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Abstract. We show that for a strongly convergent sequence of geometrically

finite Kleinian groups with geometrically finite limit, the Cannon-Thurston

maps of limit sets converge uniformly. If however the algebraic and geometric

limits differ, as in the well known examples due to Kerckhoff and Thurston,

then provided the geometric limit is geometrically finite, the maps on limit

sets converge pointwise but not uniformly.

MSC classification: 30F40; 57M50

1. Introduction

Hausdorff convergence of limit sets under algebraic and geometric limits has

been studied by several authors, see for example [15] p. 203 and Theorem 1.1 below.

In this paper and its companion [22], we study convergence of limit sets as the

convergence of a sequence of continuous maps from a fixed compact set, namely

the limit set of a fixed geometrically finite group, to the sphere.

Given an isomorphism ρ : Γ → G between two geometrically finite Kleinian

groups, Floyd [8] showed that there is a continuous equivariant map from a certain

completion of the Cayley graph of Γ to the limit set ΛG. As long as ρ is weakly type

preserving (meaning that the image of every parabolic element of Γ is also parabolic

in G), this map factors through the limit set ΛΓ, giving a continuous equivariant

map ΛΓ → ΛG between the limit sets. This result was extended by the remarkable

work of Cannon-Thurston [4] who showed that such a map may still exist even

when G is totally degenerate, by giving examples with Γ a surface group so that

ΛΓ = S1, and a continuous surjective equivariant map to ΛG = S2. In fact maps

between limit sets of isomorphic groups have a long history prior to Floyd’s paper

as so-called boundary mappings, going back to Nielsen [23], see also [7] Section

25.2 and for example [24, 12]. We will nevertheless stick with what is now well

established terminology and call an equivariant continuous map between the limit

sets ΛΓ,ΛG of two isomorphic Kleinian groups, a Cannon-Thurston or CT -map.

Suppose now that we have a sequence of isomorphisms ρn : Γ → Gn. This

paper is the first of two which studies the pointwise behaviour of the CT -maps

as the sequence Gn converges to a limiting Kleinian group G∞. In this paper
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we confine ourselves to the case in which both algebraic and geometric limits of

(Gn) are geometrically finite; in the second [22] we will use the geometric models

given by Minsky’s ending lamination theorem [18] and results of the first author on

existence of Cannon-Thurston maps [21] under very general hypotheses, to study

the situation in which group G∞ is geometrically infinite.

The results in this paper are the following:

Theorem A. Let Γ be a fixed geometrically finite Kleinian group and ρn : Γ →
Gn be a sequence of weakly type-preserving isomorphisms to geometrically finite

Kleinian groups Gn which converge strongly to a geometrically finite Kleinian group

G∞ = ρ∞(Γ). Then the sequence of CT maps în : ΛΓ → ΛGn
converges uniformly

to î∞ : ΛΓ → ΛG∞ .

Theorem B. Let Γ be a fixed geometrically finite Kleinian group and ρn : Γ →
Gn be a sequence of weakly type-preserving isomorphisms to geometrically finite

Kleinian groups which converge algebraically to G∞ = ρ∞(Γ). Suppose also that

the geometric limit of the groups Gn is geometrically finite. Then the sequence of

CT-maps în : ΛΓ → ΛGn converge pointwise to î∞ : ΛΓ → ΛG∞ .

We remark that if the geometric limit of geometrically finite groups is geomet-

rically finite, so is the algebraic limit, see [15] Theorem 4.6.1 and [13]. However

geometrically finiteness of the algebraic limit does not in general imply the same for

the geometric limit, as can be seen for example by examining the many geometric

limits of once punctured torus groups constructed in [17].

If the convergence is algebraic but not strong, then uniform convergence nec-

essarily fails. This is a consequence of the following result, which in the generality

below is due to Evans.

Theorem 1.1 ([5], [6]). Suppose ρn : Γ → Gn is a sequence of weakly type-

preserving isomorphisms from a geometrically finite group Γ to Kleinian groups Gn

with limit sets Λn, such that the sequence converges algebraically to ρ∞ : Γ→ G∞

and geometrically to H. Let Λ∞ and ΛH denote the limit sets of G∞ and H respec-

tively. Then Λn → ΛH in the Hausdorff metric. If in addition Γ is non-elementary,

the sequence converges strongly if and only if Λn → Λ∞ in the Hausdorff metric.

For the purposes of this paper, in which the geometric limit is geometrically

finite with non-empty regular set, then we are in the easier situation of [13] Propo-

sition 4.2, see also [15] Theorem 4.5.4.

Since uniform convergence implies diagonal convergence of limit points and

hence Hausdorff convergence, Theorem 1.1 shows that if Λ∞ and ΛH differ, then

uniform convergence is impossible.

Theorem B is illustrated by the Kerckhoff-Thurston examples [11] of a sequence

Gm of quasi-Fuchsian groups converging geometrically to a geometrically finite
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group G with a rank 2-cusp. Our proof will make clear how it is that the CT -maps

converge pointwise, but not uniformly. The lack of uniform convergence in these

examples has also been noted in a remark due to Souto, see Section 9 of [9].

As a special case of Theorem A one obtains an alternative proof of the following

well-known application of the λ-lemma from complex dynamics [14]. Let A ⊂ C be

a connected open set. A family of quasi-Fuchsian groups Gz, z ∈ A is said to be

holomorphic if there are maps ρz : Γ→ Gz, z ∈ A from a fixed (finitely generated)

Fuchsian group Γ such that z 7→ ρz(g) is holomorphic for each g ∈ Γ. If the maps

ρz are all type preserving, then in the formula for the fixed points, the attracting

fixed point (or unique parabolic fixed point) is defined by a fixed branch of the

square root, so that the maps iz : z 7→ g+(z) are holomorphic. A straightforward

application of the λ-lemma allows one to extend iz to the entire limit set ΛΓ:

Theorem 1.2. Let z → Gz be a holomorphic family of Kleinian groups such that

the map ρz : Γ→ Gz is an isomorphism for z ∈ A and such that the map iz : Λ+
G →

Ĉ is injective. Then the natural embedding iz : Λ+
G → Ĉ extends to a continuous

equivariant homeomorphism îz : ΛG → Ĉ, such that îz : ΛG × A → Ĉ is jointly

continuous and such that the map z 7→ îz(ξ) is holomorphic on A for each ξ ∈ ΛΓ.

Here Λ+
G is the set of attractive fixed points of loxodromic elements in Γ,

see Section 2.2. This result applies, for example, in the interior of quasifuchsian

deformation space QF . However if z ∈ ∂QF then the map iz is not in general

a bijection in a neighborhood of z, so the above result does not give information

about what happens as we limit on the boundary ∂QF .

Miyachi [20] proved Theorem A without the restrictions on geometric finiteness,

in the case in which Γ is a surface group without parabolics and the injectivity radius

is bounded along the whole sequence. The only other convergence result we are

aware of is that of Francaviglia [9] Theorem 1.8 in which Γ is a discrete subgroup

of Hk which diverges at its critical exponent (and so only applies in our context to

Γ Fuchsian with no parabolics, see [15] Theorem 3.14.3). It is shown that, provided

that all groups in question are non-elementary, then the corresponding CT -maps

exist and converge almost everywhere with respect to Patterson-Sullivan measure

on ΛΓ.

The results in this paper are all based on the geometry of geometrically finite

groups. In the geometrically infinite situation of [22], besides the Minsky model

of degenerate Kleinian groups, we introduce techniques from the theory of relative

hyperbolic spaces and electric geometry. We will prove in [22] that Theorem A holds

in many cases of geometrically infiniteG∞, but show that for certain algebraic limits

(such as the examples of Brock [2]), even pointwise convergence may fail.

In Section 2 we set up the background and in Section 3 we prove some im-

portant estimates based on Floyd [8] on the embedding of the Cayley graph of

a geometrically finite group into H3. This is a prelude to Section 4 in which we
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describe the CT -maps carefully and give a geometrical criterion Theorem 4.1 for

their existence. In Section 5 this is extended to a criterion Theorem 5.6 for uniform

convergence. In Section 6 we prove Theorem A, the case of strong convergence and

easily deduce the application to Theorem 1.2. Finally in Section 7 we formulate

the corresponding criterion for pointwise convergence and prove Theorem B. Some

hyperbolic geometry estimates we need are given in the Appendix.

2. Preliminaries

2.1. Kleinian groups. A Kleinian group G is a discrete subgroup of PSL2(C).

As such it acts as a properly discontinuous group of isometries of hyperbolic 3-

space H3, whose boundary we identify with the Riemann sphere Ĉ = C ∪∞. All

groups considered in this paper will be finitely generated and torsion free, so that

M = H3/G is a hyperbolic 3-manifold. An excellent reference for the background

we need is [15].

A Kleinian group is geometrically finite if it has a fundamental polyhedron in

H3 with finitely many faces. The limit set ΛG ⊂ Ĉ is the closure of the set of its

non-elliptic fixed points. It can also be defined as the set of accumulation points of

any G-orbit.

Let N be the hyperbolic convex hull of ΛG in H3. This projects to the con-

vex core of M , that is, the smallest closed convex subset containing all closed

geodesics. An alternative characterisation of being geometrically finite is that a

δ-neighbourhood of N/G in H3 has finite volume for some δ > 0. Note that if G is

geometrically finite, then N/G is compact if and only if G contains no parabolics.

Such groups are called convex cocompact.

The thin part Mthin(ε) is by definition that part of M where the injectivity

radius is at most ε. The Margulis constant εM > 0 is such that if ε ≤ εM, then

Mthin(ε) is a disjoint union of horocyclic neighbourhoods of cusps and Margulis

tubes around short geodesics. It is well known that the δ-neighbourhood of N/G
has finite volume if and only if the thick part of (N/G)\Mthin(ε) has finite diameter.

(Consider a maximal collection of disjoint embedded balls of small radius in (N/G)\
Mthin(ε).)

We denote by H = Hε = Hε;G the set of lifts of components of Mthin(ε) to

H3. Thus H is a G-invariant collection of horoballs based at the parabolic fixed

points of G, together with equidistant tubes about geodesic axes whose associated

loxodromics are short. If we are dealing with a single geometrically finite group

G, then by reducing ε we can assume that all elements of H are horoballs, see for

example [15] Theorem 3.3.4. We will denote by V = Vε = Vε;G the ε-thick part N
relative to G, that is, V is the closure of N \ (∪H∈HH).
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Let Γ be a fixed Kleinian group. A representation ρ : Γ→ PSL2(C) is said to

be type preserving if it maps loxodromics to loxodromics and parabolics to parabol-

ics. It is weakly type preserving if the image of every parabolic element of Γ is also

parabolic in G.

Let ρn : Γ→ PSL2(C), n = 1, 2 . . . be a sequence of group isomorphisms. The

representations ρn are said to converge to the representation ρ∞ : Γ → PSL2(C)

algebraically if for each g ∈ Γ, ρn(g) → ρ∞(g) as elements of PSL2(C). They

are said to converge geometrically if (Gn = ρn(G)) converges as a sequence of

closed subsets of PSL2(C) to H ⊂ PSL2(C). Then H is a Kleinian group called

the geometric limit of (Gn). The sequence (Gn) converges strongly to ρ∞(G) if

ρ∞(G) = H and the convergence is both geometric and algebraic.

2.2. Cannon-Thurston Maps. Let Γ be a Kleinian group and let ρ : Γ→ PSL2(C)

with ρ(Γ) = G. Let ΛΓ,ΛG be the corresponding limit sets. A Cannon-Thurston

or CT -map is an equivariant continuous map î : ΛΓ → ΛG, that is, a map such that

î(g · ξ) = ρ(g)̂i(ξ) for all g ∈ Γ, ξ ∈ ΛΓ.

For a loxodromic A ∈ PSL2(C), denote by A+ its attracting fixed point. For

simplicity of notation, if A is parabolic, we denote the single fixed point in the

same way. From the equivariance it easily follows that a Cannon-Thurston map

preserves fixed points, namely

î(g+) = ρ(g)+ for all g ∈ Γ.

Notice that in this we do not necessarily assume that ρ is type preserving, but

that weakly type preserving is clearly a necessary condition for the existence of

an CT -map. Denoting by Λ+
Γ the subset of attracting fixed points, we see that

the CT -map, if it exists, is the continuous extension of the above obvious map

Λ+
Γ → Λ+

G to the whole of ΛΓ.

Here is an alternative view on the construction of CT -maps. The Cayley

graph of Γ is naturally embedded in H3 by a map jΓ : GΓ → H3 which sends the

vertex g ∈ GΓ to g · O where O = OG ∈ H3 is a fixed base point and extends

in the obvious way to edges, see Section 3 for details. Suppose that ρ : Γ → G is

weakly type preserving. Then define i : jΓ(GΓ) → H3 by setting i(jΓ(g)) = jG(g)

on vertices and again extending in the obvious way. Clearly i is equivariant in

the sense that i(hg · O) = ρ(h)i(g · O). If the map i extends (with respect to the

Euclidean metric in the ball model) to a continuous map î : ΛΓ → ΛG, it follows

easily from the equivariance and continuity that î(g+) = ρ(g)+ for all g ∈ Γ, so

that î is an CT -map as defined above. (A necessary condition for this extension to

work is that ρ be weakly type preserving.)

The original interest in the Cannon-Thurston maps applied to the case in which

Γ is a surface group and G a doubly degenerate group which is the cyclic cover of a

3-manifolds fibering over the circle with pseudo-Anosov monodromy, [4], in which
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case of course ΛΓ is a round circle and ΛG = Ĉ. However we can also put results of

Floyd [8] in this context. Floyd constructed the completion Γ̄ of the Cayley graph

of Γ with a suitable metric and showed:

Theorem 2.1 ([8]). Let Γ be a geometrically finite Kleinian group with group

completion Γ̄. Then there is an equivariant continuous map Γ̄ \ Γ → ΛΓ which is

2− 1 on parabolic points and injective elsewhere.

Floyd’s map gives a continuous extension of the embedding i : jΓ(GΓ) → H3

to a map Γ̄ → H3 ∪ ∂H3. In the special case in which G contains no parabolics,

jΓ(GΓ) is a hyperbolic metric space and Ḡ can be identified both with its Gromov

boundary and with ΛΓ. For precise details of the connection between Floyd’s result

and maps of limit sets, see [25].

