (Definition 8.8.1 of [Thu80]) that a pleated surface in a hyperbolic
three-manifold N is a complete hyperbolic surface S of finite area, together with an
isometric map h : S → N such that every x ∈ S is in the interior of some geodesic
segment in S which is mapped by h to a geodesic segment in N . Also, h maps
cusps to cusps. We refer the reader to Section 8.8 of [Thu80] for further details. A
pleated surface is said to be incompressible if h∗ : π1(S) → π1(N) is injective. A
standard fact about hyperbolic surfaces and pleated surfaces is Lemma 4.18 below.
(See the proof of Proposition 8.8.5 of [Thu80] for instance.)

An l-thin annulus on a hyperbolic surface Sh is a maximal connected compo-
nent of the set {x ∈ Sh : injradx(S

h) < l
2}. This is the 2-dimensional analogue of

an l-thin Margulis tube. Note that an l-thin annulus may also be a neighborhood
of a cusp in Sh.

Lemma 4.18. [Thu80] [Bon86] For all l > 0 and g, n ∈ N there exists ∆ =
∆(l, g, n) > 0 such that the following holds.
Let Sh be any hyperbolic surface of genus g and n boundary components and/or
cusps. Let Al be the collection of l-thin annuli. Then E(Sh,Al) has diameter less
than ∆ in the electric metric.
Again, let N be a hyperbolic 3-manifold and let Tl be the collection of l-thin Margulis
tubes and cusps in it. Let h : S → N be an incompressible pleated surface. Then
h(S) has diameter less than ∆ in the electric metric on E(N, Tl).



36 MAHAN MJ

Next, we show that any (non-peripheral) simple closed curve vi in S
s
i (not just

hierarchy curves as in Lemma 4.17) must be realized within a uniformly bounded
distance of Ss

i in the graph metric. In fact we shall show further that any pleated
surface which contains at least one boundary geodesic of Σ in its pleating locus lies
within a uniformly bounded distance of Ss

i in the graph metric.

Lemma 4.19. There exists B > 0 such that the following holds:
Let Σ be a proper split subsurface of Ss

i . Then any pleated surface with at least one
boundary component coinciding with a geodesic representative of a non-peripheral

component of ∂Σ must lie within a B-neighborhood of Ss
i in (M,dG) = (E(M̃,K′))/Γ,

where K′ denotes the collection of extended split components in M̃ and Γ is the

fundamental group of M regarded as the group of deck transformations of M̃ . In
particular, every simple closed curve in S homotopic into Σ has a geodesic repre-
sentative within a B-neighborhood of Ss

i in (M,dG).

Proof. Choose a curve vi homotopic to a simple closed curve on Σ. Let α denote
its geodesic realization in N .

Let Σp be any pleated (sub)surface whose boundary coincides with the geodesics
representing the boundary components of Σ. (See [Thu80] for the construction
of such pleated surfaces.) In particular, we may choose Σp such that its pleating
locus contains vi. Since Ss

i is a split surface in M , the topological type of Σp

has finitely many possibilities. By Lemma 4.18 the diameter of Σp is bounded by
∆ = ∆(l) in the electric metric on E(N, Tl). Since the l-thin components of the
boundary of Σp are contained in l-thin tubes bounding Ss

i , it follows that Σp (and
α in particular) lies in a ∆ neighborhood of Ss

i in the electric metric on E(N, Tl).
Since each T ∈ Tl is contained in the image of some K ∈ K′ under the quotient

map (E(M̃,K′)) → (E(M̃,K′))/Γ = (M,dG) the result follows. �

Remark 4.20. In [Bow05], Bowditch indicates a method to obtain a related (stronger)
result that given B1 > 0, there exists B2 > 0 such that any two simple closed curves
realized within a Hausdorff distance B1 of each other in M are within a distance
B2 of each other in the curve complex.

4.5. Drilling and Filling. In this subsection we summarize some material that
will be needed in Section 4.6 to prove uniform graph quasiconvexity of split com-
ponents.

The Drilling Theorem of Brock and Bromberg [BB04], which built on work of
Hodgson and Kerckhoff [HK98] [HK05] is given below. We shall invoke a version of
this theorem which is closely related to one used by Brock and Souto in [BS06].

Theorem 4.21. [BB04] For each L > 1, and n a positive integer, there is an
ℓ > 0 so that if Ngf is a geometrically finite hyperbolic 3-manifold and c1, · · · cn are
geodesics in Ngf with length ℓNgf

(ci) < ℓ for all ci, then there is an L-biLipschitz
diffeomorphism of pairs

h : (Ngf \ ∪iT(ci),∪i∂T(c)) → (N0
gf \ ∪iP(ci),∪i∂P(ci))

where Ngf \ ∪iT(ci) denotes the complement of a standard tubular neighborhood of
∪ici in Ngf , N

0
gf denotes the complete hyperbolic structure on Ngf \∪ici, and P(ci)

denotes a standard rank-2 cusp corresponding to ci.

N0
gf is said to be obtained from Ngf by drilling. We remark here (following

[BB04]) that the drilled manifold is the unique hyperbolic manifold which has the
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same conformal structure on its domain of discontinuity, but has core curves of T
drilled out to give rank 2 parabolics.

The Filling Theorem of Thurston [Thu80] (generalized by Canary [Can96]) we
shall require is stated below.

Theorem 4.22. [Thu80] [Can96] Given any quasifuchsian surface group Γ and
N = H3/Γ there exists δ > 0 depending only on the Euler characteristic of the
surface such that for all x ∈ CC(N), the convex core of N , there exists a pleated
surface Σ such that d(x,Σ) ≤ δ.

4.6. Proof of Uniform Graph-Quasiconvexity. We need to prove the uniform
graph quasiconvexity of split components.

Let Bs be a split block with a splitting l-thin Margulis tube T . We aim at
showing:

Proposition 4.23. Uniform Graph Quasiconvexity of Split Components:

Each (extended) split component K̃ is uniformly graph-quasiconvex in (M̃, dG).

The proof of Proposition 4.23 will occupy this entire subsection.
Let Bs ⊂ B = S × I be a split block with horizontal boundary consisting of

split surfaces Ss
j , S

s
j+1. Let

⋃
i Ti be the union of l-thin Margulis tubes splitting

Bs (we suppress the dependence on the index j for the time being). Let K be a
split component. Then K = (S1 × I) topologically for a subsurface S1 of S. Also,
let ∂sK = ∂S1 × I denote the collection of boundary annuli of K that abut the
splitting tubes. Let ∂S1 =

⋃
i σi = σ be the finite collection of boundary curves. σ

is thus a multicurve. Each σi is homotopic to the core curve of an l-thin splitting
Margulis tube Ti. Let T =

⋃
i Ti. T will be referred to as a multi-Margulis tube.

We have already shown in Lemma 4.16 that π1(S1) ⊂ π1(S) includes into π1(N)
as a geometrically finite subgroup of PSl2(C). Let N1 be the cover of N corre-
sponding to π1(K) = π1(S1). Then N1 is geometrically finite. Let T1 be the
multi-Margulis tube in N1 that consists of tubes that are (individually) isometric
to individual components of the multi-Margulis tube T.

Let N1d be the hyperbolic manifold obtained from N1 by drilling out the core
curves of T1. Since N1 is geometrically finite, so is N1d.

We first observe that the boundary of the augmented Scott core X of N1d is
incompressible away from cusps. To see this, note that X is double covered by a
copy of D× I with solid tori drilled out of it, where D is the double of S1 (obtained
by doubling S1 along its boundary circles).

Identify X with the convex core CC(N1d) of N1d. We also identify D with the
convex core boundary. Since D is incompressible away from cusps, we have the
following.

Lemma 4.24. (Chapter 8, [Thu80]) D is a pleated surface.

Since N1 is the cover of N corresponding to π1(K) ⊂ π1(N), K lifts to an
embedding into N1. Adjoin the multi-Margulis tube T1 to (the lifted) K to get an
augmented split component K1. Let K1d ⊂ N1d denote K1 with the components
of T1 drilled. We want to show that D lies within a uniformly bounded distance of
K1d in the lifted graph metric on N1d. This would be enough to prove a version of
Proposition 4.23 for the drilled manifold N1d as the split geometry structure gives
rise to a graph metric on N , hence a graph metric on N1 and hence again, a graph
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metric on N1d. Finally, we shall use the Theorem 4.21 to complete the proof of
Proposition 4.23.

Lemma 4.25. There exists C1 such that for any split component K, D lies within
a uniformly bounded neighborhood of K1d in N1d.

Proof. Case 1: D ∩K1d 6= ∅
If D intersects K1d, then the Lemma follows directly from Lemma 4.18: Incom-
pressible pleated surfaces have bounded diameter in the graph metric dG.

Case 2: D ∩K1d = ∅
This is the more difficult case because a priori D might lie far from K1d. Recall
that F : N →M is a biLipschitz homeomorphism between the hyperbolic manifold
and the model manifold. Let M1 = F (N1). Let B denote the block (split or thick)
in the model manifold M containing F (K). Let B1 ⊂M1 denote its lift to M1. Let
B1d denote B1 with T1 drilled.

Then B1d−F (K1d) is topologically a disjoint union of ‘vertically thickened flaring
annuli’ F (Ai), say. Each Ai ⊂ F−1(B1) is of the form S1 × [0,∞) where S1 × {0}
lies on Ti.

More elaborately, what this means is the following. Identifying B with S × I,
we may identify B1 with Sa

1 × I, where Sa
1 is the cover of S corresponding to the

subgroup π1(S1) ⊂ π1(S). Then S
a
1 may be regarded as S1 union a finite collection

of flaring annuli F (Ai) (one for each boundary component of S1). Thus B1 is the
union of a core F (K1) and a collection of vertically thickened flaring annuli of the
form F (Ai) × I. Hence B1d is the union of a core F (K1d) and the collection of
vertically thickened flaring annuli F (Ai)× I. Also the boundary ∂Ai = Ai ∩Ti is a
curve of fixed length ǫ0. Let us fix one such annulus A1. Refer figure below (where
we have removed subscripts for convenience):

A

K

X

D

Figure: Graph Quasiconvexity

Recall that D bounds X and X contains K1d. Thicken the convex core slightly
to Nǫ(X) such that its boundary, Dǫ is a smooth surface.

Let M̃1 denote the cover of M1 corresponding to i∗π1(A1), where i denotes the

inclusion map. Let D̃ǫ denote the lift of Dǫ to M̃1. Then each lift A1×{t} separates

D̃ǫ since i∗(π1(A1)) ⊂ π1(D) is a subgroup such that the cover D̃ has two ends.
Hence, by a small homotopy of A1, we can assume that

a) F−1(F (A1) × I) is a smooth manifold (with boundary) biLipschitz homeomor-
phic to (F (A1)× I).
b) F (Dǫ) is transverse to each (F (A1) × {t}) for t belonging to an interval I1 of
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some fixed length h0 > 0 (equal to the uniform lower bound on the height of split
blocks Bs) contained in I.

Since A1×{t} separates D̃ǫ in Ñ1, it follows that for each t ∈ I1, F (Dǫ) intersects
(F (A1) × {t}) in an essential loop αt parallel to ∂A1. Hence Dǫ must contain an
annulus of the form α × I1 ⊂ F (A1) × I1. Also the the length of I1 is at least h0

L
,

where L is the biLipschitz constant for F . Since this is true for all ǫ, it is also true
for the pleated surface D. Hence for at least some t ∈ I, the length of α × {t}

is uniformly bounded (by 2Lπ(4g−4)
h0

) by the Gauss-Bonnet Theorem applied to D.
Much more is true in fact, but this is enough for our purposes.

