
A CRASH COURSE ON KNOTS

MAHAN MJ

Abstract. We give a quick introduction to Knot Theory following standard

sources in the subject. These notes form the basis of lectures given at a

workshop on Topology and Condensed Matter Physics held at S.N. Bose
Centre for Basic Sciences, Kolkata, in November-December, 2015.
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1. Introduction: Equivalence between Knots

We shall be mainly using Dale Rolfsen’s Knots and Links as the primary source
below.

Definition 1.1. An embedded copy of the circle S1 in Euclidean 3-space R3 or the
3-sphere S3 is called a knot.

The union of finitely many copies of S1 in Euclidean 3-space R3 or the 3-sphere
S3 is called a link.

Knot theory mainly attempts to answer the question:

Question 1.2. Given two knots K1,K2 in R3 are they equivalent?

To answer this question, we need to come up with appropriate notions of equiv-
alence. Usually two equivalent notions are used:
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Definition 1.3. K1 and K2 are said to be equivalent if there is an orientation-
preserving homeomorphism h : R3 → R3 such that h(K1) = K2.
K1,K2 are said to be isotopic if there is a one-parameter family ht of embeddings

(t ∈ [0, 1]) of S1 in R3 such that h0(S1) = K1 and h1(S1) = K2.

An isotopy ht is called an ambient isotopy if ht can be extended to a one-
parameter family of diffeomorphisms of R3.

The Isotopy Extension Theorem shows that two knots are equivalent if and
only if they are isotopic.

A weaker equivalence between knots is obtained by demanding only that their
complements in R3 (equipped with an orientation) are homeomorphic via an orientation-
preserving homeomorphism.

In a famous paper Knots are determined by their complements. J. Amer. Math.
Soc. 2 (1989), no. 2, 371-415, by Cameron Gordon and John Luecke, the au-
thors showed that if the complements of two tame knots are homeomorphic via
an orientation-preserving homeomorphism, then the knots are equivalent. This is
referred to cryptically as:

Theorem 1.4. Knots are determined by their complements.

2. Knot Invariants

It therefore suffices to study algebraic invariants of the knot complement
R3 \ K. Here, by an algebraic invariant of a space X, we mean a natural way
of associating to X an algebraic gadget, e.g. a group or a module, or a polyno-
mial A(X), such that if X and Y are homeomorphic, then A(X) and A(Y ) are
isomorphic.

Examples include:

(1) The fundamental group π1(X),

(2) More generally, higher homotopy groups πn(X),

(3) Homology groups Hn(X),

(4) (The dual) Cohomology groups Hn(X).

These invariants will make their appearance at different stages of this workshop.
Some have appeared already.

3. The Knot Group

In general, the conceptually simplest invariant is the knot group π1(R3 \ K).
This is quite a sensitive invariant and distinguishes between most distinct knots.
It is also easy to compute given a planar projection of the knot as we show below.
The problem with the invariant is that if the same knot has two different planar
projections, then they give two different presentations of the same group; and in
general it is hard to decide if two presentations give isomorphic groups or not (this
is the so-called Isomorphism Problem).

3.1. Wirtinger presentation. We borrow the picture below from Martin Son-
dergaard Christensen’s Bachelor thesis to illustrate our point. Instead of giving
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a general description of the algorithm to compute the Wirtinger presentation, we
illustrate it by this example.

The generators of the group are x1, · · · , x4. In the general situation, we consider
an oriented loop starting from a point ∗ very far away coming down to the plane
on which the knot is projected, go below a strand and then go back to ∗. For
convenience we only give an orientation on the piece of this loop that crosses the
knot below a strand of the knot. In the picture above x1 crosses the strand α1 from
below. Proceeding anticlockwise, we come to the encircled region, where there is
a knot crossing. Then x2 crosses the strand α2 from below. Note that the loop
indicated by x1 cannot be homotoped to the loop indicated by x2 as the strand
indicated by α4 comes in the way. Thus all maximal strands not disconnected by
another strand crossing from the top gives rise to a generator of the knot.

Relations: Now we compute the relations:
At the encircled crossing in the diagram, there are four of the x’s. x4 crosses

from right to left both below and above the crossing, x1 crosses from bottom to
top on the left of the crossing and x2 crosses from bottom to top on the right of
the crossing. This gives rise to the relation

x4x1 = x2x4.
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Note that this could also be written as

x4x1x
−1
4 = x2.

Similarly for the other crossings, we get

(1) x2x3 = x4x2
(2) x1x3 = x2x1
(3) x4x3 = x3x1

This gives us a full presentation of the complement of the knot described above,
which is also called the figure 8 knot.

It turns out that (any) one of the relations can always be dropped as it is a
consequence of the remaining ones.

