
PROPAGATING QUASICONVEXITY FROM FIBERS

MAHAN MJ AND PRANAB SARDAR

Abstract. Let 1 → K −→ G
π−→ Q be an exact sequence of hyperbolic

groups. Let Q1 < Q be a quasiconvex subgroup and let G1 = π−1(Q1).
Under relatively mild conditions (e.g. if K is a closed surface group or a free

group and Q is convex cocompact), we show that infinite index quasiconvex

subgroups of G1 are quasiconvex in G. Related results are proven for metric
bundles, developable complexes of groups and graphs of groups.

1. Introduction

The aim of this paper is to provide evidence in favor of the following Scholium.

Scholium 1.1. For an exact sequence

1→ K −→ G
π−→ Q→ 1

of hyperbolic groups, and more generally for hyperbolic metric bundles, quasicon-
vexity in fibers propagates to quasiconvexity in subbundles.

The results in this paper are in the same vein as a series of theorems starting
with work of Scott-Swarup [SS90], followed by several authors [Mit99, DKL14,
KL15, DKT16, DT17, MR18, Gho20]. In all these papers, the setup was as follows:
Consider an exact sequence of hyperbolic groups as in Scholium 1.1. Then, under
relatively mild conditions, it was shown that an infinite index quasiconvex subgroup
of K is quasiconvex in the bigger group G. The purpose of this paper is to extend
these results in a different direction. Let Q1 < Q be a quasiconvex subgroup and
let G1 = p−1(Q1). The main results of this paper show similarly that, under some
conditions, infinite index quasiconvex subgroups of G1 are quasiconvex in G. In
other words the distortion [Gro93, Chapter 4] (see Definition 2.2 below) is entirely
captured by the fiber group. The earlier papers cited above all treat the case with
Q1 = {1}.
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The simplest example that illustrates this is the following. Let M1,M2 be two
closed hyperbolic 3-manifolds fibering over the circle with the same topological fiber
F . Suppose further that the 3-complex M1∪F M2 = M obtained by gluing M1,M2

along the fiber F has a hyperbolic fundamental group given by G = π1(M1) ∗π1(F )

π1(M1). Then a prototypical theorem of this paper shows that an infinite index
quasiconvex subgroup of π1(M1) is quasiconvex in G. Analogous results are also
shown for K a free group. Note that, using work of [FM02, KL08, Ham05, DT17],
these results can equivalently be formulated in terms of quasiconvex subgroups Q1

of convex cocompact subgroups of the mapping class group MCG(Σ) or the outer
automorphism group Out(Fn) of the free group as follows (see Theorems 4.3 and
4.5):

Theorem 1.2. Let

1→ K −→ G
π−→ Q→ 1

be an exact sequence of hyperbolic groups, where K is either π1(Σ), with Σ a closed
surface of genus at least 2; or a finitely generated free group Fn, n > 2. Let Q
be an infinite convex cocompact subgroup of respectively MCG(Σ) or Out(Fn). Let
Q1 < Q is a qi embedded subgroup and G1 = π−1(Q1). Suppose H < G1 is an
infinite index, quasiconvex subgroup. Then H is quasiconvex in G.

The main new technical tool used in the proof of Theorem 1.2 is the existence and
structure of the Cannon-Thurston map for the pair (G1, G) established in [KS20].
We show also (Proposition 4.8) that in the absence of convex cocompactness, The-
orem 1.2 fails quite dramatically due to the existence of subgroups K1 of K that
are quasiconvex in K and G1, but not in G. The main theorems of the paper
are more general, and make the content of Scholium 1.1 precise in three contexts:
exact sequences of groups (Theorem 4.1), complexes of groups (Theorem 4.9), and
general graphs of groups (Theorem 4.10).

2. A coarse topological fact

The main aim of this section is to prove Proposition 2.8, which is a generalization
in the geometric group theory context of the following simple 3-manifold fact:

Fact 2.1. Let M be a closed hyperbolic 3-manifold fibering over the circle with
fiber F . Let Σ ⊂ M be an immersed incompressible quasi-Fuchsian surface. Let
G = π1(M),K = π1(F ), H = π(Σ). Let MF denote the cover of M corresponding
to K < G, let F0 denote a lift of F to MF and ΣF denote a lift of Σ to MF .
Then, given any finitely generated subgroup K1 < K ∩ H, there is a compact
subsurface Σ0 ⊂ ΣF , necessarily contained in a finite neighborhood of F0, such
that K1 < i∗(π1(Σ0)), where i : Σ0 →MF denotes the inclusion map.

