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Abstract. We develop a new orbit equivalence framework for holomorphi-

cally mating the dynamics of complex polynomials with that of Kleinian sur-
face groups. We show that the only torsion-free Fuchsian groups that can be

thus mated are punctured sphere groups. We describe a new class of maps that

are orbit equivalent to Fuchsian punctured sphere groups. We call these higher
Bowen-Series maps. The existence of this class ensures that the Teichmüller

space of matings has one component corresponding to Bowen-Series maps and

one corresponding to higher Bowen-Series maps. We also show that, unlike
in higher dimensions, topological orbit equivalence rigidity fails for Fuchsian

groups acting on the circle. We also classify the collection of Kleinian Bers

boundary groups that are mateable in our framework.

1. Introduction

Various connections and philosophical analogies exist between two branches of
conformal dynamics; namely, rational dynamics on the Riemann sphere and actions
of Kleinian groups. Fatou had already observed similarities between limit sets of
Kleinian groups and Julia sets of rational maps in the 1920s, which led him to
conjecture the following [Fat29, p. 22]:

Question 1.1. L’analogie remarqueé entre les ensembles de points limites des
groupes Kleineens et ceux qui sont constitués par les frontières des régions de con-
vergence des itérées d’une fonction rationnelle ne parait d’ailleurs pas fortuite et
il serait probablement possible d’en faire la syntése dans une théorie générale des
groupes discontinus des substitutions algrébriques.

In the 1980s, Sullivan discovered deep connections between the iteration theory
of rational functions and the theory of Kleinian groups. This became known as
the Sullivan Dictionary [Sul85, p. 405]. Since then, several efforts to draw direct
connections between these two branches of conformal dynamics have been made
(see for example [BP94, McM95, LM97, Pil03]) and, in particular, lines to the
dictionary have been added by McMullen [McM98].
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An explicit framework for mating the modular group with rational maps has
been developed by Bullett-Penrose-Lomonaco [BP94, BL20, BL22]; it extends to
Kleinian groups abstractly isomorphic to the modular group [BH00, BH07], and
more generally to all Kleinian groups which are free products of two finite cyclic
groups [Bul00]. In the approach in these articles the matings are holomorphic
correspondences, multi-valued algebraic functions defined by polynomial relations
between two variables. In this paper we adopt a completely different approach
to construct matings of Kleinian groups and rational maps that are single-valued
analytic functions of a single complex variable.

The dynamical plane of a rational map R admits a natural invariant partition:
the Fatou set F(R) (the largest open set on which the iterates of the map form
a normal family) and the Julia set J (R) (the complement of the Fatou set). On
the other hand, the dynamical plane of a Kleinian group Γ can be divided into
two group-invariant subsets: the domain of discontinuity Ω(Γ) (the largest open
set on which the group acts properly discontinuously) and the limit set Λ(Γ) (the
complement of the domain of discontinuity).

We now reformulate Fatou’s question as a mating framework.

The group side of the dictionary-Bers slice closure groups: Fix a Fuchsian group Γ0

(of the first kind). The Bers slice B(Γ0) is the space of quasi-Fuchsian simultaneous
uniformizations of pairs (Γ0,Γ), where Γ ranges over all Fuchsian groups isomorphic
to Γ0. (Here we require the isomorphisms to induce homeomorphisms between the
quotient surfaces D/Γ and D/Γ0.) The induced representations of (the abstract
group underlying) Γ0 into PSL2(C) are, in fact, induced by quasiconformal homeo-

morphisms of Ĉ that are conformal on Ĉ \D. This gives B(Γ0) a complex-analytic
structure. The Bers slice B(Γ0) is thus a complex-analytic realization of the Te-
ichmüller space Teich(Γ0). Recall that Teich(Γ0) is the space of marked hyperbolic
structures on the topological surface Σ underlying D/Γ0. Equivalently, it is the
space of equivalence classes of discrete, faithful representations of π1(D/Γ0) into
Aut(D) ∼= PSL2(R) such that boundary components of Σ go to parabolics. Here,
two representations are said to be equivalent, if they are conjugate in Aut(D). For
ease of exposition, we shall from now on identify π1(D/Γ0) with the base group
Γ0 and Σ with the resulting base hyperbolic surface. An important property of
the Bers slice is its pre-compactness in the discreteness locus of Γ0, the space of
all equivalence classes of discrete, faithful representations into PSL2(C) equipped
with the topology of algebraic convergence. Here two representations are regarded
as equivalent if they are conjugate in PSL2(C). The boundary ∂B(Γ0) of the Bers
slice B(Γ0) in the discreteness locus is called the Bers boundary of Γ0.

By the Bers density theorem [BCM12] due to Brock-Canary-Minsky, a finitely
generated, non-elementary Kleinian group admits a simply connected invariant
component in its domain of discontinuity if and only if it lies in the Bers slice
closure of a Fuchsian lattice (in the classical literature, such groups were called
B-groups, see [Mas70]).

The rational dynamics side of the dictionary-Bers rational maps: In the complex
dynamics world, the analogous objects are rational maps with a simply connected
completely invariant Fatou component. We shall henceforth call a rational map
with the above property a Bers rational map. It follows from the standard clas-
sification of Fatou components of rational maps that a completely invariant Fatou
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component of a Bers rational map is the basin of attraction of a (super)attracting
or parabolic fixed point.

Prototypical examples of Bers rational maps are given by complex polynomials
with connected Julia sets. A polynomial is said to be hyperbolic if each of its critical
points converges to an attracting cycle under forward iteration. The set of all hyper-
bolic polynomials (of a given degree) is open in the parameter space. A connected
component of degree d hyperbolic polynomials is called a hyperbolic component in
the parameter space of degree d polynomials. The hyperbolic component of degree
d polynomials containing the map zd is called the principal hyperbolic component,
and is denoted by Hd. The Julia set of each map in Hd is a quasicircle, and the
Julia dynamics of such a map is quasisymmetrically conjugate to the action of zd

on S1. Thus, principal hyperbolic components can be thought of as an analog of
Bers slices in the polynomial dynamics world.

In this paper, we set up a framework (See Sections 2.2 and 2.3 for details)
that allows one to potentially combine the actions of Kleinian groups in Bers slice
closures with the dynamics of Bers rational maps, and focus on a reformulation of
Fatou’s Question 1.1 in the following case.

Question 1.2. Are there ‘dynamically natural’ homeomorphisms between Julia sets
of Bers rational maps and limit sets of Kleinian groups in the closure of a Bers
slice? Further, can such a dynamically natural homeomorphism be used to complex
analytically combine (or mate) the dynamics of a Bers rational map with that of
a Kleinian group along the lines of Douady and Hubbard [Dou83]? What is the
parameter space of such matings?

Theorem A below gives an affirmative answer to Question 1.2 for Bers slice
groups. Theorem B concerns the parameter space of such matings. Theorems C
and D answer Question 1.2 for groups on the Bers boundary in terms of existence
of matings and their moduli.

All Kleinian groups in this paper will be finitely generated non-elementary, unless
mentioned otherwise. There are three natural combination theorems that provide
the background and the inspiration for Question 1.2:
1) Bers Simultaneous Uniformization Theorem [Ber60]
2) Thurston’s Double Limit Theorem [Thu86]
3) Mating of complex polynomials [Dou83, Shi00, SL00, PM12, Hub12].

The key point in Question 1.2 is the term ‘dynamically natural’. Indeed, the Julia
set of any polynomial in the hyperbolic component containing zd is homeomorphic
to the limit set of any group in a Bers slice (since they are both quasicircles).
However, such a homeomorphism typically has no dynamical significance. The first
obvious obstacle to formalizing the notion of a dynamically natural homeomorphism
between a limit set and a Julia set is that the dynamics of a polynomial cannot be
conjugated to that of a group.

The first step to address the inherent mismatch between the two worlds of
Kleinian groups and rational maps will be to associate a single map AΓ to a group
Γ on the Bers slice closure (of a given Fuchsian group Γ0) such that AΓ is orbit
equivalent to the group Γ on its limit set; i.e., AΓ is a continuous map such that
the grand orbits of AΓ agree with the orbits of Γ acting on Λ(Γ). Orbit equivalence
between AΓ and Γ is possibly the weakest property that one can require AΓ to
satisfy to address meaningfully the mateability Question 1.2. In fact, one needs
to impose further regularity and compatibility conditions on AΓ for the purpose of
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mateability. These conditions are introduced in Sections 2.1 and 2.2, where such
maps AΓ are termed mateable maps. The next step is to formulate a precise notion
of mateability between a Bers rational map R and a continuous self-map AΓ on the
limit set of a Bers slice closure group Γ (such that Γ and AΓ are orbit equivalent)
along the lines of Thurston’s Double Limit Theorem and Douady-Hubbard theory
of polynomial mating. This is done in Section 2.3.

As an aside, we note that the action of zd on S1 preserves the Lebesgue measure,
and gives a measurable dynamical system of type IIIlog d; whereas the action of
a finite co-volume Fuchsian group on S1 preserves the Lebesgue measure class,
giving rise to a measurable dynamical system of type III1 [Spa87]. (We thank
Caroline Series for explaining this to us.) Hence, topological, not measurable orbit
equivalence, is the right framework for Question 1.2.

Most of the rest of the paper addresses Question 1.2 by exploring the question
of existence and moduli of mateable maps. We first explicitly describe families
of mateable examples and show that Bowen-Series maps of punctured spheres are
mateable (Section 3). We need to focus here on topological properties of Bowen-
Series maps. In Section 4, we describe a new class of mateable maps that we
term higher Bowen-Series maps. Roughly, a higher Bowen-Series map of a Fuch-
sian group is obtained by ‘gluing together’ several Bowen-Series maps of the same
Fuchsian group with overlapping fundamental domains (see Proposition 4.3 and
Corollary 5.7).

Our first mateability theorem can now be stated as follows (see Theorems 3.7
and 4.5 for the precise formulations).

Theorem A. Bowen-Series maps and higher Bowen-Series maps of Fuchsian groups
uniformizing punctured spheres (possibly with one/two orbifold points of order two)
can be conformally mated with polynomials lying in principal hyperbolic compo-
nents (of appropriate degree).

Existence of parabolic fixed points prevents us from using classical conformal
welding techniques to construct the desired conformal matings. We use instead the
theory of David homeomorphisms [Dav88]. The examples in [LLMM18, LMM20,
LMMN20] may be viewed as anti-holomorphic precursors of the holomorphic mating
construction of Theorem A. We should, however, point out that there is no natural
anti-holomorphic analog of higher Bowen-Series maps for reflection groups.

After obtaining explicit examples of mateable maps, we turn to the problem of
identifying their moduli. Surprisingly, it turns out that the only Fuchsian groups Γ
that are mateable correspond (in the torsion-free case) to spheres with punctures
(see Proposition 6.28). It turns out that there are at least two distinct components,
one corresponding to the Bowen-Series map and one to the higher Bowen-Series
map (Theorem 6.36):

Theorem B. The moduli space of matings of the fundamental group of a punc-
tured sphere S0,k (k ≥ 3) with polynomials in Hd has at least two components
corresponding to d = 1− 2χ(S0,k) and d = (1− χ(S0,k))2.

Remark 1.3. Lest we mislead the reader, it is worth pointing out that the two
different components Theorem B refers to may equivalently be thought of as two
different moduli spaces:
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(1) the space of matings between the Bowen-Series map of a punctured sphere
group (with a particular choice of a fundamental domain) and polynomials
in a particular Hd,

(2) the space of matings between a higher Bowen-Series map associated to the
same group, and polynomials in Hd for a different d.

Sections 3, 4, 5 and 6 deal with groups in the Bers slice. In Section 7, we
investigate which Kleinian groups on the boundary of a Bers slice B(Γ0) can be
mated with polynomials. The following theorem explicates topological obstructions
to mating (see Lemmas 7.4, 7.6, Proposition 7.7, and Theorem 7.12).

Theorem C. Let Γ0 be a punctured sphere Fuchsian group. Then, there are only
finitely many quasiconformal conjugacy classes of groups Γ ∈ ∂B(Γ0) for which the
Cannon-Thurston map of Γ semi-conjugates the Bowen-Series map of Γ0 to a self-
map of Λ(Γ) that is orbit equivalent to Γ (we call this map the Bowen-Series map
of Γ). These Kleinian groups arise out of pinching finitely many disjoint, simple,
closed curves (on the surface D/Γ0) out of an explicit finite list. In particular,
all such groups Γ are geometrically finite. Moreover, there exist groups Γ of the
above type for which the first return map of the Bowen-Series map to certain circles
contained in Λ(Γ) is a higher Bowen-Series map.

On the contrary, simply degenerate Kleinian groups do not admit such orbit
equivalent maps.

Once we have a collection of Bers boundary groups equipped with Bowen-Series
maps (that are orbit equivalent to the corresponding groups) at our disposal, we
proceed to answer Question 1.2 affirmatively for such groups.

Theorem D. Let Γ0 be a Fuchsian group uniformizing S0,k, and Γ ∈ ∂B(Γ0) be a
group that admits a Bowen-Series map. Then the following hold.

(1) There exists a complex polynomial PΓ (of degree 1−2χ(S0,k) = 2k−3) such
that the action of the Bowen-Series map of Γ on its limit set is topologically
conjugate to the action of PΓ on its Julia set.

(2) The canonical extension of the Bowen-Series map of Γ can be conformally
mated with polynomials lying in the principal hyperbolic componentH2k−3.

We refer the reader to Theorems 7.15 and 7.18 for precise statements.

Remark 1.4. We point out that while Theorems A and D guarantee the existence
of conformal matings, they do not characterize the class of holomorphic maps arising
in this process. An explicit description of conformal matings between Bowen-Series
maps of punctured sphere groups and polynomials in principal hyperbolic compo-
nents would be useful for a finer algebraic/analytic study of their parameter spaces.
This will be taken up in a subsequent paper.

Section 8 provides an application to the problem of topological orbit equivalence
rigidity (see [FW03] for instance for very general positive results). As a fallout of
the methods of this paper, we obtain the unexpected conclusion that topological
orbit equivalence rigidity fails for Fuchsian groups (Theorem 8.7).

Theorem E. For any two punctured sphere Fuchsian groups Γ1, Γ2, the actions
of Γ1,Γ2 on S1 are topologically orbit equivalent.

Acknowledgments: The authors thank Kingshook Biswas, David Fisher, Etienne
Ghys, Sam Kim, Yusheng Luo, and Katie Mann for helpful correspondence. The
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stronger version of Lemma 8.6 in the present paper as opposed to the corresponding
one in an earlier draft was kindly supplied to us by an anonymous referee. We
also thank the referees for other helpful comments. Special thanks are due to
Caroline Series for explaining some important aspects of orbit equivalence to us. SM
gratefully acknowledges the collaboration with Seung-Yeop Lee, Mikhail Lyubich,
and Nikolai Makarov on matings of the ideal triangle reflection group with anti-
holomorphic polynomials in [LLMM18]. This led us to the idea that the Bowen-
Series map could be put to use to mate rational maps and Kleinian groups.

There are two major intellectual debts that we ought to mention at the outset.
The first is to the paper [BS79] of Bowen and Series that provides the starting
point of a map orbit equivalent to a group, though they work in the framework
of measurable orbit equivalence as opposed to the framework of topological orbit
equivalence that we use in this paper. The other is the work of Bullett-Penrose-
Lomonaco [BP94, BL20] that provides a correspondence-theoretic framework for
the mating of the modular group with quadratic polynomials in terms of algebraic
correspondences.

2. Mateable maps and a mateability framework

We denote the group of all conformal automorphisms of the unit disk D by
Aut(D). The aim of this section is to associate mateable maps AΓ : Λ(Γ) → Λ(Γ)
to groups Γ in the Bers slice closure of a Fuchsian group Γ0, and to lay out precisely
what it means in this paper to say that AΓ is topologically/conformally mateable
with a Bers rational map R.

2.1. Mateable maps for Fuchsian groups.

2.1.1. Orbit equivalence. A basic problem that arises in trying to make sense of
what it means to mate a polynomial P with a Fuchsian group Γ is purely algebraic
in nature. On one side of the picture we have the semigroup 〈P 〉 generated by P ,
while on the other side we have a non-commutative group Γ generated by more than
one element. Thus, we need to replace Γ by a single map A that captures at least
the topological dynamics of Γ. This leads us to the notion of orbit equivalence.

Definition 2.1. Let A : S1 → S1. The grand orbit of a point x ∈ S1 under
A is defined as GOA(x) := {x′ ∈ S1 : A◦m(x) = A◦n(x′), for some m,n ≥ 0}.
We say that two continuous maps Ai : S1 → S1 (i = 1, 2) are topologically orbit
equivalent if there exists a homeomorphism φ : S1 → S1 such that for every x ∈ S1,
φ(GOA1

(x)) = GOA2
(φ(x)). The homeomorphism φ is called a topological orbit

equivalence between A1 and A2.

Definition 2.2. Let Γ be a Fuchsian group with limit set equal to Λ ⊂ S1. We
say that a continuous map A : S1 → S1 is orbit equivalent to Γ on the limit set
if for every x ∈ Λ, the Γ-orbit of x is equal to the grand orbit of x under A; i.e.,
Γ · x = GOA(x).

The notion of orbit equivalence turns out to be flexible enough for our purposes,
as illustrated by Theorem E and Lemma 8.6.
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2.1.2. Regularity. The classical theorem on mating purely in the context of Fuchsian
and Kleinian groups is the Bers’ simultaneous uniformization theorem. Roughly
speaking, this theorem asserts that two Fuchsian groups, acting on two copies of
D, can be conformally combined to obtain a quasi-Fuchsian group (acting on the

Riemann sphere Ĉ).
Let A : S1 → S1 be a continuous map orbit equivalent to a Fuchsian group Γ. In

the spirit of the Bers’ simultaneous uniformization theorem, to conformally mate A
with complex polynomials, we would like to augment A to a ‘conformal dynamical

system’. More precisely, we want to extend A to a complex analytic map Â defined
on a subset of D.

Now suppose that there exists a complex-analytic map Â defined on the open set
{z : r < |z| < 1} (for some r ∈ (0, 1)) that continuously extends A : S1 → S1. Then

by the Schwarz reflection principle, Â can be extended to a complex analytic map
on an annular neighborhood of S1. Orbit equivalence between A and Γ combined
with the identity principle for complex analytic maps now implies that A must
equal a single Möbius map in Γ (compare the proof of Lemma 2.4). But this would
force Γ to be generated by a single Möbius map, making it evident that such an

extension Â is too much to ask for. To tackle this problem, we allow A to be
a continuous piecewise real analytic map of S1, so that each piece of A admits a
complex analytic extension to a neighborhood of its domain of definition.

Definition 2.3. We say that a map A : S1 → S1 is piecewise Möbius if there exist
k ∈ N, closed arcs Ij ⊂ S1, and gj ∈ Aut(D), j ∈ {1, · · · , k}, such that

(1) S1 =

k⋃
j=1

Ij ,

(2) int Im ∩ int In = ∅ for m 6= n, and
(3) A|Ij = gj .

A piecewise Möbius map is called piecewise Fuchsian if g1, · · · , gk generate a Fuch-
sian group, which we denote by ΓA.
In the above definition, if the maps gj are assumed only to be complex-analytic in
some small neighborhoods of int Ij (without requiring them to be Möbius), then f
is said to be piecewise analytic.

Formally speaking, a piecewise Möbius/analytic mapA is a pair
(
{gj}kj=1, {Ij}kj=1

)
;

i.e., the partition of S1 into the closed arcs {Ij} is a part of the definition of A. The
maps gj will be called the pieces of A. We shall occasionally refer to the domains
Ij of gj also as pieces of A when there is no scope for confusion.

Lemma 2.4. Let A : S1 → S1 be a piecewise analytic map that is orbit equivalent
to a finitely generated Fuchsian group Γ. Then, A is piecewise Fuchsian, and the
pieces of A form a generating set for Γ.

Proof. Let k ∈ N, Ij ⊂ S1, j ∈ {1, · · · , k}, be as in Definition 2.3.
Fix j ∈ {1, · · · , k}. Since A is orbit equivalent to Γ, for each x ∈ Ij , there

exists some g ∈ Γ such that A(x) = g(x). It follows from countability of Γ and
uncountability of Ij that A agrees with some gj ∈ Γ on an uncountable subset of
Ij . The identity theorem for holomorphic functions now implies that A ≡ gj on Ij .
This proves that A is piecewise Möbius. Moreover, the Möbius maps that define A
belong to the Fuchsian group Γ, so A is piecewise Fuchsian.
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Clearly, the grand orbit of any x ∈ S1 under A is contained in the Γ′-orbit of x,
where Γ′ is the subgroup of Γ generated by g1, · · · , gk. Therefore, orbit equivalence
of A and Γ implies that Γ · x = Γ′ · x, for each x ∈ S1. Hence, Γ′ = Γ (for instance,
by choosing x ∈ S1 with trivial stabilizer in both Γ and Γ′). �

Suppose that x1, · · · , xk are a cyclically ordered collection of k points on S1

defining the pieces Ij = [xj , xj+1] of A (j + 1 taken modulo k).

Definition 2.5. We shall say that A is minimal, if the decomposition of S1 given
by x1, · · · , xk is minimal; i.e., there does not exist i and h ∈ ΓA such that

(1) A|[xi,xi+1] = h|[xi,xi+1], and
(2) A|[xi−1,xi] = h|[xi−1,xi].

(Thus, there are no superfluous break-points in a minimal A.)

We now define a canonical extension of a piecewise Möbius map.

Definition 2.6. Let A be a continuous piecewise Möbius map on the circle. Let D
denote the unit disk. Let I1, · · · , Ik be a circularly ordered family of intervals with
disjoint interiors such that

(1) Ij ∩ Ij+1 = {xj+1} (the indices being taken mod k).
(2) A|Ij = gj .

Let γj be the semi-circular arc in D between xj , xj+1 meeting S1 at right angles at

xj , xj+1, and let Dj ⊂ D be the closed region bounded by Ij and γj . Then Â, the

canonical extension of A in D is defined on ∪jDj as Â = gj on Dj .
Next, denote the (full) Euclidean circle containing γj by Cj , and the open round

disk bounded by Cj by Dj . Then Â, as defined above, admits a natural extension

Â :

k⋃
j=1

Dj → Ĉ, z 7→ gj(z), if z ∈ Dj .

We shall refer to this further extension as the canonical extension of A in Ĉ.

It will be clear from the context whether we are taking the canonical extension

of A in D or Ĉ, and we shall often omit mentioning this explicitly.

Definition 2.7. We let D = ∪jDj and call D the canonical domain of definition

of Â (in D). Let R = D \ D. We refer to R as the fundamental domain of A, and

also as the fundamental domain of Â. Each bi-infinite geodesic contained in the
boundary ∂R will be called an edge of R. The ideal endpoints of R will be called
the vertices of R. The set of vertices of R will be denoted by S. A pair of adjacent
vertices in S (joined by an edge) will also occasionally be referred to as an edge of
R. We shall refer to pairs of non-adjacent points in S (the ideal endpoints of R),
or equivalently the bi-infinite geodesic joining them in R as a diagonal of R.

Note that Â : D → D.

2.1.3. Expansivity and degree. Consider the (simplest) degree d polynomial zd (d >
1). It preserves the unit disk D and the unit circle S1 (which is the Julia set of

zd). We are interested in conformal matings between zd and Â (where A : S1 → S1

is a piecewise Fuchsian map). The first step in this direction is to ‘topologically

glue’ the two dynamical systems zd : D → D and Â : Ω → D along the unit circle
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to obtain a topological dynamical system defined on a subset of Ĉ. Clearly, the
‘welding homeomorphism’ used to identify the two copies of S1 must respect the
dynamics of A and zd; i.e., it must conjugate zd|S1 to A (thus, in particular, A must
be a covering of S1 of degree at least two). According to [CR80], this is equivalent to
saying that A is an expansive covering of S1 of degree at least two (more generally,
two homotopic expansive maps of compact manifolds are topologically conjugate).

Definition 2.8. A continuous map f : S1 → S1 is called expansive if there exists a
constant δ > 0 such that for any a, b ∈ S1 with a 6= b we have d(f◦n(a), f◦n(b)) > δ
for some n ∈ N.

Definition 2.9. Let A be a piecewise Möbius, expansive circle covering having
x1, · · · , xk as the break-points of its piecewise definition. Further, let xj be a
periodic point of period n under A. We say that xj is parabolic on the right (resp.,
on the left) if (A◦n)′(x+

j ) = 1 (resp., (A◦n)′(x−j ) = 1). Likewise, xj is hyperbolic on

the right (respectively, on the left) if (A◦n)′(x+
j ) > 1 (resp., (A◦n)′(x−j ) > 1).

We say that xj is symmetrically parabolic (respectively, symmetrically hyperbolic)
if (A◦n)′(x+

j ) = (A◦n)′(x−j ) = 1 (respectively, if (A◦n)′(x+
j ) = (A◦n)′(x−j ) > 1).

xj is called asymmetrically hyperbolic if it is hyperbolic on both sides, but
(A◦n)′(x+

j ) 6= (A◦n)′(x−j ).
Finally, xj is said to be a periodic point of mixed type if it is hyperbolic on one

side, but parabolic on the other.

Lemma 2.10. Let A : S1 → S1 be a piecewise Fuchsian expansive covering map
having x1, · · · , xk as the break-points of its piecewise definition. Further, let xj be
a periodic point of A. Then, xj is not of mixed type.

Proof. That xj is periodic under A implies that there exist elements h1, h2 in
the Fuchsian group ΓA (generated by the Möbius maps that define A) such that
h1(xj) = h2(xj) = xj . But xj cannot be fixed by a hyperbolic element and a
parabolic element both of which lie in a Fuchsian group. The result follows. �

2.1.4. Markov property. The polynomial map z 7→ zd, restricted to the unit circle
S1, admits a Markov partition. Since A is required to be topologically conjugate to
z 7→ zd (for some d ≥ 2), A : S1 → S1 must also admit a Markov partition. There
are two issues we now need to address:

(1) Non-uniqueness of the Markov partition for z 7→ zd.
(2) Potential incompatibility between the pieces (intervals of definition) of A

and the Markov partition.

The following definition addresses these issues by declaring that the Markov parti-
tion for A is compatible with the pieces of A:

Definition 2.11. We call A : S1 → S1 a piecewise Fuchsian Markov map if it is a
piecewise Fuchsian expansive covering map (of degree at least two) such that the
pieces (intervals of definition) of A in S1 give a Markov partition for A : S1 → S1.

2.1.5. Mateable maps.

Definition 2.12. A piecewise Fuchsian Markov map A : S1 → S1 is said to be
mateable if

(1) A is orbit equivalent to the Fuchsian group ΓA generated by its pieces, and
(2) none of the periodic break-points of A is asymmetrically hyperbolic.
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Lemma 2.13. If A is mateable, then ΓA is a lattice (or equivalently, a finitely
generated Fuchsian group of the first kind).

