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Abstract. We introduce the notion of metric (graph) bundles which provide

a coarse-geometric generalization of the notion of trees of metric spaces a la
Bestvina-Feighn in the special case that the inclusions of the edge spaces into
the vertex spaces are uniform coarsely surjective quasi-isometries. We prove
the existence of quasi-isometric sections in this generality. Then we prove

a combination theorem for metric (graph) bundles that establishes sufficient
conditions, particularly flaring, under which the metric bundles are hyperbolic.
We use this to give examples of surface bundles over hyperbolic disks, whose

universal cover is Gromov-hyperbolic. We also show that in typical situations,
flaring is also a necessary condition.
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1. Introduction

In this paper we introduce the notions of metric bundles and metric graph bun-
dles which provide a purely coarse-geometric generalization of the notion of trees of
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metric spaces a la Bestvina-Feighn [BF92] (see Section 1.3) in the special case that
the inclusions of the edge spaces into the vertex spaces are uniform coarsely sur-
jective quasi-isometries. We generalize the base space from a tree to an arbitrary
hyperbolic metric space. In [FM02], Farb and Mosher introduced the notion of
metric fibrations which was used by Hamenstadt to give a combination theorem in
[Ham05]. Metric fibrations can be thought of as metric bundles (in our terminology)
equipped with a foliation by totally geodesic sections of the base space. We first
prove the following Proposition which ensures the existence of q(uasi)-i(sometric)
sections in the general context of metric bundles, generalizing and giving a different
proof of a result due to Mosher [Mos96] in the context of exact sequences of groups
(see Example 1.8).

Proposition 2.10 (Existence of qi sections): Let δ,N ≥ 0 and suppose p :
X → B is an (f,K)-metric graph bundle with the following properties:

(1) Each of the fibers Fb, b ∈ V(B) is a δ-hyperbolic geodesic metric space with
respect to the path metric db induced from X.

(2) The barycenter maps φb : ∂
3Fb → Fb are uniformly coarsely surjective, i.e.

Fb is contained in the N -neighborhood of the image of φb for all b ∈ V(B).

Then there is a K0 = K0(f, δ,N)-qi section through each point of V(X).

Proposition 2.10 provides a context for developing a ‘coarse theory of bundles’
and proving the following combination theorem, which is the main theorem of this
paper.

Theorem 4.3: Suppose p : X → B is a metric bundle (resp. metric graph bundle)
such that
(1) B is a δ-hyperbolic metric space.

(2) Each of the fibers Fb, b ∈ B (resp. b ∈ V(B)) is a δ
′

-hyperbolic geodesic metric
space with respect to the path metric induced from X.
(3) The barycenter maps ∂3Fb → Fb, b ∈ B (resp. b ∈ V(B)) are uniformly coarsely
surjective.
(4) A flaring condition is satisfied.
Then X is a hyperbolic metric space.

This is a first step towards proving a combination Theorem for more general
complexes of spaces (cf. Problem 90 of [Kap08]).

Theorem 4.3 generalizes Hamenstadt’s combination theorem (Corollary 3.8 of
[Ham05]) in two ways:
a) It removes the hypothesis of properness of the base space B – a hypothesis that
is crucial in [Ham05] to ensure compactness of the boundary of the base space and
hence allow the arguments in [Ham05] to work. This generalization is relevant for
two reasons. First, underlying trees in trees of spaces are frequently non-proper.
Secondly, curve complexes of surfaces are mostly non-proper metric spaces and
occur as natural base spaces for metric bundles. See [LMS11] by Leininger-Mj-
Schleimer for a closely related example.
b) It removes the hypothesis on existence of totally geodesic sections in [Ham05]
altogether. Proposition 2.10 ensures the existence of qi sections under mild technical
assumptions.

A word about the proof of Theorem 4.3 ahead of time. Proposition 2.10 ensures
the existence of qi sections through points of X. We use the notion of flaring from
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Bestvina-Feighn [BF92] and a criterion for hyperbolicity introduced by Hamenstadt
in [Ham07] to construct certain path families and use them to prove hyperbolicity.
Another crucial ingredient is a ‘ladder-construction’ due to the first author [Mit98b],
which may be regarded as an analog of the hallways of [BF92].

Recall [Far98] that for a pair (X,H) of a metric space (X, dX) and a family of
path-connected subsets H of X, the electric space E(X,H) is the pseudo-metric
space X⊔H∈HH× [0, 1] with H×{0} identified with H ⊂ X and H×{1} equipped
with the zero metric. Each {h} × [0, 1] is isometric to the unit interval. There is a
natural inclusion map E : X → E(X,H) which is referred to as the electrocution
map. The image E(X) inherits a metric called the electric metric de.

As an application of Theorem 4.3 we obtain a rather plentiful supply of examples
from the following Proposition, where the base space need not be a tree (as in all
previously known examples). Let S be a closed surface of genus greater than one
and Teich(S) be the Teichmuller space of S. The Teichmuller metric on Teich(S)
is denoted as dT and de denotes the electric metric on Teich(S) obtained by elec-
trocuting the α-thin parts of Teich(S) for every essential simple closed curve α on
S. For j : K → (Teich(S), dT ) a map, let U(S,K) denote the pullback (under j)
of the universal curve over Teich(S) equipped with the natural path metric. Also,
the universal cover of the universal curve over Teich(S) is a hyperbolic plane bun-

dle over Teich(S). Let ˜U(S,K) denote the pullback to K of this hyperbolic plane
bundle.

Proposition 5.15: Let (K, dK) be a hyperbolic metric space satisfying the follow-
ing:
There exists C ≥ 0 such that for any two points u, v ∈ K, there exists a bi-infinite
C-quasigeodesic γ ⊂ K with dK(u, γ) ≤ C and dK(v, γ) ≤ C.
Let j : K → (Teich(S), dT ) be a quasi-isometric embedding such that E ◦ j : K →

(Teich(S), de) is also a quasi-isometric embedding. Then ˜U(S,K) is a hyperbolic
metric space.

It is an open question (cf. [KL08] [FM02]) to find purely pseudo Anosov surface
groups Q (= π1(Σ), say) in MCG(S). This is equivalent to constructing surface
bundles over surfaces with total spaceW , fiber S, and base Σ, such that π1(W ) does
not contain a copy of Z⊕Z. One way of ensuring this is to find an example where the
total space has (Gromov) hyperbolic fundamental group π1(W ). A quasi-isometric

model for the universal cover W̃ is a metric graph bundle where the fibers are Cayley
graphs of π1(S) and the base K a Cayley graph of π1(Σ). Using a construction of
Leininger and Schleimer [LS11] in conjunction with Proposition 5.15 we construct
examples of hyperbolic metric graph bundles where fibers are Cayley graphs of
π1(S) and K is a hyperbolic disk. However the disks K are not invariant under a
surface group; so we only obtain surface bundles W over K with fiber S such that

the universal cover W̃ is hyperbolic.
We also obtain the following characterization of convex cocompact subgroups

of mapping class groups of surfaces Sh with punctures. We state the result for a
surface with a single puncture.

Proposition 5.17: Let K = π1(S
h) be the fundamental group of a surface with a

single puncture and let K1 be its peripheral subgroup. Let Q be a convex cocompact
subgroup of the mapping class group of Sh. Let

1 → (K,K1) → (G,NG(K1))
p
→ (Q,Q1) → 1
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be the induced short exact sequence of (pairs of) groups with Q1 = NG(K1)/K1.
Then G is (strongly) hyperbolic relative to NG(K1).

Conversely, if G is (strongly) hyperbolic relative to NG(K1), then Q is convex-
cocompact.

Theorem 4.3 also provides the following combination theorem whenever we have
an exact sequence with hyperbolic quotient and kernel. This gives a converse to a
result of Mosher [Mos96].

Theorem 5.1: Suppose that the short exact sequence of finitely generated groups

1 → K → G→ Q→ 1

satisfies a flaring condition such that K, Q are word hyperbolic and K is non-
elementary. Then G is hyperbolic.

The next Proposition links the flaring condition to hyperbolicity of the base.

Proposition 5.5: Consider the short exact sequence of finitely generated groups

1 → K → G→ Q→ 1

such that K is non-elementary word hyperbolic but Q is not hyperbolic. Then the
short exact sequence cannot satisfy a flaring condition.

We also prove an analog of Proposition 5.5 for relatively hyperbolic groups and
use it to generalize a result of Mosher [Mos96] as follows.

Proposition 5.7: Suppose we have a short exact sequence of finitely generated
groups

1 → (K,K1) → (G,NG(K1))
p
→ (Q,Q1) → 1

with K (strongly) hyperbolic relative to the cusp subgroup K1 such that G preserves
cusps and Q1 = NG(K1)/K1. Suppose further that G is (strongly) hyperbolic rela-
tive to NG(K1). Then Q(= Q1) is hyperbolic.

Finally we show the necessity of flaring.

Proposition 5.8: Let P : X → B be a metric (graph) bundle such that
1) X is hyperbolic.
2) There exists δ0 such that each fiber Fz = p−1(z) ⊂ X equipped with the inherited
path metric is δ0-hyperbolic.
Then the metric bundle satisfies a flaring condition.

In particular, any exact sequence of finitely generated groups 1 → N → G →
Q→ 1 with N and G hyperbolic, satisfies a flaring condition.

Outline of the main steps:
There are four main steps in the proof of Combination Theorem 4.3. Precise defi-
nitions of terms are given in the next subsection.
1) First we construct a metric graph bundle (see Definition 1.5) out of a given
metric bundle. The bundles have quasi-isometric base space and total space. Next
we set out to prove that this metric graph bundle is hyperbolic under the given
conditions on the metric bundle.
2) Proposition 2.10 proves the existence of qi sections and is the coarse geomet-
ric analog of the statement that any fiber bundle with contractible base admits a
section. The main ingredient of the proof is the definition of a ‘discrete flow’ of
one fiber to another fiber. This is the content of Section 2.1. The main idea is
elaborated upon in the first paragraph of Section 2.1.
3) Any two such qi sections bound a ‘ladder’ between them (cf. Definition 2.13
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below, [Mit98a], [Mit98b]). The next step is to prove the hyperbolicity of these
ladders. In Section 3.1 we prove hyperbolicity of small-girth ladders (Proposition
3.4). In Section 3.2 we break up a big ladder into small-girth ladders and use a
consequence (Proposition 1.51) of a combination theorem due to Mj-Reeves [MR08]
to conclude that the whole ladder is hyperbolic.
4) In Section 4, we assemble the pieces to prove Theorem 4.3.

For the reader interested in getting to the main ideas of the proof of Theorem 4.3
without getting into technical details, we have sketched Step (2) above in the first
paragraph of Section 2.1, and Step (3) above in the the first paragraph of Section
3 and the paragraph following the statement of Proposition 3.4 in Section 3.1.

Acknowledgments: We would like to thank Panos Papasoglu for explaining the
proof of the last statement of Theorem 5.4 to us. We would also like to thank Chris
Leininger for sharing his examples in [LS11] with us. This paper owes an intellectual
debt to Hamenstadt’s paper [Ham05], which inspired us to find a combination
Theorem in the generality described here. Finally we would like to thank the
referee for a meticulous reading of the manuscript and for several helpful remarks
and comments. In particular, the notion of a metric graph bundle arose out of the
referee’s comments on an earlier draft.

1.1. Metric Bundles.

1.1.1. Some Basic Concepts. We recall some basic notions from large scale geome-
try.

Let X, Y be metric spaces and let k ≥ 1, ǫ ≥ 0.

(1) A map φ : X → Y is said to be metrically proper if for all N ≥ 0 there exists
M ≥ 0 such that x, y ∈ X, and d(φ(x), φ(y)) ≤ N implies d(x, y) ≤M .

Suppose {(Xα, dXα
)} and {(Yα, dYα

)} are families of metric spaces. For
any function f : R+ → R+, a family of maps φα : Xα → Yα is said to
be uniformly metrically proper as measured by f if for all α and
x, y ∈ Xα, dYα

(φα(x), φα(y)) ≤ N implies dXα
(x, y) ≤ f(N). If such an f

exists we shall say that the collection of maps φα is uniformly metrically
proper or, more simply, uniformly proper.

(2) Suppose A is a set. A map φ : A→ Y is said to be ǫ−coarsely surjective
if Y is contained in the ǫ-neighborhood φ(A).

Suppose {Aα} and {Yα} are respectively a family of sets and a family
of metric spaces. A family of maps φα : Aα → Yα is said to be uniformly
coarsely surjective if there is a constant D ≥ 0, such that for all α, Yα
is contained in the D-neighborhood of φα(Aα).

(3) A map φ : X → Y is said to be ǫ-coarsely Lipschitz if ∀x1, x2 ∈ X we
have d(φ(x1), φ(x2)) ≤ ǫ.d(x1, x2) + ǫ. A map φ is coarsely Lipschitz if it
is ǫ- coarsely Lipschitz for some ǫ ≥ 1.

(4) (i) Recall [Gro85] [Gd90] that a map φ : X → Y is said to be a (k, ǫ)-
quasi-isometric embedding if ∀x1, x2 ∈ X one has

d(x1, x2)/k − ǫ ≤ d(φ(x1), φ(x2)) ≤ k.d(x1, x2) + ǫ.

A map φ : X → Y will simply be referred to as a quasi-isometric embed-
ding if it is a (k, ǫ)-quasi-isometric embedding for some k ≥ 1 and ǫ ≥ 0. A
(k, k)-quasi-isometric embedding will be referred to as a k-quasi-isometric
embedding.
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(ii) A map φ : X → Y is said to be a (k, ǫ)-quasi-isometry (resp. k-
quasi-isometry) if it is a (k, ǫ)-quasi-isometric embedding (resp. k-quasi-
isometric embedding) and if φ is D−coarsely surjective for some D ≥ 0.
(iii) A (k, ǫ)-quasi-geodesic (resp. a k-quasi-geodesic) in a metric space
X is a (k, ǫ)-quasi-isometric embedding (resp. a k-quasi-isometric embed-
ding) γ : I → X, where I ⊆ R is an interval.

(5) A map ψ : Y → X is said to be an ǫ-coarse inverse of a map φ : X → Y if
for all x ∈ X and y ∈ Y one has dX(ψ◦φ(x), x) ≤ ǫ and dX(φ◦ψ(y), y) ≤ ǫ.

The following lemma is straightforward. We include a proof for the sake of
completeness.

Lemma 1.1. For every K1,K2 ≥ 1 and D ≥ 0 there are K1.1 = K1.1(K1,K2, D),

and K
′

1.1 = K
′

1.1(K1, D) such that the following hold.

(1) A K1-coarsely Lipschitz map with a K2-coarsely Lipschitz, D-coarse inverse
is a K1.1-quasi-isometry.

(2) Any D-coarsely surjective, K1-quasi-isometry has a K
′

1.1-quasi-isometric
coarse inverse.

Proof. 1. Let f : X → Y be a K1-coarsely Lipschitz map with a K2-coarsely
Lipschitz, D-coarse inverse g : Y → X. Let x, y, x

′

, y
′

∈ X be such that g(f(x)) =

x
′

, g(f(y)) = y
′

. Since g is a D-coarse inverse of f , we have d(x, x
′

) ≤ D, d(y, y
′

) ≤

D. Now, −d(x, x
′

) − d(y, y
′

) + d(x, y) ≤ d(x
′

, y
′

) ≤ K2d(f(x), f(y)) +K2. Hence,
−2D + d(x, y) ≤ K2d(f(x), f(y)) + K2. Choosing K1.1 = max{K1, 2D + K2}
completes the proof.

2. Suppose f : X → Y is a D-coarsely surjective, K1-quasi-isometry. We define
a map g : Y → X as follows: For all v ∈ Y , choose x ∈ X such that d(v, f(x)) ≤ D.
Define g(v) = x. Let v1, v2 ∈ Y and let g(vi) = xi, i = 1, 2. Then d(vi, f(xi)) ≤ D,
i = 1, 2. It follows that |d(f(x1), f(x2))− d(v1, v2)| ≤ 2D. Again, since f is a K1-
quasi-isometry, we have −K1 +

1
K1
d(x1, x2) ≤ d(f(x1), f(x2)) ≤ K1 +K1d(x1, x2).

We deduce from the previous two inequalities that −(K1 + 2D) + 1
K1
d(x1, x2) ≤

d(v1, v2) ≤ (K1 + 2D) +K1d(x1, x2). Hence finally, we have

−
(K1 + 2D)

K1
+

1

K1
d(v1, v2) ≤ d(x1, x2) ≤ K1d(v1, v2) + (K1 + 2D)K1.

Thus g is a K
′

1.1-quasi-isometric embedding where K
′

1.1 = K1(K1 + 2D).
It follows from the definition of g that for all v ∈ Y , one has d(f(g(v)), v) ≤ D.

Let x ∈ X and g(f(x)) = x1. Hence d(f(x), f(x1)) ≤ D. Since f is a K1-quasi-
isometric embedding, it follows that d(g(f(x)), x) = d(x, x1) ≤ K1(K1 +D). Thus

g is K1(K1 + D)-coarsely surjective whence a K
′

1.1-quasi-isometry. Also g is a
K1(K1 +D)-coarse inverse of f . �

1.1.2. Metric Bundles and Metric Graph Bundles. In this subsection we define the
primary objects of study and obtain some basic properties.

Definition 1.2. Suppose (X, d) and (B, dB) are geodesic metric spaces; let c ≥ 1
and let f : R+ → R+ be a function. We say that X is an (f, c)− metric bundle
over B if there is a surjective 1-Lipschitz map p : X → B such that the following
conditions hold:
1) For each point z ∈ B, Fz := p−1(z) is a geodesic metric space with respect to the
path metric dz induced from X. The inclusion maps i : (Fz, dz) → X are uniformly
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metrically proper as measured by f .
2) Suppose z1, z2 ∈ B, dB(z1, z2) ≤ 1 and let γ be a geodesic in B joining them.
2(i) Then for any point x ∈ Fz, z ∈ γ, there is a path in p−1(γ) of length at most
c joining x to both Fz1 and Fz2 .

Remark 1.3. Since the metric on each fiber Fz, z ∈ B is the path metric induced
from X we always have f(t) ≥ t for all t ∈ R+.

Convention: We shall use subscripts for constants to indicate the Lemma/
Proposition/Theorem/Corollary where they first appear.

Proposition 1.4. Let X be an (f, c)− metric bundle over B. Then there exists
K1.4 = K1.4(f, c) ≥ 1, such that the following holds.

Suppose z1, z2 ∈ B with dB(z1, z2) ≤ 1 and let γ be a geodesic in B joining them.
Let φ : Fz1 → Fz2 , be any map such that ∀x1 ∈ Fz1 there is a path of length at most
c in p−1(γ) joining x1 to φ(x1). Then φ is a K1.4-quasi-isometry.

Proof. Let u, v ∈ Fz1 such that dz1(u, v) ≤ 1. Then d(φ(u), φ(v)) ≤ 2c + 1 by the
triangle inequality and hence dz2(φ(u), φ(v)) ≤ f(2c + 1) by condition 2(i) of the
definition of metric bundles. It follows that the map φ is an f(2c + 1)-coarsely
Lipschitz map. A similar map φ : Fz2 → Fz1 may be defined, appealing again to
condition 2(i) of the definition of metric bundles, interchanging the roles of z1, z2
such that φ is also an f(2c+ 1)-coarsely Lipschitz map.

Also, φ is a coarse inverse of φ:
d(φ◦φ(u), u) ≤ d(φ◦φ(u), φ(u))+d(φ(u), u) ≤ 2c and hence dz1(φ◦φ(u), u) ≤ f(2c);
similarly dz2(φ ◦ φ(v), v) ≤ f(2c) for all u ∈ Fz1 , v ∈ Fz2 .

Hence by Lemma 1.1 (1), φ is a K1.4-quasi-isometry where K1.4 = K1.1(f(2c +
1), f(2c+ 1), f(2c)). Note further that φ is f(2c)-coarsely surjective. �

We will find it convenient to refer to an (f, c)− metric bundle as an (f, c,K)−
metric bundle (with K = K1.4(f, c)), or simply a metric bundle when the
parameters are not important, and refer to the conclusion of the above proposition
as Condition 2(ii) of Definition 1.2 of metric bundles.

For the rest of the paper by a graph we will always mean a connected metric
graph all of whose edges are of length 1. For a graph X, V(X) will denote its vertex
set. By a path in a graph we will always mean an edge path starting and ending
at two vertices.

Definition 1.5. Suppose X and B are graphs. Let f : N → N be a function.
We say that X is an f− metric graph bundle over B if there exists a surjective

simplicial map p : X → B such that:
1. For each b ∈ V(B), Fb := p−1(b) is a connected subgraph of X and the inclusion
maps i : V(Fb) → X are uniformly metrically proper (as measured by f) for the path
metric db induced on Fb, i.e. for all b ∈ V(B) and x, y ∈ V(Fb), d(i(x), i(y)) ≤ N
implies that db(x, y) ≤ f(N).
2. Suppose b1, b2 ∈ V(B) are adjacent vertices.
2(i). Then each vertex x1 of Fb1 is connected by an edge with a vertex in Fb2 .

Remark 1.6. Since the map p is simplicial it follows that it is 1-Lipschitz.

Now, we have the following analog of Proposition 1.4.
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Proposition 1.7. Suppose X is an f -metric graph bundle over B. Then there
exists K1.7 = K1.7(f) ≥ 1 such that the following holds.

Suppose b1, b2 ∈ V(B) are adjacent vertices. Let φ : Fb1 → Fb2 be any map such
that each x1 ∈ V(Fb1) is connected to φ(x1) ∈ V(Fb2) by an edge, and any interior
point on an edge of Fb1 is sent to the image of one of the vertices on which the edge
is incident. Then any such φ is a K1.7-quasi-isometry.

Proof. First note that db1(u, v) ≤ 1 implies that dX(φ(u), φ(v)) ≤ 4 by the triangle
inequality. Hence db2(φ(u), φ(v)) ≤ f(4) since X is an f− metric graph bundle.
Thus φ is an f(4)-coarsely Lipschitz map.

Let φ : Fb2 → Fb1 be an analogous map defined by interchanging the roles of
b1 and b2. As in the proof of Proposition 1.4 we see that φ is an f(3)-coarsely
surjective, f(4)-coarsely Lipschitz, f(3)-coarse inverse of φ. Thus φ is a K1.7 =
K1.1(f(4), f(4), f(3))-quasi-isometry (by Lemma 1.1 (1)).

Note also that φ is an f(3)-coarsely surjective map. �

We will find it convenient to refer to an f−metric graph bundle as an (f,K)-
metric graph bundle (with K = K1.7(f)), or simply as a metric graph bundle
when f,K are understood, and refer to the conclusion of the above proposition as
Condition 2(ii) of Definition 1.5.

For both metric bundles and metric graph bundles the spaces (Fz, dz), z ∈ B
or z ∈ V(B), will be referred to as horizontal spaces or fibers and the distance
between two points in Fz will be referred to as their horizontal distance. (Here we
have the mental picture that the bundle projection maps go from left to right, and
identify fibers to points.) A geodesic in Fz will be called a horizontal geodesic.
The spaces X and B will be referred to as the total space and the base space
respectively. By a statement of the form ‘X is a metric bundle (resp. metric graph
bundle)’ we will mean that it is the total space of a metric bundle (resp. metric
graph bundle).

A principal motivational example is the following.

Example 1.8. Suppose we have an exact sequence of finitely generated groups

1 → N
i
→ G

π
→ Q→ 1.

This naturally gives rise to a metric graph bundle as follows. Choose a finite
symmetric generating set S of G such that S contains a symmetric generating set
S1 of N . Let X = Γ(G,S) be the Cayley graph of G with respect to the generating
set S. Let T = (π(S) \ {1}) and B := Γ(Q,T ) be the Cayley graph of the group Q
with respect to the generating set T .

Then the map π naturally induces a simplicial map π : X → B between Cayley
graphs. In fact, π maps an edge connecting two vertices of X to a vertex of B
iff the vertices are both contained in the same coset of N in G and π maps any
edge connecting two distinct cosets of N isometrically onto an edge of B. Define
f : N → N as follows: f(n) = number of vertices of Γ(N,N ∩ S) contained in the
n-ball of X about the identity element 1G of G ⊂ X. Note that Γ(N,N ∩ S) is the
inverse image of the identity element of Q ⊂ B under π. Since the inverse images
of the vertices of B under π are translates of the Cayley graph Γ(N,N ∩ S) under
left multiplication by elements of G, condition 1 of Definition 1.5 is satisfied.

Condition 2(i) may be verified as follows: Let π(giN) = vi ∈ Q, i = 1, 2. Suppose
v1, v2 are adjacent vertices of B. Then there exist n1, n2 ∈ N such that g1n1 and
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g2n2 are connected by an edge in X. Thus s = (g1n1)
−1g2n2 ∈ S. Hence for

any element n ∈ N , g1n is connected to g1n.s = (g1.n.n
−1
1 g−1

1 )g2n2 and g1n.s is
contained in g2N since N is a normal subgroup of G. Thus we have a metric graph
bundle structure on X over B.

Another simple example to keep in mind is the following.

Example 1.9. Let X = H2 and B = R. Identify B with a bi-infinite geodesic
γ ⊂ X with endpoints a, b on the ideal boundary. Through x ∈ γ, let Fx be the
unique horocycle based at a. Define p : X → B by p(Fx) = x. This gives rise
to a metric bundle structure on X over B. Note that each Fx, equipped with the
induced path-metric, is abstractly isometric to R.

A more interesting set of examples is furnished by Proposition 5.15 towards the
end of the paper.

Definition 1.10. Let p : X → B be a metric bundle (resp. metric graph bundle)
and k ≥ 1. Then X1 ⊆ X is said to be a k−q(uasi)-i(sometric) section of B,
if there is a k-quasi-isometric embedding s : B → X (resp. s : V(B) → V(X)) such
that p ◦ s = Id (resp. p ◦ s = Id on V(B)) and X1 = Im(s).
If X1 is a k-qi section and x ∈ X1, then we say that X1 is a k-qi section through
x. Also, X1 ⊂ X is said to be a qi section if it is a k-qi section for some k ≥ 1.

Definition 1.11. Let γ : I → B be a geodesic, where I ⊆ R is an interval. By a
k−qi lift of γ in X, we mean a k-quasi isometric embedding γ̃ : I → X such that
p ◦ γ̃ = γ (with the pro viso that for a metric graph bundle, I is of the form [0, n]
for some n ∈ N, and the equality p ◦ γ̃ = γ holds only at the integer points).
Suppose X1 ⊆ X is a k−qi-section and γ : I → B is a geodesic. By the k−qi lift of
γ in X1 we mean a k−qi lift of γ whose image is contained in X1.

Definition 1.12. Suppose p : X → B is a metric bundle or a metric graph bundle.
We say that it satisfies a flaring condition if for all k ≥ 1, there exist λk > 1 and
nk,Mk ∈ N such that the following holds:
Let γ : [−nk, nk] → B be a geodesic and let γ̃1 and γ̃2 be two k-qi lifts of γ in X.
If dγ(0)(γ̃1(0), γ̃2(0)) ≥Mk, then we have

λk.dγ(0)(γ̃1(0), γ̃2(0)) ≤ max{dγ(nk)(γ̃1(nk), γ̃2(nk)), dγ(−nk)(γ̃1(−nk), γ̃2(−nk))}.

Lemma 1.13. Given a function f : N → N there is a function g : R+ → R+ such
that the following holds:

Suppose X is an (f,K)-metric graph bundle over B and b1, b2 ∈ V(B) with
d(b1, b2) = 1. Let C ≥ 0 and let φ : Fb1 → Fb2 be any map such that ∀x1 ∈ Fb1 ,
φ(x1) ∈ V(Fb2) and d(x1, φ(x1)) ≤ C. Then φ is a f(2[C] + 1)-Lipschitz map when
restricted to V(Fb1); also φ is a g(C)-quasi-isometry (here [C] is the integer part of
C).

Proof. Suppose z1, z2 ∈ V(Fb1) are adjacent vertices. Then d(φ(z1), φ(z2)) ≤
d(z1, φ(z1)) + d(z2, φ(z2)) + d(z1, z2) ≤ 2[C] + 1. since d(zj , φ(zj)), j = 1, 2 are
integers by the definition of φ. Thus db2(φ(z1), φ(z2)) ≤ f(2[C] + 1). The first
conclusion follows.