In Section 4 we give a criterion for the existence of a CT -map in the case in

which Γ is any geometrically finite Kleinian group and ρ : Γ→ G is a weakly type

preserving isomorphism. It is not hard to deduce the above result of Floyd. In

subsequent sections the criterion is extended to deal with converging sequences of

groups.

2.3. Notation. We denote the hyperbolic metric on H3 by dH; sometimes we ex-

plicitly use the ball model B with centre O and denote by dE the Euclidean metric

on B ∪ Ĉ. For P ∈ H3, write BH(P ;R) for the hyperbolic ball centre P and radius

R, with a similar definition for Euclidean balls BE. Let β be a path in H3 with

endpoints X,Y . We denote its hyperbolic length by `(β) and write [β] or [X,Y ]

for the H3-geodesic from X to Y (so that `(β) ≥ `([β]) with equality if and only if

β is itself geodesic).

We write X ≺ Y (resp. X � Y ) to mean there is a constant c > 0 such that

X < cY (resp. X > cY ) and X � Y to mean X ≺ Y and Y ≺ X. We also write

X
+

≺ Y to indicate an inequality up to an additive constant, thus X
+

≺ Y means

there is a constant c > 0 such that c > 0 such that X < Y + c; the notation Y
+

� X
is defined similarly.

3. Embedding the Cayley graph

LetG be a finitely generated Kleinian group with generating setG∗ = {e1, . . . , ek}.
Its Cayley graph GG is the graph whose vertices are elements g ∈ G and which has

an edge between g, g′ whenever g−1g′ ∈ G∗. The graph metric dG is defined as the

edge length of the shortest path between vertices so that dG(1, ei) = 1 for all i,

where 1 is the unit element of G. Let |g| (or where needed for clarity |g|G∗) denote

the word length of g ∈ G with respect to G∗, so that |g| = dG(1, g). For X ∈ GG,

we denote by BG(X;R) ⊂ GG the dG-ball centre X and radius R.

Choose a base point O = OG ∈ H3 which is not a fixed point of any element of

G. One may if desired assume the basepoint is the centre of the ball model B. For
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simplicity, we do this throughout the paper unless indicated otherwise. Then GG
is embedded in H3 by the map jG which sends g ∈ G to jG(g) = g · O, and which

sends the edge joining g, g′ to the H3-geodesic joining jG(g), jG(g′). In particular,

jG(1) = O. Note that using the ball model of H3, the limit set ΛG may be regarded

as the completion of jG(GG) in the Euclidean metric dE on B ∪ Ĉ.

It will be important for us to understand the relationship between geodesic

segments lying outside large balls in GG and in H3. For geometrically finite groups,

the main facts we need are encapsulated in the following theorem. Recall that for

a path β ⊂ H3, [β] denotes the hyperbolic geodesic joining its endpoints.

Theorem 3.1. Let G be a finitely generated geometrically finite Kleinian group.

There exists a function f : N→ N such that f(N)→∞ as N →∞ and such that

if λ is a dG-geodesic segment in GG which lies outside BG(1;N), then both jG(λ)

and [jG(λ)] lie outside BH(O; f(N)) in H3.

Our proof is based on the following result of Floyd whose proof we recall as it

is fundamental in what follows.

Proposition 3.2 ([8] p. 216). Let G be a finitely generated geometrically finite

Kleinian group with generating set G∗, and let O ∈ H3 be a fixed base point. Then

there exist constants a, b, k > 0 such that if G contains no parabolics then

(1) b|g| ≤ dH(O, g ·O) ≤ a|g| ∀g ∈ G,

while if G contains parabolics then

(2) 2log|g| − k ≤ dH(O, g ·O) ≤ a|g| ∀g ∈ G.

Proof. The right hand inequality is easy: dH(O, g·O) ≤ a|g| where a = max{dH(O, ei·
O) : ei ∈ G∗}.

Now for the left hand inequality. Assume first that G contains no parabolics

and thus is convex cocompact. Let D be a finite sided fundamental polyhedron for

G, letN ⊂ H3 be the hyperbolic convex hull of the limit set ΛG, and let D′ = N∩D.

We may as well assume that O ∈ D′ and note that by convexity the geodesic from

O to g ·O is in N for all g ∈ G.

Let d = diam D′ and let C = max{|g| : dH(O, g · O) ≤ 1 + 2d}. Let g ∈ G.

Divide the geodesic between O to g ·O into intervals of length 1 (with one shorter

interval) and connect each division point to the closest point in G · O. This gives

the estimate |g| ≤ 1 + CdH(O, g ·O).

Now suppose that G contains parabolics. Choose ε ≤ εM such that Hε is an

invariant set of disjoint horoballs around the cusps. Let V = V(ε) = N \ ∪H∈HH.

Then D′′ = D′∩V is compact and so has finite diameter. By reducing ε if necessary,

we can arrange that the horoballs are small enough so that the geodesic from O to

ei · O is in V for all the generators ei ∈ G∗. Define a metric d′H on V by setting

d′H(x, y) to be the length of the shortest path in V between x and y in the induced
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metric on V. Then just as above we obtain the estimate |g| ≤ 1 + Cd′H(O, g · O).

Now use Lemma A.3 which says that for H ∈ H and points x, y ∈ ∂H, d′H(x, y) ≤
exp dH(x, y)/2. This leads to the left hand inequality in (2). �

A path β ⊂ H is a K-quasi-geodesic if for any subsegment α ⊂ β,

`([α])/K −K ≤ `(α) ≤ K`([α]) +K

where as usual `(α) denotes the hyperbolic length of the path α and [α] is the

hyperbolic geodesic with the same endpoints as α. We use heavily the important

fact that a K-quasi-geodesic is at bounded distance from the geodesic with the

same endpoints, with constants depending only on K, see for example [10].

To deal with the thin parts of the manifold H3/G, we use the following exten-

sion of this definition due to McMullen [16].

Definition 3.3. Let V ⊂ H3 be a Riemannian manifold. A path β : [0, 1] → V is

an ambient K-quasi-geodesic if

`(α) ≤ K`(γ) +K

for any subsegment α ⊂ β and any path γ ⊂ V with the same endpoints as α.

As in Section 2.1, fix ε ≤ εM and let H = Hε denote the union of the lifts of

the ε-thin parts to H3. We state McMullen’s result as applied to V = N \
⋃
H∈HH.

Proposition 3.4 ([16] Theorem 8.1). Let β : [0, 1] → V be an ambient K-quasi-

geodesic. Then β lies within a bounded distance R(K) of [β]∪H([β]), where H([β])

is the union of those H ∈ H which meet [β].

Remark 3.5. Although in this section we only need this result when all elements of

Hε are horoballs, the result also holds when Hε contains Margulis tubes. Moreover

the constants involved depend only on ε and are independent of the group G.

Here are two ways of constructing ambient quasi-geodesics.

Lemma 3.6. Let γ ⊂ GG be a path from 1 to g constructed as in the proof of

Proposition 3.2. Then γ is an ambient quasi-geodesic in V.

Proof. By the construction, |γ| � `(µ), where µ is the shortest path from O to g ·O
in V. Since `(jG(γ)) ≺ |γ|, it follows that γ is also an ambient quasi-geodesic in

V. �

Lemma 3.7. Suppose that G is geometrically finite and that λ is a geodesic in

(GG, dG). Then jG(λ) is an ambient quasi-geodesic in V = N \
⋃
H∈HH.

Proof. If G is convex cocompact, the result follows immediately from Equation (1),

which says that any dG-shortest path is a quasi-geodesic in H3.
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In the general case, consider any subsegment λ1 ⊂ λ and let x, y ∈ GG be its

endpoints. Let µ1 be the shortest path in V joining jG(x), jG(y). As in the proof

of Proposition 3.2, there exists a path in GG from x to y of length L say, such that

`(µ1) � L.

Since λ1 is a shortest dG-path from x to y we have |λ1| ≤ L where |λ1| denotes the

length of the geodesic λ1 in GG. Thus

`(jG(λ1)) ≺ |λ1| ≤ L ≺ `(µ1)

where the first inequality follows as usual from the right hand inequality of (2).

This shows that jG(λ) is an ambient quasi-geodesic in V as claimed. �

Corollary 3.8. Suppose that G is geometrically finite and that λ is a geodesic in

(GG, dG). Then jG(λ) lies within bounded distance of [jG(λ)] ∪H([jG(λ)]).

Proof. This follows immediately from Proposition 3.4 and Lemma 3.7. �

Proof of Theorem 3.1. First assume that G contains no parabolics, equivalently,

that G is convex cocompact. Suppose that λ is a dG-geodesic segment in GG which

lies outside BG(1;N). Then inequality (1) in Proposition 3.2 gives dH(O, h · O) ≥
b|h| ≥ bN for all h ∈ jG(λ). Hence jG(λ) lies outside BH(O; bN).

Equation (1) says that jG(λ) is aK-quasi-geodesic in H3 withK = max{b, 1/a}.
Thus jG(λ) is at bounded distance from the hyperbolic geodesic [jG(λ)] with the

same endpoints, with constants depending only on K. Since jG(λ) lies outside

BH(O; bN), it follows that [jG(λ)] lies outside BH(O; bN − c) for some c > 0 de-

pending only on a, b. This completes the proof in the convex cocompact case.

Now suppose that G contains parabolics. The left hand inequality of (2) shows

that jG(λ) lies outside BH(O; f(N)) where f(N)
+

� 2 logN . Without loss of gen-

erality, we may as usual assume that the basepoint O ∈ H3 lies outside
⋃
H∈HH.

It remains to show that α = [jG(λ)] lies outside some ball BH(O; f(N)) for some

f(N)→∞ as N →∞.

By Lemma 3.7, jG(λ) is an ambient quasi-geodesic in V. Let P1, P2 be the entry

and exit points of α to some horoball H ∈ H(α). By Proposition 3.4, P1 and P2 lie

within bounded distance of points on jG(λ), hence by (2) outside BH(O; 2 logN−c′)
for some c′ > 0. Thus by Lemma A.5, the segment [P1, P2], and hence α, lies outside

BH(O; logN/2− c′′) for some c′′ > 0. This completes the proof. �

4. Existence of CT -maps

In this section we state and prove a criterion for the existence of CT -maps,

Theorem 4.1. Variants will be used later to prove our main results.

In [19], the existence of CT -maps is discussed in the context of hyperbolic

metric spaces. Suppose that i : X → Y is an inclusion of such spaces. A Cannon-

Thurston map in this context is by definition a continuous extension of i to a map
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î : X̂ → Ŷ , where for a hyperbolic space Z, ∂Z denotes the Gromov boundary and

Ẑ = Z∪∂Z carries the natural topology obtained by extending the Gromov product

to the boundary, see [1]. Lemma 2.1 of [19] asserts that a Cannon-Thurston map

exists if and only if for all M > 0 and x ∈ X, there exists N > 0 such that if

a geodesic λ in X lies outside an N -ball around x in X, then any geodesic in Y

joining the endpoints of λ lies outside the M -ball around i(x) in Y .

If now ρ : Γ→ G is a weakly type preserving isomorphism of Kleinian groups,

then as explained in Section 2.2, the CT -map î : ΛΓ → ΛG is the continuous exten-

sion, if it exists, of the embedding i : jΓ(GΓ)→ H3, i(jΓ(g)) = jGρ(g), g ∈ Γ. It is

well known that if H is a finitely generated convex cocompact Kleinian group, then

its Cayley graph GH with the word metric is a hyperbolic space and the metrics

dH on GH and the induced hyperbolic metric on jH(GH) are equivalent. Moreover

the limit set ΛH may be naturally identified with the Gromov boundary of GH,

see [10]. Thus if both groups Γ, G are convex cocompact, the above result is a crite-

rion for the existence of the CT -map î : ΛΓ → ΛG. The main result of this section

is the following theorem which extends this to a criterion which applies without the

assumption of cocompactness on either Γ or G. Notice that the hypothesis does

not require that the image group G be geometrically finite.

Theorem 4.1. Let ρ : Γ → G be a weakly type preserving isomorphism of finitely

generated Kleinian groups and suppose that Γ is geometrically finite. The CT-map

ΛΓ → ΛG exists if and only if there exists a non-negative function f : N→ N, such

that f(N) → ∞ as N → ∞, and such that whenever λ is a dΓ-geodesic segment

lying outside BΓ(1;N) in GΓ, the H3-geodesic joining the endpoints of i(jΓ(λ)) lies

outside BH(OG; f(N)) in H3.

Proof. Since the result is clearly independent of the choice of basepoints for Γ

and G, for simplicity we take OΓ = OG = O ∈ B. As explained in Section 2.2,

the existence of the CT -map is equivalent to the statement that i extends to a

continuous map î : (ΛΓ ∪ jΓ(GΓ), dE)→ (ΛG ∪ jG(GG), dE).

Suppose first that i extends continuously. For each N ∈ N, let φ(N) = sup{L},
where the sup is taken over all L ≥ 0 with the property that for all dΓ-geodesic

segments λ lying outside BΓ(1;N) ⊂ GΓ, the H3-geodesic [i(jΓ(λ))] joining the

endpoints of i(jΓ(λ)) lies outside BH(O;L). (Here φ(N) = 0 is possible.) Suppose

that supN{φ(N)} ≤ K <∞. Then we can find a sequence of dΓ-geodesic segments

λN ⊂ GΓ such that λN lies outside the ball BΓ(1;N) in GΓ while βN = [i(jΓ(λN ))]

meets the ball BH(O;K + 1). Thus passing to a subsequence, the endpoints of

i(jΓ(λN )) converge to distinct points in ΛG. However by Theorem 3.1, there exists

f1(N) such that the geodesic [jΓ(λN )] lies outside BH(O; f1(N)), and such that

f1(N)→∞ as N →∞. It follows that after passing to a further subsequence, the

endpoints of jΓ(λN ) converge to the same point in ΛΓ. This contradiction shows

that φ(N)→∞ with N and so the criterion is satisfied with f = φ.
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Now we show that the condition is sufficient. First we need to define î : ΛΓ →
ΛG. If ξ ∈ ΛΓ is a parabolic point corresponding to a parabolic p ∈ Γ, using the

hypothesis that ρ is weakly type preserving we define î(ξ) to be the unique fixed

point of ρ(p).