Proof. Note that the maps A and zd are topologically conjugate on S1. Clearly,
the topological conjugacy carries grand orbits of A to those of zd. Hence, all grand
orbits of A are dense in S1. By Condition 1 of Definition 2.12, ΓA-orbits are dense
in S1. Hence the limit set of ΓA is S1; i.e., ΓA is a Fuchsian group of the first kind.
Since ΓA is generated by the pieces of A, the Lemma follows. �

2.2. Mateable maps for Bers slice closure groups. We recall the notion of
Cannon-Thurston maps [CT07].

Theorem 2.14. [Mj14a, Mj14b, DM16, Mj17] Let ρ(π1(Σ)) = Γ ⊂ PSL2(C) be a
Kleinian surface group (possibly with accidental parabolics). Let M = H3/Γ and i :

Σ→M be an embedding inducing a homotopy equivalence. Let ĩ : H2 → H3 denote
a lift of i between universal covers of Σ,M . Let H2,H3 denote the compactifications
of H2,H3 respectively. Then a continuous extension î : H2 → H3 exists.

Let ∂i : S1 → S2 denote the restriction of î to the ideal boundaries. For Γ a
Bers boundary group, p 6= q ∈ S1, ∂i(p) = ∂i(q) if and only if p, q are the ideal
endpoints of a leaf of an ending lamination or ideal endpoints of a complementary
ideal polygon of an ending lamination.

A continuous extension î as in Theorem 2.14 is called a Cannon-Thurston map.
For the remainder of this subsection, let us fix a finitely generated Fuchsian

group Γ0 of the first kind and a mateable map AΓ0
: S1 → S1 whose pieces generate

Γ0 (thus by definition, AΓ0
is orbit equivalent to Γ0). We denote the canonical

extension of AΓ0 by ÂΓ0 : DΓ0 → D where DΓ0 is the canonical domain of definition

of ÂΓ0
in D (see Definition 2.6).

For any Γ ∈ B(Γ0), we set K(Γ) := Ĉ \ Ω∞(Γ) where Ω∞(Γ) is the simply con-
nected invariant component of Ω(Γ) on which the Γ-action is conformally conjugate

to the Γ0-action on Ĉ \ D (cf. [Bers70, §8]).
Let Γ be a Kleinian group in the Bers slice B(Γ0). Then the representation

Γ0 → Γ is induced by an equivariant quasiconformal homeomorphism φΓ (which
is unique up to Möbius maps); more precisely, the group isomorphism is given by
g 7→ φΓ ◦ g ◦ φ−1

Γ . Note that K(Γ) = φΓ(D). We further set DΓ := φΓ(DΓ0
). We

call the map
AΓ := φΓ ◦AΓ0

◦ φ−1
Γ : Λ(Γ)→ Λ(Γ)

the mateable map associated to Γ ∈ B(Γ0) compatible with AΓ0
, and define its

canonical extension to be

ÂΓ := φΓ ◦ ÂΓ0
◦ φ−1

Γ : DΓ → K(Γ).

Thus, a mateable map orbit equivalent to the Fuchsian group Γ0 automatically
determines compatible mateable maps for all groups in the Bers slice of Γ0. By
construction, such an AΓ is a piecewise Möbius, Markov covering map of Λ(Γ) that
is orbit equivalent to Γ.

We now turn our attention to groups on the boundary of B(Γ0). Let Γ ∈ ∂B(Γ0)
with associated group isomorphism ρΓ : Γ0 → Γ. We say that Γ admits a mateable
map compatible with AΓ0 if the Cannon-Thurston map φΓ : Λ(Γ0) = S1 → Λ(Γ)
semi-conjugates AΓ0 to a continuous self-map of Λ(Γ), and denote this self-map (if
it exists) by AΓ. By the equivariance property of Cannon-Thurston maps, such an
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AΓ is a piecewise Möbius map of Λ(Γ) that is orbit equivalent to Γ (see Lemma 7.4).
As AΓ is piecewise Möbius, we can extend it complex-analytically to a set DΓ such
that Λ(Γ) ⊂ DΓ ⊂ K(Γ), and DΓ contains relatively open neighborhoods of all the
pieces of AΓ possibly after a further finite subdivision (cf. Subsection 7.3.2). We

call this extended map ÂΓ, and note that the domain of definition of this extension
is not canonical.

2.3. A framework for topological and conformal mating. Let k := degAΓ0 : S1 → S1.
Consider the pair of dynamical systems:

(1) a mateable map ÂΓ : DΓ → K(Γ) associated to Γ ∈ B(Γ0) compatible with
AΓ0 , and

(2) a Bers rational map R of degree k with locally connected Julia set.

We set K(R) := Ĉ \ B(R) where B(R) is a marked simply connected completely
invariant Fatou component, and call it the filled Julia set of R.

We now state what it means to topologically (respectively, conformally) combine
the above two dynamical systems. Our definition conforms to the Douady-Hubbard
convention of polynomial mating.

If φR : D → B(R) is a Riemann uniformization, then φ−1
R ◦ R ◦ φR : D → D

is a degree k Blaschke product B. As J (R) is locally connected, φR extends
continuously to S1 to yield a semi-conjugacy between B and R. Moreover, B has
a (super-)attracting or parabolic fixed point in D, the Julia set of B is S1, and
B|S1 is an expansive covering of degree k. Thus, there exists a homeomorphism
η : S1 → S1 that conjugates B to AΓ0

.
We first define the topological mating of the above pair of dynamical systems.

We consider the disjoint union K(R) tK(Γ) and the map

R tAΓ : K(R) t DΓ → K(R) tK(Γ),

R tAΓ|K(R) = R, R tAΓ|DΓ = ÂΓ.

Let ∼ be the equivalence relation on K(R) tK(Γ) generated by

(1) φR(z) ∼ φΓ(η(z)), for all z ∈ S1.

It is easy to check that ∼ is RtAΓ-invariant, and hence it descends to a continuous
map R⊥⊥AΓ to the quotient K(R)⊥⊥K(Γ) := (K(R) tK(Γ)) / ∼ (see [PM12, §4.1]
for details of this construction in the polynomial mating context). We call the map
R⊥⊥AΓ the topological mating of the Bers rational map R and the mateable map
AΓ. Moreover, if K(R)⊥⊥K(Γ) is homeomorphic to a 2-sphere, we say that the
topological mating is Moore-unobstructed. (We refer the reader to [PM12, Theo-
rem 2.12] for the statement of Moore’s theorem, which provides a general sufficient
condition for the quotient of S2 under an equivalence relation to be a topological
2-sphere.) We say that R and AΓ are conformally mateable if their topological
mating is Moore-unobstructed, and if the topological 2-sphere K(R)⊥⊥K(Γ) admits
a complex structure that turns the topological mating R⊥⊥AΓ into a holomorphic
map.

The following equivalent definition of conformal mating of R and AΓ is often
more useful in practice (cf. [PM12, §4.7]).

Definition 2.15. A continuous map F : Dom(F ) ( Ĉ → Ĉ is called a conformal
mating of AΓ and R if F is complex-analytic in the interior of Dom(F ), and there
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exist continuous maps

XR : K(R)→ Ĉ and XΓ : K(Γ)→ Ĉ

conformal on intK(R), intK(Γ) (respectively), satisfying

(1) XR (K(R)) ∪ XΓ (K(Γ)) = Ĉ,
(2) Dom(F ) ⊃ XR(K(R)) ∪ XΓ(DΓ),
(3) XR ◦R(w) = F ◦ XR(w), for w ∈ K(R),

(4) XΓ ◦ ÂΓ(w) = F ◦ XΓ(w), for w ∈ DΓ, and
(5) XR(z) = XΓ(w) if and only if z ∼ w where ∼ is the equivalence relation on
K(R) tK(Γ) defined in (1).

2.4. David homeomorphism and conformal mating.

Definition 2.16. An orientation-preserving homeomorphism H : U → V between

domains in the Riemann sphere Ĉ is called a David homeomorphism if it lies in the
Sobolev class W 1,1

loc (U) and there exist constants C,α, ε0 > 0 with

σ({z ∈ U : |µH(z)| ≥ 1− ε}) ≤ Ce−α/ε, ε ≤ ε0.(2)

Here σ is the spherical measure, and µH = ∂H/∂z
∂H/∂z is the Beltrami coefficient of

H (see [AIM09, Chapter 20] for more background on David homeomorphisms).
The following result guarantees the existence of continuous extensions of circle

homeomorphisms as David homeomorphisms of D.

Proposition 2.17. Let A : S1 → S1 be a piecewise Fuchsian Markov map of degree
d. Assume further that none of the periodic break-points of A is asymmetrically
hyperbolic. Then, there exists a homeomorphism H : S1 → S1 that conjugates zd to
A, and admits a continuous extension to D as a David homeomorphism.

Proof. The existence of the topological conjugacy H between zd and A follows
from the fact that A is an expansive circle covering map of degree d (recall that a
piecewise Fuchsian Markov map is an expansive circle covering; see Definition 2.11).

We now proceed to establish the David extension statement. Denote the break-
points of (the piecewise Möbius definition of) A by x1, · · · , xk (ordered counter-
clockwise), and by Cj (for j ∈ {1, · · · , k}) the round circle containing the hyper-
bolic geodesic connecting the endpoints of Ij = [xj , xj+1]. Further, denote the
complementary component of Cj containing Ij by Uj . Since A is piecewise Möbius
(defined by members of Aut(D)), the Markov partition defined by I1, · · · , Ik satis-
fies the following ‘complex Markov’ property: A(Uj) ⊃ Uj′ , whenever A(Ij) ⊃ Ij′ .
Furthermore, by Lemma 2.10, no periodic break-point xj is of mixed type. The
assumption that no periodic xj is asymmetrically hyperbolic implies that every pe-
riodic xj is symmetrically hyperbolic or symmetrically parabolic. By [LMMN20,
Theorem 4.12], the map H can be continuously extended to a David homeomor-
phism of D. �

We now employ the machinery of David homeomorphisms to prove our first con-
formal combination theorem for mateable maps associated to Fuchsian groups and
the special class of Bers rational maps given by complex polynomials in principal
hyperbolic components. Recall that for a complex polynomial P , the filled Julia
set K(P ) is the set of all points whose forward orbits (under P ) stay bounded.
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Proposition 2.18. Let A : S1 → S1 be a mateable map of degree d associated to
a Fuchsian group, and P ∈ Hd where Hd is the hyperbolic component of degree d

polynomials containing the map zd. Then, the maps Â : D → D and P : K(P ) →
K(P ) are conformally mateable.

Proof. As P ∈ Hd, the filled Julia set K(P ) is a closed Jordan disk. Hence, there

exists a Blaschke product B of degree d with an attracting fixed point in Dc, and
a conformal isomorphism κ from K(P ) onto Dc that conjugates P |K(P ) to B|Dc .

By definition, a mateable map is a piecewise Fuchsian Markov map without asym-
metrically hyperbolic periodic break-points. According to Proposition 2.17, there
exists a homeomorphism η : S1 → S1 that conjugates zd to A, and admits a con-
tinuous extension to D as a David homeomorphism.

Furthermore, by [LMMN20, Lemma 3.9], there exists a quasi-symmetric home-
omorphism h : S1 → S1 that conjugates B to zd. We extend h to a quasiconformal

homeomorphism of Ĉ, and denote the extension also by h. By [LMMN20, Propo-
sition 2.5] (part ii), the map η ◦ h is a David homeomorphism of D. Clearly, η ◦ h
conjugates B|S1 to A.

Consider the topological dynamical system

G(w) :=

{
B on Dc,
h−1

(
η−1

(
Â (η(h(w)))

))
on D \ h−1

(
η−1 (R)

)
.

(By equivariance of η ◦ h, the two definitions agree on S1.)
We define a Beltrami coefficient µ in the sphere as follows. In Dc we let µ be

the standard complex structure. In D we let µ be the pullback of the standard
complex structure under the map η ◦ h. Since η ◦ h is a David homeomorphism of

D, it follows that µ is a David coefficient on Ĉ.
By the David Integrability Theorem [Dav88] [AIM09, Theorem 20.6.2, p. 578],

there exists a David homeomorphism ΨΨΨ of Ĉ with µΨΨΨ = µ. Consider the map

F = ΨΨΨ ◦G ◦ΨΨΨ−1 : Ĉ \ΨΨΨ(h−1
(
η−1 (R)

)
)→ Ĉ.

We set Din := ΨΨΨ(D), Dout := ΨΨΨ(Dc), and claim that F is analytic on the interior of

its domain of definition Dom(F ) = Ĉ\ΨΨΨ(h−1
(
η−1 (R)

)
), and that F is conformally

conjugate to P on Dout and to Â on Din. To see this, note first that by [LMMN20,
Theorem 2.2], the map φin := ΨΨΨ◦h−1 ◦η−1 is conformal on D. That φout := ΨΨΨ◦κ is
conformal on K(P ) follows from the definition of µ. This proves the claims regarding
the conformal conjugacies. It follows that F is conformal in int (Dom(F )) \ΨΨΨ(S1).
Since S1 is removable for W 1,1 functions, we conclude from [LMMN20, Theorem 2.7]
that ΨΨΨ(S1) is locally conformally removable. This implies that F is conformal on
the interior of Dom(F ). �

3. Bowen-Series maps for Bers slice groups

Examples of piecewise Fuchsian Markov maps of the circle that are orbit equiv-
alent to finitely generated Fuchsian groups are given by Bowen-Series maps, which
first appeared in the work of Bowen and Series [Bow79, BS79].

A finitely generated Fuchsian group Γ (of the first kind) has a fundamental
domain R (⊂ D) that is a (possibly ideal) hyperbolic polygon. Denote the edges of
R by {si}ni=1 (labeled in counterclockwise order around the circle). Each edge si of
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R is identified with another edge sj by a corresponding element h(si) ∈ Γ. The set
{h(si)}ni=1 forms a generating set for Γ.

Let C(si) be the Euclidean circular arc in D containing si and meeting S1 or-
thogonally (see [BS79, Figure 2] or [MM23, Figure 1]). Further, let N be the net
in D consisting of all images of edges of R under elements of Γ. The fundamental
domain R is said to satisfy the even corners property if C(si) lies completely in N ,
for i ∈ {1, · · · , n}.

Definition 3.1 (Bowen-Series map). Suppose that a fundamental domain R of Γ
satisfies the even corners property. Label (following [BS79]) the endpoints of C(si)
on S1, Pi, Qi+1 (with Qn+1 = Q1) with Pi occurring before Qi+1 in the counter-
clockwise order. These points occur along the circle in the order P1, Q1, P2, Q2, · · · ,
Pn, Qn. The Bowen-Series map AΓ,BS : S1 → S1 of Γ (associated with the funda-
mental domain R) is defined piecewise as AΓ,BS ≡ h(si), on the sub-arc [Pi, Pi+1)
of S1 (traversed in the counterclockwise order).

Proposition 3.2. [BS79, Lemma 2.4] The map AΓ,BS is orbit equivalent to Γ,
except (possibly) at finitely many pairs of points modulo the action of Γ.

For ease of notation, we will drop the subscript ‘BS’ from AΓ,BS and denote
it simply by AΓ throughout this section. Since Bowen-Series maps are the only
piecewise Fuchsian Markov maps considered in this section, this will not lead to
any confusion.

It is not hard to see that for Fuchsian groups uniformizing positive genus surfaces
(possibly with punctures), the corresponding Bowen-Series maps are discontinuous
(cf. [MM23, §3.1]). Thus, to get continuous Bowen-Series maps, we need to re-
strict our attention to punctured sphere groups (possibly with orbifold points). In
fact, it turns out that Bowen-Series maps of Fuchsian groups uniformizing spheres
with finitely many punctures and, possibly, one/two order two orbifold points are
coverings of S1 with degree at least two.

3.1. Bowen-Series maps for Fuchsian punctured sphere groups. In this
subsection, we will study some general properties of Bowen-Series maps of punc-
tured sphere Fuchsian groups. We will first introduce a Fuchsian group Gd uni-
formizing a (d+1)-times punctured sphere equipped with a symmetric fundamental
domain, for which the associated Bowen-Series map is a C1 covering map of the
circle.

Fix d ≥ 2. For j ∈ {1, · · · , d}, let Cj be the hyperbolic geodesic of D connecting

pj := eπi(j−1)/d and pj+1 := eπij/d, and C−j be the image of Cj under reflection in
the real axis. We further denote the complex conjugate of pj by p−j , j ∈ {2, · · · , d}.
The Möbius automorphism gj of D is defined as reflection in Cj followed by complex
conjugation. Evidently, gj sends Cj onto C−j (cf. Figure 1). Note also that for

j ∈ {1, · · · , d−1}, the map gj+1g
−1
j is the composition of reflections in the circular

arcs Cj+1 and Cj that touch at pj+1. It is now routine to check that gj+1g
−1
j is

parabolic with its unique fixed point at pj+1. Similarly, the maps g1, gd are also
parabolic with their unique fixed points at p1, pd+1, respectively. Let

Gd := 〈g1, · · · , gd〉.

It follows thatGd is a Fuchsian group with fundamental domainR having C1, · · · , Cd,
C−d, · · · , C−1 as its edges. Moreover, D/Gd is a (d+ 1)-times punctured sphere.
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Figure 1. A fundamental domain of G5

In Figure 1, the fundamental domain R uniformizes a six times punctured sphere.
All ten vertices of R are on S1, and they cut the circle into ten arcs. The corre-
sponding Bowen-Series map acts on these arcs by the generators g±1

j displayed next

to them. For j ∈ {1, · · · , d}, we denote the arc of S1 connecting pj to pj+1 by Ij ,
and the image of Ij under reflection in the real axis by I−j . Note that AGd acts on

I±j by g±1
j .

Proposition 3.3. 1) For d ≥ 2, the Bowen-Series map AGd : S1 → S1 of Gd
(equipped with the fundamental domain R) is a C1 piecewise Fuchsian Markov map
of degree 2d− 1.

2) AGd is a mateable map whose pieces generate the Fuchsian group Gd; in
particular, AGd is orbit equivalent to Gd.

Proof. 1) As AGd ≡ g±1
j on I±j , it maps I±j onto S1 \ int I∓j as an orientation-

preserving homeomorphism, fixes p1, pd+1, and maps p±i to p∓i (for i ∈ {2, · · · , d}).
It easily follows from these properties that AGd is a degree 2d− 1 covering of S1. It
is also straightforward to check that at the endpoints of any I±j , the left and right
derivatives of AGd agree. Hence, AGd is C1.
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Expansiveness of AGd is a consequence of the facts that it is a C1 covering map,
it has only finitely many fixed points, and |A′Gd | ≥ 1 on S1 with equality only at
the parabolic fixed points (compare [LMMN20, Lemma 3.7]).

Clearly, AGd is piecewise Fuchsian. To see that AGd is piecewise Fuchsian
Markov , observe that the arcs I1, I−1, · · · , Id, I−d form a Markov partition for AGd
with transition matrix 

1 0 1 1 · · · 1 1
0 1 1 1 · · · 1 1
. . . . . . . . . . . . . . . . . . . . . . .
1 1 1 1 · · · 1 0
1 1 1 1 · · · 0 1

 .
Thus, AGd is a piecewise Fuchsian Markov map.

2) As AGd is C1, it has no asymmetrically hyperbolic periodic break-point. Since
the pieces of AGd generate the group Gd, we only need to check that AGd is orbit
equivalent to Gd.

To this end, let us pick x, y ∈ S1 in the same grand orbit of AGd . Since AGd acts
by the generators g±1

i (i ∈ {1, · · · , d}) of the group Gd, it directly follows that there
exists an element of Gd that takes x to y; i.e., x and y lie in the same Gd-orbit.

Conversely, let x, y ∈ S1 lie in the same Gd-orbit; i.e., there exists g ∈ Gd with
g(x) = y. It suffices to prove grand orbit equivalence of x and y (under AGd)
in the case where g = gi. Therefore, we assume that gi(x) = y. Note that gi
carries Ii to S1 \ int I−i. Thus, if y /∈ I−i, then x must lie in Ii, and we have
that AGd(x) = gi(x) = y. On the other hand, if y ∈ I−i, then we have that
AGd(y) = g−1

i (y) = x. In either case, x and y lie in the same grand orbit of
AGd . �

Remark 3.4. It is worth emphasizing that if the group Gd is equipped with a dif-
ferent fundamental domain or a different pattern of side-pairings, then the resulting
Bowen-Series map may be discontinuous. For instance, the four punctured sphere
admits an ideal hexagon as a fundamental domain with sides C1, · · ·C6 (arranged
cyclically) and side-pairing transformations g1, g2, g3 such that gi pairs C2i−1, C2i,
for i = 1, 2, 3. It is easy to that the associated Bowen-Series map is discontinuous.

3.2. Bowen-Series maps for Fuchsian punctured sphere groups with tor-
sion points. We now consider Bowen-Series maps for Fuchsian groups uniformiz-
ing punctured spheres with one/two orbifold points of order two. As in Subsec-
tion 3.1, we will first study the Bowen-Series maps associated with two specific
Fuchsian groups Gd,1, Gd,2 (uniformizing spheres with d punctures and one/two or-
der two orbifold points respectively) equipped with special fundamental domains.

3.2.1. The case of two orbifold points. Fix d ≥ 2. For j ∈ {1, · · · , d}, let Cj
be the hyperbolic geodesic of D connecting pj := eπi(j−1)/d and pj+1 := eπij/d,
and C−j be the image of Cj under reflection in the real axis. Let us denote the
common perpendicular bisector of C1 and C−d by `. Consider the order two Möbius
automorphism g1 (respectively, g−d) of D defined as reflection in C1 (respectively,
C−d) followed by reflection in `. Then, g1, g−d preserve C1, C−d, and have elliptic
fixed points on C1, C−d (respectively). Next, consider the Möbius automorphisms
gj (j ∈ {2, · · · , d}) of D defined as reflection in Cj followed by reflection in `. By

construction, gj carries Cj onto C1−j . It is also easy to see that each gj+1g
−1
j is a
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parabolic map with the unique fixed point at pj+1 (where j ∈ {1, · · · , d− 1}), and
gdg−d is a parabolic map with unique fixed point at pd+1. We define

Gd,2 := 〈g1, g2 · · · , gd, g−d〉.
Then, Gd,2 is a Fuchsian group with a fundamental domain R having C1, · · · , Cd,
C−d, · · · , C−1 as its edges (see Figure 2 (left)). Moreover, D/Gd,2 is a sphere with
d punctures and two order two orbifold points.

Arguments similar to the ones used in the proof of Proposition 3.3 yield the
following result (we omit the proof).

Proposition 3.5. 1) For d ≥ 2, the Bowen-Series map AGd,2 : S1 → S1 of Gd,2
(equipped with the fundamental domain R) is a C1 piecewise Fuchsian Markov map
of degree 2d− 1.

2) AGd,2 is a mateable map whose pieces generate the Fuchsian group Gd,2; in
particular, AGd,2 is orbit equivalent to Gd,2.

R

`
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C3

C−3
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g−1
2

g2

g−1
3

g3

g−3
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p4

p−2p−3

R
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C−1
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C−2

C3

g1

g−1
1

g2

g−1
2

g3 p1

p2

p3

p−2

p−3

Figure 2. The preferred fundamental domains R of G3,2 (on the
left) and G3,1 (on the right) are shown. The group G3,2 (respec-
tively, G3,1) uniformizes a thrice punctured sphere with two (re-
spectively, one) orbifold point(s) of order two. The actions of the
corresponding Bowen-Series map on S1 are also displayed.

3.2.2. The case of one orbifold point. Fix d ≥ 2. For j ∈ {1, · · · , d}, let Cj be the

hyperbolic geodesic of D connecting pj := e2πi(j−1)/(2d−1) and pj+1 := e2πij/(2d−1),
and C−j be the image of Cj under reflection in the real axis. Note that Cd is the
same as C−d. Consider the Möbius automorphism gj of D defined as reflection in
Cj followed by complex conjugation, for j ∈ {1, · · · , d}. Then, gd has order two,
preserves Cd, and has an elliptic fixed point on Cd. On the other hand, gj carries
Cj onto C−j , for j ∈ {1, · · · , d − 1}. It is readily checked that g2

1 is a parabolic

transformation with unique fixed point at p1, while each gj+1g
−1
j is parabolic with

unique fixed point at pj+1, for j ∈ {1, · · · , d− 1}. We define

Gd,1 := 〈g1, · · · , gd〉.
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Then, Gd,1 is a Fuchsian group with a fundamental domain R having C1, · · · , Cd,
C−(d−1), · · · , C−1 as its edges (see Figure 2 (right)). Moreover, D/Gd,1 is a sphere
with d punctures and one order two orbifold point. Again, as in Proposition 3.3 we
obtain the following result (and omit the proof).

Proposition 3.6. 1) For d ≥ 2, the Bowen-Series map AGd,1 : S1 → S1 of Gd,1
(equipped with the fundamental domain R) is a C1 piecewise Fuchsian Markov map
of degree 2d− 2.

2) AGd,1 is a mateable map whose pieces generate the Fuchsian group Gd,1; in
particular, AGd,1 is orbit equivalent to Gd,1.

3.3. Mating Bowen-Series maps of Bers slice groups with polynomials.
We now describe the simplest instance of our mating construction. For d ≥ 2,
consider the Fuchsian group Γ0 ∈ {Gd, Gd,1, Gd,2} and the Bowen-Series map AΓ0

:
S1 → S1, which is a mateable map associated to Γ0. For Γ ∈ B(Γ0), we call the
mateable mapAΓ associated to Γ and compatible withAΓ0 the Bowen-Series map of
Γ (see Subsection 2.2). Set k = 2d−1 if Γ0 ∈ {Gd, Gd,2}, and k = 2d−2 if Γ0 = Gd,1.
Recall that Hk stands for the principal hyperbolic component in the space of degree
k polynomials.

Theorem 3.7. Let Γ ∈ B(Γ0), and P ∈ Hk. Then, the maps ÂΓ : DAΓ
→ K(Γ)

and P : K(P )→ K(P ) are conformally mateable.

Proof. Note that Γ0 is conjugate to Γ via a quasiconformal homeomorphism, and

this quasiconformal map conjugates ÂΓ0 to ÂΓ. Thus by a standard quasiconformal

deformation argument, it suffices to show that the map ÂΓ0
: DAΓ0

→ K(Γ0) = D is

mateable with P . Since AΓ0
: S1 → S1 is a mateable map of degree k, the existence

of the desired conformal mating follows from Proposition 2.18. �

4. Higher Bowen-Series maps for Bers slice groups

The aim of this section is to describe a new class of mateable maps orbit equiv-
alent to groups in the Bers slice of a Fuchsian punctured sphere group, and con-
formally mateable with polynomials. The motivation here is different from the
symbolic coding of geodesics [Ser81] as is our approach.

4.1. Higher Bowen-Series maps for Fuchsian punctured sphere groups.
Recall from Definition 2.7 that the fundamental domain of a piecewise Fuchsian
Markov map A is denoted by R. The set D = D \ R is the canonical domain of

definition of Â in D.
Recall (Definition 2.7) that a side of R is not regarded as a diagonal.

Definition 4.1. A piecewise Fuchsian Markov map A : S1 → S1 is said to have a
diagonal fold if there exist consecutive edges α1, α2 of ∂R and a diagonal δ of R

such that Â(αi) = δ for i = 1, 2. Note that if a1, a2 (resp. a2, a3) are the endpoints
of α1 (resp. α2) and p, q are the endpoints of δ, then A(a1) = p = A(a3) and
A(a2) = q by continuity of A on S1.