Since α × {t} ⊂ A1 × {t} and the latter is an exponentially flaring annulus,
it follows that there exist uniform constants C0 > 0, η > 1 such that if d(α ×
{t}, ∂(A1 × {t}) ≥ d0 then the length of α× {t} is bounded below by C0η

d0 .
These two estimates imply that there is some point p ∈ α × {t} ⊂ D such that

d(p, T1) is uniformly bounded (in terms of the genus of S and the minimal height
of split blocks h0), where T1 is the drilled Margulis tube intersecting A1 × {t}
non-trivially.

By Lemma 4.18 and using the biLipschitz homeomorphism F between N1d and
M1d, the diameter of D is uniformly bounded in the graph metric lifted to M1d.
Hence, by the triangle inequality, D lies in a uniformly bounded neighborhood of K
in the graph metric (using either of the descriptions of the graph metric in Remark
4.12). �

An Alternate Proof of Lemma 4.25: A simpler proof of the fact that D lies in
a uniformly bounded neighborhood of K1 in the graph metric may alternately be
obtained directly as follows. First, thatM1 is geometrically finite by the Covering
Theorem of Thurston [Thu80] and Canary [Can96] (See Lemma 4.16). Next, by a
theorem of Canary and Minsky [CM96], it follows that the convex hull boundary D
ofM1 can be approximated by simplicial hyperbolic surfaces (see [CM96] for details)
homotopic to D with short tracks. Thus any simplicial hyperbolic approximant Da

would have to have bounded area and hence bounded diameter modulo Margulis
tubes (as in Lemma 4.19). Thus so would D. Now, we repeat the argument in the
proof of Lemma 4.26, to conclude that D and hence the convex core CC(M1) of
M1 lies in a uniformly bounded neighborhood of K1 in the graph metric. 2

This approach would circumvent the use of the Drilling Theorem at this stage.
However, since we shall again need it below, we retain our approach here.

Since D bounds X, we would like to claim that the conclusion of Lemma 4.25
follows with X in place of D. Though this does not a priori follow in the hyperbolic
metric, it does follow for the graph metric. This is because the double cover of X
is a ’drilled quasifuchsian’ manifold (i.e. it is essentially (D × I) with some short
curves drilled). Further, any point in the convex core of a quasifuchsian (D× I) is
close to a pleated surface by Theorem 4.22. Essentially the same argument as in
Lemma 4.25 applies now. Details will be given below.

Lemma 4.26. There exists C1 such that for any split component K, K1d is uni-
formly graph-quasiconvex in M1d.

Proof. X is double covered by D× I with cores of some Margulis tubes drilled. Let
X1 denote this double cover. Note that X1 is convex, being a double cover of the
convex compact X. By Theorem 4.21, there exists l > 0 such that the drilled and



40 MAHAN MJ

undrilled manifolds are 2-biLipschitz homeomorphic away from Margulis tubes and
cusps provided the Margulis tubes are l-thin.

Perform (1,m) Dehn filling on X1 with sufficiently large m = m(l) to ensure
that the resulting Margulis tube is l-thin. Let X1f be the resulting Dehn-filled
manifold. By Theorem 4.21, X1f is uniformly quasiconvex in M1f = H3/Γ where
Γ is a quasiFuchsian surface group obtained by the above Dehn filling. (Theorem
4.21 gives a uniform biLipschitz map outside Margulis tubes.)

Next, by Theorem 4.22, for all x ∈ X1f there exists a pleated surface Σ ⊂ X1f

such that d(x,Σ) ≤ δ where δ depends only on the genus of D.
Returning to X1 via the Drilling Theorem 4.21 we see that for all x ∈ X1,

(1) Either there exists a uniformly biLipschitz image of a hyperbolic surface
Σ1 ⊂ X1 such that d(x,Σ1) ≤ δ. This is the case that the pleated surface
Σ misses all filled Margulis tubes.

(2) Or, there exists a uniformly biLipschitz image of a subsurface Σ1 of a hy-
perbolic surface such that d(x,Σ1) ≤ δ and such that the boundary of Σ1

lies in a Margulis tube. This is the case that the pleated surface Σ meets
some filled Margulis tubes. Here, we can take Σ1 to be the image of the
component of (Σ minus Margulis tubes) that lies near x.

Again, passing down to X under the double cover (from X1 to X), we have, for
all x ∈ X,

(1) Either there exists a uniformly biLipschitz image of a hyperbolic surface
Σ1 ⊂ X parallel to D such that d(x,Σ1) ≤ δ.

(2) Or, there exists a uniformly biLipschitz image of a subsurface Σ1 of a hy-
perbolic surface such that d(x,Σ1) ≤ δ and such that the boundary of Σ1

lies on a Margulis tube. Further, Σ1 is incompressible in the complement
of l-thin Margulis tubes.

In either case, the argument for Lemma 4.25 now shows that for all x ∈ X the
distance dG(x,K1d) is uniformly bounded in the graph-metric dG. Thus, we have
shown that K1d is uniformly graph-quasiconvex in M1d. �

To complete the proof of Proposition 4.23 it is necessary to translate the content
of Lemma 4.26 to the ‘undrilled’ manifold N1. We shall need to invoke the Drilling
Theorem 4.21 again.

Concluding the Proof of Proposition 4.23:
While recovering data about N1, it is slightly easier to handle the case where
D ∩K1d = ∅. Since we shall use the convex core boundary for both the drilled as
well as the undrilled manifolds in the rest of the proof, we change notation slightly
and use
a) Dd for the convex core boundary of the drilled manifold Nd.
b) D for the convex core boundary of the undrilled manifold N .

Case 1: Dd ∩K1d = ∅
Filling N1d along the (drilled) T1, we get back N1. Since Dd misses K1d, the filled
image of X in N1 is C1-quasiconvex for some C1, depending on the biLipschitz
constant of Theorem 4.21 above. (One can see this easily for instance from the fact
that there is a uniform Lipschitz retract of N1d −X onto Dd).

Case 2: Dd ∩K1d 6= ∅
If Dd meets some Margulis tubes T1, we enlarge D to D′ in X1 by letting D′ be
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the boundary of X1 = X ∪T1. The annular intersections of D with Margulis tubes
are replaced by boundary annuli contained in the boundary of T1.

It is easy enough to check that X1 is uniformly quasiconvex in the hyperbolic

metric: look at a universal cover X̃1 of X1 in Ñ1. Then X̃1 is a union of X̃ and the

lifts of T that intersect it. All these lifts of T are disjoint. Hence X̃1 is a ‘star’ of

convex sets all of which intersect the convex set X̃. By (Gromov) δ-hyperbolicity,
such a set is uniformly quasiconvex.

Then as before, there is a uniform Lipschitz retract of N1d −X1 onto D′. But
now D′ misses the interior of K1d and we can apply the previous argument.

By Theorem 4.21 above, the diameter of the convex core boundary D (or D′

if D intersects some Margulis tubes) in N1 is bounded in terms of the diameter
of the convex core boundary Dd in N1d and the uniform biLipschitz constant L
obtained from Theorem 4.21 above. Further, the distance of D from K1∪T1 in N1

is bounded in terms of the distance of Dd fromK1d∪∂T
1 in N1d and the biLipschitz

constant L.
Hence we can translate the content of Lemma 4.26 to the ‘undrilled’ manifold

N1. This concludes the proof of Proposition 4.23: Split components are uniformly
graph-quasiconvex. 2

Remark 4.27. Our proof above uses the fact that the convex core X of N1d is a
rather well-understood object, namely, a manifold double covered by a drilled convex
hull of a quasi-Fuchsian group. Hence, it follows that the convex core X is uniformly
congested, i.e. it has a uniform upper bound on its injectivity radius. This is an
approach to a conjecture of McMullen [Bie] (See also Fan [Fan99a] [Fan99b]).
A further point to be noted is that we have implicitly used here the idea of drilling
disk-busting curves introduced by Canary in [Can93] and used again by Agol in his
resolution of the tameness conjecture [Ago04].

Remark 4.28. Recall that extended split components were defined in Ñ by adjoin-

ing Margulis tubes abutting lifts of split components to Ñ . The proof of Proposition
4.23 establishes also the uniform graph-quasiconvexity of extended split components

in Ñ . The metric obtained by electrocuting the family of convex hulls of extended

split components in Ñ will be denoted as dCH .

4.7. Hyperbolicity in the graph metric. First a word about the modifications
necessary for Simply Degenerate Groups.

Simply Degenerate Groups We have so far mostly assumed, for simplicity, that
we are dealing with totally degenerate groups. In a simply degenerate N , the
Minsky model is uniformly biLipschitz to N only in a neighborhood E of the end.
In this case (N \E) is homeomorphic to S × I. We declare (N \E) to be the first
block - a ‘thick block’ in the split geometry model. Thus the boundary blocks of
Minsky are put together to form one initial thick block. This changes the biLipschitz
constant, but the rest of the discussion, including Proposition 4.23 go through as
before.

Construct a second auxiliary metric Ñ2 = (Ñ , dCH) by electrocuting the ele-

ments CH(K̃) of convex hulls of extended split components. We show that the

spaces Ñ1 = (Ñ , dG) and Ñ2 = (Ñ , dCH) are quasi-isometric. In fact we show that



42 MAHAN MJ

the identity map from Ñ to itself induces this quasi-isometry after the two different
electrocutions.

Lemma 4.29. The identity map from Ñ to itself induces a quasi-isometry of Ñ1

and Ñ2.

Proof. We use d1, d2 as shorthand for the electric metrics dG and dCH on Ñ1 and

Ñ2. Since K̃ ⊂ CH(K̃) for every split component, we have straightaway

d1(x, y) ≤ d2(x, y) for all x, y ∈ M̃

To prove a reverse inequality with appropriate constants, it is enough to show

that each set CH(K̃) (of diameter one in Ñ2) has uniformly bounded diameter

in Ñ1. To see this, note that by definition of graph-quasiconvexity, there exists n

such that for all K̃ and each point a in CH(K̃), there exists a point b ∈ K̃ with
d1(x, y) ≤ n. Hence by the triangle inequality,

d2(x, y) ≤ 2n+ 1 for all x, y ∈ CH(K̃)

Therefore,

d2(x, y) ≤ (2n+ 1)(d1(x, y) + 1) for all x, y ∈ Ñ

This proves the Lemma. �

Corollary 4.30. Ñ1 = (Ñ , dG) is Gromov-hyperbolic.

Proof. By Lemma 2.3, Ñ2 = (Ñ , dCH) is a δ-hyperbolic metric space for some δ ≥ 0.

By quasi-isometry invariance of Gromov hyperbolicity, so is Ñ1 = (Ñ , dG). �

We have thus constructed a sequence of split surfaces that satisfy the follow-
ing two conditions in addition to Conditions (1)-(6) of Remark 4.9 for the Minsky
model of a simply or totally degenerate surface group:

Definition 4.31. A model manifold of weak split geometry is said to be of split
geometry if

7) Each split component K̃ is quasiconvex (not necessarily uniformly) in the hyper-

bolic metric on Ñ .
8) Equip Ñ with the graph-metric dG obtained by electrocuting (extended) split com-

ponents K̃. Then the convex hull CH(K̃) of any split component K̃ has uniformly
bounded diameter in the metric dG.

Hence by Lemma 4.16 and Proposition 4.23 we have the following.

Theorem 4.32. Any simply or doubly degenerate surface group without accidental
parabolics is biLipschitz homeomorphic to a model of split geometry.
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5. Constructing Quasiconvex Ladders and Quasigeodesics

To avoid confusion we summarize the various metrics on M̃, Ñ and related mod-
els that will be used:
1) The hyperbolic metric d on Ñ .
2) The weld-metric dwel obtained after welding the boundaries of Margulis tubes of

M̃ to standard annuli (and before tube electrocution) where each horizontal circle
of a Margulis tube T has a fixed non-zero length. This gives the welded model
manifold (Mwel, dwel).
3) The tube-electrocuted metric (Mtel, dtel). We remind the reader that the under-
lying manifolds Mwel,Mtel are the same.