2.1. Preliminaries. All metric spaces in this paper are proper geodesic metric
spaces. A metric graph is a simplicial connected graph where all the edges are
assigned length 1 and the graph is given the induced length metric [BH99, Chapter
I.1, Section 1.9]. For any graph X we shall denote by V (X) and E(X) the vertex
set and the edge set of X respectively. For any metric space X, A ⊂ X and r ≥ 0
we denote by Nr(A) the set {x ∈ X : d(x, a) ≤ r for some a ∈ A} and refer to it as
the r-neighborhood of A in X. Also for x ∈ X, r ≥ 0 we shall denote by B(x, r)
the closed ball of radius r in X centered at x. Given A,B ⊂ X the Hausdorff
distance of A,B is given by Hd(A,B) = inf{r ≥ 0 : B ⊂ Nr(A), A ⊂ Nr(B)}. We
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now recall some basic notions we shall use in this paper. We refer the reader to
[BH99, Chapter I.8] for details on quasi-isometries and q(uasi)-i(sometric) embed-
dings, and to [BH99, Chapter III.H] for details on (Gromov-)hyperbolic groups. If
X is a geodesic metric space and Y ⊂ X is a path-connected subspace we equip Y
with the induced path metric [BH99, Chapter I.3] and assume that Y is geodesic
metric space with respect to this metric.

If G is a group with a finite generating set S then we shall always identify G with
the vertex set of the Cayley graph Γ(G,S). The metric on G induced from Γ(G,S)
will be referred to as the word metric on G with respect to the generating set S.
Let H be a finitely generated subgroup of a finitely generated group G. Assume
further that a finite generating set of G is chosen extending a finite generating set
of H, so that the Cayley graph ΓH embeds in ΓG.

Definition 2.2. [Gro93, Chapter 4] Let i : ΓH → ΓG be the above embedding of
Cayley graphs. The distortion function of H in G is given by

disto(R) =
1

R
DiamH(ΓH ∩BG(R))

where BG(R) is the R−ball about 1 ∈ ΓG. If the distortion is bounded below by a
super-linear function, we say that H is distorted in G. Else, we say it is undis-
torted.

Note that H is undistorted in G if and only if it is qi-embedded. Given a function
f : N → N, a family of maps φi : Xi → Yi, i ∈ I between metric spaces is called
uniformly metrically proper as measured by f [MS12] if for all i ∈ I and for all
x, x′ ∈ Xi,

dYi
(φi(x), φi(x

′)) ≤ R⇒ dXi
(x, x′) ≤ f(R)

for all R ≥ 0. We record the following elementary fact for easy reference.

Lemma 2.3. (1) Suppose H < G are finitely generated groups. Then the inclusion
H → G is uniformly metrically proper with respect to any given word metrics on
G,H.
(2) Suppose X is a geodesic metric space and Y is a subspace such that it is also
a geodesic metric space with respect to the induced length metric dY . Suppose the
inclusion map Y → X is uniformly metrically proper as measured by f : N → N
with respect to these metrics. Then given a k-quasigeodesic α of X contained in Y ,
it is a quasigeodesic k′ = k′(k, f)-quasigeodesic of Y with respect to the metric dY .

A geodesic metric space X is δ-hyperbolic if for any geodesic triangle ∆xyz,
[x, y] ⊂ Nδ([y, z] ∪ [x, z]). A metric space X is called hyperbolic it is δ-hyperbolic
for some δ ≥ 0. A finitely generated group is hyperbolic if some (any) of its
Cayley graphs (with respect to a finite generating set) is hyperbolic. Given a
hyperbolic metric space X its geodesic boundary or visual boundary is the set of
equivalence classes of geodesic rays where two rays α, β are equivalent if and only if
Hd(α, β) <∞. The boundary of X is denoted by ∂X. The set X̄ := X∪∂X comes
equipped with a natural topology [BH99, Chapter III.H]. Suppose X is a hyperbolic
metric space and α : [0,∞) → X is a geodesic ray. Then the equivalence class of
α is denoted by α(∞). Also if α : [0,∞)→ X is a quasigeodesic ray, then there is
a geodesic ray β : [0,∞) → X, unique up to the equivalence relation above, such
that Hd(α, β) <∞. We shall use the same notation α(∞) to denote β(∞). If G is
a hyperbolic group then we write ∂G to denote the geodesic boundary of any of its
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Cayley graphs since any two such boundaries of Cayley graphs are homeomorphic
(cf. Lemma 3.12(2)).