A piecewise Fuchsian Markov map A : S1 → S1 is said to be a higher degree map
without folding if

(1) there exists an (open) ideal polygon D ⊂ R such that all the edges δ1, · · · , δl
of D are (necessarily non-intersecting) diagonals of R. We assume further
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that δ1, · · · , δl are cyclically ordered along ∂D. We shall call D the inner
domain of A.

(2) If p is an ideal vertex of D, then A(p) = p.

(3) For every edge α of R, Â(α) is one of the diagonals δ1, · · · , δl.
(4) A has no diagonal folds.

Cyclically ordering the edges α1, · · · , αk of R, it follows from Definition 4.1, that
under a higher degree map without foldingA, consecutive edges αi, αi+1 of R go
to consecutive edges of D. Note however that a counterclockwise cyclic ordering of
edges of R may be taken to a clockwise cyclic ordering of edges of D under A. In

any case we have a continuous map Â : ∂R → ∂D. Adjoining the ideal endpoints

of R and D, Â has a well-defined degree d. Further, each edge of D has exactly |d|
pre-images under Â since there are no folds. Also, since each δi is a diagonal of R,
|d| > 1. We call |d| the polygonal degree of A. (Since |d| > 1 we call A a higher
degree map without folding .)

We refer the reader to Figure 3 below. Fix a (closed) fundamental domain of
Γ0 = Gk−1 (see Subsection 3.1 for the definition of Gk−1), given by an ideal (2k−2)-
gon W (the figure illustrates the k = 4 case). For definiteness, let us assume that
the ideal vertices of W are the (2k − 2)-th roots of unity. We fix the following
notation.

(1) The vertices of W on the bottom semi-circle are numbered 1 = 1−, 2− · · · ,
k− = k in counterclockwise order.

(2) The vertices of W on the top semi-circle are numbered 1, 2, · · · , k in clock-
wise order.

(3) Between vertices i, i+1 (and including i, i+1) on the top semi-circle, there
are 2k − 2 vertices given by the vertices of gi.W (noting that gi.W ∩W
equals the bi-infinite geodesic i(i+ 1)). We label the 2k−4 vertices strictly
between i, i+ 1 as {i, 2}, {i, 3}, · · · , {i, 2k − 3} in clockwise order.

The generators of Γ0 are given by g1, · · · , gk−1, where gi takes the edge i−(i+ 1)−
to the bi-infinite geodesic i(i+ 1).

Define R as

R = int

W ∪ ⋃
i=1,··· ,k−1

gi.W

,
so that i(i+ 1) are diagonals of R.

We shall introduce below an auxiliary map AΓ0,aux in terms of its pieces. The
main purpose of AΓ0,aux is to lead up to the notion of a higher Bowen-Series map
in Definition 4.2 below. However, AΓ0,aux is more symmetrically defined and makes

the book-keeping easier. The notation
>
ij will denote an arc of S1 with its endpoints

at the break-points i, j such that there are no other break-points of AΓ0,aux in the
arc.
• On the arc

>
i−(i+ 1)− , define AΓ0,aux to be gi for i = 1, · · · , k − 1. Then

AΓ0,aux(
>
i−(i+ 1)− ) equals the complement of (the interior of) the arc

>
i(i+ 1)

in S1.
• For every i = 1, · · · , k − 1, and on each of the k − 1 short arcs

>
{i, j}{i, j + 1}

for i ≤ j ≤ i + k − 2 in between i, i + 1, define AΓ0,aux to be g−1
i . Then

AΓ0,aux(∪i+k−2
j=i

>
{i, j}{i, j + 1}) equals the upper semi-semicircle between 1 and k.



20 MAHAN MJ AND SABYASACHI MUKHERJEE

g3
g2g1

g−1
1

g−1
2

g−1
3

g3

g2
g1

Figure 3. Fundamental domains for AΓ0,aux and AΓ0,hBS: 4 punctures

(Here, for notational convenience, we identify {i, 1} with i and {i, i+ 2k − 2} with
i + 1.) Also, for i ≤ j ≤ i + k − 2, AΓ0,aux maps the clockwise arc from {i, j} to
{i, j + 1} onto the clockwise arc from j to j + 1. We refer to the clockwise arcs
from {i, j} to {i, j + 1} (for i ≤ j ≤ i+ k − 2) as short folding arcs under AΓ0,aux.
• For i ∈ {2, · · · , k − 1} and 1 ≤ j ≤ i − 1, let j = i − s, so that 1 ≤ s ≤
i − 1. We define AΓ0,aux to be gs ◦ g−1

i on
>
{i, j}{i, j + 1} . Thus, for j ≤ i − 1,

A(
>
{i, j}{i, j + 1}) equals the counterclockwise (long) arc from s to s+ 1.

• For i ∈ {1, · · · , k − 2} and i + k − 1 ≤ j ≤ 2k − 3, let j = i + k − 1 + t, so that

0 ≤ t ≤ k − 2− i. We define AΓ0,aux to be gk−1−t ◦ g−1
i on
>
{i, j}{i, j + 1} . Thus,

for i+k− 1 ≤ j ≤ 2k− 3, A(
>
{i, j}{i, j + 1}) equals the counterclockwise (long) arc

from k − 1− t to k − t.
We refer to the clockwise arcs from {i, j} to {i, j+1} (for j ≤ i−1 or i+k−1 ≤ j)

as long folding arcs under A.
• Note that AΓ0,aux(i) = i for all i = 1, · · · , k.

Define AΓ0,hBS to be the minimal piecewise Fuchsian Markov map equaling
AΓ0,aux on S1, i.e., AΓ0,hBS is obtained from AΓ0,aux by removing superfluous break-

points. Denote the canonical extension of AΓ0,hBS by ÂΓ0,hBS, its canonical domain

of definition in D by DΓ0,hBS, and the fundamental domain of ÂΓ0,hBS by RΓ0,hBS.
Further, let D be the open ideal polygon bounded by the bi-infinite geodesics
12, 23, · · · , (k − 1)k, k1. Evidently, all the edges of D are (non-intersecting) diago-
nals of RΓ0,hBS, each ideal vertex of D is fixed by AΓ0,hBS, each edge of RΓ0,hBS is

mapped by ÂΓ0,hBS to an edge of D, and ÂΓ0,hBS has no diagonal folds. Therefore,

ÂΓ0,hBS is a higher degree map without folding having D as its inner domain.

Definition 4.2. We call the piecewise Fuchsian Markov map AΓ0,hBS the higher
Bowen-Series map of Γ0 (associated with the fundamental domain W ).

The next result is about the relationship between Bowen-Series maps and higher
Bowen-Series maps. In fact, the following proposition is a restatement of the above
construction and gives a more direct description of the higher Bowen-Series map
of Γ in terms of the Bowen-Series maps of Γ0 associated with various overlapping
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fundamental domains. This point of view will be useful in Proposition 5.2, where
we will prove a combinatorial characterization of higher Bowen-Series maps.

Proposition 4.3. Let W be a (closed) fundamental domain for a Fuchsian group
Γ0 (uniformizing a k-times punctured sphere) given by an ideal (2k − 2)-gon. We
label the ideal vertices of W as 1 = 1−, 2−, · · · , (k − 1)−, k− = k, k − 1, · · · , 2
in counterclockwise order, and assume that the side pairing transformations of W
(generating Γ0) are given by g1, · · · , gk−1, where gi takes the edge i−(i+ 1)− to the

edge i(i+ 1).
Further, let D be the interior of the ideal polygon bounded by the bi-infinite

geodesics 12, 23, · · · , (k − 1)k, k1, and P the interior of the ideal polygon bounded

by the bi-infinite geodesics 1−2−, 2−3−, · · · , (k − 1)−k−, k−1−. Then the following
hold.
1) W = D∪P , and for each j ∈ {1, · · · , k−1}, D∪gj(P ) is a (closed) fundamental
domain for Γ0.
2) On the clockwise arc from j to j + 1, the higher Bowen-Series map AΓ0,hBS

equals the Bowen-Series map of Γ0 associated with the (closed) fundamental domain

D ∪ gj(P ) (j ∈ {1, · · · , k − 1}), and on the counterclockwise arc from 1 to k,
AΓ0,hBS equals the Bowen-Series map of Γ0 associated with the fundamental domain

W = D ∪ P .
Conversely, a map A : S1 → S1 defined as in part 2 of the proposition is a higher

Bowen-Series map.

The preceding description of AΓ0,hBS shows that it is made up of Bowen-Series
maps corresponding to various (overlapping) fundamental domains of Γ0. This
justifies the terminology ‘higher Bowen-Series maps’.

Proposition 4.4. Let AΓ0,hBS be as above. Then AΓ0,hBS is a C1 mateable map
whose pieces generate the Fuchsian group Γ0; in particular, AΓ0,hBS is orbit equiv-
alent to Γ0.

Proof. Clearly, AΓ,hBS : S1 → S1 is piecewise Fuchsian. Since each ideal vertex of
the inner domain D is a parabolic fixed point of AΓ,hBS, one readily checks that
AΓ,hBS is C1. That the pieces of AΓ0,hBS form a Markov partition for the map fol-
lows from the construction of AΓ0,hBS. Expansiveness of AΓ0,hBS is a consequence
of the facts that it is a C1 covering map, it has only finitely many fixed points,
and |A′Γ0,hBS| ≥ 1 on S1 with equality only at the parabolic fixed points (com-

pare [LMMN20, Lemma 3.7]). This shows that AΓ0,hBS is a piecewise Fuchsian
Markov map without asymmetrically hyperbolic periodic break-points.

To show that AΓ,hBS is a mateable map, it remains to argue that it is orbit
equivalent to Γ0. It is enough to show that x, y lie in the same grand orbit under
AΓ0,hBS in the special case that y = gi(x) for some i = 1, · · · , k − 1.
• If y lies in the complement of the clockwise arc from i to i+ 1, then x lies in the
counterclockwise arc from i− to (i+ 1)− and y = AΓ0,hBS(x).
• If y lies in any of the short folding arcs; i.e., in the clockwise arc from {i, i} to
{i, i + k}, then we rewrite y = gi(x) as g−1

i (y) = x. Since the piece of AΓ0,hBS on

such an arc is g−1
i , we now have that AΓ0,hBS(y) = x.

It remains to deal with the case where y lies in one of the long folding arcs
>
{i, j}{i, j + 1} for 1 ≤ j ≤ i − 1 (where i > 1) or i + k − 1 ≤ j ≤ 2k − 3 (where
i < 2k − 1). We first consider 1 ≤ j ≤ i − 1, and let j = i − s as in the definition
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of AΓ0,hBS. Then x ∈
>
s−(s+ 1)− , the counterclockwise arc from s− to (s + 1)−.

Further, on
>
s−(s+ 1)− , AΓ0,hBS = gs, and on

>
{i, j}{i, j + 1} , AΓ0,hBS = gs◦g−1

i .
Thus,

AΓ0,hBS(y) = gs ◦ g−1
i ◦ gi(x) = gs(x) = AΓ0,hBS(x),

and hence x, y lie in the same grand orbit.
Finally, let i + k − 1 ≤ j ≤ 2k − 3, and let j = k − 1 + t. Then x ∈
>
(k − t− 1)−(k − t)− , the counterclockwise arc from (k − t − 1)− to (k − t)−.

On
>
(k − t− 1)−(k − t)− , AΓ0,hBS = gk−t−1. Also, on

>
{i, j}{i, j + 1} , AΓ0,hBS =

gk−t−1 ◦ g−1
i . Hence

AΓ0,hBS(y) = gk−t−1 ◦ g−1
i ◦ gi(x) = gk−t−1(x) = AΓ0,hBS(x),

and x, y lie in the same grand orbit. �

Degree of AΓ,hBS:
We first observe that the polygonal degree of AΓ0,hBS is k−1. This follows from the

fact that the number of components of A−1
Γ0,hBS(1k), the pre-image of the diameter

of W , equals k − 1.
We now compute the degree of AΓ0,aux : S1 → S1; this is equal to the degree of

AΓ0,hBS on S1. There are (k−1)(k−2) long folding arcs in the upper semi-circle (see
Figure 3 or Proposition 4.4). Each, after being mapped forward by AΓ0,aux, covers
the lower semi-circle once. Each of the short folding arcs in the upper semi-circle

cover arcs only in the upper semi-circle. Finally, each of the k− 1 arcs
>
i−(i+ 1)−

in the lower semi-circle, after being mapped forward by AΓ0,aux, covers the lower
semi-circle once. Hence, the degree of AΓ0,aux is given by

(3) deg(AΓ0,aux) = (k − 1)(k − 2) + 0 + k − 1 = (k − 1)2 = (χ− 1)2,

where χ = 2− k is the Euler characteristic of S0,k.

4.2. Mating higher Bowen-Series maps of Bers slice groups with polyno-
mials. Consider the Fuchsian group Γ0 and the higher Bowen-Series map AΓ0,hBS :
S1 → S1 introduced in Subsection 4.1. Note that AΓ0,hBS is a mateable map as-
sociated to Γ0. For Γ ∈ B(Γ0), we call the mateable map AΓ associated to Γ and
compatible with AΓ0,hBS the higher Bowen-Series map of Γ (see Subsection 2.2).
Recall that Hd stands for the principal hyperbolic component in the space of degree
d polynomials.

Theorem 4.5. Let Γ ∈ B(Γ0), and P ∈ H(k−1)2 . Then, ÂΓ,hBS : DAΓ,hBS → K(Γ)
and P : K(P )→ K(P ) are conformally mateable.

Proof. This can be seen by applying the proof of Theorem 3.7 mutatis mutandis to
the present setting. �

A non-example: The following description of the higher Bowen-Series mapAΓ0,hBS

on S1 is straightforward to check from its construction:

AΓ0,hBS =


AΓ0,BS, on

(
k−1⋃
i=1

>
i−(i+ 1)−

)
∪

k−1⋃
i=1

i+k−2⋃
j=i

>
{i, j}{i, j + 1}

 ,

A◦2Γ0,BS, otherwise,
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where AΓ0,BS denotes the Bowen-Series map of Γ0 associated with the fundamental
domain W .

In fact, agreement of AΓ0,hBS and AΓ0,BS on the arcs
>
{i, j}{i, j + 1} (i ∈

{1, · · · , k − 1}, j ∈ {i, · · · , i + k − 2}) played an important role in the proof of
orbit equivalence of Γ0 and AΓ0,hBS (see Proposition 4.4). In this subsection, we
shall show that if one replaces AΓ0,BS by A◦2Γ0,BS on these arcs as well, the resulting
minimal piecewise Fuchsian Markov map

B :=

{
AΓ0,BS on S1 ∩ {z : Im(z) ≤ 0},
A◦2Γ0,BS on S1 ∩ {z : Im(z) ≥ 0},

is not orbit equivalent to Γ0. Although the definition of the map B may seem
unmotivated at this point, it will naturally crop up in the proof of Theorem 6.33,
where lack of orbit equivalence between Γ0 and B will be essentially used.

Proposition 4.6. The map B : S1 → S1 is not orbit equivalent to Γ0.

Proof. By way of contradiction, let us assume that B and Γ0 are orbit equivalent;
i.e., Γ0.x = GOB(x), for all x ∈ S1. Since Γ0 and AΓ0,BS are orbit equivalent by
Proposition 3.3, it follows that GOAΓ0,BS

(x) = GOB(x), for all x ∈ S1.

The definition of B implies that it acts as g−1
2 ◦ g

−1
1 on
>
{1, 2}{1, 3} . Moreover,

since g−1
2 ◦ g−1

1 maps the arc
>
{1, 2}{1, 3} to the complement of the interior of

the arc
>
2−3− , it follows that g−1

2 ◦ g−1
1 , and hence B, has a fixed point p in

>
{1, 2}{1, 3} (compare Figure 3). Also note that q := AΓ0,BS(p) = g−1

1 (p) ∈>
23

belongs to the AΓ0,BS-grand orbit of p. On the other hand, q is also a fixed point
of B:

B(q) = A◦2Γ0,BS(AΓ0,BS(p)) = AΓ0,BS(A◦2Γ0,BS(p)) = AΓ0,BS(B(p)) = AΓ0,BS(p) = q.

Thus, p and q cannot lie in the same grand orbit under B. Hence, GOAΓ0,BS
(p) 6=

GOB(p), a contradiction. �

5. Combinatorial characterization of Bowen-Series maps and higher
Bowen-Series maps

5.1. Combinatorial characterization of Bowen-Series maps. The canonical
extension of a Bowen-Series map of a Fuchsian group uniformizing a sphere with
finitely many punctures and zero/one/two order two orbifold points (as discussed
in Sections 3.1 and 3.2) restricts to a self-homeomorphism of the boundary of its
domain of definition. We will now see that this property characterizes Bowen-Series
maps (of Fuchsian groups uniformizing spheres with finitely many punctures and
zero/one/two order two orbifold points) among all piecewise Fuchsian Markov maps.

Let us quickly recall some notation. Following Definition 2.3, we denote the
pieces of a piecewise Möbius map A : S1 → S1 by g1, · · · , gk ∈ Aut(D) such that

A|Ij = gj , where {I1, · · · , Ik} is a partition of S1 by closed arcs (i.e., S1 =
⋃k
j=1 Ij ,

and int Im ∩ int In = ∅ for m 6= n). We set ΓA = 〈g1, · · · , gk〉. The canonical

domain of definition of Â in D is denoted by D. Finally, we set R = D \ D to be

the fundamental domain of Â, and denote the set of all ideal vertices of R (in S1)
by S.

Proposition 5.1. Let A : S1 → S1 be a piecewise Fuchsian Markov map. Then the
following are equivalent.
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(1) The canonical extension Â maps the boundary of its (canonical) domain of

definition onto itself; i.e., Â(∂R) = ∂R.
(2) D/ΓA is a sphere with finitely many punctures (possibly with one/two order

two orbifold points), and A is a Bowen-Series map of ΓA. In particular, A
is orbit equivalent to ΓA.

Before proceeding with the proof of Proposition 5.1, we provide a concrete ex-
ample.

R R

x1
g1

x2

g2

x3

g3

x4

g4

x5 g5
x6

g6

x7

g7

x8

g8

x9

g9 x1
g1x2

g2

x3

g3

x4

g4

x5 g5
x6

g6

x7

g7

x8

g8

Figure 4. Illustrating the proof of Proposition 5.1.

In the left figure in Figure 4, ∂R has 9 sides; i.e., k = 9 and r = 5. In the right
figure in Figure 4, ∂R has 8 sides; i.e., k = 8 and r = 4.

Proof of Proposition 5.1: 1) =⇒ 2). We refer the reader to Figure 4. The con-

dition Â(∂R) = ∂R implies that Â|∂R is a self-homeomorphism preserving the set

S. (Recall that S is the set of all ideal vertices of R in S1.) In particular, Â|S is
conjugate to the action of a symmetry φ of a regular k-gon restricted to its vertices.

First note that if φ is a rotational symmetry of a regular k-gon, then there exists
some l ∈ {1, · · · , k} such that A(xj) = xj+l−1, for each j ∈ {1, · · · , k}. But this
will force A to be a homeomorphism of S1 contradicting the assumption that A|S1

has degree at least two. Therefore, φ must be a reflection symmetry of a regular
k-gon.

We now need to consider two cases.

Case 1: k = 2r − 1, for some integer r ≥ 2. For a regular polygon with odd
number of sides, the axis of the reflection symmetry φ connects the midpoint of
one side to the opposite vertex. Thus, possibly after renumbering the ideal vertices

x1, · · · , xk of R, we can assume that the “axis of symmetry” of Â|∂R connects x1

to the geodesic of D connecting xr to xr+1. Hence, A(x1) = x1, and {x1+i, x1−i}
is a 2-cycle of A, for i ∈ {1, · · · , r − 1}.

In particular, A maps the geodesic connecting xr to xr+1 onto itself, and switches
it endpoints. Thus gr must have a fixed point on this geodesic. It follows that g◦2r
has three fixed points, and hence must equal the identity map. In other words, gr
has an elliptic fixed point of order two on the side of ∂R connecting xr to xr+1.
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Let Γ′ := 〈g1, · · · , gr〉 ≤ ΓA. Note that R is (the interior of) an ideal polygon in
D, and the Möbius transformations g1, · · · , gr pair the sides of ∂R. By the Poincaré
polygon theorem, R is (the interior of) a fundamental polygon for Γ′. Furthermore,
the side pairing patterns show that Σ := D/Γ′ is a sphere with r punctures and an
orbifold point of order two. The ideal vertices of R correspond to the punctures of
Σ, so they are parabolic fixed points of elements of Γ′.

For i ∈ {0, · · · , r−2}, the element gk−i◦g1+i ∈ ΓA fixes the parabolic fixed points
x1+i and x2+i. Hence, these maps must equal the identity map; i.e., gk−i = g−1

1+i,
for i ∈ {0, · · · , r − 2}. Since g1, · · · , gk generate the group ΓA, we now conclude
that ΓA = Γ′, and A is the Bowen-Series map of ΓA associated to a fundamental
polygon having R as its interior.

Case 2: k = 2r, for some r ≥ 2. For a regular polygon with even number
of sides, the axis of the reflection symmetry φ either connects the midpoints of
opposite sides or connects opposite vertices. Thus, possibly after renumbering the

ideal vertices x1, · · · , xk of R, we can assume that the “axis of symmetry” of Â|∂R
either connects x1 to xr+1, or connects the geodesic of D having endpoints at x1, x2

to the geodesic having endpoints at xr+1, xr+2.
In the former case, we have that A(x1) = x1, A(xr+1) = xr+1, and {x1+i, x1−i} is

a 2-cycle of A, for i ∈ {1, · · · , r−1}. Again, setting Γ′ := 〈g1, · · · , gr〉 ≤ ΓA, we see
in light of the Poincaré polygon theorem that R is (the interior of) a fundamental
polygon for Γ′ with side pairing transformations g1, · · · , gr, and Σ := D/Γ′ is a
sphere with r+1 punctures. As the ideal vertices of R correspond to the punctures
of Σ, they are parabolic fixed points of elements of Γ′. For i ∈ {0, · · · , r − 1},
the element gk−i ◦ g1+i ∈ ΓA fixes the parabolic fixed points x1+i and x2+i of
elements of ΓA. By discreteness of ΓA, these maps must equal the identity map;
i.e., gk−i = g−1

1+i, for i ∈ {0, · · · , r − 1}. Therefore, ΓA = Γ′, and A is the Bowen-
Series map of ΓA associated to a fundamental polygon having R as its interior.

In the latter case, {x2+i, x1−i} is a 2-cycle of A for i ∈ {0, · · · , r−1}. Combining
the arguments used above, one easily sees that in this case, ΓA = 〈g1, · · · , gr+1〉,
and Σ := D/ΓA is a sphere with r punctures and two orbifold points of order two.
Moreover, A is the Bowen-Series map of ΓA associated to a fundamental polygon
having R as its interior.

2) =⇒ 1). This directly follows from the definition of Bowen-Series maps. �

5.2. Combinatorial characterization of higher Bowen-Series maps. In this
subsection, we will employ the notation introduced in Definition 4.1 of a higher
degree map without folding .

In Section 4, we defined and studied the structure of a specific higher degree map
without folding , which we called a higher Bowen-Series map (see Definition 4.2).
The canonical extension of a higher Bowen-Series map has the additional property
of being injective on each connected component of ∂R \ ∂D (here we consider the
boundary in the closed disk D). As we shall see next, this property characterizes
higher Bowen-Series maps among all higher degree maps without folding. Recall
that for a piecewise Fuchsian map A, the group ΓA is the Fuchsian group generated
by the pieces of A.

Proposition 5.2. Let A : S1 → S1 be a higher degree map without folding . Then,
the following are equivalent.
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(1) The canonical extension Â is injective on each connected component of
∂R \ ∂D (boundary taken in D).

(2) ΓA is a punctured sphere Fuchsian group, and A is a higher Bowen-Series
map of ΓA. In particular, A is orbit equivalent to ΓA.

Proof. 1) =⇒ 2). We first note that thanks to Proposition 4.4, orbit equivalence
of A and ΓA will follow once we prove that A is a higher Bowen-Series map.

We label the edges α1, · · · , αl of R and the edges δ1, · · · , δk of D (in counter-
clockwise order) such that δ1 and α1 have a common endpoint, and denote the
vertices of D by p1, · · · , pk (in counterclockwise order) where α1 and δ1 meet at p1

(see Figure 5). We further assume that Â|αr ≡ gr, for r ∈ {1, · · · , l}. By definition,
under a higher degree map without foldingA, consecutive edges αr, αr+1 of R go

to consecutive edges of D. Thus, we have a continuous map Â : ∂R→ ∂D.

Note that both the endpoints of δ1 are fixed by A. The assumption that Â is

injective on each connected component of ∂R \ ∂D now implies that Â : ∂R→ ∂D
is orientation-reversing, and the connected component of ∂R \ ∂D containing α1

consists of exactly k− 1 edges. (If the map were orientation-preserving, the degree
of A would be one, violating the assumption that A has degree greater than one.)

Moreover, Â maps α1, · · · , αk−1 bijectively onto the edges δk, · · · , δ2 of D. Hence,
each of the Möbius maps g1, · · · , gk−1 carry the edges α1, · · · , αk−1 of R to the
edges δk, · · · , δ2 of D. Thus, the Möbius maps g±1

1 , · · · , g±k−1 pair the sides of
the (closed) ideal polygon W1 in D bounded by α1, · · · , αk−1, δ2, · · · , δk. Setting
Γ1 := 〈g1, · · · , gk−1〉, one sees that W1 is a (closed) fundamental polygon for Γ1.
Furthermore, the side pairing patterns show that D/Γ1 is a sphere with k punctures
where the vertices of D bijectively correspond to the punctures of D/Γ1. It also
follows that on the counterclockwise arc from p1 to p2, the map A agrees with the
Bowen-Series map of Γ1 associated with the fundamental polygon W1.

For j ∈ {1, · · · , k}, we set Γj := 〈g1+(j−1)(k−1), · · · , gj(k−1)〉. Applying the ar-
guments of the previous paragraph repeatedly, one sees that the connected compo-
nent of ∂R \ ∂D containing α1+(j−1)(k−1) consists of exactly k − 1 edges, namely
α1+(j−1)(k−1), · · · , αj(k−1). We denote by Wj the closed ideal polygon bounded by
the edges α1+(j−1)(k−1), · · · , αj(k−1) of R and all the edges of D except δj . Then,
g1+(j−1)(k−1), · · · , gj(k−1) pair the sides of Wj , and hence Wj is a (closed) funda-
mental polygon for Γj . Furthermore, the side pairing patterns show that D/Γj is a
sphere with k punctures where the vertices of D bijectively correspond to the punc-
tures of D/Γj . It also follows that on the counterclockwise arc from pj to pj+1, the
map A agrees with the Bowen-Series map of Γj associated with the fundamental
polygon Wj .

Further, the preceding discussion shows that l = k(k − 1). We set

Γ ≡ ΓA := 〈g1, · · · , gk(k−1)〉.

Note that the vertices of D are fixed points of parabolic elements of Γ, and hence
the elements of Γ that fix a vertex pj (j ∈ {1, · · · , k}) of D form an infinite cyclic
subgroup of Γ. Let hj be a generator of the stabilizer subgroup of pj .

Claim 1: Γ = 〈h1, · · · , hk〉.

