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Abstract. Answering a question due to Min, we prove that a finite graph of

roses admits a regluing such that the resulting graph of roses has hyperbolic

fundamental group.
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1. Introduction

Let G be a finite graph and π : X → G be a finite graph of spaces where each
vertex and edge space is a finite graph and the edge-to-vertex maps are homotopic to
covering maps of finite degree. We call such a graph of spaces a homogeneous graph
of roses. Cutting along the edge graphs and pre-composing one of the resulting
attaching maps by homotopy equivalences inducing hyperbolic automorphisms of
the corresponding edge groups,we obtain a hyperbolic regluing of π : X → G, the
initial homogeneous graph of roses (see Section 1.1 for more precise details). A
consequence of the main theorem of this paper is:

Theorem 1.1. Given a homogeneous graph of roses, there exist hyperbolic regluings
such that the resulting graph of spaces has hyperbolic fundamental group.
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Theorem 1.1 answers a question due to Min [13], who proved the analogous the-
orem for homogeneous graphs of hyperbolic surface groups. The main theorem of
this paper (see Theorem 4.3) identifies precise conditions under which the conclu-
sions of Theorem 1.1 hold. Min’s theorem built on and generalized work of Mosher
[19], who proved the existence of surface-by-free hyperbolic groups. An analogous
theorem, proving the existence of free-by-free hyperbolic groups, is due to Bestvina,
Feighn and Handel [2]. This last theorem from [2] can be recast in the framework
of Theorem 1.1 by demanding, in addition, that all edge-to-vertex inclusions for
a homogeneous graph of roses are homotopy equivalences. Theorem 1.1 general-
izes this theorem by relaxing the hypothesis on edge-to-vertex inclusion maps, and
allowing them to be homotopic to finite degree covers.

Theorem 1.1 also furnishes new examples of metric bundles in the sense of Mj-
Sardar [15], where all vertex and edge spaces are trees and thus examples to which
the results in [16] applies. A basic question resulting from [13] and the present
paper is the following:

Question 1.2. Develop a theory of ending laminations for homogeneous graphs of
surfaces and a similar one for roses.

A rich theory of ending laminations was developed for Kleinian surface groups
[21] concluding with the celebrated ending lamination theorem [6]. A theory ori-
ented towards hyperbolic group extensions was developed in [14] and some conse-
quences derived in [17]. The intent of Question 1.2 is to ask for an analogous theory
in the context of homogeneous graphs of spaces.

1.1. Regluing. We refer to [20] for generalities on graphs and trees of spaces. A
word about the notational convention we shall follow. We shall use G to denote
the base graph in a graph of spaces, and G to denote a graph whose self-homotopy
equivalence classes give Out(F). The vertex (resp. edge) set of G will be denoted as
V (G) (resp. E(G)).

Definition 1.3. [1](Graphs of hyperbolic spaces with qi condition) Let G be a graph
(finite or infinite), and X a geodesic metric space. Then a triple (X ,G, π) with
π : X → G is called a graph of hyperbolic metric spaces with qi embedded condition
if there exist δ ≥ 0, K ≥ 1 such that:

(1) For all v ∈ V (G), Xv = π−1(v) is δ−hyperbolic with respect to the path
metric dv, induced from X . Further, the inclusion maps Xv → X are
uniformly proper.

(2) Let e = [v, w] be an edge of G joining v, w ∈ V (G). Let me ∈ G be the
midpoint of e. Then Xe = π−1(me) is δ−hyperbolic with respect to the path
metric de, induced from X . The pre-image π−1((v, w)) is identified with
Xe × ((v, w)).

(3) The attaching maps ψe,v (resp. ψe,w) from Xe × {v} (resp. Xe × {w}) are
K-qi embeddings to (Xv, dv) (resp. (Xw, dw)).

Throughout this paper, we shall be interested in the following special cases of
graphs of hyperbolic spaces:

(1) G is a finite graph, each Xv, Xe is a finite graph, and each ψe : Xe → Xv
induces an injective map ψe∗ : π1(Xe)→ π1(Xv) at the level of fundamental
groups such that [π1(Xv) : ψe∗(π1(Xe))] is finite. We shall call such a graph
of spaces a homogeneous graph of roses.



(2) The universal cover of a homogeneous graph of roses yields a tree of spaces
such that all vertex and edge spaces are locally finite trees, and edge-to-
vertex space inclusions are quasi-isometries. We shall call such a tree of
spaces a homogeneous tree of trees.

Let Π : Y → T be a homogeneous tree of trees arising as the universal cover of
a homogeneous graph of roses π : X → G.

Definition 1.4. [1] A disk f : [−m,m]×I → Y is a hallway of length 2m if it
satisfies the following conditions:
1) f−1(∪Xv : v ∈ V (T )) = {−m, · · · ,m}×I
2) f maps i×I to a geodesic in some (Xv, dv). 3) f is transverse, relative to
condition (1) to the union ∪eXe.

Definition 1.5. [1] A hallway f : [−m,m]×I → Y is ρ-thin if d(f(i, t), f(i+ 1, t)) ≤
ρ for all i, t.

A hallway f : [−m,m]×I → X is said to be λ-hyperbolic if

λl(f({0} × I)) ≤ max {l(f({−m} × I)), l(f({m} × I)).

The quantity mini {l(f({i} × I))} is called the girth of the hallway.
A hallway is essential if the edge path in T resulting from projecting the hallway

under P ◦ f onto T does not backtrack (and is therefore a geodesic segment in the
tree T ).

Definition 1.6 (Hallways flare condition). [1] The tree of spaces, X, is said to
satisfy the hallways flare condition if there are numbers λ > 1 and m ≥ 1 such
that for all ρ there is a constant H := H(ρ) such that any ρ-thin essential hallway
of length 2m and girth at least H is λ-hyperbolic. In general, λ,m will be called the
constants of the hallways flare condition.

We now describe a process of regluing by adapting Min’s notion of graph of sur-
faces with pseudo-Anosov regluing [13, p. 450].

Hyperbolic Regluing of a homogeneous graph of roses: A homogeneous
graph π : X → G of roses can be subdivided canonically by introducing vertices
corresponding to mid-points of edges in G, so that each edge in G is now subdivided
into two edges. Let G(m) denote the subdivided graph. Each such new vertex is
called a mid-edge vertex. The mid-edge vertex corresponding to [v, w] is denoted
as m([v, w]) and the corresponding vertex space by Xmvw. If the gluing maps
corresponding to the new edge-to-vertex inclusions are taken to be the identity, then
we obtain a new graph of spaces π : X → G(m) whose total space is homeomorphic
to (and hence identified canonically with) X and π is the same as before; only the
simplicial structure of G has changed to G(m). These maps are called the mid-edge
inclusions.

Definition 1.7. For each edge e of G(m), changing one of the mid-edge inclusions
by a map φe representing an automorphism φe∗ of π1(Xe) gives a new graph of

spaces πreg : Xreg
{φe}−→ G called a regluing of π : X → G corresponding to the tuple

{φe}.
If the universal cover X̃reg is hyperbolic, we say that πreg : Xreg

{φe}−→ G is a
hyperbolic regluing of π : X → G.



We denote such a regluing by (Xreg,G, π, {φe}). Let (X̃reg, T , πreg, {φ̃e}) de-
note the universal cover of such a regluing. Note that the mid-edge inclusions in

(X̃reg, T , πreg, {φ̃e}) corresponding to lifts of the edge e are given by lifts φ̃e of φe,
and hence are K(e)−quasi-isometries, where K(e) depends on φe.

We shall define an independent family of automorphisms precisely later (Defini-
tion 3.4). For now, we say that two hyperbolic automorphisms φ1, φ2 labeling a pair
of edges e1, e2 incident on a vertex v are independent, if for the four sets of stable
and unstable laminations that φ1, φ2 define, no leaf of any set is asymptotic to the
leaf of another set. Further, we demand that this condition is satisfied even after
translation of laminations by distinct coset representatives of the edge group in the
vertex group. A regluing where automorphisms labeling any pair of edges e1, e2

incident on a vertex v are independent is called an independent regluing. We can
now state the main Theorem of this paper (see Theorem 4.3) which is a stronger
version of Theorem 1.1:

Theorem 1.8. Let π : X → G be a homogeneous graph of roses, and let {φe}, e ∈
E(G) be a tuple of hyperbolic automorphisms such that (Xreg,G, π, {φe}) is an in-
dependent regluing. Then there exist k, n ∈ N such that (Xreg,G, π, {φkmee }) gives
a hyperbolic rotationless regluing for all me ≥ n. .

2. Preliminaries on Out(F)

In this section we give the reader a short review of the definitions and some
important results in Out(F) that are relevant to this paper. For details, see [4], [8],
[11], [12]. We fix a hyperbolic φ ∈ Out(F) for the purposes of this section.

A marked graph is a finite graphG which has no valence 1 vertices and is equipped
with a homotopy equivalence, called a marking, to the rose Rn given by ρ : G→ Rn
(where n = rank(F)). The homotopy inverse of the marking is denoted by the map
ρ : Rn → G. A circuit in a marked graph is an immersion (i.e. a locally injective
continuous map) of S1 into G. I will denote an interval in R that is closed as a
subset. A path is a locally injective, continuous map α : I → G, such that any

lift α̃ : I → G̃ is proper. When I is compact, any continuous map from I can
be homotoped relative to its endpoints by a process called tightening to a unique
path (up to reparametrization) with domain I. If I is noncompact then each lift

α̃ induces an injection from the ends of I to the ends of G̃. In this case there is
a unique path [α] which is homotopic to α such that both [α] and α have lifts to

G̃ with the same finite endpoints and the same infinite ends. If I has two infinite
ends then α is called a line in G otherwise if I has only one infinite end then α is
called a ray. Given a homotopy equivalence of marked graphs f : G → G′, f#(α)

denotes the tightened image [f(α)] in G′. Similarly we define f̃#(α̃) by lifting to
the universal cover.