3.2. The first homology. The first homology H1(X) is the abelianization of the
fundamental group, i.e. it is the group obtained by declaring that all the generators
commute.

Theorem 3.1. H1(R3 \K) = Z for any knot K.

Again we illustrate this in the figure 8 knot complement case. We need to
abelianize the 4 relations above. These give, respectively,

(1) x1 = x2
(2) x3 = x4
(3) x3 = x2
(4) x4 = x1

Thus we have that

H1(R3 \K) = 〈x1, x2, x3, x4 : x1 = x2 = x3 = x4〉 = Z.

4. Torsion

Since all knots have the same first homology, H1(R3 \K) is of no use as a knot
invariant. However, it can be used to extract finer invariants by passing to finite
index subgroups of π1(R3 \K).

Let X = S3 \K and let Xj be the j−fold cyclic cover of X. The torsion-part of
H1(Xk) is called the j−th torsion invariant of K.

This can be defined purely algebraically as follows.
π1(S3 \K)→ H1(S3 \K) = Z be the abelianization map. Compose this with the
map Z→ Z/k. Let Nk be the kernel of this map. Then the abelianization of Nk is
H1(Xk) and its torsion part is the j−th torsion invariant of K.

5. Seifert surfaces

A Seifert surface for a knot or link K is a connected bicollared compact surface Σ
with ∂Σ = K. Any oriented knot or link K has an oriented Seifert surface bounding
it.
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A Seifert surface for K is constructed as follows. Take a planar projection of
K. Near each crossing point, delete the over- and undercrossings and replace them
by ’short-cut’ arcs preserving orientation. This gives rise to a disjoint collection
of oriented simple closed curves. They bound disks, which may be pushed slightly
off each other if necessary to make them disjoint. Finally we connect these disks
together at the original crossings using half-twisted strips. The result is a surface
with boundary K.

6. Alexander Polynomial

To compute torsion invariants we used finite cyclic covers. The Alexander
polynomial is computed using an infinite cyclic cover corresponding to the map
π1(S3 \ K) → H1(S3 \ K) = Z . Let X denote the knot complement and S a
Seifert surface. Cut X open along S and attach infinitely many copies end to end
to obtain the infinite cyclic cover Y . Let t be the generators of the deck trans-
formation group (isomorphic to H1(S3 \K) = Z ). Thus H1(Y ) can be regarded
as a Z[t, t−1]−module called the Alexander module. The presentation matrix
for the Alexander module is called the Alexander matrix. When the number of
generators, k, is less than or equal to the number of relations, s, then the ideal
generated by all k × k minors of the Alexander matrix is called the Alexander
ideal. When the Alexander ideal is principal, its generator is called an Alexander
polynomial of the knot.

7. Skein Relations

Skein relations are of the form

F (L0, L+, L−) = 0.

An example is given by the following (from Mina Aganagic’s article: String Theory
and Math: Why This Marriage Can Last, Mathematics and Dualities of Quantum
Physics)

Finding an F which produces polynomials independent of the sequences of cross-
ings used in a recursion is not easy. Jones uncovered an underlying structure of
skein relations when he discovered planar algebras. A skein relation can be thought
of as defining the kernel of a quotient map from the planar algebra of tangles. Such
a map gives rise to a knot polynomial if all closed diagrams are taken to some
(polynomial) multiple of the image of the empty diagram.
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Skein relation for the Jones polynomial

7.1. Alexander polynomial. We have given a geometric description of the Alexan-
der polynomial above. Conway discovered the following skein relation that com-
putes the Alexander polynomial.

AK+
−AK− = (q

1
2 − q− 1

2 )JK0
.

7.2. Jones polynomial. The Jones polynomial was discovered by Vaughan Jones
in 1984. It is a Laurent polynomial in q

1
2 . The figure given above actually gives

us the way to compute the Jones polynomial by furnishing the skein relation the
Jones polynomial satisfies:

q−1JK+
− qJK− = (q

1
2 − q− 1

2 )JK0
.

together with specifying its value for the unknot.

8. Linking Number

The linking number is an invariant of a link having two components, K1 and
K2. In a sense this was the oldest knot or link invariant. It was discovered by
Gauss. Choose a planar projection of the link onto a plane and define the linking
number to be half the number of crossings counted with sign (using the right hand
thumb rule after orienting the link). See the following figure (from Mina Aganagic’s
article: String Theory and Math: Why This Marriage Can Last, Mathematics and
Dualities of Quantum Physics)
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m(K1,K2) = 1
2

∑
crossings(K1,K2)

sign(crossing).

Gauss’s discovery of the linking number came from his study of electrostatics, and
he gave the following formula describing the same topological invariant:

m(K1,K2) = 1
2π

∮
K1

∮
K2

~x1−~x2

|~x1−~x2|3 · (d~x1 × d~x2).
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