4) The graph metric dG. This is the notation for the electric metric on E(M̃wel,K),
where K denotes the collection of split components. We shall also use it for the

electric metric on E(Ñ ,K′), where K′ denotes the collection of extended split com-

ponents in Ñ . The two electric metrics are quasi-isometric by Remark 4.12.

There will be two (families of) metrics on the universal cover S̃ of S:
1) The graph-electrocuted metric dGel obtained by electrocuting the amalgamation

components of S̃ that the lift of a weld-curve cuts S̃ into.

2) The (Gromov) δ-hyperbolic metric d on S̃ obtained by lifting the metric on the

welded surface. Recall that the metric d on S̃ is the lift to the universal cover of a
metric on S obtained by cutting out thin annuli and then welding the boundaries
of the resulting extended split surface together. The latter is uniformly biLipschitz
to a fixed hyperbolic structure on S. Hence we shall use d to denote both the
hyperbolic metric as well as those uniformly biLipschitz to it.

Note that the path metric induced on S̃ ⊂ B̃ by the graph metric dG on

E(M̃wel,K) is precisely dGel.

5.1. Construction of Quasiconvex Sets for Building Blocks. In this subsec-
tion, we describe the construction of a hyperbolic ladder Lλ restricted to build-
ing blocks B. Putting these together we will show later that Lλ is quasiconvex in

(M̃wel, dG).

Construction of Lλ(B) - Thick Block
Let B be a thick block. By definition B is a uniformly biLipschitz homeomorphic
image of S × I. Let FB : S × I → B denote the biLipschitz homeomorphism.

Let λ = [a, b] be a geodesic segment in S̃. Let λBi denote FB(λ×{i}) for i = 0, 1.

Equivalently, let φ : FB(S̃ × {0}) → FB(S̃ × {1}) be given by φ(FB(x, 0)) =
FB(x, 1). The induced map on geodesics will be denote by Φ, which can be described

as follows. Let λ be a geodesic joining a, b ∈ FB(S̃ × {0}) and let Φ(λ) denote the
a geodesic joining φ(a), φ(b). Let λB1 denote Φ(λ)× {1}.

For the universal cover B̃ of the thick block B, define

Lλ(B) =
⋃

i=0,1 λBi

Definition 5.1. Each S̃ × i for i = 0, 1 will be called a horizontal sheet of B̃
when B is a thick block.

Construction of Lλ(B) - Split Block

As above, let λ = [a, b] be a geodesic segment in S̃, where S is regarded as the
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base surface of B in the tube electrocuted model. Let λB0 denote λ × {0}. Then
for each split component K, K ∩ (S × i) (i = 0, 1) is an amalgamation component

of S̃. Also, S × i, (i = 0, 1), are the boundary welded split surfaces forming the
horizontal boundary of B, uniformly biLipschitz to S with a fixed hyperbolic metric.

Note further that the induced path metric dGel on S̃ × i (i = 0, 1) is the electric

pseudo-metric on S̃ obtained by electrocuting amalgamation components of S̃.
Let λGel denote the electro-ambient quasigeodesic (Lemma 2.16) joining a, b in

(S̃, dGel). Let λB0 denote λGel × {0}.
Then the map φ : S × {0} → S × {1} taking (x, 0) to (x, 1) is a component

preserving diffeomorphism. Let φ̃ be the lift of φ to S̃ equipped with the electric

metric dGel. Then φ̃ is an isometry by Lemma 2.19. Let Φ denote the induced

map on electro-ambient quasigeodesics, i.e. if µ = [x, y] ⊂ (S̃, dGel), then Φ(µ) =
[φ(x), φ(y)] is the electro-ambient quasigeodesic joining φ(x), φ(y). Let λB1 denote
Φ(λGel)× {1}.

For the universal cover B̃ of the split block B, define:

Lλ(B) =
⋃

i=0,1 λBi

Definition 5.2. Each S̃ × i for i = 0, 1 will be called a horizontal sheet of B̃
when B is a split block.

Construction of Πλ,B - Thick Block

For i = 0, 1, let ΠBi denote nearest point projection of S̃×{i} onto λBi in the path

metric on S̃ × {i}.

For the universal cover B̃ of the thick block B, define:

Πλ,B(x) = ΠBi(x), x ∈ S̃ × {i}, i = 0, 1

Construction of Πλ,B - Split Block

For i = 0, 1, let ΠBi denote nearest point projection of S̃ × {i} onto λBi.
Here the nearest point projection is taken in the sense of the definition preced-

ing Lemma 2.23, i.e. minimizing the ordered pair (dGel, d) in the lexicographic
order on R×R (where dGel, d refer to electric and (biLipschitz)-hyperbolic metrics
respectively.)

For the universal cover B̃ of the split block B, define:

Πλ,B(x) = ΠBi(x), x ∈ S̃ × {i}, i = 0, 1

Πλ,B is a coarse Lipschitz retract - Thick Block
The proof for a thick block is exactly as in [Mit98b] and [Mj10a]. We omit it

here.

Lemma 5.3. (Theorem 3.1 of [Mj10a]) There exists C > 0 such that the following
holds:
Let x, y ∈ S̃ × {0, 1} ⊂ B̃ for some thick block B. Then d(Πλ,B(x),Πλ,B(y)) ≤
Cd(x, y).

Πλ,B is a retract - Split Block

Lemma 5.4. There exists C > 0 such that the following holds:

Let x, y ∈ S̃ × {0, 1} ⊂ B̃ for some split block B. Then dG(Πλ,B(x),Πλ,B(y)) ≤
CdG(x, y).
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Proof. It is enough to show this for the following cases:

Case 1) x, y ∈ S̃ × {0} OR

x, y ∈ S̃ × {1}.
This follows directly from Lemma 2.20.

Case 2) x = (p, 0) and y = (p, 1) for some p ∈ S̃.

First note that (S̃, dGel) is uniformly δ-hyperbolic as a metric space (in fact uni-

formly quasi-isometric to a tree) and φ̃ : S̃ × {0} → S̃ × {1} induces an isometry
of the dGel metric by Lemma 2.19 as φ is a component preserving diffeomorphism.
Case 2 now follows from the fact that that quasi-isometries and nearest-point pro-
jections almost commute (Lemma 2.21 ). �

In the next section, we shall come across the situation where one horizontal

surface S̃ × {i} can occur as the bottom surface of a split block B2 and as the top
surface of a thick block B1, or vice versa. Alternately it could occur as the bottom
surface of a split block and as the top surface of a different split block where the
collection of splitting tubes differ. In either situation we shall denote the bottom
block by B1 and the top block by B2. In this case, the nearest point projection
could be in any of the following senses:
a) Projection onto a (biLipschitz)-hyperbolic geodesic [a, b] in the (biLipschitz)-

hyperbolic metric d on S̃.
b) Projection onto an electro-ambient quasigeodesic [a, b]ea minimizing the ordered
pair (dGel1, d), where dGel1 denotes the electric metric on S induced by the split
block B1.
c) Projection onto an electro-ambient quasigeodesic [a, b]ea minimizing the ordered
pair (dGel2, d), where dGel2 denotes the electric metric on S induced by the split
block B2.

Lemma 5.5. Πλ,B is coarsely well-defined: There exists C0 > 0 such that the
following holds.
Suppose that Π1

λ,B and Π2
λ,B are projections defined in any two of the above senses.

Then

d(Π1
λ,B(p),Π

2
λ,B(p)) ≤ C0

for all p ∈ S̃.

Proof. By Lemma 2.23, hyperbolic and electric projections of p onto the (Gromov)
δ-hyperbolic geodesic [a, b] and the electro-ambient geodesic [a, b]ea respectively
‘almost agree’: If πh and πe denote the hyperbolic and electric projections, then
there exists (uniform) C1 > 0 such that d(πh(p), πe(p)) ≤ C1. The Lemma follows
if one of the blocks are thick.

If both blocks are split blocks, then d(πh(p),Π
i
λ,B(p)) ≤ C1, for i = 1, 2 by the

above argument. Taking C0 = 2C1, we are through. �

5.2. Construction of Lλ and Πλ. A subset Z ⊂ (X, d) shall be called a coarse
k-net in X if X = Nk(Z, d). A subset Z ⊂ (X, d) shall be called a coarse net if it
is a coarse k-net in X for some k.

Given a manifold M of split geometry, we know that M is homeomorphic to
S × J for J = [0,∞) or (−∞,∞). By definition of split geometry, there exists a
sequence of blocks Bi (thick or split) such that Mwel = ∪iBi. Denote:
• Lµ,Bi

= Liµ
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• Πµ,Bi
= Πiµ

Now for a block B = S × I (thick or amalgamated), a natural map ΦB may be

defined taking µ = Lµ(B)∩FB(S̃×{0}) to a geodesic Lµ(B)∩FB(S̃×{1}) = ΦB(µ).

Similarly Φ−1
B may be defined taking

µ = Lµ(B) ∩ FB(S̃ × {1}) to Lµ(B) ∩ FB(S̃ × {0}) = Φ−1
B (µ).

Let the map ΦBi
(resp. Φ−1

Bi
) be denoted as Φi (resp. Φ

−1
i ).

We start with a reference block B0 and a reference geodesic segment λ = λ0 on

the ‘lower surface’ S̃ × {0}. Now inductively define:
• λi+1 = Φi(λi) for i ≥ 0
• λi−1 = Φ−1

i (λi) for i ≤ 0

Finally define

Lλ =
⋃

i

λi.

Lλ is the hyperbolic ladder promised.

Recall that each S̃ × i for i = 0, 1 is called a horizontal sheet of B̃. We will

restrict our attention to the union of the horizontal sheets M̃H ⊂ M̃wel with the

metric induced from the graph model. Since M̃H is a coarse 1-net in (M̃wel, dG),
we will be able to get all the coarse information we need by restricting ourselves to

M̃H .

Clearly, Lλ ⊂ M̃H ⊂ M̃wel.

Let the bottom horizontal sheet of B̃i be denoted as S̃i. Πiλ is defined to be the
nearest point projection of S̃i onto λi.

Remark 5.6. As noted earlier, the nearest point projection Πiλ could be in any
of the following senses:
a) Projection onto a (biLipschitz)-hyperbolic geodesic [a, b] in the (biLipschitz)-

hyperbolic metric d on S̃.
b) Projection onto an electro-ambient quasigeodesic [a, b]ea minimizing the ordered
pair (dGel1, d), where dGel1 denotes the electric metric on S induced by the split
block B1 whose top boundary is S.
c) Projection onto an electro-ambient quasigeodesic [a, b]ea minimizing the ordered
pair (dGel2, d), where dGel2 denotes the electric metric on S induced by the split
block B2 whose bottom boundary is S.
By Lemma 5.5, Πiλ is coarsely well-defined, i.e. any two choices are a
uniformly bounded d−distance apart.

Hence we define the projection

Πλ =
⋃

i

Πiλ.

Πλ is defined from M̃H to Lλ.

Theorem 5.7. There exists C > 0 such that for any geodesic λ = λ0 ⊂ S̃ × {0} ⊂

B̃0, the retraction Πλ : M̃H → Lλ satisfies

dG(Πλ(x),Πλ(y)) ≤ CdG(x, y) + C.
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Proof. This is now a direct consequence of Lemmas 5.3 and 5.4 and Remark 5.6. �

For Theorem 5.7 above, note that all that we really require is that the universal

cover S̃ is a Gromov-hyperbolic metric space. There is no restriction on M̃H . In
fact, Theorem 5.7 would hold for general stacks of (Gromov) hyperbolic metric
spaces with blocks of split geometry. However, in the present situation we have
more

Corollary 5.8. Lλ is quasiconvex in (M̃wel, dG).