Now assume that ξ is not a parabolic fixed point. Note that i : jΓ(GΓ)→ H3 is

proper (with respect to the hyperbolic metrics), for if not, there exist points gn ·O
converging to ΛΓ such that {i(gn ·O)} lie in a compact set in H3, which contradicts

our hypotheses. By definition, if ξ ∈ ΛΓ, then there exists a sequence gm ∈ Γ such

that jΓ(gm) → ξ in the Euclidean metric dE. Since i is proper, i(jΓ(gm)) has a

subsequence which converges to a point η ∈ ΛG. We want to define î(ξ) = η, so

we need to see that η depends only on ξ and not on the sequence gm. So suppose

that g′m ∈ G and jΓ(g′m) → ξ in (B ∪ Ĉ, dE), but that i(jΓ(g′m)) → η′ ∈ ΛG where

η 6= η′.

Let λm be the dΓ-geodesic joining gm and g′m. Since gm ·O → ξ and g′m ·O → ξ,

the H3-geodesic αm = [jΓ(λm)] joining jΓ(gm) and jΓ(g′m) lies outside BH(O,Nm),

where Nm → ∞ as m → ∞. We claim that jΓ(λm) also lies outside some ball

BH(O,Mm) in H3, where Mm →∞ as m→∞.

Let H = Hε;Γ denote the set of lifts to H3 of the thin parts of H3/Γ, where

ε ≤ εM is chosen so that all elements of H are horoballs. By Corollary 3.8, jΓ(λm)

is at uniformly bounded distance to αm∪H(αm) where H(αm) ⊂ H is the union of

those thin parts traversed by αm. By Lemma A.5, if the entry and exit points P, P ′

of αm to a component H of H(αm) are at distance at least N to the base point

O, then the segment [P, P ′] ⊂ αm is at distance at least N/4− c from O for some

universal c > 0. It follows that jΓ(λm) is outside a large ball BH(O,N ′m) where

N ′m � Nm, unless there is an infinite subsequence of the αm each of which contains a

segment [Pm, P
′
m] contained in a horoball Hm ∈ H(αm), such that Pm ∈ BH(O,K)

for some K > 0 independent of m. Since there are only finitely many horoballs

which meet BH(O,K), up to passing to a subsequence we may assume that all the

αm pass through a fixed horoball H. Since ξ is not a parabolic point, it is not the

basepoint of H. Hence by taking m large enough, we can clearly find gm · O and

g′m ·O close enough to ξ so that αm does not intersect H. This contradiction proves

that jΓ(λm) lies outside some ball BH(O,Mm) in H3 as claimed. (Note that if ξ is

a parabolic fixed point the above discussion fails. For then we can find sequences

gm · O, g′m · O which converge to ξ while the dΓ-geodesic λm joining gm and g′m is

such that jΓ(λm) follows around the horoball H ∈ H based at ξ and hence always

penetrates a hyperbolic ball BH(O,K) for fixed K > 0.)

If jΓ(λm) lies outside some ball BH(O,Mm), it follows immediately from the

inequalities in Proposition 3.2 that λm lies outside some ball BΓ(1,M ′m) ⊂ GΓ,

where M ′m → ∞ as m → ∞. On the other hand since η 6= η′, there exists R > 0

such that the H3-geodesic joining η to η′ has to pass through BH(O;R). Hence
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there exist constants c > 0 and m0 ∈ N such that for all m > m0, the H3-geodesic

[i(jΓ(λm))] joining jG(gm) and jG(g′m) passes through BH(O;R + c). Since R + c

does not depending on the index m, this contradicts the hypothesis of the theorem,

so η = η′ and we can define î(ξ) = limm→∞ jG(gm) for any sequence jΓ(gm) → ξ.

This completes our justification of the definition of the map î.

Now we turn to the continuity of î. If î is not continuous, there exist sequences

xm, x
′
m ∈ jΓ(GΓ)∪ΛΓ such that dE(xm, x

′
m)→ 0 but so that î(xm), î(x′m) converge

to distinct points in ΛG. Replacing the points xm, x
′
m by points in jΓ(GΓ) if needed,

it suffices to show that for every sequence gm · O ∈ jΓ(GΓ) with gm · O → ξ, we

have jG(gm) → î(ξ). This is of course exactly what we have already done, except

in the case in which ξ is the fixed point p∗ of a parabolic p ∈ Γ.

So suppose that xm = gm ·O → p∗ but i(xm) does not converge to ρ(p)∗. Also

let um = pm ·O so that i(um) = ρ(p)m ·O → ρ(p∗). Let λm be a dΓ-geodesic from

gm to pm in GΓ and consider the H3-geodesic γm = [jΓ(λm)]. If `(γm) is bounded

independent of m then by Lemma A.3 |λm|Γ must also be bounded. It follows that

i(um) must be at bounded distance from i(xm) and so i(xm) → ρ(p)∗ contrary to

our assumption.

Otherwise, `(γm) → ∞ as m → ∞. Let H be the horoball based at p∗. If all

but bounded length initial and final segments of γm are in H, then xm and um are

at bounded distance to H. By Lemma 4.3 below, we may assume that gm = hpm

where h ∈ StabΓH. In this case i(xm) = ρ(h)ρ(p)m · O and clearly |hpm|Γ → ∞
since `(γm)→∞. Thus i(xm)→ ρ(p)∗ again contrary to our assumption.

We have thus reduced to the case in which γm contains a segment γ′m outside

H such that `(γ′m)→∞ with m. Let λ′m = j−1
Γ π−1(γ′m) where π is the orthogonal

projection from jΓ(λm) to γm. The projection of jΓ(λ′m) to γ′m is at bounded

distance to γ′m ∪ H(γ′m) and clearly H /∈ H(γ′m). Thus by the same arguments as

above, jΓ(λ′m) lies outside a fixed ball BH(O;K) for all m and hence λ′m lies outside

a ball of fixed radius in GΓ.

On the other hand, the endpoints of ijΓ(λ′m) converge to distinct points and

so ijΓ(λ′m) always meets a fixed ball BH(O;K ′) for some K ′ > 0. The sequence λ′m
thus violates the hypothesis of the theorem and we have proved that whenever xm →
p∗, i(xm) converges to ρ(p)∗. In view of our previous discussion, this completes the

proof of continuity of î. �

We immediately deduce our first main result which can be viewed as the con-

vergence of a constant sequence of CT -maps.

Theorem 4.2. Let Γ, G be finitely generated geometrically finite groups and let

φ : Γ→ G be weakly type preserving isomorphism. Then the CT-map î : ΛΓ → ΛG

exists. Moreover if ξ ∈ ΛΓ and gr ∈ Γ, gr ·O → ξ, then î(ξ) = limr→∞ ρ(gr) ·O.

Proof. This follows immediately from Theorems 4.1 and 3.1. �
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Here is the lemma used in the proof of Theorem 4.1.

Lemma 4.3. Let Γ be a geometrically finite Kleinian group. There exists c =

c(Γ) > 0 with the following property. Let λ be a geodesic segment in GΓ, and

let π denote projection from jΓ(λ) to [jΓ(λ)]. Suppose that for some g, h ∈ Γ,

the segment of jΓ(λ) from jΓ(g) to jΓ(h) projects to an arc contained in a single

component T ∈ Hε,Γ of the lift to H3 of the ε-thin part of H3/Γ for some ε ≤ εM.

Then g−1h = g−1zgy where z ∈ StabΓ T and dΓ(1, y) ≤ c.

Proof. For X ∈ jΓ(λ) let Π(X) be the point on ∂T at which the perpendicular

from X to [jΓ(λ)] meets ∂T . By Corollary 3.8, there exists D = D(Γ) > 0 so that

dH(X,Π(X)) ≤ D for all X ∈ jΓ(λ).

Let D be the Dirichlet domain for Γ with centre O. There exists c > 0 such

that any polyhedron which meets the D-neighbourhood of D must be of the form

xD where dΓ(1, x) ≤ c(D). Thus since g ·O ∈ gD and since Π(g ·O) is a bounded

distance away from g ·O, we have Π(g ·O) ∈ gx1D where x1 ∈ BΓ(1, c(D)). Likewise

Π(h ·O) ∈ hx2D with x2 ∈ BΓ(1, c(D)). Since Π(g ·O),Π(h ·O) ∈ ∂T , there exists

z ∈ StabΓ T such that zgx1D = hx2D from which we get zgx1 = hx2 and so

g−1h = g−1zgx1x
−1
2 which gives the result. �

5. The criterion for uniform convergence

In this section we prove our criterion Theorem 5.6 for the uniform convergence

of a sequence of CT -maps corresponding to a converging sequence of representations

ρn.

Let Γ be a fixed geometrically finite Kleinian group and suppose that ρn : Γ→
PSL2(C) is a sequence of discrete faithful weakly type preserving representations

converging algebraically to ρ∞ : Γ → PSL2(C). Let Gn = ρn(Γ), n = 1, 2, . . . ,∞
and write Λn for ΛGn . To normalize, we embed all the Cayley graphs with the

same base point O = OGn for all n and set jn(g) = jGn(g) = ρn(g) · O, g ∈ GΓ.

Let in : jΓ(GΓ) → jn(GGn) be the obvious extension to GΓ of the map jΓ(g) 7→
jn(g), g ∈ GΓ.

By Theorem 4.1, în : ΛΓ → Λn exists if and only if there exists a function

fn : N → N, such that fn(N) → ∞ as N → ∞, and such that whenever λ is a

dΓ-geodesic segment lying outside BΓ(1;N) in GΓ, the H3-geodesic [in(jΓ(λ))] lies

outside BH(O; fn(N)) in H3. Assuming they exist, we shall say that the CT -maps

în : ΛΓ → Λn converge uniformly (resp. pointwise) to î∞ if they do so as maps

from ΛΓ to Ĉ.

Before stating the convergence criterion, we introduce a property UEP (Uni-

form Embedding of Points) of the sequence (ρn).

Definition 5.1. Let ρn : Γ → Gn be a sequence of weakly type preserving iso-

morphisms of Kleinian groups. Then (ρn) is said to satisfy UEP if there exists a
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non-negative function f : N → N, with f(N) → ∞ as N → ∞, such that for all

g ∈ Γ, dΓ(1, g) ≥ N implies dH(ρn(g) ·O,O) ≥ f(N) for all n ∈ N.

Here is an alternative characterisation of UEP.

Lemma 5.2. For N ∈ N, define

uN = inf{t > 0 : dH(ρn(g) ·O,O) > t},

where the infimum is taken over all g ∈ Γ with |g| > N and all n. Then (ρn)

satisfies UEP if and only if uN →∞ as N →∞.

Proof. Clearly . . . uN ≤ uN+1 for all N . If uN →∞ as N →∞, then (ρn) satisfies

UEP with f(N) = uN .

Now suppose there exists K > 0 so that uN ≤ K for all N . Suppose (ρn)

satisfies UEP with the function f . Choose N so that f(N) > K + 1. From the

definition of uN , there exist g, n, such that |g| > N while jn(g) ∈ BH(O,K). On

the other hand, by UEP jn(g) is outside BH(O, f(N)). This is impossible. �

Proposition 5.3. Suppose that a sequence of discrete faithful weakly type preserv-

ing representations (ρn : Γ→ PSL2(C)) converges algebraically to ρ∞. Then (ρn)

converges strongly if and only if it satisfies UEP.

Proof. Suppose that the sequence of representations (ρn(Γ)) converges algebraically

and satisfies UEP with a function f . If the convergence is not strong, then there

exists a sequence (ρn(gmn
)) with |gmn

| → ∞ and n → ∞ which converges in

PSL2(C), and hence for which dH(ρn(gmn
) ·O,O) < M for some M > 0.

Choose N ∈ N such that f(N) > M . Then dΓ(1, g) ≥ N implies dH(ρn(g) ·
O,O) ≥ f(N) > M . So for any n, dH(ρn(g) · O,O) ≤ M implies dΓ(1, g) ≤ N .

Since the ball BΓ(1;N) ⊂ GΓ is finite, we must have gm = g∗ for infinitely many

m and some g∗ ∈ BΓ(1;N). This contradicts |gm| → ∞.

Conversely if UEP fails, by Lemma 5.2 there exists K > 0 such that with uN

defined as in that lemma, uN ≤ K for all N . Thus for all N there exist gN ∈ Γ and

nN ∈ N such that dH(ρnN
(gN ) · O,O) ≤ K + 1 and |gN | > N . Hence (ρnN

(gN ))

has a convergent subsequence while |gN | → ∞, which is impossible by the strong

convergence. �

Now we introduce a further property UEPP (Uniform Embedding of Pairs of

Points) of the sequence (ρn).

Definition 5.4. Let ρn : Γ→ Gn be a sequence of weakly type preserving isomor-

phisms of Kleinian groups. Then (ρn) satisfies UEPP if there exists a function

f1 : N → N, such that f1(N) → ∞ as N → ∞, and such that whenever λ is a dΓ-

geodesic segment lying outside BΓ(1;N) in GΓ, the H3-geodesic [jn(λ))] lies outside

BH(O; f1(N)) for all n ∈ N.
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Note that if a sequence of representations (ρn) satisfies UEPP, then it auto-

matically satisfies UEP and so by Proposition 5.3, if it converges algebraically then

it also converges strongly. We also remark that the condition of UEPP is just the

statement that the second condition of Theorem 3.1 holds uniformly in n.

Here is an alternative characterisation of UEPP, whose proof is essentially

identical to that of Lemma 5.5.

Lemma 5.5. For N ∈ N, define

vN = inf{t > 0 : dH([jn(λ)], O) > t},

where the infimum is taken over all GΓ geodesics λ which are outside BΓ(1, N) and

all n. Then ρn satisfies UEPP if and only if vN →∞ as N →∞.

Our main criterion for uniform convergence of CT -maps is the following:

Theorem 5.6. Let Γ be a geometrically finite Kleinian group and let ρn : Γ →
Gn be weakly type preserving isomorphisms to Kleinian groups. Suppose that ρn

converges algebraically to a representation ρ∞. Then if (ρn) satisfies UEPP, the

CT-maps în : ΛΓ → Λn converge uniformly to î∞. If Γ is non-elementary, the

converse also holds.