Let φ0 : Fb1 → Fb2 be a map such that each x ∈ V(Fb1) is connected to φ0(x) ∈
V(Fb2) by an edge, and any interior point on an edge of Fb1 is sent to the image
of one of the vertices on which the edge is incident. We note that d(x, φ0(x)) ≤ 2
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for all x ∈ Fb1 . Also, condition 2(ii) says that φ0 is a K-quasi-isometry. Now,
d(φ0(x), φ(x)) ≤ d(φ0(x), x) + d(x, φ(x)) and so d(φ0(x), φ(x)) ≤ [C] + 2, for all
x ∈ Fb1 . Hence db2(φ0(x), φ(x)) ≤ f([C] + 2), for all x ∈ Fb1 . We know that any
map which is at a distance at most R from a K-quasi-isometry is a (K+2R)-quasi-
isometry. Choosing g(C) to be K + 2f([C] + 2) concludes the proof. �

Bounded flaring condition for metric graph bundles

Corollary 1.14. For all k ∈ R, k ≥ 1 there is a function µk : N → [1,∞) such
that the following holds:

Suppose X is an (f,K)-metric graph bundle with base space B. Let γ ⊂ B be
a geodesic joining b1, b2 ∈ V(B), and let γ̃1, γ̃2 be two k-qi lifts of γ in X which
join the pairs of points (x1, x2) and (y1, y2) respectively, so that p(xi) = p(yi) = bi,
i = 1, 2. For all N ∈ N, if dB(b1, b2) ≤ N then

db1(x1, y1) ≤ µk(N)max{db2(x2, y2), 1}.

Proof. Let b1 = v0, v1, · · · , vn = b1 be the sequence of consecutive vertices on the
geodesic γ. We must have n ≤ N . Define for all i = 0, 1, · · ·n− 1, φi : Fvi

→ Fvi+1

by appealing to condition 2(i) of the definition of metric graph bundles such that
φi(γ̃j(i)) = γ̃j(i + 1), j = 1, 2. By the first conclusion of Lemma 1.13 each φi is
f(2[2k] + 1)-Lipschitz when restricted to V(Fvi

).
Choosing µk(N) = f(2[2k] + 1)N concludes the proof. �

Lemma 1.13 has an obvious analog for any (f, c)-metric bundle. The same applies
to Corollary 1.14 as well. Since the proofs are very similar we omit them.

Lemma 1.15. Given a function f : R+ → R+ and c ≥ 0 there is a function
g : R+ → R+ such that the following holds:

Suppose X is an (f, c,K)-metric bundle over B and b1, b2 ∈ B with dB(b1, b2) ≤
1. Let C ≥ 0 and let φ : Fb1 → Fb2 be any map such that ∀x1 ∈ Fb1 , d(x1, φ(x1)) ≤
C. Then φ is a g(C)-quasi-isometry.

Bounded flaring condition for metric bundles

Corollary 1.16. For all k ∈ R+, k ≥ 1 there is a function µk : R+ → [1,∞) such
that the following holds:

Suppose X is an (f, c,K)-metric bundle with base space B. Let γ ⊂ B be a
geodesic joining b1, b2 ∈ B, and let γ̃1, γ̃2 be two k-qi lifts of γ in X which join the
pairs of points (x1, x2) and (y1, y2) respectively, so that p(xi) = p(yi) = bi, i = 1, 2.
For all N ∈ R+, if dB(b1, b2) ≤ N then

db1(x1, y1) ≤ µk(N)max{db2(x2, y2), 1}.

In the rest of the paper, we will summarize the conclusion of Corollaries 1.14 and
1.16 by saying that a metric bundle or a metric graph bundle satisfies a bounded
flaring condition.

We end this subsection by showing that a metric bundle naturally gives rise to
a metric graph bundle, such that the respective base and total spaces are quasi-
isometric. But first, we recall the general fact that geodesic metric spaces are
quasi-isometric to connected graphs (see [Gro93] p.7 or [BH99] p. 152).

Lemma 1.17. 1. Let Y be a geodesic metric space and let V ⊂ Y be a subset such
that for some D > 0 and all y ∈ Y there exists z ∈ V such that d(y, z) ≤ D. Let
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E ≥ 2D + 1. Let Z be a graph such that
a) the vertex set V(Z) = V
b) the edge set E(Z) is given by {y, z} ∈ E(Z) iff y 6= z and d(y, z) ≤ E.
Define ψZ : Z → Y as follows: ψZ(u) = u for u ∈ V . For an edge e of Z choose
some u ∈ V such that e is incident on u and map the interior of e to u under ψZ .
Then for all u, v ∈ V we have −1+dZ(u, v) ≤ dY (u, v) ≤ E.dZ(u, v). In particular,
ψZ is a max{5, 4E}-quasi-isometry.
2. Suppose Z1 is a connected subgraph of a graph Z such that the vertex sets of
Z1, Z are the same and the following holds: Let E1 > 1 and suppose any edge of Z
which is not in Z1 connects two vertices of Z1 which are at a distance of at most
E1 in Z1. Then for all u, v ∈ Z1 we have dZ(u, v) ≤ dZ1

(u, v) ≤ E1dZ(u, v). In
particular the inclusion Z1 →֒ Z is an E1-quasi-isometry.

Now, suppose p : X
′

→ B
′

is an (f, c,K)-metric bundle. Let d denote the metric

on X
′

and let dB′ be the metric on B
′

. Let V ⊂ B
′

be a maximal subset such that

u, v ∈ V, u 6= v implies dB′ (u, v) ≥ 1. Then for all b ∈ B
′

there exists u ∈ V such
that dB′ (b, u) ≤ 1. Using the recipe of Lemma 1.17 (1) construct
a) a graph B with vertex set V such that u 6= v ∈ V are connected by an edge iff
dB′ (u, v) ≤ 3,

b) and a quasi-isometry ψB : B → B
′

.

Next, for all u ∈ V let X
′

u be a maximal subset of the horizontal space Fu such

that for x, y ∈ X
′

u, du(x, y) ≥ 1.

Lemma 1.18. 1. For all x ∈ X
′

there exists u ∈ V and a path of length at most
c+ 1 connecting x to a point of X

′

u.

2. If u, v ∈ V are connected by an edge in B then each point of X
′

u is connected to

a point of X
′

v by a path in X
′

of length at most 3c+ 1.

Proof. Both statements follow from condition 2(i) of the definition of metric bun-
dles. �

Now construct a graph X
′′

with vertex set V(X
′′

) = ∪u∈VX
′

u and edge set

E(X
′′

) = {{x, y} : x 6= y ∈ V(X
′′

), d(x, y) ≤ 6c+ 3}.

Let X ⊂ X
′′

be the subgraph of X
′′

such that V(X) = V(X
′′

) and any edge

(x, y) ∈ E(X
′′

) also belongs to E(X) iff

a) either x, y ∈ X
′

u for some u ∈ V

b) or x ∈ X
′

u and y ∈ X
′

v with dB(u, v) = 1.

Let ψX : X → X
′

be a map as in Lemma 1.17 (1) defined by setting ψX(x) = x

for x ∈ ∪u∈VX
′

u. Then p ◦ ψX = ψB ◦ π on ∪u∈VX
′

u. Let ψX again denote an
extension of this map over edges of X by sending the interior of any edge to a vertex
on which it is incident consistently ensuring that p ◦ ψX = ψB ◦ π.

For all u ∈ V let us denote by Hu the graph with vertex set X
′

u and E(Hu) :=

{e ∈ E(X) : e connects two elements ofX
′

u}.

Lemma 1.19. There is a constant C such that the maps Hu → Fu obtained by
restricting ψX are C-quasi-isometries.

Proof. First of all, Hu is a connected graph by Lemma 1.17 (1). Next, for all

u ∈ V , let H̄u be the graph with vertex set X
′

u and edge set E(H̄u) := {e ∈

E(Hu), e connectsx, y ∈ X
′

u : du(x, y) ≤ f(6c+ 3)}. Then Hu is a subgraph of H̄u.
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Let us consider an extension of the map Hu → Fu to a map H̄u → Fu satisfying
the properties of Lemma 1.17 (1). Such a map is, therefore, a quasi-isometry. By
Lemma 1.17 (2) the inclusion map Hu →֒ H̄u is also a quasi-isometry. Since the
map Hu → Fu is the composition of quasi-isometries Hu →֒ H̄u and H̄u → Fu, the
lemma follows. �

Lemma 1.20. ψX : X → X
′

is a quasi-isometry.

Proof. Let ψX
′′ : X

′′

→ X
′

be an extension of the map ψX : X → X
′

with the

property of Lemma 1.17 (1). By Lemma 1.17 (1) the map ψX
′′ : X

′′

→ X
′

is a
2(6c+ 3)-quasi-isometry.

Next we show that the inclusion X →֒ X
′′

is a quasi-isometry. For this suppose
x, y ∈ V(X) are connected by an edge in X

′′

. Suppose x ∈ X
′

u, y ∈ X
′

v, u, v ∈ V .
Then dB′ (u, v) ≤ d(x, y) ≤ 6c + 3. Thus u, v can be joined by a path of length at

most 6c + 4, by Lemma 1.17 (1). Thus x can be joined to a point z ∈ X
′

v by an
edge path in X of length at most 6c+ 4. It follows that d(x, z) ≤ (3c+ 1)(6c+ 4).
Thus d(y, z) ≤ 1 + (3c + 1)(6c + 4) = D, say. Hence dv(y, z) ≤ f(D). Using
the previous lemma we have dHv

(y, z) ≤ C(C + f(D)). Since Hv is a subgraph
of X, we have dX(y, z) ≤ C(C + f(D)). Thus dX(x, y) ≤ dX(x, z) + dX(y, z) ≤

(6c + 4) + C(C + f(D)). Lemma 1.17 (2) now shows that the inclusion X →֒ X
′′

is a quasi-isometry..
Since ψX : X → X

′

is the composition of the quasi-isometries ψX
′′ : X

′′

→ X
′

and X →֒ X
′′

, the lemma follows. �

Define π : X → B by sending edges connecting any two vertices of X
′

u (for some

u ∈ V ) to u. Any other edge in X must join vertices x ∈ X
′

u and y ∈ X
′

v for some

X
′

u, X
′

v with dB(u, v) = 1. On any such edge [x, y], π is defined to be an isometry
onto the edge [u, v]. Now we have the following.

Lemma 1.21. The map π : X → B gives a metric graph bundle.

Proof. By definition π is a surjective, simplicial map. We check the conditions of
the definition of metric graph bundles.

Condition 2(i) follows from Lemma 1.18 (2) and the definition of the graph X.
Let us check condition 1 now. Note that for all u ∈ V(B), π−1(u) is the graphHu.

By Lemma 1.19, π−1(u) is a connected subgraph of X, C-quasi-isometric to Fu. Let
x, y ∈ V(π−1(u)). Suppose dX(x, y) ≤ N , N ∈ N. Then d(x, y) ≤ N(6c+ 3). Since

p : X
′

→ B
′

is an (f, c,K)-metric bundle it follows that du(x, y) ≤ f(N(6c + 3)).
Hence dHu

(x, y) ≤ C.f(N(6c+3)) +C. Defining g(N) = [C.f(N(6c+3)) +C], we
see that condition 1 of the definition of a metric graph bundle is satisfied. �

Note: In the rest of the paper we shall assume that the maps ψX , ψB are K1-
quasi-isometries. We shall refer to π : X → B above as an approximating metric
graph bundle of the metric bundle p : X

′

→ B
′

.

1.2. Hyperbolic metric spaces. We assume that the reader is familiar with
the basic definitions and facts about hyperbolic metric spaces [Gro85], [Gd90],
[ABC+91]. In this subsection we collect together some of these to fix notions and
for later use.

If X is a geodesic metric space and x, y ∈ X then [x, y] will denote a geodesic
segment joining x to y. For x, y, z ∈ X we shall denote by △xyz a geodesic triangle
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with vertices x, y, z. For D ≥ 0 and A ⊂ X, ND(A) := {x ∈ X : d(x, a) ≤
D for some a ∈ A} will be called the D-neighborhood of A in X.

Definition 1.22. Suppose ∆x1x2x3 ⊂ X is a geodesic triangle, and let δ ≥ 0,
K ≥ 0.

(1) For all i 6= j 6= k 6= i, let ck ∈ [xi, xj ] be such that d(xi, cj) = d(xi, ck). The
points ci will be called the internal points of ∆x1x2x3. Note that, for all
i 6= j 6= k 6= i, d(xi, cj) =

1
2{d(xi, xj) + d(xi, xk)− d(xj , xk)}.

(2) The diameter of the set {c1, c2, c3} will be referred to as the insize of the
triangle ∆x1x2x3.

(3) We say that the triangle ∆x1x2x3 is δ-slim if any side of the triangle is
contained in the δ-neighborhood of the union of the other two sides.

(4) We say that the triangle ∆x1x2x3 is δ-thin if for all i 6= j 6= k 6= i and
p ∈ [xi, cj ] ⊂ [xi, xk], q ∈ [xi, ck] ⊂ [xi, xj ] with d(p, xi) = d(q, xi) one has
d(p, q) ≤ δ.

(5) A point x ∈ X is said to be a K-center of △x1x2x3 if x is contained in
the K-neighborhood of each of the sides of △x1x2x3.

Definition 1.23. Gromov inner product: Let X be any metric space and let
x, y, z ∈ X. Then the Gromov inner product of y, z with respect to x, denoted
(y.z)x, is defined to be the number 1

2{d(x, y) + d(x, z)− d(y, z)}.

Definition 1.24. Let δ ≥ 0 and X be a geodesic metric space. We say that X is
a δ-hyperbolic metric space if all geodesic triangles in X are δ-slim.

Lemma 1.25. (See Proposition 2.1,[ABC+91]) Suppose X is a δ-hyperbolic metric
space. Then the following hold:

(1) All the triangles in X have insize at most 4δ.
(2) All the triangles in X are 6δ-thin.

Lemma 1.26. [Gd90] Stability of quasigeodesics: For all δ ≥ 0 and k ≥ 1
there is a constant D1.26 = D1.26(δ, k) such that the following holds:

Suppose Y is a δ-hyperbolic metric space. Then the Hausdorff distance between
a geodesic and a k-quasi-geodesic joining the same pair of end points is less than
or equal to D1.26.

Definition 1.27. Local quasi-geodesics: Let X be a metric space and K ≥
1, ǫ ≥ 0, L > 0 be constants. A map f : I → X, where I ⊂ R is an interval, is said
to be a (K, ǫ, L)− local quasi-geodesic if for all s, t ∈ I with |s − t| ≤ L, one has
−ǫ+ (1/K)|s− t| ≤ d(f(s), f(t)) ≤ ǫ+K|s− t|.

For the following important lemma we refer to Theorem 1.4, Chapter 3,[CDP90];
or Theorem 21, Chapter 5, [Gd90].

Lemma 1.28. Local quasi-geodesic vs global quasi-geodesic: For all δ ≥
0, ǫ ≥ 0 and K ≥ 1 there are constants L = L1.28(δ,K, ǫ), λ = λ1.28(δ,K, ǫ) such
that the following holds:

Suppose X is a δ-hyperbolic metric space. Then any (K, ǫ, L)-local quasi-geodesic
in X is a λ-quasi-geodesic.

Lemma 1.29. For all δ ≥ 0, ǫ ≥ 0 and k ≥ 1, there is a constant D1.29 =
D1.29(δ, k, ǫ) such that the following hold:
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(1) Suppose Y is a δ-hyperbolic metric space. Then every geodesic triangle in Y
has a 4δ-center.

(2) Suppose both Y and Y
′

are δ-hyperbolic metric spaces and φ : Y → Y
′

is a

(k, ǫ)-quasi-isometric embedding. If y is a 4δ-center of △y1y2y3 ⊆ Y and y
′

∈ Y
′

is a 4δ-center of △φ(y1)φ(y2)φ(y3) ⊆ Y
′

then d(y
′

, φ(y)) ≤ D1.29, where d is the

metric on Y
′

.

Proof. By conclusion (1) of Lemma 1.25 the internal points of △y1y2y3 are 4δ-
centers of △y1y2y3. This proves part (1) of the lemma.

For (2), first we make the following observation: Let {c
′

i} be the internal points of

△φ(y1)φ(y2)φ(y3). Suppose z ∈ Y
′

is contained in a D-neighborhood of each of the
sides of △φ(y1)φ(y2)φ(y3), for some D ≥ 0. Let pi ∈ [φ(yj), φ(yk)], i 6= j 6= k 6= i,
be such that d(pi, z) ≤ D, 1 ≤ i, j, k ≤ 3; then d(pi, pj) ≤ 2D.

Claim: d(c
′

i, pi) ≤ 3D, i = 1, 2, 3.
Since the proofs are quite similar, we do the computation for i = 3 for concrete-

ness. Set Ai = φ(yi), i = 1, 2, 3. Then

2d(p3, c
′

3)

= 2|d(A1, c
′

3)− d(A1, p3)|
= 2|(A2, A3)A1

− d(A1, p3)|
= |d(A1, A3) + d(A1, A2)− d(A2, A3)− 2d(A1, p3)|
= |{d(A1, p2) + d(A3, p2)}+ {d(A1, p3) + d(A2, p3)}

−{d(A3, p1) + d(A2, p1)} − 2d(A1, p3)|
= |{d(A1, p2)− d(A1, p3)}+ {d(A3, p2)− d(A3, p1)}+ {d(A2, p3)− d(A2, p1)}|
≤ |d(A1, p2)− d(A1, p3)|+ |d(A3, p2)− d(A3, p1)|+ |d(A2, p3)− d(A2, p1)|
≤ d(p2, p3) + d(p2, p1) + d(p3, p1)
≤ 6D

This proves the claim and thus d(z, c
′

i) ≤ 4D for all i, 1 ≤ i ≤ 3.
Since φ is a (k, ǫ)-quasi-isometric embedding, it follows that φ(y) is contained

in the (4kδ + ǫ)− neighborhood of the image under φ of each of the sides [yi, yj ],
i 6= j. Also, the image of [yi, yj ], for all i 6= j, is a (k, ǫ)-quasi-geodesic, and hence a
(k+ ǫ)-quasi-geodesic, joining φ(yi), φ(yj). By Lemma 1.26, φ(y) is contained in a
{(4kδ+ǫ)+D1.26(δ, k+ǫ)}− neighborhood of each of the sides of △φ(y1)φ(y2)φ(y3).
Taking D1.29(δ, k, ǫ) := 4.{(4kδ + ǫ) +D1.26(δ, k + ǫ)}, we are through. �

Definition 1.30. Let X be a geodesic metric space and let A ⊆ X. For K ≥ 0, we
say that A is K-quasiconvex in X if any geodesic with end points in A is contained
in the K-neighborhood of A. A subset A ⊂ X is said to be quasi-convex if it is
K-quasi-convex for some K.

Lemma 1.31. Let X be a geodesic metric space.

(1) Let p, q, r ∈ X. Suppose q is a nearest point projection of p on a geo-
desic [q, r] joining q, r. Then the arc length parametrization of the union
[p, q] ∪ [q, r] is a (3, 0)-quasi-geodesic in X.

(2) Suppose U ⊂ X is a K-quasi-convex set and p 6∈ U . Suppose q ∈ U is
a nearest point projection of p on U . Let r ∈ U . Then the arc length
parametrization of the union [p, q] ∪ [q, r] is (3 + 2K)-quasi-geodesic in X.
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Proof. 1. Suppose p1 ∈ [p, q], r1 ∈ [q, r]. Then q is a nearest point projection of
p1 on [q, r1]. Thus d(p1, q) ≤ d(p1, r1). Using the triangle inequality, d(q, r1) ≤
d(p1, r1) + d(p1, q) ≤ 2d(p1, r1). Hence d(p1, q) + d(q, r1) ≤ 3d(p1, r1).

2. Let p1 ∈ [p, q], r1 ∈ [q, r]. There exists s ∈ U such that d(r1, s) ≤ K, since
U ⊂ X is K-quasi-convex. Now, as before, q is a nearest point projection of p1 on
U . Hence d(p1, q) ≤ d(p1, s) ≤ d(p1, r1) +K and so d(q, r1) ≤ d(p1, q) + d(p1, r1) ≤
2d(p1, r1) +K. Thus d(p1, q) + d(q, r1) ≤ 3.d(p1, r1) +K. �

Lemma 1.32. For each δ ≥ 0 and K ≥ 0 there is a constant D1.32=D1.32(δ,K)
such that the following holds:
Suppose X is a δ-hyperbolic metric space and V ⊆ U are K-quasi-convex subsets
of X. Let x ∈ X and let x1, x2 be nearest point projections of x on U and V
respectively. If x3 is a nearest point projection of x1 on V , then d(x2, x3) ≤ D1.32.

Proof. By Lemma 1.31(2), [x, x1] ∪ [x1, x2] is a (3 + 2k)−quasi-geodesic. Hence by
Lemma 1.26, there is a point x4 ∈ [x, x2] with d(x1, x4) ≤ D1.26(δ, 3 + 2K) = D,
say. Similarly, [x1, x3] ∪ [x3, x2] is a (3 + 2K)-quasi-geodesic and thus there is a

point x
′

3 ∈ [x1, x2] such that d(x3, x
′

3) ≤ D. Using the δ-slimness of △x1x2x4, there

exists x
′′

3 ∈ [x2, x4] such that d(x
′

3, x
′′

3 ) ≤ D + δ. Hence d(x3, x
′′

3 ) ≤ 2D + δ. Since

x2 is a nearest point projection of x
′′

3 on V , we have d(x2, x
′′

3 ) ≤ 2D + δ. Thus

d(x2, x3) ≤ d(x2, x
′′

3 ) + d(x
′′

3 , x3) ≤ 4D + 2δ. Setting D1.32 = 4D + 2δ completes
the proof of the lemma. �

Definition 1.33. Suppose Y is a metric space and U, V ⊂ Y . We say that U, V
are ǫ-separated if inf{d(y1, y2) : y1 ∈ U, y2 ∈ V } ≥ ǫ. A collection of subsets {Uα}
of Y is said to be uniformly separated if there exists an ǫ > 0 such that any pair of
distinct elements of the collection {Uα} is ǫ-separated.

Definition 1.34. Suppose Y is a δ-hyperbolic metric space and U1, U2 are two
quasi-convex subsets. Let D > 0. We say that U1, U2 are mutually D-cobounded,
or simply D-cobounded, if any nearest point projection of U1 to U2 has diameter at
most D and vice versa.

Lemma 1.35. Given δ ≥ 0 and K ≥ 0 there are constants R = R1.35(δ,K) and
D = D1.35(δ,K) such that the following holds:
Suppose X is a δ-hyperbolic metric space and U, V ⊂ X are two K-quasiconvex and
R-separated subsets. Then U, V are D-cobounded.

Proof. Let V1(⊂ V ) be the set of all nearest point projections from points of U
to V . We want to show that V1 is a set of uniformly bounded diameter for large
enough R.

Suppose that x1, x2 ∈ U and let y1, y2 ∈ V be respectively their nearest point
projections. Then by Lemma 1.31(2), [x1, y1]∪ [y1, y2] and [x2, y2]∪ [y2, y1] are K1−
quasi-geodesics for K1 = (3 + 2K). If d(y1, y2) ≥ D1 := L1.28(δ,K1,K1) then the
curve [x1, y1] ∪ [y1, y2] ∪ [y2, x2] is a λ = λ1.28(δ,K1,K1)-quasi-geodesic by Lemma
1.28. Hence every point of this curve is within distance D1.26(δ, λ)+K from a point
in U . Choosing R = D1.26(δ, λ) +K + 1 proves the Lemma. �

Lemma 1.36. Given δ ≥ 0 and K ≥ 0 there are constants R = R1.36(δ,K) and
D = D1.36(δ,K) such that the following holds:
Suppose X is a δ-hyperbolic metric space and U, V ⊂ X are two K-quasiconvex and
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R-separated subsets. Then there are points x0 ∈ U , y0 ∈ V such that [x0, y0] ⊂
ND([x, y]), for all x ∈ U and y ∈ V .

Proof. First consider the set V1(⊂ V ) of all nearest point projections from points
of U onto V . By Lemma 1.35, there exists R(= R1.35) such that the diameter of
V1 is less than D = D1.35 whenever U, V are R-separated.

Choose any point y0 ∈ V1 and let x0 be a nearest point projection of y0 onto U .
Let x ∈ U , y ∈ V be any pair of points and let y1 be a nearest point projection
of x onto V . Since y1 ∈ V1, it follows that d(y0, y1) ≤ D1. By Lemma 1.31
(2) [y0, x0] ∪ [x0, x] is a (3 + 2K)-quasi-geodesic. Since X is a δ-hyperbolic metric
space, the Hausdorff distance between this quasi-geodesic and the geodesic [x0, x] is
at most D1.26(δ, 3+2K) by Lemma 1.26. Similarly the Hausdorff distance between
[x, y1] ∪ [y1, y] and [x, y] is at most D1.26(δ, 3 + 2K). Lastly, since d(y0, y1) ≤ D1,
it follows that the Hausdorff distance between [y0, x] and [y1, x] is at most δ +D1.
The Lemma follows by choosing D = 2D1.26(δ, 3 + 2K) +D1 + δ. �

The following is a direct consequence of the proofs of Lemmas 1.35 and 1.36 (cf.
Lemma 3.3 of [Mit98b]).

Corollary 1.37. Given δ ≥ 0 and D,K ≥ 0 there exists C = C1.37(δ,D,K) such
that the following holds.
Suppose X is a δ-hyperbolic metric space and U, V ⊂ X are two K-quasiconvex and
D-cobounded subsets. Choose a ∈ U, b ∈ V such that d(a, b) = d(U, V ), and [c, a] ⊂
U , [b, d] ⊂ V are K-quasigeodesics, then [c, a] ∪ [a, b] ∪ [b, d] is a C-quasigeodesic.

The following Lemma [Mit98b] says that quasi-isometries and nearest point pro-
jections ‘almost commute’. We include a proof for completeness.

Lemma 1.38. (Lemma 3.5 of [Mit98b]) For all δ ≥ 0 and k ≥ 1 there is a constant
D1.38 = D1.38(δ, k) such that the following holds:
Suppose φ : X → Y is a k-quasi isometric embedding of δ-hyperbolic metric spaces.
Let x, y, z ∈ X and let γ be a geodesic in X joining x, y. Let u be a nearest point
projection of z onto γ and suppose v is a nearest point projection of φ(z) onto a
geodesic joining φ(x) and φ(y), then d(v, φ(u)) ≤ D1.38.

Proof. Let {ci} and {c
′

i} be respectively the internal points of △xyz ⊂ X and
△φ(x)φ(y)φ(z). By Lemma 1.31 (1) the unions [x, u] ∪ [u, z] and [y, u] ∪ [u, z] are
both (3, 0)-quasi-geodesics in X. It follows that they are 3-quasi-geodesics. Hence
u is contained in the D1.26(δ, 3)-neighborhood of both [x, z] and [y, z]. Similarly,
v is contained in the D1.26(δ, 3)-neighborhood of both [φ(x), φ(z)] and [φ(y), φ(z)].
Therefore, using the proof of the claim in the proof of the Lemma 1.29(2), we have

dX(u, ci) ≤ 4.D1.26(δ, 3) and dY (v, c
′

i) ≤ 4.D1.26(δ, 3), for i = 1, 2, 3.
Now for each i, 1 ≤ i ≤ 3 we have the following:

Since φ is a k-quasi-isometric embedding, we have dY (φ(ci), c
′

i) ≤ D1.29(δ, k, k)

by Lemma 1.29(2). Thus, dY (φ(ci), v) ≤ dY (φ(ci), c
′

i) + dY (c
′

i, v) ≤ D1.26(δ, 3) +
D1.29(δ, k, k). Again, using the fact that φ is a k-quasi-isometric embedding we
have d(φ(ci), φ(u)) ≤ k.dX(ci, u) + k ≤ k.D1.26(δ, 3) + k. Thus dY (φ(u), v) ≤
dY (φ(u), φ(ci)) + dY (φ(ci), v) ≤ k + (k + 1).D1.26(δ, 3) + D1.29(δ, k, k). Choosing
D1.38 = k + (k + 1).D1.26(δ, 3) +D1.29(δ, k, k) completes the proof. �

To prove our main theorem, the following characterization of hyperbolicity turns
out to be very useful.
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Lemma 1.39. (Proposition 3.5 of [Ham07]) Suppose X is a geodesic metric space
and there is a collection of rectifiable curves {c(x, y) : x, y ∈ X}, one for each pair
of distinct points x, y ∈ X, and constants D1, D2 ≥ 1 such that for all x, y, z ∈ X
the following hold:

(1) If d(x, y) ≤ D1 then the length of the curve c(x, y) is less than or equal to
D2.

