Pattern Rigidity

Mahan Mj, Department of Mathematics, RKM Vivekananda University.

イロト イポト イヨト イヨト

3

Motivation

Spaces: Geodesic metric spaces

Maps: Quasi-isometries.

 $f: X \to Y$ such that

$$\frac{1}{k}d_X(x,y) - \epsilon \le d_Y(f(x),f(y)) \le kd_X(x,y) + \epsilon$$
 and $Y \subset N_k(f(X)).$

Finitely generated groups as geometric objects: Cayley graphs with respect to a finite generating set.

Programme (Gromov): Classify finitely generated groups up to quasi-isometry; understand QI(X)

Motivation

Spaces: Geodesic metric spaces

Maps: Quasi-isometries.

$$f: X \to Y$$
 such that

$$rac{1}{k}d_X(x,y) - \epsilon \leq d_Y(f(x),f(y)) \leq kd_X(x,y) + \epsilon ext{ and } Y \subset N_k(f(X)).$$

Finitely generated groups as geometric objects: Cayley graphs with respect to a finite generating set.

Programme (Gromov): Classify finitely generated groups up to quasi-isometry; understand QI(X)

Motivation

Spaces: Geodesic metric spaces

Maps: Quasi-isometries.

$$f: X \to Y$$
 such that

$$rac{1}{k}d_X(x,y) - \epsilon \leq d_Y(f(x),f(y)) \leq kd_X(x,y) + \epsilon$$
 and $Y \subset N_k(f(X)).$

Finitely generated groups as geometric objects: Cayley graphs with respect to a finite generating set.

Programme (Gromov): Classify finitely generated groups up to quasi-isometry; understand QI(X)

(日) (四) (日) (日) (日)

Motivation

Spaces: Geodesic metric spaces

Maps: Quasi-isometries.

$$f: X \to Y$$
 such that

$$rac{1}{k}d_X(x,y) - \epsilon \leq d_Y(f(x),f(y)) \leq kd_X(x,y) + \epsilon$$
 and $Y \subset N_k(f(X)).$

Programme (Gromov): Classify finitely generated groups up to quasi-isometry; understand QI(X)

Collection of groups acting freely, cocompactly and properly discontinuously on some fixed proper metric space H are all quasi-isometric to H.

Impose additional *combinatorial* restrictions on the quasi-isometries by requiring that they preserve an additional structure given by a 'symmetric pattern' of subsets. **Pattern =** *G*-equivariant collection \mathcal{J} of convex (or uniformly quasiconvex) cocompact subsets in **H**.

Collection of groups acting freely, cocompactly and properly discontinuously on some fixed proper metric space H are all quasi-isometric to H.

Impose additional *combinatorial* restrictions on the quasi-isometries by requiring that they preserve an additional structure given by a 'symmetric pattern' of subsets.

Pattern = G-equivariant collection \mathcal{J} of convex (or uniformly quasiconvex) cocompact subsets in **H**.

Collection of groups acting freely, cocompactly and properly discontinuously on some fixed proper metric space H are all quasi-isometric to H.

Impose additional *combinatorial* restrictions on the quasi-isometries by requiring that they preserve an additional structure given by a 'symmetric pattern' of subsets. **Pattern =** *G*-equivariant collection \mathcal{J} of convex (or uniformly quasiconvex) cocompact subsets in **H**.

Alternately, go to the boundary. QI $q : \Gamma_{G_1} \to \Gamma_{G_2}$ induces quasiconformal homeomorphism $\partial q : \partial G_1 \to \partial G_2$. $\mathcal{H}_i = \{g.\partial H_i \subset \partial G_i | g \in G_i\}$. Demand that $\partial q(\mathcal{H}_1) = \mathcal{H}_2$.

Question

Is a pattern-preserving quasi-isometry between pairs (G_i , \Re_i), i = 1, 2 close to an isometry. Does there exist an abstract commensurator I which performs the same pairing?

Alternately, go to the boundary. QI $q : \Gamma_{G_1} \to \Gamma_{G_2}$ induces quasiconformal homeomorphism $\partial q : \partial G_1 \to \partial G_2$. $\mathcal{H}_i = \{g.\partial H_i \subset \partial G_i | g \in G_i\}$. Demand that $\partial q(\mathcal{H}_1) = \mathcal{H}_2$.

Question

Is a pattern-preserving quasi-isometry between pairs (G_i , \Re_i), i = 1,2 close to an isometry. Does there exist an abstract commensurator I which performs the same pairing?