Remark 5.7. The converse result is not needed for the proof of Theorem A but

we include it for completeness. To see that the converse fails if Γ is elementary,

consider the sequence of groups < An > where An is a single loxodromic converging

to a parabolic A∞ in such a way that a subsequence of powers Amn
n has geometric

limit B where B is a parabolic and < B,A∞ > = Z2. For the detailed construction

of such an example, see [15] Section 4.9.

To prove Theorem 5.6 we need a lemma which ensures that dΓ-geodesic paths

lying outside a large ball eventually have small visual diameter.

Lemma 5.8. Let ρ : Γ → Gn be weakly type preserving isomorphisms of finitely

generated Kleinian groups. Suppose that Gn converges algebraically to a group

G∞, normalised as above. Suppose that (ρn) satisfies UEPP. Then there exists

f2 : N → N such that f2(N) → ∞ as N → ∞, and such that for all g ∈ GΓ lying

outside BΓ(1;N) and m,n ≥ f2(N), the H3-geodesic [jm(g), jn(g)] lies outside

BH(O; f2(N)).

Proof. Given N ∈ N, by the algebraic convergence we can choose N0 such that

for all m,n ≥ N0 and g ∈ BΓ(1;N + 1) we have dH(jm(g), jn(g)) ≤ 1. Now, let

h ∈ Γ be such that dΓ(h, 1) ≥ N + 1. For g, g′ ∈ GΓ, denote by [g, g′]Γ a dΓ-

geodesic segment in GG from g to g′. Let h0 ∈ [1, h]Γ such that dΓ(1, h0) = N . By

hypothesis, the H3-geodesic segments γm = [jm([h0, h]Γ)] and γn = [jn([h0, h]Γ)] lie

outside BH(O; f1(N)). Let δ be a hyperbolicity constant for H3, in the sense that

any side of a triangle is contained in a δ-neighbourhood of the other two. Then the
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H3-geodesic segment [jm(h), jn(h)] is within distance 2δ of γm∪γn∪[jm(h0), jn(h0)]

and hence lies outside the (f1(N)−1−2δ)-ball around O ∈ H3. Choosing f2(N) =

max{N0, f1(N)− 1− 2δ} gives the result. �

Proof of Theorem 5.6. Given ξ ∈ ΛΓ, choose gr ∈ Γ, gr · O → ξ. Since Γ acts

properly discontinuously on H3, |gr| → ∞ as r → ∞. By Theorem 4.2, în(ξ) =

limr→∞ ρn(gr · O) for n = 1, 2, . . . ,∞. We first show that if (ρn) satisfies UEPP,

then limr→∞ ρn(gr) ·O converges to limr→∞ ρ∞(gr) ·O uniformly in ξ as n→∞.

By UEPP, given N ∈ N, there exists f1(N) such that for all n and ξ, in(gr) =

ρn(gr) ·O is outside BH(O; f1(N)) whenever |gr| > N . Thus by Lemma 5.8, the H3-

geodesic [in(gr), im(gr)] is outside BH3(O; f2(N)) whenever |gr| ≥ N and n,m ≥
f2(N), where f2(N) is determined from f1(N) as in that lemma. Thus working

in the ball model with dE denoting Euclidean distance, from Lemma A.1 we have

dE(in(gr), im(gr)) ≺ e−f2(N) whenever |gr| > N and n,m ≥ f2(N).

Now in(gr) → în(ξ) as r → ∞. Moreover by UEPP and Lemma A.1, we

have dE(in(gr), in(gs)) ≺ e−f1(N) whenever |gr|, |gs| > N . Thus dE(in(gr), în(ξ)) ≺
e−f1(N) whenever |gr| > N . So dE(̂in(ξ), îm(ξ)) ≺ (e−f2(N) + e−f1(N)) which gives

uniform convergence.

To prove the converse, suppose the convergence is uniform and that Γ is non-

elementary. Uniform convergence implies diagonal convergence and hence that the

limit sets of the geometric and algebraic limits are the same. Now Theorem 1.1,

together with the assumption that Γ is non-elementary, gives that the convergence

is strong. By Proposition 5.3, this implies UEP.

Suppose that UEPP fails. By Lemma 5.5, the sequence vN = inf{t > 0 :

d([jn(λ)], O) > t} is bounded above by K say, so for all N there exists a GΓ geodesic

λN and nN ∈ N such that λN is outside BΓ(1, N) while [jnN
(λN )] intersects the

ball BH(O,K).

We claim that nN → ∞ as N → ∞. If not, there exists L > 0 such that

nN ≤ L for all N . By Theorem 3.1, for each r there is a function fr : N→ N with

fr(N) → ∞ with N , and such that if λ is outside BΓ(1, N) then [jr(λ)] is outside

BH(O, fr(N)). Thus if N is large enough that min{f1(N), f2(N), . . . , fL(N)} > K

then [jnN
(λN )] is outside BΓ(1,K), contrary to the choice of λN .

Thus the sequence nN is unbounded, so that we can choose a sequence nr →∞
and GΓ geodesics λr such that λr is outside BΓ(1, r) while [jnr

(λr)] meets BΓ(1,K)

for all r.

Suppose that λr has endpoints gr, hr ∈ GΓ. By Theorem 3.1, after passing to

a subsequence we may assume that the points gr ·O and hr ·O converge to the same

point ξ ∈ ΛΓ. It follows from Lemma A.1 combined with UEP and the uniform

convergence that inr
(gr) and inr

(hr) both limit on î∞(ξ) ∈ Λ∞, contradicting the

fact that [jnr
(λr)] meets BH(O,K) for all r. �
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Proof of Theorem 1.2. Theorem A gives an alternative proof of Theorem 1.2. With

the notation of the statement in the Introduction, by Theorem 4.2, if Γ is a finitely

generated Fuchsian group and ρ : Γ → Gz is a type preserving isomorphism to a

quasi-Fuchsian group Gz, the natural map iz : Λ+
Γ → Λ+

G extends to a continuous

map îz : ΛΓ → ΛG.

Now replace the parameter z ∈ A by a sequence (zn) → z∞ and write Gn

for Gzn etc. Suppose that Γ, Gn, G∞ are all quasifuchsian. If (Gn) converges

algebraically to G∞, it automatically converges strongly. Hence by Theorem A the

CT -maps în : ΛΓ → ΛGn converge uniformly to î∞. Uniform convergence gives

diagonal convergence. Since this argument applies to any sequence zn ∈ A with

limit z∞ ∈ A, we easily deduce joint continuity of the map îz.

Let ξ ∈ ΛΓ and pick a sequence of attractive fixed points ξm = g+
m → ξ where

gm ∈ Γ are hyperbolic. The maps z 7→ ρz(gm)+ = îz(ξm) are holomorphic for

each m and by our result îz(ξm) → îz(ξ) for each z. Moreover the family of maps

z 7→ îz(ξm) is uniformly bounded and hence normal. It follows that z 7→ îz(ξ) is

holomorphic as claimed. �

6. Strong convergence

In this section we prove Theorem A, that if a geometrically finite group G∞ is a

strong limit of a sequence Gn, then the corresponding CT -maps converge uniformly.

To do this, it is sufficient in view of Theorem 5.6 to check the criterion UEPP. The

main ingredient is the following uniform bound on the diameters of the thick parts

of the convex cores. Note that as long as the geometric limit is geometrically finite,

the hypothesis only requires algebraic rather than strong convergence; this will be

important when we come to the proof of Theorem B.

Proposition 6.1. Suppose given a sequence of geometrically finite Kleinian groups

Gn = ρn(Γ) where Γ is geometrically finite and the representations ρn are faithful

and weakly type preserving. Suppose that the sequence (Gn) converges geometri-

cally to a geometrically finite group H. Then the algebraic limit G∞ is geometri-

cally finite. Moreover the thick parts of the convex cores have uniformly bounded

diameters.

Proof. For the first statement, see [15] Theorem 4.6.1. By the same result, the

limit sets Λn converge to ΛH in the Hausdorff topology and the ordinary sets Ωn

converge to ΩH in the sense of Carathéodory.

Let DH be a fundamental domain for H and let NH be the hyperbolic convex

hull of the limit set ΛH . Denote by VH = Vε,H the ε-thick part of NH relative to

H and define Dn,Nn,Vn similarly.

Since H is geometrically finite, we can find a hyperbolic ball Br = BH(O; r) ⊂
H3 which contains VH∩DH . By geometric convergence we have uniform convergence

of Dn to DH inside Br. Moreover the Hausdorff convergence of Λn to ΛH implies
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that inside Br, Nn is eventually contained in a bounded neighbourhood of NH .

This does not however automatically give a uniform bound on the diameters of Nn,

as it says nothing about what happens far outside Br.

To understand the problem outside Br, consider the following toy example.

Let Z = {(x, y) : x ∈ [1,∞), 0 ≤ y ≤ 1/x} ⊂ R2. Let Zn be the part of Z
with x ∈ [0, 2n]. Let Cn ⊂ R2 be the disk of radius n and centre 2n ∈ R and

let Qn = Zn ∪ Cn. Then the sets Qn converge uniformly on compact sets in the

Hausdorff metric to Z and Z has finite area, but diam Qn →∞.

To resolve this problem it we shall prove the following claim: there exists

A > 0 such that if Vn ∩ Dn contains points outside Br+2+A, then there are points

of Vn ∩ Dn in the shell between Br+1 and Br+2.

Suppose the claim holds. Suppose that (up to a subsequence) there are points

Xn ∈ Vn ∩ Dn with dH(O,Xn) > r + 2 + A. Use the claim to choose points

Yn ∈ Vn ∩ Dn with r + 1 ≤ dH(O, Yn) ≤ r + 2. By compactness we may assume

Yn → Y ∈ NH , and by the geometric convergence of Dn to DH inside Br+2, we have

Y ∈ DH . Since Y is outside Br it must be in the complement of VH∩DH , that is, in

the thin part of NH ∩DH . So there exist h ∈ H and a neighbourhood U of Y such

that such that dH(hY ′, Y ′) < ε for all Y ′ ∈ U . Choose gn ∈ Γ with ρn(gn)→ h. We

have dH(ρn(gn)Y ′, Y ′) < ε for all large enough n and hence dH(ρn(gn)Yn, Yn) < ε

as n→∞. This contradicts the choice of Yn. We conclude that eventually Vn∩Dn
is contained in Br+2+A so that the sequence of diameters Vn ∩ Dn is uniformly

bounded above.

Now we prove the claim, which can be seen as a very rudimentary form of

Canary’s filling theorem [3]. Since all groups Gn are isomorphic and geometrically

finite, the boundaries ∂Nn/Gn are homeomorphic and the thick parts of ∂Nn/Gn
have uniformly bounded diameter A say (depending only on the maximum genus

of the hyperbolic components of ∂NΓ/Γ). If there are points of Vn ∩ Dn outside

Br+2+A, then there are also points of ∂Vn ∩ Dn outside Br+2+A. Then any com-

ponent Sn ⊂ ∂Nn/Gn containing such points is outside Br+2. Since ∂Nn/Gn has

finitely many components, passing to a subsequence, we may fix one such compo-

nent which is homeomorphic to some fixed hyperbolic surface S, and whose thick

part lies outside Br+2. (Since we arranged that Vn ∩ Dn ⊂ Br), we do not have to

worry about components of ∂Nn/Gn on the boundary of horoballs or tubes.)

Fix a lift S̃ ⊂ ∂Nn and let W ⊂ Ĉ denote the component of the regular set ΩΓ

of Γ corresponding to S̃. Let K = Stab W ⊂ Γ. Since K ⊂ Γ is non-elementary

(because S̃/K is a hyperbolic component of ∂NΓ/Γ), we can choose a pair of non-

commuting elements α, β ∈ K, both of which are non-trivial in Γ and hence in H.

(For the fact that Γ injects into H, see Lemma 4.4.1 in [15].) Since by geometric

finiteness only finitely many elements of Γ are parabolic or short in H, we may
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assume in addition that neither α nor β is parabolic or the core of a large Margulis

tube in H.

Set Mn = H3/Gn and MH = H3/H and let O∗n, O
∗
H be the projections of the

basepoint O ∈ H3 to Mn,MH respectively. Let dn, dH denote distance in Mn,MH

respectively. Note that no pair of loops in the homotopy classes [α], [β] of α, β can

be contained in the same component of a thin part of Mn, since the fundamen-

tal group of any such component is abelian. Choose loops αn ∈ [α], βn ∈ [β] on

S ⊂ ∂Nn/Gn. By construction the distance from each of αn, βn to O∗n is at least

r + 2. On the other hand, in MH , the geodesic representatives ρ∞(α)∗, ρ∞(β)∗

are contained inside NH/H and hence, since by construction neither is parabolic

in H and additionally neither is in the thin part of MH , dH(ρ∞(α)∗, O∗) ≤ r and

similarly for β. By algebraic convergence, we can find lifts to H3 of the geodesic rep-

resentatives ρn(α)∗, ρn(β)∗ of [α], [β] in Mn near to corresponding ρ∞(α)∗, ρ∞(β)∗

in H3. Hence dn(ρn(α)∗, O∗n) ≤ r + 1 for sufficiently large n, and similarly for β.

Choose homotopies Hn
α , H

n
β between ρn(α)∗ and αn and between ρn(β)∗ and

βn. More precisely, let Hn
α be the image of a continuous family of maps ft : [0, 1]→

Mn, t ∈ [0, 1] with f0([0, 1]) = ρn(α)∗ and f1([0, 1]) = αn, and similarly for Hn
β .

Let ∂B(O∗n;R) denote the boundary of the ball of radius R centre O∗n in Mn.

By construction, αn, βn lie on a component of ∂Nn/Gn outside B(O∗n; r + 2), so

Hn
α , H

n
β must both intersect the shell betweenB(O∗n; r + 1) andB(O∗n; r + 2), and in

particular the surface ∂B(O∗n; r + 3/2). (Note that ∂B(O∗n;R) is just the projection

of the boundary of the ball of radius R in H3 and hence an immersed 2-manifold in

Mn.) Hence we can find paths α1 ∈ [α], β1 ∈ [β] in ∂B(O∗n; r + 3/2). In detail, by

adjusting Hn
α slightly if needed, we can arrange that ∂B(O∗n; r + 3/2) and Hn

α are

transverse, so that the intersection ∂B(O∗n; r + 3/2)∩Hn
α consists of a finite number

of closed loops. Adjust Hn
α to ‘push off’ any components which are homotopically

trivial. Since Hn
α is a cylinder whose two boundary components are separated by

∂B(O∗n; r + 3/2), ∂B(O∗n; r + 3/2) ∩ Hn
α must contain at least one homotopically

non-trivial component which we take to be α1. The construction of β1 is similar.