(2) If x
′

, y
′

∈ c(x, y) then the Hausdorff distance between c(x
′

, y
′

) and the seg-

ment of c(x, y) between x
′

and y
′

is bounded by D2.
(3) The triangle formed by the curves joining any three points in X is D2-slim:

c(x, y) ⊆ ND2
(c(x, z)

⋃
c(y, z)).

Then X is δ1.39 = δ1.39(D1, D2)-hyperbolic and each of the curves c(x, y) is a
K1.39 = K1.39(D1, D2)-quasi-geodesic in X.

This lemma has the following straightforward corollary, which is a discrete ver-
sion of Lemma 1.39 (see Lemma 1.17 for instance). A discrete path c(x, y) will
refer to a finite sequence of points. The length of a discrete path is the sum of the
distances between all pairs of successive points in the discrete path. In this context,
a triangle will refer to the union of three discrete paths of the form c(x, y), c(y, z),
c(z, x).

Corollary 1.40. Given D,C1, C2 > 0 and Φ : R+ → R+, there exist δ1.40 =
δ1.40(D,C1, C2,Φ) ≥ 0 and K1.40 = K1.40(D,C1, C2,Φ) ≥ 1 such that the following
hold:
Let X be a geodesic metric space and let X1 ⊂ X be a discrete set such that
X = ND(X1).
Further suppose that for all x 6= y ∈ X1, there is a discrete path c(x, y) in X1

connecting x, y such that:

(1) Distance between successive points of c(x, y) is at most C1.
(2) If d(x, y) ≤ N then the number of points on the discrete path c(x, y) is at

most f(N).
(3) If x1 6= y1 are two points of the discrete path c(x, y), then the Hausdorff dis-

tance between the discrete path c(x1, y1) and the discrete subpath of c(x, y)
connecting x1, y1 is at most C2.

(4) For any three points x, y, z ∈ X1, the triangle formed by the paths c(x, y), c(y, z)
and c(x, z) is C2-slim.

Then X is δ1.40-hyperbolic and the discrete paths are K1.40-quasi-geodesics in X.

Proof. Let φ : X → X1 be a map such that for all x ∈ X, d(x, φ(x)) ≤ D.
Given x, y ∈ X define a curve β(x, y) joining x, y as follows: Let φ(x) =

v1, v2, . . . , vn = φ(y) be the set of successive points on c(φ(x), φ(y)). Join x to
φ(x), vi to vi+1, for 1 ≤ i ≤ n − 1, and φ(y) to y by geodesics in X to obtain
β(x, y).

We check that the curves {β(x, y)} satisfy the conditions of Lemma 1.39:

(1) That the paths β(x, y) are rectifiable follows from conditions 1 and 2.
(2) We verify that condition 1 of Lemma 1.39 is satisfied with D1 = 1. Let

x, y ∈ X such that d(x, y) ≤ 1. Then d(φ(x), φ(y)) ≤ d(φ(x), x) + d(x, y) +
d(y, φ(y)) ≤ 2D + 1. Hence there are at most Φ(2D + 1) points on the
discrete path c(φ(x), φ(y)). Let φ(x) = v1, v2, . . . , vn = φ(y) be the set
of successive points on c(φ(x), φ(y)). Then n ≤ Φ(2D + 1) and hence the
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length of the path β(x, y) = d(x, φ(x)) + d(y, φ(y)) +
∑n

i=1 d(vi, vi+1) ≤
2D +Φ(2D + 1)C1. Thus we may choose D2 ≥ 2D +Φ(2D + 1)C1.

(3) Conditions 2 and 3 of Lemma 1.39 follow from conditions 3, 4. In fact,
choosing D2 ≥ C2 + 2C1 is enough for this.

Hence, choosing D2 = max{2D+Φ(2D+1)C1, C2+2C1} completes the proof. �

1.3. Trees of hyperbolic and relatively hyperbolic metric spaces. We refer
to [Far98] for a detailed account of relative hyperbolicity. We also refer to [MR08]
for the definitions and results of this subsection.

Suppose (X, d) is a path metric space and let H = {Hα} be a collection of
path-connected, uniformly separated subsets of X. Then Farb [Far98] defines the
electric space (or coned-off space) E(X,H) corresponding to the pair (X,H) as
a metric space which consists of X and a collection of vertices vα (one for each
Hα ∈ H) such that each point of Hα is joined to (equivalently, coned off at) vα by
an edge of length 1

2 . The sets Hα shall be referred to as horosphere-like sets and
the vertices vα as cone-points. Geodesics (resp. P -quasigeodesics) in E(X,H) will
be called electric geodesics (resp. electric P -quasigeodesics).

When the collection H = {Hα} is not necessarily separated, a slightly modified
description is given in [Mj06] and [MR08], where we attach a metric product Hα ×
[0, 1] to X, identifying Hα × {0} with Hα ⊂ X for each Hα ∈ H, and equip each
Hα × {1} with the zero metric. We shall call this construction electrocution.

Let i : X → E(X,H) denote the natural inclusion of spaces. Then for a path
γ ⊂ X, the path i(γ) lies in E(X,H). Replacing maximal subsegments [a, b] of i(γ)
lying in a particular Hα by a path that goes from a to vα and then from vα to b,
and repeating this for every Hα that i(γ) meets we obtain a new path γ̂. If γ̂ is
an electric geodesic (resp. electric P -quasigeodesic), γ is called a relative geodesic
(resp. relative P -quasigeodesic). A geodesic, or quasigeodesic, or more generally a
path γ is said to be without backtracking if for any horosphere-like set Hα, γ does
not return to Hα after leaving it.

Definition 1.41. [Far98] Relative P -quasigeodesics in (X,H) are said to satisfy
bounded region penetration if, for any two relative P -quasigeodesics without
backtracking β, γ, joining x, y ∈ X, there exists B = B(P ) ≥ 0 such that
Similar Intersection Patterns 1: if precisely one of {β, γ} meets a horosphere-
like set Hα, then the length (measured in the intrinsic path-metric on Hα) from
the first (entry) point to the last (exit) point (of the relevant path) is at most B.
Similar Intersection Patterns 2: if both {β, γ} meet some Hα then the length
(measured in the intrinsic path-metric on Hα) from the entry point of β to that of
γ is at most B; similarly for exit points.

X is strongly hyperbolic relative to the collection H if
a) E(X,H) is hyperbolic, and
b) Relative quasigeodesics satisfy the bounded region penetration property.

The next notion is based on Bestvina-Feighn’s seminal work [BF92]. The notions
we use here are the adaptations used in [MR08].

Definition 1.42. A geodesic metric space (X, d) equipped with a map P : X → T
to a simplicial tree T is said to be a tree of geodesic metric spaces satisfying the
q(uasi) i(sometrically) embedded condition if there exist ǫ ≥ 0 and K ≥ 1 satisfying
the following:
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1) For all vertices v ∈ T , Xv = P−1(v) ⊂ X with the induced path metric dXv
is a

geodesic metric space. Further, the inclusions iv : Xv → X are uniformly proper.
2) Let e be an edge of T with initial and final vertices v1 and v2 respectively. Let
Xe be the pre-image under P of the mid-point of e. There exist continuous maps
fe : Xe×[0, 1] → X, such that fe|Xe×(0,1) is an isometry onto the pre-image of
the interior of e equipped with the path metric. Further, fe is fiber-preserving, i.e.
projection to the second co-ordinate in Xe×[0, 1] corresponds via fe to projection to
the tree P : X → T .
3) fe|Xe×{0} and fe|Xe×{1} are (K, ǫ)-quasi-isometric embeddings into Xv1

and Xv2

respectively. fe|Xe×{0} and fe|Xe×{1} will occasionally be referred to as fe,v1
and

fe,v2
respectively.

Xv, Xe are referred to as vertex and edge spaces respectively. A tree of spaces
as in Definition 1.42 above is said to be a tree of hyperbolic metric spaces, if there
exists δ ≥ 0 such that Xv, Xe are all δ-hyperbolic for all vertices v and edges e of
T .

Definition 1.43. A tree P : X → T of geodesic metric spaces is said to be a tree
of relatively hyperbolic metric spaces if in addition to the conditions of Definition
1.42, we have the following:
4) Each vertex (or edge) space Xv (or Xe) is strongly hyperbolic relative to a col-
lection Hv (or He)
5) the maps fe,vi

above (i = 1, 2) are strictly type-preserving, i.e. f−1
e,vi

(Hvi,α),
i = 1, 2 (for any Hvi,α ∈ Hvi

) is either empty or some He,β ∈ He. Also, for all
He,β ∈ He, and any end-point v of e, there exists Hv,α, such that fe,v(He,β) ⊂ Hv,α.
The sets Hv,α and He,α will be referred to as horosphere-like vertex sets and
horosphere-like edge sets respectively.
6) There exists δ > 0 such that each E(Xv,Hv) is δ-hyperbolic.
Given the tree of spaces with vertex spaces Xv and edge spaces Xe, there ex-
ists a naturally associated tree of spaces with vertex spaces E(Xv,Hv) and edge
spaces E(Xe,He), obtained by simply coning off the respective horosphere like sets.
Condition (5) above ensures that we have natural inclusion maps of edge spaces
E(Xe,He) × {i} (i = 0, 1) into adjacent vertex spaces E(Xv,Hv). These maps are
referred to as induced maps. The resulting tree of coned-off spaces will be called

the induced tree of coned-off spaces and will be denoted as X̂.
7) The induced maps of the coned-off edge spaces into the coned-off vertex spaces

f̂e,vi
: E(Xe,He) → E(Xvi

,Hvi
) (i = 1, 2) are uniform quasi-isometries. This is

called the qi-preserving electrocution condition.

dv and de will denote path metrics on Xv and Xe respectively. iv, ie will denote
inclusion of Xv, Xe respectively into X.

Note that the first clause of Condition (5) above ensures that for any vertex vi
and edge e incident on vi, and for any horosphere like set Hvi,α in Xvi

, at most
one horosphere like set He,β of Xe is mapped by fe,vi

into Hvi,α. Also, the second
clause of Condition (5) above ensures that for any such horosphere like set He,β of
Xe, fe,vi

maps He,β into some horosphere like set Hvi,α in Xvi
.

Definition 1.44. The cone locus of the induced tree (T) of coned-off spaces, X̂,
is the graph whose vertex set V consists of horosphere like vertex sets and edge set
E consists of horosphere like edge sets such that an edge He,β ∈ He ⊂ E is incident
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on a vertex Hv,α ∈ Hv ⊂ V iff fe,v(He,β) ⊂ Hv,α.
A connected component of the cone-locus will be called a maximal cone-subtree.
The collection of maximal cone-subtrees will be denoted by T and elements of T
will be denoted as Tα.
For each maximal cone-subtree Tα, we define the associated maximal cone-subtree
of horosphere-like spaces Cα to be the tree of metric spaces whose vertex and
edge spaces are the horosphere like vertex and edge sets Hv,α, He,α, v ∈ V(Tα),
e ∈ E(Tα), along with the restrictions of the maps fe to He,α × {0, 1}. The collec-
tion of Cα’s will be denoted as C.

The next definition is based on [BF92] again.

Definition 1.45. A disk f : [−m,m]×I → X is a hallway of length 2m if it
satisfies:
1) f−1(∪Xe : e ∈ Edge(T )) = {−m, · · · ,m}×I, where Edge(T ) denotes the collec-
tion of mid-points of the edge-set of T .
2) f maps i×I to a geodesic in Xe for some edge space.
3) f is transverse, relative to condition (1), to ∪eXe, i.e. for all i ∈ {−m, · · · ,m},
f |B(i, 1

4
)×{t} is an isometric embedding for all t ∈ I. Here B(i, 14 ) denotes the 1

4

neighborhood of i in [−m,m].

Condition (3) above is the adaptation in our context of Condition (2) of [BF92]
p.87 and simply says that a hallway transversely cuts across the collection of edge
spaces.

Definition 1.46. A hallway f : [−m,m]×I → X is ρ-thin if d(f(i, t), f(i+ 1, t)) ≤
ρ for all i ∈ {−m, · · · ,m} and t ∈ I.
A hallway is λ-hyperbolic if

λl(f({0} × I)) ≤ max{l(f({−m} × I)), l(f({m} × I))}

where l(σ) denotes the length of the path σ.
The girth of the hallway is the quantity l(f({0} × I)).
A hallway is essential if the edge path in T resulting from projecting f([−m,m]×I)
onto T does not backtrack, and is therefore a geodesic segment in the tree T .
Hallways flare condition: The tree of spaces, X, is said to satisfy the hallways
flare condition if there are numbers λ > 1 and m ≥ 1 such that for all ρ there is a
constant H = H(ρ) such that any ρ-thin essential hallway of length 2m and girth
at least H is λ-hyperbolic.

Definition 1.47. An essential hallway of length 2m is cone-bounded if
a) f(i× ∂I) = f(i× {0, 1}) lies in the cone-locus for i = {−m, · · · ,m}.
b) f(i× {0}) and f(i× {1}) lie in different components of the cone-locus.
The tree of spaces, X, is said to satisfy the cone-bounded hallways strictly
flaring condition if for all ρ > 0, there exists λ > 1 and m ≥ 1 such that any
cone-bounded ρ−thin essential hallway of length 2m is λ-hyperbolic.

Note that the last condition requires all cone-bounded ρ−thin essential hallways
to flare (not just those of girth at least H as in Definition 1.46). The following
theorem is one of the main results of [MR08].

Theorem 1.48. [MR08] Let X be a tree (T ) of strongly relatively hyperbolic spaces
satisfying
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(1) the qi-embedded condition.
(2) the strictly type-preserving condition.
(3) the qi-preserving electrocution condition.
(4) the induced tree of coned-off spaces satisfies the hallways flare condition.
(5) the cone-bounded hallways strictly flaring condition.

Then X is (strongly) hyperbolic relative to the family C of maximal cone-subtrees
of horosphere-like spaces.

Note: In [MR08] the definition of cone-bounded hallways does not include Con-
dition (b) of Definition 1.47. However the proof there (cf. Proposition 4.4 of
[MR08]) is enough to give Theorem 1.48 under the (weaker) condition that only
those cone-bounded hallways (in the terminology of [MR08]) that additionally sat-
isfy restriction (b) strictly flare.

Definition 1.49. Partial Electrocution: Let (X,H,G,L) be an ordered quadru-
ple, where

(1) X is a geodesic metric space,
(2) H = {Hα} is a collection of uniformly separated subsets of X,
(3) L = {Lα} is a collection of δ− hyperbolic metric spaces for some δ ≥ 0,
(4) G = {gα : Hα → Lα} are maps.

Further suppose that there exist K ≥ 1 such that the following hold:

(1) X is strongly hyperbolic relative to the collection H of subsets Hα.
(2) Each gα is K− coarsely Lipschitz, i.e. dLα

(gα(x), gα(y)) ≤ KdHα
(x, y)+K

for all x, y ∈ Hα.

The partially electrocuted space or partially coned off space corresponding to
(X,H,G,L) is the quotient metric space (X̂, dpel) obtained from X by attaching
the metric mapping cylinders for the maps gα : Hα → Lα, where dpel denotes the
resulting partially electrocuted metric. (The metric mapping cylinder for a map
g : A → B is the quotient metric space obtained as a quotient space of the disjoint
union of the metric product A × [0, 1] and B, by identifying (a, 1) ∈ A × {1} with
g(a) ∈ B.)

Lemma 1.50. [MR08] (see also Lemmas 1.20. 1.21 of [MP11]) (X̂, dpel) is a

hyperbolic metric space and the sets Lα are uniformly quasiconvex in X̂.

We end this subsection with a proposition, a special case of which is due to
Hamenstadt [Ham05], where the tree is taken to be R with vertex set Z. We give
a different proof below as our proof applies in a more general context.

Proposition 1.51. Given K ≥ 1 and δ,D > 0, there exist δ
′

, k
′

≥ 0 such that the
following holds.
Suppose Y is a tree of δ-hyperbolic metric spaces satisfying the K-qi embedded
condition such that the images of the edge spaces in the vertex spaces are mutually
D-cobounded. Then Y is a δ

′

-hyperbolic metric space and all the vertex spaces and
edge spaces are k

′

-quasiconvex in Y .

Proof. First of all we note that by [Bow97] (Section 7, esp. Proposition 7.4, Lemma
7.5, Proposition 7.12; see also Lemma 3.4 of [Mj11]) the vertex spaces are strongly
hyperbolic relative to the images of edge spaces. Hence Y can be thought of as
a tree of relatively hyperbolic metric spaces whose horosphere like edge sets and
vertex sets are respectively the whole of the edge spaces and the images of the edge
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spaces in the vertex spaces respectively. Hence conditions (1)-(2) of Theorem 1.48
are satisfied in this case.

Edge spaces after electrocution become points. Vertex spaces after electrocution
become hyperbolic metric spaces. Inclusion of points into spaces being trivially
qi-embeddings, condition (3) of Theorem 1.48 is satisfied.

Next any essential hallway of length greater than two in Ŷ , the induced tree of
coned off spaces, must have girth at most one. This is because all edge spaces have
diameter one after electrocution. Hence Condition (4) of Theorem 1.48 is trivially
satisfied by choosing the threshold value H of the girth to be 2.

Finally, since cone-bounded hallways must have length two or more, it follows
that in the present situation cone-bounded hallways do not exist due to Condition
(b) in Definition 1.47 and the fact that entire edge spaces are part of the cone locus.
Hence Condition (5) of Theorem 1.48 is vacuously satisfied.

Finally, the family C of maximal cone-subtrees of horosphere-like spaces are
precisely the edge spaces.

Hence Y is strongly hyperbolic relative to the edge spaces.
The edge spaces are uniformly hyperbolic with respect to the induced length

metric from Y . Hence, by Lemma 1.50, we see that when the maps gα are taken to
be identity maps of the edge spaces, the partially electrocuted space is hyperbolic.
This space is clearly quasi-isometric to Y . Hence the result. �

As an application of this proposition we have the following corollary which can
be thought of as a ‘discrete’ or ‘graph’ version of Proposition 1.51.

Corollary 1.52. Given δ,D,D1,K ≥ 1, there exists D1.52 such that the following
holds.
Suppose X is a connected graph and Xi, 0 ≤ i ≤ n, are connected subgraphs with
X = ∪iXi such that the following conditions hold.
(1) All the spaces Xi are δ-hyperbolic with respect to the path metric induced from
X.
(2) Xi ∩Xj 6= ∅ iff |i− j| ≤ 1.
(3) For all i, Xi ∩Xi+1 contains a connected subgraph Yi and is contained in the
D-neighborhood of Yi in (the path-metric on) Xi as well as Xi+1.
(4) The inclusions Yi →֒ Xi, Yi →֒ Xi+1 are K-quasi-isometric embeddings. Also
the inclusions Yi →֒ X, 1 ≤ i ≤ n− 1 are uniformly metrically proper as measured
by g, for some map g : R+ → R+.
(5) Yi and Yi+1 are D1-cobounded in Xi+1.

Then the space X is D1.52(= D1.52(δ,D,D1,K))-hyperbolic.

Proof. First construct a new graph X
′

with the same vertex set as X and edge-set
E(X

′

) = E(X)
⋃
{{u, v} : u 6= v ∈ V(Xi) for some i; dX(u, v) ≤ D}. Note that X is

a subgraph of X
′

. By Lemma 1.17 (2), X is quasi-isometric to X
′

.

Let us denote by X
′

i the subgraph of X
′

with the same vertex set as Xi (i.e.

V(X
′

i ) = V(Xi)) and with edge-set E(X
′

i ) = {{u, v} : u 6= v ∈ V(Xi); dX(u, v) ≤

D}. Then X
′

= ∪iX
′

i . Let Y
′

i := X
′

i ∩ X
′

i+1. Note that Y
′

i is a connected graph
by Condition (3).

We show now that Yi is quasi-isometric to Y
′

i . First, since the inclusion Yi →֒ X

is uniformly proper, it follows that the inclusion Yi →֒ X
′

is also uniformly proper
(since X is quasi-isometric to X

′

). Hence the inclusion Yi →֒ Y
′

i is also uniformly
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proper. But the vertex set of Y
′

i is contained in aD-neighborhood of Yi inX. Hence

every vertex of Y
′

i is connected by an edge to a vertex of Yi by construction of X
′

.

It follows that the inclusion Yi →֒ Y
′

i is a uniform (independent of i) quasi-isometry.

Next we claim that the inclusion of Xi into X
′

i is a uniform (independent of i)

quasi-isometry. Note that Xi and X
′

i have the same vertex set. Also the inclusion

Xi →֒ X
′

i is 1-Lipschitz. Hence it suffices to show that when two vertices in Xi are
at a distance of at most D in X then they are not too far away in the (path) metric
on Xi. Let γ be a geodesic in X joining two points of Xi that are at a distance
of at most D from each other. If γ contains a (maximal) subsegment γ0 = [a0, b0]

lying outside Xi then a0, b0 must be distinct vertices of Y
′

i or Y
′

i+1. Without loss

of generality, suppose a0, b0 ∈ V(Y
′

i ). Hence there exist vertices a, b ∈ V(Yi) such
that dX(a, a0) ≤ D and dX(b, b0) ≤ D. It follows that dYi

(a, b) ≤ g(3D) and hence
dXi

(a, b) ≤ g(3D). The claim follows.

Hence there exist δ
′

,K
′

, D
′

1 such that X
′

i is δ
′

hyperbolic; the inclusion maps

Y
′

i →֒ X
′

i , Y
′

i →֒ X
′

i+1 are K
′

-qi embeddings; and Y
′

i and Y
′

i+1 are D
′

1-cobounded

in X
′

i+1 for all i.

Now we construct a tree of metric spaces XT quasi-isometric to X
′

(and hence
to X) where the underlying tree T is the interval [0, n] with vertices the integer

points {0, · · · , n} and edge set {[i, i+ 1] : i = 0, · · · , n− 1}. For each Y
′

i construct

Y
′

i × [0, 1]. XT is constructed as an identification space from ∪i(Y
′

i × [0, 1])
⋃

∪iX
′

i

as follows. For all i = 0 · · ·n− 1 and x ∈ V(Y
′

i ), identify x× {0} with x ∈ X
′

i and

x× {1} with x ∈ X
′

i+1. Extend the identification linearly over edges of Y
′

i for all

i to obtain the required tree of metric spaces XT . We observe that X
′

(and hence
X) is quasi-isometric to the tree of metric spaces XT , which in turn satisfies all the
conditions of Proposition 1.51. The Corollary follows. �

A remark is in order here. Note that in the hypothesis we have not required
that each Xi contains all the edges of X between any two of its vertices. But it
is always true that Xi−1 ∪Xi ∪Xi+1 contains all the edges of X between any two

vertices of Xi since X = ∪iXi. However, once we pass to X
′

this is no longer an
issue because in the construction of X

′

i from Xi these edges get introduced in any

case (as D ≥ 1). Hence each X
′

i contains all the edges of X
′

between any two of
its vertices.

2. QI Sections

2.1. Existence of qi sections. The main result (Proposition 2.10) of this subsec-
tion is that qi sections exist for a large class of examples of metric graph bundles
p : X → B. This is the crucial ingredient in the proof of our main theorem 4.3.
The basic idea of the proof of Proposition 2.10 runs as follows:
We assume that the horizontal spaces Fb, b ∈ V(B) in our metric graph bundle are
uniformly hyperbolic and the barycenter maps φb : ∂

3Fb → Fb, sending a triple of
distinct points on the boundary ∂Fb to the barycenter of an ideal triangle with the
three points as vertices, are uniformly coarsely surjective. For simplicity, suppose
we have x ∈ Fv, v ∈ B and there is a triple ξ = (ξ1, ξ2, ξ3) such that φv(ξ) = x.
Fix one such triple. ‘Flow’ this triple to the boundaries of all other horizontal
spaces Fw by maps induced by quasi-isometries fvw : Fv → Fw. These maps are
coarsely unique and are naturally associated to any given metric graph bundle. Let
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∂(fvw) denote the boundary value of fvw. Consider the barycenters of the ideal
triangles formed by the flowed triples (∂(fvw)ξ1, ∂(fvw)ξ2, ∂(fvw)ξ3). The collec-
tion of all these barycenters (as w ranges over V(B)) is then a section through x.
The proof that this is indeed a qi section hinges on the fact that for any three
points u, v, w ∈ V(B), the quasi-isometries fuv and fwv ◦ fuw are at a bounded
distance (depending on u, v, w) from each other, and hence the induced boundary
maps satisfy the equality ∂(fuv) = ∂(fwv) ◦ ∂(fuw).

As an application of the proof of this result we recover an important lemma due
to Mosher (see Theorem 2.11). It should be noted that though a basic ingredient
for both Mosher’s proof and ours is the notion of a ‘barycenter’, we do not have
a group action on the boundaries of fiber spaces in our context. Mosher extracts
his qi-section from an action of the whole group on the boundary of the normal
subgroup.

Definition 2.1. Sequential Boundary(See Chapter 4,[ABC+91]) Let X be a δ-
hyperbolic metric space. A sequence of points {xn} in X is said to converge to infin-
ity, written xn → ∞, if for some (and hence any) point p ∈ X, limm,n→∞(xm.xn)p =
∞.

Define an equivalence relation on the set of all sequences in X converging to
infinity, by setting {xn} ∼ {yn} iff limn→∞(xn.yn)p = ∞. The set of all equivalence
classes {[{xn}] : xn → ∞} will be denoted by ∂X and will be referred to as the
sequential boundary of X or simply the boundary of X .

Suppose {xn} is a sequence of points in X and xn → ∞. We shall write xn →
ξ ∈ ∂X to mean that ξ = [{xn}]. The boundary ∂X comes equipped with a natural
‘visual’ topology [Gd90].

Suppose f : X → Y is a (k, ǫ)-quasi-isometric embedding of hyperbolic metric
spaces and ξ = [{xn}] ∈ ∂X. Then f(xn) → ∞. Setting ∂(f)(ξ) := [{f(xn)}] gives
a well defined map ∂(f) : ∂X → ∂Y . The next lemma collects together standard
properties of such maps.

Lemma 2.2. 1) If IX : X → X is the identity map then ∂(IX) is the identity map
on the sequential boundary of X.
2) If f : X → Y and g : Y → Z are two (k, ǫ)-quasi-isometric embeddings then
∂(g ◦ f) = ∂(g) ◦ ∂(f).
3) If f, g : X → Y are two (k, ǫ)-quasi-isometric embeddings such that one has
supx∈Xd(f(x), g(x)) <∞ then ∂(f) = ∂(g).
4) If f : X → Y is a quasi-isometry then ∂(f) : ∂X → ∂Y is a homeomorphism.

The next lemma is a consequence of the stability of quasi-geodesics (Lemma
1.26) in hyperbolic metric spaces.

Lemma 2.3. Let X be a δ-hyperbolic metric space and let γ : [0,∞) → X be a
(K, ǫ)-quasi geodesic ray. Let {tn} be any sequence of non-negative real numbers
tending to ∞; then γ(tn) → ∞ and the point of ∂X represented by {γ(tn)} is
independent of the sequence {tn}.

The point of ∂X determined by a quasi-geodesic ray γ will be denoted by γ(∞).
The next lemma constructs quasigeodesic rays joining points in X to points in ∂X
as well as bi-infinite quasigeodesics joining pairs of points in ∂X. While this is
standard for proper X [Gd90], ready references for arbitrary (non-proper) X are a
bit difficult to come by, and we include a proof for completeness.
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Lemma 2.4. For any δ ≥ 0 there is a constant K = K2.4(δ) such that the following
holds:

Suppose X is a δ-hyperbolic metric space.

(1) Given any point ξ ∈ ∂X and p ∈ X there is a K-quasi-geodesic ray γ :
[0,∞) → X of X with γ(0) = p and γ(∞) = ξ.

(2) Given two points ξ1 6= ξ2 ∈ ∂X there is a K-quasi-geodesic line α : R → X
with α(−∞) = ξ1 and α(∞) = ξ2.

Terminology: Any quasi-geodesic ray as in (1) of the above lemma will be referred
to as a quasi-geodesic ray joining the points p and ξ. Similarly any quasi-geodesic
as in (2) of the above lemma will be referred to as a quasi-geodesic line joining the
points ξ1 and ξ2.