Proof. By Corollary 4.30 (M̃wel, dG) is (Gromov)-hyperbolic. Hence Lλ is a coarse
Lipschitz retract in a (Gromov)-hyperbolic space by Theorem 5.7. Therefore Lλ is

quasiconvex in (M̃wel, dG). �

5.3. Heights of Blocks. Recall that each thick or split block Bi is identified with
S × I where each fiber {x} × I has length ≤ li for some li, called the thickness of
the block Bi.

Observation: M̃H is a ‘coarse net’ in (M̃wel, dG) in the graph metric, but not in
the weld metric dwel, the tube-electrocuted metric dtel, nor the model metric dM
(cf. Remark 4.12 for dM ). In the graph model, any point can be connected by a
vertical segment of length ≤ 1 to one of the boundary horizontal sheets.

However, there are points within split components which are at a dwel-distance
of the order of li from the boundary horizontal sheets. Since li could be arbitrary,

M̃H is no longer necessarily a ‘coarse net’ in (M̃, dwel) or (M̃, dtel).

Lemma 5.9. There exists a function g : Z → N such that for any block Bi (resp.
Bi−1), and x ∈ λi, there exists x′ ∈ λi+1 (resp. λi−1) for i ≥ 0 (resp. i ≤ 0),
satisfying:

dwel(x, x
′) ≤ g(i),

dM (x, x′) ≤ g(i)

Proof. Let µ ⊂ S̃ × {0} ⊂ B̃i be a geodesic in a (thick or split) block. Then from
the product structure on the block Bi, there exists a (Ki, ǫi)- quasi-isometry ψi

from S̃ × {0} to S̃ × {1} and Ψi is the induced map on geodesics. Hence, for any
x ∈ µ, ψi(x) lies within some bounded distance Ci of Ψi(µ). But x is connected to
ψi(x) by
Case 1 - Thick Blocks: a vertical segment of uniformly bounded length (≤ C say).

Case 2 - Split Blocks:

Thus x can be connected to a point x′ ∈ Ψi(µ) by a path of length less than
g(i) = li + Ci + C. Recall that λi is the geodesic on the lower horizontal surface

of the block B̃i. The same can be done for blocks B̃i−1 and going down from λi to
λi−1.

By Remark 4.12, the same argument works for the model manifold (M̃, dM ). �

6. Recovery

The previous Section was devoted to constructing a quasiconvex ladder in the
graph metric which is an electric metric. In this section we shall be concerned with
recovering information about hyperbolic geodesics from electric ones. Since a host of
metrics will make their appearance in this section, we shall refer to (quasi)geodesics



48 MAHAN MJ

in (M̃wel, dG), (M̃wel, dwel), (M̃tel, dtel) and (M̃, dCH) as dG-(quasi)geodesics, dwel-
(quasi)geodesics, dtel-(quasi)geodesics and dCH -(quasi)geodesics respectively. Re-

call that the union of the horizontal sheets S̃i ⊂ M̃wel is denoted as M̃H and that

the projection Πλ occurring in Theorem 5.7 is defined only on M̃H and not all of

M̃wel.

6.1. Scheme of Recovery. The recovery is in several stages. We sketch the
scheme of recovery in some detail in this subsection for the convenience of the
reader. A first problem in recovering data about hyperbolic geodesics from dG-

geodesics is the absence of canonical representatives in (M̃wel, dwel) of dG-geodesics.

In Section 6.2, we address this problem by making a choice of paths in (M̃wel, dwel)
representing dG-geodesics. We call these admissible paths. Roughly speaking, ad-
missible paths are built up of

a) vertical segments of the form {x} × [0, 1] ⊂ B̃ = S̃ × [0, 1], where B is a block

(thick or split) and x ∈ S̃.

b) horizontal segments consisting of geodesics in the horizontal sheets of M̃H .

Let λ ⊂ S̃(⊂ M̃wel) be a geodesic in the intrinsic metric on S̃, where S is identified

with the base surface S×{0} of the first block in M̃H . Let βe denote an admissible

path representing a dG-geodesic joining the endpoints of λ in (M̃wel, dG).
We would like to project βe using Πλ onto the ladder Lλ to obtain a quasigeodesic

contained in Lλ. Unfortunately, Πλ is defined only on M̃H and there is no natural

way to extend it to all of M̃wel. To circumvent this problem we first define in
Section 6.2 a subcollection of the family of admissible paths, called Lλ-admissible
paths. Roughly speaking, Lλ-admissible paths are those admissible paths whose
horizontal segments lie on or near Lλ.

Then in Section 6.3 we project βe∩M̃H using Πλ onto the ladder Lλ. Since βe is
itself an admissible path, there is a sequence of points a1, b1, a2, b2, · · · , ak, bk such
that the piece of βe joining ai to bi is horizontal, whereas the piece of βe joining bi
to ai+1 is vertical. In particular, bi and ai+1 must lie in the same split component
if they lie in (the universal cover of) a split block. In this case Πλ(bi) and Πλ(ai+1)
must also lie in the same split component. This allows us to join the sequence of
points Πλ(a1),Πλ(b1),Πλ(a2),Πλ(b2), · · · ,Πλ(ak),Πλ(bk) by alternating horizontal
and vertical segments to obtain an Lλ-admissible path βadm representing a (uni-

form) dG-quasigeodesic joining the endpoints of λ in (M̃wel, dG). Lemma 6.5 now

establishes that if λ lies outside a large ball about a reference point in S̃, then βadm
also lies outside a large ball about a reference point in (M̃wel, dwel).

In Section 6.4 we construct an electro-ambient quasigeodesic βea in (M̃wel, dG)
from the Lλ-admissible path βadm, constructed in Section 6.3. The idea is simple.

Denote by K̃ij ⊂ B̃i the split components in the universal cover of a split block

Bi. Replace the intersection βadm ∩ K̃ij (of βadm with any such split component

K̃ij) by a geodesic in K̃ij joining the end-points of βadm ∩ K̃ij . Then βea continues

to satisfy the conclusions of Lemma 6.5, i.e. if λ lies outside a large ball in S̃,

then βea lies outside a large ball in (M̃wel, dwel). What is crucial at this stage of

the recovery is the quasiconvexity of S̃i and S̃i+1 in B̃i, where the quasiconvexity
constant depends only on i.
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Finally in Section 6.5, we construct an electro-ambient quasigeodesic βea2 in

(M̃, dCH) from βea. To do this, we first replace βea by a path βea1 in M̃ such
that βea1 coincides with βea outside Margulis tubes and consists of hyperbolic
geodesic segments within Margulis tubes. Then as above, we replace the intersection

βea1 ∩ CH(K̃ij) (of βea1 with the convex hull CH(K̃ij) of a split component K̃ij)

by a geodesic in CH(K̃ij) joining the end-points of βea1 ∩CH(K̃ij). This gives us

the required electro-ambient quasigeodesic βea2 in (M̃, dCH). Again, βea2 continues

to satisfy the conclusions of Lemma 6.5, i.e. if λ lies outside a large ball in S̃, then

βea2 lies outside a large ball in M̃ (where the latter is equipped with the model
metric). The last statement follows from the uniform graph quasiconvexity of split
components (Proposition 4.23).

It is a small step from here to the main Theorem 7.1 in Section 7; so we mention

it here. Lemma 2.5 ensures that the geodesic βh in M̃ joining the end-points of
βea2 lies in a uniformly bounded neighborhood of βea2 (see the figure just after
Lemma 2.5). Note that it is at this stage that we use explicitly the weak relative

hyperbolicity of M̃ relative to the collection of convex hulls of split components.
Though βea2 could be very far from a hyperbolic geodesic, Lemma 2.5 forces βh to

lie in a bounded neighborhood of it. Hence if λ lies outside a large ball in S̃, then

βh lies outside a large ball in M̃ . Lemma 1.8 now furnishes the Cannon-Thurston
map we want.

6.2. Admissible Paths. We want to first define a collection of paths lying in a

bounded neighborhood of Lλ in (M̃wel, dG). Since Lλ is not connected, it does not
make sense to speak of the path-metric on Lλ. To remedy this we shall introduce
in this subsection the class of Lλ-elementary admissible paths whose horizontal

pieces are contained in a neighborhood of Lλ in M̃H . Further the distance of Lλ-
elementary admissible paths from Lλ will be controlled. An Lλ-admissible path
will be a composition of Lλ-elementary admissible paths.

We first define admissible paths in general. Let B be a thick or split block in
Mwel. We shall identify B with a product S × I as usual. In particular for B a

split block, and any x ∈ S̃, a vertical segment of the form x× [0, 1] will be assumed

to be contained in some split component K̃ ⊂ B̃.

Definition 6.1. An admissible path in B̃ (⊂ M̃wel) is a path that can be de-
composed into subpaths of the following two types:

1) Horizontal segments along some S̃ × {i} for i = {0, 1}.

2) Vertical segments of the form x× [0, 1] where x ∈ S̃.

An admissible path σ in M̃wel is a path such that for every (thick or split)

block B, any connected component of σ ∩ B̃ is an admissible path in B̃.
An admissible K− quasigeodesic is an admissible path that is aK−quasigeodesic

in (M̃wel, dG).

Lemma 6.2. Given K ≥ 1 there exists K1 ≥ 1 such that the following holds:

Let βe be a (dG−) K−quasigeodesic in (M̃wel, dG). Then there exists an admissible
K1−quasigeodesic β′

e joining the end-points of βe.

Proof. Without loss of generality, we can assume that βe does not back-track rel-
ative to the collection of split components, as any back-tracking can be removed
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without increasing the dG−length of βe (see [Far98] for instance). We shall now
convert βe into an admissible electric quasigeodesic without backtracking joining
the same pair of points as βe. To do this we shall look at connected components

of βe ∩ B̃ for any block B and replace them with admissible paths. We identify

B with S × [0, 1] and we call S̃ × {0} and S̃ × {1} the lower and upper boundary

components of B̃. Also let P0, P1 denote the natural projections from S̃ × [0, 1] to

S̃ × {0} and S̃ × {1} respectively given by P0(x, t) = (x, 0) and P1(x, t) = (x, 1).

Now let B be a block (thick or split) and let βe ∩ B̃ 6= ∅. Let β1 be a connected

component of βe ∩ B̃. Let b1, b2 be the end-points of β1. Two cases arise.
If both b1, b2 belong to the same boundary component, then we replace β1 by

β′
1 = Pi(β1), where i = 0 or 1 according as b1, b2 ∈ S̃ × {0} or S̃ × {1}.
If b1, b2 belong to different boundary components, then assume without loss of

generality that b1 ∈ S̃ × {0} and let b2 = (z, 1) ∈ S̃ × {1}. Then replace β1 by
β′
1 = P0(β1) ∪ {z} × [0, 1].
Performing this replacement for every block B and every connected component

of βe∩ B̃ we obtain the required admissible quasigeodesic β′
e joining the end-points

of βe.
It remains to show that if βe is a (dG−) K−quasigeodesic, then β′

e is indeed an
admissible K1−quasigeodesic, where K1 depends only on K.

For B a split block, the dG length of any β1 ⊂ B̃ is the same as the dG length
of the corresponding β′

1 constructed to replace it as above. This is because the dG
length of β1 is equal to the number of split blocks that β1 cuts.

For B a thick block, the inclusion of S̃ × {0} (or S̃ × {1}) into B̃ is a uniform
quasi-isometry as the thickness of thick blocks is uniformly bounded. Hence β′

1 is
a K1−quasigeodesic where K1 depends only on K. The Lemma follows. �

We shall now choose a subclass of these admissible paths to define Lλ-elementary
admissible paths. The constants C,C(B),K(B) etc. below will be independent of
the geodesic λ, the initial geodesic in the ladder Lλ.