If α : R→ X is a (quasi)geodesic line then by α(−∞) we shall denote the point
of ∂X determined by the ray t 7→ α(−t). In this case, we say that α joins the pair
of points α(−∞), α(∞). Suppose ξi, i = 1, 2, 3 are any three distinct points of ∂X.
Then any set of three geodesic lines joining these points in pairs is called an ideal
triangle with vertices ξ1, ξ2, ξ3. The geodesic lines are called the sides of the ideal
triangle.

Lemma 2.4. Suppose X is proper δ-hyperbolic. Then:
(1) (Visibility [BH99, Chapter III.H, Lemma 3.2]). Suppose ξ1, ξ2 ∈ ∂X are two
distinct points. Then there is a geodesic line in X joining them.
(2) (Barycenters of ideal triangles) [BH99, Chapter III.H, Lemmas 1.17, 3.3] There
are constant D = D(δ), R = R(δ) such that the following holds. For any three
distinct points ξ1, ξ2, ξ3 ∈ ∂X there is a point x ∈ X which is contained in the D-
neighborhood of each of the three sides of any ideal triangle with vertices ξ1, ξ2, ξ3.
Moreover, if x′ is any other such point then d(x, x′) ≤ R.

A point x as in Lemma 2.4 is referred to as a barycenter of the ideal triangle.
Thus we have a coarsely well-defined map ∂3X → X sending distinct triples of
points to a barycenter. We call such a map a barycenter map. We call X a non-
elementary hyperbolic metric space if there exists a constant L ≥ 0 such that the
L-neighborhood of the image of a barycenter map is the entire X (the terminology
is based on the notion of a non-elementary group of isometries of a hyperbolic
metric space).

Definition 2.5. Suppose X is a hyperbolic metric space and A ⊂ X. Then the
limit set of A in X, denoted by ΛX(A), is the collection of accumulation points of
A in ∂X.

If G is a hyperbolic group and H is a subgroup then the limit set ΛG(H) of
H in G is the limit set of some (any) H−orbit. The following is a list of basic
properties of the limit set that will be useful for us (see [Thu80, Chapter 8] and
[BH99, Chapter III.H.3] for instance).

Lemma 2.6. (0) If X is a hyperbolic metric space and A ⊂ X then ΛX(A) is a
closed subset of ∂X; ΛX(A) = ∅ if and only if A is bounded.
(1) If X is a hyperbolic metric space and A,B ⊂ X then ΛX(A) = ΛX(B) if
Hd(A,B) <∞. If Y is qi-embedded in X, then ∂Y embeds in ∂X.
(2) Suppose H < G are hyperbolic groups. Then the following hold:
(i) If H E G then ΛG(H) = ∂G.
(ii) If H is a finitely generated subgroup of G which is qi embedded and is of infinite
index then ΛG(H) is a proper closed subset of ∂G.

We will also need the following elementary lemma.

Lemma 2.7. Let G be a finitely generated group acting properly and cocompactly
by isometries on a metric space X. Let Γ be a Cayley graph of G with respect to a
finite generating set. Suppose H,K are two finitely generated subgroups of G and
A,B are two subsets of X invariant under H and K respectively. Lastly, assume
that A/H, B/K are compact. If HdX(A,B) < ∞ then Hd(H,K) < ∞ where the
Hd(H,K) is taken in Γ.
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Proof. Let S be a generating set of G and let Γ be the Cayley graph Γ(G,S). On
subsets of G we shall use the metric induced from Γ. Let x ∈ A, y ∈ B. Then
Hd(K.x,K.y) ≤ dX(x, y) <∞. Since the actions of H,K on A,B respectively are
cocompact, we have Hd(H.x,A) < ∞, Hd(K.y,B) < ∞. Since Hd(A,B) < ∞,
it follows that Hd(H.x,K.y) < ∞. Hence Hd(H.x,K.x) < ∞. Since the action
of G on X is proper and cocompact, the orbit map G → X given by g 7→ g.x for
all g ∈ G is a quasi-isometry by the Milnor-Švarc lemma (see [BH99, Proposition
8.19]). Therefore, Hd(H,K) <∞. �

2.2. Finitely generated subgroups from bounded neighborhoods. We are
now in a position to generalize Fact 2.1.

Proposition 2.8. Let G be a finitely presented group and H,K be two subgroups
where H is finitely generated. Let S ⊂ G, S1 ⊂ H be finite generating sets and
Γ = Γ(G,S), Γ1 = Γ(H,S1) be the corresponding Cayley graphs. Let D > 0
and suppose that there is an infinite set A ⊂ ND(K) ∩ H where ND(K) is the
D-neighborhood of K in Γ. Suppose that there exists r ≥ 1 such that any pair of
points of A can be connected by a path lying in the r-neighborhood of A in Γ1. Then
there is a finitely generated infinite subgroup K1 < H ∩K such that A/K1 is finite.
In particular, A is contained within a finite neighborhood of K1 in Γ.

Proof. We start with a finite connected simplicial 2-complex Y together with a finite
1-subcomplex Z such that G = π1(Y) and i∗Z,Y(π1(Z)) = H where iZ,Y : Z → Y is

the inclusion map and i∗Z,Y : π1(Z)→ π1(Y) is the induced map. One may metrize

Y in the standard way so that it is a geodesic metric space ([BH99, Chapter I.7,
Theorem 7.19]). Fix one such metric on Y once and for all. Let p : X → Y be the
universal cover of Y endowed with the induced length metric from Y. (See [BH99,
Definition 3.24, Chapter I.3].) We note that X is a proper metric space ([BH99,
Exercise 8.4(1), Chapter I.8]). Let x ∈ X be a point such that p(x) ∈ Z. G acts
on X by deck transformations so that X/G = Y. Let φ : G → X , g 7→ g.x be the
orbit map. Then, identifying G with V (Γ) (equipped with the subspace metric), φ
gives a Lipschitz map from G to X . Similarly, the inclusion map iH,G : H → G is
also Lipschitz. Therefore, the composition φ ◦ iG,H is Lipschitz. Suppose that φ
and φ ◦ iH,G are both L-Lipschitz.

Let Z̃ be the connected component of p−1(Z) containing x. It follows from the

hypothesis that if R = (D + r)L then K.B(x;R) contains a connected set F ⊂ Z̃
such that φ(A) ⊂ F . Now consider the quotient map q : X → X/K. Since X is a
proper metric space, B(x,R) is compact. Hence, q(F) is contained in the compact

set q(B(x;R)). Thus q(F) is compact. We note that q(Z̃) is a closed subcomplex

of X/K. Hence, there is a finite subcomplex, say W, of q(Z̃) containing q(F ).

Let i : W → q(Z̃), and j : q(Z̃) → X/K be the inclusion maps. Let K1 be the
image of j∗ ◦ i∗. Clearly this is a finitely generated subgroup of H ∩ K. Since
q−1(W) contains the set F it follows that there is a connected component, say W̃,

of q−1(W) containing F . Since W̃/K1 is compact and φ(A) ⊂ F ⊂ W̃, it follows
that φ(A)/K1 is finite.

Finally, we note that the orbit map φ : G→ X is a G-equivariant quasi-isometry
by the Milnor-Švarc lemma ([BH99, Proposition 8.19]) since the G-action on X is
proper and cocompact. It follows that A/K1 is finite. Since A is an infinite set, it
follows that K1 is also infinite. �
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3. Graphs of spaces and Cannon-Thurston Maps

We shall recall some material from [MS12, MR18, KS20] and deduce some con-
sequences. Informally a graph of metric spaces is a 1-Lipschitz surjective map
π : X → B from X to a metric graph B satisfying some additional conditions. We
refer to X as the total space and B as the base. We shall need two specific instances
of this: metric graph bundles and trees of metric spaces. The common feature in
both these cases is that X is a graph, the map π is simplicial and the fibers are
uniformly properly embedded in the total space. As usual, we shall use V (G) to
denote the vertex set of a graph G.