イロン イロン イヨン イヨン

Alternately, go to the boundary. QI $q : \Gamma_{G_1} \to \Gamma_{G_2}$ induces quasiconformal homeomorphism $\partial q : \partial G_1 \to \partial G_2$. $\mathcal{H}_i = \{g.\partial H_i \subset \partial G_i | g \in G_i\}$. Demand that $\partial q(\mathcal{H}_1) = \mathcal{H}_2$.

Question

Is a pattern-preserving quasi-isometry between pairs (G_i , \mathcal{H}_i), i = 1, 2 close to an isometry. Does there exist an abstract commensurator I which performs the same pairing?

ヘロン 人間 とくほとく ほとう

Alternately, go to the boundary. QI $q : \Gamma_{G_1} \to \Gamma_{G_2}$ induces quasiconformal homeomorphism $\partial q : \partial G_1 \to \partial G_2$. $\mathcal{H}_i = \{g.\partial H_i \subset \partial G_i | g \in G_i\}$. Demand that $\partial q(\mathcal{H}_1) = \mathcal{H}_2$.

Question

Is a pattern-preserving quasi-isometry between pairs (G_i , \mathcal{H}_i), i = 1, 2 close to an isometry. Does there exist an abstract commensurator I which performs the same pairing?

ヘロン 人間 とくほとく ほとう

Alternately, go to the boundary. QI $q : \Gamma_{G_1} \to \Gamma_{G_2}$ induces quasiconformal homeomorphism $\partial q : \partial G_1 \to \partial G_2$. $\mathcal{H}_i = \{g.\partial H_i \subset \partial G_i | g \in G_i\}$. Demand that $\partial q(\mathcal{H}_1) = \mathcal{H}_2$.

Question

Is a pattern-preserving quasi-isometry between pairs (G_i, \mathcal{H}_i) , i = 1, 2 close to an isometry. Does there exist an abstract commensurator I which performs the same pairing?

History

- Schwartz G is a non-uniform lattice in a rank one symmetric space. J symmetric patterns of horoballs
- Schwartz G is a uniform lattice in a rank one symmetric space.
 ∂ symmetric patterns of geodesics
- (Biswas, M–) G is a uniform lattice in a rank one symmetric space. J symmetric pattern corresponding to certain Duality and PD subgroups of rank one symmetric spaces.

イロト イポト イヨト イヨト

• (Biswas) *G* a uniform lattice in real hyperbolic space. *J* corresponds to qc subgroup.

History

- Schwartz G is a non-uniform lattice in a rank one symmetric space. J symmetric patterns of horoballs
- Schwartz G is a uniform lattice in a rank one symmetric space.

 ∂ symmetric patterns of geodesics
- (Biswas, M–) G is a uniform lattice in a rank one symmetric space. J symmetric pattern corresponding to certain Duality and PD subgroups of rank one symmetric spaces.

イロト イポト イヨト イヨト

• (Biswas) *G* a uniform lattice in real hyperbolic space. *J* corresponds to qc subgroup.

History

- Schwartz G is a non-uniform lattice in a rank one symmetric space. J symmetric patterns of horoballs
- Schwartz G is a uniform lattice in a rank one symmetric space.

 ∂ symmetric patterns of geodesics
- (Biswas, M–) G is a uniform lattice in a rank one symmetric space. J symmetric pattern corresponding to certain Duality and PD subgroups of rank one symmetric spaces.

イロト イポト イヨト イヨト

• (Biswas) *G* a uniform lattice in real hyperbolic space. *J* corresponds to qc subgroup.

History

- Schwartz G is a non-uniform lattice in a rank one symmetric space. J symmetric patterns of horoballs
- Schwartz G is a uniform lattice in a rank one symmetric space.

 ∂ symmetric patterns of geodesics
- (Biswas, M–) G is a uniform lattice in a rank one symmetric space. J symmetric pattern corresponding to certain Duality and PD subgroups of rank one symmetric spaces.

イロト イポト イヨト イヨト

• (Biswas) *G* a uniform lattice in real hyperbolic space. *J* corresponds to qc subgroup.

History

- Schwartz G is a non-uniform lattice in a rank one symmetric space. J symmetric patterns of horoballs
- Schwartz G is a uniform lattice in a rank one symmetric space.

 ∂ symmetric patterns of geodesics
- (Biswas, M–) G is a uniform lattice in a rank one symmetric space. J symmetric pattern corresponding to certain Duality and PD subgroups of rank one symmetric spaces.

イロト イポト イヨト イヨト

• (Biswas) *G* a uniform lattice in real hyperbolic space. *J* corresponds to qc subgroup.