Lλ-elementary admissible paths in the thick block
Let B = S × [i, i+ 1] be a thick block, where each (x, i) is connected by a vertical
segment to (x, i + 1). Let φ be the map that takes (x, i) to (x, i + 1). Also let Φ

be the map on geodesics induced by φ. Let Lλ ∩ B̃ = λi ∪ λi+1 where λi lies on

S̃ × {i} and λi+1 lies on S̃ × {i + 1}. Let πj , for j = i, i + 1 denote nearest-point

projections of S̃×{j} onto λj . Since φ is a quasi-isometry, there exists C > 0 such
that
a) for all (x, i) ∈ λi, (x, i+ 1) lies in a C-neighborhood of Φ(λi) = λi+1.

b) for all z ∈ S̃, dwel(πi(z, i), πi+1(z, i+ 1)) ≤ C (by Lemma 5.3 or Theorem 5.7).
We emphasize here that C is independent of both the thick block B and the geodesic
λ (and hence the ladder Lλ). It depends only on the model manifold M .

The same conclusions hold for φ−1 and points in λi+1, where φ
−1 denotes the

quasi-isometric inverse of φ from S̃ × {i + 1} to S̃ × {i}. The Lλ-elementary

admissible paths in B̃ are defined to be paths consisting of the following:
1) Horizontal geodesic subsegments of λj , j = {i, i+ 1}.
2) Vertical segments of dG length 1 joining x× {0} to x× {1}. Note that for thick
blocks, dG = dwel.
3) Horizontal geodesic segments lying in a C-neighborhood of λj , j = i, i+ 1.
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Lλ-elementary admissible paths in the split block
Let B = S × [i, i+ 1] be a split block, where each (x, i) is connected by a segment
of dG length one and dwel-length ≤ C(B) (due to bounded thickness of B, Lemma

5.9) to (x, i + 1). As before we regard φ as the map from S̃ × {i} to S̃ × {i + 1}
that is the identity on the first component. Also let Φ be the map on electro-

ambient quasigeodesics induced by φ. Let Lλ ∩ B̃ =
⋃

j=i,i+1 λj where λj lies on

S̃×{j}. πj denotes nearest-point projection of S̃×{j} onto λj (in the appropriate
sense - minimizing the ordered pair of electric and hyperbolic distances). Since φ
is an electric isometry, but a hyperbolic quasi-isometry, there exist C > 0 (uniform
constant) and K = K(B) such that
a) for all x ∈ λi, φ(x) lies in a (dG−) C-neighborhood and a dwel− K-neighborhood
of Φ(λi) = λi+1.

b) for all z ∈ S̃, dG(πi(z, i), πi+1(z, i + 1)) ≤ C (by Lemma 5.4 or Theorem 5.7)
and dwel(πi(z, i), πi+1(z, i+ 1)) ≤ K (by Lemma 5.3).
The last statement follows from the fact that the block B is topologically a product
and hence the map φ is a quasi-isometry, with quasi-isometry constants depending
on B.

We re-emphasize here that C is independent of both the split block B and the
geodesic λ (and hence the ladder Lλ), whereas K = K(B) depends on the split
block B but is independent of the geodesic λ.

The same holds for φ−1 and points in λi+1, where φ
−1 denotes the quasi-isometric

inverse of φ from S̃×{i+1} to S̃×{i}. It is worth pointing out here that Remark
4.12 will be used later to pull back information from the graph metric in (Mwel, dG)

to the model manifold (M̃, dM ) and hence via the biLipschitz homeomorphism F−1

to Ñ to give information in the hyperbolic metric.
Again, since λi and λi+1 are electro-ambient quasigeodesics, we further note that

for all (x, i) ∈ λi, (x, i + 1) ∈ NK(λi+1, d), where d is the (biLipschitz) hyperbolic

metric on S̃.
The Lλ-elementary admissible paths in B̃ consist of the following:

1) Horizontal subsegments of λj , j = {i, i+ 1}.
2) Vertical segments joining x × {i} to x × {i + 1}. These have dwel− ‘thickness’
l = l(B) and dG− thickness one, by Lemma 5.9.
3) Horizontal geodesic segments lying in a (biLipschitz) hyperbolic K(= K(B))-
neighborhood of λj , j = i, i+ 1.
4) Horizontal (biLipschitz) hyperbolic segments of electric length ≤ C and (biLip-
schitz) hyperbolic length ≤ K(B) joining points of the form (φ(x), i+ 1) to a point
on λi+1 for x ∈ λi.
5) Horizontal (biLipschitz) hyperbolic segments of electric length ≤ C and (biLip-
schitz) hyperbolic length ≤ K(B) joining points of the form (φ−1(x), i) to a point
on λi for x ∈ λi+1.

Definition: An Lλ-admissible path is a continuous path that can be decomposed
as a union of a sequence of Lλ-elementary admissible paths with disjoint interiors.

The next lemma follows from the above definition and Lemma 5.9.

Lemma 6.3. There exists a function g : Z → N such that for any block Bi, and x

lying on an Lλ-admissible path in B̃i, there exist y ∈ λi and z ∈ λi+1 such that

dwel(x, y) ≤ g(i)
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dwel(x, z) ≤ g(i)
dM (x, y) ≤ g(i)
dM (x, z) ≤ g(i)

The following is an easy Corollary of Lemma 6.3 above,

Corollary 6.4. There exists a function h : Z → N such that for any block Bi, and

x lying on a Lλ-admissible path in B̃i, there exist y ∈ λ0 = λ such that:

dwel(x, y) ≤ h(i)
dM (x, y) ≤ h(i)

Proof. Let h(i) = Σj=0···ig(j) be the sum of the values of g(j) as j ranges from
0 to i (with the assumption that increments are by +1 for i ≥ 0 and by −1 for
i ≤ 0). �

Note: In Lemma 6.3 and Corollary 6.4, it is important to note that the distance
dwel (resp. dM ) is the weld (resp. model) metric, not the graph metric. This is
because the lengths occurring in Lλ-elementary admissible paths of types (4) and
(5) above are (biLipschitz) hyperbolic lengths depending only on i (in Bi).

Lemma 6.5. There exists a function M(N) : N → N such that M(N) → ∞ as
N → ∞ for which the following holds:

For any geodesic λ ⊂ S̃ × {0} ⊂ B̃0, a fixed reference point p ∈ S̃ × {0} ⊂ B̃0 and
any x on an Lλ-admissible path,

d(λ, p) ≥ N ⇒ dwel(x, p) ≥M(N) and dM (x, p) ≥M(N).

Proof. Suppose that λ lies outside BN (p), the N -ball about a fixed reference point

p on the boundary horizontal surface S̃ × {0} ⊂ B̃0. Then by Corollary 6.4, any x

lying on an Lλ-admissible path in B̃i satisfies

dwel(x, p) ≥ N − h(i).

Also, since the electric, and dwel−‘thickness’ (the shortest distance between its
boundary horizontal sheets) is ≥ k0 (by uniform k0− separatedness of horizontal
sheets), we get,

dwel(x, p) ≥ |i|k0

Assume for convenience that i ≥ 0 (a similar argument works, reversing signs
for i < 0). Then,

dwel(x, p) ≥ mini max{ik0, N − h(i)}

Let h1(i) = h(i) + ik0. Then h1 is a monotonically increasing function on the
integers. IfM(N) = h−1

1 (N) denote the largest positive integer n such that h1(n) ≤
N , then clearly, M(N) → ∞ as N → ∞. Also, dwel(x, p) ≥ k0M(N) and the first
conclusion of the Lemma follows.

The same arguments work for (M̃, dM ). �
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6.3. Projecting to Lλ and Joining the Dots.

Definition 6.6. An Lλ admissible (dG) K− quasigeodesic is an Lλ admissible

path that is a K−quasigeodesic in (M̃wel, dG).

Our strategy in this subsection is to project the intersection of an admissible

quasigeodesic (Lemma 6.2) with the horizontal sheets M̃H onto Lλ and then ob-
tain a connected Lλ-admissible quasigeodesic from it by interpolating Lλ-admissible
paths. We think of this last step as ”joining the dots”. The end product is thus a
connected dG-quasigeodesic built up of Lλ admissible paths.

Lemma 6.7. There exists K ≥ 1 and a function M(N) : N → N with M(N) → ∞
as N → ∞ such that the following holds:
Let B0 denote the first block (thick or split) in Mwel and let S × {0} denote its

lower boundary. For a fixed reference point p ∈ S̃ × {0} ⊂ B̃0, and any geodesic

λ ⊂ S̃ × {0} ⊂ B̃0, there exists an Lλ admissible (dG) K− quasigeodesic βadm ⊂

M̃wel without backtracking, such that
(1) βadm joins the end-points of λ.
(2) d(λ, p) ≥ N ⇒ dwel(βadm, p) ≥M(N).

Proof. Let a, b denote the end-points of λ. First, by Lemma 6.2 there exists an

admissible dG-geodesic βe ⊂ M̃wel joining a, b. We now look at Πλ(βe ∩ M̃H)

obtained by acting on βe ∩ M̃H by Πλ. From Theorem 5.7, we shall conclude that

the image Πλ(βe∩M̃H) is a dG quasigeodesic carried by Lλ in an appropriate sense
as explicated below.

Since βe is itself an admissible path, there is a sequence of points a = a1, b1, a2, b2, · · · , ak, bk =
b such that the piece of βe joining ai to bi is horizontal, whereas the piece of βe
joining bi to ai+1 is vertical. In particular, bi and ai+1 must lie in the same split
component if they lie in (the universal cover of) a split block. In this case Πλ(bi)
and Πλ(ai+1) must also lie in the same split component. We shall now join the se-
quence of points Πλ(a1),Πλ(b1),Πλ(a2),Πλ(b2), · · · ,Πλ(ak),Πλ(bk) by horizontal
and vertical segments to obtain an Lλ-admissible path βadm as follows:

For all i, [Πλ(ai),Πλ(bi)] will be a geodesic in the horizontal sheet S̃i, joining
Πλ(ai),Πλ(bi).

The Lλ-admissible path joining Πλ(bi),Πλ(ai+1) requires more care to define.
For notational simplicity, let bi = p and ai+1 = q.
1) Let [p, q] be a vertical segment in a thick block joining p, q. Then Πλ(p),Πλ(q)
are a uniformly bounded dwel− distance apart by Theorem 5.7. Hence, by Lemma
5.3, we can join Πλ(p),Πλ(q) by an Lλ-admissible path of length bounded by some
C0 (independent of B, λ).

For a thick block, we define the Lλ-admissible path joining Πλ(p),Πλ(q) to be
any such Lλ-admissible path of uniformly bounded dwel−length.

2) Let [p, q] be a vertical segment in a split block B̃i of dG length one and dwel−

length ≤ li joining p, q, where p ∈ S̃i, the lower horizontal boundary of B̃i and

q ∈ S̃i+1, the upper horizontal boundary of B̃i. Since p, q lie within a split com-
ponent, dG(Πλ(p),Πλ(q)) = 1, that is to say Πλ(p),Πλ(q) also lie within a split
component. This is because the projection of a split component lies within a single
split component. Hence there exists an admissible path [Πλ(p),Πλ(q)] of dG length
one joining Πλ(p),Πλ(q). Further, by Lemma 5.3 again, we can join Πλ(p),Πλ(q)
by an Lλ-admissible path of dwel−length bounded by some Ci (dependent on Bi
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but independent of λ). Note that, since Ci depends on Bi, it depends on li in
particular.

3) By Remark 5.6 the two images under nearest projection of a point in S̃i onto

respectively a hyperbolic geodesic and an electro-ambient quasigeodesic in S̃i (join-
ing any pair of points) are a uniformly bounded (biLipschitz)-hyperbolic distance
apart. Hence, by Lemma 5.5, we can join them by an Lλ-admissible path of length
bounded by some uniform C1 (independent of Bi, λ).