3.1. Metric graph bundles.

Definition 3.1. [MS12, Definition 1.2] Suppose X and B are metric graphs and
f : N → N is a function. We say that X is an f -metric graph bundle over B if
there exists a surjective simplicial map π : X → B such that the following hold.

(1) For all b ∈ V (B), Fb := π−1(b) is a connected subgraph of X . Moreover,
the inclusion maps Fb → X , b ∈ V (B) are uniformly metrically proper as
measured by f .

(2) For all adjacent vertices b1, b2 ∈ V (B), any x1 ∈ V (Fb1) is connected by an
edge to some x2 ∈ V (Fb2).

For all b ∈ V (B) we shall refer to Fb as the fiber over b and its path metric by
db. Condition (2) of Definition 3.1 immediately gives:

Lemma 3.2. If π : X → B is a metric graph bundle then for any points v, w ∈ V (B)
we have Hd(Fv, Fw) <∞.

Definition 3.3. Suppose X is an f -metric graph bundle over B. Given k ≥ 1 and
a connected subgraph A ⊂ B, a k-qi section over A is a map s : A → X such that
s is a k-qi embedding and π ◦ s is the identity map on A.

We shall only need qi sections over geodesics in this paper. We next discuss the
main examples of metric graph bundles that we shall refer to later.

Lemma 3.4. (Restriction of metric graph bundles [KS20, Lemma 3.17]) Suppose
π : X → B is an f -metric graph bundle and B1 is a connected subgraph of B. Let
X1 = π−1(B1). Then clearly X1 is a connected subgraph of X . Let π1 : X1 → B1
denote the restriction of π to X1. Then π1 : X1 → B1 is also an f -metric graph
bundle.

Example 3.5. (Metric graph bundles from short exact sequences [MS12, Exam-
ple 1.8], [KS20, Example 5].) Suppose we have a short exact sequence of finitely
generated groups

1→ K
i→ G

π→ Q→ 1.

Suppose S is a finite generating set of G such that S contains a generating set A of
K. Let X = Γ(G,S) be the Cayley graph of G with respect to the generating set S.
Let B = (π(S) \ {1}) and B := Γ(Q,B) be the Cayley graph of the group Q with
respect to the generating set B. Then the map π naturally induces a simplicial
map π : X → B between Cayley graphs. This is a metric graph bundle. The fibers
are the translates of Γ(K,A) under left multiplication by elements of G.

Moreover, suppose Q1 < Q is a finitely generated subgroup and G1 = π−1(Q1).
Suppose B contains a generating set B1 of Q1. Let S1 = S ∩G1, X1 = Γ(G1, S1),
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and B1 = Γ(Q1, B1). Then π restricts to a metric graph bundle map π1 : X1 → B1
by Lemma 3.4.

Example 3.6. (Metric graph bundles from complexes of groups [KS20, Example
3]) We refer to [BH99] and [Hae92] for basics on developable complexes of (finitely
generated) groups. Suppose Y is a finite connected simplicial complex and G(Y)
is a developable complex of finitely generated groups over Y with the following
additional condition:

(†) For all faces σ ⊂ τ of Y the corresponding homomorphism Gσ → Gτ is an
isomorphism onto a finite index subgroup.

Let G = π1(G(Y)) be the fundamental group of the complex of groups. (See
[BH99, Definitions 3.1, 3.5, Chapter III.C]).