History

- Schwartz G is a non-uniform lattice in a rank one symmetric space. J symmetric patterns of horoballs
- Schwartz G is a uniform lattice in a rank one symmetric space.

 ∂ symmetric patterns of geodesics
- (Biswas, M–) G is a uniform lattice in a rank one symmetric space. J symmetric pattern corresponding to certain Duality and PD subgroups of rank one symmetric spaces.

イロト イポト イヨト イヨト

• (Biswas) *G* a uniform lattice in real hyperbolic space. *J* corresponds to qc subgroup.

Filling Codimension One Subgroups

Study the groups $PPQI_u(G, H)$ -groups of uniform quasi-isometries.

Caveat: Composing quasi-isometries increases qi constants. One natural situation where such uniform groups arise: Let *H* be a codimension one, filling, quasiconvex subgroup of a one-ended hyperbolic group *G*. There exists $C \ge 0$ such that any geodesic σ in Γ_G of length greater than *C* is separated by a translate of Γ_H or joins $J(\Lambda_H)$.

<ロ> (四) (四) (日) (日) (日)

Filling Codimension One Subgroups

Study the groups $PPQI_u(G, H)$ -groups of uniform quasi-isometries.

Caveat: Composing quasi-isometries increases qi constants.

One natural situation where such uniform groups arise: Let *H* be a codimension one, filling, quasiconvex subgroup of a one-ended hyperbolic group *G*. There exists $C \ge 0$ such that any geodesic σ in Γ_G of length greater than *C* is separated by a translate of Γ_H or joins $J(\Lambda_H)$.

Filling Codimension One Subgroups

Study the groups $PPQI_u(G, H)$ -groups of uniform quasi-isometries.

Caveat: Composing quasi-isometries increases qi constants. One natural situation where such uniform groups arise:

Let *H* be a codimension one, filling, quasiconvex subgroup of a one-ended hyperbolic group *G*. There exists $C \ge 0$ such that any geodesic σ in Γ_G of length greater than *C* is separated by a translate of Γ_H or joins $J(\Lambda_H)$.

Filling Codimension One Subgroups

Study the groups $PPQI_u(G, H)$ -groups of uniform quasi-isometries.

Caveat: Composing quasi-isometries increases qi constants. One natural situation where such uniform groups arise: Let *H* be a codimension one, filling, quasiconvex subgroup of a one-ended hyperbolic group *G*. There exists $C \ge 0$ such that any geodesic σ in Γ_G of length greater than *C* is separated by a translate of Γ_H or joins $J(\Lambda_H)$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Filling Codimension One Subgroups

Study the groups $PPQI_u(G, H)$ -groups of uniform quasi-isometries.

Caveat: Composing quasi-isometries increases qi constants. One natural situation where such uniform groups arise:

Let *H* be a codimension one, filling, quasiconvex subgroup of a one-ended hyperbolic group *G*. There exists $C \ge 0$ such that any geodesic σ in Γ_G of length greater than *C* is separated by a translate of Γ_H or joins $J(\Lambda_H)$.

(日) (四) (日) (日) (日)

Filling Codimension One Subgroups

Define a new pseudometric ρ on Γ by declaring $\rho(a, b)$ to be the number of copies of joins $J \in \mathcal{J}$ separating a, b. Then (Γ, ρ) is quasi-isometric to (Γ, d)

Any pattern-preserving quasi-isometry preserves ρ on the nose. Hence any pattern-preserving group Q of quasi-isometries is a group of uniform qi's.

Filling Codimension One Subgroups

Define a new pseudometric ρ on Γ by declaring $\rho(a, b)$ to be the number of copies of joins $J \in \mathcal{J}$ separating a, b. Then (Γ, ρ) is quasi-isometric to (Γ, d)

Any pattern-preserving quasi-isometry preserves ρ on the nose. Hence any pattern-preserving group Q of quasi-isometries is a group of uniform qi's.

Filling Codimension One Subgroups

Define a new pseudometric ρ on Γ by declaring $\rho(a, b)$ to be the number of copies of joins $J \in \mathcal{J}$ separating a, b. Then (Γ, ρ) is quasi-isometric to (Γ, d)

Any pattern-preserving quasi-isometry preserves ρ on the nose. Hence any pattern-preserving group Q of quasi-isometries is a group of uniform qi's.

Locally Compact Totally Disconnected

Proposition

 $PPQI_u(G, H)$ is locally compact totally disconnected.