A topological representative of φ is a homotopy equivalence f : G→ G such that
ρ : G→ Rn is a marked graph, f takes vertices to vertices and edges to edge-paths
and the map ρ ◦ f ◦ ρ : Rn → Rn induces the outer automorphism φ at the level
of fundamental groups. A nontrivial path γ in G is a periodic Nielsen path if there
exists a k such that fk#(γ) = γ; the minimal such k is called the period. If k = 1,
we simply call such a path Nielsen path. A periodic Nielsen path is indivisible if
it cannot be written as a concatenation of two or more nontrivial periodic Nielsen
paths.



Filtrations and legal paths: Given a subgraph H ⊂ G let G \ H denote the
union of edges in G that are not in H. A filtration of G is a strictly increasing
sequence of subgraphs G0 ⊂ G1 ⊂ · · · ⊂ Gn = G, each with no isolated vertices.
The individual terms Gk are called filtration elements, and if Gk is a core graph
(i.e. a graph without valence 1 vertices) then it is called a core filtration element.
The subgraph Hk = Gk \Gk−1 together with the vertices which occur as endpoints
of edges in Hk is called the stratum of height k. The height of a subset of G is the
minimum k such that the subset is contained in Gk. A connecting path of a stratum
Hk is a nontrivial finite path γ of height < k whose endpoints are contained in Hk.

Given a topological representative f : G→ G, one can define a map Tf by setting
Tf (E) to be the first edge of the edge path f(E). We say Tf (E) is the direction of
f(E). If E1, E2 are two edges in G with the same initial vertex, then the unordered
pair (E1, E2) is called a turn in G. Define Tf (E1, E2) = (Tf (E1), Tf (E2)). So
Tf is a map that takes turns to turns. We say that a nondegenerate turn (i.e.
E1 6= E2) is illegal if for some k > 0 the turn T kf (E1, E2) becomes degenerate (i.e.

T kf (E1) = T kf (E2)); otherwise the turn is legal. A path is said to be a legal path if
it contains only legal turns. A path is r− legal if it is of height r and all its illegal
turns are in Gr−1. We say that f respects the filtration or that the filtration is
f -invariant if f(Gk) ⊂ Gk for all k.
Weak topology: We define an equivalence relation on the set of all circuits and
paths in G by saying that two elements are equivalent if and only if they differ
by some orientation preserving homeomorphism of their respective domains. Let

B̂(G), called the space of paths, denote the space of equivalence classes of circuits
and paths in G, whose endpoints (if any) are vertices of G . We give this space the

weak topology : for each finite path α in G, the basic open set N̂(G,α) consists of

all paths and circuits in B̂(G) which have α as a subpath. Then B̂(G) is compact

in the weak topology. Let B(G) ⊂ B̂(G) be the compact subspace of all lines in
G with the induced topology: B(G) is called space of lines of G. One can give an
equivalent description of B(G) following [4]. A line is completely determined, up to

reversal of direction, by two distinct points in ∂F. Let B̃ = {∂F × ∂F −∆}/(Z2),

where ∆ is the diagonal and Z2 acts by the flip. Equip B̃ with the topology

induced from the standard Cantor set topology on ∂F. Then F acts on B̃ with a

compact but non-Hausdorff quotient space B = B̃/F. The quotient topology is also
called the weak topology and it coincides with the topology defined in the previous
paragraph. Elements of B are called lines. A lift of a line γ ∈ B is an element

γ̃ ∈ B̃ that projects to γ under the quotient map and the two elements of ∂γ̃ are
called its endpoints or simply ends. For any circuit α, we take its “infinite-fold
concatenation” · · ·α.α.α · · · and view it as a line. With this understanding, we can
talk of a circuit belonging to an open set V ⊂ B.

An element γ ∈ B is said to be weakly attracted to β ∈ B under the action of
φ ∈ Out(F), if some subsequence of {φk(γ)}k converges to β in the weak topology
as k → ∞. Similarly, if we have a homotopy equivalence f : G → G, a line(path)

γ ∈ B̂(G) is said to be weakly attracted to a line(path) β ∈ B̂(G) under the action
of f#, if (some subsequence of) {fk#(γ)}k converges to β in the weak topology as
k →∞. Note that since the space of paths and circuits is non-Hausdorff, a sequence
can converge to multiple points in the space and any such point will be called a
weak limit of the sequence.



The accumulation set of a ray α in G is the set of lines ` ∈ B which are elements
of the weak closure of α. This is equivalent to saying that every finite subpath of
` occurs infinitely many times as a subpath of α. Two rays are asymptotic if they
have equal subrays. This gives an equivalence relation on the set of all rays and two
rays in the same equivalence class have the same closure. The weak accumulation
set of some ξ ∈ ∂F/F is the set of lines in the weak closure of any ray having end
ξ. We call this the weak closure of ξ.
Subgroup systems: Define a subgroup system A = {[H1], [H2], ...., [Hk]} to be
a finite collection of distinct conjugacy classes of finite rank, nontrivial subgroups
Hi < F. A subgroup system is said to be a free factor system if F has a free factor
decomposition F = A1 ∗ A2 ∗ · · · ∗ Ak ∗ B, where [Hi] = [Ai] for all i. A subgroup
system A carries a conjugacy class [c] ∈ F if there exists some [A] ∈ A such that
c ∈ A. Also, we say that A carries a line γ if one of the following equivalent
conditions hold:

• γ is the weak limit of a sequence of conjugacy classes carried by A.
• There exists some [A] ∈ A and a lift γ̃ of γ so that the endpoints of γ̃ are

in ∂A.

The free factor support of a line ` in a marked graph G is the conjugacy class of
the minimal (with respect to inclusion) free factor of π1(G) which carries `. The
existence of such a free factor is due to [4, Corollary 2.6.5]. Let ` be any line in G.
Let the free factor support of ` be [K]. If F is any free factor system that carries `,
then the minimality of [K] ensures that there exist some [A] ∈ F such that K < A.
In this case we say that the free factor support of ` is carried by F .

Attracting Laminations: For any marked graph G, the natural identification
B ≈ B(G) induces a bijection between the closed subsets of B and the closed subsets
of B(G). A closed subset in either case is called a lamination, and is denoted by
Λ. Given a lamination Λ ⊂ B we look at the corresponding lamination in B(G) as
the realization of Λ in G. An element λ ∈ Λ is called a leaf of the lamination. A
lamination Λ is called an attracting lamination for a rotationless φ if it is the weak
closure of a line ` such that

(1) ` is a birecurrent leaf of Λ.
(2) ` has an attracting neighborhood V in the weak topology, i.e. φ(V ) ⊂ V ;

every line in V is weakly attracted to ` under iteration by φ; and {φk(V ) |
k ≥ 1} is a neighborhood basis of `.

(3) no lift ˜̀∈ B of ` is the axis of a generator of a rank 1 free factor of F .

Such an ` is called a generic leaf of Λ. An attracting lamination of φ−1 is called a
repelling lamination of φ. The set of all attracting and repelling laminations of φ
are denoted by L+

φ and L−φ respectively.

Attracting fixed points and principal lifts: The action of Φ ∈ Aut(F) on F
extends to the boundary and is denoted by Φ̂ : ∂F → ∂F. Let Fix(Φ̂) denote the

set of fixed points of this action. We call an element ξ of Fix(Φ̂) an attracting fixed

point if there exists an open neighborhood U ⊂ ∂F of ξ such that Φ̂(U) ⊂ U , and

for any point Q ∈ U the sequence Φ̂n(Q) converges to ξ. Let Fix+(Φ̂) denote the

set of attracting fixed points of Fix(Φ̂). Similarly let Fix−(Φ̂) denote the attracting

fixed points of Fix(Φ̂−1). A lift Φ ∈ Aut(F) is said to be principal if Fix+(Φ̂) either



has at least three points, or has two points which are not the endpoints of a lift
of some generic leaf of an attracting lamination belonging to L+

φ . The latter case
appears only when we are dealing with reducible hyperbolic automorphisms which
have superlinear NEG edges (see below). It is not something that is present in
the context of mapping class groups. See [8, Section 3.2] for more details. Set

Fix+(φ) =
⋃

Φ∈P (φ)

Fix+(Φ̂), where P (φ) is the set of all principal lifts of φ. We

define BFix+(φ) :=
⋃

Φ∈P (φ){` ∈ B | ∂ ˜̀∈ Fix+(Φ̂)}. For a principal lift Φ, the map

Φ̂ may have periodic points and we may miss out on some attracting fixed points.
This is why we need to move to rotationless powers, where every periodic point of

Φ̂ becomes a fixed point (see [8, Definition 3.13] for further details). A hyperbolic
outer automorphism φ is said to be rotationless if for every Φ ∈ P (φ) and any

k ≥ 1, all attracting fixed points of Φ̂k are attracting fixed points of Φ̂ and the map
Φ→ Φk induces a bijection between P (φ) and P (φk).

Lemma 2.1. [8, Lemma 4.43] There exists a K depending only upon the rank of
the free group F such that for every φ ∈ Out(F) , φK is rotationless.

EG strata, NEG strata and Zero strata: Given an f -invariant filtration, for
each stratum Hk with edges {E1, . . . , Em}, define the transition matrix of Hk to
be the square matrix whose jth column records the number of times f(Ej) crosses
the edges {E1, . . . , Em}. If Mk is the zero matrix then we say that Hk is a zero
stratum. If Mk irreducible — meaning that for each i, j there exists p such that
the i, j entry of the pth power of the matrix is nonzero — then we say that Hk

is irreducible; and if one can furthermore choose p independently of i, j then we
say that Hk is aperiodic. Assuming that Hk is irreducible, the Perron-Frobenius
theorem gives the following: the matrix Mk has a unique maximal eigenvalue λ ≥ 1,
called the Perron-Frobenius eigenvalue, for which some associated eigenvector has
positive entries: if λ > 1 then we say that Hk is an exponentially growing or EG
stratum; whereas if λ = 1 then Hk is a nonexponentially growing or NEG stratum.
If the lengths of the edges in a NEG stratum grow linearly under iteration by f we
say that the stratum has linear growth. An NEG stratum that is neither fixed nor
has linear growth is called superlinear . It is worth noting here that there are no
linearly growing strata for hyperbolic outer automorphisms.