Proof of Claim. Let us fix j ∈ {1, · · · , k}. As g1+(j−1)(k−1) fixes the vertex pj of
D, it is a power of hj . Now observe that both g1+(j−1)(k−1) and g2+(j−1)(k−1)
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Figure 5. A higher degree map without folding arising from a five
times punctured sphere group.

carry a vertex of R to the vertex pj−1 of D, so g2+(j−1)(k−1) ◦ g−1
1+(j−1)(k−1) fixes

pj−1. Therefore, g2+(j−1)(k−1) ◦ g−1
1+(j−1)(k−1) is a power of hj−1. It follows that

g2+(j−1)(k−1) lies in 〈hj−1, hj〉. Inductively, one sees that gr lies in 〈h1, · · · , hk〉, for
r ∈ {1, · · · , k(k − 1)}. The claim now follows. �

As Γ is generated by k parabolic transformations h1, · · · , hk (whose powers gen-
erate a k-times punctured sphere group Γ1 ≤ Γ), it follows that D/Γ is a k-times
punctured sphere.

Claim 2: Γj = Γ, j ∈ {1, · · · , k}.

Proof of Claim. To this end, note that Γj is generated by the parabolic elements

g1+(j−1)(k−1), g2+(j−1)(k−1) ◦ g−1
1+(j−1)(k−1), · · · , gj(k−1) ◦ g−1

k−2+(j−1)(k−1), g
−1
j(k−1)

that fix the vertices of D. Hence, each such element is a power of some hi. Since
Γj is a lattice, it must be a finite index subgroup of Γ. Therefore, each of the above

parabolic elements must be equal to some hi or h−1
i . This shows that Γj = Γ. �

For j ∈ {1, · · · , k}, let us denote the interior of the ideal polygon bounded by
δj , α1+(j−1)(k−1), · · · , αj(k−1) by Pj . Then, Wj = D ∪ Pj , j ∈ {1, · · · , k}. To
show that A is a higher Bowen-Series map, it now suffices to prove (in the light of
Proposition 4.3) that

Pj = gk+1−j(P1), for j ∈ {2, · · · , k}.
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We demonstrate this for j = 2, the proofs for other values of j are similar.
First observe that applying the arguments of the proof of Claim 2 on j = 1, we

can choose the generators of the stabilizer subgroups of p1, · · · , pk as follows:

(4) h1 = g1, h2 = g−1
k−1, h3 = gk−1 ◦ g−1

k−2, · · · , hk−1 = g3 ◦ g−1
2 , hk = g2 ◦ g−1

1 .

Again, applying the arguments of the proof of Claim 2 on j = 2, we first see that
gk is equal to h2 or h−1

2 . But we already know that gk−1 = h−1
2 . The mapping

properties of Â (more precisely, the fact that gk−1 carries αk−1 onto δ2 while gk
carries αk onto δ1, see Figure 5) now imply that gk = h2 = g−1

k−1. Next, the

element gk+1 ◦ g−1
k is equal to h1 or h−1

1 ; i.e., gk+1 is equal to g1 ◦ gk or g−1
1 ◦ gk.

Observe that gk+1(αk+1) = δk, while gk sends αk+1 into the region bounded by
δ1 and the counterclockwise arc from p1 to p2. This forces gk+1 to be equal to
g1 ◦ gk = g1 ◦ g−1

k−1. Continuing this way, one concludes that gk+i = gi ◦ g−1
k−1,

for i ∈ {1, · · · , k − 2}. This shows that g−1
k−1(δ2) = αk−1, g−1

k−1(αk) = δ1, and

g−1
k−1(αk+i) = αi, i ∈ {1, · · · , k − 2}. Hence, P2 = gk−1(P1).

1) =⇒ 2). This is clear from the definition of higher Bowen-Series maps. �

Propositions 5.1 and 5.2 give a combinatorial characterization of Bowen-Series
and higher Bowen-Series maps among piecewise Fuchsian maps of the circle. While
these are not adequate to rule out the existence of other mateable maps of the circle,
they do suggest a positive answer to the following question, a version of which was
formulated and explicitly posed to us by the referee (see also Question 6.37 below):

Question 5.3. Are the (continuous) Bowen-Series and higher Bowen-Series maps
the only mateable maps in the sense of Definition 2.12?

5.3. Higher Bowen-Series as a first return map. In this subsection, we shall
show that the higher Bowen-Series map arises naturally out of a piecewise Möbius
map defined on a disjoint union of two circles in the complex plane. The corre-
sponding Kleinian surface groups, as we shall show in Section 7.5, arise naturally
from pinching a special collection of simple closed curves (see Lemma 7.6 and The-
orem 7.12) on a punctured sphere, giving rise to a Kleinian surface group with
accidental parabolics. For the time being, consider the following simple extension
of a Bowen-Series map. We refer the reader to Figure 1. If we pinch the diame-
ter in the standard representation of a Bowen-Series map AGd associated with the
Fuchsian group Gd uniformizing a sphere with d + 1 punctures (in Figure 1, the
diameter is p1, p6), we obtain two circles S1

+,S1
− attached at a point. It will be more

convenient to regard S1
+,S1

− as disjoint circles equipped with an auxiliary quotient
map that identifies the south pole of one to the north pole of the other. The aux-
iliary quotient map will not play any role in the discussion in this paragraph. The

map AGd induces a new map ÃGd on S1
+ t S1

−. The fundamental domain R of AGd
gets pinched to R+tR−, where each R± is an ideal polygon with d sides . Further,

if g̃1, · · · , g̃d are the pieces of ÃGd restricted to S1
+, then (g̃1)−1, · · · , (g̃d)−1 are the

pieces of ÃGd restricted to S1
−. Further, ÃGd maps ∂R+ to ∂R− and vice versa. As

we shall see below (Proposition 5.5 and Corollary 5.6), the first return map of ÃGd
to S1

+ (or S1
−) in this setup gives a higher Bowen-Series map.

Remark 5.4. The above discussion also shows that a higher Bowen-Series map
for the orbifold groups in Section 3.2 involves pinching a geodesic passing through
the orbifold point, and hence the elliptic elements degenerate to parabolics and no
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torsion survives in the pinched group. Thus, pinching the examples in Section 3.2
will not furnish new examples.

We turn now to a more general setup. Let A+, A− : S1 → S1 be piecewise
Fuchsian Markov maps. We denote the fundamental domains of A+, A− by R+, R−,
and the Fuchsian groups generated by the pieces ofA+, A− by Γ+,Γ− (respectively).
One can naturally associate a fiberwise dynamical system to the above pair of maps;
namely

(5) A :
(
D \R+

)
× {+}

⊔(
D \R−

)
× {−} → D× {+,−}, (z,±) 7→ (Â±(z),∓).

We will now show that under mild conditions on the maps A+, A−, higher Bowen-
Series maps emerge as first return maps of A to each sheet.

Proposition 5.5. Suppose that the piecewise Fuchsian Markov maps A+, A− sat-
isfy the following conditions.

(1) Â+ maps ∂R+ homeomorphically onto ∂R−.

(2) Â− ◦ Â+ preserves each edge of ∂R+.
(3) The group generated by Γ+ and Γ− is discrete (i.e., Fuchsian).

Then, the first return map of A on D × {+} is a higher Bowen-Series of a
punctured sphere Fuchsian group.

Proof. Let δ1, · · · , δk be the sides of ∂R+ (ordered counterclockwise) such that

Â+|δj ≡ hj , where h1, · · · , hk are the pieces of A+. As Â+ : ∂R+ → ∂R− is a
homeomorphism, ∂R− also has k edges, and hence A− has k pieces.

We denote the edges of ∂R− by δ−1, · · · , δ−k such that δ−j = Â+(δj) = hj(δj).

Since Â+|∂R+
is a homeomorphism, the edges δ−1, · · · , δ−k must be cyclically or-

dered. Observe that if these edges were ordered counterclockwise, then A+ would
be a homeomorphism of the circle (this follows from the fact that Möbius maps
preserve orientation). But this contradicts our hypothesis that A+ is a piecewise
Fuchsian Markov map (recall that a piecewise Fuchsian Markov map is required to
be a circle covering of degree at least two). Therefore, the edges δ−1, · · · , δ−k are
ordered clockwise.

Let us denote the pieces of A− by h−1, · · · , h−k, where Â−|δ−j ≡ h−j . As each

edge of ∂R+ is preserved under Â− ◦ Â+ (by the second condition), we have that

Â−(δ−j) = h−j(δ−j) = δj . Moreover, A− ◦A+ fixes all the ideal vertices of R+.
Set

R := int

R+ ∪
k⋃
j=1

h−1
j (R−)

.
Clearly, the first return map of A on D× {+} is a piecewise Fuchsian Markov map
having R × {+} as its fundamental domain (here we use the third condition to
conclude that the group generated by the pieces of A◦2 :

(
D \R

)
×{+} → D×{+}

is Fuchsian). The following properties now follow from the mapping properties of
h±j described above (compare Figure 6).

(1) Each edge of ∂R× {+} is mapped under A◦2 to some δj × {+}.
(2) A◦2 fixes each ideal vertex of R+ × {+}.
(3) A◦2 :

(
D \R

)
× {+} → D× {+} has no diagonal fold.
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Figure 6. The first copy of D. The first return map A◦2 = Â− ◦
Â+ to this fiber is a piecewise Fuchsian Markov map.

(The fundamental domain of the first return map A◦2 in Figure 6 is the (open)
ideal polygon R bounded by the red edges. A◦2 maps ∂R to the boundary of the
(open) polygon R+ (( R) bounded by the blue edges, which is the fundamental
domain of the piecewise Fuchsian Markov map A+.)

Thus, A◦2 :
(
D \R

)
×{+} → D×{+} is a higher degree map without folding with

inner domain R+×{+}. Finally, the mapping properties of h±j also show that this
higher degree map without folding is injective on each component of (∂R \ ∂R+)×
{+}. Hence, we can apply Proposition 5.2 to conclude that the first return map
of A on D × {+} is a higher Bowen-Series map of a punctured sphere Fuchsian
group. �

The following special situation, which we will encounter in Subsection 7.3, is of
particular interest.

Corollary 5.6. Suppose that the pieces of the piecewise Fuchsian Markov maps
A+, A− are given by {h1, · · · , hk} and {h−1

1 , · · · , h−1
k } (respectively). Assume fur-

ther that the edge sets of ∂R+, ∂R− are {δ1, · · · , δk} and {δ−1, · · · , δ−k} (respec-
tively) such that the following hold for all j ∈ {1, · · · , k}.

(1) Â+|δj ≡ hj, Â−|δ−j ≡ h−1
j .

(2) hj(δj) = δ−j.

Then, the first return map of A on D × {+} is a higher Bowen-Series of a
punctured sphere Fuchsian group.

Proof. Evidently, the canonical extension Â+ carries ∂R+ homeomorphically onto

∂R−, and Â− ◦ Â+ brings each edge of ∂R+ back to itself. Moreover, the Fuchsian
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groups generated by the pieces of A+ and A− are equal. The result now follows
from Proposition 5.5. �

Another application of Proposition 5.5 is that the second iterate of the Bowen-
Series map of a Fuchsian group uniformizing a sphere with k punctures and zero/one/
two orbifold points of order two is the higher Bowen-Series map of a Fuchsian group
uniformizing a sphere with approximately 2k punctures.

Corollary 5.7. Let d ≥ 2.

(1) If Γ0 ∈ {Gd, Gd,2}, then A◦2Γ0,BS = AΓ1,hBS, where Γ1 is an index two

subgroup of Γ0 with D/Γ1
∼= S0,2d.

(2) If Γ0 = Gd,1, then A◦2Γ0,BS = AΓ1,hBS, where Γ1 is an index two subgroup of

Γ0 with D/Γ1
∼= S0,2d−1.

In all cases, the second iterate of the Bowen-Series map of Γ0 is orbit equivalent
to an index two subgroup of Γ0.

Proof. Recall that the canonical extension of the Bowen-Series map of Γ0 = Gd
restricts as an involution on the boundary of its fundamental domain. Thus, we
can apply Proposition 5.5 on A+ = A− = AΓ0,BS to conclude that A◦2Γ0,BS is the

higher Bowen-Series map of a subgroup Γ1 ≤ Γ0 that uniformizes S0,2d (note that
D/Γ1 has 2d punctures since the inner domain of AΓ1,hBS, which is equal to the
fundamental domain of AΓ0,BS, has 2d ideal vertices). That [Γ: Γ′] = 2 follows
from a straightforward Euler characteristic computation.

Exactly the same proof applies to the cases with torsion elements. Finally, the
statement about orbit equivalence is a consequence of Proposition 4.4. �

As the degree of the second iterate of a map is the square of the degree of the
map, Corollary 5.7 explains the appearance of the square in Equation (3) in Section
4.

6. 2-point characterizations and moduli

Proposition 5.1 gives a combinatorial characterization of Bowen-Series maps.
The aim of this Section is to obtain a more dynamical characterization (Theorem
6.18) in terms of orbit equivalences of pairs of points. This characterization is
necessary to determine the moduli space of matings in Section 6.4. Some amount
of technology needs to be developed to obtain this characterization, and the right
setup appears to be that of discrete laminations and patterns (see Definitions 6.3
and 6.6). We quickly recall the notion of geodesic laminations [Thu80]

Definition 6.1. A geodesic lamination L∗ on a hyperbolic surface Σ = D/Γ is a
closed set of mutually disjoint simple geodesics on the surface. Lifting L∗ to the
universal cover D yields a Γ-invariant closed set of mutually disjoint geodesics that
are allowed to have common endpoints on S1. We call this a geodesic lamination
on D, and denote it by L. Each component of a lamination is called a leaf.

A transverse measure µ for L∗ is an assignment of a positive, finite measure to
each transversal τ to L∗, supported on τ ∩ L∗ and invariant under homotopy. A
measured lamination is a geodesic lamination equipped with a transverse measure
of full support.

Remark 6.2. We remark that not every geodesic lamination admits a transverse
measure of full support, see [Mar16, §3.9] for details.
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Let A = AΓ be a piecewise Fuchsian Markov map topologically conjugate to
the polynomial map p : z 7→ zd on S1. It will be important to relate A-invariant
laminations to Γ-invariant laminations. We now proceed to show that both A- and
Γ-invariance imposes considerable restrictions on laminations. Note however that
such laminations are entirely on the ‘group side’ of the picture, inasmuch as we are
concerned with combinatorial restrictions on laminations invariant under both Γ
and a piecewise Fuchsian Markov A = AΓ orbit equivalent to Γ.

In the context of hyperbolic geometry, the following notion goes back to Schwartz
[Sch97, Sch95] (see also [MSW11, BM12, Mj12, Bis12] for the connection to rigidity
questions). Let dS denote

(
(S1 × S1 \∆)/ ∼

)
, where ∆ denotes the diagonal and

∼ denotes the flip equivalence relation.

Definition 6.3. Let Γ be a finite co-volume Fuchsian group. A Γ-pattern is a
closed, discrete Γ-invariant subset of dS.

Let γ be a closed geodesic in H2/Γ, possibly with self-intersections. Let γ̃ be the
pre-image of γ in the universal cover H2. Then the collection

{(p, q) : p, q are ideal endpoints of a bi-infinite geodesic in γ̃}
provides an example of a Γ-pattern. Thus, a Γ-pattern need not correspond to a
lamination.

6.1. A-patterns. In this subsection, we shall proceed to construct a piecewise
Fuchsian Markov version of a Γ-pattern. For Γ as above, let A be a degree d
piecewise Fuchsian Markov map on S1, where the pieces of A are from Γ. Let {Ij}
be the (finitely many cyclically ordered) intervals of definition of the pieces gj of A.

We need to pay special attention to the endpoints of the intervals Ij . Let R
denote the fundamental domain (see Definition 2.7) of A in D with cyclically ordered
ideal points x1, · · · , xk. Thus, the endpoints of Ij are xj and xj+1 (mod k). Let
S = {x1, · · · , xk}. The Markov property of the map A ensures that A(S) ⊂ S.
Thus, we have the following:

Remark 6.4. Each xi ∈ S is pre-periodic under A. Thus, grand orbits of xi ∈ S
are in one-to-one correspondence with periodic orbits in S under (forward iteration
by) A.

As before,
(
(S1× S1 \∆)/ ∼

)
is denoted by dS. The A-action on S1 induces an

action dA : dS→ (S1 × S1)/ ∼.

Definition 6.5. Let A denote a piecewise Fuchsian Markov map with pieces in a
finite co-volume Fuchsian group Γ. A subset L of dS is
(1) A-forward invariant if dA(L) = L.
(2) A-backward invariant under branches or simply A-backward invariant if the
following holds:
if {p, q} ∈ L, and g−1 ∈ Γ is a branch of A−1 defined on an arc σ containing p, q
such that g−1(p) = p1 and g−1(q) = q1, then {p1, q1} ∈ L. For {p, q} ∈ dS, as
above, {p1, q1} satisfying such a condition g−1(p) = p1 and g−1(q) = q1, where
g−1 ∈ Γ is a branch of A−1 is called an A-pre-image of {p, q}.
For any {p, q} ∈ dS, the backward orbit of {p, q} under A consists of all iterated
A-pre-images of {p, q} (under branches of A−n, n ∈ N) along with the element
{p, q}. It will be denoted as BOA({p, q}). The grand orbit of {p, q} under A is
defined to be the union of the forward orbit of {p, q} and the backward orbits of all
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elements in the forward orbit of {p, q} (with the convention that if dAi({p, q}) ∈ ∆
for some i, then the backward orbit of dAi({p, q}) is empty). The grand orbit of
{p, q} under A will be denoted as GOA({p, q}). For a bi-infinite geodesic γ ⊂ D
having its endpoints at p, q, we will use the notation BOA({p, q}) and BOA(γ)
(respectively, GOA({p, q}) and GOA(γ)) interchangeably.

Along the lines of Definition 6.3, we define:

Definition 6.6. Let A denote a piecewise Fuchsian Markov map with pieces in a
finite co-volume Fuchsian group Γ. An A-pattern is a closed discrete subset L of
dS that is forward and backward invariant under dA.

Lemma 6.7. Let R denote the fundamental domain of a piecewise Fuchsian Markov
map A and α denote an edge of R. Let p, q denote the endpoints of α. Then
GOA({p, q})∩∆ contains at most one point, and GOA({p, q})∩dS is an A-pattern.

Proof. The definition of an A-pre-image of an element {r, s} ∈ dS guarantees that
the A-pre-images of {r, s} lie in dS. On the other hand, if the forward orbit of
{r, s} ∈ dS under dA hits the diagonal ∆ in some finite time i, then there are
no forward images of dAi({r, s}) under dA (i.e., forward iteration of dA on {r, s}
stops at time i). It follows that GOA({r, s}) intersects ∆ in at most one point.

It now suffices to show that GOA({p, q})∩dS is closed and discrete in dS. Note
that GOA({p, q}) ∩ dS equals the union ∪iBOA({A◦i(p), A◦i(q)}) in dS. Since
the forward orbit {A◦i(p), A◦i(q)} of the endpoints of any edge of R is necessarily
finite (since all vertices of R are pre-periodic under A), it suffices to show that the
backward orbit of each edge or diagonal is closed and discrete. This follows from
the hypothesis that A is a piecewise Fuchsian Markov map as follows.

Since A is expansive, it follows that the diameter of each element of A−j({p, q}),
considered as a 2-point subset of S1 tends to zero as j → +∞. Thus, any accu-
mulation point of GOA({p, q}) ∩ dS in (S1 × S1)/ ∼ lies on the diagonal. Hence
GOA({p, q}) ∩ dS is a closed and discrete subset of dS as required. �

The proof of Lemma 6.7 actually furnishes more:

Corollary 6.8. Let R denote the fundamental domain of a piecewise Fuchsian
Markov map A and αi, i = 1, · · · , k denote the boundary edges of R. Let pi, qi
denote the endpoints of αi, and P := {{pi, qi} : i = 1, · · · , k}. Then GOA(P)∩∆ is
a (possibly empty) finite set, and GOA(P) ∩ dS is an A-pattern.

Eliminating special diagonals:
For any diagonal or edge γ = {x, y} ofR, A(γ) is defined as dA({x, y}) = {A(x), A(y)},
or equivalently as the bi-infinite geodesic joining A(x), A(y). However, the A-pre-
image of a diagonal is not automatically defined. This is because a branch of A−1

can be defined (as an element of Γ) on a diagonal {x, y} if and only if there is a
branch of A−1 defined on one of the arcs of S1 cut off by x, y. Suppose A has degree
d. Since A is piecewise Fuchsian Markov , dk branches of A−k are always defined.
The following useful observation connects pieces and branches.

Remark 6.9. h is a branch of A−1 if and only if h−1 is a piece of A. More generally,
h(∈ Γ) is a branch of A−k if and only if h−1 is a piece of A◦k.

Definition 6.10. Let p, q denote the endpoints of a diagonal δ of R. If there exists
a branch h of A−1 and an edge α of R with endpoints p1, q1 such that h(p1) = p,
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h(q1) = q, then δ (or equivalently the pair {p, q}) will be called a special diagonal
of R.

We summarize the above discussion in the following (rather useful) statement:

Proposition 6.11 (No special diagonals). Let A be a minimal piecewise Fuchsian
Markov map. Let R be a fundamental domain of A. Then special diagonals in R
do not exist for A.

Proof. Suppose δ is a special diagonal of R with endpoints p, q. Then, by Remark
6.9, there exists an arc σ of S1 between p, q and g ∈ Γ such that A|σ = g. As δ is a
diagonal of R, this contradicts minimality of A. �

Recall that D = D\R. Let Â be the canonical extension (Definition 2.6) of A to
D. Proposition 6.11 can be restated as saying that if α is an edge of R, then every

component of Â−1(α) is either an edge of R or lies outside the closure R.
We set up some notation as follows. Each edge α of R bounds a unique (closed)

half-plane Dα ⊂ D, whose boundary contains an arc Iα ⊂ S1 such that Iα is the

domain of a piece of A. Thus, A|Iα = gα for some gα ∈ Γ, and Â|Dα = gα. We

have the following stronger repelling condition on Â.

Corollary 6.12. Let A be a minimal piecewise Fuchsian Markov map. Then,

Â−1(intD) ⊂ intD, and the set of break-points of Â−1(intD) on S1 contain those
of intD. Hence,

· · · Â−n(intD) ⊂ Â−(n−1)(intD) ⊂ Â−(n−2)(intD) ⊂ · · · Â−1(intD) ⊂ intD,

and ∩iÂ−i(intD) = ∅. Also, every boundary edge of Â−i(intD) maps to an edge of

R under Â◦i.

Proof. Since A : S1 → S1 is a degree d map, A−1(Iα) is a disjoint union of d arcs.
By Proposition 6.11, each of these arcs is the boundary at infinity of an open half-
plane contained in intD. Also, since S is preserved under A, S ⊂ A−1(S). Hence,

Â−1(intD) ⊂ intD, and the set of break-points at infinity of Â−1(intD) contain
those of intD.

Iterating Â−1, we get the second assertion. Since A is expansive, ∩iÂ−i(intD) =
∅. The last assertion is clear. �

6.2. Characterizing Bowen-Series maps through patterns.

Definition 6.13. Let A be a piecewise Fuchsian Markov map with fundamental
domain R.

(1) We say that A is backward edge-orbit equivalent to Γ if for every edge α of
R, we have BOA(α) = Γ.α.

(2) A is said to be simplicial if for every edge α of R, Â(α) is also an edge of
R.

Lemma 6.14. Suppose that A is simplicial. Then for each edge α of R, we have
GOA(α) ⊂ Γ.α.

Proof. For every edge α, Â(α) is an edge of R belonging to Γ.α. Also, each con-

nected component of Â−i(α) equals g.α for some branch g of Â−i. Hence the grand
orbit GOA(α) is contained in Γ.α. �
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We observe the following restriction on Γ-patterns (see, for instance, the proof
of [Mj08, Proposition 2.3]):

Lemma 6.15. Let Γ be a Fuchsian lattice, A a piecewise Fuchsian Markov map
with pieces lying in Γ, and R a fundamental domain of A. Let p, q be the endpoints
of an edge α of R. Then Γ.{p, q} is a Γ-pattern if and only if

(1) either p, q are parabolic break-points,
(2) or p, q are hyperbolic break-points corresponding to attracting and repelling

fixed points of a hyperbolic element.

Proof. The points p, q ∈ S1 are break-points of A and hence fixed points of some
elements of Γ. Suppose first that the break-points of A are stabilized by parabolics
in Γ. Hence, under the covering projection Π : D → D/Γ, Π(α) is a bi-infinite
geodesic in Σ = D/Γ, whose ends go down cusps of Σ. Therefore Γ.α is a ‘discrete
lamination’; i.e., a closed subset of D consisting of a countable collection of bi-
infinite geodesics, none of which is accumulated on by others. Hence Γ.{p, q} is
closed and discrete.

Next, if p, q are hyperbolic break-points corresponding to attracting and repelling
fixed points of a hyperbolic element g, then α is stabilized by g and Π(α) is a closed
geodesic in Σ. Hence Γ.{p, q} is a Γ-pattern.

Conversely, suppose one of the endpoints p of α is fixed by a hyperbolic element g
and the other endpoint is a fixed point of a non-trivial element h ∈ Γ with h 6= g. Let
λ denote the bi-infinite geodesic in D stabilized by g. Then {gn(α)}n∈Z accumulates
on λ, and Γ.{p, q} is not closed and discrete; i.e., it is not a Γ-pattern. �

We now show that backward edge-orbit equivalence characterizes Bowen-Series
maps:

Proposition 6.16. Let A be a minimal piecewise Fuchsian Markov map that is
backward edge-orbit equivalent to Γ. Then all break-points of A are parabolic, A is

simplicial, and Â(∂R) = ∂R.

Proof. All break-points of A are parabolic: Let α be an edge of R with end-
points p, q. By Lemma 6.7, BOA({p, q}) is an A-pattern. In particular, BOA({p, q})
is a closed, discrete subset of dS. Since A is backward edge-orbit equivalent to Γ,
Γ.{p, q} is a closed, discrete subset of dS. By Lemma 6.15,

(1) either p, q are parabolic break-points,
(2) or p, q are hyperbolic break-points corresponding to attracting and repelling

fixed points of a hyperbolic element.

Since α was arbitrary, it follows that either all break-points are hyperbolic or
all break-points are parabolic. Suppose all break-points are hyperbolic. Then, by
Lemma 6.15 again, each edge α has endpoints p, q the attracting and repelling fixed
points of a hyperbolic g ∈ Γ. This forces all the edges to coincide; i.e., R is empty,
and A has exactly two break-points given by the attracting and repelling fixed
points of a single hyperbolic g ∈ Γ (by discreteness of Γ). But this is impossible
for a piecewise Fuchsian Markov map. This establishes the first conclusion of the
Lemma.
A is simplicial: Let α be an edge of R. Then, since S is pre-periodic under A,

it follows that Â(α) is either an edge or a diagonal of R. We now observe that

Â(α) = β cannot be a diagonal of R. To do so, assume that β is a diagonal. Let
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g ∈ Γ be the piece of A restricted to an arc of S1 subtended by α. Then β = g.α. By
the definition of backward edge-orbit equivalence, and BOA(α), there exists n ∈ N
such that β is a connected component of Â−n(α). But this contradicts Corollary

6.12. Hence Â(α) is an edge of R.

Â(∂R) = ∂R: We argue the last conclusion by contradiction. The second con-

clusion ensures that Â(∂R) ⊂ ∂R. Suppose that Â(∂R) ( ∂R. By continu-

ity of Â, there exists a contiguous family of intervals I1, · · · , Ir ⊂ ∂R such that

Â(∂R) = I1 ∪ · · · ∪ Ir = J ( ∂R. Hence Â(J) ⊂ J .