Totally disconnected:

Let H – infinite quasiconvex subgroup of a hyperbolic group G of infinite index. Γ –Cayley graph. L – limit set of H and \mathcal{L} – collection of translates of L. Collection \mathcal{L} is discrete in the Hausdorff topology on $C_c(\partial G)$.

イロト イポト イヨト イヨト

Locally Compact Totally Disconnected

Proposition

 $PPQI_u(G, H)$ is locally compact totally disconnected.

Totally disconnected:

Let H – infinite quasiconvex subgroup of a hyperbolic group G of infinite index. Γ –Cayley graph. L – limit set of H and \mathcal{L} – collection of translates of L. Collection \mathcal{L} is discrete in the Hausdorff topology on $C_c(\partial G)$.

イロト イポト イヨト イヨト

Locally Compact Totally Disconnected

Proposition

 $PPQI_u(G, H)$ is locally compact totally disconnected.

Totally disconnected:

Let H – infinite quasiconvex subgroup of a hyperbolic group G of infinite index. Γ –Cayley graph. L – limit set of H and \mathcal{L} – collection of translates of L. Collection \mathcal{L} is discrete in the Hausdorff topology on $C_c(\partial G)$.

イロト イポト イヨト イヨ

Locally Compact Totally Disconnected

Proposition

 $PPQI_u(G, H)$ is locally compact totally disconnected.

Totally disconnected:

Let H – infinite quasiconvex subgroup of a hyperbolic group G of infinite index. Γ –Cayley graph. L – limit set of H and \mathcal{L} – collection of translates of L. Collection \mathcal{L} is discrete in the Hausdorff topology on $C_c(\partial G)$.

イロト イポト イヨト イヨト

Locally Compact Totally Disconnected

Proposition

 $PPQI_u(G, H)$ is locally compact totally disconnected.

Totally disconnected:

Let H – infinite quasiconvex subgroup of a hyperbolic group G of infinite index. Γ –Cayley graph. L – limit set of H and \mathcal{L} – collection of translates of L. Collection \mathcal{L} is discrete in the Hausdorff topology on $C_c(\partial G)$. Connected component of the identity U is generated by arbitrary small open sets. Hence trivial.

Locally Compact Totally Disconnected

Proposition

 $PPQI_u(G, H)$ is locally compact totally disconnected.

Totally disconnected:

Let H – infinite quasiconvex subgroup of a hyperbolic group G of infinite index. Γ –Cayley graph. L – limit set of H and \mathcal{L} – collection of translates of L. Collection \mathcal{L} is discrete in the Hausdorff topology on $C_c(\partial G)$.

イロト イポト イヨト イヨト

Locally Compact Totally Disconnected

Proposition

 $PPQI_u(G, H)$ is locally compact totally disconnected.

Totally disconnected:

Let H – infinite quasiconvex subgroup of a hyperbolic group G of infinite index. Γ –Cayley graph. L – limit set of H and \mathcal{L} – collection of translates of L. Collection \mathcal{L} is discrete in the Hausdorff topology on $C_c(\partial G)$.

イロト イポト イヨト イヨト

Locally Compact Totally Disconnected

Proposition

 $PPQI_u(G, H)$ is locally compact totally disconnected.

Totally disconnected:

Let H – infinite quasiconvex subgroup of a hyperbolic group G of infinite index. Γ –Cayley graph. L – limit set of H and \mathcal{L} – collection of translates of L. Collection \mathcal{L} is discrete in the Hausdorff topology on $C_c(\partial G)$.

イロン イロン イヨン イヨン

Local Compactness

Proposition

(M–) There exists a finite collection $L_1, \dots L_n$ such that: For any K, ϵ , there exists a C such that if $\phi : \Gamma \to \Gamma$ is a pattern-preserving (K, ϵ) -quasi-isometry of Γ with $\partial \phi(L_i) = L$ for $i = 1 \dots n$, then $d(\phi(1), 1) \leq C$.

Hence there exists $L_1, \dots L_n \in \mathcal{L}$ such that $Q_0 = \bigcap_{i=1\dots n} Stab(L_i)$ is compact. Hence Q is locally compact.

ヘロト ヘ戸ト ヘヨト ヘヨト

Local Compactness

Proposition

(M–) There exists a finite collection $L_1, \dots L_n$ such that: For any K, ϵ , there exists a C such that if $\phi : \Gamma \to \Gamma$ is a pattern-preserving (K, ϵ) -quasi-isometry of Γ with $\partial \phi(L_i) = L$ for $i = 1 \dots n$, then $d(\phi(1), 1) \leq C$.