Proof of Lemma 2.4: (1). We shall inductively construct a suitable sequence of
points {pn} such that pn → ξ and finally show that the union ∪[pn, pn+1], of the
geodesic segments [pn, pn+1], is a uniform quasi-geodesic. Suppose xn → ξ, xn ∈ X,
for all n. Fix N ≥ 1 and let p0 = p. Since xn → ∞ we can find a positive integer
n1 ∈ N such that (xi.xj)p0

≥ N for all i, j ≥ n1. Let [p0, xn1
] be a geodesic joining

p0 and xn1
. Choose p1 ∈ [p0, xn1

] such that d(p0, p1) = N . Now suppose pl has
been constructed. To construct pl+1, let nl+1 ≥ max{nk : 1 ≤ k ≤ l} be an integer
such that (xi.xj)pl

≥ (l + 1)N for all i, j ≥ nl+1. Choose pl+1 ∈ [pl, xnl+1
] such

that d(pl, pl+1) = (l + 1)N . Now, let αN be the arc length parametrization of the
concatenation of the geodesic segments [pi, pi+1], i ∈ Z+.
Claim: For N > max{7δ + 1, 13L1.28(δ, 1, 42δ)}, αN is a λ1.28(δ, 1, 42δ)-quasi-
geodesic.

First we show that [pi, pi+1] ∪ [pi+1, pi+2] is a uniform quasi-geodesic for each
i. Let n > ni+2. Join pi with xn. Since (xn.xni+1

)pi
≥ (i + 1)N and triangles

in X are 6δ-thin by Lemma 1.25(2), we can find a point qi ∈ [pi, xn] such that
d(pi, qi) = (i+1)N and d(pi+1, qi) ≤ 6δ. Similarly there is a point qi+1 ∈ [pi+1, xn]
such that d(pi+1, qi+1) = (i+ 2)N and d(pi+2, qi+1) ≤ 6δ.

Consider the triangle ∆pipi+1xn. The point qi+1 ∈ [pi+1, xn] is contained in
a δ-neighborhood of [pi, pi+1] ∪ [pi, xn]. Hence there exists ri ∈ [pi, xn] ∪ [pi, pi+1]
such that d(ri, qi+1) ≤ δ. Since d(qi+1, pi+1) = (i+2)N , it follows from the triangle
inequality that d(ri, qi) ≥ d(qi+1, pi+1)−d(ri, qi+1)−d(pi+1, qi) ≥ (i+2)N−δ−6δ.
Again, since N > 7δ + 1, it follows that d(ri, qi) > (i + 1)N + 1 and hence ri 6∈
[pi, qi](⊂ [pi, xn]).

Next, we note that ri 6∈ [pi, pi+1]. Else suppose ri ∈ [pi, pi+1]. Then (i+ 1)N =
d(pi, pi+1) ≥ d(ri, pi+1) ≥ d(pi+1, qi+1) − d(ri, qi+1) ≥ (i + 2)N − δ. This is a
contradiction since N > 7δ + 1. Thus ri ∈ [qi, xn] ⊂ [pi, xn]. Also note that
d(pi+2, ri) ≤ d(pi+2, qi+1) + d(qi+1, ri) ≤ 7δ.
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We now show that [pi, pi+1]∪ [pi+1, pi+2] is a (1, 42δ)-quasi-geodesic of length at
least 3N for N > 7δ + 1. Suppose x ∈ [pi, pi+1] and y ∈ [pi+1, pi+2]. It is enough
to show that |d(x, pi+1) + d(pi+1, y)− d(x, y)| ≤ 42δ.

For the δ-slim triangle △piqipi+1, there exists u ∈ [pi, qi] such that d(x, u) ≤ 7δ.
Similarly for △pi+1qiri and △pi+1pi+2ri, there exists v ∈ [qi, ri] such that d(y, v) ≤
8δ (the precise constant is obtained by a routine computation).

We have the following inequalities:
|d(x, pi+1)− d(u, qi)| ≤ d(x, u) + d(pi+1, qi) ≤ 6δ + 7δ = 13δ,
|d(pi+1, y)− d(qi, v)| ≤ d(pi+1, qi) + d(y, v) ≤ 7δ + 8δ = 15δ,
and |d(u, v)− d(x, y)| ≤ d(x, u) + d(y, v) ≤ 6δ + 8δ = 14δ.
Hence |d(x, pi+1) + d(pi+1, y) − d(x, y)| ≤ |{d(x, pi+1) − d(u, qi)} + {d(pi+1, y) −
d(qi, v)}+ {d(u, v)− d(x, y)}| ≤ 42δ and we are done.

The claim follows from Lemma 1.28.

Next we show that γ(∞) = ξ. For this, by Lemma 2.3, we just need to check that
{pn} ∼ {xn}. Again, to show this, it is enough to check that {pk} ∼ {xnk−1

}, i.e.

limk→∞(pk.xnk−1
)p = ∞. By the above proof we know that (∪k−1

i=1 [pi−1, pi])
⋃
[pk−1, xnk−1

]
is a uniform quasi-geodesic. Thus, by stability of quasi-geodesics (Lemma 1.26), we
can find a constant D depending only on δ such that there is a point u ∈ [p, xnk−1

]
with d(pk−1, u) ≤ D; similarly there is a point v ∈ [p, pk] such that d(pk−1, v) ≤ D.
Therefore, we have d(u, v) ≤ 2D and (pk.xnk−1

)p ≥ (u.v)p ≥ d(p, u) − d(u, v) ≥
d(p, pk−1) − d(u, pk−1) − d(u, v) ≥ d(p, pk−1) − 3D. As limk→∞d(p, pk) = ∞,
we have limk→∞(pk.xnk−1

)p = ∞. Therefore, the proof is complete by taking
K2.4(δ) ≥ λ1.28(δ, 1, 42δ).

(2) Let λ := λ1.28(δ, 1, 42δ), and D1 := D1.26(δ, λ). Now, using the proof of
(1), we can construct two λ-quasi-geodesic rays γ1, γ2, parametrized by arc length,
joining a point p ∈ X to ξ1 and ξ2 respectively. Clearly, sup{(x.y)p : x ∈ γ1, y ∈
γ2} < ∞, else there exist xn ∈ γ1, yn ∈ γ2, n ∈ N, such that (xn.yn)p → ∞. Since
xn → γ1(∞) = ξ1 and yn → γ2(∞) = ξ2 by Lemma 2.3, this contradicts the fact
that ξ1 6= ξ2.

Let N1 = sup{(x.y)p : x ∈ γ1, y ∈ γ2}. Let xi ∈ γi, i = 1, 2, be such that
(x1.x2)p ≥ N1 − 1. Let ui ∈ [p, xi], i = 1, 2 be internal points of ∆px1x2. By

Lemma 1.26 we can find pi ∈
⌢
pxi such that d(pi, ui) ≤ D1, i = 1, 2. Now, let γ

′

i ⊂ γi
be the quasi-geodesic subray starting from pi, for i = 1, 2. We intend to show
that the arc length parametrization of the concatenation of γ

′

1, γ
′

2 and a geodesic
segment [p1, p2] joining p1, p2 is a uniform quasi-geodesic (see figure below).
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Suppose yi ∈ γ
′

i , i = 1, 2 and y3 ∈ [p1, p2]. It suffices to find K ≥ 1 and ǫ ≥ 0
independent of y1, y2, y3 such that the following conditions are satisfied.

Condition (1) l(
⌢
p1y1) + l(

⌢
p2y2) + d(p1, p2) ≤ Kd(y1, y2) + ǫ,

Condition (2) l(
⌢
p1y1) + d(p1, y3) ≤ Kd(y1, y3) + ǫ, and

Condition (3) l(
⌢
p2y2) + d(y2, y3) ≤ Kd(y2, y3) + ǫ,

where
⌢
piyi is the subsegement of γi between pi and yi for i = 1, 2; also for a

rectifiable curve segment α, l(α) denotes the length of the curve α. Since the
proofs of Conditions (2) and (3) are similar we shall give proofs of Conditions (1)
and (2) below.

First of all, we note that d(u1, u2) ≤ 4δ by Lemma 1.25 and hence d(p1, p2) ≤
d(p1, u1)+ d(p2, u2)+ d(u1, u2) ≤ 2D1 +4δ = D2, say. By Lemma 1.26 we can find
zi ∈ [p, yi] such that d(pi, zi) ≤ D1, i = 1, 2.

We shall first show that the difference between (y1.y2)p and (p1.p2)p is small.
Note that (y1.y2)p ≥ (z1.z2)p ≥ (p1.p2)p − {d(p1, z1) + d(p2, z2)} ≥ (p1.p2)p − 2D1.
Also, |(x1.x2)p−(u1.u2)p| = |d(p, u1)−(u1.u2)p| = d(u1, u2)/2 ≤ 2δ and |(p1.p2)p−
(u1.u2)p| ≤ d(p1, u1)+d(p2, u2) ≤ 2D1. Thus |(x1.x2)p− (p1.p2)p| ≤ 2(D1+ δ) and
hence (y1.y2)p ≥ (p1.p2)p − 2D1 ≥ (x1.x2)p − (4D1 + 2δ).

Since (y1.y2)p ≤ N1 and (x1.x2)p ≥ N1 − 1 we have

|(y1.y2)p − (p1.p2)p| ≤ (1 + 2δ + 4D1).

Next, suppose that ci ∈ [p, yi], i = 1, 2 and c ∈ [y1, y2] are the internal points of
∆py1y2. We shall show that d(pi, ci), i = 1, 2 are small.

Suppose qi ∈ [p, pi], i = 1, 2 are internal points of △pp1p2. Then d(pi, qi) ≤
d(p1, p2) ≤ D2. We can choose ri ∈ [p, yi] such that d(ri, qi) ≤ 2D1, by Lemma
1.26 applied to the subsegment of the quasi-geodesic γi between p, pi and p, yi.
Hence d(ci, ri) = |d(p, ci) − d(p, ri)| ≤ |d(p, ci) − d(p, qi)| + |d(p, qi) − d(p, ri)| ≤
(1 + 2δ + 4D1) + d(qi, ri). Hence d(ci, ri) ≤ (1 + 2δ + 6D1). This gives d(ci, pi) ≤
d(ci, ri) + d(ri, qi) + d(qi, pi) ≤ (1 + 2δ + 8D1 +D2). Since d(c, ci) ≤ 4δ we have

d(c, pi) ≤ d(c, ci) + d(ci, pi) ≤ (1 + 6δ + 8D1 +D2).

Thus for any point y3 ∈ [p1, p2] we have d(c, y3) ≤ d(p1, p2)+d(p1, c) ≤ (1+6δ+
8D1 + 2D2) = D3, say.

Proof of Condition 1 : Now,
∑2

i=1 l(
⌢
piyi) + d(p1, p2)

≤
∑2

i=1{λd(pi, yi) + λ}+D2, since γi are λ− quasi-geodesics.

≤
∑2

i=1 λ{d(yi, c) + d(c, pi)}+ 2λ+D2

≤ λd(y1, y2) + 2λ+D2 + 2λD3.

Proof of Condition 2 :

l(
⌢
p1y1) + d(p1, y3)

≤ {λd(p1, y1) + λ}+ d(p1, y3)
≤ λ{d(y1, y3) + d(y3, p1)}+ λ+ d(p1, y3)
≤ λd(y1, y3) + λ+ (λ+ 1)d(p1, p2)
≤ λd(y1, y3) + (λ+ (λ+ 1)D2).

As mentioned before, the proof of Condition 3 is exactly like the proof of Con-
dition 2. 2

Two quasi-geodesic rays ri : [0,∞) → X, i = 1, 2, in a hyperbolic metric space
(X, d) are said to be asymptotic if there exists C0 such that d(r1(t), r2(t)) ≤ C0
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for all t ∈ [0,∞). Using stability of quasi-geodesics (Lemma 1.26) the proofs of
the following lemma and corollary are standard (see Lemma 1.15, Chapter III.H,
[BH99]).

Lemma 2.5. Asymptotic rays are uniformly close: For all δ ≥ 0 and k ≥ 1
there is a constant D2.5 = D2.5(δ, k) such that the following holds:
Suppose X is a δ hyperbolic metric space and γ1, γ2 : [0,∞) → X are two asymptotic
k-quasi-geodesic rays. Then there exists T ≥ 0 such that γ1(t) ∈ ND2.5

(Im(γ2)) and
γ2(t) ∈ ND2.5

(Im(γ1)), for all t ≥ T .

Corollary 2.6. For all δ ≥ 0 and K ≥ 1 there is a constant D2.6 = D2.6(δ,K)
such that the following holds:

Suppose X is a δ-hyperbolic metric space and let γ1, γ2 be two K-quasi-geodesic
lines in X joining the same pair of points ξ1, ξ2 ∈ ∂X. Then the Hausdorff distance
between γ1 and γ2 is at most D2.6.

Lemma 1.26 and Lemma 2.5 combined with the proof of Lemma 1.29(2), imme-
diately imply the following result.

Lemma 2.7. For all δ ≥ 0, D
′

≥ 0 and k ≥ 1 there are constants D = D2.7(δ, k)

and L = L2.7(δ, k,D
′

) such that we have the following:
Suppose X is a δ-hyperbolic metric space. Then

(1) Let ∆ξ1ξ2ξ3 be a k-quasi-geodesic ideal triangle in X, i.e. a union of three
k-quasi-geodesic lines in X joining the pairs of points (ξi, ξj), i 6= j; 1 ≤
i, j ≤ 3. Let us denote the quasi-geodesic lines joining ξi, ξj by [ξi, ξj ]. Then
there is a point x ∈ X such that x ∈ ND([ξi, ξj ]) for all i 6= j.

(2) If x, x
′

∈ X are two points each of which is contained within a D
′

- neigh-
borhood of each of the sides of an ideal k-quasi-geodesic triangle ∆ξ1ξ2ξ3
then d(x, x

′

) ≤ L.

If a point x ∈ X is contained in the D
′

-neighborhood of each of the sides of
an ideal quasi-geodesic triangle ∆ξ1ξ2ξ3, then x will be called a D

′

-barycenter of
△ξ1ξ2ξ3. A D2.7-barycenter will be simply referred to as a barycenter.

Now, Lemma 2.7 along with the proof of Lemma 1.29(2) gives the following.

Lemma 2.8. Given δ ≥ 0, D
′

≥ 0, K1 ≥ 1 and K2 ≥ 0 there exists D =
D(δ,K1,K2, D

′

) such the following holds:
Suppose f : X → Y is a K1-quasi isometric embedding of δ-hyperbolic metric

spaces. Let △ξ1ξ2ξ3 ⊂ X and △∂(f)(ξ1)∂(f)(ξ2)∂(f)(ξ3) ⊂ Y be K2-quasi-geodesic

ideal triangles. If x ∈ X is a D
′

-barycenter of ∆ξ1ξ2ξ3, then f(x) ∈ Y is a D-
barycenter of ∆∂(f)(ξ1)∂(f)(ξ2)∂(f)(ξ3).

The barycenter map
Suppose X is a δ-hyperbolic metric space such that ∂X has more than two points.
Let us denote the set of all distinct triples of points in ∂X by ∂3X. Now, given
ξ = (ξ1, ξ2, ξ3) ∈ ∂3X we can, by Lemma 2.4, construct a K2.4(δ)-quasi-geodesic
ideal triangle, say ∆1, with vertices ξi, i = 1, 2, 3. Then, by Lemma 2.7(2) there
is a coarsely well defined barycenter of ∆1. Suppose bξ is a barycenter of ∆1.
Henceforth, we shall refer to it simply as a barycenter of the triple (ξ1, ξ2, ξ3). For
a different set of choices of the K2.4(δ)-quasi-geodesic lines joining the pairs (ξi, ξj),

suppose we obtain a new ideal triangle ∆2, and suppose b
′

ξ is a barycenter of



A COMBINATION THEOREM FOR METRIC BUNDLES 29

(ξ1, ξ2, ξ3) defined with respect to ∆2. Then by the stability of quasi-geodesic lines

(Corollary 2.6), b
′

ξ is a D1 := (D2.7(δ) +D2.6(δ,K2.4(δ))-barycenter of the triangle

∆1. Hence, by Lemma 2.7(2), d(bξ, b
′

ξ) ≤ L2.7(δ,K2.4(δ), D1) and we have:

Lemma 2.9. For every δ ≥ 0 there is a constant D2.9 = D2.9(δ) such that we have
the following:

Suppose X is a δ-hyperbolic metric space and ξ = (ξ1, ξ2, ξ3) ∈ ∂3X. If bξ and

b
′

ξ are two barycenters of ξ, then d(bξ, b
′

ξ) ≤ D2.9.

We shall say that a map f : U → (V, dV ) satisfying properties P1, · · · ,Pk is
coarsely unique if there exists C > 0 such that for any other map g : U → (V, dV )
satisfying properties P1, · · · ,Pk, and any u ∈ U , dV (f(u), g(u)) ≤ C.

Thus, from Lemma 2.9 we have a coarsely unique map φ : ∂3X → X, ξ 7→ bξ
mapping a triple of points to a barycenter. Any such map will be referred to as the
barycenter map. Now we are ready to state the main proposition of this subsection.

Proposition 2.10. Existence of qi sections for metric graph bundles: For
all δ

′

, N ≥ 0 and proper f : N → N there exists K0 = K0(f, δ
′

, N) such that the
following holds.
Suppose p : X → B is an (f,K)-metric graph bundle with the following properties:

(1) Each of the fibers Fb , b ∈ V(B) is a δ
′

-hyperbolic metric space with respect
to the path metric db induced from X.

(2) The barycenter maps φb : ∂
3Fb → Fb are uniformly coarsely surjective, i.e.

Fb is contained in the N -neighborhood of the image of φb for all b ∈ V(B).

Then there is a K0-qi section through each point of V(X).

Note that the constant K in Proposition 2.10 above is given by K = f(4) by

Proposition 1.7 and hence we may write K0 = K0(f,K, δ
′

, N) by making the im-
plicit dependence on K explicit. We also assume without loss of generality that for
all b ∈ V(B), the image of φb is contained in V(Fb).

Proof. Let us fix a set {φb}b∈V(B) of barycenter maps and let v ∈ V(B), x ∈ V(Fv).
First, suppose that x is contained in the image of the barycenter map φv. We will
construct a qi section through x. Choose a point ξv = (ξ1, ξ2, ξ3) ∈ ∂3Fv such that
φv(ξv) = x. Denote ξv = ξ and so φv(ξ) = x.

Let w, z ∈ V(B), w 6= z. Choose a geodesic γ joining w, z and let w =
w0, w1, . . . , wn−1, wn = z be the consecutive vertices on γ. By condition (2)(ii) of
the definition of metric graph bundles (Proposition 1.7), for all i, 0 ≤ i ≤ n−1, there
is a K-quasi-isometry fwiwi+1

: Fwi
→ Fwi+1

which sends any vertex yi ∈ V(Fwi
) to

a vertex yi+1 ∈ V(Fwi+1
) where yi and yi+1 are connected by an edge. By compo-

sition of n such maps we get a map fwz : Fw → Fz, which sends each point y ∈ Fw

to a point y
′

∈ V(Fz) such that d(y, y
′

) ≤ dB(w, z)+1 = n+1. Let fww : Fw → Fw

denote the identity map on Fw, for all w ∈ V(B). Now we make the following
observations:

1. Since the inclusion maps Fw →֒ X are uniformly metrically proper, by the
definition of metric graph bundles, the map fwz is coarsely uniquely determined.
In fact, if d(w, z) = n, n ∈ N, we have for any other map f

′

wz defined in the same

way, d(fwz(y), f
′

wz(y)) ≤ 2(n + 1), so that dz(fwz(y), f
′

wz(y)) ≤ f(2n + 2), for all
y ∈ Fw.
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2. Since each fwz is obtained as a composition of K-quasi-isometries it is a
quasi-isometry. Now, since the spaces Fw, w ∈ V(B), are δ

′

-hyperbolic and since
the map fwz is coarsely uniquely determined, we have a well defined map ∂(fwz) :
∂Fw → ∂Fz, by Lemma 2.2, and hence an induced map ∂3fwz : ∂3Fw → ∂3Fz,
∀w, z ∈ V(B).

Consider the map s = sξ,x : V(B) → X given by s(v) = x = φv(ξ), and
s(w) = φw((∂

3fvw(ξ))), for all w ∈ V(B), w 6= v. We show below that s (or
s(V(B))) is the required qi section through x.

3. Writing ξw = ∂3fvw(ξ) for all w 6= v, note that for any w, z ∈ V(B),
∂3fwz(ξw) = ξz . This follows from the fact that by the definitions of the maps fvz,
fwz, fvw we have, for all y ∈ Fv, d(fvz(y), fwz ◦ fvw(y)) ≤ dB(v, z) + dB(w, z) +
dB(v, w)+3, and thus dz(fvz(x), fwz◦fvw(x)) ≤ f(dB(v, z)+dB(w, z)+dB(v, w)+3).
The claim follows from Lemma 2.2(3).

4. Lastly, we show that there exists C ≥ 1 such that for any pair w, z of adja-
cent vertices of B, d(s(w), s(z)) ≤ C. By Condition 2 (ii) (Proposition 1.7) fwz

is a K-quasi-isometry. Let ξw = (β1, β2, β3) and ∂3fwz(ξw) = ξz = (η1, η2, η3).

Choose K2.4(δ
′

)-quasigeodesic ideal triangles ∆w and ∆z respectively in Fw and
Fz, with vertices ξi’s and ηi’s; by definition of the map s, s(w) and s(z) are

D2.7(δ
′

)-barycenters of these triangles. Now, the map fwz takes the ideal tri-
angle ∆w to an ideal K1-quasigeodesic triangle with vertices ηi’s, where K1 =
K2.4(δ

′

).K +K, and fwz(s(w)) is a D1 := {D2.7(δ
′

).K+K}-barycenter of the new
triangle. Thus, by Lemma 2.6, fwz(s(w)) is a D2-barycenter of the triangle ∆z,

where D2 = D2.6(δ
′

,K1)+D1. Hence, by Lemma 2.7, we have d(s(z), fwz(s(w))) ≤

L2.7(δ
′

,K2.4(δ
′

), D2). Since d(s(w), fwz(s(w))) = 1 we have d(s(w), s(z)) ≤ C :=

1 + L2.7(δ
′

,K2.4(δ
′

), D2).
For any w, z ∈ V(B), d(w, z) ≤ d(s(w), s(z)) by the definition of a metric graph

bundle. Also from Step (4) above, we have d(s(w), s(z)) ≤ C.d(w, z). Hence s is a
C-qi section.

If x ∈ V(Fv) is not in the image of φv, we can choose x1 ∈ V(Fv) such that
d(x, x1) ≤ N and x1 ∈ Im(φv). Now construct as above a C-qi section s = sξ,x1

,

and define a new section s
′

by setting s
′

(b) = s(b) for all b ∈ V(B), b 6= v and

s
′

(v) = x. This is an (N + C)-qi section passing through x. Thus we can take
K0 = N + C to finish the proof of the proposition. �

Applying this proposition to Example 1.8, we have a different proof of the fol-
lowing result of Mosher [Mos96].

Theorem 2.11. (Mosher [Mos96]) Let us consider the short exact sequence of
finitely generated groups

1 → A→ G→ Q→ 1.

such that A is non-elementary word hyperbolic. Then there exists a q(uasi)-i(sometric)
section σ : Q→ G. Hence, if G is hyperbolic, then so is Q.

Let p : X
′

→ B
′

be an (f, c,K)-metric bundle and let π : X → B be an
approximating metric graph bundle as in Lemma 1.21. As in Lemma 1.21 we
suppose that the maps ψX , ψB are K1− quasi-isometries. Let ψX′ (resp. ψB′) be
a quasi-isometric coarse inverse of the map ψX (resp. ψB) constructed as in the
proof of Lemma 1.1 (2). We assume that these maps are inverses of ψX , ψB when
restricted to the vertex sets V(X) and V(B) respectively. Moreover, we assume
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that ψX′ , ψB′ are K1-quasi-isometries. Also we assume that the restrictions of ψX

and ψX
′ to horizontal spaces (cf. Lemma 1.19) are K1-quasi-isometries.

Proposition 2.12. Existence of qi section for metric bundles: Let p : X
′

→
B

′

, π : X → B and ψB , ψX , ψX
′ , ψB

′ ,K1 be as above. Let V ⊂ B
′

be the collection

of points of B
′

that form the vertex set of B. Suppose we have a k-qi section
s : V → X. Then we have a k

′

= K2.12(f, c,K,K1, k)-qi section s
′

: B
′

→ X
′

such

that ψX ◦ s = s
′

◦ ψB.
Hence any metric bundle satisfying the properties

1) horizontal spaces are uniformly hyperbolic, and
2) the barycenter maps of these spaces are uniformly coarsely surjective
admits a uniform qi section through each point.

Proof. The proof of the first part of the proposition is clear once we describe what
the map s

′

is. For u ∈ V define s
′

(u) = ψB
′ ◦ s(u). Suppose u ∈ B \ V . Let v ∈ V ,

so that d(u, v) ≤ 1. Choose x ∈ Fv such that x can be joined to s
′

(u) by a curve in

X
′

of length at most c and define s
′

(v) = x.
Next note that if the fibers of a metric bundle are (uniformly) hyperbolic, then

so are the vertex spaces of an approximating metric graph bundle. This is because
the fibers of an approximating metric graph bundle are uniformly quasi-isometric
to the fibers of the metric bundle. Next (for the same reason) observe that if
the barycenter maps of the metric bundle are uniformly coarsely surjective, then
so are the barycenter maps of an approximating metric graph bundle. The last
part of the proposition now follows from Proposition 2.10 and the first part of the
proposition. �

2.2. Ladders. We use the term ladder below due to a similar ladder construction
in [Mit98b]. The term girth is taken from [BF92].

Definition 2.13. Suppose X is a metric bundle (resp. a metric graph bundle) over
B. Suppose X1 and X2 are two c1-qi sections of the metric bundle X. For each
b ∈ B (resp. b ∈ V(B)), join the points X1 ∩ Fb, X2 ∩ Fb by a geodesic in Fb. We
denote the union of these geodesics by C(X1, X2), and call it a ladder formed by
the sections X1 and X2.

Remark 2.14. If (as in the case of interest) the horizontal spaces are δ
′

-hyperbolic,

for some δ
′

≥ 0, the Hausdorff distance between any pair of ladders determined by
two given sections X1, X2 is uniformly bounded. In such a situation, C(X1, X2)
will refer to any one of them, and abusing notation we refer to C(X1, X2) as the
ladder determined by X1, X2.

For four qi sections Xi, i = 1, 2, 3, 4 we write C(X3, X4) ⊂ C(X1, X2) to mean
C(X3, X4) ∩ Fb ⊂ C(X1, X2) ∩ Fb for all b ∈ B (or V(B)).

Definition 2.15. Suppose X1 and X2 are two c1-qi sections of a metric bundle
(resp. metric graph bundle) X over B. We define dh(X1, X2) = inf{db(Fb∩X1, Fb∩
X2) : b ∈ B} (resp. inf{db(Fb ∩X1, Fb ∩X2) : b ∈ V(B)}) and call it the girth of
any ladder C(X1, X2), determined by X1, X2.

Definition 2.16. Neck of Ladders: Suppose X is a metric bundle (resp. metric
graph bundle) over B and let X1, X2 be two qi sections. Let C(X1, X2) be a ladder
determined by X1, X2 and let A ≥ 0. We define UA(X1, X2) to be the set {b ∈ B :
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db(X1 ∩ Fb, X2 ∩ Fb) ≤ A} (resp. {b ∈ V(B) : db(X1 ∩ Fb, X2 ∩ Fb) ≤ A}) and call
it the A-neck of the ladder C(X1, X2).

A first aim of this subsection is to show that under suitable restrictions on a
metric bundle or a metric graph bundle necks of ladders are quasi-convex subsets
of the base space. The next lemma leads to one of the main tools (Lemma 2.22) for
proving the combination theorem 4.3. This lemma originally appears in [Ham05]
in the context of metric fibrations. The proof that we give here is almost the same
as that of [Ham05], nevertheless we include it for the sake of completeness. For
convenience of exposition we suppress the dependence of the constants (defined in
the following lemma) on the parameters f, c,K.

Lemma 2.17. Let X be an (f, c,K)-metric bundle over B satisfying (Mk, λk, nk)-
flaring for all k ≥ 1 (cf. Definition 1.12), and let µk be the bounded flaring func-
tion (cf. Corollary 1.16). Then for all c1 ≥ 1 and R > 1 there are constants
D2.17 = D2.17(c1, R) and K2.17 = K2.17(c1) such that the following holds:
Suppose X1, X2 are two c1-qi sections of B in X and let A ≥ max{Mc1 , dh(X1, X2)}.