An important result from [4, Section 3] is that there is a bijection between
exponentially growing strata and attracting laminations, which implies that there
are only finitely many elements in L+

φ . The set L+
φ is invariant under the action of

φ. When it is nonempty, φ can permute the elements of L+
φ if φ is not rotationless.

For rotationless φ, it is known that L+
φ is a fixed set [8].

Dual lamination pairs: Let Λ+
φ be an attracting lamination of φ and Λ−φ be an

attracting lamination of φ−1. We say that this lamination pair is a dual lamination
pair if the free factor support of some (any) generic leaf of Λ+

φ is also the free factor

support of some (any) generic leaf of Λ−φ . By [4, Lemma 3.2.4], there is a bijection

between L+
φ and L−φ induced by this duality relation. We denote a dual lamination

pair Λ+
φ ,Λ

−
φ of φ by Λ±φ .

Relative train track map: Given a topological representative f : G→ G with a
filtration G0 ⊂ G1 ⊂ · · · ⊂ Gn which is preserved by f , we say that f is a relative
train track map if the following conditions are satisfied for every EG stratum Hr:



(1) f maps r-legal paths to r-legal paths.
(2) If γ is a nontrivial path in Gr−1 with its endpoints in Hr then f#(γ) has

its end points in Hr.
(3) If E is an edge in Hr then Tf(E) is an edge in Hr

Suppose φ is hyperbolic and rotationless and f : G→ G is a relative train-track
map for φ. Two periodic vertices are Nielsen equivalent if they are endpoints of
some periodic Nielsen path in G. A periodic vertex v is a principal vertex if v does
not satisfy the condition that it is the only periodic vertex in its Nielsen equivalence
class and that there are exactly two periodic directions at v, both of which are in
the same EG stratum. A principal direction in G is a non-fixed, oriented edge E
whose initial vertex is principal and initial direction is fixed under iteration by f .

Splittings: [8] Given a relative train track map f : G → G, a splitting of a line,
path or a circuit γ is a decomposition of γ into subpaths · · · γ0γ1 · · · γk · · · such that
for all i ≥ 1, f i#(γ) = · · · f i#(γ0)f i#(γ1) · · · f i#(γk) · · · . The terms γi are called the
terms of the splitting or splitting components of γ.

A CT map or a completely split relative train track map is a topological
representative with particularly nice properties. But CTs do not exist for all outer
automorphisms. However, rotationless outer automorphisms are guaranteed to have
a CT representative:

Lemma 2.2. [8, Theorem 4.28] For each rotationless, hyperbolic φ ∈ Out(F), there
exists a CT map f : G→ G such that f is a relative train-track representative for
φ and has the following properties:

(1) (Principal vertices) Each principal vertex is fixed by f and each periodic
direction at a principal vertex is fixed by Tf . Each vertex which has a link
in two distinct irreducible strata is principal and a turn based at such a
vertex with edges in the two distinct stratum is legal.

(2) (Nielsen paths) The endpoints of all indivisible Nielsen paths are principal
vertices.

(3) (Zero strata) Each zero stratum Hi is contractible and there exists an EG
stratum Hs for some s > i (see [8, Definition 2.18]) such that each vertex
of Hi is contained in Hs and the link of each vertex in Hi is contained in
Hi ∪Hs.

(4) (Superlinear NEG stratum) [8, Lemma 4.21] Each non-fixed NEG stra-
tum Hi is a single oriented edge Ei and has a splitting f#(Ei) = Ei·ui,
where ui is a nontrivial circuit which is not a Nielsen path.

For any π1-injective map f : G1 → G2 between graphs, there exists a constant
BCC(f), called the bounded cancellation constant for f , such that for any lift

f̃ : G̃1 → G̃2 to the universal covers and any path γ̃ in G̃1, the path f̃#(γ̃) is

contained in a BCC(f) neighbourhood of f̃(γ̃) (see [7] and [2, Lemma 3.1]).

Definition 2.3. Let f : G → G be a CT map for φ ∈ Out(F), with Hr being
an exponentially growing stratum with associated Perron-Frobenius eigenvalue λ. If

BCC(f) denotes the bounded cancellation constant for f , then the number 2BCC(f)
λ−1

is called the critical constant for Hr.

It can be easily seen that for every number C > 0 that exceeds the critical
constant, there is some 1 ≥ µ > 0 such that if αβγ is a concatenation of r−legal



paths where β is some r−legal segment of length ≥ C, then the r−legal leaf seg-
ment of fk#(αβγ) corresponding to β has length ≥ µλk|β|Hr (see [2, pp 219]). To
summarize, if we have a path in G which has some r−legal “central” subsegment
of length greater than the critical constant, then this segment is protected by the
bounded cancellation lemma and under iteration, the length of this segment grows
exponentially.
Nonattracting subgroup system: For any hyperbolic φ, the non-attracting sub-
group system of an attracting lamination Λ+ is a free factor system, denoted by
Ana(Λ+

φ ), and contains information about lines and circuits which are not attracted

to the lamination. We point the reader to [12] for the construction of the non-
attracting subgraph whose fundamental group gives us this subgroup system [12,
Section 1.1]. We list some key properties which we will be using.

Lemma 2.4. [12, Theorem F, Corollary 1.7, Lemma 1.11]

(1) A conjugacy class [c] is not attracted to Λ+
φ if and only if it is carried by

Ana(Λ+
φ ). No line carried by Ana(Λ+

φ ) is attracted to Λ+
φ under iterates of

φ.
(2) Ana(Λ+

φ ) is invariant under φ and does not depend on the choice of the CT

map representing φ. When φ is hyperbolic, Ana(Λ+
φ ) is always a free factor

system.
(3) Given φ, φ−1 ∈ Out(F) both rotationless, and a dual lamination pair Λ±φ ,

we have Ana(Λ+
φ ) = Ana(Λ−φ ).

(4) If {γn}n∈N is a sequence of lines or circuits such that every weak limit of
every subsequence of {γn} is carried by Ana(Λ+

φ ) then {γn} is carried by

Ana(Λ+
φ ) for all sufficiently large n.

Singular lines and nonattracted lines:

Definition 2.5. A singular line for φ is a line γ ∈ B such that there exists a
principal lift Φ of some rotationless iterate of φ and a lift γ̃ of γ such that the

endpoints of γ̃ are contained in Fix+(Φ̂) ⊂ ∂F.

Recall (as per the discussion preceding Lemma 2.1) that BFix+(φ) denotes the
set of all singular lines of φ. A singular ray is a ray obtained by iterating a principal
direction.

The following definition and the lemma after it is from [12] and identifies the set
of lines which do not get attracted to an element of L+

φ .

Definition 2.6. Let [A] ∈ Ana(Λ+
φ ) and Φ ∈ P (φ), we say that Φ is A− related if

Fix+(Φ̂) ∩ ∂A 6= ∅. Define the extended boundary of A to be

∂ext(A, φ) = ∂A ∪
(⋃

Φ

Fix+(Φ̂)

)
where the union is taken over all A-related Φ ∈ P (φ).

Let Bext(A, φ) denote the set of lines which have end points in ∂ext(A, φ); this
set is independent of the choice of A in its conjugacy class. Define

Bext(Λ+
φ ) =

⋃
[A]∈Ana(Λ+

φ )

Bext(A, φ)



For convenience we denote the collection of all generic leaves of all attracting lam-
inations for φ by the set Bgen(φ).

Lemma 2.7. [12, Theorem 2.6]
If φ, ψ = φ−1 ∈ Out(F) are rotationless and Λ+

φ ,Λ
−
φ is a dual lamination pair,

then the set of lines which are not attracted to Λ−φ are given by

Bna(Λ−φ , ψ) = Bext(Λ+
φ ) ∪ Bgen(φ) ∪ BFix+(φ)

Structure of Singular lines: The next Lemma, due to Handel and Mosher,
tells us the structure of singular lines and guarantees that one of the leaves of any
attracting lamination is a singular line.

Lemma 2.8. [11, Lemma 3.5, Lemma 3.6], [12, Lemma 1.63] Let φ ∈ Out(F) be
rotationless and hyperbolic and let l ∈ BFix+(φ). Then:

(1) l = RαR′ for some singular rays R 6= R′ and some path α which is either
trivial or a Nielsen path. Conversely, any such line is a singular line.

(2) If Λ ∈ L+
φ then there exists a leaf of Λ which is a singular line and one of

its ends is dense in Λ.

Lemma 2.9. [12, Corollary 2.17, Theorem H][4, Theorem 6.0.1] (Weak attraction
theorem:) Let φ ∈ Out(F) be rotationless and exponentially growing. Let Λ±φ be a

dual lamination pair for φ. Then for any line γ ∈ B not carried by Ana(Λ+
φ ) at

least one of the following hold:

(1) γ is attracted to Λ+
φ under iterations of φ.

(2) The weak closure of γ contains Λ−φ .

Moreover, if V +
φ and V −φ are attracting neighborhoods for the laminations Λ+

φ and

Λ−φ respectively, there exists an integer M ≥ 0 such that at least one of the following
holds:

• γ ∈ V −φ .

• φm#(γ) ∈ V +
φ for every m ≥M .

• γ is carried by Ana(Λ+
φ ).

For a hyperbolic outer automorphism, the following lemma shows that any con-
jugacy class is always weakly attracted to some element of L+(φ). By using Lemma
2.4 we therefore know that every conjugacy class is also attracted to some element
of L−φ under φ−1.

Lemma 2.10. [10, Proposition 2.21, Lemma 3.1, Lemma 3.2] Let φ ∈ Out(F) be
rotationless and hyperbolic. Then:

(1) Fix+(φ) is a finite set.
(2) Every conjugacy class is weakly attracted to some element of L+

φ under
iterates of φ.