Hence there exists $L_1, \dots L_n \in \mathcal{L}$ such that $Q_0 = \bigcap_{i=1\dots n} Stab(L_i)$ is compact. Hence Q is locally compact.

ヘロト ヘ戸ト ヘヨト ヘヨト

Local Compactness

Proposition

(M–) There exists a finite collection $L_1, \dots L_n$ such that: For any K, ϵ , there exists a C such that if $\phi : \Gamma \to \Gamma$ is a pattern-preserving (K, ϵ) -quasi-isometry of Γ with $\partial \phi(L_i) = L_i$ for $i = 1 \dots n$, then $d(\phi(1), 1) \leq C$.

Hence there exists $L_1, \dots L_n \in \mathcal{L}$ such that $Q_0 = \bigcap_{i=1\dots n} Stab(L_i)$ is compact. Hence Q is locally compact.

Local Compactness

Proposition

(M–) There exists a finite collection $L_1, \dots L_n$ such that: For any K, ϵ , there exists a C such that if $\phi : \Gamma \to \Gamma$ is a pattern-preserving (K, ϵ) -quasi-isometry of Γ with $\partial \phi(L_i) = L_i$ for $i = 1 \dots n$, then $d(\phi(1), 1) \leq C$.

Hence there exists $L_1, \dots L_n \in \mathcal{L}$ such that

 $Q_0 = \bigcap_{i=1...n} Stab(L_i)$ is compact. Hence Q is locally compact.

Local Compactness

Proposition

(M–) There exists a finite collection $L_1, \dots L_n$ such that: For any K, ϵ , there exists a C such that if $\phi : \Gamma \to \Gamma$ is a pattern-preserving (K, ϵ) -quasi-isometry of Γ with $\partial \phi(L_i) = L_i$ for $i = 1 \dots n$, then $d(\phi(1), 1) \leq C$.

Hence there exists $L_1, \dots L_n \in \mathcal{L}$ such that $Q_0 = \bigcap_{i=1\dots n} Stab(L_i)$ is compact. Hence *Q* is locally compact.

Local Compactness

Proposition

(M–) There exists a finite collection $L_1, \dots L_n$ such that: For any K, ϵ , there exists a C such that if $\phi : \Gamma \to \Gamma$ is a pattern-preserving (K, ϵ) -quasi-isometry of Γ with $\partial \phi(L_i) = L_i$ for $i = 1 \dots n$, then $d(\phi(1), 1) \leq C$.

Hence there exists $L_1, \dots L_n \in \mathcal{L}$ such that $Q_0 = \bigcap_{i=1\dots n} Stab(L_i)$ is compact. Hence Q is locally compact.

Use structure of Locally Compact Totally Disconnected topological groups.

Goal: To show $PPQI_u(G, H)$ discrete.

- Take compact open neighborhood U of identity.
- P. A. Smith theory implies No small torsion elements provided
 ∂G is a compact manifold (or more generally a homology manifold.)
- True if G is the fundamental group of a closed negatively curved manifold (or more generally a Poincare Duality hyperbolic group).

ヘロト ヘアト ヘビト ヘビト

Use structure of Locally Compact Totally Disconnected topological groups. **Goal:** To show $PPQI_u(G, H)$ discrete.

- Take compact open neighborhood U of identity.
- P. A. Smith theory implies No small torsion elements provided
 ∂G is a compact manifold (or more generally a homology manifold.)
- True if G is the fundamental group of a closed negatively curved manifold (or more generally a Poincare Duality hyperbolic group).

ヘロン 人間 とくほ とくほ とう

Use structure of Locally Compact Totally Disconnected topological groups. **Goal:** To show $PPQI_u(G, H)$ discrete.

- Take compact open neighborhood *U* of identity.
- P. A. Smith theory implies No small torsion elements provided
 ∂G is a compact manifold (or more generally a homology manifold.)
- True if G is the fundamental group of a closed negatively curved manifold (or more generally a Poincare Duality hyperbolic group).

ヘロン 人間 とくほ とくほ とう

Use structure of Locally Compact Totally Disconnected topological groups. **Goal:** To show $PPQI_u(G, H)$ discrete.

- Take compact open neighborhood U of identity.
- P. A. Smith theory implies No small torsion elements provided ∂G is a compact manifold (or more generally a homology manifold.)
- True if G is the fundamental group of a closed negatively curved manifold (or more generally a Poincare Duality hyperbolic group).

ヘロト ヘアト ヘビト ヘビト

Use structure of Locally Compact Totally Disconnected topological groups. **Goal:** To show $PPQI_u(G, H)$ discrete.