Let α be an edge of R not contained in J . Then Â(α) = β is an edge contained
in J . Let β = g.α, where g ∈ Γ. Since BOA(α) = Γ.α, it follows that there exists

n ∈ N such that β is a connected component of Â−n(α). But then Â◦n(β) must
equal α, since A, and hence A◦n is simplicial. It follows that α is contained in J , a
contradiction. �

Remark 6.17. Proposition 6.16 shows that each edge α of R is, in fact, periodic

under forward iteration by Â.
Since the endpoints of any Is are parabolic break-points of A, the stabilizer

in Γ of the edge αs of R joining the endpoints of Is is either trivial (when Γ is

torsion-free) or Z/2Z (in case Γ has torsion). Let w be a fixed point of Â on ∂R.

(1) Then either w is a break-point of A, and Â exchanges the two edges α, β
of R incident on w, or

(2) there exists an edge Il of R such that w ∈ Il, Â(Il) = Il and Â acts as an
order 2 isometry on Il fixing w.

Theorem 6.18. Let A be a minimal piecewise Fuchsian Markov map backward
edge-orbit equivalent to Γ. Then A is the Bowen-Series map for Γ corresponding
to the fundamental domain R. In particular, R is a fundamental domain of Γ and
D/Γ is a sphere with punctures with possibly one or two orbifold points of order 2.

Proof. Proposition 6.16 ensures Â(∂R) = ∂R. The Theorem now follows from
Proposition 5.1. �

Remark 6.19. Theorem 6.18 and the discussion preceding Remark 6.4 now shows
that BOA(α) equals a Γ semigroup orbit for the semigroup generated by branches

of Â−1 that are defined on α. We emphasize that these branches generate Γ as a

semigroup and that successive iterates under branches of Â−1 on α will give us a
semigroup orbit rather than a group orbit.

6.3. Edge-orbit equivalence of Â. All Fuchsian groups considered in this sub-
section will be assumed to be torsion-free.

For a minimal piecewise Fuchsian Markov map A, Corollary 6.12 allows us to

define Â-grand orbits of bi-infinite geodesics in D. Let Â : D → D be the canonical
extension of A. Assume that A has degree d. Then by Corollary 6.12,

· · · Â−n(intD) ⊂ Â−(n−1)(intD) ⊂ Â−(n−2)(intD) ⊂ · · · ⊂ Â−1(intD) ⊂ intD.
Then for any bi-infinite geodesic α ⊂ ∂D, there exists a unique (closed) half-plane
Dα ⊂ D bounded by the edge α of R and an interval Iα ⊂ S1 (see Definition 2.6)

such that Â−1(α) contains at least d bi-infinite geodesics, one corresponding to

each branch of Â−1. Further, the fact that A preserves the set of ideal vertices of
R implies that exactly one of the two following possibilities occur:
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(1) There exists k ∈ N such that Â◦k(α) is contained in Â(D) \ D and hence

Â◦(k−1)(α) is contained in D.

(2) α is pre-periodic under iteration by Â. Hence, there exists k ∈ N such that

Â◦k(α) is a periodic edge of R, and all forward iterates of α under Â are
edges of R.

In the first case, forward iteration stops when Â◦k(α) exits D; in the second case,

Â◦k(α) is periodic under Â. In the first case, the grand orbit of α under Â is defined
as the union of

(1) all forward iterates Â◦i(α), 0 ≤ i ≤ k, where k is the smallest positive

integer for which Â◦k(α) exits D, and

(2) all iterated pre-images of Â◦i(α) under Â, 0 ≤ i ≤ k.

In the second case, the grand orbit of α under Â is defined as the union of all
backward iterates of all forward iterates of α. In either case, we obtain a collection

of bi-infinite geodesics in D. We denote the grand orbit of α under Â by ĜOA(α).
Replacing α by its ideal endpoints, {p, q}, the set of ideal endpoints of bi-infinite

geodesics in ĜOA(α) is a subset of dS and we denote it as ĜOA({p, q}).

Definition 6.20. Â is said to be edge-orbit equivalent to Γ if

(1) for every edge α of R, we have ĜOA(α) = GOA(α) = Γ.α, and
(2) if a diagonal {r, s} of R is periodic under dA, then its endpoints must be

fixed under A.

Remark 6.21. In Definition 6.5, we defined the grand orbitGOA({p, q}) of {p, q} ∈
dS using the map dA which only records the action of Â at infinity. On the other

hand, the grand orbit ĜOA({p, q}) is defined in terms of the action of Â on bi-infinite
geodesics in the interior of the disk. As an example of the difference between these
two grand orbits, we note that if an edge {p, q} of R maps to a diagonal {r, s} of

R under Â, then {A(r), A(s)} always lies in GOA({p, q}), but not necessarily in

ĜOA({p, q}).
The condition ĜOA({p, q}) = GOA({p, q}) and the second condition of Defini-

tion 6.20 ensure compatibility between the boundary action and the interior action

of Â.

Lemma 6.22. Let A be a minimal piecewise Fuchsian Markov map such that Â is

edge-orbit equivalent to Γ. Let δ be a diagonal of R such that δ = Â(α) for some
edge α of R. Let r, s be the ideal endpoints of δ. Then A(r) = r,A(s) = s.

Proof. Let us denote the endpoints of α by p, q. We first argue that A(r) 6= A(s).
In fact, if A maps r, s to the same point, then {A(r), A(r)} ∈ GOA({r, s}) =

GOA({p, q}) = Γ.{p, q} (by edge-orbit equivalence of Â and Γ). But a group element
cannot map the distinct points p, q to the same point. Thus, A(r) 6= A(s); i.e.,
A(r), A(s) must be the ideal endpoints of either an edge or a diagonal of R.

If A(r), A(s) are also the ideal endpoints of δ, then {r, s} is fixed under dA, and
hence the second defining property of edge-orbit equivalence implies that r and s
are fixed by A. We claim that A(r), A(s) cannot be the ideal endpoints of a diagonal
other than δ. Indeed, if A(r), A(s) are the ideal endpoints of a diagonal δ′ 6= δ,

then δ′ ∈ GOA(α) = ĜOA(α) = ĜOA(δ) (here we use the first defining property of
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edge-orbit equivalence). But this is impossible as Â is not defined on the diagonals
of R.

Now suppose that A(r), A(s) are the ideal endpoints of an edge α′ of R. Then,

α′ ∈ GOA(α) = ĜOA(α) = ĜOA(δ). This implies that some iterate of Â carries
α′ onto δ. As dA sends the endpoints of δ to those of α′, we conclude that {r, s}
is periodic under dA. Once again, by the second defining property of edge-orbit
equivalence, we have that A(r) = r, A(s) = s. �

Lemma 6.23. Suppose A is a minimal piecewise Fuchsian Markov map such that

Â is edge-orbit equivalent to Γ. Then

(1) For every edge α of R, ĜOA(α) is a Γ-pattern.
(2) All break-points of A are parabolic.

Proof. Edge-orbit equivalence of Â and Γ tells us that ĜOA(α) = GOA(α) = Γ.α ⊂
dS. By Lemma 6.7, GOA(α) is a closed discrete subset of dS. Moreover, Γ.α is

Γ-invariant by definition. This completes the proof of the fact that ĜOA(α) is a
Γ-pattern.

Next, Lemma 6.15 and the first part of Proposition 6.16 show that all break-
points of A (i.e., the vertices of R) are parabolic. �

Definition 6.24. A Γ-pattern L is called a discrete Γ-lamination if no pair {p1, q1}, {p2, q2} ∈
L is linked, or equivalently if αi is the bi-infinite geodesic in D joining {pi, qi} for
i = 1, 2, then α1, α2 do not intersect.

Lemma 6.25. Suppose A is a minimal piecewise Fuchsian Markov map such that

Â is edge-orbit equivalent to Γ. Let L′ := {Â(α) : α is an edge of R}. Then the
following hold.

• No two distinct bi-infinite geodesics in L′ intersect in D.

• Γ.L′ =
⋃
α⊂∂R ĜOA(α), where the union is taken over all boundary edges

α of R.

•
⋃
α⊂∂R ĜOA(α) is a discrete Γ-lamination.

Proof. 1) Clearly, neither two distinct edges of R, nor an edge and a diagonal of
R intersect in D. Thus, it suffices to show that if α1, α2 are edges of R such that

δi = Â(αi) (i = 1, 2) are distinct diagonals (of R), then δ1 and δ2 do not intersect in
D. By way of contradiction, assume that δ1 and δ2 intersect. Further suppose that

Â|αi = gi, i ∈ {1, 2}. Then, the bi-infinite geodesic δ′′ := g−1
2 ◦ g1(α1) = g−1

2 (δ1)
intersects α2, and hence its two ideal endpoints lie in two different pieces of A. It

follows that Â is not defined on δ′′. Since δ′′ ∈ Γ.α1 = ĜOA(α1) (by edge-orbit

equivalence), some iterate of Â must carry α1 onto δ′′. But this is impossible as δ′′

is neither an edge nor a diagonal of R.
2) This directly follows from the definitions of L′ and edge-orbit equivalence.

3) That
⋃
α⊂∂R ĜOA(α) is a Γ-pattern follows from the first part of Lemma 6.23,

since the union is finite.
By way of contradiction, suppose that the bi-infinite geodesics γ1, γ2 ∈

⋃
α⊂∂R ĜOA(α)

intersect in D. As no two distinct geodesics in L′ intersect, both γ1, γ2 must be

iterated Â-pre-images of geodesics in L′. In order that they intersect, they must lie
in the interior of a common Dα, where α is an edge of R (see the discussion before
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Corollary 6.12). Moreover, each geodesic in the Â-forward orbit of γi (i ∈ {1, 2}) ei-

ther lies in D or equals a diagonal of R in L′. Since Â acts by a single group element

on each Dα, the geodesics Â(γ1), Â(γ2) also intersect in D. So in light of the first
part of this proposition, they must lie in the interior of a common Dα as well. Iter-

ating this argument, one sees that Â◦j(α1), Â◦j(α2) lie in the interior of a common

Dα, for all j ≥ 0. But this contradicts the fact that γ1, γ2 ∈
⋃
α⊂∂R ĜOA(α). �

Definition 6.26. Let {w1, · · · , wk} ⊂ S be the set of ideal vertices of R that are
fixed under A. Then the interior of the convex hull of w1, · · · , wk will be called the
inner domain of A, and will be denoted as D.

Note that if Â is edge-orbit equivalent to Γ, then by Definition 6.20 and Lemma 6.22,

any diagonal δ of R of the form δ = Â(α) for an edge α of R lies in D.

Definition 6.27. Â is said to have a folding if there exist adjacent edges α, β of

the fundamental domain R such that the bi-infinite geodesics Â(α) and Â(β) are
the same.

Proposition 6.28. Suppose A is a (minimal) mateable map without folding such

that Â is edge-orbit equivalent to the Fuchsian group Γ generated by its pieces. Then

either Â(∂R) = ∂R, or, for every edge α of R, there exists n ∈ N such that Â◦n(α)
is a diagonal of R contained in D. Further,

(1) The closure D of D in D is contained in R.

(2) For every edge α of R, either Â(α) is an edge of R or a diagonal of R
contained in D.

In either case, Σ = D/Γ is homeomorphic to a sphere with punctures.

Proof. Let w ∈ S be an ideal vertex of D. Then A(w) = w. Let wu1 be an edge

of R. First, u1 cannot be fixed under A, since this will force Â(wu1) = wu1, and
since all break-points of A are parabolic by Lemma 6.23, the stabilizer in Γ of the

pair of points {w, u1} is trivial. Hence Â must be the identity on the interval of S1

that is bounded by {w, u1} and supports a piece of A. This violates expansivity of
A.

We observe next that if u1 is periodic, then under A, it must map to the unique
vertex v1 6= u1 that is adjacent to w on ∂R. Else wA(u1) must be a diagonal of R,
forcing A(u1) to be fixed under A, contradicting the assumption that u1 is periodic.
Since u1 cannot be fixed by the previous paragraph, it follows that A(u1) = v1.
Similarly, A(v1) = u1.

Let u2 be the unique vertex of R other than w that is adjacent to u1. Similarly,
let v2 be the unique vertex of R other than w that is adjacent to v1. Then

(1) either A(u2) = v2,
(2) or A(u2) = w.

Else Â(u1u2) is a diagonal, forcing v1 to be a fixed point under A, a contradiction.

If A(u2) = w, then the two adjacent edges Â(u1u2) and Â(wu1) are folded over the
edge wv1, contradicting the hypothesis. Hence, A(u2) = v2.

Proceeding inductively, we observe that either there is a folding, or A(uk) = vk
for all k, where uk, vk are defined as above. The process terminates when

(1) Either uk = vk, in which case A(uk) = uk,
(2) Or, uk, vk are adjacent vertices and A exchanges them.
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In either case, we obtain Â(∂R) = ∂R. Summarizing the above argument, we have

that if u1 is periodic under A, then Â(∂R) = ∂R.

Hence, if Â(∂R) 6= ∂R, then for every ideal vertex w of D and ideal vertex u1 of

R adjacent to w, either Â(wu1) or Â◦2(wu1) is a diagonal of R contained in D. Let

k = 1 or 2 be such that Â◦k(wu1) is a diagonal of R contained in D. If Â◦k(u1u2)

is well-defined and is an edge of R, then one of the endpoints of Â◦k(u1u2) is the

ideal vertex A◦k(u1) of D. But then, Â◦k(u1u2) must be mapped to a diagonal of

R contained in D by Â or Â◦2. Thus, Â◦l(u1u2) is a diagonal of R contained in D
for some l ≥ 1. Iterating the argument, we conclude that for every edge α of R,

there exists n ∈ N such that Â◦n(α) is a diagonal of R contained in D. We note

also that this argument further shows that for every edge α of R, either Â(α) is an
edge of R or a diagonal of R contained in D.

Note further that the closure D of D in D is contained in R. Else, there is an

edge α of D that is also an edge of R, forcing Â to fix α pointwise and violating
expansivity of A. (This is similar to the argument in the first paragraph of the
proof of the present proposition and we omit details.)

It remains to establish the topology of Σ. When Â(∂R) = ∂R, this was shown in

Proposition 5.1. Else, for every edge α, Â◦n(α) ⊂ D for some n ∈ N. Thus, there

exists a diagonal of R; namely, δ ⊂ D, such that BOA(δ) = ĜOA(α). Hence, by
Lemma 6.25, there exists a lamination LD ⊂ D consisting of finitely many leaves

such that Γ.LD =
⋃
α⊂∂R ĜOA(α), where the union is taken over all edges of R. In

fact, such a lamination LD is given by L′ ∩D, where L′ is as in Lemma 6.25.
All ideal vertices of D are fixed points of A. Hence, by orbit equivalence of A

and Γ, they lie in distinct Γ-orbits of parabolic fixed points in S1. Since Γ.LD =⋃
α⊂∂R ĜOA(α) is a lamination, γ.D ∩D = ∅ (here D is the closure of D in D) for

all non-trivial γ ∈ Γ (else, some non-trivial element of Γ will carry an ideal vertex
of D to another ideal vertex of D). Hence D embeds in Σ under the covering map
Π : D → Σ; i.e., Π(D) ⊂ Σ is a closed, embedded ideal polygon. We conclude
by showing that Σ cannot have a handle or a new puncture. Else there exists a
subsurface Σ0 of infinite fundamental group and with geodesic boundary such that

Π(D) ∩ Σ0 = ∅ (simply by choosing Σ0 = Σ \ Π(D)). Then a lift Σ̃0 to D is an
infinite sided polygon not intersecting Γ.LD. But each complementary region of

D \
⋃
α⊂∂R ĜOA(α) is a finite-sided polygon, a contradiction. �

As an immediate consequence of the above proof, we have:

Corollary 6.29. Suppose A is a (minimal) mateable map without folding such

that Â is edge-orbit equivalent to the Fuchsian group Γ generated by its pieces, and

Â(∂R) 6= ∂R. Then Σ = D/Γ is homeomorphic to S0,k, where k is the number of
ideal vertices of D (or equivalently, the number of edges of D).

The rest of this subsection is devoted to proving that a piecewise Fuchsian
Markov mapA satisfying the hypothesis of Corollary 6.29 is, in fact, a higher Bowen-
Series map, thus characterizing such mateable maps (see Theorem 6.33 below).
Checkerboard Tiling: We set up some notation first. Let U = Σ\Π(D). Since Σ
is homeomorphic to S0,k (where k is the number of ideal vertices of D) and Π gives

an embedding of D in Σ, it follows that U is also an ideal hyperbolic polygon with
k ideal vertices. Let T denote the tiling of D induced by the lifts of Π(D) and U to
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the universal cover D. Choose a lift of U adjacent to D (i.e., sharing a boundary
edge with D) and call it U . Then the translates Γ.D and Γ.U give a ‘checkerboard
tiling’ structure to T ; i.e., any pair of tiles T1, T2 in T that share a boundary edge
are of the form T1 ∈ Γ.D and T2 ∈ Γ.U . We shall call T the checkerboard tiling of D
induced by D,U . Note that the discrete lamination

⋃
α⊂∂R ĜOA(α) equals Γ.LD,

where LD is the finite lamination contained in D as in the proof of Proposition 6.28
above. For convenience of notation, let L = Γ.LD. Then, any leaf of L is contained
in γ.D for some γ ∈ Γ. We shall refer to translates of D (resp. U) by Γ as D-tiles
(resp. U -tiles)

The checkerboard tiling T shows that there are k U -tiles U1, · · · , Uk adjacent to
the inner domain D, where wi, wi+1 are ideal vertices of Ui (i+ 1 mod k). Further,
for each such Ui, there exist k − 1 adjacent D-tiles Dij , j = 1, · · · , k − 1, apart
from the inner domain D. Since each edge of R eventually falls on some leaf of

LD under forward iteration of Â, we have ∂R ⊂ L. Let Lij = L ∩ Dij , and let

∂Rij = Lij ∩ ∂R denote the collection of edges of R in Dij . Further, let γij ∈ Γ be
such that γij .Dij = D, so γij .Lij = LD. With this notation, we have:

Lemma 6.30.

(1) Every ideal vertex of D belongs to the closure LD of LD in C. Moreover,
LD is connected.

(2) ∂R ⊂
⋃

i=1,··· ,k
j=1,··· ,k−1

Dij; i.e., ∂R =
⋃

i=1,··· ,k
j=1,··· ,k−1

∂Rij.

Proof. 1) It follows from the proof of Proposition 6.28 that for every ideal vertex

w of D and ideal vertex u of R adjacent to w, either Â(wu) or Â◦2(wu) is a leaf
of LD. Since A(w) = w, this leaf of LD has w as one of its endpoints. This shows
that every ideal vertex of D belongs to the closure LD of LD in C.

Recall that each leaf of LD is an iterated forward image of some edge of R under

Â. Hence, to prove connectedness of LD, it suffices to argue that if α1 and α2 are two
distinct adjacent edges of R, then the leaves of LD on which they eventually land

have at least one common endpoint. To this end, assume that Â◦ni(αi) = δi ∈ LD,
for some positive integers n1, n2. If n1 = n2, then the desired conclusion follows

from continuity of Â. Else, we may assume without loss of generality that n1 > n2.

Then by continuity of Â, Â◦n2(α1) is an edge of R having one endpoint in common

with δ2 = Â◦n2(α2). Finally, since the endpoints of δ2 are ideal vertices of D,
the arguments used in the previous paragraph show that n1 ∈ {n2 + 1, n2 + 2}
and δ1 = Â◦n1(α1) has (at least) one endpoint in common with δ2. In Figure 7,
an a priori possible lamination LD = {w2w3, w4w1, w1w3} is given along with its
translates L41,L42,L43. In this case, ∂R4j (j = 1, 3) consists of an edge and a

diagonal of D4j ; while ∂R42 has a unique edge, namely ∂U4 ∩ ∂D42.

2) First note that by Proposition 6.28, the closure D of D in D is contained in
R. We claim that ∪ki=1Ui is also contained in R. If this were not true, then some
edge α of R would intersect some Ui. Let δ be the leaf of LD on which α eventually

falls under Â. But then, δ ∈ ĜOA(α) = Γ.α, which is impossible since there is no
element of Γ carrying a point of Ui to a point of D (recall that Π(D) and U = Π(Ui)
are disjoint on the surface Σ). Hence, D ∪ ∪ki=1Ui ⊂ R.

Now pick a leaf ` of LD, and set `ij = γ−1
ij .` ∈ Lij . Then, both ` and `ij lie

in the Γ-orbit of some edge of R. By edge-orbit equivalence, ` and `ij lie in the

same grand orbit under Â. But since Â is not defined on ` (as ` ⊂ D ⊂ R),
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Figure 7. Tiles D,Ui, and Dij

`ij must be contained in the domain of definition of Â; i.e., `ij ∩ R = ∅. Thus,
Lij ∩ R = ∅. Combining this with the conclusion of the previous paragraph, we
see that for i ∈ {1, · · · , k}, j ∈ {1, · · · , k − 1}, there must be edges of ∂Rij (i.e.,

edges of R contained in Dij) that act as barriers for R to grow beyond Lij . Note
that since ∂Rij = Lij ∩ ∂R, these edges must be some leaves of Lij themselves (see
Figure 7). We call such edges of ∂Rij barrier edges.

The properties of LD established in the first part of this proposition imply that
every ideal vertex of Dij belongs to the closure Lij of Lij (in C), and Lij is con-
nected. Hence, for each i, j as above, the closure (in C) of the union of the barrier
edges of ∂Rij must be homeomorphic to the closed interval [0, 1] with endpoints at
the ideal vertices of ∂Ui ∩ ∂Dij (see Figure 7). Since ∂R is a polygon, it follows
that every edge of ∂Rij is a barrier edge, and R has no edge apart from these. In
other words, ∂R =

⋃
i=1,··· ,k

j=1,··· ,k−1
∂Rij . �

Remark 6.31. Since Γ is torsion-free by our assumption and all break-points of A
are parabolics (and hence stabilizers in Γ of all edges and diagonals of R are trivial),
if γ.Lij ∩ LD 6= ∅, then γ = γij . Note that without the torsion-free assumption,
the stabilizer of an edge/diagonal of R may be an order two subgroup of Γ. This
would add a technical expository complication that we want to avoid.

Note that there exists a unique edge of Dij separating the interior of Dij from

D. These edges are obtained as the images of the edges of ∂D under γ−1
ij . Call
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these edges the near edges of Dij . The vertices of a near edge of Dij will be called
the near vertices of Dij .

Remark 6.32. A priori, we do not know from Proposition 6.28 that near edges
belong to L (this is equivalent to saying that ∂Rij has a unique edge, and it is
the near edge of Dij). However, in light of the proof of Proposition 6.28 and
Lemma 6.30, we do have the following dichotomy for any ∂Rij :
• Either ∂Rij consists of a single edge, in which case the edge is a near edge.
• Else, ∂Rij consists of a chain of edges β1, · · · , βr, 2 ≤ r ≤ k − 1 such that the
initial vertex of β1 and the final vertex of βr coincide with the near vertices of Dij .
Further, the final vertex of βi equals the initial vertex of βi+1 and the union of the
βi’s along with their ideal endpoints gives an embedding of the closed interval [0, 1]
into D. In this case, we refer to the edges in ∂Rij as the far edges of R in Dij .

We shall refer to diagonals of R not contained in D as bad diagonals. Proposition

6.28 then shows that ĜOA(α) does not contain bad diagonals if α is an edge of R.
Also, the union of the (closed) tiles

⋃
j=1,··· ,k−1Dij will be called the i-th sector of

A and will be denoted as Si.

Theorem 6.33. Suppose A is a minimal mateable map without folding such that

Â is edge-orbit equivalent to the Fuchsian group Γ generated by its pieces, and

Â(∂R) 6= ∂R. Then A is a higher Bowen-Series map.

Proof. The proof is in two steps.
Step 1: Sector with least number of edges of R maps to D: Without loss
of generality (by renumbering the vertices if necessary), we can assume that S1 is
the sector of A with the smallest number of edges of R. Let α1, · · · , αs denote the
edges of R in S1 ordered in a counterclockwise sense. We claim that

(1) for every edge α of R in S1, Â(α) is an edge of D;
(2) further, each edge of R in S1 is a near edge.

Suppose that the first claim is false. We continue with the notation introduced in
Proposition 6.28. Assume that the ideal vertices w1, · · · , wk of D are ordered in a
counterclockwise sense, and u1, · · · , us−1 are the ideal vertices of R (ordered in a
counterclockwise sense) between w1 and w2 such that α1 = w1u1 and αs = us−1w2.
The proof of Proposition 6.28 shows that A(u1) (respectively, A(us−1)) is either an
ideal vertex of D or an ideal vertex of R adjacent to w1 (respectively, w2) such that

w1A(u1) lies in Sk (respectively, w2A(us−1) lies in S2).
Case 1: At least one of A(u1) and A(us−1) is an ideal vertex of D. By
symmetry of the situation, we can assume without loss of generality that A(u1)

is an ideal vertex of D; i.e., α1 maps to D under Â. If some edge α of R in S1

does not map into D, then by Proposition 6.28, it must map to an edge of R. Let

Si denote the sector of R containing Â(α). Since A(w2) = w2 and there are no

bad diagonals in Â-grand orbits of edges of R by Proposition 6.28 (as observed
just before Theorem 6.33), Si can contain at most s− 1 edges of R, contradicting
the assumption that S1 is the sector of A with the smallest number of edges of R.
Hence, every edge of R in S1 maps to D.
Case 2: A(u1), A(us−1) are ideal vertices of R adjacent to w1, w2. In this case,

w1A(u1) lies in Sk, and w2A(us−1) lies in S2. Once again, absence of bad diagonals

in Â-grand orbits of edges of R and the fact that A(wm) = wm (m = 1, 2) imply
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that each of the sectors S2, Sk can contain at most s− 2 edges of R, contradicting
the assumption that S1 is the sector of A with the smallest number of edges of R.
Hence, this case cannot arise. The proof of the first claim is now complete.

It remains to prove that each D1j contains exactly one edge of R. If this were

not true, since all edges in ∂R1j map to D under Â (and hence under some element

of Γ), it would follow from Remark 6.31 that Â must act as γ1j on all edges of
∂R1j . But this would contradict minimality of A. This forces ∂R1j to consist of a

single edge; namely, the near edge of D1j . Further, Â acts as γ1j on the connected
component of D \R containing D1j , and it maps the unique edge of ∂R1j (i.e., the

near edge of D1j) to a boundary edge of D. In particular, on ∂R ∩ S1, Â equals a
higher degree map without folding.

Step 2: Treating the possible exceptional edge of D: By the proof of Step
1, the only edge of D that might not belong to LD is w1w2.