(3) The weak closure of every point in ξ ∈ Fix+(φ) contains an element Λ+ ∈
L+
φ .

Item (3) of the lemma characterizes the nature of its attracting fixed points.
This is crucial to understanding the notion of “independence of automorphisms”
that we describe later.



3. Legality, independence and stretching

We begin this section by describing a notion of legality of paths which we will
use in our proof. Multiple versions of such a notion exist, all adapted to gaining
quantitative control over exponential growth. Let φ ∈ Out(F) be hyperbolic and
rotationless. Let f : G→ G denote the CT map representing φ. Let |α|Hr denote
the r−length of a path α in G, i.e. we only count the edges of α contained in Hr.

3.1. Legality and Attraction of lines. Recall the definition of critical constant
(after Lemma 2.2) for an exponentially growing stratum and the legality ratio of
paths in [9, Definition 3.3]. This notion of legality ratio was first introduced in
[2, pp-236] for fully irreducible hyperbolic elements. In the fully-irreducible setting
there is only one stratum, and it is exponentially growing. So the notion is a lot
simpler. For our use we adapt the definition to make it work for reducible hyper-
bolic elements.

Legality ratio of paths: For a path α with endpoints at vertices of an exponen-
tially growing stratum Hr and entirely contained in the union of Hr and a zero
stratum which shares vertices with Hr (see item (3) of Lemma 2.2), decompose α
into a concatenation of paths each of which is either a path in Gr−1 or a path of
height r. We consider components αi (if such exist) in this decomposition of α such
that

(1) αi is of height r and is a segment of a generic leaf.
(2) |αi|Hr ≥ C, where C is the critical constant for Hr.

Next, consider the ratio ∑
|αi|Hr
|α|

for such a decomposition. The Hr-legality of α is defined as the maximum of
the above ratio over all such decompositions of α and is denoted by LEGr(α).
The maximum is realised for some decomposition of α. For such a decomposition,
denote by α′k (1 ≤ k ≤ n) the subpaths which contribute to the Hr-legality of α.
Set L(α) =

∑
k |α′k|Hr .

If β is any finite edge-path in Hr, we use Lemma 2.2 to get a splitting β =
β1 · β2 · · ·βk, where each βi is either a path entirely contained in an irreducible
stratum or a maximal path contained in the union of an exponentially growing
stratum and a zero stratum as in item(3) of Lemma 2.2. We define

LEG(β) =

(∑
si

L(βsi)

)
/|β|,

where βsi is one of the components in the decomposition of β of height si, and Hsi

is exponentially growing. Components which do not cross an exponentially growing
stratum are ignored in this sum.

The following proposition says that a circuit with not too many illegal turns
gains legality under iteration. If φ is fully irreducible, the proof can be found in [2,
Lemma 5.6]. We adapt the idea of that proof to our definition of legality. To see
how this proof reduces to the fully irreducible case, recall that for a fully irreducible
hyperbolic automorphism the non-attracting subgroup system in trivial. Therefore
the weak attraction theorem Lemma 2.9 reduces to the statement that any line



whose closure does not contain the repelling lamination necessarily converges to
the attracting lamination under iteration of φ. So the limiting line ` in the proof
below has all desired properties on the nose.

Proposition 3.1 (Legality). Let φ ∈ Out(F) be hyperbolic and rotationless and
f : G → G be a CT map representing φ. Let C be some number greater than all
the critical constants associated to exponentially growing strata. Let V +, V − denote
the union of attracting neighbourhoods for elements of L+

φ ,L
−
φ respectively, where

the leaf segments defining these neighbourhoods have length ≥ 2C and V + does not
contain any leaf of any element of L−φ and V − does not contain any leaf of any

element of L+
φ .

Then there exists some ε > 0, N0 > 0 such that for every circuit β in G with the
property that β ∈ V +, β /∈ V − we have LEG(fn#(β)) ≥ ε for all n ≥ N0.

Proof. We argue by contradiction. Suppose the conclusion is false. Then there
exists a sequence nj → ∞ and circuits αj satisfying the hypothesis such that
LEG(f

nj
# (αj)) → 0. Since αj ∈ V + we have that LEG(αj) 6= 0 for every j.

Therefore we may assume |αj | → ∞. Now we choose subpaths δj of αj such that
the following hold:

(1) δj /∈ V − and |δj | → ∞.
(2) LEG(f

nj
# (δj)) = 0.

To see why item (2) holds, observe that since LEG(f
nj
# (αj)) → 0, αj ’s do not

contain sufficiently many long subpaths which are generic leaf segments of elements
of L+

φ for the legality to grow under iterates of f#. Therefore as j → ∞ subpaths

of αj which are not generic leaf segments become arbitrarily large since |αj | → ∞.
Since |δj | → ∞ we may assume that δj is a circuit for all sufficiently large j. Item

(2) implies that δj /∈ V +, since f#(V +) ⊂ V +. Since there are only finitely many
elements in L+

φ , applying item (2) of Lemma 2.10 we may pass to a subsequence
if necessary, and assume that δj ’s are not carried by the non-attracting subgroup
system corresponding to some fixed attracting lamination Λ+ ∈ L+

φ .

Therefore by item (4) of Lemma 2.4 there exists a weak limit ` of the δj ’s such
that ` is not carried Ana(Λ+

φ ). Also note that our assumption that δj /∈ V − implies

that ` /∈ V −, since V − is an open set. This implies that ` is not in the attracting
neighbourhood of the dual lamination Λ− of Λ+, which is contained in V −. Lemma
2.9 applied to the dual lamination pair Λ+,Λ− then implies that f

nj
# (`) ∈ V + for

all j sufficiently large. Since V + is an open set, there exists some J > 0 such that
f
nj
# (δj) ∈ V + for all j ≥ J . This violates item (2) above. �

The following result is a generalisation of [2, Lemma 5.5, item (1)] and is a direct
consequence of the above proposition and the definition of critical constant.

Lemma 3.2 (Exponential growth). Let φ ∈ Out(F) be hyperbolic and rotationless
and f : G→ G be a CT map representing φ. Let C be some number greater than the
critical constants associated to all exponentially growing strata. Suppose V +, V −

denote the union of attracting and repelling neighbourhoods for φ, where the leaf
segments defining these neighbourhoods have length ≥ 2C and and V + does not
contain any leaf of any element of L−φ and V − does not contain any leaf of any

element of L+
φ .



Then for every A > 0, there exists N1 > 0 such that for every circuit β in G
with the property that β ∈ V +, β /∈ V − we have |fn#(β)| ≥ A|β| for all n ≥ N1.

Proof. By Proposition 3.1, there exists N0 such that for any circuit β satisfying the
hypothesis we have LEG(fn#(β)) ≥ ε for all n ≥ N0. Let α = fN0

# (β). By taking a

splitting of α as in the definition of legality, we obtain
∑
{L(αi)} ≥ ε|α|. If λ is the

minimum of the stretch factors corresponding to the exponentially growing strata
of f , we get

|fk#(α)| ≥ Dλk
∑
i

{L(αi)} ≥ Dλkε|α|

for some constant 0 < D ≤ 1 arising out of the critical constant (see the role of
µ in discussion after Definition 2.3). Since N0 is fixed, we may choose N1 large
enough, independent of β (due to the bounded cancellation property), such that
DλN1ε|α| ≥ A|β|. The result then follows for all n ≥ N1. �

Following [10], we writeWL+(φ) = Bgen(φ)∪B Fix+(φ) for any hyperbolic outer
automorphism φ. Recall that Bgen(φ) is the set of all generic leaves of attracting
laminations for φ and B Fix+(φ) denotes set of all singular lines. Similarly replacing

φ by φ−1 we get WL−(φ). Set W̃L
+

(φ) to be the preimage of WL+(φ) in B̃.

Similarly define W̃L
−

(φ). The following lemma identifies lines which are weakly
attracted to some element of L+

φ under iteration by φ.

Suppose φ ∈ Out(F) is fully-irreducible, rotationless and hyperbolic. Since there
is only one attracting lamination and its non-attracting subgroup system is trivial,
using Lemma 2.7 we get that ` is weakly attracted to Λ+ if and only if ` /∈ WL−(φ).
We want to extend this observation to the reducible case too. However the reducible
hyperbolic case requires some more work and the statement needs some modification
primarily due to the possibility of existence of non-generic leaves of attracting
laminations in the reducible case.

Lemma 3.3 (Attraction of lines). Let φ ∈ Out(F) be rotationless and hyperbolic

and f : G → G be a completely split train-track map representing φ. If ˜̀ ∈ B̃ is

such that ˜̀ is not asymptotic to any element of W̃L
−

(φ), then ` is weakly attracted
to some element of L+

φ under iterates of φ.

Proof. Suppose ` is not attracted to any element of L+
φ . Then by the structure

of non-attracted lines in Lemma 2.7, we get that ` must be carried by the non-
attracting subgroup system of every element of L+

φ . If one of the non-attracting
subgroup systems is trivial, then this immediately gives us a contradiction. There-
fore we assume that none of them are trivial. By using the minimality of the free
factor support [K] of ` and the fact that every non-attracting subgroup system
is a free factor system (item (2) of Lemma2.4), we see that [K] is carried by the
non-attracting subgroup system of every element of L+

φ . If σ is any conjugacy class

in [K], then it cannot get attracted to any element of L+
φ under iterates of φ, by

item (1) of Lemma 2.4. This contradicts conclusion (2) of Lemma 2.10. �

3.2. Independence and Stretching. We fix a homogeneous graph of roses π :
X → G for the rest of the paper (cf. Definition 1.3 and the subsequent discussion).
The universal cover is a homogeneous tree of trees Π : Y → T The vertex set V (G)
(resp. edge set E(G)) of G is denoted by V (resp. E). The marked rose over v ∈ V



(resp. e ∈ E) is denoted as Rv (resp. Re). Equip each Rv (resp. Re) with a base
point bv (resp. be). Similarly, the marked tree over v ∈ V (T ) (resp. e ∈ E(T )) is

denoted as Tv (resp. Te). Base-points in Tv (resp. Te) are denoted by b̃v (resp. b̃e).
We associate with each oriented edge e, a tuple (Ge,Φe, fe, qev, ρe) given by the

following data:

(1) Let e = [v, w] be an edge. Then Ge is a marked graph with marking induced
by Re. Under the edge-to-vertex map, π1(Ge, be) maps injectively to a finite
index subgroup of π1(Rv, bv).