- Take compact open neighborhood U of identity.
- P. A. Smith theory implies No small torsion elements provided ∂G is a compact manifold (or more generally a homology manifold.)
- True if G is the fundamental group of a closed negatively curved manifold (or more generally a Poincare Duality hyperbolic group).

ヘロト ヘアト ヘビト ヘビト

Use structure of Locally Compact Totally Disconnected topological groups. **Goal:** To show $PPQI_u(G, H)$ discrete.

- Take compact open neighborhood *U* of identity.
- P. A. Smith theory implies No small torsion elements provided ∂G is a compact manifold (or more generally a homology manifold.)
- True if G is the fundamental group of a closed negatively curved manifold (or more generally a Poincare Duality hyperbolic group).

ヘロト ヘアト ヘビト ヘビト

Use structure of Locally Compact Totally Disconnected topological groups. **Goal:** To show $PPQI_{\mu}(G, H)$ discrete.

- Take compact open neighborhood *U* of identity.
- P. A. Smith theory implies No small torsion elements provided
 ∂G is a compact manifold (or more generally a homology manifold.)
- True if G is the fundamental group of a closed negatively curved manifold (or more generally a Poincare Duality hyperbolic group).

ヘロト ヘアト ヘビト ヘビト

Use structure of Locally Compact Totally Disconnected topological groups. **Goal:** To show $PPQI_{\mu}(G, H)$ discrete.

- Take compact open neighborhood U of identity.
- P. A. Smith theory implies No small torsion elements provided
 ∂G is a compact manifold (or more generally a homology manifold.)
- True if *G* is the fundamental group of a closed negatively curved manifold (or more generally a Poincare Duality hyperbolic group).

くロト (過) (目) (日)

Use structure of Locally Compact Totally Disconnected topological groups. **Goal:** To show $PPQI_{\mu}(G, H)$ discrete.

- Take compact open neighborhood U of identity.
- P. A. Smith theory implies No small torsion elements provided
 ∂G is a compact manifold (or more generally a homology manifold.)
- True if *G* is the fundamental group of a closed negatively curved manifold (or more generally a Poincare Duality hyperbolic group).

ヘロト 人間 ト ヘヨト ヘヨト

Hilbert-Smith Conjecture

Remains to rule out *p*-adics $Z_{(p)}$.

Conjecture

(Hilbert-Smith) There is no effective action of Z_(p) by homeomorphisms on a compact manifold.

 ∂G is an Ahlfors regular metric measure space with Hausdorff dimension $\Omega \ge 1$.

Let *K* be a compact topological group (with Haar measure) acting by uniform *C*-quasiconformal maps on (X, d, μ) . Let d_K be the average metric on *X*

Then the Hausdorff dimension of (X, d_K, μ) does not exceed Ω .

ヘロト ヘ戸ト ヘヨト ヘヨト

Hilbert-Smith Conjecture

Remains to rule out *p*-adics $Z_{(p)}$.

Conjecture

(Hilbert-Smith) There is no effective action of $Z_{(p)}$ by homeomorphisms on a compact manifold.

 ∂G is an Ahlfors regular metric measure space with Hausdorff dimension $\Omega \ge 1$.

Let *K* be a compact topological group (with Haar measure) acting by uniform *C*-quasiconformal maps on (X, d, μ) .

Let d_K be the average metric on X

Then the Hausdorff dimension of (X, d_K, μ) does not exceed Ω .

・ロット (雪) () () () ()

Hilbert-Smith Conjecture

Remains to rule out *p*-adics $Z_{(p)}$.

Conjecture

(Hilbert-Smith) There is no effective action of $Z_{(p)}$ by homeomorphisms on a compact manifold.

 ∂G is an Ahlfors regular metric measure space with Hausdorff dimension $\Omega \ge 1$.

Let *K* be a compact topological group (with Haar measure) acting by uniform *C*-quasiconformal maps on (X, d, μ) .

Let d_K be the average metric on X

Then the Hausdorff dimension of (X, d_K, μ) does not exceed Ω .

・ロット (雪) () () () ()

Hilbert-Smith Conjecture

Remains to rule out *p*-adics $Z_{(p)}$.

Conjecture

(Hilbert-Smith) There is no effective action of $Z_{(p)}$ by homeomorphisms on a compact manifold.

 ∂G is an Ahlfors regular metric measure space with Hausdorff dimension $\Omega \ge 1$.