As discussed above, α1 and β1 cannot both be contained in the thin part of

Nn/Gn. Lifting to H3, this produces the points Yn as required.

Thus Vn∩Dn is eventually contained in a compact ball Br, which immediately

gives the required bound.

�

It is now easy to prove Theorem A.

Proof of Theorem A. By Theorem 5.6 it is sufficient to check that the sequence

(ρn) satisfies UEPP. In other words, we have to check that the second condition of

Theorem 3.1 holds uniformly in all the groups Gn. To do this, we go through that

proof of Floyd’s result Proposition 3.2 with this requirement in mind. (Notice that

ρ∞ is automatically weakly type preserving.)
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First consider the right hand inequality of (1): dH(O, g · O) ≤ a|g| where

a = maxi d(O, ei · O) and {e1, . . . , ek} is a finite set of generators for Γ. Alge-

braic convergence implies that ρn(ei) converges to ρ∞(ei) for each i, so we have

maxi d(O, ρn(ei) · O) ≤ A for some uniform A independent of n. Thus the right

hand side of (1) holds uniformly, precisely:

dH(O, ρn(g) ·O) ≤ A|ρn(g)| = A|g| for all g ∈ Γ and n ∈ N.

We now need to prove the left hand inequality. The constants involved are

the diameter d of the truncated fundamental domain D ∩ V, and the constant

C = max{|g| : dH(O, g ·O) ≤ 1 + 2d} in the proof of Proposition 3.2.

The diameters of the truncated fundamental domain Dn ∩ Vn are uniformly

bounded by Proposition 6.1. That we can choose the constant Cn = max{|g| :

dH(O, g ·O) ≤ 1 + 2d} with a uniform bound Cn ≤ C for all n follows immediately

from UEP which has already been proved in Proposition 5.3.

The proof now follows exactly as in Theorem 3.1, using in addition the distor-

tion Lemmas A.4 and A.6 for Margulis tubes. �

7. Algebraic limits

7.1. Pointwise convergence criterion. In this section we prove Theorem B. We

will use conditions similar to UEP and UEPP, relaxed so as to allow for dependence

on the limit point ξ. We call these new conditions EP (ξ) (Embedding of Points)

and EPP (ξ) (Embedding of Pairs of Points).

LetG be a geometrically finite Kleinian group with generatorsG∗ = {e1, . . . , ek},
and let ξ ∈ ΛG. Suppose given a sequence ei1 , ei2 . . . ∈ G∗ such that setting

gr = ei1ei2 . . . eir we have gn·O → ξ in H3∪∂H3. We denote the infinite path joining

vertices 1, g1, g2, g3, . . . in GG by [1, ξ) and write ĵG(eirei2 . . . eis) for the piecewise

geodesic path in H3 joining in order the points jG(gr), jG(gr+1), . . . , jG(gs).

Definition 7.1. Let Γ be a fixed finitely generated Kleinian group and ρn : Γ→ Gn

be a sequence of isomorphisms to Kleinian groups Gn. Let ξ ∈ ΛΓ and let (gr) =

[1, ξ) be any infinite path as above.

(1) The pair ((ρn), [1, ξ)) is said to satisfy EP (ξ) if there exist functions fξ : N→
N and Mξ : N→ N, with fξ(N)→∞ as N →∞, such that for all g ∈ [1, ξ),

dΓ(1, g) ≥ N implies dH(ρn(g) ·O,O) ≥ fξ(N) for all n ≥Mξ(N).

(2) The pair ((ρn), [1, ξ)) satisfies EPP (ξ) if there exists a function f1,ξ(N) : N→
N such that f1,ξ(N) → ∞ as N → ∞ such that for any subsegment

eireir+1
. . . eis of [1, ξ) lying outside BΓ(1;N) in GΓ, the geodesic [jn(gir ), jn(gis)]

lies outside BH(O; f1,ξ(N)) for all n ≥Mξ(N), where Mξ is as in (1).

Remark 7.2. Although a priori the conditions EP (ξ), EPP (ξ) depend on the

choice of sequence ei1ei2 . . ., it will follow from our proof below that (in the case

of geometrically finite limits) provided we choose suitable paths [1, ξ), they depend
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only on ξ. To do this we will restrict the class of paths used, so that [1, ξ) is quasi-

geodesic and satisfies an additional hypothesis which ensures that it tracks shortest

Euclidean paths across the boundaries of rank 2-horoballs. We call such paths

standard. It is not completely obvious that such paths [1, ξ) exist; we prove this in

Proposition 7.5 below. We will show that for a sequence (ρn) of representations as

in the hypotheses of Theorem B, the conditions EP (ξ) and EPP (ξ) hold for any

standard quasi-geodesic [1, ξ).

Although clearly, EPP (ξ) implies EP (ξ), we shall first prove EP (ξ) and de-

duce EPP (ξ).

Theorem 7.3. Suppose that ρn : G → PSL2(C) is a sequence of discrete faithful

representations converging algebraically to ρ∞ : G → PSL2(C), and suppose the

corresponding CT maps în : ΛΓ → ΛGn exist, n = 1, 2 . . . ,∞. Let ξ ∈ ΛΓ. Then

în(ξ)→ î∞(ξ) as n→∞ if ((ρn); ξ) satisfies EPP (ξ).

Proof. The proof is the same as that of Theorem 5.6. Lemma 5.8 works just as

before with the condition EPP (ξ) replacing UEPP . Notice that in both of these

proofs, it is sufficient to require that the conditions (1) and (2) hold only for all

n ≥M(N). �

Contrary to the case of strong convergence, the converse to Theorem 7.3, that if

în(ξ)→ î∞(ξ) then ((ρn); ξ) satisfies EPP (ξ), is false. In fact if ξ is the fixed point

of a loxodromic element p which becomes parabolic so as to give rise to a Z2- cusp

in the geometric limit, then în(ξ)→ î∞(ξ) by the algebraic convergence but EP (ξ)

fails, because we have a sequence ρn(pmn) where mn →∞ with dH(ρn(pmn) ·O,O)

remaining bounded. This is discussed further below.

7.2. Standard quasi-geodesics. Recall from Proposition 3.4 that if G is geomet-

rically finite, then any ambient quasi-geodesic β in the thick part of the convex core

VG is a bounded distance from [β]∪H([β]). In what follows, we would like to assert

further that any two ambient quasi-geodesics in VG are a bounded distance apart,

with constants depending only on G. However this may not be true if G contains

rank two cusps. Indeed let H ⊂ H3 be a horoball corresponding to a such a cusp

and let x, y ∈ ∂H. Since the induced metric on ∂H is Euclidean, there can be no

bound on the distance between quasi-geodesic paths from x to y independent of

dH(x, y). To deal with this, if H is a rank two horoball and x, y ∈ ∂H, we say a

path from x to y is D-standard (resp. standard) if it is within bounded distance D

(resp. bounded distance depending only on G) of the Euclidean geodesic from x to

y on ∂H.

Let β be an ambient quasi-geodesic β in V = VG. For a component H ∈ H([β]),

let βH ⊂ β be the segment which projects to [β] ∩ H and for x ∈ βH denote by

ΠH(x) ∈ ∂H the point where the perpendicular from x to [β] meets ∂H. We say β
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is standard if for any component H of H([β]) corresponding to a rank two cusp, the

path ΠH(β) given by x 7→ ΠH(x);x ∈ βH across ∂H joining the initial and final

points of [β] ∩H is standard. Finally we call a path λ ⊂ GG standard if its image

jG(λ) in VG is standard.

Lemma 7.4. Let K > 0. The image of a standard K-quasi-geodesic in (GG, dG)

is a standard ambient quasi-geodesic in VG. Moreover any two standard K-quasi-

geodesics in (GG, dG) with the same endpoints are a bounded distance apart in H3

with a constant which depends only on K and (G,G∗).

Proof. Let γ be a standard K-quasi-geodesic in GG. That jΓ(γ) is an ambient K ′-

quasi-geodesic in VG for suitable K ′ = K ′(K,G) follows from the same argument

as in Lemma 3.7. By definition its image in VG is standard.

Now let β, β′ be two standard ambient quasi-geodesics in V with the same end-

points so that [β] = [β′] is the H3-geodesic joining their common endpoints. Adjust

the constant ε so that the only components of Mthin(ε) of H3/G are horoballs. By

Proposition 3.4 both β, β′ are within bounded distance of [β]∪H([β]) with constants

which depend only on K and (G,G∗).

We have to show that the projections of β, β′ onto [β] ∪ H([β]) are bounded

distance apart. This is certainly true of the projections onto segments of [β] outside

H([β]). Suppose H ∈ H([β]) is a horoball corresponding to a parabolic p ∈ G. Let

η be the Euclidean shortest path in ∂H ∩ V joining the entry and exit points of

[β] to H. If H ∈ H([β]) corresponds to a rank one parabolic, then since G is

geometrically finite, ∂H ∩ V is a strip of bounded width containing η and which

also contains the paths ΠH(β),ΠH(β′), so the result is clear. If H corresponds to

a rank two parabolic, then the condition that β, β′ be standard again ensures that

ΠH(β),ΠH(β′) are within bounded distance of η and the result follows. �

Proposition 7.5. Let Γ be a fixed geometrically finite Kleinian group with Cayley

graph GΓ relative to a fixed set of generators Γ∗ = {e1, . . . , ek}, and let ξ ∈ ΛΓ.

Then there exists a sequence ei1 , ei2 . . . ∈ Γ∗ such that the path ĵΓ(ei1ei2 . . .) is a

standard quasi-geodesic in GΓ and such that gn ·O → ξ in H3 ∪ ∂H3.

Proof. Let α ⊂ H3 be the infinite hyperbolic geodesic from O to ξ and as usual let

H(α) be the set of thin parts traversed by α. Exactly as in the proof of Propo-

sition 3.2 we can construct a path in GΓ whose image under jΓ tracks α ∪ H(α)

and which is ambient quasi-geodesic in the thick part VΓ of NΓ. We can clearly

ensure that in addition, segments of the path which track the boundary of rank two

horoballs are standard. The result follows. �

7.3. Proof of Theorem B. Suppose now that we are in the situation of The-

orem B, that is, Γ is a fixed geometrically finite Kleinian group and ρn : Γ →
PSL2(C) is a sequence of discrete faithful weakly type preserving representations
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converging algebraically to ρ∞ : Γ → PSL2(C) and geometrically to H, and such

that H is geometrically finite. (As noted in the introduction, this implies G∞ is

also geometrically finite.) Let Gn = ρn(Γ), n = 1, 2, . . . ,∞. In this section we prove

EP (ξ) and EPP (ξ), from which Theorem B follows.

The example to keep in mind is that of a loxodromic ρn(p), p ∈ Γ converging

to a parabolic ρ∞(p), in such a way that suitable powers of the loxodromic also

converge to another parabolic q = q(p) ∈ H \G∞ which together with ρ∞(p) gen-

erates a Z2-subgroup. This process is explained in detail in [15] §4.9 and is what

drives the well known Kerckhoff-Thurston examples [11] of groups whose algebraic

and geometric limits differ. The main point is, that as n → ∞ the translation

length and rotation angle of ρn(p) are related in such a way that for suitable

powers ρn(pmn),mn → ∞, the sequence ρn(pmn) converges to q. In particular,

dH(O, ρn(pmn) · O) is bounded while the word length |pmn | → ∞. This of course

violates UEP. When H is geometrically finite, this is the worst that can happen:

Theorem 7.6 ([13, 15] Theorem 4.6.1). Suppose that Γ is geometrically finite and

that ρn : Γ → PSL2(C) are discrete, geometrically finite, faithful representations

converging algebraically to ρ∞ : G→ PSL2(C) and geometrically to H. If H is also

geometrically finite, then it is generated by {Γ∗, q1, . . . , qs} where Γ∗ is a generating

set for Γ and qi are the ‘extra’ parabolics which arise in the limit as a result of the

phenomenon above.

In the proof of Theorem A, we used the crucial fact (Lemma 3.7) that the image

in H3 of a geodesic segment in GΓ is uniformly an ambient quasi-geodesic in Vn =

Vε,Gn
. However in the above situation, the elements ρn(pmn) in the approximating

groups Gn give paths which track a Margulis tube for distance O(mn), but whose

initial and final points are distance O(1) apart. Clearly such paths cannot be

ambient quasi-geodesics with uniform constants independent of n. To get around

this, we first approximate by taking a new set of generators G∗n for Gn constructed

so as to be close to those of the geometric limit H, and then substitute back in

for the original generators of Γ. Before doing this, however, we pause to discuss

parabolic elements in Γ, Gn and G∞.

7.4. Parabolic blocks. The group G∞ contains a finite number of conjugacy

classes of parabolic subgroups. Choose P = {p1, . . . , pt} ⊂ Γ so that {ρ∞(p) : p ∈
P} contains one representative of each class, such that the horoball T p∞ based at

the fixed point of ρ∞(p) intersects the Dirichlet domain D∞, and such that ρ∞(p)

generates StabG∞ (T p∞). (We changed notation here from H for a horoball to T

for a tube, because a thin component which is the quotient of a horoball in some

H3/Gn may be a tube in another. From now on we shall use the notation T for

both horoballs and equidistant tubes, the latter being the lift of a Margulis tube to

H3, see immediately before the proof of Lemma A.3 for a precise definition.)
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By the algebraic convergence, there is a group Gn0
such that if p ∈ P then

ρn(p) is short in Gn for all n ≥ n0, in the sense that its length is less than the

constant ε < εM chosen above. Denote by T pn the lift to H3 of the thin part

Mthin(ε) of M = H3/Gn whose stabiliser is generated by ρn(p). Note that while

by construction T p∞ is a horoball, T pn may be either a horoball if ρn(p) is parabolic

or an equidistant tube from the short loxodromic ρn(p) otherwise. (We do not

exclude the possibility that H3/Gn may contain other thin parts or even horoballs

not associated to elements of P.) By slightly reducing the choice of ε if necessary,

we can choose a > 0 such that the distance between any two thin parts of Nn is at

least a for any n ∈ N ∪∞.