A clarificatory remark as to why segments of type (3) are necessary: In defining

Lλ, we have had to make a choice. Suppose λi ⊂ S̃i. Then Si is the common
boundary of two blocks. In case both are split blocks then there is a choice of λi
out of two electro-ambient quasigeodesics involved. If one is a split block and the
other a thick block, then there is a choice of λi involved out of an electro-ambient
quasigeodesic and a geodesic. The different nearest point projections corresponding
to the different choices of λi differ by a uniformly bounded amount (Remark 5.6).
Segments of type (3) take care of this bounded discrepancy.

For a split block, we define the Lλ-admissible path joining Πλ(p),Πλ(q) to con-
sist of one Lλ-admissible path constructed in Step (2) above and (at most) two
segments of uniformly bounded dwel−length as in Step (3). Thus an Lλ-admissible
path joining Πλ(p),Πλ(q) contains one vertical segment of type (2) typically sand-
wiched between two segments of type (3).

Joining Πλ(ai),Πλ(bi) by [Πλ(ai),Πλ(bi)] and Πλ(bi),Πλ(ai+1) by Lλ-admissible
paths as above, we obtain the required Lλ admissible (dG) K− quasigeodesic

βadm ⊂ M̃wel.
By Theorem 5.7, there exists K ≥ 1 such that βadm represents a (dG)-K-

quasigeodesic. This proves statement (1) of the Lemma.
After ”joining the dots” by Lλ-admissible paths as above, we can assume further

that the Lλ-admissible quasigeodesic βadm thus obtained does not backtrack relative
to split components. Conclusion (2) of the Lemma now follows from Lemma 6.5
since we have obtained an admissible quasigeodesic built up out of Lλ-admissible
paths. �

6.4. Recovering Electro-ambient Quasigeodesics I. This subsection is de-

voted to extracting an electro-ambient quasigeodesic βea in (M̃wel, dG) from an Lλ-
admissible quasigeodesic βadm. βea shall satisfy the property indicated by Lemma
6.7 above.

Lemma 6.8. There exists κ ≥ 1 and a function M ′(N) : N → N with M ′(N) → ∞
as N → ∞ such that the following holds:
Let B0 denote the first block (thick or split) in Mwel and let S × {0} denote its

lower boundary. For a fixed reference point p ∈ S̃ × {0} ⊂ B̃0, and any geodesic

λ ⊂ S̃ × {0} ⊂ B̃0, there exists an electro-ambient κ-quasigeodesic βea without

backtracking in (M̃wel, dG), such that
• βea joins the end-points of λ.
• d(λ, p) ≥ N ⇒ dwel(βea, p) ≥M ′(N).
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Proof. From Lemma 6.7, we have an Lλ - admissible κ-quasigeodesic βadm without

backtracking (with respect to the collection K of split components K̃) and a function
M(N) satisfying the conclusions of the Lemma. Since βadm does not backtrack, we
can decompose it as a union of non-overlapping segments β1, · · · βk, such that only
successive βi’s intersect at one common end-point and each βi is
a) either an Lλ- admissible quasigeodesic lying outside split components,
b) or an Lλ-admissible quasigeodesic lying entirely within some split component

K̃n(i). Further, since βadm does not backtrack relative to split components, we can

assume that all K̃n(i)’s are distinct, i.e. i 6= j ⇒ K̃n(i) 6= K̃n(j).

We modify βadm to an electro-ambient quasigeodesic βea in (M̃wel, dG) as per
the following recipe:
1) βea coincides with βadm outside split components.

2) If some βi lies within a split component K̃n(i), then we replace it by a geodesic

βea
i in the intrinsic metric on K̃n(i) joining the end-points of βi. Of course βea

i lies

within K̃n(i).
Since βea coincides with βadm outside split components and since βadm is a

(dG) κ-quasigeodesic, therefore βea represents a (dG) κ-quasigeodesic. Hence, the
resultant path βea is an electro-ambient κ-quasigeodesic without backtracking.

Next, since any amalgamation component of S̃ is quasiconvex in the split com-

ponent K̃ containing it, each segment βea
i lies in a Ci neighborhood of βi. Here Ci

depends on the quasiconvexity constants of the amalgamation components in split
components and hence only on the thickness li of the split component Kn(i).

We let C(m) denote the maximum of the (finitely many) values of Ci for the

split components of B̃m, where we take C(m) = 0 if Bm is thick (this makes sense
as βea coincides with βadm outside split components). Then, as in the proof of

Lemma 6.5, we have for any z ∈ βea ∩ B̃m,

d(z, p) ≥ max (mk0,M(N)− C(m))

Again, as in Lemma 6.5, this gives us a (new) function M ′(N) : N → N such
that M ′(N) → ∞ as N → ∞ for which

d(λ, p) ≥ N ⇒ dwel(βea, p) ≥M ′(N).

This proves the Lemma. �

6.5. Recovering Electro-ambient Quasigeodesics II. This subsection is de-

voted to extracting an electro-ambient quasigeodesic βea2 in M̃2 = (M̃, dCH) from

an electro-ambient quasigeodesic βea in M̃1 = (M̃wel, dG). βea2 shall satisfy the
property indicated by Lemmas 6.7 and 6.8 above.

Recall that M̃2 = (M̃, dCH) denotes M̃ with the electric metric obtained by

electrocuting the convex hulls CH(K̃) of extended split components K̃. Also,

recall that an electro-ambient k-quasigeodesic γ in (M̃, dCH) is a k− quasigeodesic

in (M̃, dCH) such that in an ordering (from the left) of the convex hulls of split

components that γ meets, each γ ∩ CH(K̃) is a geodesic in the intrinsic metric

on CH(K̃) (which in turn is uniformly bi-Lipschitz to the hyperbolic metric on

CH(K̃) under the bi-Lipschitz homeomorphism between the model manifold M
and the hyperbolic manifold N).
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The underlying sets M̃wel (for M̃1) and M̃ (for M̃2) are homeomorphic as

topological spaces. Also, M̃1 is obtained by electrocuting the welded metric, i.e.

(M̃wel, dwel), whereas M̃2 is obtained by electrocuting the model metric, i.e. (M̃, dM ).

Note further that the metrics (M̃, dwel) and (M̃, dM ) coincide off Margulis tubes.

We need to set up a correspondence now between paths in (M̃wel, dwel) and

(M̃, dM ), and hence between M̃1 = (M̃, dG) and M̃2 = (M̃, dCH).

Remark 6.9. Paths αi ⊂ M̃i (i = 1, 2) are said to correspond if
1) They coincide off Margulis tubes
2) Each piece of α2 inside a (closed) Margulis tube is a geodesic in the model metric
dM .

It follows that any path α1 ⊂ M̃1 corresponds to a unique α2 ⊂ M̃2.

Lemma 6.10. There exists κ ≥ 1 and a function M ′(N) : N → N such that
M ′(N) → ∞ as N → ∞ for which the following holds:
Let B0 denote the first block (thick or split) in Mwel and let S × {0} denote its

lower boundary. For a fixed reference point p ∈ S̃ × {0} ⊂ B̃0, and any geodesic

λ ⊂ S̃ × {0} ⊂ B̃0, there exists an electro-ambient κ−quasigeodesic βea without

backtracking in (M̃wel, dG) and a path βea1 corresponding to βea in (M̃, dCH),
such that
(1) βea1 joins the end-points of λ.
(2) d(λ, p) ≥ N ⇒ d(βea1, p) ≥M ′(N).

Proof. By Lemma 6.8 (Section 6.4 above) there exists an electro-ambient κ0−quasigeodesic

βea in M̃1 = (M̃wel, dG) joining the end-points of λ (where κ0 is independent of λ).

By Remark 6.9, βea corresponds to a unique path, which we call βea1, in M̃2. βea1
is obtained by replacing intersections of βea with tube-electrocuted Margulis tubes
by hyperbolic geodesics lying in the corresponding Margulis tubes as per Remark

6.9. From Lemma 4.29, (M̃, dCH)(= M̃2) is quasi-isometric to (M̃, dG). Hence

there exists κ ≥ 1 such that for any λ, the path βea1 is a κ-quasigeodesic in M̃2.
Also by Lemma 6.8, there exists a functionM(N) : N → N such thatM(N) → ∞

as N → ∞ for which the following holds:

If d(λ, p) ≥ N , then βea lies outside a large M(N)-ball about p in (M̃wel, dwel).

It follows that the intersection of βea with the boundary ∂T̃ of the lift T̃ of any

Margulis tube T lies outside anM(N)-ball about p. Each point x ∈ βea∩∂T̃ lies on

a unique totally geodesic hyperbolic disk Dx ⊂ T̃ . Also, βea1 ∩ T̃ ⊂
⋃

x∈βea∩∂T̃
Dx

by the convexity of
⋃

x∈βea∩∂T̃
Dx. Let the maximum diameter of Margulis tubes

intersecting the ith block in M̃ be ti. Then dM (βea1∩B̃i, p) ≥ dwel(βea∩B̃i, p)−ti ≥
M(N)−ti. Now, a reprise of the argument in Lemma 6.5 shows that βea1 lies outside
a large M ′(N) ball about p, where M ′(N) → ∞ as N → ∞. �

To obtain an electro-ambient quasigeodesic βea2 in (M̃, dCH) from βea1, first
observe that there exists D0 such that the diameter in the dG metric diaG(βea1 ∩

CH(K̃)) ≤ D0 for any CH(K̃). This follows from the fact that βea1 is a κ-

quasigeodesic in (M̃, dG) and from Lemma 4.29, which says that (M̃, dCH) and

(M̃wel, dG) are quasi-isometric.
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Lemma 6.11. For every D0 ≥ 0 and split component K̃ ⊂ M̃wel, there exists
D1 ≥ 0 such that the following holds:

Let α ⊂ CH(K̃) ⊂ M̃ be a path such that the path η in M̃wel corresponding to it is
of length at most D0 in the dG metric. Further suppose that

a) α ∩ C̃(⊂ M̃) for any split component C̃ is a geodesic in the intrinsic metric on

C̃
b) α ∩ T is a hyperbolic geodesic for any lift T of a Margulis tube.

Let γ = [a, b] be the (model) hyperbolic geodesic in (M̃, dM ) joining the end-points
a, b of α. Then γ lies in a (dM−) D1 neighborhood of α.

Proof. Note first that the complement in M̃ of the union of split components is
the union of the universal covers of thick blocks and Margulis tubes. Hence by the
hypotheses α can be described as the union of at most 3D0 pieces α1, · · · , αj(j ≤

3D0), such that each αi is either a geodesic in the intrinsic metric on C̃ for some

split component C̃, or a geodesic in (M̃, dM ).

Let βi be the geodesic in (M̃, dM ) joining the end-points of αi. Then d(γ,∪iβi) ≤

jδ0 ≤ 3D0δ0, where δ0 is the (Gromov) hyperbolicity constant of M̃ .
Since α meets a bounded number of split components, there exists C1 ≥ 0 such

that each split component C̃ that α meets is C1-quasiconvex. Note that C1 depends

only on the convex hull CH(K̃) and the fact that any CH(K̃) meets the lifts of
only a uniformly bounded number of split components by graph quasiconvexity

(Theorem 4.31). Hence for any αi ⊂ C̃, dM (αi, βi) ≤ C1. Choosing D1 = C1 +
3D0δ0, we are through. �

We are now in a position to obtain the last ‘recovery’ Lemma of this section.
The main part of the argument is again a reprise of a similar argument in Lemma
6.5. We shall recount it briefly for completeness.