(1) Let γ : [t0, t1] → B be a geodesic such that
a) dγ(t0)(X1 ∩ Fγ(t0), X2 ∩ Fγ(t0)) = AR.
b) γ(t1) ∈ UA := UA(X1, X2) but for all t ∈ [t0, t1), γ(t) 6∈ UA.
Then the length of γ is at most D2.17(c1, R).

(2) UA is K2.17-quasi-convex in B.

(3) If dh(X1, X2) ≥ Mc1 then the diameter of the set UA is at most D
′

2.17 =

D
′

2.17(c1, A).

For convenience of exposition we will write λ for λc1 , n for nc1 and µ for µc1 in
the proof below. Also l(α) will denote the length of a curve α.

Proof. Since A ≥ dh(X1, X2), UA 6= ∅.

(1) Let φ : [t0, t1] → R be the function t 7→ dγ(t)(X1 ∩ Fγ(t), X2 ∩ Fγ(t)) and

t1 − t0 = n.L + ǫ where L ∈ Z+ and 0 ≤ ǫ < n. Suppose L ≥ 3. Consider the
sequence φ(t0 + ni), i = 1, · · · , L. Since φ(t0 + n.i) ≥Mc1 , for all i ∈ [1, L− 1],

λφ(t0 + ni) ≤ max{φ(t0 + n(i− 1)), φ(t0 + n(i+ 1))}

by the flaring condition.
Hence if φ(t0+n) > φ(t0) then φ(t0+n(i+1)) ≥ λφ(t0+ni) for all i ∈ [1, L−1].

Then, φ(t0 + nL)) ≥ λL−1φ(t0). Using bounded flaring (Corollary 1.16) we have,
φ(t0+nL) ≤ µ(n)max{φ(t1), 1}. Putting all these together and using the fact that
φ(t1) ≤ A and φ(t0) > A, we have L− 1 < log(µ(n))/logλ.

Hence, L ≥ 3 and φ(t0 + n) > φ(t0) implies

l(γ) < n(L+ 1) ≤ 2n+ n.logµ(n)/logλ.

Suppose φ(t0) ≥ φ(t0 + n) and let k ≤ L be the largest integer such that φ(t0) ≥
φ(t0 + n) ≥ · · · ≥ φ(t0 + k.n). If k ≥ 2, applying the flaring condition we get
φ(t0+(i−1)n) ≥ λφ(t0+in) for all i ∈ [1, k−1]. Then φ(t0) ≥ λk−1φ(t0+(k−1)n) >
λk−1A. Therefore k < 1 + {logφ(t0) − logA}/logλ = 1 + logR/logλ. Also, by the
first part of the proof, l(γ|[t0+k.n,t1]) < max{3n, 2n+ n logµ(n)/logλ}. Hence,

l(γ) ≤ n+ n{logR/logλ+max{3n, 2n+ n log(µ(n))/logλ}}.

Taking D2.17 = D2.17(c1, R) as the right hand side of the above inequality, part (1)
of the lemma is proved.
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(2) Suppose γ : [t0, t1] → B is a geodesic joining two points of UA, such that for all
t ∈ (t0, t1), γ(t) 6∈ UA. Without loss of generality, we may assume that t1 − t0 > n.
Let t2 = t0 + n. Then by bounded flaring, we have φ(t2) ≤ µ(n)φ(t0) ≤ µ(n).A.
Again by the first part of the lemma l(γ|[t2,t1]) ≤ D2.17(c1, φ(t2)/A). Since, the func-
tion D2.17 is increasing in the second variable, given that the first variable is fixed,
we have l(γ) ≤ n +D2.17(c1, µ(n)). Hence, taking K2.17(c1) = n +D2.17(c1, µ(n))
we are through.

(3) Suppose b1, b2 ∈ UA, dB(b1, b2)/2 = L.n + ǫ, 0 ≥ ǫ < n. Let γ : [−(L.n +
ǫ), (L.n + ǫ)] → B be a geodesic joining b1, b2, so that γ(0) is the midpoint of the
geodesic γ. The bounded flaring condition gives dγ(t)(Fγ(t) ∩ X1, Fγ(t) ∩ X2) ≤
A.µ(n) for t = −L.n, L.n.

As in the proof of the first part of the lemma, dγ(t)(Fγ(t) ∩ X1, Fγ(t) ∩ X2) ≥

λL.dγ(0)(Fγ(0)∩X1, Fγ(0)∩X2) either for t = L.n or for t = −L.n. Since dγ(0)(Fγ(0)∩

X1, Fγ(0)∩X2) ≥Mc1 , it follows that λ
L.Mc1 ≤ A.µ(n). Hence, L ≤ log(A.µ(n)/Mc1)/logλ.

�

This lemma has the following analog for metric graph bundles. We omit the proof
since it is an exact replica of the proof of the previous lemma (see also Remark 2.19
below). We just need to point out that in the proof of the first part of the lemma
the function φ should have [t0, t1]∩Z as domain and for the latter parts it is useful
to recall that in a graph, points on a geodesic refer to the vertices on the geodesic.
Also, as in Lemma 2.17 above, we suppress the dependence of the constants on the
parameters f,K.

Lemma 2.18. Let X be an (f,K)-metric graph bundle over B satisfying (Mk, λk, nk)-
flaring for all k ≥ 1 (cf. Definition 1.12), and let µk be the bounded flaring func-
tion (cf. Corollary 1.14). Then for all c1 ≥ 1 and R > 1 there are constants
D2.18 = D2.18(c1, R) and K2.18 = K2.18(c1) such that the following holds:
Suppose X1, X2 are two c1-qi sections of B in X and let A ≥ max{Mc1 , dh(X1, X2)}.

(1) Let γ : [t0, t1] → B be a geodesic, t0, t1 ∈ Z, such that
a) dγ(t0)(X1 ∩ Fγ(t0), X2 ∩ Fγ(t0)) = AR.
b) γ(t1) ∈ UA := UA(X1, X2) but for all t ∈ [t0, t1) ∩ Z, γ(t) 6∈ UA.
Then the length of γ is at most D2.18(c1, R).

(2) UA is K2.18-quasi-convex in B.

(3) If dh(X1, X2) ≥ Mc1 then the diameter of the set UA is at most D
′

2.18 =

D
′

2.18(c1, A).

Remark 2.19. We note in particular that in Lemma 2.17 (1), all that we need in
order to make an analogous statement for a metric graph bundle is that φ(t) ≥Mc1 ,
for all t.

Remark 2.20. It is not a priori clear that if a metric bundle satisfies a flaring
condition, then an approximating metric graph bundle does so too (though this
does follow a posteriori from Theorem 4.3 and Proposition 5.8). One reason is that
the flaring condition is defined for any two qi lifts of a geodesic segment in the base.
However, geodesics in the base space of the approximating metric graph bundle
need not come from a geodesic in the base space of the metric bundle.

Lemma 2.22 below addresses this issue and proves that conclusions similar to
those of Lemma 2.17 above remain true for the approximating metric graph bundle.



34 MAHAN MJ AND PRANAB SARDAR

This is the main reason for giving explicitly a proof of Lemma 2.17 here in the
context of metric bundles rather than for metric graph bundles (Lemma 2.18).

Let p : X
′

→ B
′

be an (f, c,K)-metric bundle satisfying (Mk, λk, nk)-flaring
for all k ≥ 1 and let π : X → B be an approximating metric graph bundle as in
Lemma 1.21. As in Lemma 1.21 we suppose that the maps ψX , ψB are K1− quasi-
isometries. Let ψX′ (resp. ψB′) be a quasi-isometric coarse inverse of the map ψX

(resp. ψB) constructed as in the proof of Lemma 1.1 (2). We assume that these
maps are inverses of ψX , ψB when restricted to the vertex sets V(X) and V(B)
respectively. Moreover, we assume that ψX′ , ψB′ are K1-quasi-isometries. Also we
assume that the restrictions of ψX and ψX

′ to horizontal spaces (cf. Lemma 1.19)
are K1-quasi-isometries.

Let B be δ0-hyperbolic. Suppose further that for every k-qi section of the ap-
proximating metric graph bundle, we obtain a k

′

-qi section of the original bundle.
For convenience of exposition we suppress the dependence of the constants (defined
in the following lemma) on the parameters f, c,K, δ0 etc.

Lemma 2.21. With notation as above, let X1, X2 be two k-qi sections of the ap-
proximating metric graph bundle and A0 ≥ 0. Suppose dh(X1, X2) ≤ A0 and let
A1 = K1.max{A0 +K1 + 1,Mk

′ +K1}. Then the following hold.
(1) For A ≥ A1, UA(X1, X2) is K2.21 = K2.21(k,A)-quasi-convex in B.
(2) Suppose du(Fu∩X1, Fu∩X2) = C ≥ A for some u ∈ V(B). Then dB(u, UA(X1, X2)) ≤
D2.21(k,C).
(3) Suppose dh(X1, X2) ≥ K1(Mk

′ +K1). Then the diameter of the set UA(X1, X2)

is at most D
′

2.21(k,A).

Proof. For the proof of this lemma we introduce the notation d
′

u for the path metric

on X
′

u induced from X
′

. Also let A2 = A1/K1 − 1.

(1) By Proposition 2.12 we have two k
′

-qi sections X
′

1, X
′

2 of the metric bundle

X
′

(corresponding to X1, X2 respectively) where k
′

= K2.12(f, c,K,K1, k). By

choice of the constant A1, we know that U := UA2
(X

′

1, X
′

2) is a nonempty K
′

:=

K2.17(k
′

)−quasiconvex subset of B
′

. Hence ψB
′ (U) ⊂ B is D := {K1.K

′

+K1 +
D1.26(λ,K1)}-quasiconvex. Also note that ψB

′ (U) ⊂ UA(X1, X2).

Now suppose u ∈ (UA(X1, X2) \ ψB
′ (U)) is a point of V(B). Then d

′

u(X
′

1 ∩

Fu, X
′

2 ∩ Fu) ≤ K1A + K1. It follows that either u ∈ U or dB′ (u, U) ≤ D1 =

D2.17(k
′

, (A.K1 + K1)/A2) (by Lemma 2.17(1)). In any case, dB(u, ψB
′ (U)) ≤

D2 = K1D1 +K1. Hence, ψB
′ (U) ⊂ UA(X1, X2) ⊂ ND2

(ψB
′ (U)). Since ψB

′ (U)
is a D-quasi-convex set and since B is λ-hyperbolic, it follows that UA(X1, X2) is
K2.21(= (2λ+D +D2))−quasi-convex.

(2) If u ∈ U then we set D2.21(k,C) = 0. Otherwise d
′

u(X
′

1 ∩ Fu, X
′

2 ∩ Fu) ≤
C.K1 +K1 since the restriction of the map ψX to the horizontal space Fu is a K1-
quasi-isometry. Hence by Lemma 2.17(1) we have dB′ (u, U) ≤ D3 = D2.17(k

′

, (C.K1+
K1)/A2). Using the fact that ψB

′ is a K1-quasi-isometry, we have dB(u, ψB
′ (U)) ≤

K1.D3 + K1. Hence d(u, UA(X1, X2)) ≤ K1D3 + K1. Set D2.21(k,C) = K1 +

K1.D2.17(k
′

, A3) where A3 = max{1, (C.K1 +K1)/A2}.

(3) By the given condition, for all z ∈ U , d
′

z(X
′

1 ∩ Fz, X
′

2 ∩ Fz) ≥ Mk
′ and so

we can apply the flaring condition. Now let b1, b2 ∈ U and let b ∈ [b1, b2]; then

d
′

b(X
′

1 ∩ Fb, X
′

2 ∩ Fb) ≤ µk
′ (K2.17(k

′

)) = D4, say, by Corollary 1.16.



A COMBINATION THEOREM FOR METRIC BUNDLES 35

Finally, as noted in Remark 2.19, what we really used in the proof of Lemma
2.17(1) is the fact that the value of the function φ is always greater than or equal

to Mk
′ . Thus in the same way we have dB′ (b1, b2) ≤ D2.17(k

′

, D4/A2). Taking

D
′

2.21(k,A) = K1 +K1.D2.17(k
′

, D4/A2) completes the proof of the lemma. �

We unify the content of the last two lemmas in the following lemma in the form
that shall use later.

Lemma 2.22. Given a function f : N → N, c1 ≥ 1 and A0 ≥ 0, there exist
A

′

2.22 = A
′

2.22(f, c1, A0) ≥ A0, A
′′

2.22 = A
′′

2.22(f, c1) and three functions K2.22, D2.22 :

[A
′

,∞) → R+, D
′

2.22 : [A
′′

,∞) → R+ such that the following hold:
Suppose X is an (f,K)-metric graph bundle over B such that

1. either it satisfies a flaring condition
2. or it is an approximating metric graph bundle of a metric bundle that satisfies a
flaring condition.

Suppose B is a hyperbolic metric space. Let C(X1, X2) be a ladder formed by
two c1-qi sections X1, X2. Let dh(X1, X2) ≤ A0.

(1) If A ≥ A
′

2.22 then UA(X1, X2) is K2.22(A)-quasi-convex. Suppose du(Fu ∩
X1, Fu ∩ X2) = C ≥ A for some u ∈ V(B). Then d(u, UA(X1, X2)) ≤
D2.22(C).

(2) If dh(X1, X2) ≥ A
′′

2.22 then the diameter of the set UA(X1, X2) is at most

D
′

2.22(A).

The dependence of the functionsK2.22, D2.22, D
′

2.22 on c1, (which is implicit here)
will be made explicit in the next section. Also we shall suppress the dependence of
A

′

2.22, A
′′

2.22 on f .

3. Construction of Hyperbolic Ladders

In this section we prove the main technical result leading to the combination
theorem 4.3. A brief sketch follows: For a metric bundle, we first replace it with its
approximating metric graph bundle. Then we work exclusively with metric graph
bundles. In section 3.2 we prove that, under suitable hypotheses, ladders in a metric
graph bundle are hyperbolic metric spaces when the metric graph bundle satisfies
the properties of Lemma 2.22. To achieve this we first prove this result in section
3.1 when the ladder is of small girth. Then, to prove hyperbolicity in the general
case, a ladder is decomposed into small-girth ladders using qi sections. This gives
a finite sequence of hyperbolic metric spaces and we check that the conditions of
Corollary 1.52 are satisfied.

Notation and conventions: We fix the following notation and conventions to
be used till the end of section 4. For us p : X → B will be either an f− metric
graph bundle satisfying a flaring condition, or an approximating (f−) metric graph
bundle obtained from a metric bundle satisfying a flaring condition.
The symbols g, µk will have the same connotation as in Lemma 1.13 and Corollary
1.14 respectively. We shall assume that B is δ-hyperbolic and each of the horizontal
spaces Fb is δ

′

-hyperbolic for all vertices b of B. We assume that the barycenter
maps ∂3Fb → Fb are (uniformly) coarsely surjective. Thus by Proposition 2.10 we
know that the metric graph bundle admits a uniform (K0, say)qi section through
any point of X. Lastly, often the dependence on these functions and constants will
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not be explicitly stated if it is clear from context. By points in a graph we shall
always mean vertices, unless otherwise specified.

Lemma 3.1. For all c1 ≥ 1, there exists C3.1(= C3.1(c1)) such that the following
holds.
Suppose X1 and X2 are two c1-qi sections. Then through each point x ∈ C(X1, X2)
there exists a C3.1-qi section contained in C(X1, X2).

Proof. We already know that there is a K0-qi section, say Y1, through x in X. Now
define a new section Y2 as follows: let Y2 ∩ Fb be a nearest point projection, in the
intrinsic metric on the horizontal space Fb, of Y1 ∩ Fb onto the horizontal geodesic
C(X1, X2) ∩ Fb. This defines a set theoretic section. We need to check that this
is indeed a qi section. For this it is enough to check that ∀ b1, b2 ∈ V(B), with
d(b1, b2) = 1, the distance between Fb1 ∩ Y2 and Fb2 ∩ Y2 is uniformly bounded.
This in turn follows immediately from Lemma 1.13, and Lemma 1.38 by choosing
C3.1 := c′ +D1.38(δ

′, g(c′)), where c′ = 2 max{K0, c1}. �

The proof of the previous lemma parallels a construction of [Mit98a]. In our
setting this can be stated as follows: Let X1, X2 be two c1−qi-sections of a metric
graph bundle p : X → B, where each fiber (but not necessarily the base B) is
uniformly δ-hyperbolic. Let C(X1, X2) be the associated ladder. By construction,
λb := C(X1, X2)∩Fb is a geodesic in the metric space (Fb, db). Define πb : Fb → λb
as the nearest point projection of Fb onto the geodesic λb in the metric db. Let
ΠX1,X2

: X → C(X1, X2) be given by ΠX1,X2
(x) = πb(x), ∀x ∈ Fb. Extend ΠX1,X2

to all other edges in the usual way by sending the interior of an edge to the image
of one of its end-points. The main technical theorem of [Mit98a] states

Theorem 3.2. [Mit98a] For X,B, p as above, and c1 ≥ 1, there exists C ≥ 1 such
that for two c1−qi sections X1, X2, and ∀x, y ∈ X,

d(ΠX1,X2
(x),ΠX1,X2

(y)) ≤ Cd(x, y) + C.

Equivalently, ΠX1,X2
is a coarse Lipschitz retract of X onto C(X1, X2).

Simplification of Notation: We fix the following conventions and notation
to be followed in the rest of this section. Fix c1 ≥ K0. Let ci+1 = Ci

3.1(c1),
i = 1, 2, 3 where Ci

3.1 is the i-th iterate of the function C3.1. Note that if Y is a
k-qi section, and k ≤ c4, then it is also a c4-qi section. We know that our metric
graph bundle satisfies the bounded flaring condition. We shall denote the function
µc4 (see Corollary 1.14) simply by µ.

For two qi-sections X1, X2 in X and D ≥ 0 we shall denote by CD(X1, X2) the
D-neighborhood of the ladder C(X1, X2) in X.

From the definition of a ladder, we see that a ladder in a metric graph bundle is
not connected. However, the first part of the next lemma says that a large enough
neighborhood of a ladder is connected.

Lemma 3.3. Let X1, X2 be two c1−qi-sections in X. Then
1) For any D ≥ 2c1, CD(X1, X2) is connected.
2) Let γ be a geodesic in B and let γ̃ be its lift in X1. Then, for any D ≥ 2c1,
l(γ̃) ≤ 2c1.l(γ) where l(γ̃) is the length computed in the D-neighborhood of the qi
section X1.
3) Let X3 be a c2-qi section lying inside C(X1, X2). Then, for any D ≥ 2c2, X3

is the image of a 2c2-Lipschitz map from V(B) into CD(X1, X2) equipped with the
path metric induced from X. In particular, it is a 2c2-qi section in CD(X1, X2).
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Proof. Let s : V(B) → X be a c1-qi section and let b1, b2 ∈ V(B) be adjacent ver-
tices in B. Then d(s(b1), s(b2)) ≤ c1.dB(b1, b2) + c1 = 2c1. Conclusion (1) follows.
2) follows from (1).
3) The first statement follows by taking c2 in place of c1 in (1). Since the pro-
jection map of the metric graph bundle X to its base space B is 1-Lipschitz by
definition, it follows that a c2-qi section lying inside C(X1, X2) is a 2c2-qi section
inside CD(X1, X2), where the latter is equipped with the path metric induced from
X. �

3.1. Hyperbolicity of ladders: Special case. This subsection is devoted to
proving the hyperbolicity of small girth ladders. Let X1, X2 be two c1-qi sections
inX and let dh(X1, X2) ≤ A0, say. Let A := A

′

2.22(c4, A0). We further assume, with
reference to Lemma 2.22, that for any two k-qi sections X3, X4, k ≤ c4, lying inside
the ladder C(X1, X2), the set UA(X3, X4) ⊂ B is K-quasi-convex. We shall write
simply U(X3, X4) instead of UA(X3, X4) in what follows. Dependence of constants
in the various lemmas and propositions below on the constants associated with the
bundle will be implicit rather than explicit.

The rest of this subsection is devoted to proving the following:

Proposition 3.4. For all L ≥ 2c4, and c1, A0 as above, there exist δ3.4(= δ3.4(c1, A0, L)) ≥
0, K3.4(= K3.4(c1, A0, L)) ≥ 0, D3.4(= D3.4(c1, A0, L)) ≥ 0 such that we have the
following:
(1) CL(X1, X2) is δ3.4-hyperbolic with the path metric induced from X, and X1,X2

are K3.4-quasiconvex in CL(X1, X2).

(2) If dh(X1, X2) ≥ A
′′

2.22(c1), then X1, X2 are D3.4-cobounded in CL(X1, X2).

Idea of the proof: The proof of this proposition is rather long. Therefore,
we shall break it up into several lemmas. The idea is as follows. We define a
set of discrete paths c(x, y), one for each pair of points x, y ∈ V(X) ∩ C(X1, X2)
and check that they satisfy the three properties of Corollary 1.40. Given x, y ∈
V(X) ∩ C(X1, X2) first we construct two qi sections through them. Then, c(x, y)
consists of three parts: two of them are in the two sections containing x, y and the
other one is a horizontal geodesic of uniformly bounded length. Then any problem
of length computation is transferred to the sections. For instance computing the
Hausdorff distance between two paths or proving slimness of triangles becomes easy
when we apply this strategy to the parts of the paths that already lie in a quasi-
isometric section of the hyperbolic base space B. Lemma 2.22 and the bounded
flaring condition are the main tools of the proof.

We denote by d
′

the path metric on a neighborhood of a ladder induced from
X. Also Hd

′

will denote the Hausdorff distance between sets in a neighborhood of
ladder and HdB will denote Hausdorff distance between sets in B.

Definition of path family: Let x, y ∈ C(X1, X2) be two vertices. By Lemma
3.1 we can choose two c2-qi sections X3 and X4 through x and y respectively in
C(X1, X2). Recall that U(X3, X4) ⊆ V(B) is a K-quasi-convex subset of B. Join
p(x) to U(X3, X4) by a shortest geodesic γx,y in B ending at bx,y ∈ U(X3, X4). Let
γ̃x,y be the lift of γx,y in X3, ending at sx,y. Let tx,y be the lift of bx,y in X4. We
note that dbx,y

(tx,y, sx,y) ≤ A. Now let βx,y be a geodesic in B joining p(y) and bx,y,

and let β̃x,y be the lift of βx,y in X4. We define c(x, y) to be the union of the three

paths: γ̃x,y, β̃x,y and the sequence of consecutive vertices on the geodesic segment
Fbx,y

∩ C(X1, X2) between tx,y and sx,y. We see that there is an asymmetry in
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the definition of c(x, y) and a number of choices are involved. However, for each
unordered pair {x, y} make the choices once and for all and choose either c(x, y) or
c(y, x) as the path joining the points x, y. (See figure below.)

Path families: Special case

Lemma 3.5. Given D1 ≥ 0 there exist constants D3.5 = D3.5(c1, A,D1) and

D
′

3.5 = D
′

3.5(c1, A,D1) such that the following holds:

Let x, y ∈ V(X) ∩ C(X1, X2) with d(x, y) ≤ D1. Then, d
′

(x, y)- the distance

between x, y in the path metric on CL(X1, X2), is bounded by D
′

3.5. Moreover, the
length of the path c(x, y) is at most D3.5.

Proof. Let ỹ be the lift of p(x) in X4. Since p is a 1-Lipschitz map, dB(p(y), p(ỹ)) ≤
D1. Hence, d(y, ỹ) ≤ c2.D1 + c2, since X4 is a c2-qi section. Therefore d(ỹ, x) ≤
c2.D1 + D1 + c2. Then, since inclusions of the fibers of the map p are uniformly
metrically proper embeddings as measured by f , we have dp(x)(ỹ, x) ≤ f(c2.D1 +
D1 + c2).

By Lemma 3.3(2), d
′

(y, ỹ) ≤ 2c2.D1. Thus d
′

(x, y) ≤ 2c2.D1+f(c2.D1+D1+c2)

and the first part of the lemma is proved, with D
′

3.5 := 2c2.D1+f(c2.D1+D1+c2).
Next by Lemma 2.22(2), we have

dB(p(x), bx,y) ≤ D
′

1 := D2.22(c2,max{A, f(c2D1 +D1 + c2)}).

Thus dB(p(y), bx,y) ≤ D1 +D
′

1. From this and Lemma 3.3(2), the second part of

the lemma follows, with D3.5 := A+ 2c2.D1 + 4c2.D
′

1. �

Remark 3.6. Note that in the first part of Lemma 3.5, we have not assumed that
C(X1, X2) is of small girth.

We next show that the path family is coarsely well-defined, i.e. ambiguities
in the definition of the paths can be ignored. More precisely, the different choices of
paths joining the same pair of points are at a uniformly bounded Hausdorff distance
from each other.

Suppose X3, X
′

3 are two k-qi sections in C(X1, X2) containing x; and X4 is a

k-qi section containing y, where k ≤ c4. Consider the two paths c(x, y) and c
′

(x, y)

joining x, y defined using X3, X4 and X
′

3, X4 respectively (defined as before).

Let V := U(X1, X2), W := U(X3, X4) and W
′

:= U(X
′

3, X4). Then V ⊂ W ,

V ⊂ W
′

. Join p(x) to V by a shortest geodesic γ in B and let γ̃, γ̃
′

be the lifts of

γ in X3 and X
′

3 respectively. Similarly join p(x) to W,W
′

respectively by shortest

geodesics γx,y and γ
′

x,y and let γ̃x,y and γ̃
′

x,y be their lifts in X3 and X
′

3 respectively.
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Let sx,y, s
′

x,y be the end points of γ̃x,y, γ̃
′

x,y respectively, and let bx,y, b
′

x,y be the

end points of γx,y and γ
′

x,y.

Lemma 3.7. With notation (in particular k,A) as above, there exists D3.7(=

D3.7(k,A)) such that dB(bx,y, b
′

x,y) is bounded by D3.7.

Proof. Note that V ⊂W ∩W
′

, and that V,W,W
′

are all K-quasiconvex subsets of
B. Therefore, by Lemma 1.31 (2), concatenating γx,y (resp. γ

′

x,y) with a geodesic

joining bx,y (resp. b
′

x,y) to the terminal point of γ, we obtain (3 + 2K)-quasi-
geodesics. These quasi-geodesics have the same end points as those of γ. Since
B is a δ-hyperbolic graph, by Lemma 1.26 we can find b, b

′

∈ γ ∩ V(B), such that

dB(bx,y, b) ≤ D3, dB(b
′

x,y, b
′

) ≤ D3, where D3 := D1.26(δ, 3+2K). If b ∈ [p(x), b
′

] ⊂

γ then bx,y ∈ N2.D3+δ(γ
′

x,y). Otherwise, b
′

∈ [p(x), b], so that b
′

x,y ∈ N2.D3+δ(γx,y).

Without loss of generality, let us assume that b ∈ [p(x), b
′

].

The end points of γ are in U(X3, X
′

3) which is a K-quasi-convex set in B. Hence
by the bounded flaring condition (Corollary 1.14), we know that for all points b2 ∈ γ,

db2(X3 ∩ Fb2 , X
′

3 ∩ Fb2) ≤ A.µ(K). In particular, db(X3 ∩ Fb, X
′

3 ∩ Fb) ≤ A.µ(K).
Similarly, db(X3 ∩ Fb, X4 ∩ Fb) ≤ A.µ(D3). Thus,

db(X
′

3 ∩ Fb, X4 ∩ Fb) ≤ db(X3 ∩ Fb, X
′

3 ∩ Fb) + db(X3 ∩ Fb, X4 ∩ Fb)
≤ A.µ(K) +A.µ(D3).

We know that [p(x), b
′

] ⊂ Nδ+D3
(γ

′

x,y). Let b
′

1 ∈ γ
′

x,y ∩ V(B) be such that

dB(b, b
′

1) ≤ δ + D3. Then db′
1

(X
′

3 ∩ Fb
′

1

, X4 ∩ Fb
′

1

) ≤ µ(δ + D3).max{db(X
′

3 ∩

Fb, X4 ∩ Fb), 1} and hence db′
1

(X
′

3 ∩ Fb
′

1

, X4 ∩ Fb
′

1

) ≤ A.µ(δ +D3){µ(D3) + µ(K)}.

Denoting the right hand side of the preceding inequality by D
′

, we have, by
Lemma 2.22(1), dB(b

′

1, b
′

x,y) ≤ D2.22(k,D
′

). Since, dB(bx,y, b
′

x,y) ≤ dB(bx,y, b) +

dB(b, b
′

1) + dB(b
′

1, b
′

x,y), therefore

dB(bx,y, b
′

x,y) ≤ D3 + (δ +D3) +D2.22(k,D
′

) = δ + 2D3 +D2.22(k,D
′

).