(2) Φe is an automorphism of π1(Ge, be).
(3) fe is a completely split train-track map on Ge representing an outer auto-

morphism in the outer automorphism class of some rotationless power of
Φe (see Lemma 2.1)

(4) The lift of fe to the universal cover is given by f̃e : (G̃e, b̃e)→ (G̃e, b̃e).
(5) The lift to the universal cover of the map from Ge to Rv is given by qev :

G̃e → R̃v. Note that qev is a quasi-isometry with uniform constants.

Let E denote the edge e with reverse orientation. We have a base-point preserving

change of markings map ρe : GE → Ge and its lift ρ̃e : G̃E → G̃e to universal
covers.

We fix the following notation for the purposes of this subsection.

(a) Let v ∈ G be any vertex and let e1, · · · , en be all the edges of G originating
at v. We will use Gi, fi, qiv to denote Gei , fei , qeiv respectively.

(b) The set of all attracting and repelling laminations of φi will be denoted by
L+
i and L−i respectively. L±i := L+

i ∪ L
−
i .

(c) B̃i denotes the space {∂G̃i × ∂G̃i −∆}/Z2 and Bi denotes its image under

the quotient by π1(Gi). B̃v and Bv are defined similarly using π1(Rv). The
quotient spaces are equipped with the weak topology.

(d) q̂iv : ∂G̃i → ∂R̃v denotes the homeomorphism between boundaries induced
by qiv. We use q̂vi to denote the inverse homeomorphism. q̂iv × q̂iv extends
to a homeomorphism of the corresponding product spaces which induces a

homeomorphism of the spaces B̃i and B̃v. We will abuse the notation and
continue to denote this induced homeomorphism by q̂iv × q̂iv. Use q̂vi× q̂vi
to denote the corresponding inverse homeomorphism.

(e) If γi ∈ B̃i, then γvi denotes the image q̂iv × q̂iv(γi). We will call γi the

realisation of γvi in G̃i. If X is a subset of B̃i then Xv denotes the union of
γvi ’s as γi ranges over all elements of X.

(f) Bgen(φ)∪B Fix+(φ) =WL(φ) is closed and φ-invariant ([9, Theorem 3.10])

for any hyperbolic outer automorphism φ. We use the notationWL+
i ,WL

−
i

to denote the set of lines WL(φi),WL(φ−1
i ) respectively. Also, let WL±i =

WL+
i ∪WL

−
i .

We shall refer to the Notation in (1)-(5) above along with (a)-(f) as the standard
setup for the rest of this section. The following definition is a modification of the
corresponding definition of independence of surface automorphisms from [13].

Definition 3.4. (Independence of automorphisms:) Let H1, H2 be finite index
subgroups of a free group F with indices k1, k2 respectively. Let Φ1,Φ2 be hyperbolic

automorphisms of H1, H2 respectively. Let {ai ·H1}k1i=1 and {bj ·H2}k2j=1 be the



collections of distinct cosets of H1, H2 in F . We will say that Φ1,Φ2 are independent
in F if the following conditions are satisfied:

(A) ai ·(˜̀v1) and aj ·(˜̀v2) do not have a common end in ∂F for any ˜̀1, ˜̀2 ∈ W̃L±1
where 1 ≤ i 6= j ≤ k1. Similarly, bi ·(˜̀v1) and bj ·(˜̀v2) do not have a common

end in ∂F for any ˜̀2, ˜̀2 ∈ W̃L±2 1 ≤ i 6= j ≤ k2.

(B) ai · (˜̀v1) and bj · (˜̀v2) do not have a common end in ∂F for any `i ∈ W̃L
±
i

for all 1 ≤ i ≤ k1, 1 ≤ j ≤ k2.

As an immediate consequence of the fact that q̂1v × q̂1v : B̃1 → B̃v is a homeo-
morphism, we have the following.

Lemma 3.5 (Disjointness is preserved). If ˜̀v ∈ B̃v is such that ˜̀v is not asymptotic

to any element of
k1⋃
s=1

as · W̃L
±v
1 , then the realisation of ˜̀v in G̃1 is not asymptotic

to any lift of any element of WL±1 .

Given the standard setup for this section, let v be a vertex of G and let e1, e2, · · · , en
be all the oriented edges in G which have v as the initial vertex. We Will say that
the automorphisms Φ1,Φ2, · · · ,Φn associated to these edges are independent in
π1(Rv) if Φi,Φj are independent in π1(Rv) for any 1 ≤ i 6= j ≤ n.

Lemma 3.6 (Independence implies attraction). Given the standard setup for this
section, let v be a vertex of G and let e1, e2, · · · , en be all the oriented edges in G
which have v as the initial vertex. If the automorphisms Φ1,Φ2, · · · ,Φn associated
to these edges are independent in π1(Rv) then for all i 6= 1 the projection to G1

of the image of any lift of any leaf of any attracting or repelling laminations of
φi is weakly attracted to some element of L+

1 under iterates of φ1. (An analogous
statement holds for L−1 and φ−1

1 ).

Proof. Every leaf of an attracting lamination for φi is an element of WL+
i (see [10,

Corollary 3.8]). Since Φi,Φ1 are independent in π1(Rv), it follows from Definition

3.4 that translates of elements of W̃L
±v
i are not asymptotic to translates of elements

of W̃L
±v
1 , for i 6= 1.

Using Lemma 3.5, we see that the image (under the homeomorphism between

B̃i and B̃1) in B̃1 of the lift of any leaf of any attracting or repelling lamination of

φi is not asymptotic to an element of W̃L
±
1 . By using Lemma 3.3 we see that its

projection to G1 gets weakly attracted to some element of L+
1 under iterates of φ1.

A similar argument gives us the result for L−1 . �

Remark 3.7. The proof of this lemma is easier when both φ1, φ2 are fully irre-
ducible. In that case, a line is attracted to the unique attracting lamination for φ1

if and only if it is not in WL−1 . But the projection to G1 of the image of any lift of
any leaf of Λ±2 cannot be inWL−1 as a consequence of the definition of independence.

The following Lemma upgrades the disjointness conditions of Definition 3.4 to
disjointness of neighborhoods.

Lemma 3.8 (Disjoint neighbourhoods exist). Given the standard setup for this
section, let v be a vertex of G and let e1, e2 be two oriented edges in G which have
v as the initial vertex. Let the automorphisms Φ1,Φ2 associated to these edges be



independent in π1(Rv). Let the index in π1(Rv) of the group associated to edge ei
be ki. Then for ε1, ε2 = +,−, there exist open sets V εii ⊂ Bi such that

(i) Every attracting lamination of φi is contained in V +
i and every repelling

lamination of φi is contained in V −i . Also, V +
i ∩ V

−
i = ∅ for i = 1, 2.

(ii) The projection to G1 of the image (using the homeomorphism between B̃2

and B̃1) of any lift of a generic leaf of any attracting or repelling lamination
of φ2 is not contained in V +

1 ∪ V
−
1 . A similar condition holds with roles of

φ1, φ2 interchanged.

(iii) ai · q̂1v× q̂1v(Ṽ
ε1
1 )∩aj · q̂1v× q̂1v(Ṽ

ε2
2 ) = ∅ where 1 ≤ i 6= j ≤ k1. Analogous

result for Ṽ +
2 and Ṽ −2 .

(iv) For any lift Ṽ εii ⊂ B̃i, we have as · (q̂1v× q̂1v(Ṽ
ε1
1 ))∩bt · (q̂2v× q̂2v(Ṽ

ε2
2 )) = ∅

for every 1 ≤ s ≤ k1, 1 ≤ t ≤ k2.

Proof. For every attracting lamination Λ+ ∈ L+
i , pick a generic leaf of Λ+ and

choose an attracting neighbourhood of Λ+ defined by a finite segment of the generic
leaf. Denote the union (over the finitely many attracting laminations of φi) of such
attracting neighbourhoods by V +

i . Do the same with φ−1
i to construct V −i for

i = 1, 2. By choosing the segments long enough conclusion (i) can be satisfied.
By using condition (B) of definition 3.4 and 3.5 the projection of the image of

any lift of any leaf of Λ±j ∈ L
±
j in Gi does not have a common end with a generic

leaf of any attracting or repelling lamination of φi, for 1 ≤ i 6= j ≤ 2. By using the
birecurrence property of a generic leaf we may take longer generic leaf segments
and replace V +

1 with a smaller open set such that the projection in G1 of the image
of any lift of any generic leaf of any attracting or repelling lamination of φ2 is not
in V +

1 . Similarly construct V −1 . Interchanging the role of φ1 and φ2, we construct
V +

2 , V −2 . Hence conclusion (ii) is also satisfied.
To show that (iii) holds we use the first condition in the definition of indepen-

dence. Having constructed neighbourhoods which satisfy conditions (i) and (ii),
suppose that (iii) is violated for all such open sets satisfying (i) and (ii). For con-

creteness assume that ˜̀n ∈ q̂1v × q̂1v(Ṽ
+
1n) ∩ a · q̂1v × q̂1v(Ṽ

+
1n) for some ai = a

and V +
1n are a sequence of nested open neighbourhoods constructed by choosing

longer and longer generic leaf segments. If the limit of the sequence ˜̀n is ˜̀, then˜̀∈ W̃L+v

1 ∩ a · W̃L
+v

1 , which violates condition (A) of the independence criterion.
This proves (iii).