Lemma 6.12. There exists κ ≥ 1 and a function M0(N) : N → N such that
M0(N) → ∞ as N → ∞ for which the following holds:
Let B0 denote the first block (thick or split) in Mwel and let S × {0} denote its

lower boundary. For a fixed reference point p ∈ S̃ × {0} ⊂ B̃0, and any geodesic

λ ⊂ S̃ × {0} ⊂ B̃0, there exists an electro-ambient κ−quasigeodesic βea2 without

backtracking in (M̃, dCH), such that
(1) βea2 joins the end-points of λ.
(2) d(λ, p) ≥ N ⇒ dM (βea2, p) ≥M0(N).

Proof. By Lemma 6.10, there exists κ0 and a functionM ′(N) : N → N such that for

any geodesic λ ⊂ S̃×{0} ⊂ B̃0 with d(λ, p) ≥ N there exists a path α in (M̃, dCH)

corresponding (as per Remark 6.9) to an electro-ambient quasigeodesic in (M̃, dG)
satisfying the following:
a) α joins the end-points of λ.
b) dM (α, p) ≥M ′(N).
c) N → ∞ ⇒M ′(N) → ∞.

Let βea2 be an electro-ambient quasigeodesic in (M̃, dCH) joining the end-points

of α. Let CH(K̃) be the collection of (images under the biLipschitz homeomorphism
F of) convex hulls of extended split components.
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Recall that βea2 is obtained by looking at the intervals of intersection of α with

CH(K̃) ∈ CH(K̃), ordered from the left, and replacing maximal intersections with

(model) hyperbolic geodesics in CH(K̃).

Let x ∈ βea2∩CH(K̃) for an extended split component K̃. Then by construction
of the electro-ambient quasigeodesic βea2 from α and Lemma 6.11 there exists

y ∈ α ∩ CH(K̃) and D1 = D1(K) such that d(x, y) ≤ D1.
By uniform graph quasiconvexity (Theorem 4.31), for each i there exist finitely

many extended split components K such that B̃i ∩ CH(K̃) 6= ∅. Let Di be the

maximum value of the D1(K)’s for these split components. Hence x ∈ βea2 ∩ B̃i

implies that d(x, p) ≥ M ′(N) − Di. Also, by uniform k0-separatedness of split

surfaces, x ∈ B̃i implies that d(x, p) ≥ ik0. Therefore

d(βea2, p) ≥ mini max (ik0,M
′(N)−

∑
j≤iDj)

Defining M0(N) to be M0(N) = mini max (ik0,M
′(N)−

∑
j≤iDj), and observ-

ing that M0(N) → ∞ as N → ∞ (by the same argument as in Lemma 6.5) we are
through. �

6.6. Application to Sequences of Surface Groups. The main Proposition of
this subsection will be used in [MS11].

The proof of Lemma 6.12 gives the following.

Corollary 6.13. Let D be a positive integer. Let B−D, · · · , B0, · · · , Bn, · · · , Bn+D

be a collection of split blocks and let B1
n be the union of these blocks glued along the

common boundary split surfaces (i.e. Bi−1 is glued to Bi along Si). We assume
that this gluing can be done consistently (i.e. the Margulis tubes are compatible).
Let Bn =

⋃n
1 Bi ⊂ B1

n. Let M be a manifold of split geometry (not necessarily
simply or doubly degenerate, i.e. we allow M to have finitely many split blocks),
such that each split component is D-graph quasiconvex and B1

n ⊂ M . Then for all
L ≥ 0 there exists N ≥ 0 such that the following holds.
For all geodesic segments λ lying outside an N -ball around o ∈ S̃0 and any electro-

ambient quasigeodesic βn
ea2 without backtracking in M̃ joining the end-points of λ,

βn
ea2 ∩ B̃n lies outside the L-ball around o ∈ M̃ .

Corollary 6.13 above will be used to prove the convergence of Cannon-Thurston
maps for quasi-Fuchsian groups converging strongly to a simply degenerate group.

Remark 6.14. In Corollary 6.13, we could replace B1
n by B2

n = B−n−D, · · · , B0, · · · , Bn, · · · , Bn+D

and the same conclusions follow. This will be used to prove the convergence of
Cannon-Thurston maps for quasi-Fuchsian groups converging strongly to a doubly
degenerate group.

7. Cannon-Thurston Maps for Surfaces Without Punctures

We note the following properties of (M̃, dG) and K where (M̃, dG) is the graph

model of M̃ and K consists of the split components. There exist C,D,∆ such that
1) Each split component is C-graph quasiconvex by Theorem 4.31.

2) (M̃, dG) is ∆-hyperbolic.

3) Given K, ǫ, there exists D0 such that if γ be a (K, ǫ) quasigeodesic in (M̃, dM )

joining a, b and if β be a (K, ǫ) electro-ambient quasigeodesic in (M̃, dG) joining
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a, b, then γ lies in a D0 neighborhood of β in (M̃, dM ). This follows from Lemma
2.5.

We shall now assemble the proof of the main Theorem.

Theorem 7.1. Let M be a simply or doubly degenerate hyperbolic 3 manifold with-
out parabolics, homeomorphic to S × J (for J = [0,∞) or (−∞,∞) respectively).

Fix a base surface S0 = S × {0}. Then the inclusion i : S̃0 → M̃ extends contin-

uously to a map between the compactifications î : Ŝ0 → M̂ . Hence the limit set of

S̃0 is locally connected.

Proof. By Theorem 4.31, M has split geometry and we may assume that S0 ⊂ B0,

the first block. Let (M̃, dCH) and (M̃, dG) be as above and let dM be the model

metric on M̃ . Suppose λ ⊂ S̃0 lies outside a large N -ball about p in the (biLip-

schitz) hyperbolic metric on S̃0. By Lemma 6.12 we obtain an electro-ambient
quasigeodesic without backtracking βea2 joining the end-points of λ and lying out-

side an M0(N)-ball about p in (M̃, dM ), where M0(N) → ∞ as N → ∞.
Suppose that βea2 is a (κ, ǫ) electro-ambient quasigeodesic. Note that κ, ǫ depend

on ‘the coarse Lipschitz constant’ of Πλ and hence only on S̃0 and M̃ .
From Lemma 2.5 we know that if βh denotes the (model) hyperbolic geodesic in

M̃ joining the end-points of λ, then βh lies in a (uniform) C ′ neighborhood of βea2.
LetM1(N) =M0(N)−C ′. ThenM1(N) → ∞ as N → ∞. Further, the (model)

hyperbolic geodesic βh lies outside anM1(N)-ball around p. Hence, by Lemma 1.8,

the inclusion i : S̃0 → M̃ extends continuously to a map î : Ŝ0 → M̂ .
Since the continuous image of a compact locally connected set is locally connected

[HY61] and the (intrinsic) boundary of S̃0 is a circle, we conclude that the limit set

of S̃0 is locally connected.
This proves the theorem. �

8. Modifications for Surfaces with Punctures

In this section, we shall describe the modifications necessary to prove Theorem
7.1 for surfaces with punctures.

8.1. Partial Electrocution. Two general references for this subsection are [MR08],
[MP11], where much of what follows is done in a considerably more general setting.

Let M be a convex hyperbolic 3-manifold with a neighborhood of the cusps
excised. Then each component of the boundary of M is of the form σ×P , where P
is either an interval or a circle, and σ is a horocycle of some fixed length e0. Each

component of the boundary of the universal cover M̃ , is a flat horosphere of the
form σ̃ × P̃ . Note that P̃ = P if P is an interval, and R if P is a circle (the case
for a (Z + Z)-cusp).

The construction of partially electrocuted horospheres below is half way between
the spirit of Farb’s construction (in Lemmas 2.3, 2.9, where the entire horosphere
is coned off), and McMullen’s Theorem 2.13 (where nothing is coned off, and prop-
erties of ambient quasigeodesics are investigated).

Partial Electrocution of Horospheres
Let Y be a convex simply connected hyperbolic 3-manifold. Let B denote a collec-
tion of horoballs. Let X denote Y minus the interior of the horoballs in B. Let H
denote the collection of boundary horospheres.Then each Hα ∈ H with the induced
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metric is isometric to a Euclidean product E1 × Lα for an interval Lα ⊂ R. Here
E1 denotes Euclidean 1-space.

”Partially electrocute” each Hα by giving it the product of the zero metric with
the Euclidean metric, i.e. on E1 put the zero metric and on Lα put the Euclidean
metric. Thus we are in the following situation:

(1) X is (strongly) hyperbolic relative to a collection H of horospheres.
(2) Each horosphere Hα is equipped with a pseudometric making it isometric

to a Euclidean product E1 × Lα for an interval Lα ⊂ R. We shall denote
the collection of Lα’s by L.

The resulting pseudometric space is denoted (X, dpel) and is called the partially
electrocuted space associated to the pair (X,H).

Its worth pointing out here that (X, dpel) is essentially what one would get (in the
spirit of [Far98]) by gluing to each Hα the mapping cylinder of the projection of Hα

onto the Lα-factor. Let G denote the collection of these projections gα : Hα → Lα.
Thus, instead of coning all of a horosphere down to a point we cone only horocyclic
leaves of a foliation of the horosphere. Effectively, therefore, we have a cone-line
rather than a cone-point. We shall denote the union of X and all the mapping
cylinders of gα by E(X,H,L,G) in the spirit of the notation we have used for electric
spaces. As pointed out above, E(X,H,L,G) and (X, dpel) are quasi-isometric and
both contain naturally embedded copies of X as a subset (though not as a metric
subspace). We shall therefore conflate E(X,H,L,G) and (X, dpel) in this subsection.
Geodesics and quasigeodesics in the partially electrocuted space will be referred to
as partially electrocuted geodesics and quasigeodesics respectively.

In this situation, we conclude as in Lemma 2.3:

Lemma 8.1. (Lemma 1.20 of [MP11]) For a 4-tuple (X,H,L,G) as above, E(X,H,L,G)
(resp. (X, dpel)) is a hyperbolic metric spaces and Lα ⊂ E(X,H,L,G) (resp.
Hα ⊂ (X, dpel)) are uniformly quasiconvex.

Recall that X is obtained from a simply connected convex hyperbolic manifold
Y by excising a family of uniformly separated (open) horoballs.

Lemma 8.2. (Lemma 1.21 of [MP11]) Let (X,H,L,G) be a 4-tuple as above. Given
K, ǫ ≥ 0, there exists C > 0 such that the following holds:
Let γpel and γ denote respectively a (K, ǫ) partially electrocuted quasigeodesic in
E(X,H,L,G) and a (K, ǫ) hyperbolic quasigeodesic in Y joining a, b. Then γ \⋃

Hα∈HHα lies in a C-neighborhood of (any representative of) γpel in (X, d). Fur-
ther, outside of the horoballs that γ meets, γ and γpel track each other, i.e. they lie
in a C-neighborhood of each other.

Note: E(X,H,L,G) is strongly hyperbolic relative to the sets {Lα}. In fact
the space obtained by electrocuting the sets Lα in E(X,H,L,G) is just the space
E(X,H) obtained by electrocuting the sets {Hα} in X.

Next, we show that partial electrocution preserves quasiconvexity.

Lemma 8.3. Given C there exists C1 such that if A and A ∩ B (for any horoball
B ∈ B) are C-quasiconvex in Y , then (A ∩X, dpel) is C1-quasiconvex in (X, dpel).

Proof. It is given that A(⊂ Y ) as also A ∩ B for all B ∈ B are C-quasiconvex.
Then given a, b ∈ A ∩ X, the hyperbolic geodesic λ in Y joining a, b lies in a
C-neighborhood of A. Since horoballs are convex, λ cannot backtrack. We let
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H = ∂B be the boundary horosphere of the horoball B, and let L be the element
of L corresponding to H.