Taking D3.7 := δ + 2D3 +D2.22(k,D
′

) completes the proof of the lemma. �

Lemma 3.8. With k,A as above there exists D3.8(= D3.8(k,A)) such that the

Hausdorff distance between c(x, y) and c
′

(x, y) is bounded by D3.8.

Proof. Step 1: By Lemma 3.7 we have dB(bx,y, b
′

x,y) ≤ D3.7(k,A). Hence, by δ-

hyperbolicity of B, HdB(βx,y, β
′

x,y) ≤ δ+D3.7(k,A). Since X4 is a k-qi section, we
have, by Lemma 3.3(2),

Hd
′

(β̃x,y, β̃
′

x,y) ≤ 2k.(δ +D3.7(k,A)).

Step 2: Similarly,

Hd
′

([sx,y, tx,y], [s
′

x,y, t
′

x,y]) ≤ A+ 2k.D3.7(k,A).

where [sx,y, tx,y], [s
′

x,y, t
′

x,y] are the horizontal geodesic segments of c(x, y) and

c
′

(x, y) respectively, each of length at most A.

Step 3: Now we calculate the Hausdorff distance between γ̃x,y and γ̃
′

x,y. Let

γ̃
′′

x,y be the lift of γx,y in X
′

3. Then, as in Step 1, we have Hd
′

(γ̃
′

x,y, γ̃
′′

x,y) ≤

2k.(δ+D3.7(k,A)). Since γ joins two points of U(X3, X
′

3) which is K-quasi-convex
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in B, it follows that db2(X3 ∩ Fb2 , X
′

3 ∩ Fb2) ≤ A.µ(K) for all points b2 ∈ γ by
the bounded flaring condition. Since there is a point b ∈ γ such that dB(b, bx,y) ≤
D3 := D1.26(δ, 3 + 2K), we have the following using the boundedness of the flaring
condition again:

dbx,y
(X3 ∩ Fb2 , X

′

3 ∩ Fb2) ≤ µ(D3).max{db(X3 ∩ Fb, X
′

3 ∩ Fb), 1}
≤ A.µ(D3).µ(K).

Let A1 = A.µ(D3).µ(K); then UA1
(X3, X

′

3) is K
′

:= K2.22(c2, A1)-quasi-convex.

Note that γx,y joins two points of UA1
(X3, X

′

3). Therefore, by Lemma 2.22 (1) and

the bounded flaring condition, we have for all b1 ∈ γx,y, db1(X3 ∩ Fb1 , X
′

3 ∩ Fb1) ≤

µ(K
′

).A1. Hence Hd
′

(γ̃x,y, γ̃
′′

x,y) ≤ µ(K
′

).A1, and therefore

Hd
′

(γ̃x,y, γ̃
′

x,y) ≤ Hd
′

(γ̃x,y, γ̃
′′

x,y) +Hd
′

(γ̃
′

x,y, γ̃
′′

x,y)

≤ µ(K
′

).A1 + 2k.(δ +D3.7(k,A)).

Finally, since

Hd
′

(c(x, y), c
′

(x, y))

≤ max{Hd
′

(β̃x,y, β̃
′

x,y), Hd
′

([sx,y, tx,y], [s
′

x,y, t
′

x,y]), Hd
′

(γ̃x,y, γ̃
′

x,y)},

the lemma follows, taking D3.8 := µ(K
′

).A1 + 2k.(δ +D3.7(k,A)). �

Lemma 3.9. With notation (in particular k,A) as above, there exists D3.9(=
D3.9(k,A)) such that if c(x, y), c(y, x) are defined using two k-qi sections X3, X4

where k ≤ c4, x ∈ X3 and y ∈ X4, then Hd(c(x, y), c(y, x)) is bounded by D3.9.

Proof. Let α be a geodesic in B joining bx,y and by,x. Since α joins two points of
U(X3, X4) which is a K-quasiconvex subset of B, we have:
i) db(Fb ∩X3, Fb ∩X4) ≤ µ(K)A for all b ∈ α, by the bounded flaring condition for
metric graph bundles.
ii) γx,y ∪ α is a (3 + 2K)-quasi-geodesic by Lemma 1.31 (2). Hence, HdB(γx,y ∪
α, [p(x), by,x]) ≤ D1.26(δ, 3+2K), by Lemma 1.26. Similarly,HdB(γy,x∪α, [p(y), bx,y]) ≤
D1.26(δ, 3 + 2K).

Therefore, for all z ∈ γ̃y,x, p(z) is in the D1.26(δ, 3 + 2K)-neighborhood of

[p(y), bx,y]. Thus z is contained in the 2k.D1.26(δ, 3 + 2K)-neighborhood of β̃x,y ⊂
c(x, y) using the fact that X4 is a k-qi section and Lemma 3.3 (2).

Again for all z ∈ Fby,x
∩ V(C(X1, X2)), dby,x

(z, sy,x) ≤ A. It follows that in this
case z is contained in the (A+ 2k.D1.26(δ, 3 + 2K))-neighborhood of c(x, y).

Now, suppose z ∈ β̃y,x. Since B is δ-hyperbolic, p(z) ∈ Nδ(γx,y ∪ α). If
p(z) ∈ Nδ(γx,y) then z is contained in the 2k.δ-neighborhood of γ̃x,y ⊂ c(x, y).
Otherwise, p(z) ∈ Nδ(α). Suppose b1 ∈ α such that dB(p(z), b1) ≤ δ. As in the
first paragraph of the proof we have db1(Fb1 ∩X3, Fb1 ∩X4) ≤ µ(K)A. Using the
fact that HdB(γx,y ∪ α, [p(x), by,x]) ≤ D1.26(δ, 3 + 2K) we see that z is contained

in the (µ(K)A+ 2k(δ +D1.26(δ, 3 + 2K)))-neighborhood of β̃x,y ⊂ c(x, y).
It follows that c(y, x) is contained in the (µ(K)A + 2k(δ + D1.26(δ, 3 + 2K)))-

neighborhood of c(x, y). Similarly it follows that c(x, y) is contained in the (µ(K)A+

2k(δ + D1.26(δ, 3 + 2K)))-neighborhood of c(y, x). Hence Hd
′

(c(x, y), c(y, x)) ≤
D3.9 := µ(K)A+ 2k(δ +D1.26(δ, 3 + 2K)). �

Corollary 3.10. With notation (in particular k,A) as above, there exists D3.10(=
D3.10(k,A)) such that the following holds.
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Let x, y ∈ C(X1, X2). Then the Hausdorff distance between any pair of paths joining
x, y defined in the same way as c(x, y) using k-qi sections passing through x, y, is
at most D3.10.

Proof. Choose D3.10 := 2(D3.8 +D3.9). �

Lemma 3.11. With notation (in particular k,A) as above, there exists D3.11(=
D3.11(k,A)) such that the following holds.
Suppose X3, X4, X5 are k-qi sections in C(X1, X2) such that z ∈ X5, y ∈ X4 ⊂
C(X1, X5) ⊂ C(X1, X2) and x ∈ X3 ⊂ C(X1, X4) ⊂ C(X1, X2). Then the triangle
formed by the paths c(x, y), c(y, z), c(x, z), defined using the pairs X3, X4; X4, X5

and X3, X5 respectively, is D3.11−slim.

Proof. We have U(X3, X5) ⊂ U(X4, X5)∩U(X3, X4) and we know that all of these
three sets are K-quasi-convex in B.

Case 1: Suppose x, y are in the same horizontal space and dp(x)(x, y) ≤ A.
Then p(x) ∈ U(X3, X4). Since γx,z ends in U(X3, X5) ⊂ U(X3, X4), it joins two
points of U(X3, X4) which we know is K-quasi-convex. Hence, by Corollary 1.14,

we have for all b
′

∈ γx,z, db′ (X3 ∩ Fb
′ , X4 ∩ Fb

′ ) ≤ A.µ(K).
Now we show that dB(bx,z, by,z) is small. Recall that bx,z ∈ U(X3, X5) ⊂

U(X4, X5) and by,z ∈ U(X4, X5). Thus γy,z∪ [by,z, bx,z] is a (3+2K)-quasi-geodesic
in B, by Lemma 1.31 (2). Hence, there is a point b2 ∈ γx,z, such that dB(by,z, b2) ≤
D1.26(δ, 3 + 2K), by Lemma 1.26. Since dby,z

(Fby,z
∩X4, Fby,z

∩X5) ≤ A, we have
by bounded flaring, db2(Fb2 ∩ X4, Fb2 ∩ X5) ≤ A.µ(D1.26(δ, 3 + 2K)). Therefore,
db2(Fb2 ∩ X3, Fb2 ∩ X5) = db2(Fb2 ∩ X3, Fb2 ∩ X4) + db2(Fb2 ∩ X4, Fb2 ∩ X5) ≤
A.{µ(K) + µ(D1.26(δ, 3 + 2K)}. Now, by Lemma 2.22 (1), we get

dB(b2, bx,z) ≤ D2.22(k,A.µ(K) +A.µ(D1.26(δ, 3 + 2K)).

Hence

dB(bx,z, by,z) ≤ D1.26(δ, 3 + 2K) +D2.22(k,A.µ(K) +A.µ(D1.26(δ, 3))).

It follows by arguments similar to that of Lemma 3.8 that

Hd
′

(c(x, z), c(y, z)) ≤ A.µ(K) + 2k.(δ + dB(bx,z, by,z)).

Replacing dB(bx,z, by,z) in the right hand expression with its upper bound obtained

above, we get a constant D
′

3.11. Hence the lemma follows in this case by choosing

D3.11 ≥ D
′

3.11.
Case 2: We consider the general case. For the rest of the proof, we shall

assume that all the paths of the form c(u, v) (u, v ∈ X3∪X4∪X5), are constructed
using the sections X3, X4, X5 only, unless otherwise specified. We first show that
Hd

′

(c(x, z), γ̃x,y ∪ c(sx,y, z)) is bounded by a constant depending on k and A.
Let b̄ be a nearest point projection of bx,y on U(X3, X5). By Lemma 1.32,

dB(b̄, bx,z) ≤ D1.32 = D1.32(δ,K). Let γ2 be a geodesic joining bx,y to b̄ and let γ̃2
be a lift of γ2 in X3. Note that γx,y∪γ2 is a (3+2K)-quasi geodesic in B. Thus the
Hausdorff distance between γx,z and γx,y∪γ2 is at most δ+D1.32+D1.26(δ, 3+2K).
Hence the Hausdorff distance between γ̃x,y ∪ c(sx,y, z) and c(x, z), in CL(X1, X2),
is at most 2k.{δ +D1.32 +D1.26(δ, 3 + 2K)}+A = D1, say.

Again by case 1, we know thatHd(c(sx,y, z), c(tx,y, z)) ≤ D
′

3.11. Hence,Hd(c(x, z), γ̃x,y∪

[sx,y, tx,y] ∪ c(tx,y, z)) is at most A + D1 + D
′

3.11. Also, if we define the paths
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c(z, tx,y), c(z, y) with respect to the sections X4, X5 by taking γz,tx,y
= γz,y, the

triangle formed by the paths c(z, tx,y), c(z, y) and β̃y,tx,y
is 2kδ-slim.

Thus by Corollary 3.10, the triangle formed by the paths β̃y,tx,y
, c(tx,y, z) and

c(y, z) is D2-slim where D2 = 2k.δ+2.D3.10. Taking D3.11 := A+D1+D
′

3.11+D2,
the lemma follows. �

Proof of Proposition 3.4

We verify that the set of paths {c(x, y)} defined earlier in this section satisfies
the properties of Corollary 1.40. Then, as per the notation of Corollary 1.40, let
D = L, C1 := 2c2, Φ(N) = D3.5(c2, A,N) and C2 = D3.11(c4, A) + 2.D3.10(c4, A).

Proof of properties 1 and 2: These follow from Lemma 3.3(2) and Lemma
3.5 respectively.

Proof of property 3: Suppose x, y ∈ C(X1, X2). If x
′

, y
′

∈ c(x, y) then the seg-

ment of c(x, y) between x
′

, y
′

, say c(x, y)|[x′
,y

′ ], is a possible candidate for the defi-

nition of c(x
′

, y
′

). Hence by Corollary 3.10, the Hausdorff distance of c(x, y)|[x′
,y

′ ]

and c(x
′

, y
′

) is bounded by D3.10(c2, A) ≤ C2.
Proof of property 4: Let x, y, z ∈ C(X1, X2). Then using Lemma 3.1 we

may assume, without loss of generality, that x, y, z are contained in three c4-qi
sections X3, X4, X5 respectively, where X4 ⊆ C(X1, X5), X3 ⊆ C(X1, X4). Now,
the triangle formed by the paths c(x, y), c(y, z), c(x, z) defined using these sections
is D3.11(c4, A)-slim by Lemma 3.11. Hence, by Corollary 3.10, any triangle with
vertices x, y, z formed by such paths is {D3.11(c4, A) + 2.D3.10(c4, A)}-slim. It
follows from Corollary 1.40 that CL(X1, X2) is δ3.4-hyperbolic for some δ3.4 ≥ 0.

By Lemma 3.3(3), it follows that X1, X2 are the images of 2c1−quasi-isometric
embeddings of B into the δ3.4-hyperbolic metric space CL(X1, X2). Thus, they are
K3.4 := D1.26(δ3.4, 2c1)-quasiconvex in CL(X1, X2). This completes the proof of
the first statement of the proposition.

From the given conditions it follows by Lemma 2.22 (2) that U(X1, X2) is
bounded. Hence, for any x ∈ X1 and y ∈ X2 the K1.40-quasi-geodesic c(x, y)
passes through the (uniformly) bounded set p−1(U(X1, X2))∩C(X1, X2) (by Corol-
lary 1.40). Since CL(X1, X2) has been proven to be hyperbolic, stability of quasi-
geodesics (Lemma 1.26) completes the proof of the second statement of the propo-
sition. 2

3.2. Hyperbolicity of ladders: General case.

Lemma 3.12. There is a function D3.12 : R+ → R+ such that the following holds.
Suppose I, J are intervals in R and φ : I → J is a k-quasi-isometric embedding.
Let x1, x2, x3 ∈ I, x1 ≤ x2 ≤ x3, and suppose φ(x1) belongs to the interval with
end points φ(x2), φ(x3). Then x2 − x1 ≤ D3.12(k).

Proof. Without loss of generality, we may assume that φ(x2) ≤ φ(x1) ≤ φ(x3). Let
x4 = inf{y ∈ [x2, x3] : φ(y) ≥ φ(x1)}.

If x2 = x4 then ∃x
′

∈ [x2, x2 + 1] ∩ [x2, x3] such that φ(x
′

) ≥ φ(x1). Now

x
′

− x2 ≤ 1 implies |φ(x
′

)− φ(x2)| ≤ 2k, since φ is a k-quasi-isometric embedding.
Therefore, φ(x1)− φ(x2) ≤ 2k. Thus we have x2 − x1 ≤ 3k2.

If x2 < x4 we choose x
′

∈ [x2, x4) and x
′′

∈ [x4, x3] such that x4 − x
′

≤ 1 and

x
′′

−x4 ≤ 1 with φ(x
′′

) ≥ φ(x1). Now x
′′

−x
′

≤ 2 implies |φ(x
′

)−φ(x
′′

)| ≤ 3k. Thus
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φ(x
′′

) − φ(x1) ≤ 3k, since φ(x
′

) < φ(x1) ≤ φ(x
′′

) by the choices of x
′

, x
′′

. Hence

x2−x1 ≤ x
′′

−x1 ≤ 4k2. Therefore, in any case, we may choose D3.12(k) = 4k2. �

Lemma 3.13. Given f : N → N, k ≥ 1, D ≥ 2C3.1(k), there exists D
′

3.13 =

D
′

3.13(f, k,D) ≥ 1 such that the following holds.
Suppose p : X → B is an f -metric graph bundle and X1, Y,X2 are k-qi sections
in X. Also suppose that Y is contained in the ladder C(X1, X2). Then the D-
neighborhood of each of the spaces Y , C(X1, Y ), C(Y,X2) is a connected subgraph
of X and the intersection of the spaces CD(X1, Y ) and CD(Y,X2) is contained in

the D
′

3.13-neighborhood of Y in the path metric of both CD(X1, Y ) and CD(Y,X2).

Proof. Since X1, X2, Y are k-qi sections and D ≥ 2C3.1(k), it follows from Lemma
3.3(1) that the D-neighborhood of each of the spaces Y , C(X1, Y ), C(Y,X2) is
connected.

Now, let y ∈ CD(X1, Y )∩CD(Y,X2). Let us denote the path metric on CD(Xi, Y )
induced from X by di and suppose yi ∈ C(Xi, Y ) be such that di(y, yi) ≤ D, for
i = 1, 2. Then dB(p(y1), p(y2)) ≤ 2D. We need to prove the statements:

Pj : Any point of CD(X1, Y ) ∩ CD(Y,X2) is contained in a D
′

-neighborhood of Y
in CD(Xj , Y ), for j = 1, 2.

Since the proofs of P1,P2 are similar, we shall only prove P2. We know that
there exists a k

′

= C3.1(k)-qi section Y2 say, through y2 ∈ C(X2, Y ) contained in

C(X2, Y ). Join y2 to the point y
′

1 = Y2∩Fp(y1), by the lift of a geodesic in B joining

p(y1) and p(y2). The length of this path is at most 4Dk
′

by Lemma 3.3(2). Then

d(y1, y
′

1) ≤ 2D+4Dk
′

and hence their horizontal distance is at most f(2D+4Dk
′

)

by the bounded flaring condition for metric graph bundles. Thus choosing D
′

3.13 to

be D + f(2D + 4Dk
′

), we are through. �

Suppose X1, X2 are any two c1-qi sections in X. Let us define the notation
ci+1 = Ci

3.1(c1), i ≥ 1, as in the proof of Proposition 3.4. Then we have the
following.

Proposition 3.14. For any L ≥ 2c6, and c1 ≥ 1 as above, there exists δ3.14 =
δ3.14(c1, L) such that CL(X1, X2) is a δ3.14- hyperbolic metric space with respect to
the path metric induced from X.

Proof. Let A = A
′′

2.22(c3) + D3.12(2g(c3)) + f(2L + 4c3L). The idea of the proof
is to break the ladder C(X1, X2) into a finite number of subladders. Then by
Proposition 3.4 and, if necessary, by a simple application of Corollary 1.52 we show
that these subladders are hyperbolic. Finally we apply Corollary 1.52 again to the
ladder assembled out of subladders to finish the proof.

Step 1 : Defining subladders.
Fix a horizontal geodesic I = Fb0 ∩ C(X1, X2). The two end points of I lie in X1

and X2. Choose a parametrization α : [0, l] → I by arc length so that α(0) ∈ X1

and α(l) ∈ X2. We shall inductively construct a finite sequence of integers 0 = s0 <

s1 < · · · < sm = l, and a sequence of c2-qi sections X
′

i contained in C(X1, X2) such

that X
′

i passes through α(si) for each i = 1, · · · ,m− 1. Let X
′

0 = X1. Suppose si
has been obtained, si < l and X

′

i has been constructed. If dh(X
′

i , X2) ≤ A then

define si+1 = l, X
′

i+1 = X2 and the construction is over. Otherwise, consider the
set

Si+1 = {t ∈ [si, l] ∩ N : ∃ a c2 − qi sectionX
′

throughα(t) with dh(X
′

, X
′

i ) ≤ A}
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Let ui+1 = maxSi+1. If ∃t ∈ Si+1 such that there is a c2-qi section X
′

inside

C(X1, X2) through α(t) with dh(X
′

, X
′

i ) = A, define si+1 = t and X
′

i+1 = X
′

.

Otherwise define si+1 = min{l, ui+1 + 1} and let X
′

i+1 be any c2-qi section inside
C(X1, X2) through α(si+1). The construction of these sections stops at the m-th

step if dh(X
′

m−1, X2) ≤ A, so that we must have X
′

m = X2 and sm = l. It follows

from the above construction of the sections X
′

i that for each i, 1 ≤ i ≤ m − 1,

we have dh(X
′

i−1, X
′

i ) ≥ A and in case dh(X
′

i , X
′

i+1) > A, there is a section X
′′

i

through a point α(ti), ti ∈ [si, si+1] with dh(X
′

j , X
′′

i ) ≤ A, j = i, i+ 1.
Step 2 : Subladders form a decomposition of C(X1, X2).

In this step, we will show that C(X1, X2) = ∪m−1
i=0 C(X

′

i , X
′

i+1) and that C(X
′

i−1, X
′

i )∩

C(X
′

i , X
′

i+1) = X
′

i .
Note that the first assertion follows from the second and the construction in Step

1. For the second assertion, it is enough to show the following:
Claim: X

′

i+1 ⊆ C(X
′

i , X2), for all i, 1 ≤ i ≤ m− 2.

Consider the triples of points (X1 ∩Fb, X
′

i ∩Fb, X
′

i+1 ∩Fb), b ∈ V(B). They are
contained in the geodesic Fb ∩C(X1, X2). For b = b0 we know, by the construction

in Step 1, that X
′

i ∩ Fb ∈ [X1 ∩ Fb, X
′

i+1 ∩ Fb].

We now argue by contradiction. Suppose X
′

i+1 6⊆ C(X
′

i , X2). Then for some

point b
′

∈ V(B), we must have X
′

i+1 ∩ Fb
′ ∈ [X1 ∩ Fb

′ , X
′

i ∩ Fb
′ ]. Therefore there

exist b1, b2 ∈ V(B) with d(b1, b2) = 1, such that X
′

i ∩ Fb1 ∈ [X1 ∩ Fb1 , X
′

i+1 ∩ Fb1 ]

but X
′

i+1∩Fb2 ∈ [X1∩Fb2 , X
′

i ∩Fb2 ]. We know that X
′

i , X
′

i+1 are c2-quasi-isometric

sections, and X1 is a c1-quasi-isometric section. Hence d(X
′

i ∩Fb1 , X
′

i ∩Fb2) ≤ 2c2,

d(X
′

i+1 ∩ Fb1 , X
′

i+1 ∩ Fb2) ≤ 2c2 and d(X1 ∩ Fb1 , X1 ∩ Fb2) ≤ 2c1 ≤ 2c2.
By Lemma 3.1, the definition of c3 (at the beginning of the proof of this proposi-

tion) and Lemma 1.13, we have a g(2c3)-quasi-isometric embedding [X1∩Fb1 , X
′

i+1∩

Fb1 ] → [X1 ∩ Fb2 , X2 ∩ Fb2 ] which sends each of the points X
′

j ∩ Fb1 to X
′

j ∩ Fb2 ,
j = i, i+ 1 and X1 ∩ Fb1 to X1 ∩ Fb2 . By Lemma 3.12 we get

db1(X
′

i ∩ Fb1 , X
′

i+1 ∩ Fb1) ≤ D3.12(g(2c3)).

By the choice of the constant A, and the definition of X
′

i ’s this gives rise to a
contradiction, completing the proof of Step 2.

Step 3 : Subladders are uniformly hyperbolic.
Next we show that there are constants δ1, k1 and D such that (i) each CL(X

′

i , X
′

i+1)

is δ1-hyperbolic and X
′

i , X
′

i+1 are k1-quasi-convex in CL(X
′

i , X
′

i+1) for each i, 0 ≤

i ≤ m−1. (ii) Also we shall show that the sets X
′

i , X
′

i+1 are mutually D-cobounded

in CL(X
′

i , X
′

i+1), for 0 ≤ i ≤ m− 1.

(i) Since X
′

i , X
′

i+1 are c2-qi sections in X, it follows that they are the im-

ages of 2c2−quasi-isometric embeddings in CL(X
′

i , X
′

i+1) (Lemma 3.3(3)). Hence,

they will be D1.26(δ1, 2c2)-quasiconvex in CL(X
′

i , X
′

i+1) provided we can show that

CL(X
′

i , X
′

i+1) is δ1-hyperbolic.

If dh(X
′

i , X
′

i+1) ≤ A then, by Proposition 3.4, each CL(X
′

i , X
′

i+1) is δ3.4(c2, A, L)-

hyperbolic; moreover, in this case, unless i = m−1, we have dh(X
′

i , X
′

i+1) = A and

X
′

i , X
′

i+1 are then mutually D3.4(c2, A, L)-cobounded.
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Suppose dh(X
′

i , X
′

i+1) > A. Recall that X
′

j passes through α(sj), j = i, i + 1.

In this case, we can find ti ∈ [si, si+1] such that there is a c2-qi section X
′′

i in

C(X1, X2), passing through α(ti), so that dh(X
′

j , X
′′

i ) ≤ A, j = i, i + 1. Now, as

in the proof of Lemma 3.1, we project points of X
′′

i into the horizontal geodesics

of C(X
′

i , X
′

i+1) and get a c3-qi section Y
′

i through α(ti). Note that we still have

dh(X
′

j , Y
′

i ) ≤ A for j = i, i+ 1. By Proposition 3.4, CL(X
′

i , Y
′

i ), and CL(X
′

i+1, Y
′

i )

are both δ3.4(c3, A, L)-hyperbolic. Also we see that CL(X
′

i , Y
′

i ) ∩ CL(X
′

i+1, Y
′

i )

contains a 2c3-neighborhood of Y
′

i which is connected. Since Y
′

i is a c3-quasi-
isometric image of B in X, therefore it is a 2c3-quasi-isometric image in both
CL(X

′

i , Y
′

i ) and CL(X
′

i+1, Y
′

i ).
Now, we apply Lemma 3.13 followed by Corollary 1.52. Here the total space is

CL(X
′

i , X
′

i+1) and we have just two subspaces: CL(X
′

i , Y
′

i ) and CL(X
′

i+1, Y
′

i ). Also

their intersection contains a 2c3-neighborhood of Y
′

i , denoted by Yi, say. We see
that the rest of the conditions of Corollary 1.52 are easily verified.

Thus, CL(X
′

i , X
′

i+1) is δ1.52(δ3.4(c3, A, L), D
′

3.13(f, c3, L), 1, 2c3)-hyperbolic. Choos-
ing

δ1 := max{δ3.4(c2, A, L), δ1.52(δ3.4(c3, A, L), D
′

3.13(f, c3, L), 1, 2c3)}

completes the proof of Step 3(i).

(ii) We next show that the quasi-convex sets X
′

i , X
′

i+1 are mutually cobounded

in CL(X
′

i , X
′

i+1).

Since the sets U(X
′

j , Y
′

i ), j = i, i + 1 are K(= K2.22(c3, A))-quasiconvex in B,

the lift Yij (say) of U(X
′

j , Y
′

i ) in Y
′

i is a C1 := (2Kc3+D1.26(δ1, 2c3))-quasi-convex

set in CL(X
′

i , X
′

i+1).
Claim: There are constants R = R(δ1, C1), D1 = D1(δ1, C1) such that if Yij,

j = i, i+ 1 are R-separated then the sets X
′

j, j = i, i+ 1 are D1-cobounded.

Proof of Claim: We show that the projection ofX
′

i+1 onX
′

i is uniformly bounded.

By a symmetric argument the projection of X
′

i on X
′

i+1 is uniformly bounded.

Suppose x ∈ X
′

i+1 and let y ∈ X
′

i be a nearest point projection of x on X
′

i . Let

x1 be a nearest point projection of x on Y
′

i and let y1 be a nearest point projection

of y on Y
′

i .
Sub-claim 1: The curve [x, x1] ∪ [x1, y1] ∪ [y1, y] is a uniform quasi-geodesic if

R is sufficiently large.
Proof of Sub-claim 1: By Lemma 1.31 (2) the unions [x, x1]∪[x1, y1] and [x1, y1]∪

[y1, y] are (3 + 2C1)-quasi-geodesics. Sub-claim 1 will follow from the fact that
d(x1, y1) ≥ L1.28(δ1, 3 + 2C1, 3 + 2C1) for large enough R (by Lemma 1.28).

By Lemma 1.36, if the sets Yij are R-separated, R ≥ R1.36(δ1, C1) then there
are points yij ∈ Yij , j = i, i + 1 such that every geodesic connecting the sets Yij ,
j = i, i + 1 passes through the D1.36(δ1, C1)-neighborhood of yij , j = i, i + 1.
Applying this to the geodesic [x1, y1], Sub-claim 1 follows from the following.