Proposition 3.7. [KS20, section 3] There is a metric graph bundle π : X → B
where G acts on both X , B by isometries such that the following hold.
(1) The map π is G-equivariant.
(2) The G-action is proper and cocompact on X . The G-action is cocompact (but
not necessarily proper) on B.
(3) There is an isomorphism of graphs p : B/G→ Y(1) such that for all σ0 ∈ Y(0),
and v ∈ p−1(σ0), Gv is a conjugate of Gσ0 in G.
(4) For all v ∈ V (B), the Gv-action on V (Fv) is transitive but the action on E(Fv)
has a uniformly bounded number of orbits. Thus, the Gv-action on Fv is proper
and cocompact. In particular if all the groups Gσ are hyperbolic then the fibers of
the metric graph bundle π : X → B are uniformly hyperbolic.
(5) Suppose moreover that Y1 ⊂ Y is a connected subcomplex such that the inclu-
sion morphism G(Y1) → G(Y) induces an injective homomorphism at the level of
fundamental groups (see [BH99, Proposition 3.6, Chapter III.C]). Let G1 be the
image of π1(G(Y1)) in G. Then we can construct a metric graph bundle π : X → B
as above along with a connected subgraph B1 ⊂ B invariant under G1 such that
p(B1/G1) = Y1, and G1 acts properly and cocompactly on X1 = π−1(B1).

We shall refer to a developable complex of groups satisfying the property (†) of
Example 3.6 as a developable complex of groups with qi condition. In this
paper we are particularly interested in developable complexes of groups where all
face groups are non-elementary hyperbolic. Such a complex of groups will be called
a developable complex of hyperbolic groups with qi condition.

Remark 3.8. For developable complexes of hyperbolic groups G(Y) with qi con-
dition we shall consider connected subcomplexes Y1 ⊂ Y such that the inclusion
morphism G(Y1)→ G(Y) induces an injective homomorphism at the level of funda-
mental groups. In addition to this we shall require, with the notation of Proposition
3.7 that B1 is qi embedded in B.

We have he following corollary.

Corollary 3.9. Suppose G(Y) is a developable complex of infinite hyperbolic groups
with qi condition over a finite connected simplicial complex Y and suppose G =
π1(G(Y)) is also hyperbolic. Then for all y ∈ V (Y), g ∈ G we have ΛG(gGyg

−1) =
∂G.

Proof. Let π : X → B be a metric graph bundle satisfying the properties of Propo-
sition 3.7. Let K = gGvg

−1. Then for all x ∈ G, K and xKx−1 fixes two vertices
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of B, say v, w respectively. Also Fv,Fw are invariant under K,xKx−1 respec-
tively and these two induced actions are cocompact. By Lemma 3.2 Hd(Fv,Fw) <
∞. Since the G-action on X is proper and cocompact, Lemma 2.7 then im-
plies that Hd(K,xKx−1) < ∞. Clearly, Hd(xK, xKx−1) ≤ d(1, x) < ∞. Thus
Hd(K,xK) <∞ for all x ∈ G. Hence, ΛG(K) = ΛG(xK) for all x ∈ G by Lemma
2.6(1). Also, since K is an infinite subgroup of G, ΛG(K) 6= ∅ by Lemma 2.6(0).
Finally, by Lemma 3.12(2) we have ΛG(K) = ∂G because ΛG(K) = ΛG(xK) =
xΛG(K) for all x ∈ G whence ΛG(K) is a nonempty closed G-invariant subset of
∂G. �

Definition 3.10. (Trees of hyperbolic metric spaces [BF92]) Suppose T is a tree
and X is a metric space. Then a map π : X → T is called a tree of hyperbolic
metric spaces with qi embedded condition if there are constants δ ≥ 0, K ≥ 1 and
function f : N→ N with the following properties:

(1) For all v ∈ V (T ), Xv = π−1(v) is a geodesic metric space with the induced
path metric dv, induced from X . Moreover, with respect to these metrics the inclu-
sion maps Xv → X are uniformly metrically proper as measured by f .

(2) Suppose e is an edge of T joining v, w ∈ V (T ) and me ∈ T is the midpoint
of this edge. Then Xe = π−1(me) is a geodesic metric space with respect to the
induced path metric de from X . Let [v, w] denote the edge e from v to w. Then
moreover, there is a map φe : Xe × [v, w]→ π−1(e) ⊂ X such that
(i) π ◦ φe is the projection map onto [v, w].

(ii) φe restricted to (0, 1) × Xe is an isometry onto π−1(
◦
e) where

◦
e is the interior

of e.
(iii) φe restricted to Xe × {v} and Xe × {w} are K-qi embeddings from Xe into Xv
and Xw respectively with respect to the induced path metric de on Xe, and dv, dw
on Xv,Xw respectively.