Let λpel be the partially electrocuted geodesic joining a, b ∈ (X, dpel). Clearly,
λpel does not backtrack. Then by Lemma 8.2 above, we conclude that for all
H ∈ H that λ intersects, there exist points aH , bH of λpel close (in Y ) to the entry
and exit points of λ with respect to H. The points aH , bH therefore lie close to
A ∩ H. Further, the corresponding L (resp. H) is quasiconvex in E(X,H,L,G)
(resp. (X, dpel)) by Lemma 8.1. It follows that λpel ∩L (resp. λpel ∩H) lies within
a uniformly bounded distance of A ∩ H in E(X,H,L,G) (resp. (X, dpel)). The
conclusion now follows from Lemma 8.2. �

8.2. Split geometry for Surfaces with Punctures. Recall that Nh denotes
(the convex core of) a simply or doubly degenerate hyperbolic 3-manifold with
cusps. N will denote Nh minus an open neighborhood of the cusps. M will denote
the model manifold (Section 3) biLipschitz homeomorphic to N . Since the proof
in the case of surfaces with punctures is only a small modification of the case of
surfaces without punctures modulo known results (cf. [MP11, Mj09]), we shall only
sketch the proof, indicating the necessary changes.

It is worth noting here that the purpose of the partial electrocution operation
in the previous subsection is to ensure that successive split surfaces with boundary
are uniformly separated so as to ensure a model of weak split geometry as defined
in Remark 4.9. We shall proceed to construct a split geometry structure on M
outlined in the steps below. In Steps (1)-(4) below we set up the model manifold of
split geometry for S with boundary.
Step 1: Preliminary
For a hyperbolic surface Sh (possibly) with punctures, we fix a (small) e0, and excise
the cusps leaving horocyclic boundary components of (ordinary or Euclidean) length
e0. We then take the induced path metric on Sh minus cusps and call the resulting
surface S. This induced path metric will still be referred to as the hyperbolic metric
on S (with the understanding that now S possibly has boundary). Note that the
horocycle boundary components are now totally geodesic in S.
Step 2: Definition of Thick and Split Blocks and Hyperbolic Quasicon-
vexity of Split Components
A thick block in M is uniformly biLipschitz to S × I as before.

The definitions and constructions of split building blocks and split compo-
nents now go through with very little change. The only difference is that S now
might have boundary curves of length e0.

There is one subtle point about hyperbolic quasiconvexity (in M̃) of split com-
ponents. Hyperbolic quasiconvexity (cf. Lemma 4.16) does not hold in the metric
obtained by merely excising the cusps and equipping the resulting horospheres with
the Euclidean metric. What we demand is that each split component along with

the parts of the horoballs that abut it be quasiconvex in Ñh. Note that the intersec-

tion of split components in M̃ with horoballs that abut it are (metric) products of
horocycles with closed intervals. Lemma 4.16 furnishes the required quasiconvexity
in this case.

When we excise horoballs from Nh to obtain N and then partially electrocute
horospheres in N (or its biLipschitz model M) in Step 3 below, and consider quasi-
convexity in the resulting partially electrocuted space, split components will remain
quasiconvex by Lemma 8.3.
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Step 3: Partially Electrocuting Horospherical Boundaries in M
Next, we modify the metric onM by partially electrocuting its boundary horospher-
ical components so that the metric on the horospherical boundary components of
any (thick or split) block S×I is the product of the zero metric on the horocycles of
fixed (Euclidean) length e0 and the Euclidean metric on the I-factor. The resulting
blocks will be called partially electrocuted blocks. Note that Mpel may also be
constructed directly from M by excising a neighborhood of the cusps and partially

electrocuting the resulting horospheres. By Lemma 8.1 M̃pel is a hyperbolic metric
space and by Lemma 8.3, partially electrocuted split components are quasiconvex

in M̃pel.

Step 4: Split Blocks in M̃pel and Graph Quasiconvexity
Again, the definitions and constructions of split blocks and split components go

through mutatis mutandis for the partially electrocuted manifold M̃pel. By Lemma
8.3, quasiconvexity of split components as well as quasiconvexity of lifts of Margulis
tubes is preserved by partial electrocution. Hence in the model Mpel obtained by
gluing together partially electrocuted blocks, the split components are uniformly
graph-quasiconvex.

In Steps (5)-(7) we indicate the modifications in the construction and use of the
ladder Lλ and the retract Πλ.

Step 5: Horo-ambient quasigeodesics

Let λh be a hyperbolic geodesic in S̃h. We replace pieces of λh that lie within
horodisks by shortest horocyclic segments joining its entry and exit points (into the
corresponding horodisk). Such a path is called a horo-ambient quasigeodesic
cf. [Mj09]. See Figure below:

Figure:Horo-ambient quasigeodesic

A small modification might be introduced if we electrocute horocycles. Geodesics
and quasigeodesics without backtracking then travel for free along the zero metric
horocycles. This does not change matters much as the geodesics and quasigeodesics
in the two constructions track each other by Lemma 2.9.

Thus, our starting point for the construction of the hyperbolic ladder Lλ is not
a hyperbolic geodesic λh but a horoambient quasigeodesic λ.
Step 6: Construction of the ladder Lλ

The construction of Lλ,Πλ and their properties go through mutatis mutandis and

we conclude that Lλ is quasiconvex in the graph metric (M̃pel, dG) on the partially

electrocuted space M̃pel. As before, M̃Hpel will denote the collection of horizontal
sheets.
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The modification of Theorem 5.7 in this context is given below:

Theorem 8.4. There exists C > 0 such that for any horo-ambient geodesic λ =

λ0 ⊂ S̃ × {0} ⊂ B̃0, the retraction Πλ : M̃Hpel → Lλ satisfies:

dG(Πλ(x),Πλ(y)) ≤ CdG(x, y) + C.

Step 7: Decomposing the ladder Lλ into Lc
λ and Lb

λ

From this step on, the modifications for punctured surfaces follow [Mj09]. As in
[Mj09], we decompose λ into parts λc and λb consisting of (closures of) maximal
segments that lie along horocycles and complementary pieces that do not intersect
horocycles. Accordingly, we decompose Lλ into two parts Lc

λ and Lb
λ consisting of

parts that lie along horocycles and those that do not. As in Lemma 6.5, we get

Lemma 8.5. There exists a function M(N) : N → N such that M(N) → ∞ as
N → ∞ for which the following holds:

For any horo-ambient quasigeodesic λ ⊂ S̃ × {0} ⊂ B̃0, a fixed reference point

p ∈ S̃ × {0} ⊂ B̃0 and any x on Lb
λ,

d(λb, p) ≥ N ⇒ dwel(x, p) ≥M(N).

In Steps (8)-(10) we indicate the process of recovering a hyperbolic geodesic.
Step 8: Projecting and joining the dots

Admissible paths are constructed as in Section 6.2. Now if λ ⊂ S̃ × {0} ⊂ B̃0

is a horo-ambient geodesic joining a, b, let β be an admissible path representing a

dG geodesic in M̃pel. Project β ∩ M̃Hpel onto Lλ by Πλ and ”join the dots” as in
Section 6.3 to get a connected ambient electric quasigeodesic βamb.
Step 9: Recovery

As in Sections 6.4 and 6.5, construct from βamb ⊂ M̃ a partially electrocuted

quasigeodesic γ in (M̃pel, dpel). Observe that the parts of γ that do not lie along
partially electrocuted horospheres lie close to Lb

λ. Hence, by Lemma 8.5 if λh lies
outside large balls in Sh then each point of γ \

⋃
Hα∈HHα also lies outside large

balls in M̃ .
At this stage we transfer the information to Ñ (=Ñh minus horoballs). Let

F : M → N be the biLipschitz homeomorphism between M and N and let F̃
denote its lift between universal covers. We thus conclude that if λh lies outside
large balls in Sh then each point of F̃ (γ \

⋃
Hα∈HHα) also lies outside large balls

in Ñ .
Note that in the case of surfaces without punctures, γ itself was a (biLipschitz)

hyperbolic geodesic in M̃ . However in the present situation of surfaces with punc-
tures, one more step of recovery is necessary.
Step 10: Conclusion

Let γh denote the hyperbolic geodesic in Ñh joining the end-points of F̃ (γ). By

Lemma 8.2 F̃ (γ) and γh track each other away from horoballs. Then, every point

of γh ∩ Ñ must lie close to some point of F̃ (γ) lying outside partially electrocuted
horospheres. Hence from Step (9), if λh lies outside a large ball about p in Sh then

γh∩Ñ also lies outside a large ball about p in Ñ . In particular, γh enters and leaves
horoballs at large distances from p. From this it follows (See Theorem 5.9 of [Mj09]
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for instance) that γh itself lies outside a large ball about p. Hence by Lemma 1.8
there exists a Cannon-Thurston map and the limit set is locally connected.

We summarize the conclusion below:

Theorem 8.6. Let Nh be a simply or doubly degenerate 3 manifold homeomorphic
to Sh×J (for J = [0,∞) or (−∞,∞) respectively) for Sh a finite volume hyperbolic
surface such that i : Sh → Mh is a proper map inducing a homotopy equivalence.

Then the inclusion i : S̃h → Ñh extends continuously to a map î : Ŝh → N̂h. Hence

the limit set of S̃h is locally connected.

A part of the argument in Lemmas 6.8 and 6.10 and Step 9 above does not use
the full strength of the hypothesis that M is a model for a surface group. If we
only assume that each end E of a manifold M is equipped with a split geometry
structure where each split component is incompressible, then the same arguments
furnish the following.

Lemma 8.7. Let N be the convex core of a complete hyperbolic 3−manifold Nh

minus a neighborhood of the cusps. Equip each degenerate end with a split geometry
structure such that each split component is incompressible. Let M be the resulting
model of split geometry and F : N →M be the bi-Lipschitz homeomorphism between

the two. Let F̃ be a lift of F to the universal covers. Then for all C0 > 0, and

o ∈ Ñ there exists a function Θ : N → N satisfying Θ(n) → ∞ as n→ ∞ such that
the following holds.

For any a, b ∈ Ñ ⊂ Ñh, let λh be the hyperbolic geodesic in Ñh joining them and let

λhthick = λh ∩ Ñ . Similarly let βh
ea be an electro-ambient C0−quasigeodesic without

backtracking in M̃ ⊂ E(M̃,K′) joining F̃ (a), F̃ (b). Let βea = βh
ea \ ∂M̃ be the part

of βh
ea lying away from the (bi-Lipschitz) horospherical boundary of M̃ .

Then dM (βea, F̃ (o)) ≥ n implies that dH3(λhthick, o) ≥ Θ(n).

This will be useful in [Mj10b]

8.3. Local Connectivity of Connected Limit Sets. Here we shall use a The-
orem of Anderson and Maskit [AM96] along with Theorems 7.1 and 8.6 above to
prove that connected limit sets are locally connected. The connection between
Theorems 7.1 and 8.6 and Theorem 8.9 below via Theorem 8.8 is similar to one
discussed by Bowditch in [Bow07].

Theorem 8.8. (Anderson-Maskit [AM96]) Let Γ be an analytically finite Kleinian
group with connected limit set. Then the limit set Λ(Γ) is locally connected if and
only if every simply degenerate surface subgroup of Γ without accidental parabolics
has locally connected limit set.

Combining Theorems 7.1 and 8.6 with Theorem 8.8, we have the following affir-
mative answer to Question 1.3.

Theorem 8.9. Let Γ be a finitely generated Kleinian group with connected limit
set Λ. Then Λ is locally connected.

Note that Λ is connected if and only if the convex core of H3/Γ is incompressible
away from cusps. In [Mj07], we prove that for surface groups without accidental
parabolics, the point pre-images of the Cannon-Thurston map for points having
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multiple pre-images are precisely the end-points of leaves of the ending lamination.
In [Mj10b] we shall use the techniques developed in this paper to answer Question
1.1 affirmatively.
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