Sub-claim 2: Suppose x
′

j ∈ X
′

j , and let y
′

j ∈ Y
′

i be its nearest point projection

on Y
′

i for j = i, i+1 . Then yij is uniformly close to the geodesic [x
′

j , y
′

j ], j = i, i+1.
Proof of Sub-claim 2: Since the proofs are similar, let us prove the statement for

j = i. Let b be a nearest point projection of p(x
′

i) on U(X
′

i , Y
′

i ). Let α be a geodesic

in B joining p(x
′

i) and b. Let β be a geodesic joining p(y
′

i) and b. Let α̃ and β̃ be the

lifts of α and β in X
′

i and Y
′

i respectively. Let α̃∩p−1(b) = zi and β̃∩p
−1(b) = wi.
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Then db(zi, wi) ≤ A. The paths α̃ and β̃ are 2c1-quasi-geodesics in CL(X
′

i , X
′

i+1).

Hence, by hyperbolicity of CL(X
′

i , X
′

i+1) there exist x
′′

1 ∈ [x
′

i, y
′′

i ], x
′′

2 ∈ α̃, x
′′

3 ∈ β̃
which are uniformly close to each other (cf. Lemmas 1.26, 1.25). Then, it follows

as in the first paragraph of the proof of Lemma 3.5 that dp(x′

i
)(X

′

i , Y
′

i ) is uniformly

bounded. Hence yii is close to x
′

i by Lemma 2.22 (1). Sub-claim 2 follows. 2

Since CL(X
′

i , X
′

i+1) is hyperbolic the Hausdorff distance between the quasi-
geodesic [x, x1]∪[x1, y1]∪[y1, y] and the geodesic [x, y] is uniformly bounded. Hence
the points yii and yii+1 are uniformly close to the geodesic [x, y] by Sub-claim 2.
The Claim follows. 2

Finally, note that if Yij , j = i, i+ 1 are not R-separated then there exists a pair

of points in X
′

i and X
′

i+1 which are at a distance of at most A
′

1 := (2A+ R) from
each other. It follows as in the first paragraph of the proof of Lemma 3.5 that
dh(X

′

i , X
′

i+1) ≤ A1 := f(2A
′

1c2 + A
′

1). Hence, by Proposition 3.4, X
′

i , X
′

i+1 are
D3.4(c2, A1, L)-cobounded.

It follows that any geodesic joining X
′

j , j = i, i+1 passes close to the end points
of this coarsely unique geodesic and step 3 follows.

Step 4 : The final step:
Finally we use Lemma 3.13 in conjunction with Corollary 1.52. Here the total space
is CL(X1, X2), and the sequence of subspaces are CL(X

′

i , X
′

i+1), i = 0, 1, . . . ,m−1.
We check to see that the hypotheses of Corollary 1.52 are satisfied:
(1) Each of the subspaces CL(X

′

i , X
′

i+1) is δ1-hyperbolic by step 3;
(2) by choice of the constant A > f(2L+4c3L) (see Lemma 3.5) we know that only
the consecutive ones intersect nontrivially;
(3) for i = 2, . . . ,m, the intersection of two consecutive subspaces CL(X

′

j , X
′

j+1),

j = i − 1, i, contains the 2c2-neighborhood Yi (say), of X
′

i . Also Yi is con-

nected (Lemma 3.5). Further the intersection is contained in the D
′

3.13(f, c3, L)-

neighborhood of Yi in the spaces CL(X
′

j , X
′

j+1), j = i− 1, i;
(4) To check Condition (4) of Corollary 1.52 it is enough to show the following:
Suppose Z ⊂ X is a connected subgraph such that Yi ⊂ Z. Then the inclusion
Yi →֒ Z is uniform qi embedding.

The inclusion of Yi in the space Z is clearly distance decreasing. Let x, y ∈ Yi and
choose x1, y1 ∈ X

′

i such that d(x, x1) ≤ 2c2, d(y, y1) ≤ 2c2. Suppose dZ(x, y) = n.
Then dX(x1, y1) ≤ dZ(x1, y1) ≤ n + 4c2. Hence dB(p(x1), p(y1)) ≤ dX(x1, y1) ≤

n + 4c2. Since X
′

i is a c2-qi section in X, by Lemma 3.3(2) there is a path of
length 2c2(n + 4c2) joining x1 and y1 contained in Yi. Hence we have dYi

(x, y) ≤
2c2(n+ 4c2) + 4c2 = 2c2.n+ 12c2. This proves (4).

(5) the sets X
′

i , X
′

i+1 are uniformly cobounded in CL(X
′

i , X
′

i+1) for i = 1, 2, . . . ,m−
2 as proved in Step 3.

The proposition follows. �

4. The Combination Theorem

As in Section 3, we assume the following for the purposes of this section:
1) p : X → B will be either an f−metric graph bundle satisfying a flaring condition,
or an approximating (f−) metric graph bundle obtained from a metric bundle
satisfying a flaring condition.
2) B is δ-hyperbolic and the horizontal spaces Fb are δ

′

-hyperbolic for all vertices
b of V(B).
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3) The barycenter maps ∂3Fb → Fb are (uniformly) coarsely surjective. Thus by
Proposition 2.10 we know that the metric graph bundle admits uniform (K0, say)
qi sections through each point of X.
In this section we prove the main theorem of our paper which says that a metric
(graph) bundle satisfying the above conditions has hyperbolic total space.

Here is an outline of the main steps of the proof:
For each pair of points x, y ∈ X, choose a ladder C(X1, X2) containing x, y and
choose a geodesic c(x, y) in CD(X1, X2) joining x, y (withD large enough but fixed).
This gives a family of curves. We shall show that the family satisfies the conditions
of Corollary 1.40. Proofs of conditions 1 and 2 follow from the results of the last
section. Proofs of conditions 3 and 4 follow from Proposition 4.2 below, which
contains the statement that large neighborhoods of ‘tripod bundles’ are hyperbolic.
Proposition 4.2 in turn follows from Proposition 3.4 and Corollary 1.52.

Definition 4.1. For three qi sections X1, X2, X3 in a metric graph bundle X over
B a tripod bundle determined by these qi sections, denoted C(X1, X2, X3), is
defined to be the union of the ladders C(X1, X2), C(X2, X3), C(X3, X1).

The convention that we adopted in Remark 2.14 applies here as well; namely,
since the Hausdorff distance between any two tripod bundles determined by three
qi sections is uniformly bounded (by hyperbolicity of the fibers), we denote by
C(X1, X2, X3) any tripod bundle determined by the qi sections X1, X2, X3. Also
for any qi sections X1, X2, X3 in X and D ≥ 0 we denote by CD(X1, X2, X3) the
D-neighborhood of the tripod bundle C(X1, X2, X3) in X.

The main technical tool of this section is the following:

Proposition 4.2. Let X over B be an (f,K)-metric graph bundle such that
i) X is either a metric graph bundle satisfying a flaring condition or one obtained
as an approximating metric graph bundle of a metric bundle satisfying a flaring
condition;
ii) B is δ-hyperbolic and the horizontal spaces Fb are δ

′

-hyperbolic for all vertices
b of V(B).
iii) the barycenter maps ∂3Fb → Fb are (uniformly) coarsely surjective.
Given c1 ≥ 1, there exists L0, δ4.5,K4.5 ≥ 0 such that the following holds.
Let X1, X2, X3 be c1-qi sections and L ≥ L0. Then

(1) CL(X1, X2, X3) is δ4.5(= δ4.5(c1, L))-hyperbolic with the path metric in-
duced from X and each of CL(Xi, Xj), i 6= j is K4.5(= K4.5(c1, L))-quasi-
convex in CL(X1, X2, X3).

(2) there exists D4.11(= D4.11(c1, L)) such that if x, y ∈ CL(X1, X2), γ1 is a
geodesic in CL(X1, X2, X3) joining x, y and γ2 is a geodesic in CL(X1, X2)
joining x, y, then the Hausdorff distance Hd(γ1, γ2) ≤ D4.11.

(3) there exists D4.12(= D4.12(c1, L)) such that if Xi, X
′

i , i = 1, 2 are c1-qi

sections and xi ∈ Xi∩X
′

i , i = 1, 2, then the Hausdorff distance between the

geodesics joining x1, x2 in the subspaces CL(X1, X2) and CL(X
′

1, X
′

2) is at
most D4.12(c1, L).

We postpone the proof of Proposition 4.2 to Section 4.1. Conclusions (1), (2), (3)
above form the content of Proposition 4.5, Corollary 4.11 and Corollary 4.12 respec-
tively. We give the proof of the main combination Theorem assuming Proposition
4.2.
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Theorem 4.3. Suppose p : X → B is a metric bundle (resp. metric graph bundle)
such that
(1) B is a δ-hyperbolic metric space.

(2) Each of the fibers Fb, b ∈ B (resp. b ∈ V(B)) is a δ
′

-hyperbolic metric space
with respect to the path metric induced from X.
(3) The barycenter maps ∂3Fb → Fb, b ∈ B (resp. b ∈ V(B)) are (uniformly)
coarsely surjective.
(4) A flaring condition is satisfied.
Then X is a hyperbolic metric space.

Proof. If X is a metric bundle, we first replace X by an approximating metric graph
bundle. Abusing notation slightly, we continue to call the approximating metric
graph bundle X. By Proposition 2.10, there exists c1 ≥ 1 such that there is a c1-qi
section through each point of V(X).

Let L = L0 be the constant given by Proposition 4.2 (1). We shall now define a
set of curves joining pairs of points x, y ∈ X.
Definition of curve family: For each pair of points x, y in V(X), choose, once
and for all, two c1-qi sections X1, X2 passing through x and y respectively. Now
define c(x, y) to be consecutive vertices on a geodesic in CL(X1, X2) joining x, y.
We show that the family {c(x, y)} satisfies properties (1)-(4) of Corollary 1.40 to
complete the proof. As per the notation of Corollary 1.40, set D = L.

• Proof of property 1: This follows by taking C1 = 1.
• Proof of property 2: By the first part of Lemma 3.5, Property 2 follows.
• Proof of property 3: This follows from Conclusions (1) and (2) of Propo-
sition 4.2.

• Proof of property 4: Given x, y, z ∈ X choose three c1-qi sections
X3, X4, X5 containing x, y, z ∈ X respectively and define the curves c

′

(x, y),

c
′

(x, z) and c
′

(y, z) using these sections in the same way as the curves c(x, y)
are defined. It follows from Conclusion (2) of Proposition 4.2 that the tri-

angle formed by c
′

(x, y), c
′

(x, z) and c
′

(y, z) is (δ4.5(c1, L)+2D4.11(c1, L))-
slim. Conclusion (3) of Proposition 4.2 now gives property 4.

Hyperbolicity of X now follows from Corollary 1.40. �

Remark 4.4. Note that the conditions of Theorem 4.3 are inherited by induced
metric graph bundles over quasi-isometrically embedded subsets of B. Hence the
induced bundles over quasi-isometrically embedded subsets of B are also hyperbolic.

4.1. Proof of Proposition 4.2. Suppose that X1,X2 and X3 are three c1-qi
sections in X. The main aim of this subsection is to show that for large D ≥
0, CD(X1, X2, X3) is hyperbolic. For this, we first show that taking a nearest
point projection of X3 ∩ Fb onto the horizontal geodesic C(X1, X2) ∩ Fb (for all
b ∈ V(B)) we get a qi section X4. (See figure below.) Then we have a gen-
uine ’tripod bundle’ C(X1, X2) ∪ C(X3, X4), such that CD(X1, X2, X3) is quasi-
isometric to an L-neighborhood of C(X1, X2) ∪ C(X3, X4), where L depends on
D and the bundle. The quasi-isometry is provided by projecting any point z of
CL(X1, X2) ∪ CL(X3, X4) onto a nearest point in CD(X1, X2, X3) lying in the
same horizontal fiber as z (Here, the nearest point-projection is taken in the
metric on the horizontal fiber to which z belongs.) Hyperbolicity of the space
CL(X1, X2) ∪ CL(X3, X4), and quasi-convexity of C(X1, X2) in this space essen-
tially follow from Proposition 3.14 and Corollary 1.52.
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Tripod

Conclusion (1) of Proposition 4.2 is given by the following.

Proposition 4.5. Given c1 ≥ 1, there exists L0, δ4.5,K4.5 ≥ 0 such that the fol-
lowing holds.
Let X1, X2, X3 be c1-qi sections and L ≥ L0. Then CL(X1, X2, X3) is δ4.5(=
δ4.5(c1, L))-hyperbolic with the induced path metric from X and each of CL(Xi, Xj),
i 6= j is K4.5(= K4.5(c1, L))-quasi-convex in CL(X1, X2, X3).

For ease of exposition, we break the proof up into several lemmas, many of which
will be minor modifications of results we have shown already.

For b1, b2 ∈ V(B) with d(b1, b2) = 1, we have a g(2c1)-quasi-isometry Fb1 → Fb2

by Lemma 1.13, which sends Xi ∩ Fb1 to Xi ∩ Fb2 for i = 1, 2, 3. Therefore, by
Lemma 1.38, choosing a nearest point projection of X3 ∩ Fb onto the horizontal
geodesic [X1 ∩ Fb, X2 ∩ Fb], for all b ∈ B, we get a c

′

1-qi section of B in X where

c
′

1 := 2c1+D1.38(δ
′

, g(2c1)). Let us call this section X4. Let c
′

i+1 := Ci
3.1(c

′

1), i ≥ 1.
Now we have the following analog of Lemma 3.13.

Lemma 4.6. For all L ≥ 2c
′

2, there exists D4.6(= D4.6(L)) such that the intersec-
tion CL(X1, X2) ∩ CL(X3, X4) is contained in the D4.6-neighborhood of X4.

Proof. The proof is an exact copy of that of the proof of Lemma 3.13. The only
observation we need to make is that the curve [X3∩Fb, X4∩Fb]∪ [X4∩Fb, Xi∩Fb],
i = 1, 2 is a (3, 0)-quasi-geodesic in Fb (Lemma 1.31 (1)). �

Lemma 4.7. For all c1 as above and L ≥ 2c
′

6, there exist D4.7(= D4.7(c1, L)) and
K4.7(= K4.7(c1, L)) such that the space CL(X1, X2)∪CL(X3, X4) is D4.7-hyperbolic
and C(X1, X2) is K4.7-quasi-convex in this space.

Proof. The first part of the lemma follows as an application of Proposition 3.14
and Corollary 1.52 (the proof is a replica of Step 3 of the proof of Proposition
3.4 which shows that large girth subladders are hyperbolic). For completeness we
briefly check the conditions of Corollary 1.52.

(1) Here we have only two subgraphs CL(X1, X2) and CL(X3, X4) which are
hyperbolic by Proposition 3.4.

(2) Condition (2) is trivially satisfied.

(3) The intersection CL(X1, X2) ∩ CL(X3, X4) contains the c
′

2-neighborhood,
say Y , of X4 which is connected and the rest follows from Lemma 4.6 above.

(4) Since X4 is 2c
′

1-quasi-isometrically embedded in CL(X1, X2)∪CL(X3, X4),
Y = N2c

′

1

(X4) is also quasi-isometrically embedded.

(5) Condition 5 is trivially satisfied.
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For the second part of the lemma we note that any geodesic joining two points of
C(X1, X2) in CL(X1, X2)∪CL(X3, X4) and which leaves CL(X1, X2) must join two
points in a (uniformly bounded) neighborhood of X4, by Lemma 4.6. Since X4 is
the image of a quasi-isometric embedding of B in the hyperbolic space CL(X1, X2)∪
CL(X3, X4) it is quasi-convex also. The lemma follows. �

Clearly for all b ∈ V(B), C(X1, X2, X3) ∩ Fb is δ
′

-quasi-convex in Fb. Define a
map Π : Z = CL(X1, X2)∪CL(X3, X4) → X by sending any point x ∈ Z ∩Fb to a
nearest point in C(X1, X2, X3) ∩ Fb (in the db−metric).

Lemma 4.8. Given c1 ≥ 1 there exists D4.8(= D4.8(c1)) such that the map Π is
D4.8−coarsely Lipschitz.

Proof. We need to check that for any two adjacent vertices in the domain of Π, the
image vertices are at a uniformly bounded distance. This breaks up into two cases.

When the vertices are in the same horizontal space Fb then since C(X1, X2, X3)∩
Fb is (uniformly) quasiconvex in Fb, and since nearest point projections onto qua-
siconvex sets in hyperbolic metric spaces are coarsely Lipschitz (cf. Lemma 3.2 of
[Mit98b]) the claim follows.

When the vertices are not in same horizontal space then the same argument as
in Lemma 1.38 (also see [Mit98b, Bow07]) shows that nearest-point projections and
quasi-isometries almost commute. The rest of the proof is a replica of Theorem 3.2
[Mit98a]. �

Remark 4.9. In fact, Π restricted to C(X1, X2) is simply an inclusion map. Hence
by Lemma 3.5, Π is a qi-embedding of C(X1, X2) into any sufficiently large neigh-
borhood of C(X1, X2, X3) equipped with a path metric induced from X.

Lemma 4.10. Given c1 ≥ 1 and L ≥ 0 as above there exists D4.10(= D4.10(c1, L))
such that the following holds.
For all x ∈ CL(X1, X2) ∪ CL(X3, X4) the horizontal distance between x and Π(x)
is at most D4.10.

Proof. This follows from the fact that in any δ′− hyperbolic metric space (=Fb in
our case) the Hausdorff distance between a triangle with vertices x, y, z and the
tripod [x,w] ∪ [y, z] (where w ∈ [y, z] is a nearest point projection of x onto [y, z])
is bounded by δ′. �

Proof of Proposition 4.5:
Set L0 = 2c

′

6 +D4.8(c1); by assumption L ≥ L0. Let L1 = L+ δ′.
First for every pair of points in x, y ∈ C(X1, X2, X3) we choose a geodesic in

(the path metric induced on) CL1
(X1, X2)∪CL1

(X3, X4) joining x, y and project it
into C(X1, X2, X3) by Π. This defines a path in C(X1, X2, X3) say c(x, y) joining
x, y. Note that by Lemma 4.10 the paths c(x, y) are uniform quasi-geodesics in
CL1

(X1, X2) ∪ CL1
(X3, X4). Now we need to check the conditions of Corollary

1.40.
Here the whole space is CL(X1, X2, X3) and the discrete set is the set of vertices

contained in C(X1, X2, X3). As per the notation of Corollary 1.40, set D = L.
Next we note the following:

(1) Condition (1) of Corollary 1.40 follows from Lemma 4.8.
(2) Condition (2) of Corollary 1.40 follows from the observation that CL(X1, X2, X3)

is contained in CL1
(X1, X2) ∪ CL1

(X3, X4).
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(3) Conditions (3), (4) of Corollary 1.40 follow from Lemma 4.10, since the
space CL1

(X1, X2) ∪ CL1
(X3, X4) is (uniformly) hyperbolic.

Hence CL(X1, X2, X3) is hyperbolic. From Lemmas 4.7, and 4.10 it follows
that C(X1, X2) is the image of the quasi-convex set C(X1, X2) ⊂ CL1

(X1, X2) ∪
CL1

(X3, X4) under the quasi-isometric embedding Π (cf. Remark 4.9). Hence it
is quasi-convex in CL(X1, X2, X3) and thus so is CL(X1, X2). This completes the
proof. 2

Conclusion (2) of Proposition 4.2 is given by the next Corollary, which is an im-
mediate consequence of the fact that CL(X1, X2, X3) is hyperbolic (cf. Proposition
4.5) and that the inclusion CL(X1, X2) →֒ CL(X1, X2, X3) is a qi embedding (cf.
Remark 4.9).

Corollary 4.11. Given c1 ≥ 1 and L ≥ L0 (where L0 is as in Proposition 4.5)
there exists D4.11(= D4.11(c1, L)) such that if x, y ∈ CL(X1, X2), γ1 is a geodesic in
CL(X1, X2, X3) joining x, y and γ2 is a geodesic in CL(X1, X2) joining x, y, then
the Hausdorff distance Hd(γ1, γ2) ≤ D4.11.

Conclusion (3) of Proposition 4.2 is given by the following.

Corollary 4.12. Given c1 ≥ 1 and L ≥ L0 (cf. Proposition 4.5) there exists
D4.12(= D4.12(c1, L)) such that the following holds.

Suppose Xi, X
′

i , i = 1, 2 are c1-qi sections and xi ∈ Xi ∩ X
′

i , i = 1, 2. Then the
Hausdorff distance between the geodesics joining x1, x2 in the subspaces CL(X1, X2)

and CL(X
′

1, X
′

2) is at most D4.12(c1, L).

Proof. This follows from Proposition 4.5 and Corollary 4.11 applied successively to
the tripod bundles CL(X1, X

′

1, X2) and CL(X
′

1, X2, X
′

2). �

Concluding the proof of Proposition 4.2: Proposition 4.5, Corollary 4.11 and
Corollary 4.12 together give precisely the statement of Proposition 4.2. 2

5. Consequences and Applications

A number of consequences of Theorem 4.3 are collected together in this section.

5.1. Sections, Retracts and Cannon-Thurston maps. We shall say that an
exact sequence of finitely generated groups 1 → K → G→ Q→ 1 satisfies bounded
flaring if the associated metric graph bundle (cf. Example 1.8) of Cayley graphs
does. An immediate consequence of Theorem 4.3 coupled with the existence of
qi-sections from Theorem 2.11 is the following converse to (the second part of)
Mosher’s Theorem 2.11.

Theorem 5.1. Suppose that the short exact sequence of finitely generated groups

1 → K → G→ Q→ 1.

satisfies a flaring condition such that K,Q are word hyperbolic and K is non-
elementary. Then G is hyperbolic.

Theorem 2.11 was generalized by Pal [Pal10] as follows.

Theorem 5.2. (Pal [Pal10]) Suppose we have a short exact sequence of pairs of
finitely generated groups

1 → (K,K1) → (G,NG(K1))
p
→ (Q,Q1) → 1
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with K strongly hyperbolic relative to a subgroup K1 such that G preserves cusps,
i.e. for all g ∈ G there exists h ∈ K with gK1g

−1 = hK1h
−1. Then there exists a

(k, ǫ)−quasi-isometric section s : Q→ G for some constants k ≥ 1, ǫ ≥ 0. Further,
Q1 = Q and there is a quasi-isometric section s : Q→ NG(K1) satisfying

1

R
dQ(q, q

′)− ǫ ≤ dNG(K1)(s(q), s(q
′)) ≤ RdQ(q, q

′) + ǫ

where q, q′ ∈ Q and R ≥ 1, ǫ ≥ 0 are constants. In addition, if G is weakly
hyperbolic relative to K1, then Q is hyperbolic.

The setup of Theorem 5.2 naturally gives a metric graph bundle P : X → Q
of spaces, where Q is the quotient group and fibers are isometric to the coned off

spaces K̂ obtained by electrocuting copies of K1 in K.
We shall now use Theorem 3.2. Theorem 3.2 is proven in [Mit98a] in the context

of an exact sequence of finitely generated groups 1 → N → G → Q → 1, with
N hyperbolic; but all that the proof requires is the existence of qi sections (which
follows in the context of groups by the qi section Theorem 2.11 of Mosher).

As in [Mit98a], the existence of a qi-section through each point of X guarantees,
via Theorem 3.2, the existence of a continuous extension to the boundary (also
called a Cannon-Thurston map [CT07] [CT85]) of the map ib : Fb → X provided
X is hyperbolic. The proof is identical to that in [Mit98a] and we omit it here,
referring the reader to [Mit98a] for details. Combining this fact with Theorem 4.3
we have the following.

Theorem 5.3. Suppose p : X → B is a metric (graph) bundle with the following
properties:
(1) B is a δ-hyperbolic metric space.

(2) Each of the fibers Fb, b ∈ B (b ∈ V(B)) is a δ
′

-hyperbolic metric space with
respect to the induced path metric from X.
(3) The barycenter maps ∂3Fb → Fb, b ∈ B (b ∈ V(B)) are uniformly coarsely
surjective.
(4) The metric (graph) bundle satisfies a flaring condition.

Then the inclusion ib : Fb → X extends continuously to a map î : F̂b → X̂ between
the Gromov compactifications.

5.2. Hyperbolicity of base and flaring. In our main combination theorem 4.3
flaring was a sufficient condition. In this subsection and the next we investigate its
necessity. This issue is closely linked with hyperbolicity of the base space B. We
study it with special attention to hyperbolic and relatively hyperbolic groups as in
Theorems 2.11 and Theorem 5.2.

A Theorem of Papasoglu (cf. [Pap95], Lemma 3.8 of [Pap05]) states the following.

Theorem 5.4. [Pap95, Pap05] Let G be a finitely generated group and let Γ be the
Cayley graph of G with respect to a finite generating set. If there is an ǫ such that
geodesic bigons in Γ are ǫ-thin then G is hyperbolic.
Similarly, let X be a geodesic metric space such that for every K there exists C
such that K-quasigeodesic bigons are C-thin, then X is hyperbolic.
In fact there is some (universal) constant C > 0 such that if G is finitely generated
and non-hyperbolic, then ∀R > 0 there is some R′ > R and a (C,C)-quasi-isometric
embedding of a Euclidean circle of radius R′ in Γ.

We now look at short exact sequences of finitely generated groups.
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Proposition 5.5. Consider a short exact sequence of finitely generated groups

1 → K → G→ Q→ 1.

such that K is non-elementary word hyperbolic but Q is not hyperbolic. Then the
short exact sequence cannot satisfy a flaring condition.

Proof. By Theorem 5.4, Q contains (C,C) qi embeddings of Euclidean circles of
arbitrarily large radius. Now, given any l, A0 construct
a) a (C,C) qi embedding τl of a Euclidean circle σ of circumference > 4l in Q
b) two qi sections s1, s2 of Q into G by Theorem 2.11 such that dh(s1 ◦ τl(σ), s2 ◦
τl(σ)) > A0.

Let q ∈ σ be such that the horizontal distance dq(s1 ◦ τl(q), s2 ◦ τl(q)) in the fiber
Fq over q is maximal. Let the two arcs of length l in τl starting at q (in opposite
directions) end at q1, q2. Let q1qq2 denote the union of these arcs. Then the two
quasigeodesics s1 ◦ τl(q1qq2), s2 ◦ τl(q1qq2) violate flaring as the horizontal distance
achieves a maximum at the midpoint q. �

We next turn to the relatively hyperbolic situation described in Theorem 5.2
with Q non-hyperbolic, i.e. we assume that K is (strongly) hyperbolic relative to
K1. We have an analog of Proposition 5.5 in this situation too. The proof is the
same as that of the above proposition. The existence of qi sections in this case,
follows from Theorem 5.2.

Lemma 5.6. Suppose we have a short exact sequence of finitely generated groups

1 → (K,K1) → (G,NG(K1))
p
→ (Q,Q1) → 1

such that K strongly hyperbolic relative to the cusp subgroup K1 and G preserves
cusps, but Q is not hyperbolic. Let P : X → Q be the associated metric graph bundle

of spaces, where Q is the quotient group and fibers Fq are the coned off spaces K̂
obtained by electrocuting copies of K1 in K. Then X does not satisfy flaring.

The rest of this subsection is devoted to proving the following.

Proposition 5.7. Suppose we have a short exact sequence of finitely generated
groups

1 → (K,K1) → (G,NG(K1))
p
→ (Q,Q1) → 1

with K (strongly) hyperbolic relative to the cusp subgroup K1 such that G preserves
cusps. Suppose further that G is (strongly) hyperbolic relative to NG(K1). Then Q
is hyperbolic.

Proof. We shall argue by contradiction. Suppose Q is not hyperbolic.
Let X be a Cayley graph of G with respect to a finite generating set S containing

a finite generating set of K (and, for good measure, a finite generating set of K1).
Let B be the Cayley graph of Q with respect to p(S) \ {1}. Then the quotient map
G→ Q gives rise to a metric graph bundle p : X → B as before. This metric graph
bundle admits uniform qi sections through each point of X by Theorem 5.2. Also
B is not a hyperbolic metric space. By Theorem 5.4, there exists C > 0 such that
for all r > 0 we can construct a (C,C)-qi embedding τr of a Euclidean circle σr of
radius bigger than r in B.
Claim: Given k > 0 there exists D = D(k) such that for any k-qi section s :
V(B) → X of the metric graph bundle p : X → B, s ◦ τr(σr) is contained in a
D-neighborhood of a coset of NG(K1).
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Proof of claim: Let τ = s ◦ τr. Then τ is a k1 := (kC + k)-quasi-isometric em-
bedding of σr in s(B). Let u, v be a pair of antipodal points of the circle and
a = τ(u), b = τ(v). Let σ1

r , σ
2
r be the two arcs of σr joining u, v. Then τ(σ1

r), τ(σ
2
r)

are k1−quasigeodesics joining a, b.
Let dr denote the intrinsic path metric on σr. Since τ is a qi embedding, it

follows that for all C1 ≥ 0, there exists C2 ≥ 0 such that for all r > 0 and
x ∈ σ1

r , y ∈ σ2
r , dr(x, {a, b}) ≥ C2 and dr(y, {a, b}) ≥ C2 implies that dX(x, y) ≥ C1.