Next, suppose that property (iv) is violated for every choice of open sets sat-
isfying (i), (ii), (iii). Then there exists a sequence of integers nk → ∞ and cor-
responding open sets V +

1nk
, V +

2nk
( and V −1nk , V

−
2nk

) which are a union of attracting
(and repelling ) neighbourhoods defined by generic leaf segments of length greater
than nk, such that conclusion (iv) is violated. We may further choose the finite
segments defining the attracted neighbourhoods so that the sequence of open sets
V +
nk

is nested and decreasing (with respect to inclusion).
Since we have only finitely many as, bt, after passing to a subsequence we may

assume that condition (iv) is violated for a fixed s and t for the open sets con-
structed above. After passing to a further subsequence we may assume for sake of

concreteness that as · q̂1v × q̂1v(Ũ
+
1nk

) ∩ bt · q̂2v × q̂2v(Ũ
+
2nk

) 6= ∅ for all sufficiently

large k, where U+
1nk

is a nested sequence of open sets in B1 which are defined by



choosing an increasing sequence of generic leaf segments of some fixed element of
L+

1 . A similar assumption can, by the same reasoning, be made for U+
2nk

.

Note that as k →∞ the intersection of all the open sets as · (q̂1v × q̂1v(Ũ
+
1nk

)) is

nonempty and equals as · q̂1v × q̂1v(W̃L
+

1 ). A symmetric conclusion holds for U+
2nk

.

Since both as · q̂1v × q̂1v(W̃L
+

1 ) and bt · q̂2v × q̂2v(W̃L
+

2 ) are closed sets, this implies

that there exists some element ˜̀∈ Bv at least one of whose endpoints in ∂R̃v lies in

both as · q̂1v × q̂1v(W̃L
+

1 ) and bt · q̂2v × q̂2v(W̃L
+

2 ). This contradicts independence
of the automorphisms.

�

We are now ready to prove our version of the 3-out-of-4 stretch lemma (see
[18, 13]) which establishes the hallway flaring condition (Definition 1.6) for us. For
ease of notation we will use f+

i : Gi → Gi to denote the CT map for the outer
automorphism φi associated to the edge ei and f−i : G−i → G−i to denote the CT

map associated to the inverse outer automorphism φ−1
i . For a finite geodesic path

τ̃ ∈ R̃v we say that τ̃i is its realisation in G̃i if τ̃i is a geodesic edge-path in G̃i
joining the images of the end-points of τ̃ under the quasi-isometry from R̃v to G̃i.
Also, for ease of notation, we will just write |fmi#(α)| where it is understood that
this length is being measured on the marked graph on which fi is defined. The
same convention will be used for lifts to universal covers. By |Gi| we denote the
number of edges in Gi, and similarly |G−i | to denote the number of edges in G−i .

Proposition 3.9 (3-out-of-4 stretch). Given the standard setup, let v be a vertex
of G and let e1, e2 be two oriented edges in G which have v as the initial vertex.
If the automorphisms Φ1,Φ2 associated to these edges are independent in π1(Rv),
then there exists some constants M ′v, L

′
v > 0 such that for every geodesic segment

τ̃ in R̃v of length greater than L′v, we will get at least three of the four numbers

|f̃±mi# (τ̃i)| to be greater than 2|τ̃ | for every m > M ′v, where τ̃i is a realisation of τ̃

in G̃i and i = 1, 2.

Proof. Let A denote a number greater than twice the bounded cancellation con-
stants for the CT maps f±i for (i = 1, 2) and the quasi-isometry constants for the
maps qiv and their inverses. Also assume that A is greater than twice the bounded
cancellation constants for the finitely many marking maps and change of marking
maps involved and their lifts to the universal covers. By increasing A if necessary
assume that it is greater than the critical constants associated to each exponentially
growing stratum of f+

i and f−i .
For every attracting lamination Λ+ ∈ L+

i , pick a generic leaf of Λ+ and choose
an attracting neighbourhood of Λ+ defined by a finite segment of the generic leaf
of length greater than maximum of {2A, 2|Gi|, 2|G−i |}. By taking longer generic
leaf segments if necessary, assume that we have open sets of Bi (for i = 1, 2) which
satisfy the conclusions of Lemma 3.8.

By Lemma 3.3 we know that any line in Gi which does not have a lift that is

asymptotic to an element of W̃L
±
i is weakly attracted to some element of L+

i . By
applying Lemma 2.9 to each dual lamination pair of φi and taking the maximum
over all exponents, we obtain some integer mi such that fmii# (`) ∈ V +

i for any line

` /∈ V −i where i = 1, 2. We do the same for the inverses of φ1, φ2 and get constants
m′i. Let M ′0 > maximum of {m1,m2,m

′
1,m

′
2}.



We claim that there exist constants M ′v > M ′0, Lv > 0 such that for every

geodesic segment τ̃ in R̃v of length greater than Lv, we will get at least 3 of the 4

numbers |f̃±mi# (τ̃i)| to be greater than 2|τ̃ | for all m > M ′v.
We argue by contradiction. Suppose not. Then there exists a sequence of positive

integers nj → ∞ and paths σ̃j ∈ R̃v with |σ̃j | > j, such that at least two of the

numbers |f̃nji#(σ̃ij)| is less than 2|σ̃j | as i varies. Since Φ1,Φ2 are both hyperbolic,

the associated mapping tori are hyperbolic [1, 5]. Hence the hallways flare condition
(Definition 1.6) holds [15, Section 5.3]. So we may pass to a subsequence and assume

without loss of generality that |f̃±nj1# (σ̃1j)|, |f̃±2#nj(σ̃2j)| < 2|σ̃j | for all j. By the

uniform bound on quasi-isometry constants, we can write |σ̃j | ≤ B|σ̃ij | + 2K for
i = 1, 2 and some uniform constants B,K > 0. The inequalities then transform to

|f̃nj1#(σ̃1j)|
|σ̃1j |

,
|f̃nj2#(σ̃2j)|
|σ̃2j |

< C̃

for some uniform constant C̃. Let σij denote the projection of σ̃ij to Gi. We then
get

(1)
|f1

nj
# (σ1j)|
|σ1j |

,
|f2

nj
# (σ2j)|
|σ2j |

< C

for some uniform constant C . Without loss of generality, assume that σ̃j are

all based at some fixed vertex in R̃v, corresponding to the identity element of

π1(Rv). By passing to a limit we get a geodesic line ˜̀ in R̃v with distinct endpoints

in ∂R̃v. By using item (iv) of Lemma 3.8 we get that ˜̀ cannot belong to both
k1⋃
s=1
{as · q̂1v × q̂1v(Ṽ

−
1 )} and

k2⋃
t=1
{bt · q̂2v × q̂2v(Ṽ

−
2 )}. For concreteness suppose that

˜̀ is not an element of
k1⋃
s=1
{as · q̂1v × q̂1v(Ṽ

−
1 )}. If ˜̀1 is its realisation in G̃1, then

by using Lemma 3.5. we see that ˜̀1 is not asymptotic to any lift of any element of

WL±1 . Let `1 denote projection of ˜̀1 to G1. By taking longer generic leaf segments
(thereby reducing V −1 ) and increasing M ′0 if necessary, we get `1 /∈ V −1 . Since
|σ1j | → ∞ in G1, we might as well assume that σ1j are circuits. This implies that,
after passing to a subsequence if necessary, we have σ1j /∈ V −1 , since V +

1 is an open

set. Hence f
M ′

0

1# (σ1j) /∈ V −1 because f−1
1# (V −1 ) ⊂ V −1 .

By our construction of the open sets we have that fm1#(`1) ∈ V +
1 for all m ≥M ′0.

Since V +
1 is open, there exists some J > 0 such that f

M ′
0

1# (σ1j) ∈ V +
1 for every

j ≥ J .

Finally we apply Lemma 3.2 to the paths f
M ′

0

1# (σ1j). Choose a sequence of

real numbers Aj → ∞ to conclude (Lemma 3.2) that for all sufficiently large j,
|f1

nj
# (σ1j)| ≥ Aj |σ1j |. This implies that the ratio |f1

nj
# (σ1j)|/|σ1j | → ∞ con-

tradicting our choice of σ1j ’s in Equation 1. This final contradiction proves the
Proposition. �

Remark 3.10. In the setting when all φi’s are fully irreducible, the argument after
Equation 1 in the proof of Proposition 3.9 can be made simpler. The limiting lines
`i for i = 1, 2 will be either attracted to Λ+

i or belong to WL−i . Our choice of



attracting neighbourhoods ensures that `i /∈ WL−i for at least one i. After this one
can proceed with the choice of the Aj ’s as in the proof to get the final contradiction.

Corollary 3.11 (All but one stretch). Given the standard setup, let v be a vertex
of G and let e1, e2, · · · , ek be all the oriented edges in G which have v as the initial
vertex. If Φ1,Φ2, · · · ,Φk are hyperbolic, rotationless automorphisms associated to
these edges that are independent in π1(Rv), then there exist constants Mv, Lv > 0

such that for every geodesic segment τ̃ in R̃v of length greater than Lv, at least 2k-1

of the numbers |(f̃±mi# (τ̃i)| are greater than 2|τ̃ | for every m ≥ Mv. Here τ̃i is the

realisation of τ̃ in G̃i and 1 ≤ i ≤ k.

Proof. We choose our constant A as we did in proof of Proposition 3.9 by varying
over all the indices involved. We similarly choose attracting neighbourhoods and
use Lemma 3.8 to get open sets which satisfy the conditions of Proposition 3.9 for
each pair of elements φi, φj where 1 ≤ i 6= j ≤ k. Thus, for each φi we obtain
2k − 1 open sets. The intersection of these 2k − 1 open sets is an open set, which
we denote by V +

i . We do this for each 1 ≤ i ≤ k and also for the inverses of φi. In
the process, we get a collection of open sets V +

i , V
−
i which simultaneously satisfy

the conclusions of Lemma 3.8 for each pair φi, φj where i 6= j. Now use these open
sets and apply Lemma 2.9 to obtain a constant M0 as in proof of Proposition 3.9.

