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Limit set ΛG = Set of accumulation points in Ĉ of G.o for some
(any) o ∈ H3.
Hence for a Fuchsian group of the kind described above, limit
set = round equatorial circle.
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Complement: Two round open discs.
On each, G acts freely (i.e. without fixed points) properly
discontinuously, by conformal automorphisms.
Hence quotient is two copies of the ‘same’ Riemann surface
(one dimensional complex analytic manifold.)
Ĉ \ ΛG = ΩG is called the domain of discontinuity of G.
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Ĉ \ ΛG = ΩG is called the domain of discontinuity of G.

Mahan Mj



Kleinian Groups: 3 Perspectives
Fuchsian Groups

Quasifuchsian groups
Geometrically Infinite groups

Thurston’s Conjectures

Complement: Two round open discs.
On each, G acts freely (i.e. without fixed points) properly
discontinuously, by conformal automorphisms.
Hence quotient is two copies of the ‘same’ Riemann surface
(one dimensional complex analytic manifold.)
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Ĉ \ ΛG = ΩG is called the domain of discontinuity of G.

Mahan Mj



Kleinian Groups: 3 Perspectives
Fuchsian Groups

Quasifuchsian groups
Geometrically Infinite groups

Thurston’s Conjectures

Quasifuchsian groups

Next set of examples of Kleinian groups come from trying to put
different conformal structures on the two complementary pieces
of the domain of discontinuity.
IMPORTANT NOTE: Conformal Structure on a 2 manifold is
EQUIVALENT TO
Constant curvature metric (for us curvature = -1)
which is EQUIVALENT TO structure as a non-singular
algebraic curve.
Poincare-Koebe-Klein Uniformization Theorem.
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Ahlfors-Bers simultaneous Uniformization Theorem:
Given any two conformal structures τ1, τ2 on a closed
topological 2-manifold, there is a discrete subgroup G of
Mob(Ĉ) whose limit set is topologically a circle, and whose
domain of discontinuity quotients to two Riemann surfaces
τ1, τ2.
Limit set is the image under a quasiconformal map of the round
circle.
These (quasi Fuchsian) groups can be thought of as
deformations of Fuchsian groups (Lie group theoretically) or
quasiconformal deformations (analytically).
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Complexity of quasi Fuchsian group measured in terms of
Hausdorff dimension.
How about geometric picture of these groups?
Convex hull CHG of limit set ΛG = smallest closed convex
subset of H3 invariant under G.
Can be constructed by joining all pairs of points on limit set by
bi-infinite geodesics and iterating this construction.
Quotient of CHG by G is homeomorphic to S × I, where π1(S)
is isomorphic to G.
Called Convex core CC(M) of M = H3/G.
Thickness (= ‘length’ of the I direction) of CHG/G is a
geometric measure of the complexity of the group G.
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Limits of quasiFuchsian groups:
Thickness of Convex core CC(M) tends to infinity.
2 possibilities: Degenerate only τ1. Degenerate both τ1, τ2.
i.e. I → [0,∞) (simply degenerate)
OR I → (−∞,∞) (doubly degenerate).
Lipman Bers:

Examples exist.
"The debris of the degenerating Riemann surface is lost in
the limit set."
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geodesic realizations in M exit E . "Hausdorff limit" of σi is the
ending lamination LE .
Here, Lamination is a foliation of a compact subset of S by
geodesics on S.
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1) Ending Lamination Conjecture (Proved by Minsky,
Brock-Canary-Minsky): Ending laminations (pair of these in the
doubly degenerate case) along with conformal structure on
quotient of domain of discontinuity (in the simply degenerate
case) is a complete invariant of the isometry type of M.
In the general framework of
Rigidity = Topology Implies Geometry
Perhaps the only real case of rigidity in infinite volume
manifolds
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2) Structure of limit set Conjecture (proved: M–):
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end-points of bi-infinite leaves of ending laminations.

In the general framework of
Dynamics on Boundary = Geometry Inside
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Totally Degenerate Surface Groups

Consequences:

Connected limit sets of f.g. (3d) Kleinian groups are locally
connected
There exist continuous boundary extensions:
If Γ is the Cayley graph of a f.g. Kleinian group G, then
(fixing a base point 0 ∈ H3) the natural map i : Γ→ H3

extends continuously to a map î : Γ̂→ Ĥ3 between the
compactifications.
Point pre-images = end-points of leaves of ending
lamination: explicit parametrization of limit set = locus of
chaotic dynamics.
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Application

Question: (Shalom) If Γ is a Zariski dense, infinite covolume,
discrete subgroup of a semi-simple Lie group L, is Comm(Γ)
discrete?
Answer: (M–) Yes, if
a) The limit set ΛΓ ⊂ ∂F G (=Furstenberg boundary) is not
invariant under a simple factor, OR
b) Γ is finitely generated and G = PSL2(C).
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