Hence τ(σ1
r)∪ τ(σ

2
r) is a ‘thick’ quasigeodesic bigon, i.e. except for initial and final

subsegments of length k1C2, τ(σ
1
r) and τ(σ

2
r) are separated from each other by at

least C1

k1
.

Since G is strongly hyperbolic relative to NG(K1), thick quasigeodesic bigons lie
in a bounded neighborhood of a coset of NG(K1) (see Definition 1.41 or [Far98]).
The claim follows. 2

We continue with the proof of the proposition. For any k−qi section s : V(B) →
X, we shall refer to s ◦ τr(σr) = τ(σr) as a qi section of the circle σr. Let Y1, Y2 be
two k-qi sections of a large Euclidean circle σr in B, such that Y1 and Y2 lie D−
close to two distinct cosets of NG(K1) (with D = D(k) as in the Claim above). Let
W (Y1, Y2) be the union ∪q∈τr(σr)λq, where λq is a horizontal geodesic in Fq joining

Y1 ∩ Fq to Y2 ∩ Fq. Suppose b, b
′

are images (under τr) of antipodal points on σr.
As in the proof of Lemma 3.1, we know that there exists k1(= k1(k)) such that for
each point z of λb there exists a k1−quasi-isometric section of σr in W (Y1, Y2); any
such qi section is D1(= D1(k1))−close to a coset of NG(K1) by the Claim above.

Since Y1, Y2 are close to distinct cosets of NG(K1), we can find (as in Step 1 of

Proposition 3.14) two k1−qi sections Y
′

1 , Y
′

2 of σr passing through z1, z2 ∈ λb with

d(z1, z2) = 1 such that Y
′

1 , Y
′

2 are
a) D1−close to two distinct cosets of NG(K1),
b) both contained in W (Y1, Y2).

Suppose Y
′

1 , Y
′

2 intersect λb′ in z
′

1 and z
′

2 respectively. If d(z
′

1, z
′

2) is large, in the
same way as before, we can construct two k2(= k2(k1))−qi sections Y3, Y4 of σr
contained in W (Y

′

1 , Y
′

2 ) such that
a) Y3, Y4 are D2(= D2(D1))− close to two distinct cosets of NG(K1)
b) d(Y3 ∩ λb′ , Y4 ∩ λb′ ) = 1.

Thus we have two k2−qi sections of long subarcs of σr that start and end close
by in X but lie close to distinct cosets of NG(K1). Since r can be chosen to be
arbitrarily large, this violates strong relative hyperbolicity of G with respect to the
cosets of NG(K1), proving the proposition. �

5.3. Necessity of Flaring. In this subsection we prove that flaring is a necessary
condition for hyperbolicity of a metric (graph) bundle:

Proposition 5.8. Let P : X → B be a metric (graph) bundle such that
1. X is δ-hyperbolic
2. There exist δ0 such that each of the fibers Fz, z ∈ B (V(B)) is δ0-hyperbolic
equipped with the path metric induced from X.
Then the metric bundle satisfies a flaring condition. In particular, any exact se-
quence of finitely generated groups 1 → N → G → Q → 1 with N,G hyperbolic
satisfies a flaring condition.

The proof will occupy the entire subsection. Suppose γ : [−L,L] → B is a
geodesic and α, β are two K1-qi lifts of γ. As in the construction of ladders, we
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define Y to be the union of horizontal geodesics [α(t), β(t)] ⊂ Fγ(t), t ∈ [−L,L],
and refer to it as the ladder formed by α and β. Let η : [0,M ] → Fγ(0) be the
geodesic Y ∩ Fγ(0).

A crucial ingredient is the following lemma which is a specialization to our con-
text of the fact that geodesics in a hyperbolic space diverge exponentially. (See
Proposition 2.4 and the proof of Theorem 4.11 in [Mit97]).

Lemma 5.9. Given K1 ≥ 1, D ≥ 0 there exist b = b(K1, D) > 1, A = A(K1, D) >
0 and C = C(K1, D) > 0 such that the following holds:

If d(α(0), β(0)) ≤ D and there exists T ∈ [0, L] with d(α(T ), β(T )) ≥ C then any
path joining α(T + t) to β(T + t) and lying outside the union of the T+t−1

2K1
-balls

around α(0), β(0) has length greater than Abt for all t ≥ 0 such that T + t ∈ [0, L].
In particular, the horizontal distance between α(T + t) and β(T + t) is greater than
Abt for all t ≥ 0 such that T + t ∈ [0, L].

Now, we use Lemma 5.9 to show that the ladder Y flares in at least one direction
of γ. We start the proof by showing this in two special cases. A general ladder is
then broken into subladders of the special types by qi lifts of γ as in Step 1 of the
proof of Proposition 3.14. (Recall that we get exactly two types of subladders in
this way. This motivates us to consider the two types of special ladders here.) We
point out that

(1) the first type of ladder is of uniformly small (but not too small) girth;
(2) the second type of ladder is not necessarily of small girth but any qi lift of γ

divides it into two subladders of small girth.
The proof of flaring for all ladders follows from this.

We shall need the following lemma also.

Lemma 5.10. 1) Given d1, d2, δ ≥ 0 and k ≥ 1 there are constants C = C(d1, d2, k, δ)
and D = D(k, δ) such that the following holds:

Let X be a δ-hyperbolic metric space and let α1, α2 : [−L,L] → X be k-quasi-
geodesics. Let [a, b] ⊂ [−L,L] and suppose d1 = d(α1(a), α2(a)) and d2 = d(α1(b), α2(b)).
If [t− C, t+ C] ⊂ [a, b] for some t ∈ [a, b] then d(α1(t), α2(t)) ≤ D.
2) Through each point of a ladder Y formed by K1-qi lifts of a geodesic γ in B there
is a C3.1(K1)-qi lift of γ contained in Y .

Proof. (1) follows easily from stability of quasi-geodesics and slimness of triangles
in X. (See Lemma 1.15 of Chapter III.H, [BH99] for instance).
(2) This is a replica of the proof of Lemma 3.1. �

Remark 5.11. We shall assume L to be sufficiently large for the following argu-
ments to go through. We give the proof for metric bundles. The same proof works
mutatis mutandis (replacing B by (V(B)) for instance) for metric graph bundles.

Flaring of ladders in special cases:
Let D = D5.10(K1, δ) and D

′

1 = C5.9(K1, D). Since the horizontal spaces in X
are uniformly properly embedded in X there is a D1 such that for all v ∈ B and
x, y ∈ Fv if dv(x, y) ≥ D1 then d(x, y) ≥ D

′

1. Let Ki+1 = Ci
3.1(K1), i = 1, 2, 3.

Also suppose that dγ(0)(α(0), β(0)) =M .

Lemma 5.12. Ladders of type 1: For K1, D,D1 as above and M ≥ D1, there
exists n1 = n1(K1,M) such thatmax{dγ(−t)(α(−t), β(−t)), dγ(t)(α(t), β(t))} ≥ 8M
for all t ≥ n1.
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Proof. LetD2 = C5.9(K1,M) and let C1 := 1+2.C5.10(M,D2,K1, δ). If d(α(C1), β(C1)) ≥
D2 then for all t ≥ 0 the length of the horizontal geodesic joining α(C1 + t) to
β(C1 + t) is greater than or equal to A1.b

t
1 for some A1 = A5.9(K1,M), b1 =

b5.9(K1,M). Choose t1 > 0 such that for all t ≥ t1, A1.b
t1
1 ≥ 8M .

Else, suppose d(α(C1), β(C1)) < D2. In this case, by Lemma 5.10, d(α(C1−1
2 ), β(C1−1

2 )) ≤
D. By the choice of the constants D,D2 we can again apply Lemma 5.9 so that
for all t ≥ 0 the length of a horizontal geodesic Y ∩ Fγ(−t) is greater than or equal
to A2.b

t
2, where the constants A2, b2 depend on K1 and D. Choose t2 > 0 such

that for all t ≥ t2, A2.b
t
2 ≥ 8M . Now let n1 = max{C1 + t1, t2}. Thus we have

max{dγ(−t)(α(−t), β(−t)), dγ(t)(α(t), β(t))} ≥ 8M for all t ≥ n1 = n1(M,K1). �

Lemma 5.13. Ladders of type 2: Suppose l > 0 and that for any s ∈ [0,M − 1]
there is a K2- qi lift α1 of γ in Y through η(s) such that d(α(t), α1(t)) ≤ l for some
t ∈ [−L,L]. There are n2 = n2(K1, l) and D4 = D4(K1, l) such that for all t ≥ n2
we have

max{dγ(t)(α(t), β(t)), dγ(−t)(α(−t), β(−t))} ≥ 8M if M ≥ D4 + 1.

Proof. Let C3 = C5.9(K3, l), A3 = A5.9(K3, l), b3 = b5.9(K3, l). Letm0 := min{m ∈
N : A3.b

m
3 ≥ D3.12(g(2K3))}, where g refers to the function defined in Lemma 1.13.

It follows easily from the bounded flaring condition that there is a constant D
′

4 such
that the following is true:

Suppose we have two K3-qi lifts α
′

, α
′′

: [−L,L] → X of the geodesic γ :

[−L,L] → B with dγ(0)(α
′

(0), α
′′

(0)) ≥ D
′

4 then d(α
′

(t), α
′′

(t)) ≥ D3.12(g(2K3))
for all t ∈ [0,m0].

Let D4 = max{D
′

4, C3} and letM−1 = N.D4+r where N ∈ N and 0 ≤ r < D4.
Now construct aK2-qi section β1 in the ladder Y such that dγ(0)(β(0), β1(0)) = r+1
and d(α(t0), β1(t0)) ≤ l for some t0 ∈ [−L,L]. Without loss of generality we
assume that t0 ∈ [−L, 0]. We now use Lemma 5.10 (2) to break the subladder of
Y , formed by α and β1, by K3-qi lifts α0 = α, α1, · · · , αN = β1 of γ such that
dγ(0)(αi(0), αi+1(0)) = D4. We have d(αi(t0), αi+1(t0)) ≤ l. Thus by the choice of
the constant D4, dγ(t)(αi(t), αi+1(t)) ≥ max{D3.12(g(2K3)), A3.b

t
3} for all t ≥ 0.

Also (as in Step 2 of the proof of Proposition 3.14) ∪[αi(t), αi+1(t)] is a partition
of the horizontal geodesic segment [α(t), β1(t)] ⊂ Y ∩ Fγ(t), for all t ∈ [0,m0].
Therefore, we can choose n2 = n2(K1, l) such that for all t ≥ n2,

max{dγ(t)(α(t), β(t)), dγ(−t)(α(−t), β(−t))} ≥ 8M if M − 1 ≥ D4 = D4(K1, l).

�

Flaring of general ladders: In the general case, first of all, we break the
ladder Y into subladders of special types as described above (see figure below where
horizontal and vertical directions have been interchanged for aesthetic reasons).

Let us assume that Y is bounded by K− qi lifts α, β of a geodesic γ : [−L,L] →
X. Let η : [0,M ] → Fγ(0) be the geodesic Y ∩ Fγ(0). Let Ki = Ci

3.1(K), and l =
D3.12(g(2.K2)). LetMK := max{D1(K1), D4(K1, l)}, and nK := max{n1(K1,MK), n2(K1, l)}
where the functions D1, D4, n1, n2 are as in the proof of the flaring for the special
ladders.

Claim: If M ≥MK then we have

max{dγ(−nK)(α(−nK), β(−nK)), dγ(nK)(α(nK), β(nK))} ≥ 2.dγ(0)(α(0), β(0)).
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To show this we inductively construct K1-qi sections α0 = α, α1, · · · , αi = β in
Y to decompose it into subladders of the two types we mentioned above. This is
done as in Step 1 of the proof of Proposition 3.14. Nevertheless we include a sketch
of the argument for completeness.

Since M ≥MK , therefore by Lemma 5.11 (2), we can construct a K1-qi section
α1 through η(MK). Now, suppose α1, · · · , αj has been constructed through the
points η(s1), · · · , η(sj) respectively. If dγ(0)(αj(0), β(0)) ≤ MK define αj+1 = β.
Otherwise, if there is a K1-qi section through η(MK + sj) in the ladder formed by
αj and β, define it to be αj+1. If neither happens then consider the following set:

Tj = {t ≥ sj+MK : ∃ aK1-qi section through η(t) entering the ladder formed by αj andα}

Let tj = supTj be the supremum of this set. Define αj+1 to be a K1-qi section
through sj+1 := tj + 1, in the ladder formed by αj and β that does not enter the
ladder formed by αj and α.

Flaring subladders

For each j, αj and αj+1 form a special ladder (except possibly for the last
one) and hence it must flare. Thus η can be expressed as the disjoint union of
subsegments that flare to the left and the union of the subsegments that flare to
the right respectively. The total length of one of these types must be at least
one-fourth of the length of η. The claim follows. 2

The first statement of Proposition 5.8 follows immediately. The last statement
follows from Example 1.8 and the first part of this Proposition. 2

5.4. An Example. Let (Teich(S), dT ) be the Teichmuller space of a closed sur-
face S equipped with the Teichmuller metric dT . Teichmuller space can also be
equipped with an electric metric de by electrocuting the thin parts (see [Far98] for
details on electric geometry and the introduction to this paper for a quick sum-
mary and relevant notation). Note (as per work of Masur-Minsky [MM99], see
also [Mj09]) that (Teich(S), de) is quasi-isometric to the curve complex CC(S).
Let E : (Teich(S), dT ) → (Teich(S), de) be the identity map from the Teichmuller
space of S equipped with the Teichmuller metric dT to the Teichmuller space of S
equipped with the electric metric de.

We shall need the following Theorem due to Hamenstadt [Ham10] which used
an idea of Mosher [Mos03] in its proof.

Theorem 5.14. Hamenstadt [Ham10]: For every L > 1 there exists D > 0 such
that the following holds.
Let f : R → (Teich(S), dT ) be a Teichmuller L-quasigeodesic such that E ◦ f :
R → (Teich(S), dE) is also an L-quasigeodesic. Then for all a, b ∈ R there is
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a Teichmuller geodesic ηab joining f(a), f(b) ∈ Teich(S) such that the Hausdorff
distance dH(f([a, b]), ηab) ≤ D.

We are now in a position to prove a rather general combination proposition for
metric bundles over quasiconvex subsets of CC(S). For j : K → (Teich(S), dT ) a
map, let U(S,K) denote the pullback (under j) of the universal curve over Teich(S)
equipped with the natural path metric. Also, the universal cover of the universal

curve over Teich(S) is a hyperbolic plane bundle over Teich(S). Let ˜U(S,K)
denote the pullback to K of this hyperbolic plane bundle.

Proposition 5.15. Let (K, dK) be a hyperbolic metric space satisfying the follow-
ing:
There exists C > 0 such that for any two points u, v ∈ K, there exists a bi-infinite
C-quasigeodesic γ ⊂ K with dK(u, γ) ≤ C and dK(v, γ) ≤ C.
Let j : K → (Teich(S), dT ) be a quasi-isometric embedding such that E ◦ j : K →

(Teich(S), de) is also a quasi-isometric embedding. Then ˜U(S,K) is a hyperbolic
metric space.

Proof. Clearly, ˜U(S,K) is a metric bundle over K (since the universal curve over
Teich(S) is topologically a product S×Teich(S) and the latter is equipped with a
foliation by totally geodesic copies of Teich(S)). Hence, by Theorem 4.3 it suffices
to prove flaring. Let Sx denote the fiber of U(S,K) over x ∈ i(K).

Let [a, b] be a geodesic segment of sufficiently large length in K. By the hypothe-
sis on K, there exists a bi-infinite geodesic passing within a bounded neighborhood
of [a, b]. Hence without loss of generality, we may assume that a, b lie on a bi-infinite
geodesic in K.

Since j and E ◦ j are both quasi-isometric embeddings, it follows that there
exists ǫ > 0 such that for all x ∈ K, the injectivity radius of j(x) ∈ Teich(S) is
greater than ǫ. We shall refer to geodesics lying in the ǫ− thick part of Teich(S)
as fat Teichmuller geodesics. By Theorem 5.14 we may assume that j(a), j(b) lie
in a uniformly bounded neighborhood of a fat Teichmuller geodesic ηab whose end-
points in the Thurston boundary ∂Teich(S) are two singular foliations F+,F−. Let
ds be the singular Euclidean metric on S induced by the pair of singular foliations
F+,F−.

The rest of the argument follows an argument of Mosher [Mos97]. Let x be some
point on the fat Teichmuller geodesic ηab obtained in the previous paragraph. Given

any geodesic segment λ ⊂ S̃x of length l(λ), there are two projections λ+ and λ−
onto (the universal covers of) F+,F− in S̃x. At least one of these projections is of

length at least l(λ)
2 . If u, v are two points on either side of x such that dT (u, x) ≥ m

and dT (v, x) ≥ m, then the length of λ in at least one of S̃u and S̃v is greater than
l(λ)
2 (em).
Since all the surfaces with piecewise Euclidean metric involved in the above

argument can be chosen to have uniformly bounded diameter, their universal covers
are all uniformly quasi-isometric to a fixed Cayley graph of π1(S). Flaring follows.

�

The same proof goes through for Sh− a finite area surface with cusps, provided
we equip the cusps of Sh with a zero metric. (This is the electric metric on cusps
in the terminology of [Far98].) Flaring in this situation is proved in Section 4.4 of
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[MR08]. The next proposition states this explicitly assuming that Sh (resp. the

universal cover S̃h) comes equipped with the zero metric on cusps (resp. lifts to

S̃h).

Proposition 5.16. Let (K, dK) be a hyperbolic metric space satisfying the follow-
ing:
There exists C > 0 such that for any two points u, v ∈ K, there exists a bi-infinite
C-quasigeodesic γ ⊂ K with dK(u, γ) ≤ C and dK(v, γ) ≤ C.
Let j : K → (Teich(Sh), dT ) be a quasi-isometric embedding such that E ◦ j : K →

(Teich(Sh), de) is also a quasi-isometric embedding. Then ˜U(Sh,K) is a hyperbolic
metric space.

From Proposition 5.16 we obtain directly the following consequence (see [FM02]
for definitions).

Consider a surface Sh with punctures. LetK = π1(S
h) and letK = {K1, · · · ,Kp}

be the collection of peripheral subgroups. The pure mapping class group is the sub-
group of the mapping class group that preserves individual punctures. Let Q be a
convex cocompact subgroup of the pure mapping class group. We state the Propo-
sition below for a surface with a single puncture for convenience where the pure
mapping class group is the mapping class group.

Proposition 5.17. Let K = π1(S
h) be the fundamental group of a surface with

a single puncture and K1 be its peripheral subgroup. Let Q be a convex cocompact
subgroup of the mapping class group of Sh. Let

1 → (K,K1) → (G,NG(K1))
p
→ (Q,Q1) → 1

be the induced short exact sequence of (pairs of) groups. Then G is strongly hyper-
bolic relative to NG(K1).

Conversely, if G is (strongly) hyperbolic relative to NG(K1), then Q is convex-
cocompact.

Proof. Suppose that Q is convex cocompact. Then Q is hyperbolic by [FM02],
[KL08]. Also Q = Q1 by Theorem 5.2. Let E(G,K1) denote the electric space
obtained from (the Cayley graph of) G after coning off translates of (the Cayley
graph of) K1. Note that E(G,K1) is a metric graph bundle quasi-isometric to

a K̂(= E(K,K1))-bundle over Q where K̂(= E(K,K1)) denotes K with copies
of K1 coned off. The flaring condition for this bundle and hence weak relative
hyperbolicity of the pair (G,K1) follow from Proposition 5.16.

Let Q denote the collection of translates of (Cayley graphs of) Q(= NG(K1)/K1)
in E(G,K1), where each copy of Q in E(G,K1) is a copy of the electric space
E(NG(K1),K1) obtained by coning off K1 in translates of (Cayley graphs of)
NG(K1).

To prove that G is strongly hyperbolic relative to NG(K1) it suffices to prove that
E(G,K1) is strongly hyperbolic relative to Q, as K is already strongly hyperbolic
relative to K1 by [Far98]. That E(G,K1) is strongly hyperbolic relative to Q would
in turn follow [Mj11] from (uniform) mutual coboundedness of pairs of elements
in Q. Note also that each Qi ∈ Q is quasi-isometrically embedded and hence a
quasiconvex subset of E(G,K1). Any two such Q1, Q2’s define a ladder C(Q1, Q2)
by regarding Q1, Q2 as qi sections of the metric graph bundle E(G,K1) over Q.
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Each C(Q1, Q2) is hyperbolic by Proposition 3.14. Hence, the ladder C(Q1, Q2)
also satisfies flaring by Proposition 5.8.

To establish mutual coboundedness, we argue by contradiction. Let dh denote
the horizontal distance in E(G,K1). Suppose that elements of the collection Q do
not satisfy (uniform) mutual coboundedness. Then there exists D0 > 0 such that
for any l > 0, there exists a pair Q1, Q2 ∈ Q and a geodesic segment r : [0, l] → Q
such that dh(s1 ◦ r(t), s2 ◦ r(t)) ≤ D0 for all t ∈ [0, l], where si : Q → E(G,K1)
are quasi-isometric embeddings defining the sections Q1, Q2. Since the number of
elements in K of length at most D0 is bounded it follows that for sufficiently large
l, there exists q ∈ Q, q 6= 1 and h ∈ (K \ K1), h 6= 1 such that s(q), h commute.
This is impossible for Q convex cocompact, proving the forward direction of the
Proposition.

We now prove the converse direction. Hyperbolicity of Q follows from Propo-
sition 5.7. To prove convex cocompactness, it is enough to show by [FM02] that
some orbit of the action of Q on (Teich(S), dT ) is quasiconvex.

Since G is strongly hyperbolic relative to NG(K1), it follows from Lemma 1.50
that E(G,K1) is strongly hyperbolic relative to the collection Q of translates of
(Cayley graphs of) Q(= NG(K1)/K1) in E(G,K1) as defined above. Since Q is
hyperbolic, it follows (cf. [Bow97] Section 7) that E(G,K1) is hyperbolic. Thus,
E(G,K1) is a hyperbolic metric graph bundle over Q. Hence, from Proposition 5.8,
the bundle E(G,K1) over Q satisfies flaring. The logarithm of the stretch factor
guaranteed by flaring gives a lower bound on the Teichmuller distance.

The remainder of the argument is an exact replica of the proof of Theorem 1.2 of
[FM02] (Section 5.2 of [FM02] in particular), which proves the analogous statement
for surfaces without punctures. We do not reproduce the argument here but point
out that the only place in the proof where explicit use is made of closedness of S
is Theorem 5.5 of [FM02], which, in turn is taken from [Mos03]. A straightforward
generalization of this fact to the punctured surface case is given in [Pal11]. �

Remark 5.18. It is worth noting that a group G as in Proposition 5.17 cannot act
freely, properly discontinuously by isometries on a Hadamard manifold of pinched
negative curvature unless Q is virtually cyclic, as the normalizer NG(K1) is not
nilpotent.

As an application of Proposition 5.15 we give the first examples of surface bundles
over hyperbolic disks, with Gromov-hyperbolic universal cover. It has been an
open question (cf. [KL08] [FM02]) to find purely pseudo Anosov surface groups in
MCG(S). The example below is a step towards this.

In [LS11] Leininger and Schleimer construct examples of disks (Q, dQ) quasi-
isometric to H2 and quasi-isometric embeddings j : Q → (Teich(S), dT ) such that
E ◦ j : Q → (Teich(S), de) is also a quasi-isometric embedding. By Proposition

5.15, the hyperbolic plane bundle Ũ(S,Q) is a hyperbolic metric space.
A brief sketch of Leininger-Schleimer’s construction [LS11] follows:

The curve complex CC(S, x) of a surface with one puncture (or equivalently, a
marked point x) admits a surjective map to CC(S) such that the fiber over η ∈
CC(S) is the Bass-Serre tree of the splitting of π1(S) over the cyclic groups repre-
sented by the simple closed curves in η. Suppose γ is a bi-infinite geodesic in CC(S)
coming from a geodesic in Teich(S) lying in the thick part. Inside CC(S, x) one
has the space of trees over γ, and the authors of [LS11] construct lines in each tree
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over γ whose union Q1 is quasi-isometric to the hyperbolic plane. Using a branched
cover-trick, they construct from Q1 a new disk Q ⊂ CC(S′) (for a closed surface
S′, which is a branched cover of S branched over the marked point of S) such that
Q satisfies the hypotheses of Proposition 5.15.

References

[ABC+91] J. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and
H. Short, Notes on word hyperbolic groups, Group Theory from a Geometrical View-

point (E. Ghys, A. Haefliger, A. Verjovsky eds.) (1991), 3–63.
[BF92] M. Bestvina and M. Feighn, A Combination theorem for Negatively Curved Groups,

J. Differential Geom., vol 35 (1992), 85–101.

[BH99] M. Bridson and A Haefliger, Metric spaces of nonpositive curvature, Grundlehren der
mathematischen Wissenchaften, Vol 319, Springer-Verlag (1999).

[Bow97] B. H. Bowditch, Relatively hyperbolic groups, preprint, Southampton (1997).
[Bow07] , The Cannon-Thurston map for punctured surface groups, Math. Z. 255

((2007)), 35–76.
[CDP90] M. Coornaert, T. Delzant, and A. Papadopoulos, Geometrie et theorie des groupes,

Lecture Notes in Math., vol.1441, Springer Verlag (1990).
[CT85] J. Cannon and W. P. Thurston, Group Invariant Peano Curves, preprint, Princeton

(1985).
[CT07] , Group Invariant Peano Curves, Geom. Topol. 11 (2007), 1315–1355.
[Far98] B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), 810–840.

[FM02] B. Farb and L. Mosher, Convex cocompact subgroups of mapping class groups, Geom.
Topol. 6 (2002), 91–152.

[Gd90] E. Ghys and P. de la Harpe(eds.), Sur les groupes hyperboliques d’apres Mikhael Gro-

mov, Progress in Math. vol 83, Birkhauser, Boston Ma. (1990).

[Gro85] M. Gromov, Hyperbolic Groups, in Essays in Group Theory, ed. Gersten, MSRI
Publ.,vol.8, Springer Verlag (1985), 75–263.

[Gro93] , Asymptotic Invariants of Infinite Groups, in Geometric Group Theory,vol.2;

Lond. Math. Soc. Lecture Notes 182, Cambridge University Press (1993).
[Ham05] U. Hamenstadt, Word hyperbolic extensions of surface groups, preprint,

arXiv:math/0505244 (2005).
[Ham07] , Geometry of complex of curves and teichmuller spaces, in Handbook of Te-

ichmuller Theory Vol. 1, EMS (2007), 447–467.
[Ham10] , Stability of Quasigeodesics in Teichmuller Space, Geom. Dedicata 146 (2010),

101–116.

[Kap08] M. Kapovich, Problems on Boundaries of groups and Kleinian Groups,
http://www.aimath.org/pggt/Boundaries boundaries-version4.pdf (2008).

[KL08] R. P. KentIV and C. Leininger, Shadows of mapping class groups: capturing convex

cocompactness, Geom. Funct. Anal. 18 (2008), 1270–1325.

[LMS11] C. Leininger, M. Mj, and S. Schleimer, The universal Cannon–Thurston maps and the

boundary of the curve complex , Comment. Math. Helv. 86(4), arXiv:0808.3521 (2011),
769–816.

[LS11] C. Leininger and S. Schleimer, Hyperbolic spaces in Teichmuller spaces,

arXiv:1110.6526, preprint (2011).
[Mit97] M. Mitra, Ending Laminations for Hyperbolic Group Extensions, Geom. Funct. Anal.

7 (1997), 379–402.

[Mit98a] , Cannon-Thurston Maps for Hyperbolic Group Extensions, Topology 37
(1998), 527–538.

[Mit98b] , Cannon-Thurston Maps for Trees of Hyperbolic Metric Spaces, J. Differential
Geom. 48 (1998), 135–164.

[Mj06] M. Mj, Cannon-Thurston Maps for Surface Groups, preprint, arXiv:math.GT/0607509
(2006).

[Mj09] , Mapping class groups and interpolating complexes: Rank, J. Ramanujan

Math. Soc. 24, no. 4 (2009), 341–357.



62 MAHAN MJ AND PRANAB SARDAR

[Mj11] , Cannon-Thurston Maps, i-bounded Geometry and a Theorem of Mc-
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