Case 1: w1w2 ∈ LD. Then, for each i ∈ {1, · · · , k}, j ∈ {1, · · · , k − 1}, ∂Rij
consists of a single edge; namely, the near edge of Dij . Consequently, R = D ∪
∪ki=1Ui. Therefore, each sector of A contains exactly k−1 edges of R. It now follows

from the conclusion of Step 1 that Â maps every edge of R to a boundary edge of
D. In particular, LD consists precisely of the boundary edges of D. Thus, A is a
higher degree map without folding with fundamental domain R = D ∪ ∪ki=1Ui and
inner domain D. Moreover, A is injective on the union of the k− 1 near edges of R
in each sector. Proposition 5.2 now shows that A is a higher Bowen-Series map.

Case 2: w1w2 /∈ LD. We shall show that this case cannot arise.
In this case, w1w2 does not lie in the image of ∂R underÂ or its iterates. Then

R has far edges in Dij if and only if the near edge of Dij is a Γ-translate of w1w2

(see Remark 6.32). For the rest of the proof, we shall refer to such tiles Dij as
far tiles. For any such tile Dij , ∂Rij can have at most k − 1 edges. Since T is a
checkerboard tiling, D21 ⊂ S2 is a far tile sharing the ideal vertex w2 with the tile
D. Let β ⊂ D21 be the edge of R having an endpoint at w2.

By Proposition 6.28, Â(β) is either a diagonal of R contained in D or an edge
of R having an endpoint at w1. We need to analyze these two cases separately.

Subcase i: Â(β) ⊂ D. Since there are no bad diagonals in Â-grand orbits of edges

of R, this forces all the far edges of R in D21 to map into D under Â. But then all
the pieces of A corresponding to the far edges of R in D21 must coincide with the
group element γ21 (see the discussion in the paragraph on ‘Checkerboard Tiling’
and Remark 6.31). But this contradicts minimality of A.

Subcase ii: Â(β) is an edge of R having an endpoint at w2. Since the edges
of R in S1 are precisely the near edges of D1j (j ∈ {1, · · · , k − 1}), absence of bad

diagonals in Â-grand orbits of edges of R implies that ∂R21 must consist of all k−1
edges of D21 except the near edge. It now follows that LD does not contain any
diagonal of D; otherwise, L21 would contain a diagonal of D21, forcing ∂R21 to
contain a diagonal of D21 (see the proof of part (2) of Lemma 6.30). Hence, LD
consists of all the edges of D except w1w2. This yields the following description of
∂R:

• type 1: if the near edge of Dij is not a Γ-translate of w1w2, then this edge
alone comprises ∂Rij ;
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• type 2: otherwise, ∂Rij consists of all k − 1 edges of Dij except the near
edge.

Using a counting argument similar to the one used in Step 1 combined with the

structure of the checkerboard tiling T and the fact that Â has no folding, one now

sees that each type 1 edge of R maps to a leaf of LD under Â, while each type 2
edge maps to an edge of R in S1.

Finally, in light of Remark 6.31, the checkerboard tiling T allows one to ex-
press all the group elements γij in terms of the elements γ1j (i ∈ {1, · · · , k},
j ∈ {1, · · · , k − 1}). This, in turn, shows that A agrees with the Bowen-Series
map AΓ,BS associated with the fundamental domain D ∪ U1 on the counterclock-
wise arc of S1 from w1 to w2, and with A◦2Γ,BS on the rest of S1. According to
Proposition 4.6, the map A is not orbit equivalent to Γ; i.e., A is not a mateable
map, contradicting our hypothesis. We conclude that Case 2 is impossible, so w1w2

must be a leaf of LD. The proof is now complete by Case 1. �

Question 6.34. Does the hypothesis that A has ‘no folding’ in Proposition 6.28,
Corollary 6.29 and Theorem 6.33 follow from minimality of A? The only exam-
ples that we know of mateable maps with folding are non-minimal [MM23, §4.1].
Note however that for a general piecewise Fuchsian Markov map (not necessarily
mateable), minimality does not preclude the existence of diagonal folds; see [MM23,
§4.4.2].

6.4. Moduli of matings. We shall now assemble the results of the previous sec-
tions to determine the moduli space of matings.
Normalization of gluing map: Recall from Proposition 2.18 that mateable maps
orbit equivalent to Fuchsian groups can be conformally mated with polynomials
lying in principal hyperbolic components of appropriate degree. In fact, the proof
of the proposition reveals that there are finitely many choices to glue the dynamics of
a mateable map A with that of a polynomial P in a principal hyperbolic component.
Since such a gluing map conjugates A|S1 to P |J (P ), it can be uniquely described by
marking a fixed point of A and P each; more precisely, by stipulating that a marked
fixed point of A on S1 is mapped under the gluing map to a marked fixed point of
P on J (P ). We will now introduce a canonical marking of such fixed points.

Let Γ0 be a Fuchsian group, and AΓ0
be a mateable map orbit equivalent to Γ0.

Possibly after conjugating Γ0 and AΓ0 by an element of Aut(D), we can assume
that 1 is a fixed point of the mateable map AΓ0 (orbit equivalent to Γ0 on S1).
For each Γ ∈ B(Γ0), the associated mateable map AΓ compatible with AΓ0

is given
by φΓ ◦ AΓ0

◦ φ−1
Γ , where φΓ is a quasiconformal homeomorphism inducing the

representation Γ0 → Γ. This determines a marked fixed point φΓ(1) of AΓ.
On the other hand, the polynomial P0 : z 7→ zd has a fixed point at 1. As

the hyperbolic component Hd is simply component (see [Mil12, §5], for instance),
we can use [Dou94, Theorem 8.1] to find a unique family of homeomorphisms
{τP : J (P0) → J (P )}P∈Hd such that τP0 is the identity map, (P, z) 7→ τP (z)
is continuous, and τP conjugates P0 to P . This yields a naturally marked fixed
point τP (1) of P .

Thus, Proposition 2.18 provides us with a canonical conformal mating between
AΓ and P once we prescribe that the gluing conjugacy between AΓ|Λ(Γ) and P |J (P )

carries φΓ(1) to τP (1). We shall henceforth assume that such a normalized gluing
map has been chosen.
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Definition 6.35. The moduli space of matings between a topological surface Σ and
complex polynomials in principal hyperbolic components consists of equivalence
classes of triples (Γ, AΓ, P ), where

(1) Γ ∈ B(Γ0). Here Γ0 is a Fuchsian group with D/Γ0
∼= Σ,

(2) AΓ is a mateable map associated to Γ compatible with a minimal mateable
map AΓ0

orbit equivalent to Γ0, and
(3) P is a polynomial in a principal hyperbolic component with deg(P ) =

deg(AΓ0
: S1 → S1).

Two such triples (Γ1, AΓ1
, P1) and (Γ2, AΓ2

, P2) are said to be equivalent if the
conformal matings of AΓi and Pi (i = 1, 2) are Möbius conjugate.

If, in addition, AΓ0
is backward edge-orbit equivalent to Γ0, the corresponding

space of triples (Γ, AΓ, P ) is called the backward edge-orbit equivalence moduli space
of matings.

If AΓ0
is edge-orbit equivalent to Γ0, the corresponding space of triples (Γ, AΓ, P )

is called the edge-orbit equivalence moduli space of matings. Further, if AΓ0
has no

folding, then the corresponding space of triples (Γ, AΓ, P ) is called the unfolded
edge-orbit equivalence moduli space of matings.

Theorem 6.36. Suppose Σ has no orbifold points. The unfolded edge-orbit equiva-
lence moduli space of matings, and also the backward edge-orbit equivalence moduli
space of matings is non-empty if and only if Σ is a sphere S0,k with k ≥ 3 punc-
tures. The backward edge-orbit equivalence moduli space of matings has one con-
nected component, while the unfolded edge-orbit equivalence moduli space of matings
has two.

Proof. Theorem 6.18 shows that every point in the backward edge-orbit equivalence
moduli space of matings consists of triples (Γ, AΓ, P ), where Γ ∈ B(Γ0) such that
Γ0 is a Fuchsian group uniformizing a sphere S0,k (with k ≥ 3 punctures), AΓ is
the Bowen-Series map for Γ, and P is a polynomial in the principal hyperbolic
component of degree 1− 2χ(S0,k).

Theorem 6.33 shows that the unfolded edge-orbit equivalence moduli space of
matings consists of two components. One component coincides with that of the
backward edge-orbit equivalence moduli space of matings. The other consists of
triples (Γ, AΓ, P ), where Γ ∈ B(Γ0) such that Γ0 is a Fuchsian group uniformizing a
sphere S0,k (with k ≥ 3 punctures), AΓ is the higher Bowen-Series map for Γ, and
P is a polynomial in the principal hyperbolic component of degree (χ(S0,k) − 1)2

(by Equation (3)). �

We end this section by explicating the general questions that Theorem 6.36
addresses:

Question 6.37. 1) Determine the (unconstrained) moduli space of matings between
a topological surface Σ and complex polynomials.
2) It is tempting to call the numbers 1 − 2χ(S0,k) and (χ(S0,k) − 1)2 the Euler
numbers of the Bowen-Series map and the higher Bowen-Series map respectively,
in the expectation that they have a topological significance beyond the degree of AΓ.
However, a proper understanding of the spectrum of Euler numbers of mateable
maps corresponding to S0,k requires a complete enumeration of the components of
the (unconstrained) moduli space of matings and takes us back to the first part of
this question.
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7. Pinching laminations and mateability of Bers boundary groups

We now turn our attention to groups on the Bers boundary of the Fuchsian
group Gd uniformizing a sphere with d + 1 punctures (see Subsection 3.1). Our
first goal is to answer the first half of Question 1.2 for such groups; i.e., to isolate
groups on ∂B(Gd) whose limit sets are homeomorphic to Julia sets of suitable
complex polynomials in a dynamically natural way. To give a precise meaning to
the word ‘dynamically natural’, we first observe that if the limit set of some group
Γ ∈ ∂B(Gd) is homeomorphic to the Julia set of some polynomial P , then such a
homeomorphism would conjugate P |J (P ) to a continuous self-map of the limit set
Λ(Γ). We say that a homeomorphism ΦΦΦ : J (P ) → Λ(Γ) is dynamically natural if
ΦΦΦ ◦ P ◦ΦΦΦ−1 : Λ(Γ)→ Λ(Γ) is orbit equivalent to Γ. This raises the following:

Question 7.1. When does the limit set of a group Γ, lying on the boundary of
B(Gd), admit a continuous self-map that is orbit equivalent to Γ?

While we do not know the answer to the above question in full generality, we
will address the following special case of Question 7.1.

Question 7.2. Fix a mateable map AGd : S1 → S1 orbit equivalent to Gd (e.g.,
AGd,BS, AGd,hBS). Which groups Γ ∈ ∂B(Gd) admit a mateable map AΓ : Λ(Γ) →
Λ(Γ), orbit equivalent to Γ and compatible with AGd (in the sense of Subsec-
tion 2.2)?

7.1. Cannon-Thurston maps. Pick a group Γ ∈ ∂B(Gd). According to Theo-
rem 2.14, there exists a continuous map from S1 onto the limit set of Γ, called
the Cannon-Thurston map after [CT07], that semi-conjugates the action of Gd
to that of Γ. The second part of Theorem 2.14 shows that the data of the end-
ing lamination can be recovered from the Cannon-Thurston map. (The existence
of Cannon-Thurston maps for surface groups without accidental parabolics was
proved in [Mj14a] and their structure in terms of ending laminations in [Mj14b].
This was extended to the case with accidental parabolics in [DM16]. The case of
general Kleinian groups is treated in [Mj17].)

Figure 8. Limit set of a Bers boundary group

For Γ ⊂ PSL2(C) a Kleinian surface group, and M,Σ, i as in Theorem 2.14, M \
i(Σ) consists of two components M+,M− say (assuming without loss of generality
that i is an embedding). Then each of M+,M− furnishes end-invariants E+, E−
[Thu80, Chapter 9], consisting of conformal structures at infinity C(M) and ending
laminations EL(M). The celebrated Ending Lamination Theorem of Brock-Canary-
Minsky [BCM12] establishes that a Kleinian surface group is determined uniquely
by its end-invariants. The case EL(M) = ∅ corresponds precisely to quasi-Fuchsian
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groups. The Bers slice B(τ) in quasi-Fuchsian space corresponding to a conformal
structure τ consists of the subset where E+ = τ . More generally, the collection of
all Kleinian surface groups with E+ = τ gives the closure B(τ) of the Bers slice
[BCM12]. The case where EL(M) consists only of accidental parabolics corresponds
precisely to geometrically finite groups with i weakly type-preserving, i.e., i maps
parabolics to parabolics. Since there can only be finitely many disjoint simple closed
curves on a surface, geometrically finite Kleinian surface groups are precisely those
where EL(M) is finite. The subcollection with E+ = τ gives the geometrically
finite groups on the boundary of the Bers slice B(τ) corresponding to a conformal
structure τ . Suppose σ ⊂ Σ is a simple closed curve representing an accidental
parabolic in Γ ∈ ∂B(τ). Then, by the Bers density theorem of [BCM12], there
exists a sequence of groups in B(τ) of the form (τ, τn) converging to Γ such that
the length of σ in the hyperbolic structure corresponding to τn converges to zero as
n→∞. We say informally that the group Γ is obtained by pinching the support of a
measured lamination on the surface Σ (while keeping τ unchanged). When EL(M)
consists of infinitely many leaves, we obtain degenerate Kleinian surface groups
[Thu80, Chapter 9]: the surface is thought of as degenerating to a projectivized
measured lamination on the Thurston boundary of Teich(Σ). In all cases, Theorem
2.14 says that the endpoints of the corresponding geodesic lamination L (on D)
generate a π1(Σ)-invariant equivalence relation on S1, and this equivalence relation
agrees with the one defined by the fibers of the Cannon-Thurston map of Γ.

Definition 7.3. We denote the equivalence relation on S1 generated by the end-
points of L by∼. We say that L is invariant under a piecewise Fuchsian Markov map
A if ∼ is invariant under A; i.e., x ∼ y =⇒ A(x) ∼ A(y) for x, y ∈ S1.

Lemma 7.4. Let A : S1 → S1 be a piecewise Fuchsian Markov map orbit equivalent
to Gd, and Γ ∈ ∂B(Gd). Then, the Cannon-Thurston map of Γ semi-conjugates A
to a continuous map AΓ : Λ(Γ) → Λ(Γ) that is orbit equivalent to Γ if and only if
the associated lamination L is invariant under A.

S1 S1

Λ(Γ) Λ(Γ)

A

C.T. C.T.

AΓ

Proof. Since Λ(Γ) ∼= S1/ ∼, it is easy to see that invariance of L under the Bowen-
Series map A is a necessary and sufficient condition for the Cannon-Thurston map
(of Γ) to semi-conjugate A to a continuous self-map of Λ(Γ). It remains to argue
that if L is A-invariant, then the induced map AΓ is orbit equivalent to Γ on Λ(Γ).

To this end, let us suppose that L is A-invariant. Observe that since the Cannon-
Thurston map of Γ semi-conjugates Gd to Γ, the map AΓ acts piecewise by elements
of Γ. From this, it is easy to see that if x, y ∈ Λ(Γ) lie in the same grand orbit of
AΓ, then there exists an element of Γ that takes x to y; i.e., x and y lie in the same
Γ-orbit. Conversely, let y = g(x), for some g ∈ Γ, and x, y ∈ Λ(Γ). But this means
that there exist g′ ∈ Gd and x′, y′ ∈ S1 such that the Cannon-Thurston map of Γ
sends x′, y′ to x, y (respectively), and y′ = g′(x′). By orbit equivalence of Gd and
A, we have that A◦n(x′) = A◦m(y′), for some n,m ≥ 0. Since the Cannon-Thurston
map of Γ semi-conjugates A to AΓ, it now follows that A◦nΓ (x) = A◦mΓ (y). This
completes the proof. �
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Remark 7.5. The Bers density conjecture ensures that groups in the Bers bound-
ary are strong limits of groups in the Bers slice. This conjecture is a consequence
of the Ending Lamination Theorem [BCM12] of Brock-Canary-Minsky. Next, let
Γn = φn ◦ Gd ◦ φ−1

n be a sequence of groups in B(Gd) (where φn is a quasicon-
formal homeomorphism inducing the representation Gd → Γn) converging strongly
to Γ ∈ ∂B(Gd). By work of the first author and Series [MS13, MS17], Cannon-
Thurston maps of Γn converge uniformly to the Cannon-Thurston map of Γ. Thus,
the map AΓ in Lemma 7.4 can, in fact, be regarded as a limit of the piecewise
Möbius Markov maps AΓn = φn ◦ A ◦ φ−1

n orbit equivalent to the quasi-Fuchsian
groups Γn on their limit sets.

7.2. Invariant laminations under Bowen-Series and higher Bowen-Series
maps. We will now carry out the task of classifying supports of measured lamina-
tions L∗ (associated to groups on the Bers boundary ∂B(Gd)) for which the Gd-lift
L (to D) is invariant under the Bowen-Series/ higher Bowen-Series map of Gd.

We start with a general statement that puts a severe constraint on such lami-
nations. To this end, let A : S1 → S1 be a piecewise Fuchsian Markov map. The
pieces of A are h1, · · · , hk such that A|Ij = hj , where {I1, · · · , Ik} is a partition of

S1 by closed arcs. The canonical domain of definition of Â in D is denoted by D,

and the fundamental domain of Â is R = D\D. Throughout this subsection, L will
stand for the Gd-lift (to D) of the support of a measured lamination L∗ on D/Gd.

Lemma 7.6. Let A : S1 → S1 be a piecewise Fuchsian Markov map such that R
contains a fundamental domain of Gd. Then, L is invariant under A only if L∗ is
a union of mutually disjoint, simple, closed, non-peripheral geodesics on D/Gd that
are represented by group elements in the finite set {h−1

j ◦hi : i, j ∈ {1, · · · , k}, i 6= j}.
In particular, any group Γ ∈ ∂B(Gd) obtained by pinching such a lamination L∗ on
the surface D/Gd is geometrically finite.

Proof. Pick γ ∈ L∗, lift it to a fundamental domain ofGd contained inR, and choose
a leaf ` of L that contains a connected component of the lift. By construction, the
ideal endpoints x and y of ` are contained in Ii, Ij with i, j ∈ {1, · · · , k}, i 6= j.

Since x ∈ Ii and y ∈ Ij , we have that A(x) = hi(x) and A(y) = hj(y). Now,
A-invariance of L implies that hi(x) ∼ hj(y), and Gd-invariance of L yields that

y ∼ h−1
j ◦ hi(x). Since x ∼ y, group invariance of L also implies that h−1

j ◦ hi(x) ∼
h−1
j ◦ hi(y). Hence, y ∼ h−1

j ◦ hi(y).

Let ρ : Gd → PSL2(C) be the discrete faithful representation with ρ(Gd) = Γ.
Also, let φΓ : S1 → Λ(Γ) be the surjective Cannon-Thurston map in Theorem 2.14
identifying the ideal end-points of leaves of L. Note that Λ(Γ) is an equivariant
quotient of S1 obtained precisely from this identification by Theorem 2.14.

Since y ∼ h−1
j ◦ hi(y),

(1) φΓ(y) = φΓ

(
h−1
j ◦ hi(y)

)
∈ Λ(Γ),

(2) φΓ(y) = ρ(h−1
j ◦ hi) · φΓ(y),

where the first equality follows from the structure of Cannon-Thurston maps, and
the second from equivariance of Cannon-Thurston maps (Theorem 2.14).

Hence, ρ(h−1
j ◦ hi) fixes φΓ(x) = φΓ(y). As x and y are two different points on

S1, we conclude that the element ρ(h−1
j ◦ hi) of Γ must be an accidental parabolic,

and x and y are fixed points of h−1
j ◦ hi. Hence, ` is the axis of h−1

j ◦ hi.



50 MAHAN MJ AND SABYASACHI MUKHERJEE

Since γ was an arbitrary member of L∗, the first part of the lemma follows. The
second statement is now an immediate consequence of the fact that geometrically
finite groups on the Bers boundary correspond precisely to laminations L∗ given by
the union of a finite collection of mutually disjoint simple, closed, non-peripheral
geodesics on the surface (see the discussion in Subsection 7.1). �

We now proceed to classify all laminations L (associated with groups on the
Bers boundary of Gd) that are invariant under the Bowen-Series map AGd,BS. The
following subset of Gd (see Subsection 3.1 for the definition of gis) will play a special
role in this description:

Sd := {g2, · · · , gd−1} ∪ {g−1
i ◦ gj : i, j ∈ {1, · · · , d}, |i− j| > 1}.

Proposition 7.7. 1) L is invariant under AGd,BS if and only if L∗ is a union
of mutually disjoint, simple, closed, non-peripheral geodesics on D/Gd that are
represented by group elements in the finite set Sd.

2) Let Γ ∈ ∂B(Gd) be obtained by pinching a measured lamination L∗ on the
surface D/Gd. Then, the Cannon-Thurston map of Γ semi-conjugates AGd,BS to a
self-map of Λ(Γ) that is orbit equivalent to Γ if and only if L∗ is as in part (1) of the
proposition. In particular, there are only finitely many quasiconformal conjugacy
classes of groups Γ ∈ ∂B(Gd) for which the Cannon-Thurston map of Γ semi-
conjugates AGd,BS to a self-map of Λ(Γ) that is orbit equivalent to Γ. Moreover, all
such groups Γ are geometrically finite.

Proof. 1) Applying Lemma 7.6 to the Bowen-Series map AGd,BS, one sees that for
any AGd,BS-invariant lamination L, the geodesic lamination L∗ on the surface is a
union of mutually disjoint, simple, closed, non-peripheral geodesics on D/Gd that
are represented by group elements in the finite set Sd (the other group elements
give rise to peripheral/non-simple geodesics).

It remains to show that if L∗ is the union of finitely many mutually disjoint,
simple, closed, non-peripheral geodesics on D/Gd represented by group elements in
the finite set Sd, then L is AGd,BS-invariant.

To this end, let us first assume that γ ∈ L∗ is represented by gj , for some
j ∈ {2, · · · , d− 1}. Then, the lift of γ to the fundamental domain of Gd (which is
also the fundamental domain of AGd,BS) consists of a single arc that is contained
in the axis ` of gj . In particular, ` is a leaf of L that projects to γ and connects
the two fixed points of gj . Hence, ` has its endpoints at

lim
n→+∞

g−nj (0) ∈ Ij and lim
n→+∞

gnj (0) ∈ I−j .

It follows that AGd,BS preserves the endpoints of the leaf `. It is also easy to see
that the endpoints of any leaf of L of the form g · ` (for g 6= 1) is contained in
some I±k. Hence, every iterate of AGd,BS carries the endpoints of such a leaf to the
endpoints of some leaf g′ · ` (where g′ ∈ Gd) of L.

Now suppose that γ ∈ L∗ is represented by g−1
i ◦ gj , for some i, j ∈ {1, · · · , d}

with |i − j| > 1. Then, the lift of γ to the fundamental domain of Gd consists of
two geodesic arcs; one of them is contained in the axis `1 of g−1

i ◦ gj , and the other

is contained in the axis `2 of gi ◦ g−1
j . Thus, `1 (respectively, `2) is a leaf of L that

projects to γ and connects the two fixed points of g−1
i ◦gj (respectively, of gi ◦g−1

j ).
It follows that `1 has its endpoints at

lim
n→+∞

(g−1
i ◦ gj)

n(0) ∈ Ii and lim
n→+∞

(g−1
j ◦ gi)

n(0) ∈ Ij ,
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while `2 has its endpoints at

lim
n→+∞

(gi ◦ g−1
j )n(0) ∈ I−i and lim

n→+∞
(gj ◦ g−1

i )n(0) ∈ I−j .

It is now straightforward to check that AGd,BS maps the endpoints of `1 to those of
`2, and vice versa. Moreover, the mapping properties of the generators g1, · · · , gd
imply that any leaf of L of the form g · `i (for g ∈ Gd, i ∈ {1, 2}) either coincides
with `i′ (i′ ∈ {1, 2}) or has both its endpoints in some I±k. Hence, every iterate
of AGd,BS carries the endpoints of such a leaf to the endpoints of some leaf g′ · `i
(where g′ ∈ Gd, and i ∈ {1, 2}) of L.

Since γ ∈ L∗ was arbitrarily chosen, we now conclude that the Gd-invariant
geodesic lamination L obtained by lifting L∗ to the universal cover is AGd,BS-
invariant.

2) This follows from the first part and Lemma 7.4. �

Definition 7.8. For Γ ∈ ∂B(Gd) with an AGd,BS-invariant lamination L, the con-
tinuous self-map AΓ,BS of Λ(Γ) provided by Proposition 7.7 is a mateable map
associated to Γ that is compatible with AGd,BS. We call the map AΓ,BS the Bowen-
Series map of Γ.

We now turn our attention to higher Bowen-Series maps. In fact, giving a
complete description of AGd,hBS-invariant laminations L is a tedious and combina-
torially involved task. To avoid this, we content ourselves with the following result
which states that there is a non-empty, finite collection of (supports of) measured
laminations L∗ for which L is AGd,hBS-invariant. In the following proposition, we
will use the notation of Section 4.

Proposition 7.9. 1) The set of laminations L that are invariant under AGd,hBS

is non-empty and finite. All such laminations correspond to geometrically finite
groups on ∂B(Gd).

2) There are only finitely many quasiconformal conjugacy classes of groups Γ ∈
∂B(Gd) for which the Cannon-Thurston map of Γ semi-conjugates AGd,hBS to a
self-map of Λ(Γ) that is orbit equivalent to Γ.

Proof. 1) The finiteness assertion is a consequence of Lemma 7.6.
Examples of AGd,hBS-invariant laminations L∗ are given by (simple, closed, non-

peripheral) geodesics on D/Gd represented by g2, · · · , gd−1. To see this, assume
without loss of generality that L∗ consists of a single curve on D/Gd represented
by gj , for some j ∈ {2, · · · , d − 1}. Then L (which is the Gd-lift of this curve to
the universal cover) intersects the fundamental domain of AGd,hBS in d geodesic
arcs. Call the collection of these d bi-infinite geodesics L′. One of these bi-infinite
geodesics has the fixed points of gj as its endpoints; we denote this geodesic by `.
With this notation, we have that L′ = {g1(`), · · · , gj(`) = `, · · · , gd(`)}. Note that
each leaf of L\L′ has its endpoints in a single piece of AGd,hBS. Hence, it suffices to
argue that if p, q are the endpoints of some leaf in L′, then AGd,hBS(p), AGd,hBS(q)
are also the endpoints of some leaf in L′. Clearly, this property is satisfied by the
endpoints of `. Now pick i ∈ {1, · · · , d}, i 6= j. Then one endpoint of gi(`) lies in
the sub-arc of S1 where AGd,hBS ≡ g−1

i , and the other endpoint lies in the sub-arc

where AGd,hBS ≡ gj ◦ g−1
i (see Figure 3). Since the endpoints of ` are fixed by gj ,

it is now easy to see that AGd,hBS maps the endpoints of gi(`) to those of `. This
completes the proof of the fact that L is AGd,hBS-invariant.

2) Follows from the first part and Lemma 7.4. �
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Definition 7.10. For Γ ∈ ∂B(Gd) with an AGd,hBS-invariant lamination L, the
continuous self-map AΓ,hBS of Λ(Γ) provided by Proposition 7.9 is a mateable map
associated to Γ that is compatible with AGd,hBS. We call the map AΓ,hBS the higher
Bowen-Series map of Γ.