The set P is divided into two subsets, the set P0 = {p1, . . . , ps} which commute

with the ‘extra’ parabolics q1, . . . , qs of Theorem 7.6, and the remaining set P1 =

P \P0. By assumption the maps ρn, ρ∞ are weakly type preserving, in other words

every parabolic element g ∈ Γ is also parabolic in Gn, n = 1, 2 . . . ,∞. Note also

that a parabolic element in a Kleinian group lies in a Z2-subgroup if and only

if it stabilises a rank two cusp. Since the groups Γ, Gn, G∞ are all abstractly

isomorphic, this means that rank two parabolics ρ∞(p), p ∈ P are ‘persistent’, so

that necessarily p ∈ Γ and ρn(p) ∈ Gn are also parabolic and moreover p ∈ P1.

We can choose n0 ∈ N such that if p ∈ P then ρn(p) is short inGn for all n ≥ n0,

in the sense that its length is less than the Margulis constant εM. We would like to

renumber so that Gn0 becomes Γ. However this causes a minor technical difficulty

in the case in which Gn0 contains parabolic elements which are not parabolic in

either Γ or G∞, so that we cannot replace the maps în : ΛΓ → ΛGn
by a map

ΛGn0
→ ΛGn

. To simplify notation we renumber so that Gn0
= G0, jn0

= j0 etc,

and live with the minor annoyance of two distinct groups Γ and G0.

To make the next definition, we use the following generalisation of Lemma 4.3,

whose proof is identical to the earlier version. We write X =Γ Y to indicate that

X is equal to Y as elements in Γ, but not necessarily as words in Γ∗.

Lemma 7.7. Let Γ, G0 be as above. There exists c > 0 with the following property.

Let λ be a quasi-geodesic segment in GΓ, and let π denote projection from j0(λ) to

[j0(λ)]. Suppose that for some g, h ∈ Γ, the segment of j0(λ) from j0(g) to j0(h)

projects to an arc contained in a single component T ∈ Hε,G0
. Then g−1h =Γ

g−1zgy where z ∈ StabG0
T and dΓ(1, y) ≤ c.

Definition 7.8. A geodesic segment er+1 . . . es in GΓ is called a parabolic block

relative to p ∈ P if er+1 . . . es =Γ p
ky for some y with dΓ(1, y) ≤ c. We call |k| the

length of the block.

Remark 7.9. It is worth clarifying exactly how this definition relates to the lemma.

Setting gr = ei1ei2 . . . eir , the segment ĵ0(er+1 . . . es) runs from j0(gr) to j0(gs).

Set g = gr and h = gs in the lemma. Then er+1 . . . es = g−1
r gs = g−1

r zgry where
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ρ0(z) ∈ StabT . Thus ρ0(g−1
r zgr) ∈ Stabρ0(gr)

−1T and ρ0(gr)
−1T = T p0 for some

p ∈ P.

Lemma 7.10. Given D > 0, there exists k0 = k0(D) > 0 such that given k1 > k0,

there exists M = M(k1, D) ∈ N such that if pky, p ∈ P0 is a parabolic block of length

k ∈ [k0, k1], then any geodesic segment whose endpoints are at distance at most D

from jn(1) and jn(pky) respectively penetrates the thin part T pn for all n > M . If

p ∈ P1 then the same result is true for all k ≥ k0.

Proof. Since y is in a bounded neighbourhood of 1 ∈ GΓ, using the algebraic con-

vergence we get a uniform bound dH(O, jn(y)) ≤ D1 for all n. Hence

dH(jn(pky), T pn) ≤ dH(jn(pk), T pn) + dH(jn(pky), jn(pk)

= dH(jn(pk), T pn) + dH(jn(y), O)

= dH(O, ρn(p−k)T pn) + dH(jn(y), O) = dH(O, T pn) + dH(jn(y), O).

Since by Proposition 6.1, O is a uniformly bounded distance from T pn , this gives a

uniform bound dH(jn(pky), T pn) ≤ D2 say.

Now let A,B be points at distance at most D to O = jn(1) and jn(pky)

respectively, and let X,Y denote their projections onto T pn . Then A,B are at

distance at most D + D2 to T pn . Thus there exists a uniform constant c > 0 such

that if the distance between X and Y along ∂T pn is at least c, then [A,B] penetrates

T pn .

If ρn(p) is parabolic, since Y = ρn(p)k ·X and since ρn(p) translates a definite

distance along ∂T (because the injectivity radius of H3/Gn at points on ∂T/Gn is

some fixed ε > 0), the result is now straightforward. However if ρn(p) is loxodromic,

we have to take care that the multiplier is not such that dH(X, ρkn(p) ·X) = O(1).

Let G be a Kleinian group and let S ∈ G be a loxodromic transformation with

multiplier bounded in modulus by some fixed θ0. Let T ⊂ H3 be the equidistant

tube corresponding to S, such that the injectivity radius of H3/G at points on the

boundary of the image of T in H3/G is ε > 0. Then there exists a constant c′ > 0

such that provided rθ0 < π/4, the distance between Q ∈ ∂T and Sr(Q) ∈ ∂T along

∂T is at least c′rε. In particular, since the T pn are all components of Hε;Gn
for fixed

ε, this discussion applies to our present situation with S = ρn(p).

Choose k0 ∈ N so that c′kε > c whenever k ≥ k0. Since ρn(p) → ρ∞(p), the

multiplier λn of ρn(p) converges to 1. Thus by the above discussion, given k1 > k0

we can find M = M(k1), so that for all n ≥ M , the argument of the multiplier

of ρn(p) is bounded in modulus by π/4k1 and hence so that the argument of the

multiplier of ρn(pr) is bounded in modulus by π/4 for all |r| ≤ k1.

It follows that if X ∈ ∂T pn then, provided k0 ≤ k ≤ k1, the distance from X to

ρn(pk) ·X along ∂T pn is at least c and so if A,B are points at distance at most D

to O = jn(1) and jn(pky) respectively, then the geodesic segment [A,B] penetrates

T pn .
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Note that if p ∈ P0 it is crucial here to have the fixed upper bound k ≤ k1;

in fact d(X, ρn(pk) ·X) � 1 for values of k such that ρn(pk) is close to q ∈ H. If

p ∈ P1 this restriction is unnecessary. �

7.5. Correspondence of generators. We now make a precise correspondence

between a set of generators of Gn and those of the geometric limit H.

Lemma 7.11. There exists δ0 > 0 such that for any h ∈ H, there exists m0 =

m0(h) such that there is a unique g ∈ Γ with jn(g) ∈ BH(h·O, δ0) whenever n ≥ m0.

Proof. Let Dn,DH be the Dirichlet domains for Gn, H centre O respectively. As

in the proof of Proposition 6.1, the thick part of NH ∩ DH is contained in a ball

Br of finite diameter in H3. The groups Gn converge geometrically, and hence

polyhedrally, to H (meaning that the faces of Dn converge to those of DH uniformly

on compact subsets of H3). By the universal ball property, see [15] Lemma 4.3.11,

there exists δ > 0 such that Dn ∩Br contains the ball BH(O, δ) for all n. Suppose

that g, g′ ∈ Γ are such that jn(g), jn(g′) ∈ BH(h · O, δ/2) for some h ∈ H. Then

d(O, jn(g−1g′)) < δ from which it follows that g = g′. That BH(h·O, δ/2)∩Gn ·O 6=
∅ for sufficiently large n follows from the geometric convergence, proving the lemma

with δ0 = δ/2. �

Given any finite set A ⊂ H, Lemma 7.11 allows us to make a bijective cor-

respondence between A and a corresponding subset An ⊂ Gn for all sufficiently

large n. Choose a set of generators Γ∗ for Γ and set H∗ = {Γ∗, q1, . . . , qs} with qi

chosen as in Theorem 7.6. We define G∗n to be the corresponding set of elements

in Gn. This is well defined for any n > max{m0(g) : g ∈ Γ∗}, with m0(g) as in

Lemma 7.11. According to that lemma, each element of G∗n is either already in Γ∗,

or is close to qi for one of the additional generators as in Theorem 7.6. Since each

such qi is the limit of a sequence of the form ρn(pmn) where p ∈ P0 and mn →∞,

we may suppose that n0 in Section 7.4 above is also chosen so that the additional

elements in G∗n are all of this form. Once again, we renumber so that Gn0
becomes

G0.

7.6. Proof of Theorem B. Now we turn to the main part of the proof of Theo-

rem B.

For g ∈ Γ, we use |g|Γ or |g| to denote word length relative to the generating set

Γ∗ and |g|n to denote word length relative to the generating set G∗n. We shall need

to distinguish between equality as group elements and equality as words (meaning

that all letters are identical). We write W = AB to mean that all letters of W are

exactly the same as those in the juxtaposed strings of letters A,B and W =G AB

to mean that W is equal to AB as elements in a group G.



LIMITS OF LIMIT SETS I 27

Definition 7.12. Let G be a Kleinian group with generators G∗ and let | · |G denote

the word metric. We say a path ei1ei2 . . . eis , eij ∈ G∗ is L-quasi-geodesic with

respect to (GG, | · |G) if (b−a)/L ≤ |eia . . . eib−1
|G ≤ L(b−a) for any 1 ≤ a < b ≤ s.

Lemma 7.13. Suppose that W = wi1wi2 . . . wis , wij ∈ Γ∗ is L-quasi-geodesic in

(GGn, |.|n) for some n ≥ 0.Then W is also L-quasi-geodesic in (GΓ, |.|Γ).

Proof. Let V = wia . . . wib−1
be a subsegment of W . Then b− a < L|V |n ≤ L|V |Γ

where the last inequality follows since any expression in Γ∗ is also one in G∗n. Since

wij ∈ Γ∗ for all j, the inequality |V |Γ ≤ b− a is obvious. �

The key step in the proof of Theorem B is the following proposition, which says

that although the image jn(λ) of a quasi-geodesic λ ⊂ GΓ may not be an ambient

quasi-geodesic in Vn (see the discussion following the statement of Theorem 7.6), it

is still within uniformly bounded distance of [jn(λ)] ∪ H([jn(λ)]). The idea is first

to track [jn(λ)] with uniform bounds by word paths Wn in the generators G∗n, and

then to study carefully how these word paths look when rewritten in terms of the

generators Γ∗. This second step is the content of Proposition 7.17, which is needed

in the proof of Proposition 7.14.

Proposition 7.14. Suppose that λ is a standard K-quasi-geodesic in GΓ. Then

there exists n1 ∈ N such that jn(λ) is at uniformly bounded distance to [jn(λ)] ∪
H([jn(λ)]) for all n ≥ n1, with a bound D that depends on K but is independent of

n.

Proof. To simplify, we may as well assume that the initial point of λ is at 1 ∈
GΓ. Denote the final point by gλ ∈ Γ. Floyd’s construction in Proposition 3.2

allows us to find a standard word path W in the generators G∗n so that W =Γ gλ,

such that jn(λ) is at bounded distance Kn say to [jn(λ)] ∪ H[(jn(λ))] and whose

length is comparable to |λ|n, the length of λ relative to the generators G∗n. The

constants involved in determining Kn are: the diameter dn of the thick part of

the truncated Dirichlet domain Dn ∩ Vn, an = max{d(O, g · O) : g ∈ G∗n} and

Cn = max{|g|n : d(O, g · O) ≤ D} for some uniform D > 0. (It is crucial here

that word length | · |n is defined using the generating set G∗n.) Then dn is uniformly

bounded by Proposition 6.1, an is uniformly bounded by the geometric convergence

since so is max{d(O, h·O) : g ∈ H∗}, see Lemma 7.11, and finally, again in virtue of

Lemma 7.11, Cn is uniformly bounded by CH = max{|h|H : h ∈ H : d(O, h · O) ≤
1 + 2dn + δ}, where δ is as in Lemma 7.11. Thus all constants involved are uniform

in n and hence there exists L > 0 such that the path W (which is written in terms

of the generators G∗n) is L-quasi-geodesic in (GGn, | · |n) for all n.

The only letters in W which are not also generators of Γ∗ correspond to

elements in G∗n \ Γ∗ and are therefore of the form u = pk for some p ∈ P0.

Rewriting W in terms of the generators Γ∗ by substituting these terms we find
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W =Γ V1U1V2U2 . . . Vs where all of the letters in Vi belong to Γ∗, and where

Ui = uaii = paimi for some p ∈ P0. In this expression we may have Vi = ∅
but in this case (by combining adjacent terms belonging to the same parabolic) we

assume that Ui, Ui+1 are associated to distinct elements of P0. We define WΓ to

be the word V1U1V2U2 . . . Vs in Γ∗ and emphasize once again that W and WΓ both

depend heavily on n.

Since Vi is by construction L-quasi-geodesic in (GGn, | · |n), by Lemma 7.13 it

is also L-quasi-geodesic in (GΓ, | · |Γ). We would like to claim that WΓ is quasi-

geodesic in (GΓ, | · |Γ). However this may not be the case because, as illustrated in

Figure 1, there could be a segment which is a power of pi at the end of Vi which

cancels into Ui, and likewise a segment at the beginning of Vi which cancels into

Ui−1. To remedy this we will show in Proposition 7.17 below that it is possible

to split Vi into blocks Vi = XiYiZi where Xi cancels into Ui−1 and Yi cancels

into Ui, in such a way that ZiUiXi+1 =Γ Ûi and j0(Y1Û1Y2Û2 . . . Ys) is a standard

ambient L′-quasi-geodesic in V0, for some L′ depending on L but independent of

n. The essential idea is illustrated in Figure 1. Notice that following through the

definitions, gλ =Γ Y1Û1Y2Û2 . . . Ys.

Assuming this we proceed as follows. By hypothesis, λ is a standard quasi-

geodesic in GΓ with initial point O and endpoint gλ ·O. Thus by construction ĵ0(λ)

has the same endpoints as ĵ0(Y1Û1Y2Û2 . . . Ys). Hence by Lemma 7.4, the paths

ĵ0(Y1Û1Y2Û2 . . . Ys), ĵ0(λ) are a bounded distance apart. Since jnj
−1
0 : GΓ → H3

is uniformly Lipschitz because of the algebraic convergence, ĵn(λ) is a uniformly

bounded distance from ĵn(Y1Û1Y2Û2 . . . Ys), with a bound that depends on K and

L′.