We claim that there exists some constant Mv > M0, Lv > 0 such that for every

geodesic segment τ̃ in R̃v of length greater than Lv, at least 2k− 1 of the numbers

|(f̃±mi# (τ̃i)| are greater than 2|τ̃ | for every m ≥Mv. Suppose not. Then there exists

a sequence of positive integers nj → ∞ and paths σ̃j ∈ R̃v with |σ̃j | → ∞, such

that at least two of the numbers |f̃±nji# (σ̃ij)| (1 ≤ i ≤ k) are less than 2|σ̃j |.
By passing to a subsequence, we can assume without loss of generality that

|f̃nj1#(σ̃1j)|, |f̃
nj
2#(σ̃2j)| < 2|σ̃j | for all j and |σ̃j | → ∞. This violates the 3-of 4

stretch Lemma 3.9. This contradiction completes the proof. �

3.3. Equivalent notion of independence. Observe that for the proof of the
3-out-of-4 stretch Lemma 3.9 all that we needed was the existence of disjoint neigh-
bourhoods satisfying the conclusions of Lemma 3.8. In this subsection we give some
alternate notions of independence of automorphisms that suffice for the purposes
of this paper. This section is largely independent of Section 4 and may be omitted
on first reading.

Definition 3.12. (Fixed point independence of automorphisms:) Let H1, H2 be
finite index subgroups of a free group F with indices k1, k2 respectively. Let Φ1,Φ2 be

hyperbolic automorphisms of H1, H2 respectively. Let {ai ·H1}k1i=1 and {bj ·H2}k2j=1

be the collections of distinct cosets of H1, H2 in F . We will say that Φ1,Φ2 are
fixed point independent in F if the following conditions are satisfied:

(1) ai · q̂1v(Fix±1 ) ∩ aj · q̂1v(Fix±1 ) = ∅ for all 1 ≤ i 6= j ≤ k1. Similarly

bi · q̂2v(Fix±2 ) ∩ bj · q̂2v(Fix±2 ) = ∅ for all 1 ≤ i 6= j ≤ k2.

(2) ai · q̂1v(Fix±1 ) ∩ bj · q̂2v(Fix±2 ) = ∅ for all 1 ≤ i ≤ k1, 1 ≤ j ≤ k2.

It immediately follows from this definition that independence in the sense of
definition 3.4 implies fixed point independence. We prove the equivalence of the
two definitions via the following lemma. For convenience we will address a singular
line which is also a generic leaf as singular leaf.



Lemma 3.13 (Fixed point independence implies disjoint neighbourhoods exist).
Let v ∈ G be any vertex and e1, e2 be any two edges of G originating at v. If Φ1,Φ2

are fixed point independent in π1(Rv) then disjoint neighbourhoods exist satisfying
the conclusions of Lemma 3.8.

Proof. For convenience, we use the variables ε1, ε2 = +,− It suffices to assume that
Φ1,Φ2 are fixed point independent in π1(Rv) and produce the required neighbour-
hoods. Lemma 2.10 tells us that the number of attracting and repelling fixed points

are finite. Let Fix+
1 = {x1, x2, . . . xn}. Then there exist open sets Ũ+

i containing

xi such that xj /∈ Ũ+
i if i 6= j (since attracting fixed points are isolated). Simi-

larly define Ũ−j for repelling fixed points of φ1. Again by using the fact that these

points are isolated we may assume Ũ+
i ∩ Ũ

−
j = ∅ for any i, j. Analogously construct

pairwise disjoint open sets Ṽ +
i , Ṽ

−
j corresponding to attracting and repelling fixed

points of φ2. By taking smaller neighbourhoods if necessary we may assume that

Ũ ε1i ∪ Ṽ
ε2
j = ∅ for every i, j. By using the finiteness of the index of the subgroups we

may shrink these neighbourhoods and use the definition of fixed point independence
to get

(1) as · q̂1v(Ũ
ε1
i ) ∩ at · q̂1v(Ũ

ε2
j ) = ∅ for all 1 ≤ s 6= t ≤ k1 and all i, j. Similarly

bs · q̂2v(Ṽ
ε1
i ) ∩ bt · q̂2v(Ṽ

ε2
j ) = ∅ for all 1 ≤ s 6= t ≤ k2 and all i, j.

(2) as · q̂1v(Ũ
ε1
i ) ∩ bt · q̂2v(Ṽ

ε2
j ) = ∅ for all 1 ≤ s ≤ k1, 1 ≤ t ≤ k2 and all i, j.

Set Ãε1 =
⋃
i Ũ

ε1
i ⊂ ∂π1Gi and B̃ε2 =

⋃
j Ṽ

ε2
j ⊂ ∂π1(G2). The image of these

four sets are pairwise disjoint in ∂R̃v and properties (1) and (2) above naturally

extend to the sets Ãε1 , B̃ε2 . Now consider the open subset Aε11 of B1 given by(
Ãε1 × Ãε1 \∆

)
/Z2. Analogously define open sets Bε12 ⊂ B̃2. Therefore we get four

open sets Ãε11 , B̃
ε2
2 whose images in B̃v are pairwise disjoint. Let Aε11 , B

ε2
2 denote

the images of these open sets in B1,B2 respectively. Then it is immediate that A+
1

and A−1 are disjoint in B1. The same is true for B+
1 , B

−
2 in B2.

Lemma 2.8 tells us that every attracting (repelling) lamination of φi contains a
singular leaf. Therefore every attracting lamination of φ1 is contained in A+

1 and
every repelling lamination of φ1 is contained in A−1 . An analogous statement is true
for φ2 with the open sets Bε22 . Also note that since the open set A+

1 is obtained
from attracting neighbourhoods of attracting fixed points of principal lifts of φ1,
we have the property that φ1#(A+

1 ) ⊂ A+
1 . Similarly φ−1

1#(A−1 ) ⊂ A−1 . Analogous

statements are true for the image of Bε22 under φε22#.

Hence conclusion (i) of Lemma 3.8 is satisfied. Pairwise disjointness of images

of open sets Ãε11 , B̃
ε2
2 in B̃v implies conclusion (ii) of Lemma 3.8 is also satisfied.

Properties (1) and (2) for the open sets Ãε1 and B̃ε1 naturally extend under the
product maps as follows :

(A) as · q̂1v × q̂1v(Ã
ε1
1 ) ∩ at · q̂1v × q̂1v(Ã

ε2
1 ) = ∅ for all 1 ≤ s 6= t ≤ k1. Similarly

bs · q̂2v × q̂2v(B̃
ε1
2 ) ∩ bt · q̂2v × q̂2v(B̃

ε2
2 ) = ∅ for all 1 ≤ s 6= t ≤ k2.

(B) as · q̂1v × q̂1v(Ã
ε1
1 ) ∩ bt · q̂2v × q̂2v(B̃

ε2
2 ) = ∅ for all 1 ≤ s ≤ k1, 1 ≤ t ≤ k2.

Therefore disjoint neighbourhoods exist and properties (A) and (B) above tells
us that conditions (iii) and (iv) are also satisfied from the conclusion of Lemma
3.8. �

An immediate corollary of this lemma is the following observation.



Corollary 3.14. Fixed point independence of automorphisms and independence of
automorphisms in sense of definition 3.4 are equivalent.

4. Hyperbolic Regluings

Recall (Definition 1.7 and the subsequent discussion) that the regluing of a ho-
mogeneous graph of roses π : X → G corresponding to a tuple {φe} is denoted by

(Xreg,G, π, {φe}). Also, recall that (X̃reg, T , πreg, {φ̃e}) denotes the universal cover

of such a regluing. If X̃reg is hyperbolic, then we say that the regluing is hyperbolic

(Definition 1.7). Further recall that the mid-edge inclusions in (X̃reg, T , πreg, {φ̃e})
corresponding to lifts of the edge e are given by lifts φ̃e of φe, and hence are
K(e)−quasi-isometries, where K(e) depends on φe.

We shall say that a regluing (Xreg,G, π, {φe}) corresponding to a tuple {φe} is
a rotationless regluing if each φe is rotationless. The following is an immediate
consequence of Lemma 2.1:

Lemma 4.1. Let π : X → G be a homogeneous graph of roses, and let {φe}, e ∈
E(G) be a tuple of hyperbolic automorphisms. Then there exists k ∈ N such that
(Xreg,G, π, {φke}) is a rotationless regluing.

Definition 4.2. We shall say that a regluing (Xreg,G, π, {φe}) is an independent
regluing if

(1) Each φe is hyperbolic.
(2) For any vertex v and any pair of edges e1, e2 incident on v, φe1 , φe2 are

independent.

We are now in a position to state the main theorem of the paper:

Theorem 4.3. Let π : X → G be a homogeneous graph of roses, and let {φe}, e ∈
E(G) be a tuple of hyperbolic automorphisms such that (Xreg,G, π, {φe}) is an in-
dependent regluing. Then there exist k, n ∈ N such that (Xreg,G, π, {φknee }) gives a
hyperbolic rotationless regluing for all ne ≥ n.

Remark 4.4. Lemma 4.1 allows us to choose k ∈ N such that given a tuple
{φe}, e ∈ E(G) as in Theorem 4.3, φke is rotationless for all e. Hence, it suffices to
prove Theorem 4.3 with

(1) each φe rotationless,
(2) k = 1.

The rest of this section is devoted to a proof of Theorem 4.3 after the reduction
given in Remark 4.4.

Fixing qi constants: Given a homogeneous graph of roses π : X → G, choose
a constant C1 ≥ 1 such that for every vertex space Rv and every edge space Ge
such that e is incident on v, the edge-to-vertex map from Ge to Rv induces a

C1−quasi-isometry of universal covers R̃e → R̃v.
Next, given a tuple {φe}, e ∈ E(G) of rotationless hyperbolic automorphisms of

Ge, there exists a constant C2 ≥ 1 such that φ̃e : G̃e → G̃e is a C2−quasi-isometry
of universal covers.