7.3. Dynamics of Bowen-Series maps for Bers boundary groups. Recall
from Theorem 2.14) that for Γ ∈ ∂B(Gd), the limit set ΛΓ is obtained topologi-
cally as a quotient space of the circle S1 by identifying ideal end-points of lifts of
leaves of a non-trivial ending lamination (see Figure 8). We recall the notation
Ω(Γ),Ω∞(Γ),K(Γ) from Section 2.2 to deal with Bers boundary groups.

7.3.1. Explicit description of Bowen-Series maps for Bers boundary groups. Let
Γ ∈ ∂B(Gd) be a group that admits a Bowen-Series map AΓ,BS (see Definition 7.8).
We will now see how AΓ,BS can be explicitly written in terms of suitable elements
of Γ ≤ PSL2(C).

Following Subsection 3.1, we denote by I±j the arc of S1 where AGd,BS ≡ g±1
j ,

j ∈ {1, · · · , d}. Since Γ ∈ ∂B(Gd), there is a (weakly type-preserving) group

isomorphism ρ : Gd → Γ and a conformal isomorphism φΓ : Ĉ \ D → Ω∞(Γ) such

that φΓ conjugates the gj-action on Ĉ \ D to the action of ĝj := ρ(gj) ∈ PSL2(C)
on Ω∞(Γ). In fact, the Cannon-Thurston map of Γ is the continuous extension
of φΓ to S1. Abusing notation, we will denote the Cannon-Thurston map of Γ by
φΓ : S1 → Λ(Γ). It now follows from the definition of AΓ,BS (for instance, see the
commutative diagram in Lemma 7.4) that

AΓ,BS ≡ ĝ±1
j , on φΓ(I±j), j ∈ {1, · · · , d}.

We will see in the next subsection that using the Möbius maps ĝj , the Bowen-Series
map AΓ,BS|Λ(Γ) can be extended to a subset of K(Γ) as a continuous piecewise
complex-analytic map.

7.3.2. Canonical extension of Bowen-Series maps for Bers boundary groups. We
will now define a canonical extension of AΓ,BS. To this end, choose a lamination L
such that L∗ is a union of mutually disjoint, simple, closed, non-peripheral geodesics
on D/Gd that are represented by group elements in the finite set Sd (recall from
Proposition 7.7 that these are precisely the AGd,BS-invariant laminations). The Gd-
lift of each leaf of L∗ corresponding to a group element in {g2, · · · , gd−1} intersects
the fundamental domain RGd of AGd,BS (whose closure is a closed fundamental
domain of Gd) in exactly one geodesic arc. This geodesic is symmetric with respect
to the real line. We call such an arc a 1-arc. On the other hand, the Gd-lift of each
leaf of L∗ corresponding to a group element in {g−1

i ◦gj : i, j ∈ {1, · · · , d}, |i− j| >
1} intersects the fundamental domain RGd in exactly two geodesic arcs, that are
mapped to each other by the complex conjugation map. We call such a pair of arcs
a 2-arc. Thus, every AGd,BS-invariant lamination L intersects RGd in a disjoint
collection of 1-arcs and 2-arcs. We denote the union of such arcs by AL.

It follows from the above discussion that for an AGd,BS-invariant lamination L,
the associated collection of 1 and 2-arcsAL cuts RGd into finitely many components.
We call such a component equatorial if it intersects the real line (i.e., the set Im(z) =
0 in D). Otherwise, it is called a polar component. (See Figure 9, where a certain
G6-invariant lamination gives rise to two equatorial and two polar components.)

If a geometrically finite group Γ is obtained by pinching L∗, then RGd natu-
rally determines a pinched fundamental domain for the Γ-action on Ω(Γ) \Ω∞(Γ).
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The closure of this pinched fundamental domain can be topologically realized by
pinching the polygon RGd along AL. In fact, the components of RGd \ AL bijec-
tively correspond to the components of the pinched fundamental domain. We call
a component of the pinched fundamental domain equatorial (respectively, polar) if
it corresponds to an equatorial (respectively, polar) component of RGd \ AL (see
Figure 9). We denote the interior of this fundamental domain (for the Γ-action on
Ω(Γ) \ Ω∞(Γ)) by RΓ.

As AΓ acts by Möbius maps (in PSL2(C)), it admits a natural extension to
K(Γ) \ RΓ as follows. Fix j ∈ { 1, · · · , d}. There is a unique arc cj (respec-
tively, c−j) in ∂RΓ connecting the endpoints of φΓ(Ij) (respectively, the endpoints
of φΓ(I−j)) such that cj (respectively, c−j) does not contain any non-accidental
parabolic fixed point of Γ other than its endpoints (i.e., the arcs cj , c−j are allowed
to pass through accidental parabolics, but not through non-accidental parabolics).
On the (closed) subset of K(Γ) bounded by cj and φΓ(Ij) (respectively, bounded

by c−j and φΓ(I−j)), we extend AΓ,BS as ĝj (respectively, ĝ−1
j ).

We call this extended map the canonical extension of AΓ,BS, and denote it by

ÂΓ,BS : K(Γ) \RΓ → K(Γ).

7.3.3. Dynamics of ÂΓ,BS. We call a component U of Ω(Γ) a principal compo-
nent if U contains a component of RΓ. Further, we call such a component U an
equatorial/polar principal component if the component of RΓ contained in U is
equatorial/polar.

Note that since the restriction of ÂGd,BS on ∂RGd is a homeomorphism of order

two, the same is true for the restriction of ÂΓ,BS on ∂RΓ. More precisely, ÂΓ,BS

maps c±j onto c∓j , for j ∈ {1, · · · , d}. The next lemma follows from this observation
and the definitions of equatorial/polar principal components.

Lemma 7.11.

(1) Each equatorial principal component of Ω(Γ) is preserved under ÂΓ,BS,

while each polar principal component forms a 2-cycle under ÂΓ,BS.
(2) Each non-principal component of Ω(Γ) \ Ω∞(Γ) is eventually mapped by

ÂΓ,BS to a principal component.
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ÂΓ,BS ÂΓ,BS
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Figure 9. Left: RG6
is (the interior of) a fundamental domain

of G6. Right: A cartoon of the limit set of the group Γ, which is
obtained by pinching L∗.



54 MAHAN MJ AND SABYASACHI MUKHERJEE

In the left picture of figure 9, the blue and green geodesics comprise AL, where
L∗ consists of two simple, closed curves on D/G6 corresponding to the elements
g5, g

−1
5 ◦ g2 ∈ G6. Thus, there are two equatorial and two polar components of

RG6
\ AL. The Möbius maps defining ÂGd,BS are marked. In the picture on the

right, the Γ-action on Ω(Γ) \ Ω∞(Γ) admits a pinched fundamental domain whose
interior is RΓ and whose closure is a finite tree of polygons such that two adjacent
polygons share a vertex at an accidental parabolic fixed point of Γ. Ω(Γ) has four

principal components; two of them (the equatorial ones) are preserved by ÂΓ,BS,
while the other two (the polar ones) are exchanged. The Möbius maps defining

ÂΓ,BS are also marked.
The following theorem provides us with conformal models for the first return

maps of ÂΓ,BS on the principal components of Ω(Γ). The explicit description of
first return maps of Bowen-Series maps will play a key role in the David surgery

step in the proof of existence of conformal matings between ÂΓ,BS and polynomials
in principal hyperbolic components (see Subsection 7.5). It is worth noting that
the conformal models of first return maps of Bowen-Series maps naturally involve
higher Bowen-Series maps.

Theorem 7.12. Let U be a principal component of Ω(Γ).

(1) If U is equatorial, then ÂΓ,BS : U \ RΓ → U is conformally conjugate to
(the canonical extension of) the Bowen-Series map of a punctured sphere
Fuchsian group.

(2) If U is polar, then the dynamical system

U
ÂΓ,BS←−−−−−−−−−−−−−−−−−−−−−−→
ÂΓ,BS

ÂΓ,BS(U)

is conformally conjugate to a fiberwise dynamical system

A :
(
D \R+

)
× {+}

⊔(
D \R−

)
× {−} → D× {+,−}, (z,±) 7→ (Â±(z),∓),

where A± are piecewise Fuchsian Markov maps satisfying the conditions

of Corollary 5.6. Consequently, the first return map of ÂΓ,BS on U is
conformally conjugate to (the canonical extension of) the higher Bowen-
Series map of a punctured sphere Fuchsian group.

Proof. 1) Suppose that U is an equatorial principal component of Ω(Γ). Let W be
the component ofRΓ contained in U . Then, ∂W is formed by parts of c±i1 , · · · , c±ir ,
for some i1, · · · , ir ∈ {1, · · · , d} (compare Figure 9). Further, setting cU±is := c±is ∩
U , we see that ÂΓ,BS acts on cU±is as ĝ±1

is
, and ĝis carries cUis onto cU−is .

Let ψU : D→ U be (the homeomorphic extension of) a Riemann uniformization.
It now readily follows that

ψ−1
U ◦ ÂΓ,BS|U ◦ ψU : D \ ψ−1

U (intW )→ D

is the canonical extension of a piecewise Fuchsian Markov map that carries the
boundary of its fundamental domain ψ−1

U (intW ) onto itself. By Proposition 5.1,

ψ−1
U ◦ÂΓ,BS|U◦ψU is the canonical extension of the Bowen-Series map of a punctured

sphere Fuchsian group.
2) We now assume that U = U+ is a polar principal component of Ω(Γ). By

Lemma 7.11, U+ forms a 2-cycle under ÂΓ,BS. Let U− be the image polar principal
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component; i.e., ∂U− = ÂΓ,BS(∂U+). Denote the component of RΓ contained in
U+ (respectively, U−) by D+ (respectively, D−). Without loss of generality, we can
assume that ∂D+ is formed by parts of ci1 , · · · , cir , for some i1, · · · , ir ∈ {1, · · · , d}.
Then, ∂D− is formed by parts of c−i1 , · · · , c−ir (compare Figure 9). As in the

previous case, we set cU
+

is
:= cis ∩ U+, and cU

−

−is := c−is ∩ U−, for s ∈ {1, · · · , r}.
Note that ÂΓ,BS acts on cU

+

is
as ĝis , and on cU

−

−is as ĝ−1
is

. Moreover, ĝis

(
cU

+

is

)
= cU

−

−is .

Let ψ± : D → U± be (the homeomorphic extensions of) Riemann uniformiza-

tions. Then, for each s ∈ {1, · · · , r}, (ψ∓)
−1◦ĝ±1

is
◦ψ± is a conformal automorphism

of D. Hence, (ψ−)
−1 ◦ ÂΓ,BS|U+ ◦ψ+ and (ψ+)

−1 ◦ ÂΓ,BS|U− ◦ψ− are the canonical
extensions of two piecewise Fuchsian Markov maps, which we denote by A+ and
A− (respectively). By construction,

U
ÂΓ,BS←−−−−−−−−−−−−−−−−−−−−−−→
ÂΓ,BS

ÂΓ,BS(U)

is conjugate via the pair of conformal maps ψ± to the fiberwise dynamical system A

defined by A+ and A−. The description of the action of ÂΓ,BS on ∂D± (given in the
previous paragraph) now readily implies that the piecewise Fuchsian Markov maps

A+, A− satisfy the conditions of Corollary 5.6. Hence, the first return map Â◦2Γ,BS

on U+ is conformally conjugate (via ψ+) to the canonical extension of the higher
Bowen-Series map of a punctured sphere Fuchsian group. �

7.4. From geodesic laminations to polynomial laminations. For a monic,
centered, complex polynomial P of degree n with connected filled Julia set K(P ),

there exists a conformal isomorphism φP : Ĉ \ D → B∞(P ) := Ĉ \ K(P ) that
conjugates zn to P [Mil06, Theorem 9.5]. The map φP is unique up to precom-
position with multiplication by an (n − 1)-th root of unity. We normalize φP so
that φP (z)/z → 1 as z → ∞, and call φP the Böttcher coordinate for P . If
J (P ) = ∂K(P ) is locally connected, then the conformal map φP extends continu-
ously to a semi-conjugacy φP between zn|S1 and P |J (P ), and the fibers of φP define

a zn-invariant closed equivalence relation on S1. This equivalence relation, which is
called the lamination of P (denoted by λ(P )), can be used to topologically model
the dynamics of P on its Julia set J (P ) (see [Kiw04] for a comprehensive account
of polynomial laminations).

Definition 7.13. (1) Let λ be an equivalence relation on S1 ∼= R/Z satisfying the
following conditions, where the map mn : R/Z→ R/Z is given by θ 7→ nθ.
a) λ is closed in R/Z× R/Z.
b) Each equivalence class X of λ is a finite subset of R/Z.
c) If X is a λ-equivalence class, then mn(X) is also a λ-equivalence class.
d) If X is a λ-equivalence class, then X 7→ mn(X) is cyclic order preserving.
e) λ-equivalence classes are pairwise unlinked ; i.e., if X and Y are two distinct
equivalence classes of λ, then there exist disjoint intervals IX , IY ⊂ R/Z such that
X ⊂ IX and Y ⊂ IY .
Then, λ is called a Real lamination.

(2) A Real lamination λ is said to have no rotation curves if for every periodic

simple curve γ ⊂ (R/Z)�λ (periodic under the self-map of (R/Z)�λ induced by
mn), the corresponding return map is not a homeomorphism.
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(3) An equivalence class X of a Real lamination λ is called a Julia critical element
if the degree of the map mn : X → mn(X) is greater than one. Finally, a Real
lamination λ is called postcritically finite if every Julia critical element of λ is
contained in Q/Z.

Using this terminology, we can now state a realization theorem that will play a
crucial role in relating group-invariant geodesic laminations to polynomial lamina-
tions (see [Kiw04] for a more general statement).

Theorem 7.14. [LMMN20, Theorem 9.6] For a postcritically finite Real lamina-
tion λ (with no rotation curves), there exists a monic, centered, postcritically finite

polynomial P with λ(P ) = λ. In particular, (R/Z)�λ ∼= J (P ), and φP descends to

a topological conjugacy between mn : (R/Z)�λ→
(R/Z)�λ and P : J (P )→ J (P ).

The following result gives a positive answer to Problem 1.2 for a special class of
Bers boundary groups.

Theorem 7.15. Let Γ ∈ ∂B(Gd) be a group obtained by pinching a measured
lamination L∗ (on D/Gd) such that L is AGd,BS-invariant (respectively, AGd,hBS-
invariant). Then, there exists a (monic, centered) postcritically finite complex poly-
nomial PΓ of degree 2d− 1 (respectively, d2) such that

AΓ,BS : Λ(Γ)→ Λ(Γ) and PΓ : J (PΓ)→ J (PΓ)

(respectively, AΓ,hBS : Λ(Γ)→ Λ(Γ) and PΓ : J (PΓ)→ J (PΓ) )

are topologically conjugate.

Proof. We write a proof in the case of Bowen-Series maps. Exactly the same proof
can be carried through in the higher Bowen-Series case.

We set n = 2d− 1.
Recall that the equivalence relation on S1 generated by the endpoints of L is

denoted by ∼. Using the topological conjugacy between AGd,BS and zn, we can
push forward the closed equivalence relation ∼ to a closed equivalence relation λ on
R/Z. As each equivalence class of ∼ has cardinality at most two by Lemma 7.6, the
same is true for λ. Since AGd,BS maps each equivalence class of ∼ bijectively onto
its image class, the same holds for the λ-equivalence classes under mn. The fact
that every class X ′ of ∼ has at most two members implies that X ′ 7→ AGd,BS(X ′) is
trivially cyclic order preserving. Therefore, X 7→ mn(X) is cyclic order preserving
for every λ-equivalence class X. Since no two leaves of L can cross, ∼-equivalence
classes are pairwise unlinked. So the same is true for λ. That AGd,BS carries each
equivalence class of ∼ bijectively onto its image class translates to the fact that λ is
postcritically finite. By Lemma 7.11 and Theorem 7.12, λ has no rotation curves.

Thanks to the above properties, we can invoke Theorem 7.14, which provides us
with a degree n polynomial PΓ such that

mn : (R/Z)�λ→
(R/Z)�λ and PΓ : J (PΓ)→ J (PΓ)

are topologically conjugate.
On the other hand, the Cannon-Thurston map of Γ induces a topological conju-

gacy between

AGd,BS : S
1
�∼ → S1

�∼ and AΓ,BS : Λ(Γ)→ Λ(Γ).
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Finally, since the topological conjugacy between AGd,BS|S1 and mn|R/Z pushes
forward the relation ∼ to λ, it descends to a topological conjugacy between

AGd,BS : S
1
�∼ → S1

�∼ and mn : (R/Z)�λ→
(R/Z)�λ.

Composing the above topological conjugacies, we get a homeomorphism ΦΦΦ : J (PΓ)→
Λ(Γ) that conjugates PΓ to AΓ,BS. Thus, PΓ is our desired polynomial. �

Remark 7.16. In the anti-holomorphic world, analogues of Theorem 7.15 were
proved in [LLM20] (also compare [LMM20, Theorem B]), where dynamically nat-
ural homeomorphisms between limit sets of kissing reflection groups and Julia sets
of critically fixed anti-rational maps were constructed.

We will conclude this subsection with an analysis of some dynamical properties
of the polynomial PΓ obtained in Theorem 7.15 (in the Bowen-Series case). These
properties will play an important role in the next subsection.

Note that the topological conjugacy ΦΦΦ between PΓ|J (PΓ) and AΓ,BS|Λ(Γ) maps
the boundaries of the bounded Fatou components of PΓ to the boundaries of the
components of Ω(Γ)\Ω∞(Γ). In light of Lemma 7.11, the boundaries of the periodic
(respectively, strictly pre-periodic) bounded Fatou components of PΓ are sent (by
ΦΦΦ) to the boundaries of the principal (respectively, non-principal) components of
Ω(Γ) (see Subsection 7.3.3 for definitions).

We will call a periodic bounded Fatou component of PΓ equatorial (respectively,
polar) if its boundary is mapped by ΦΦΦ to the boundary of an equatorial (respectively,
polar) principal component of Ω(Γ). Clearly, each equatorial (respectively, polar)
Fatou component of PΓ is invariant under PΓ (respectively, forms a 2-cycle of Fatou
components).

Proposition 7.17. Suppose that Γ ∈ ∂B(Gd) admits a Bowen-Series map, and PΓ

is the postcritically finite polynomial obtained in Theorem 7.15 such that PΓ|J (PΓ)

and AΓ,BS|Λ(Γ) are topologically conjugate. Then the following hold.

(1) Each finite critical point of PΓ lies in a periodic bounded Fatou component.
(2) If U is an equatorial Fatou component of PΓ, then PΓ|U is conformally

conjugate to zk|D, for some k ≥ 2.
(3) If U is a polar Fatou component of PΓ, then

U
PΓ←−−−−−−−−−−−−−−−−→
PΓ

PΓ(U)

is conformally conjugate to the fiberwise dynamical system

B : D× {+,−} → D× {+,−}, (z,±) 7→ (zk,∓),

for some k ≥ 2

Proof. 1) The fact that m2d−1 maps each equivalence class of λ bijectively onto
its image class translates to the fact that PΓ has no critical point on its Julia set.
Also recall that AΓ,BS acts as a single group element on the boundary of each non-
principal component of Ω(Γ). Thus, the boundary of each non-principal component
of Ω(Γ) is mapped homeomorphically onto the boundary of a principal component
by some positive iterate of AΓ,BS. It follows that the boundary of each strictly
pre-periodic bounded Fatou component of PΓ is mapped homeomorphically onto
the boundary of a periodic Fatou component by some iterate of PΓ. This shows
that no strictly pre-periodic bounded Fatou component of PΓ contains a critical
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point. Hence, every finite critical point of the postcritically finite polynomial PΓ

lies in a periodic bounded Fatou component.
2) Let U be an equatorial Fatou component of PΓ. Then ΦΦΦ(∂U) is the boundary

of an equatorial principal component of Ω(Γ), and hence AΓ,BS : ΦΦΦ(∂U) → ΦΦΦ(∂U)
is a covering of some degree k ≥ 2 (by part (1) of Theorem 7.12). Therefore,
PΓ : ∂U → ∂U is a covering map of degree k ≥ 2, so PΓ : U → U is a proper
branched covering of degree k. Choose (the homeomorphic extension of) a Riemann
uniformization φU : D→ U that sends 0 to a critical point of PΓ. Then, φ−1

U ◦PΓ◦φU
is a degree k proper branched covering of D, and hence a Blaschke product B of
degree k. Moreover, postcritical finiteness of PΓ implies postcritical finiteness of B.
Hence, possibly after pre-composing φU with an element of Aut(D), we can assume
that the postcritically finite degree k Blaschke product B is of the form z 7→ zk (for
instance, see [Mil12, Lemma 4.17]).

3) Let U+ = U be a polar Fatou component of PΓ. Then ΦΦΦ(∂U+) is the boundary
of a polar principal component U+ of Ω(Γ). Suppose that ∂U− = AΓ,BS(∂U+);

equivalently, U− is the image polar principal component under ÂΓ,BS. By part
(2) of Theorem 7.12, the maps AΓ,BS : ∂U± → ∂U∓ are coverings of (a common)
degree k ≥ 2.

Let U− be the image of U+ under PΓ, so ΦΦΦ(∂U−) = ∂U−. It now follows from
the previous paragraph that PΓ : ∂U± → ∂U∓ are coverings of (a common) degree
k ≥ 2. Hence, PΓ : U± → U∓ are proper branched coverings of degree k. Choose
(homeomorphic extensions of) Riemann uniformizations φ± : D → U± that send
0 to critical points of PΓ (in U±). Then, the maps φ−1

∓ ◦ PΓ|U± ◦ φ± are degree k
proper branched coverings of D, and hence are Blaschke products of degree k with a
critical point at the origin. We call these Blaschke products B+, B− (respectively).
By construction,

U+
PΓ←−−−−−−−−−−−−−−−−→
PΓ

U−

is conjugate via the pair of conformal maps φ± to the fiberwise Blaschke product
dynamical system

B : D× {+,−} → D× {+,−}, (z,±) 7→ (B±(z),∓).

Finally, postcritical finiteness of PΓ implies postcritical finiteness of the above fiber-
wise Blaschke product dynamical system B. By [Mil12, Lemma 4.17], possibly after
pre-composing φ± with suitable elements of Aut(D), both the degree k Blaschke
products B+, B− can be chosen to be z 7→ zk. The result follows. �

7.5. Mateability of Bowen-Series maps of Bers boundary groups. In Sub-
section 7.3, we showed that if Γ ∈ ∂B(Gd) is obtained by pinching a measured
lamination L∗ on the surface D/Gd such that L is AGd,BS-invariant, then the Bowen-
Series map AΓ,BS : Λ(Γ) → Λ(Γ) (given by Proposition 7.7) admits a continuous,

piecewise (complex) Möbius extension ÂΓ,BS : K(Γ) \ RΓ → K(Γ) that is orbit
equivalent to Γ on Λ(Γ).

The purpose of the current subsection is to show that the canonical extensions
of these Bowen-Series maps can be conformally mated with all polynomials in the
principal hyperbolic components of a suitable degree (in the sense of Subsection 2.3).
The main theorem of this section is the following:
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Theorem 7.18. Let Γ ∈ ∂B(Gd) admit a Bowen-Series map AΓ,BS. Further, let

P ∈ H2d−1. Then, ÂΓ,BS can be conformally mated with P .

Notation for the proof of Theorem 7.18:
• We denote (as in the previous subsection) the topological conjugacy between
PΓ|J (PΓ) and AΓ,BS|Λ(Γ) by ΦΦΦ.
• Denote the equatorial components of Ω(Γ) by V1, · · · , Vm, and the polar compo-
nents by U±1 , · · · , U±n such that AΓ,BS(∂U±j ) = ∂U∓j , for j ∈ {1, · · · , n}.
• Let V1, · · · ,Vm be the equatorial Fatou components of PΓ such that ΦΦΦ(∂Vi) =
∂Vi (i ∈ {1, · · · ,m}), and U±1 , · · · ,U±n be the polar Fatou components such that
ΦΦΦ(∂U±j ) = ∂U±j (j ∈ {1, · · · , n}). As ΦΦΦ is a conjugacy, we have that PΓ(U±j ) = U∓j ,

for j ∈ {1, · · · , n}.
• By Theorem 7.12, for each i ∈ {1, · · · ,m}, there exists a conformal map ψi :
D → Vi that conjugates (the canonical extension of) the Bowen-Series map Ai of

a punctured sphere Fuchsian group to ÂΓ,BS|Vi . We assume that Ai : S1 → S1

is a covering of degree ki. Moreover, the same theorem asserts that for each j ∈
{1, · · · , n}, there exists a pair of conformal maps ψj,± : D → U±j that conjugates
the fiberwise dynamical system

Aj :
(
D \Rj,+

)
× {+}

⊔(
D \Rj,−

)
× {−} → D× {+,−}, (z,±) 7→ (Âj,±(z),∓)

to

U+
j

ÂΓ,BS←−−−−−−−−−−−−−−−−−−−−−−→
ÂΓ,BS

U−j ,

(where Aj,± are piecewise Fuchsian Markov maps satisfying the conditions of Corol-
lary 5.6, and Rj,± are the fundamental domains of Aj,±) We can assume that both
Aj,+, Aj,− are circle coverings of (a common) degree dj . By Corollary 5.6, Aj,−◦Aj,+
and Aj,+◦Aj,− are higher Bowen-Series maps of punctured sphere Fuchsian groups.
• By Proposition 7.17, for each i ∈ {1, · · · ,m}, there exists a conformal map
φi : D→ Vi that conjugates zki |D to PΓ|Vi . Moreover, the same proposition states

that for each j ∈ {1, · · · , n}, there exists a pair of conformal maps φj,± : D → U±j
that conjugates the fiberwise dynamical system

Bj : D× {+,−} → D× {+,−}, (z,±) 7→ (zdj ,∓)

to

U+
j

PΓ←−−−−−−−−−−−−−−−−→
PΓ

U−j .

• The filled Julia set K(P ) of the polynomial P in the principal hyperbolic com-
ponent of degree (2d− 1) polynomials is a closed Jordan disk. Hence, there exists

(a homeomorphic extension of) a conformal isomorphism κ : Ĉ \ D → K(P ) that
conjugates a degree (2d − 1) Blaschke product B (with an attracting fixed point

in Ĉ \ D) to P . We choose a quasisymmetric homeomorphism η : S1 → S1 that
conjugates z2d−1 to B, and extend η to a quasiconformal self-homeomorphism of

Ĉ \ D, also called η.

• The Böttcher coordinate of PΓ is denoted by φPΓ
: Ĉ \ D → B∞(PΓ). As the

Julia set J (PΓ) = ∂B∞(PΓ) is locally connected (recall that PΓ is postcritically
finite), the map φPΓ extends to a continuous semi-conjugacy between z2d−1|S1 and
PΓ|J (PΓ).
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(6)

K(P ) Ĉ \ D Ĉ \ D B∞(PΓ)

K(P ) Ĉ \ D Ĉ \ D B∞(PΓ).