Now we show that any point Q ∈ ĵn(Y1Û1Y2Û2 . . . Ys) is at uniformly bounded

distance from [jn(λ)] ∪ H([jn(λ)]). We have Q = jn(A) where A is a subsegment

of Y1Û1Y2Û2 . . . Ys starting at 1. Those subwords starting at 1 and ending in a

letter in some Ûi have images under ĵn within uniformly bounded distance of the

corresponding thin part Ti ∈ H([jn(λ)]), while the image of points corresponding

to subsegments starting from 1 and ending at a letter contained in a segment Yi

are within uniformly bounded distance of [jn(λ)]∪H([jn(λ)]) since any word of the

form Y1Û1Y2Û2 . . . Y
′
r with Y ′r an initial subsegment of Yr, r ≤ s, is by construction

equal to a subword of W .

We have shown that ĵn(λ) is a uniformly bounded distance from ĵn(Y1Û1Y2Û2 . . . Ys)

and that any point in ĵn(Y1Û1Y2Û2 . . . Ys) is at uniformly bounded distance from

[jn(λ)] ∪H([jn(λ)]). The result follows. �

To prove Proposition 7.17 we need two easy lemmas.

Lemma 7.15. There exists `0 > 0 with the following property. Suppose that

Ti, i = 1, . . . , s is a sequence of thin parts Ti ∈ Hε,G0 such that Ti 6= Ti+1 for

all i. Suppose that [QiPi+1] is the common perpendicular to Ti, Ti+1 and that µ is
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the piecewise geodesic arc joining points Q1, P2, Q2, . . . , Qs−1, Ps, and suppose also

that the geodesic segment [PiQi] has length at least `0, i = 2, . . . , s − 1. Then µ is

a quasi-geodesic in H3.

Proof. The angle between the segments [PiQi] and [QiPi+1] is at least π/2 and by

the choice of ε (see the discussion in Section 7.4), [QiPi+1] has length at least a > 0.

The result is now standard. �

Lemma 7.16. Suppose that D > 0 is given and that T, T ′ ∈ Hε,G0
. Let P, P ′ be

points within distance D of T, T ′ respectively such that the geodesic segment [P, P ′]

is disjoint from both T and T ′. Then [P, P ′] is within bounded distance of the

common perpendicular to T and T ′ with a bound that depends only on D and ε.

Proof. Let X,X ′ be the nearest points to P, P ′ on T, T ′ respectively and let Q ∈
T,Q′ ∈ T ′ be the endpoints of the common perpendicular to T and T ′. Consider

the quadrilateral with vertices X,Q,Q′, X ′. Since the angles at Q,Q′ are at least

π/2 and since dH(Q,Q′) > a, the geodesic segment [XX ′] is at bounded distance to

the union of the arcs [XQ], [QQ′], [X ′Q′]. Since [XQ] penetrates T , so does [PP ′]

unless [XQ] has bounded length; likewise with [X ′Q′]. �

Proposition 7.17. Given L > 0, there exist L′ = L′(L) > 0 and n1 ∈ N with

the following property. Suppose given a word V1U1V2U2 . . . Vs in Γ∗ as in the proof

of Proposition 7.14, that is, so that Vi is either empty or is L-quasi-geodesic in

(GΓ, | · |Γ), and where Ui = p
aimji
ji

for some pji ∈ P0, ai ∈ Z, ai 6= 0, and so that if

Vi = ∅ then pji 6= pji+1 for all i. Then we can split Vi into blocks as Vi = XiYiZi

(where any of Xi, Yi or Zi may be empty) in such a way that there exists a word

Ûi =Γ ZiUiXi+1 in the generators Γ∗ which is a parabolic block relative to pji and

such that ĵ0(Y1Û1Y2Û2 . . . Ys) is a standard ambient L′-quasi-geodesic in V0, for all

n ≥ n1.

Proof. We continue with the notation and discussion of Proposition 7.14. The state-

ment and the idea of the proof are illustrated in Figure 1. Throughout the proof,

when we say that various distances are ‘bounded’, we mean they are uniformly

bounded in n and independent of the choices of λ and words W .

Let gi = ρ0(V1U1V2U2 . . . Ui−1) and g′i = ρ0(V1U1V2U2 . . . Vi). For i = 1, . . . , s,

let βi = [j0(gi), j0(g′i)] and γi = [j0(g′i), j0(gi+1)]. Thus βi = gi([j0(Vi)]) and γi =

g′i([j0(Ui)]). Recall that each word Ui corresponds to a thin part Ti ∈ Hε,Gn
.

Temporarily let us drop the subscript i and write V = Vi etc. For simplicity

we will work with β = [j0(V )] = g−1
i (βi) rather than βi. Let A,D be the initial

and final points of β.

Let T 1, T 2 denote respectively the (distinct) horoballs g−1
i (Ti−1), g−1

i (Ti). It

follows from the construction that A is a bounded distance from T 1 and D is

a bounded distance from T 2. Consider the projection π from ĵΓ(V ) to β. Set
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Ti−1 Ti

Ci−1

Di−1

Bi
β̂i

Ai = giO

Di = g′iO

Ai+1

γi

Ci

γ̂i

Bi+1

Zi−1

Ui−1

Xi

Yi

Zi

Figure 1. A segment of the path j0(W ) showing the segment Vi

from Ai to Di split as Vi = XiYiZi. Note the cancellation in the

path Ui−1Vi from Di−1 to Ai to Di. We shorten βi = [Ai, Di] to

β̂i = [Bi, Ci] and replace [Di−1, Ai] = γi by [Ci−1, Bi] = γ̂i. The

key point is to see `(γ̂i)→∞ independent of the choices made.

βj = β ∩ T j , j = 1, 2. Now define orbit points B,C on ĵΓ(V ) as follows: if β1 = ∅
then B = A, otherwise B is a nearest orbit point to the final point of π−1(β1);

likewise if β2 = ∅ then C = D, otherwise C is a nearest orbit point to the first

point on π−1(β2). (We remark that it is possible that C precedes B in order along

ĵΓ(V ). In this case by Lemma 7.10 there is a bounded distance between B and

C. Thus up to changing constants by a bounded amount, we can replace C by the

point B.)

Denote the segments of V from A to B, from B to C, and from C to D by

X,Y, Z respectively. Thus V = XY Z. By Lemma 7.7, since A and B are at a

bounded distance from T 1, the segment X is a parabolic block relative to T 1, and

similarly for Z relative to T 2.

Now let Ai, Bi, Ci, Di, Xi, Yi, Zi be the images of A,B,C,D and j0(X), j0(Y )

and j0(Z) under gi. Let γ̂i denote the geodesic from Ci−1 to Bi. We claim that

(independent of all the many choices made) its hyperbolic length `(γ̂i) → ∞ uni-

formly with n. In particular, given `0 > 0 we can choose n1 so that `(γ̂i) ≥ `0,

whenever n ≥ n1. To prove this, it is clearly enough to show that |Ci−1Bi|Γ →∞
as n→∞. We have

|Ci−1Bi|Γ ≥ |Ci−1Bi|n �

|Ci−1Di−1|n + |Di−1Ai|n + |AiBi|n = (|Ci−1Di−1|Γ + |AiBi|Γ) + |Ui−1|n,

where the second inequality is because the path Ci−1Di−1AiBi is by definition L-

quasi-geodesic in G∗n and the final equality follows since by definition the words Zi−1
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corresponding to the path Ci−1Di−1 and Xi corresponding to the path Di−1Ai are

quasi-geodesic words in G∗n which happen to be expressed entirely by generators in

Γ∗. Since

|Ci−1Di−1|Γ + |AiBi|Γ ≥ |Di−1Ai|Γ − |Ci−1Bi|Γ
we have

2|Ci−1Bi|Γ � |Di−1Ai|Γ + |Ui−1|n = mji−1
|Ui−1|n + |Ui−1|n,

where we used |Di−1Ai|Γ = |Ui−1|Γ = mji−1
|Ui−1|n, as in the proof of Proposi-

tion 7.14. Now by definition mji is the exponent such that p
mji
ji
→ qji in the

geometric limit, so mji →∞ with n. Hence `(γ̂i)→∞ with n as claimed.

Now let β̂i denote the geodesic fromBi to Ci. Note that β̂i has endpoints within

bounded distance of the segment of βi which is outside both Ti−1 and Ti. We claim

that for sufficiently large `0, the path β obtained by concatenating β̂1, γ̂1, β̂2, . . . , γ̂s

is quasi-geodesic in H3, whenever n ≥ n1. By construction, the endpoints of β̂i are

within bounded distance of Ti−1 and Ti respectively. Moreover by construction the

segment β̂i is outside both Ti−1 and Ti. Thus we are in the situation of Lemma 7.16

so that β̂i is within bounded distance of the common perpendicular to Ti−1 and Ti.

Adjusting the endpoints of each γi by at most a uniformly bounded amount, we

see we are in the situation of Lemma 7.15, and the result follows.

From the construction, the path ĵ0(Yi) tracks β̂i at bounded distance. Now con-

sider the segment ĵ0(ZiUiXi+1) from Ci to Bi+1. We claim that this can be replaced

by a path ĵ0(Ûi) with the same initial and final points, and where Ûi =Γ ZiUiXi+1

is a parabolic block relative to pji . By construction the initial and final points Ci

to Bi+1 are at bounded distance to Ti. Hence by the method of Lemma 7.7, if

Ci = hiO to Bi+1 = h′i+1O then (h′i+1)−1hi is a parabolic block relative to pji ,

proving the claim.

Now j0(Yi) tracks β̂i and j0(Ûi) tracks the shortest path from Ci to Bi+1 on

∂Ti at bounded distance, γ̂i being the geodesic with the same endpoints. Since

the concatenation β of β̂1, γ̂1, . . . , β̂s, γ̂s is quasi-geodesic for n ≥ n1 it follows that

ĵ0(Y1Û1Y2Û2 . . . Ys) is an ambient quasi-geodesic in H3. All constants involved are

independent of the various choices made and of n. This completes the proof. �

We are finally ready to prove Theorem B. Let ei1ei2 . . . be a standard quasi-

geodesic path in GΓ such that ei1ei2 . . . eik ·O → ξ. There are three possibilities:

(1) the length of parabolic blocks in ei1ei2 . . . is bounded above;

(2) ei1ei2 . . . contains parabolic blocks of arbitrarily long length;

(3) ei1ei2 . . . terminates in an infinite parabolic block.

It is straightforward to see that case (3) happens if and only if ξ is a parabolic

fixed point, in which case în(ξ) → î∞(ξ) follows immediately from the algebraic

convergence. Thus we have only to prove EP (ξ) and EPP (ξ) for cases (1) and (2).

We start with EP (ξ). As usual, denote ĵΓ(ei1ei2 . . .) by [1, ξ).
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Proposition 7.18. Let ei1ei2 . . . be a standard quasi-geodesic GΓ in which there is

an upper bound on the length of parabolic blocks. Then ((ρn), [1, ξ)) satisfies EP (ξ).

Proof. We have to show that given N ∈ N, there exists fξ(N) → ∞ as N → ∞
such that d(O, jn(ei1ei2 . . . eiN )) ≥ fξ(N) for any n ∈ N. If the result is false, there

exist A > 0 and nk, Nk → ∞ such that d(O, jnk
(ei1ei2 . . . eiNk

)) ≤ A. Passing

to a subsequence, we may assume that ρnk
(ei1ei2 . . . eiNk

) converges geometrically

to some h ∈ H. By Theorem 7.6, we must have h = hi1 . . . hip where hij ∈ H∗,
and since Nk → ∞ we must have hij ∈ {q1, . . . , qs} for some j. It follows that

ei1ei2 . . . eiNk
contains arbitrarily long parabolic blocks contrary to hypothesis. �

Proposition 7.19. Suppose that ei1ei2 . . . contains arbitrarily long parabolic blocks.

Then ((ρn), [1, ξ)) satisfies EP (ξ).

Proof. By Proposition 7.14, jn(ei1ei2 . . . eiN ) is at uniformly bounded distance D

say to αn ∪ H(αn), where αn = [jn(ei1ei2 . . . eiN )]. Choose k0 = k0(D) as in

Lemma 7.10. Define fξ(N) to be the number of parabolic blocks of length at least

k0 in ei1ei2 . . . eiN . By our assumption, fξ(N)→∞ as N →∞.

Let k1 = k1(N ; ξ) be the maximum length of these fξ(N) blocks. By Lemma 7.10,

there exists M = M(k1, D) = Mξ(N) so that αn penetrates ρn(g)T pn provided n ≥
M . Recall there is a constant a > 0 such that the distance between any two com-

ponents of Hε,Gn
is at least a for any n. It follows that d(O, jn(ei1ei2 . . . eir )) ≥ Na

provided n ≥Mξ(N) and the result follows. �

Proposition 7.20. The pair ((ρn), ξ) satisfies EPP (ξ).

Proof. We have to show that there exists f1,ξ(N) = f1(N) such that f1(N) → ∞
as N → ∞ and such that for any geodesic subsegment λ of [1, ξ) lying outside

BΓ(1;N), the H3-geodesic [jn(λ)] lies outside BH(O; f1(N)) in H3.

Use Propositions 7.18 and 7.19 to find f1(N) such that dΓ(1, g) ≥ N implies

dH(jn(g), O) ≥ f1(N) for all n ≥ Mξ(N). Then dH(ρn(λ), O) ≥ f1(N) for all

n ≥Mξ(N).

By Proposition 7.14, jn(λ) is at uniformly bounded distance D to [jn(λ)] ∪
H([jn(λ)]). Hence the entry and exit points of [jn(λ)] to any thin component

T ∈ H([jn(λ)]) are outside BH(O, f1(N) −D), as is the sub-path of jn(λ) joining

them. So by Lemma A.6, [jn(λ)] is outside BH(O, f1(N)/4 − c) for a suitable

uniform constant c. The proof follows as in Theorem 3.1. �

Proof of Theorem B. This follows from Proposition 7.20 and Theorem 7.3. �

Appendix: Hyperbolic Geometry Estimates

Lemma A.1. In the ball model with O as centre, suppose that X,Y ∈ H3 lie outside

BH(O;R) and that the geodesic [X,Y ] joining them is also outside BH(O;R). Then

dE(X,Y ) ≺ e−R.