Also, the number of graphs homotopy equivalent to Ge and carrying a CT map
is finite. Hence there exists a constant C3 ≥ 1 such that for any such graph G′e,



there exists a C2−quasi-isometry from G̃e to G̃′e resulting as a lift of a homotopy
equivalence between Ge, G

′
e.

Fix C = C1C2C3. All quasi-isometries in the discussion below will turn out to
be C−quasi-isometries.

Subdividing G: Given a tuple {φe}, e ∈ E(G) of rotationless hyperbolic automor-
phisms of Ge and a tuple {ne} of positive integers, we now construct a subdivision
Greg of the graph G such that

(1) The regluing (Xreg,G, π, {φnee }) naturally induces a homogeneous graph of
roses structure (Xreg,Greg, πreg, {φe}). Note that the edge labels for the
subdivided graph Greg are given by φe as opposed to φnee for G. How-
ever, the total spaces before and after subdivision are homeomorphic by a
fiber-preserving homeomorphism. The graphs G and Greg are clearly home-
omorphic as they differ only in terms of simplicial structure.

(2) In the universal cover (X̃reg, T , πreg, {φ̃e}), all the edge-to-vertex inclusions
are C−quasi-isometries.

The construction of Greg from G is now easy to describe. Replace an edge e
labeled by φnee by a concatenation of ne edges, each labeled by φe Since the edge-
to-vertex inclusions now factor through ne edge-to-vertex maps, each given by φe,

the lifted edge-to-vertex inclusions in the universal cover (X̃reg, T , πreg, {φ̃e}) are
C−quasi-isometries.

We note down the output of the above construction:

Lemma 4.5. Given a homogeneous graph of roses π : X → G, and a tuple {φe}, e ∈
E(G) of rotationless hyperbolic automorphisms of Ge, there exists a constant C ≥ 1
such that for any tuple {ne} of positive integers, there exist

(1) A subdivision Greg of G, where each edge e is replaced by ne edges, each
labeled by φe.

(2) The regluing (Xreg,G, π, {φnee }) is homeomorphic to (Xreg,Greg, πreg, {φe})
by a fiber-preserving homeomorphism.

(3) The universal cover (X̃reg, T , πreg, {φ̃e}) is a homogeneous tree of trees
satisfying the qi-embedded condition (see Definition 1.3). Further, all the

quasi-isometry constants of (X̃reg, T , πreg, {φ̃e}) are bounded by C.

Remark 4.6. The only difference between the homogeneous tree of trees before and
after subdivision lies in the qi constants. Before subdivision, they are bounded by
Cne . After subdivision, they are bounded by C.

Given Lemma 4.5, we would now like to deduce Theorem 4.3 from the combi-
nation theorem of Bestvina-Feighn [1] which says that a tree of hyperbolic spaces
is hyperbolic if it satisfies the hallways flare condition. In the present setup, the
hallways flare condition of [1] simplifies using the results of [15].

Definition 4.7. Given a homogeneous tree of trees π : Y → T , a k−qi section is
a k−quasi-isometric embedding σ : T → Y such that π ◦ σ is the identity map on
T .

A hallway (see Definition 1.4) f : [−m,m]×[0, 1]→ Y is said to be a K−hallway
if

(1) π ◦ f [−m,m]× {t} → T is a parametrized geodesic in the base tree T



(2) f : [−m,m]× {0} → Y and f : [−m,m]× {1} → Y are K−quasi-isometric
sections of the geodesic π ◦ f [−m,m]× {t} → T .

Then, in the setup of the present paper, [15, Proposition 2.10] gives us the
following:

Lemma 4.8. For π : X → G, and a tuple {φe}, e ∈ E(G) as in Lemma 4.5 there
exists K ≥ 1 such that the following holds:

For any tuple {ne} of positive integers, and (X̃reg, T , πreg, {φ̃e}) as in Lemma 4.5,

and any z ∈ X̃reg, there exists a K−qi section of πreg : X̃reg → T , πreg passing
through z.

Further, [15, Section 3] shows:

Lemma 4.9. Let K and (X̃reg, T , πreg, {φ̃e}) be as in Lemma 4.8. Then, (X̃reg, T , πreg, {φ̃e})
is hyperbolic provided K−hallways flare.

Constructing special hallways: A further refinement to Lemma 4.9 can be
extracted from the proof in [15, Section 3] along the lines of [3]. Towards this,

we construct a family of special K−hallways. Let f : [−m,m] × [0, 1] → X̃reg
be a K−hallway. Further, let i, i + 1 ∈ [−m,m] be such that π ◦ f({i} × [0, 1])
and π ◦ f({i + 1} × [0, 1]) are both interior points of a subdivided edge e ∈ E(G).

We say that f : [−m,m] × [0, 1] → X̃reg is a special K−hallway if for all such i,
f({i+1}× [0, 1]) equals φe(f({i}× [0, 1])) (after identifying both vertex spaces with
Ge). Then Lemma 4.9 can be further refined to the following:

Lemma 4.10. Let K and (X̃reg, T , πreg, {φ̃e}) be as in Lemma 4.8. Then, (X̃reg, T , πreg, {φ̃e})
is hyperbolic provided special K−hallways flare.

In order to prove Theorem 4.3, it thus suffices to prove the following:

Proposition 4.11. Let π : X → G be a homogeneous graph of roses, and let
{φe}, e ∈ E(G) be a tuple of hyperbolic rotationless automorphisms such that (Xreg,G, π, {φe})
is an independent regluing. Then there exist n ∈ N such that for all ne ≥ n, the

universal cover (X̃reg, T , πreg, {φ̃e}) satisfies the special K−hallways flare condi-

tion. Here, (X̃reg, T , πreg, {φ̃e}) is the universal cover of the reglued homogeneous
graph of roses (Xreg,Greg, πreg, {φe}) given by Lemma 4.5.

Proof. The Proposition will eventually follow from the ‘All but one stretch’ Corol-

lary 3.11. For any special K−hallway f : [−m,m] × [0, 1] → X̃reg, we shall call
π ◦ f : [−m,m] × {t} → T the base geodesic of the hallway. Further, π ◦ f(0, t) is
called the mid-point of the base geodesic. Vertices of T fall into two classes:

(1) Lifts of v ∈ V (G). These will be called original vertices.
(2) Lifts of v ∈ V (Greg), where v is a vertex at which some e ∈ E(G) is subdi-

vided. These will be called subdivision vertices. Recall that if the regluing
map for e is φnee , then e ∈ G is subdivided into ne edges.

We assume henceforth that all ne are chosen to be larger than some n0 ∈ N (to be
decided later) so that any special K−hallway that we consider has base geodesic
in T containing at most one original vertex.

By Corollary 3.11, we can now assume that there exists n1 ∈ N such that any
special K−hallway with base geodesic of length at least 2n1 centered at an original
vertex satisfies the flaring condition. More precisely, there exists A such that for



all m ≥ n1, any special K−hallway of girth at least A f : [−m,m]× [0, 1] → X̃reg
with m ≥ n1 and πreg ◦ f({0} × [0, 1]) = v, an original vertex satisfies

(2) 2l(f({0} × I)) ≤ max {l(f({−m} × I)), l(f({m} × I)).

Next, there exists n2 ∈ N such that for any special K−hallway with base geodesic
of length at least 2n2 and containing only subdivision vertices, Equation 2 holds
for m ≥ n2. This follows directly from the hyperbolicity of the automorphisms φe.
We let N = max{2n1, 2n2}.

We observe now that the concatenation of two flaring hallways satisfying Equa-
tion 2 continues to satisfy Equation 2 provided the overlap of their base geodesics
has length at least N . More precisely, let [a, b] ⊂ T be the base geodesic of a special
K−hallway H1 and let [c, d] ⊂ T be the base geodesic of a special K−hallway H2

such that

(1) c ∈ (a, b) and b ∈ (c, d). Further, dT (c, b) ≥ N .
(2) H = H1∪H2 is a special K−hallway. In particular, over [c, b] = [a, b]∩[c, d],

the qi-sections (of [c, b]) bounding the hallways H1,H2 coincide.

Then H continues to satisfy Equation 2.
It remains to deal with special K−hallways whose base geodesics of the form

[a, b] contain one original vertex v such that one of the end-points a or b is at
distance at most N − 1 from v. Thus, the first restriction on n0 (the lower bound
on all ne’s) is that

n0 ≥ 2N.

Next, there exists a constant C0 such that for any interval [u, v] ⊂ T of length at

most N , and a special K−hallway f : [−m,m] × [0, 1] → X̃reg with base geodesic
[u, v],

(3)
1

C0
l(f({m} × I)) ≤ l(f({−m} × I)) ≤ C0l(f({m} × I)).

We are finally in a position to determine n0. Choose n0 such that for all m ≥
n0−N , a special K−hallway with base geodesic of the form [a, b] with exactly one
end-point an original vertex satisfies:

(4) 2C0l(f({0} × I)) ≤ max {l(f({−m} × I)), l(f({m} × I)).

It follows from Equation 4, that if H is a special K−hallway, whose base geodesic
[a, b] ⊂ T of length at least n0 contains exactly one original vertex v such that
d(v, a) ≤ N , then,

2C0l(f({0} × I)) ≤ max {l(f({−m} × I)), C0l(f({m} × I))}.

In the case that d(v, b) ≤ N ,

2C0l(f({0} × I)) ≤ max {C0l(f({−m} × I)), l(f({m} × I))}.

In either case (dividing both sides by C0), Equation 2 is satisfied and we conclude
that the special K−hallways flare condition is satisfied for m ≥ n0. �

Lemma 4.9 and Proposition 4.11 together complete the proof of Theorem 4.3. 2

As a concluding remark we point out that the examples of free-by-free hyperbolic
groups in [22] and [9] can be easily reconstructed using Theorem 4.3.
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