P

κ

B

φPΓ

z2d−1

η

PΓ

κ η φPΓ

• Diagram (6) shows the homeomorphisms κ, η, and φPΓ
. Here, η is a topological

conjugacy between z2d−1 and B only on S1, the map κ is a topological conjugacy
between B|Ĉ\D and P |K(P ) that is conformal on the interior, and the map φPΓ

is a

topological semi-conjugacy between z2d−1|Ĉ\D and PΓ|B∞(PΓ)
that is conformal on

the interior.

Lemma 7.19.

(1) For i ∈ {1, · · · ,m}, there exist homeomorphisms Hi : S1 → S1 conjugat-
ing zki |S1 to Ai. Moreover, Hi admits a continuous extension to a David
homeomorphisms of D.

(2) For j ∈ {1, · · · , n}, there exists a pair of homeomorphisms H±j : S1 → S1

conjugating

Bj : S1 × {+,−} → S1 × {+,−}, (z,±) 7→ (zdj ,∓)

to

Aj : S1 × {+,−} → S1 × {+,−}, (z,±) 7→ (Aj,±(z),∓).

Moreover, H±j continuously extend as David homeomorphisms of D.

Proof. 1) Fix i ∈ {1, · · · ,m}, and set Hi := ψ−1
i ◦ΦΦΦ ◦ φi : S1 → S1. By construc-

tion, Hi conjugates zki to Âi. As Ai is the Bowen-Series map of a punctured sphere
Fuchsian group, it is a piecewise Fuchsian Markov map without asymmetrically hy-
perbolic periodic break-points. The conclusion now follows from Proposition 2.17.

2) Fix j ∈ {1, · · · , n}, and set H±j := ψ−1
j,± ◦ΦΦΦ ◦φj,± : S1 → S1. By construction,

S1 × {+,−} → S1 × {+,−}, (z,±) 7→ (H±j (z),±) conjugates Bj to Aj . Moreover,

Aj,− ◦ Aj,+ (respectively, Aj,+ ◦ Aj,−) is a higher Bowen-Series map of a punc-
tured sphere Fuchsian group, and hence is a piecewise Fuchsian Markov map with
no asymmetrically hyperbolic periodic break-point. Since H+

j (respectively, H−j )

conjugates zd
2
j |S1 to Aj,− ◦Aj,+ (respectively, Aj,+ ◦Aj,−), Proposition 2.17 implies

that H±j can be continuously extended to David homeomorphisms of D. �

Abusing notation slightly, we will denote the David extensions of H±j to D also by

H±j .

• The commutative diagram (7) shows the conjugacies ΦΦΦ, ψi, φi and Hi (associated
with equatorial components). The map ψi (respectively, φi) conformally conjugates

Âi|D to ÂΓ,BS|Vi (respectively, zki |D to PΓ|Vi); while ΦΦΦ−1 : ∂Vi → ∂Vi conjugates

ÂΓ,BS to PΓ, and Hi = ψ−1
i ◦ΦΦΦ ◦ φi is a topological conjugacy between zki and Âi

on S1.
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(7)

Vi D D Vi

Vi D D Vi.

ÂΓ,BS

ψi

Âi

Hi

zki

φi

ΦΦΦ

PΓ

ψi Hi φi

ΦΦΦ

• The commutative diagram (8) shows the conjugacies ΦΦΦ, ψj,±, φj,±, and H±j (as-

sociated with polar components). The maps ψj,± (respectively, φj,±) conformally

conjugate D
Âj,−←−−−−−−−−−−→
Âj,+

D to U+
j

ÂΓ,BS←−−−−−−−−−−−−→
ÂΓ,BS

U−j (respectively, D
zdj←−−−−−−→
zdj

D to U+
j

PΓ←−−−−−−→
PΓ

U−j ).

On the other hand, H±j = ψ−1
j,± ◦ΦΦΦ ◦ φj,± induce a topological conjugacy between

S1
zdj←−−−−−−→
zdj

S1 and S1
Âj,−←−−−−−−−−−−→
Âj,+

S1.

(8)

U+
j D D U+

j

U−j D D U−j .

ÂΓ,BS

ψj,+

Âj,+

H+
j

zdj

φj,+

ΦΦΦ

PΓÂj,−

ψj,− H−j

zdj

φj,−

ΦΦΦ

The strategy of the proof of Theorem 7.18 can now be summarized as follows.
We will start with the polynomial PΓ, and topologically modify it to match the

dynamics of ÂΓ,BS and P . More precisely, we will replace the action of PΓ on
its basin of infinity by the action of P on its filled Julia set, and replace the PΓ-

action on each equatorial (respectively, polar) bounded Fatou component by Âi
(respectively, by Âj,±). This would produce a continuous map F̃ defined on a subset

of the topological 2-sphere: the topological mating of ÂΓ,BS and P . We will then

equip this 2-sphere with an F̃ -invariant almost complex stricture that satisfies the
David condition (2). This will allow us to uniformize the aforementioned almost
complex structure by a David homeomorphism, and produce a complex-analytic

map F (conjugating F̃ by the David homeomorphism) defined on a subset of Ĉ.

Finally, the construction of F̃ will reveal that F is a conformal mating of ÂΓ,BS :
K(Γ) \RΓ → K(Γ) and P : K(P )→ K(P ).

Proof of Theorem 7.18. In the interest of clarity, we will split the proof into various
steps.
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The topological mating F̃ . We define a (partially defined) continuous map

F̃ :=



(
φPΓ
◦ η−1

)
◦B ◦

(
η ◦ φ−1

PΓ

)
, on B∞(PΓ),(

φi ◦H−1
i

)
◦ Âi ◦

(
Hi ◦ φ−1

i

)
, on Vi \

(
φi ◦H−1

i

)
(Ri),(

φj,∓ ◦ (H∓j )−1
)
◦ Âj,± ◦

(
H±j ◦ (φj,±)−1

)
, on U±j \

(
φj,± ◦ (H±j )−1

)
(Rj,±),

PΓ, on K(PΓ) \
(⋃m

i=1 Vi ∪
⋃n
j=1 U

±
j

)
,

where i ∈ {1, · · · ,m}, j ∈ {1, 2, . . . , n}, and Ri, Rj,± are the fundamental domains
of Ai, Aj,±, respectively (see the commutative diagrams (7), (8), and (6)). We will

denote the domain of definition of F̃ by Dom(F̃ ).

An F̃ -invariant almost complex structure µ. Let µ|B∞(PΓ) be the pullback to

B∞(PΓ) of the standard complex structure on Ĉ \ D under the map η ◦ φ−1
PΓ

. As
B is complex-analytic (i.e., it preserves the standard complex structure), it follows

that µ|B∞(PΓ) is F̃ -invariant.
Next, for i ∈ {1, · · · ,m}, we set µ|Vi to be the pullback to Vi of the standard

complex structure on D under Hi ◦ φ−1
i . As in the previous paragraph, since Âi

is complex-analytic, we have that
(
F̃ |Vi

)∗
(µ|Vi) = µ|Vi . On the other hand, for

j ∈ {1, 2, . . . , n}, we set µ|U±j to be the pullback to U±j of the standard complex

structure on D under H±j ◦ (φj,±)−1. The fact that Âj,± preserve the standard

complex structure now implies that
(
F̃ |U+

j

)∗
(µ|U−j ) = µ|U+

j
and

(
F̃ |U−j

)∗
(µ|U+

j
) =

µ|U−j .

We now use the iterates of PΓ to pull back the complex structure µ to all the
strictly pre-periodic Fatou components of PΓ. As the Julia set of a postcritically

finite polynomial has zero area, this procedure defines an F̃ -invariant measurable

complex structure µ on Ĉ.

µ is a David coefficient. We will now argue that µ is a David coefficient on Ĉ;
i.e., it satisfies condition (2) of Definition 2.16. Since PΓ is postcritically finite with
a connected Julia set, each Fatou component Vi,U±j is a John domain [CG93, §7,

Theorem 3.1]. By [LMMN20, Proposition 2.5 (part iv)], the map Hi ◦φ−1
i : Vi → D

(respectively, H±j ◦ (φj,±)−1 : U±j → D) is a David homeomorphism, and hence, µ is

a David coefficient on
⋃m
i=1 Vi∪

⋃n
j=1 U

±
j . Moreover, since η◦φ−1

PΓ
: B∞(PΓ)→ Ĉ\D

is a quasiconformal homeomorphism, we have that ||µ|B∞(PΓ)||∞ < 1. Therefore,
there exist constants C,α, ε0 > 0 such that

σ

{z ∈ m⋃
i=1

Vi ∪
n⋃
j=1

U±j : |µ(z)| ≥ 1− ε}

 ≤ Ce−α/ε, ε ≤ ε0,(9)

and

σ ({z ∈ B∞(PΓ) : |µ(z)| ≥ 1− ε}) = 0, ε ≤ ε0,(10)

where σ is the spherical measure.
It remains to check the David condition on the union of the strictly pre-periodic

Fatou components of PΓ. By Proposition 7.17, there is a neighborhood of the closure
of the union of the strictly pre-periodic Fatou components of PΓ that is disjoint from
the critical points of PΓ. Hence, if a strictly preperiodic Fatou component U ′ lands
on Vi or U±j under P ◦rΓ (where r is the smallest positive integer with this property),
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then by the Koebe distortion theorem, P ◦rΓ ◦ λU ′ is an L-bi-Lipschitz map between
1

diamU ′U
′ and P ◦rΓ (U ′), for some absolute constant L ≥ 1, where λU ′(z) = diamU ′ ·z

is a scaling map. This implies that, given any 0 < ε ≤ ε0,

σ ({z ∈ U ′ : |µ(z)| ≥ 1− ε}) ≤ L2(diamU ′)2σ ({z ∈ P ◦rΓ (U ′) : |µ(z)| ≥ 1− ε}) .
(11)

Moreover, since all the Fatou components U ′ are uniform John domains [Mih11,
Proposition 10], it follows from [Nta18, p. 444] that there exists a constant C1 > 0
such that

(diamU ′)2 ≤ C1σ (U ′) ,(12)

for all strictly pre-periodic Fatou components U ′ of PΓ.
Putting inequalities (9), (10), (11), and (12) together, we obtain our desired

exponential decay criterion:

σ
(
{z ∈ Ĉ : |µ(z)| ≥ 1− ε}

)
= σ ({z ∈ Fper : |µ(z)| ≥ 1− ε}) +

∑
U ′ strictly preperiodic

σ ({z ∈ U ′ : |µ(z)| ≥ 1− ε})

≤

L2C1

 ∑
U ′ strictly preperiodic

σ (U ′)

+ 1

 · (σ ({z ∈ Fper : |µ(z)| ≥ 1− ε}))

≤
(
L2C1σ

(
Ĉ
)

+ 1
)
· Ce−α/ε, ε ≤ ε0,

where Fper :=
⋃m
i=1 Vi ∪

⋃n
j=1 U

±
j is the union of the bounded periodic Fatou

components of PΓ.
Straightening µ. The David Integrability Theorem [Dav88] [AIM09, Theorem 20.6.2,

p. 578] now provides us with a David homeomorphism ξ : Ĉ → Ĉ such that
the pullback of the standard complex structure under ξ is equal to µ. Conju-

gating F̃ by ξ, we obtain the map F := ξ ◦ F̃ ◦ ξ−1 : ξ(Dom(F̃ )) → Ĉ. We set

Dom(F ) := ξ(Dom(F̃ )).
Complex-analyticity of F . Note that since B∞(PΓ) is a John domain, its bound-
ary J (PΓ) is removable for W 1,1 functions [JS00, Theorem 4]. By [LMMN20, The-
orem 2.7], ξ(J (PΓ)) is locally conformally removable. Hence, it suffices to show
that F is analytic on the interior of Dom(F ) \ ξ(J (PΓ)).

To this end, first observe that both the maps η ◦ φ−1
PΓ

and ξ are David homeo-
morphisms on B∞(PΓ) straightening µ|B∞(PΓ) (the former map is, in fact, quasi-

conformal). By [AIM09, Theorem 20.4.19, p. 565], η ◦ φ−1
PΓ
◦ ξ−1 is conformal. It

now follows from the definitions of F̃ and F that F is analytic on ξ(B∞(PΓ)).
Again, for each i ∈ {1, · · · ,m}, both Hi ◦φ−1

i and ξ are David homeomorphisms

on Vi straightening µ|Vi . Hence by [AIM09, Theorem 20.4.19], Hi ◦ φ−1
i ◦ ξ−1 is

conformal. Therefore, F is analytic on ξ(
⋃m
i=1 Vi)∩Dom(F ). One similarly proves

that F is analytic on ξ(
⋃n
j=1 U

±
j ) ∩Dom(F ).

It remains to check that F is analytic on ξ(U ′), where U ′ is a strictly pre-periodic

Fatou component of PΓ. Note that on such a component U ′, the map F̃ is conformal.

Hence, ξ and ξ ◦ F̃ are David homeomorphisms on U ′ (that
(
ξ ◦ F̃

)
|U ′ is David

follows from [LMMN20, Proposition 2.5, part (iv)]), and by F̃ -invariance of µ, they
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both straighten µ. As in the previous cases, this implies that F ≡ ξ ◦ F̃ ◦ ξ−1 is
analytic on ξ(U ′).

This completes the proof of the fact that F is analytic on the interior of Dom(F ).

F is a mating of ÂΓ,BS and P . The dynamical plane of F can be written as the

union of two invariant subsets Ĉ = ξ
(
B∞(PΓ)

)⋃
ξ (K(PΓ)) . We will show that

P |K(P ) is topologically semi-conjugate to F |
ξ(B∞(PΓ)), and ÂΓ,BS : K(Γ) \ RΓ →

K(Γ) is topologically conjugate to F : ξ (K(PΓ)) ∩Dom(F )→ ξ (K(PΓ)) such that
the conjugacies are conformal on intK(P ) and intK(Γ) (respectively).

The arguments used in the previous step yield that ξ◦φPΓ
◦η−1 conformally conju-

gates B|Ĉ\D to F |ξ(B∞(PΓ)). Thus, XP := ξ◦φPΓ ◦η−1◦κ−1 : intK(P )→ ξ (B∞(PΓ))

is a conformal conjugacy between P and F (see commutative diagram (6)). Clearly,
XP extends to a topological semi-conjugacy between P |J (P ) and F |ξ(J (PΓ)).

Recall that ΦΦΦ−1 conjugates ÂΓ,BS|Λ(Γ) to F̃ |J (PΓ) (as F̃ ≡ PΓ on J (PΓ)). Hence,

XΓ := ξ ◦ΦΦΦ−1 : Λ(Γ) → ξ (J (PΓ)) conjugates ÂΓ,BS to F . We will complete the
proof by arguing that XΓ continuously extends to intK(Γ) as a conformal conjugacy

between ÂΓ,BS and F .
To do so, let us first consider an equatorial component Vi, i ∈ {1, · · · ,m}.

According to the commutative diagram 7, ΦΦΦ−1 ≡ φi ◦ H−1
i ◦ ψ−1

i on ∂Vi. Also

recall from the previous step that ξ ◦φi ◦H−1
i : D→ ξ(Vi) is a conformal conjugacy

between Âi and F . Hence, the conformal map ξ ◦ φi ◦ H−1
i ◦ ψ−1

i : Vi → ξ(Vi)
continuously extends XΓ : ∂Vi → ξ(∂Vi), and conjugates ÂΓ,BS to F . We set

XΓ|Vi ≡ ξ ◦ φi ◦H−1
i ◦ ψ

−1
i .

Similarly, the conformal map ξ◦φj,±◦
(
H±j

)−1◦ψ−1
j,± : U±j → ξ(U±j ) continuously

extends XΓ : ∂U±j → ξ(∂U±j ), and conjugates ÂΓ,BS to F . We set XΓ|U±j ≡

ξ ◦ φj,± ◦
(
H±j

)−1 ◦ ψ−1
j,±.

At this point, we have continuously extended XΓ : Λ(Γ) → ξ (J (PΓ)) to the

principal components of Ω(Γ) as a conformal conjugacy between ÂΓ,BS and F .
Let us now consider a non-principal component U ′ of intK(Γ). Then, there ex-

ists p ∈ N such that Â◦pΓ,BS maps U ′ homeomorphically onto the closure U of a

principal component U of intK(Γ). Let U ′ (respectively, U) be the strictly pre-
periodic (respectively, periodic) Fatou component of PΓ such that ΦΦΦ−1(∂U ′) = ∂U ′
(respectively, ΦΦΦ−1(∂U) = ∂U). Clearly, F ◦p maps ξ(U ′) homeomorphically onto

ξ(U). Let ξ(U ′)F−p be the (well-defined) inverse branch of F ◦p that maps ξ(U)
onto ξ(U ′). Since XΓ is a conjugacy on the whole limit set Λ(Γ), we have XΓ|∂U ′ =
ξ(U ′)F−p ◦ XΓ|∂U ◦ Â◦pΓ,BS : ∂U ′ → ∂ξ(U ′). We now (continuously) extend XΓ to U ′

as the conformal map ξ(U ′)F−p ◦ XΓ|U ◦ Â◦pΓ,BS : U ′ → ξ(U ′).
Thus, we have extended the conjugacy XΓ (which was originally defined only

on Λ(Γ)) conformally and equivariantly to all of intKΓ. Since ξ(J (PΓ)) is locally
connected, the diameters of the components of int ξ(K(PΓ)) tend to 0. It is now
easy to verify that the extension XΓ is a homeomorphism on K(Γ). Consequently,

XΓ is the desired topological conjugacy between ÂΓ,BS : K(Γ) \ RΓ → K(Γ) and
F : ξ (K(PΓ)) ∩ Dom(F ) → ξ (K(PΓ)) such that the conjugacy is conformal on
intK(P ). �
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Recall from Proposition 7.9 that if L∗ consists of (simple, closed, non-peripheral)
geodesics on D/Gd represented by g2, · · · , gd−1, then a group Γ ∈ ∂B(Gd) obtained
by pinching L∗ admits a higher Bowen-Series map that is orbit equivalent to Γ. For
such a group Γ, one can construct a canonical extension of AΓ,hBS to a suitable sub-
set of K(Γ), and describe conformal models of its dynamics on periodic components
of intK(Γ) as higher Bowen-Series maps of Fuchsian groups uniformizing spheres
with a smaller number of punctures (in the spirit of Subsection 7.3). Moreover,
the proof of Theorem 7.18 remains valid, mutatis mutandis, in the case of higher
Bowen-Series maps producing conformal matings of higher Bowen-Series maps of
Bers boundary groups and polynomials in principal hyperbolic components.

8. Topological orbit equivalence rigidity

Definition 8.1. (see [FW03] for instance) Let Γ1,Γ2 be groups acting continuously
on compact Hausdorff spaces X1, X2. We say that Γ1,Γ2 are topologically orbit
equivalent if there exists a homeomorphism φ : X1 → X2 such that for every
x ∈ X1, φ(Γ1.x) = Γ2.φ(x). The homeomorphism φ is called a topological orbit
equivalence between Γ1 and Γ2.

If ψ : Γ1 → Γ2 is an isomorphism, and φ(γ1.φ
−1(y)) = ψ(γ1).y for all γ1 ∈ Γ1,

we say that φ is a topological conjugacy between the Γ1 and Γ2 actions. Note that
a topological conjugacy is necessarily a topological orbit equivalence.

Definition 8.2. Let Γ1 be a group acting continuously on a compact Hausdorff
space X. The action is said to be topological orbit equivalence rigid, if any topolog-
ical orbit equivalence φ between the action of Γ1 on X and the action of a group
Γ2 on Y is a conjugacy.

Note that it follows from Definition 8.1 that φ−1(Γ2.x) = Γ1.φ
−1(x). The maps

a : Γ1 × X → Γ2 and b : Γ2 × Y → Γ1 are called cocycles associated to φ if they
satisfy

(13) φ(γ1.x) = a(γ1, x).φ(x), ∀ x ∈ X, γ1 ∈ Γ1,

and

(14) φ−1(γ2.y) = b(γ2, y).φ−1(y), ∀ y ∈ Y, γ2 ∈ Γ2.

Definition 8.3. (see [Li18]) Let Γ1,Γ2, φ be as in Definition 8.1. If, in addition,
the associated cocycles a, b given by Equations 13 and 14 are continuous (where Γi
are equipped with the discrete topology), we say that Γ1,Γ2 are continuously orbit
equivalent and φ is called a continuous orbit equivalence.

For Γ1,Γ2 Fuchsian, the actions of Γ1,Γ2 on X = Y = S1 are topologically free.
It follows that

(1) The maps a, b are uniquely determined by Equations 13 and 14 [Li18, Re-
mark 2.7].

(2) a(γγ′, x) = a(γ, γ′.x)a(γ′, x) for all γ, γ′ ∈ Γ1 by [Li18, Lemma 2.8].

We note that when Γ1,Γ2 are Fuchsian, continuity of a, b and density of Γ1,Γ2

orbits in S1 immediately implies that a, b are constant on the S1 factor. Hence,
a(γγ′, x) = a(γ, γ′.x)a(γ′, x) = a(γ, x)a(γ′, x). Since a is constant on the S1 factor,
we may write a(γ, x) = a(γ), for all γ, γ′ ∈ Γ1. Thus, a(γγ′) = a(γ)a(γ′), i.e., a
is a homomorphism. Similarly, b is a homomorphism. Equations 13 and 14 now
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imply that if Γ1,Γ2 are Fuchsian and φ is a continuous orbit equivalence, then φ is
a conjugacy. In particular, Γ1,Γ2 are isomorphic.

8.1. Bi-orbit equivalence rigidity. Let α, β be the induced actions of Γ1,Γ2 on
unordered pairs of points in X1, X2 (where X1, X2 are as in Definition 8.1). A
topological orbit equivalence φ between Γ1,Γ2 as in Definition 8.1 is said to be a
topological bi-orbit equivalence if the map (φ×φ)

/
∼ : (X1×X1)

/
∼−→ (X2×X2)

/
∼

induced by φ is a topological orbit equivalence between α, β. (Here ∼ denotes the
equivalence relation that exchanges factors.) The actions of Γ1,Γ2 are said to be
topologically bi-orbit equivalent.

Lemma 8.4. Let Γ1,Γ2 be Fuchsian lattices acting on S1 and let φ be a topological
orbit equivalence as in Definition 8.1. If φ is also a topological bi-orbit equivalence
between the actions of Γ1,Γ2 (in the above sense), then φ is a conjugacy between
the Γi actions on S1. Equivalently, the action of Γ1 on (S1 × S1)/ ∼ is topological
orbit equivalence rigid (in the sense of Definition 8.2).

Proof. Note that for any γ ∈ Γi, i = 1, 2, the fixed set F (γ) = {p ∈ (S1 × S1)/ ∼:
γ(p) = p} consists of at most three points. In particular, {F (γ) : γ ∈ Γi} is of
codimension two in (S1×S1)/ ∼, for i = 1, 2. By [FW03, Theorem 3.4], (φ×φ)/ ∼
conjugates α to β. Since (φ× φ)/ ∼ preserves the diagonal ∆ := {{x, x} : x ∈ S1},
it follows that φ is a conjugacy between the Γi actions on S1. �

Using the same argument as in the proof of Lemma 8.4, we obtain:

Lemma 8.5. Let G1, G2 be one-ended hyperbolic groups. Let φ be a topological bi-
orbit equivalence between the G1, G2 actions on the Gromov boundaries ∂G1, ∂G2.
Then φ is a conjugacy. The same conclusion holds if we only assume a topological
orbit equivalence between the Gi-actions on the set ∂2Gi = (∂Gi × ∂Gi \∆)/ ∼ of
distinct unordered pairs on ∂Gi (here ∆ denotes the diagonal).

Proof. We only need to observe that, since Gi are one-ended, ∂Gi are connected
(i = 1, 2). By [BM91], ∂Gi are locally connected (i = 1, 2) and has (topological)
dimension at least one. The conclusion now follows by [FW03, Theorem 3.4]. �

8.2. Failure of topological orbit equivalence rigidity for Fuchsian groups.
Let Γ1,Γ2 be groups acting on X1, X2 as in Definition 8.1. In contrast to [FW03],
we shall see now that topological orbit equivalence rigidity fails for Fuchsian groups.
The following Lemma was kindly provided to us by an anonymous referee. It has
allowed us to simplify the proof of Theorem 8.7 and also strengthen the conclusion
from an earlier version. Identify the circle S1 with R/Z, so that for any d ≥ 1 the
map z → zd on the unit circle is conjugate to the map md(x) = dx mod 1.

Lemma 8.6. For any d1, d2 ≥ 2, the maps md1
and md2

are topologically orbit
equivalent. Hence z → zd1 and z → zd2 are topologically orbit equivalent on S1.

Proof. Fix d ≥ 2. It suffices, by induction, to prove that md is topologically orbit
equivalent to md+1. Let p = 1

d(d−1) . Then md(p) = m2
d(p), and the restriction of

md to [0, p] is an expanding homeomorphism onto its image. Set

f(x) =

{
m2
d(x), x ∈ [0, p],

md(x), x ∈ [p, 1].

Since md(p) = m2
d(p), f is continuous. Further, since f is an expanding circle map

of topological degree d+ 1, f is topologically conjugate to z → zd+1. To prove that
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md is topologically orbit equivalent to md+1, it then suffices to show that for any
x ∈ [0, 1] we have equality of grand orbits GOmd(x) = GOf (x). By construction of
f , GOf (x) ⊂ GOmd(x). To prove the reverse inclusion, it is enough to show that
for any x ∈ [0, 1), the points x and md(x) lie in GOf (x). Consider the two sets

A0 = {a ≥ 0 : ∃k ≥ 0; fk(x) = md
a(x)}, and

A1 = {a ≥ 0 : ∃k ≥ 0; fk(md(x)) = md
a(x)}.

By definition, 0 ∈ A0 and 1 ∈ A1. If A0 ∩A1 6= ∅, then x and md(x) lie in GOf (x),
and we are done. Note that, for any natural number n, the set {n, n+ 1} intersects
both A0 and A1. Hence, A0 ∩A1 = ∅ only if A0 is the set of even numbers and A1

is the set of odd numbers. However, this is possible only if mk
d(x) ∈ [0, p] for all

k ≥ 0. Since f is an expanding homeomorphism onto its image on [0, p], this forces
x = 0. Since f(0) = md(0), the lemma follows. �

Theorem 8.7. Let Γ1,Γ2 be punctured sphere Fuchsian groups, where the number
of punctures are k1, k2 respectively. Then the actions of Γ1,Γ2 on S1 are topologi-
cally orbit equivalent. Hence topological orbit equivalence rigidity fails for Fuchsian
groups.

Proof. Let Σi = D/Γi, i = 1, 2. By Proposition 3.3, Γi is orbit equivalent to its
Bowen-Series map AΓi , which in turn is topologically conjugate to zdi |S1 for some
di ≥ 3. Hence, by Lemma 8.6, the actions of AΓ1

and AΓ2
on S1 are topologically

orbit equivalent to each other. Hence, the actions of Γ1 and Γ2 on S1 are topolog-
ically orbit equivalent to each other. If k1 6= k2, then Γ1,Γ2 are not isomorphic.
In particular, the actions of Γ1,Γ2 on S1 are not conjugate and topological orbit
equivalence rigidity fails. �

We conclude with the following question that remains to be resolved: Classify
actions of Fuchsian lattices on S1 up to topological orbit equivalence.
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