LIMITS OF LIMIT SETS I 33

Proof. In the ball model B, let ξ, η denote the endpoints of the radial lines from

O through X,Y on ∂H3. Let P be the footpoint of the perpendicular from O to

the geodesic segment [XY ] and let P ′ be the endpoint of this ray at ∞. It will be

sufficient to show that dE(P,X) ≺ e−R.

Let θ = ∠XOP . Then

tan θ =
tanh dH(X,P )

sinh dH(O,P )
< e−R/2,

from which it follows that dE(ξ, P ′) < e−R/2.

Now from R ≤ dH(O,X) we find easily dE(X, ξ) ≺ e−R. The result follows. �

The following lemma allows us to replace orbit points by attracting fixed points.

Lemma A.2. Suppose that A ∈ PSL2(C) is loxodromic (resp. parabolic), and that

dH(O,A · O) > R, where O is the centre of the ball model B. Let A+ ∈ ∂B be the

attracting fixed point (resp. fixed point) of A. Then dE(A ·O,A+) ≺ e−R/2.

Proof. We use a fact which we learned from [15] Lemma 1.5.4: in B, the isometric

circle IA−1 of A−1 is the perpendicular bisector L of the line from O to A ·O. (To

see this, let τ denote inversion in L. Then A−1τ fixes O and hence is a Euclidean

isometry. Using this together with the fact that |Dτ |L = 1, it follows easily from

the chain rule that |DA−1|L = 1.)

Now IA−1 contains both A·O and the attracting fixed point A+. Since dH(O,A·
O) > R we have dH(O, IA−1) > R/2, hence the Euclidean diameter of IA−1 is

O(e−R/2) and the result follows. �

We need estimates of the distortion caused by skirting around horoballs or

Margulis tubes. If L ⊂ H3 is a geodesic we call T = {x ∈ H3 : dH(x, L) ≤ R} the

equidistant tube of radius R around L. If H is a horoball or T is a tube, and if

P1, P2 ∈ ∂H (resp. P1, P2 ∈ ∂T ), we denote by d∂H(P1, P2) (resp. d∂T (P1, P2)) the

length of the shortest path on ∂H (resp. ∂T ) from P1 to P2.

Lemma A.3. Let H ⊂ H3 be a horoball and suppose P1, P2 ∈ ∂H. Set l =

d∂H(P1, P2) and d = dH(P1, P2). Supose that d > d0 for some fixed d0 > 0. Then

l � ed/2 with constants depending only on d0.

Proof. As is easily checked by explicit computation using the angle of parallelism

formula, l = 2 sinh d/2, see for example [8] p. 213. �

One can make a similar estimate for tubes of sufficiently large radius.

Lemma A.4. Fix positive constants R0, d0 and h0. Let T ⊂ H3 be the equidistant

tube of radius R ≥ R0 around a geodesic L ⊂ H3 and let P1, P2 ∈ ∂T . Let l =

d∂T (P1, P2) and d = dH(P1, P2). Then l ≺ ed/2 where the constant involved depends

only on R0. If moreover the distance between the projections of P1, P2 onto the axis
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L of T is at most h0 and d ≥ d0, then l � ed/2 where the constant involved depends

only on R0, h0 and d0.

Proof. For convenience we arrange things so that L is the line from the origin ω ∈ C
to ∞ in the upper half space model of H3. Then ∂T is a Euclidean cone with axis

L. By the angle of parallelism formula, the angle ψ of the cone with the base plane

C is given by coshR sinψ = 1, alternatively sinhR = cotψ.

Let π denote perpendicular projection from H3 to L, and let pi = π(Pi), i =

1, 2, see Figure 2. Let h+ iφ be the complex distance between the perpendiculars

[p1, P1] and [p2, P2] (so that h = dH(p1, p2) and φ is the rotation angle).

We estimate l by a line integral on ∂T . Take polar coordinates on ∂T , so that

for a point P = (t, θ) ∈ ∂T , t > 0 denotes the Euclidean distance from ω to P and

θ is the angle between the plane containing L and ωP and the plane containing L

and the real axis in C. Since the hyperbolic metric is conformally the same as the

Euclidean metric, the element of hyperbolic arc length on ∂T is

(3) ds2 =
(t cosψdθ)2 + dt2

(t sinψ)2
= sinh2Rdθ2 + cosh2Rdt2/t2.

For x, y > 0 we have
√
x2 + y2 � x+ y. Thus integrating (3) gives

(4) l � φ sinhR+ h coshR � eR(h+ φ).

ω

P ′
1

p1

L

P1

p2

P2

X

E

F

h

φ

φ

Figure 2. The estimate of d in the proof of Lemma A.4

Now we estimate d. Referring to Figure 2, let X be the midpoint of the

segment P1P2, so that d/2 = |XP1|, where |AB| denotes the hyperbolic length of
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the geodesic segment from A to B. Let P ′1 be the point in the hyperbolic plane

orthogonal to L through p1 (and thus containing p1) such that ∠P ′1p1P1 = φ. By

symmetry, |XP1| = |XP ′1|, and by construction, P ′1, P2 and L are coplanar. Let

E,F be the feet of the perpendiculars from X to the geodesic lines P1P
′
1 and P ′1P2

respectively. Considering the two right angled triangles XEP ′1 and XFP ′1 we find

d/2 = |XP ′1| > |XE|+ |EP ′1| − const. > |EP ′1| − const.

and

d/2 = |XP ′1| > |XF |+ |FP ′1| − const. > |FP ′1| − const.

so that

ed/2 � e|FP
′
1| and ed/2 � e|EP

′
1|.

Computing in the plane through P1, P
′
1, p1 we find sinh |EP ′1| = sinφ/2 sinhR,

while computing in the plane containing L,P ′1 and P2 we have sinh |FP ′1| = sinhh/2 coshR.

Thus since R is bounded below by R0,

ed/2 � e|EP
′
1| � φeR

and likewise

ed/2 � e|FP
′
1| � heR.

Hence

ed/2 � max{φ, h}eR � (φ+ h)eR � l

which by (4) proves that ed/2 ≺ l.
To prove the inequality in the other direction note that provided that h ≤ h0

we have from the above sinh |EP ′1| ≺ φ/2 sinhR and sinh |FP ′1| ≺ h/2 coshR. Now

d ≤ |P1P
′
1|+ |P ′1P2| gives

d/2 ≤ |EP ′1|+ |FP ′1| ≤ 2 max(|EP ′1|, |FP ′1|).

Since d ≥ d0 at least one of sinh |EP ′1|, sinh |FP ′1| is bounded away from 0 so that

ed/2 ≤ max(e2|EP ′1|, e2|Fa′|) � max(φeR, heR) � eR(φ+ h).

The result follows from (4). �

The next two lemmas involve the penetration of geodesics into tubes and

horoballs.

Lemma A.5. Suppose that in the ball model B, H is a horoball such that O /∈ IntH.

Suppose also that points P1, P2 ∈ ∂H lie outside BH(O;N). Then the geodesic

segment [P1, P2] lies outside BH(O;N/4− c), for some universal c > 0.

Proof. First consider the case in which O ∈ ∂H. Let di = dH(O,Pi) and let

li = d∂H(O,Pi), where as above d∂H(., .) denotes distance measured along ∂H.

Also let d = dH(P1, P2) let l = d∂H(P1, P2). By hypothesis di ≥ N, i = 1, 2. Clearly
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we may fix some d0 > 0 and assume that d ≥ d0, otherwise the result is trivial.

Hence by Lemma A.3, li � edi/2 and l � ed/2. Thus

ed/2 � l ≤ l1 + l2 � ed1/2 + ed2/2 ≤ 2emax(d1,d2)/2

so that d
+

≺ max(d1, d2).

P2

O

P1

d1

l1

d2

l2

d l

X

Figure 3. Configuration for Lemma A.5. The points O,P1, P2

are all on the boundary of a horoball H.

Assume that d1 ≥ d2. Considering the hyperbolic triangle OP1P2 and its

altitude OX, we have

d = dH(X,P2) + dH(X,P1)
+

≺ d1

dH(O,X) + dH(X,P1)
+� d1

dH(O,X) + dH(X,P2)
+� d2.

The first two lines give dH(X,P2)
+

≺ dH(O,X) and hence by the last line dH(O,X)
+

�
d2/2 ≥ N/2. Since X is the closest point on [P1, P2] to O, the result follows.

Finally suppose that O /∈ ∂H. Let O′ be the foot of the perpendicular from O

to H. Then for any point Y ∈ H, since the angle between the geodesic segments

[O,O′] and [O′, Y ] is at least π/2,

dH(O, Y )
+� dH(O,O′) + dH(O′, Y ).

If dH(O,O′) ≥ N/2 there is nothing to prove since by convexity the nearest point on

[P1, P2] to O is in H. If dH(O,O′) < N/2 then dH(O′, Pi)
+

� N/2. The proof above

with N/2 in place of N then gives dH(O′, [P1, P2])
+

� N/4 so that dH(O, [P1, P2])
+

�
dH(O,O′) + dH(O′, [P1, P2])

+

� N/4 as claimed. �

Lemma A.6. Suppose that T ⊂ H3 is an equidistant tube of radius R ≥ R0

around a geodesic L in the ball model, and suppose that O /∈ IntT . Suppose also

that P1, P2 ∈ ∂T lie outside BH(O;N), and that in addition there is a path joining
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P1, P2 on ∂T and outside BH(O;N). Then the geodesic segment of [P1, P2] lies

outside BH(O;N/4− c) for some universal c > 0.

Proof. As in the proof of Lemma A.5, it will be enough to show that in the case

O ∈ ∂T that [P1, P2] is outside BH(O;N/2− c).
Let π denote perpendicular projection from H3 onto the axis L of T . As in

the proof of Lemma A.2, let pi = π(Pi) and write h+ iφ for the complex distance

between the perpendiculars [pi, Pi], i = 1, 2, see Figure 2.

First suppose that the distance from o = π(O) to the segment [p1, p2] is at

least 1, and suppose that o is nearer to p1 than p2. Let ρ = dH(O, p1). Let Π be

the plane perpendicular to L through p1, and let K be the closed half space cut

off by Π and not containing o. Then K contains both P1 and P2, and hence the

segment [P1, P2]; moreover dH(O,P1)
+� 2R+ ρ while for any point X ∈ K we have

dH(O,X)
+

� R + ρ. Since dH(O,P1) ≥ N it follows that R + ρ/2
+

� N/2 so that

dH(O, [P1, P2]) ≥ R+ ρ ≥ N/2.

Now suppose that o is at distance at most 1 to the segment [p1, p2], and suppose

also that |h| ≥ 1. The hyperbolic geodesic α from P1 to P2 is at distance at most c

to the union of the geodesic segments [P1, p1], [p1, p2], [p2, P2]. Let Π′ be the plane

orthogonal to L containing O, so that o ∈ Π′. Then Π′ separates T and the points

P1, P2 are in opposite sides of Π′. Hence the projection of any path from P1 to P2

on ∂T onto L must contain o. Let o′ ∈ π−1(o) ∈ β, where β is a path from P1 to P2

on ∂T . Note o is the centre of a circle of radius R whose boundary contains both O

and o′. Hence R ≥ dH(O, o′)/2. By hypothesis since o′ ∈ β we have dH(O, o′) ≥ N ,

so R ≥ N/2. On the other hand, since α tracks [P1, p1] ∪ [p1, p2] ∪ [p2, P2] within

distance c for some universal c > 0, since o ∈ [p1, p2], and since o is the nearest point

to O on L, we have that dH(O, [P1, P2])
+� dH(O, o) = R. Thus dH(O, [P1, P2])

+

�
N/2 as claimed.

Finally suppose that |h| ≤ 1. Let d = dH(P1, P2), l = d∂T (P1, P2), di =

dH(O,Pi) ≥ N and li = d∂T (O,Pi), i = 1, 2. Picking h0 = 2 in Lemma A.6 we

have l � ed/2, and in addition, since o is at distance at most 1 to the segment

[p1, p2] ⊂ L, we have dH(o, pi) = dH(π(O), π(Pi) ≤ h0 so that li � edi/2. Then

exactly the same proof as in Lemma A.5 gives that dH(O, [P1, P2])
+

� N/2. This

completes the proof. �

Remark A.7. Lemma A.6 required a hypothesis not needed in Lemma A.5, namely

that the shortest path on ∂T from P1 to P2 is outside BH(O;N). This is only used

in the case in which π(O) is near to [π(P1), π(P2)] and |h| ≥ 1, however here it is

crucial. To see this consider the situation in which P1, P2 and L are coplanar and

O is the midpoint of the path from P1 to P2 on ∂T (contrary to the hypothesis

under discussion). Then the geodesic [P1, P2] tracks [P1, p1] ∪ [p1, p2] ∪ [p2, P2] so

that dH(O, [P1, P2])
+� R but at the same time we could have N � R. This would
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cause problems in Section 7 when we need to find uniform estimates for a sequence

of groups with fixed R0 but N →∞.
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Sup., 16, 193 – 217, 1983.

[15] A. Marden. Outer Circles: An introduction to hyperbolic 3-manifolds. Cambridge University

Press, 2007.

[16] C. T. McMullen. Local connectivity, Kleinian groups and geodesics on the blow-up of the

torus. Inventiones Math. 97, 95 – 127, 2001.

[17] Y. N. Minsky. The classification of punctured-torus groups. Ann. of Math. 149, 559 – 626,

1999.

[18] Y. N. Minsky. The classification of Kleinian surface groups I: Models and Bounds. Ann. of

Math. 171, 1 – 107, 2010.

[19] M. Mitra. Cannon-Thurston maps for hyperbolic group extensions. Topology 37, 527 – 538,

1998.

[20] H. Miyachi. Moduli of continuity of Cannon-Thurston maps. In Spaces of Kleinian groups;

London Math. Soc. Lecture Notes 329, Cambridge University Press, 121 –150, 2006.

[21] M. Mj. Cannon-Thurston Maps for Kleinian Groups. preprint, arXiv:1002.0996, 2010.

[22] M. Mj and C. Series. Limits of limit sets II. In preparation.

[23] J. Nielsen. Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. Acta Math.
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