Let *K* be a compact topological group (with Haar measure) acting by uniform *C*-quasiconformal maps on (X, d, μ) . Let d_K be the average metric on *X* Then the Hausdorff dimension of (X, d_K, μ) does not exceed 9

ヘロト ヘ戸ト ヘヨト ヘヨト

Hilbert-Smith Conjecture

Remains to rule out *p*-adics $Z_{(p)}$.

Conjecture

(Hilbert-Smith) There is no effective action of $Z_{(p)}$ by homeomorphisms on a compact manifold.

 ∂G is an Ahlfors regular metric measure space with Hausdorff dimension $\Omega \ge 1$.

Let *K* be a compact topological group (with Haar measure) acting by uniform *C*-quasiconformal maps on (X, d, μ) .

Let d_K be the average metric on XThen the Hausdorff dimension of (X, d_K, μ) does not exceed Ω .

・ロト ・回 ト ・ヨト ・ヨト

Hilbert-Smith Conjecture

Remains to rule out *p*-adics $Z_{(p)}$.

Conjecture

(Hilbert-Smith) There is no effective action of $Z_{(p)}$ by homeomorphisms on a compact manifold.

 ∂G is an Ahlfors regular metric measure space with Hausdorff dimension $\Omega \ge 1$.

Let *K* be a compact topological group (with Haar measure) acting by uniform *C*-quasiconformal maps on (X, d, μ) .

Let d_K be the average metric on X

Then the Hausdorff dimension of (X, d_K, μ) does not exceed \mathfrak{Q} .

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Hilbert-Smith Conjecture

Remains to rule out *p*-adics $Z_{(p)}$.

Conjecture

(Hilbert-Smith) There is no effective action of $Z_{(p)}$ by homeomorphisms on a compact manifold.

 ∂G is an Ahlfors regular metric measure space with Hausdorff dimension $\Omega \ge 1$.

Let *K* be a compact topological group (with Haar measure) acting by uniform *C*-quasiconformal maps on (X, d, μ) .

Let d_K be the average metric on X

Then the Hausdorff dimension of (X, d_K, μ) does not exceed Ω .

Last assumption: (X, d, μ) as above. Further, Hausdorff dimension < homological dimension + 2.

Theorem

(Yang) Let X be a compact homology n-manifold admitting an effective K-action, where $K = Z_{(p)}$ is the group of p-adic integers. Then the homological dimension of X / K is n + 2.

With assumption above, (X, d, μ) does not admit an effective $Z_{(p)}$ -action by quasiconformal maps.

イロト イヨト イヨト イ

Last assumption: (X, d, μ) as above. Further, Hausdorff dimension < homological dimension + 2.

Theorem

(Yang) Let X be a compact homology n-manifold admitting an effective K-action, where $K = Z_{(p)}$ is the group of p-adic integers. Then the homological dimension of X / K is n + 2.

With assumption above, (X, d, μ) does not admit an effective $Z_{(p)}$ -action by quasiconformal maps.

イロト イヨト イヨト イ

Last assumption: (X, d, μ) as above. Further, Hausdorff dimension < homological dimension + 2.

Theorem

(Yang) Let X be a compact homology n-manifold admitting an effective K-action, where $K = Z_{(p)}$ is the group of p-adic integers. Then the homological dimension of X / K is n + 2.

With assumption above, (X, d, μ) does not admit an effective $Z_{(p)}$ -action by quasiconformal maps.

・ロト ・ 一下・ ・ ヨト・

Last assumption: (X, d, μ) as above. Further, Hausdorff dimension < homological dimension + 2.

Theorem

(Yang) Let X be a compact homology n-manifold admitting an effective K-action, where $K = Z_{(p)}$ is the group of p-adic integers. Then the homological dimension of X/K is n + 2.

With assumption above, (X, d, μ) does not admit an effective $Z_{(p)}$ -action by quasiconformal maps.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Last assumption: (X, d, μ) as above. Further, Hausdorff dimension < homological dimension + 2.

Theorem

(Yang) Let X be a compact homology n-manifold admitting an effective K-action, where $K = Z_{(p)}$ is the group of p-adic integers. Then the homological dimension of X/K is n + 2.

With assumption above, (X, d, μ) does not admit an effective $Z_{(p)}$ -action by quasiconformal maps.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Last assumption: (X, d, μ) as above. Further, Hausdorff dimension < homological dimension + 2.

Theorem

(Yang) Let X be a compact homology n-manifold admitting an effective K-action, where $K = Z_{(p)}$ is the group of p-adic integers. Then the homological dimension of X/K is n + 2.

With assumption above, (X, d, μ) does not admit an effective $Z_{(p)}$ -action by quasiconformal maps.

Pattern Rigidity

Theorem

Let G be a PD hyperbolic group and H a codimension one, filling, quasiconvex subgroup.

Let Q be any pattern-preserving group of quasi-isometries containing G.

Suppose d is a visual metric on ∂G with dim_H < dim_t + 2, where dim_H is the Hausdorff dimension and dim_t is the topological dimension of (∂G , d). Then the index of G in Q is finite.

Pattern Rigidity

Theorem

Let G be a PD hyperbolic group and H a codimension one, filling, quasiconvex subgroup.

Let Q be any pattern-preserving group of quasi-isometries containing G.

Suppose d is a visual metric on ∂G with dim_H < dim_t + 2, where dim_H is the Hausdorff dimension and dim_t is the topological dimension of (∂G , d). Then the index of G in Q is finite.

Pattern Rigidity

Theorem

Let G be a PD hyperbolic group and H a codimension one, filling, quasiconvex subgroup.

Let Q be any pattern-preserving group of quasi-isometries containing G.

Suppose d is a visual metric on ∂G with dim_H < dim_t + 2, where dim_H is the Hausdorff dimension and dim_t is the topological dimension of (∂G , d). Then the index of G in Q is finite.

Pattern Rigidity

Theorem

Let G be a PD hyperbolic group and H a codimension one, filling, quasiconvex subgroup. Let Q be any pattern-preserving group of quasi-isometries containing G. Suppose d is a visual metric on ∂G with dim_H < dim_t + 2, where dim_H is the Hausdorff dimension and dim_t is the topological dimension of (∂G , d). Then the index of G in Q is finite.

Pattern Rigidity

Theorem

Let G be a PD hyperbolic group and H a codimension one, filling, quasiconvex subgroup.

Let Q be any pattern-preserving group of quasi-isometries containing G.

Suppose d is a visual metric on ∂G with dim_H < dim_t + 2, where dim_H is the Hausdorff dimension and dim_t is the topological dimension of (∂G , d). Then the index of G in Q is finite.

Pattern Rigidity

Theorem

Let G be a PD hyperbolic group and H a codimension one, filling, quasiconvex subgroup.

Let Q be any pattern-preserving group of quasi-isometries containing G.

Suppose d is a visual metric on ∂G with dim_H < dim_t + 2, where dim_H is the Hausdorff dimension and dim_t is the topological dimension of (∂G , d). Then the index of G in Q is finite.

<ロ> (四) (四) (日) (日) (日)

Slight Generalization:

Can replace quasi-isometry $q: G_1 \rightarrow G_2$ by a map $\phi: G_1 \rightarrow G_2$ which is

a) Pattern-preserving: $\phi(\mathcal{H}_1) = \mathcal{H}_2$

b) Uniformly proper with respect to the distance between elements of \mathcal{H}_i

Proved using a coarse barycenter method

Slight Generalization:

Can replace quasi-isometry $q:G_1 \to G_2$ by a map $\phi:G_1 \to G_2$ which is

a) Pattern-preserving: $\phi(\mathcal{H}_1) = \mathcal{H}_2$

b) Uniformly proper with respect to the distance between elements of \mathcal{H}_i

Proved using a coarse barycenter method

イロン イボン イヨン イヨン

Slight Generalization:

Can replace quasi-isometry $q:G_1 \to G_2$ by a map $\phi:G_1 \to G_2$ which is

a) Pattern-preserving: $\phi(\mathcal{H}_1) = \mathcal{H}_2$

b) Uniformly proper with respect to the distance between elements of \mathcal{H}_i

Proved using a coarse barycenter method

イロン イボン イヨン イヨン

Slight Generalization:

Can replace quasi-isometry $q:G_1 \to G_2$ by a map $\phi:G_1 \to G_2$ which is

a) Pattern-preserving: $\phi(\mathcal{H}_1) = \mathcal{H}_2$

b) Uniformly proper with respect to the distance between elements of \mathcal{H}_i

Proved using a coarse barycenter method

イロン 不得 とくほ とくほとう

Slight Generalization:

Can replace quasi-isometry $q:G_1 \to G_2$ by a map $\phi:G_1 \to G_2$ which is

a) Pattern-preserving: $\phi(\mathcal{H}_1) = \mathcal{H}_2$

b) Uniformly proper with respect to the distance between elements of \mathcal{H}_i

Proved using a coarse barycenter method

イロト イポト イヨト イヨト

æ