Given a tree of hyperbolic metric spaces with qi embedding condition it is con-
venient to replace the vertex and edge spaces by quasi-isometric metric graphs and
glue them using the maps φe’s to get a tree of hyperbolic metric graphs. This is an
example of a tree of metric graphs obtained by discretizing the classical Bass-Serre
tree of spaces (see [SW79] for a topological exposition of Bass-Serre theory and
[Sar18, Section 3] for the discretized version). The universal cover of a finite graph
of spaces is a source of examples for a tree of metric spaces [SW79].

3.2. Cannon-Thurston maps. In this subsection, we collect together various ex-
istence theorems for Cannon-Thurston maps along with properties of CT lamina-
tions

Definition 3.11. [CT07, Mit98a, Mit98c] Suppose f : Y → X is a map between
hyperbolic metric spaces. We say that f admits a Cannon-Thurston map (or a CT
map for short) if f induces a continuous map ∂f : ∂Y → ∂X. Equivalently, for all
ξ ∈ ∂Y , there exists ∂f(ξ) ∈ ∂X such that for any sequence {yn} in Y converging
to ξ, {f(yn)} converges to ∂f(ξ). Further, ∂f is required to be continuous.

We refer to [CT07] for the origin of CT maps and to [Mj19] for a survey.
Suppose H < G are hyperbolic groups. Suppose ΓG, ΓH are Cayley graphs of

G,H respectively with respect to some finite generating sets. Since G is identified
with V (ΓG), we have a natural map i : H → ΓG. This map can be extended to
a coarsely well-defined map ΓH → ΓG by sending any point on an edge joining
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h1, h2 ∈ H to i(h1) or i(h2). If the map ΓH → ΓG admits a CT map then we say
that the inclusion map H → G admits a CT map.

The first and fourth parts of the following lemma are standard and follow from
the definitions of CT maps and limit sets. For the second part see [BH99, Chapter
III.H] for instance. The third part follows exactly as in [Mit99, Lemma 2.1].

Lemma 3.12. (Properties of CT maps) (1) Suppose X,Y, Z are hyperbolic metric
spaces and there exist maps g : Z → Y, f : Y → X admitting CT maps ∂g : ∂Z →
∂Y , ∂f : ∂y → ∂X. Then the composition f ◦ g : Z → X admits a CT map and
∂(f ◦ g) = ∂f ◦ ∂g.
(2) If f : Y → X is a qi embedding then there is an injective CT map ∂f :
∂Y → ∂X. A CT map induced by a quasi-isometry is a homeomorphism. In
particular the action of G on its Cayley graph induces an action of G on ∂G by
homeomorphisms. This action is minimal, i.e. there is no proper nonempty closed
subset of ∂G invariant under G, provided G is non-elementary.
(3) Suppose that a hyperbolic group G acts by isometries on a hyperbolic metric
space X and the action is properly discontinuous. Suppose x ∈ X and that the
orbit map h : G → X given by h(g) = gx admits a CT map. If h is not a qi
embedding then there are points ξ1 6= ξ2 ∈ ∂G such that ∂h(ξ1) = ∂h(ξ2). In
particular this is true for a hyperbolic subgroup H of a hyperbolic group G if the
inclusion H → G admits a CT map.
(4) If H < G are hyperbolic groups and the inclusion i : H → G admits a CT map
∂i : ∂H → ∂G then ∂i(∂H) = ΛG(H).

The following is an immediate consequence of the Milnor-Švarc lemma and the
above Lemma.

Corollary 3.13. Suppose G is a hyperbolic group acting on a hyperbolic metric
space X properly and cocompactly by isometries. Suppose that H is a finitely gen-
erated subgroup of G and that there is a subset Y of X invariant under the H-action
with the following properties:
(1) Y is a hyperbolic metric space with respect to the induced length metric from
X.
(2) The inclusion Y → X admits a CT map.
(3) The H-action on Y is proper and cocompact.
Then H is hyperbolic and the inclusion H → G admits a CT map.

The non-injectivity of CT maps motivates the following definition which will be
crucial in this paper, cf. [Mit97, MR18].

Definition 3.14. Suppose f : Y → X is a map between hyperbolic metric spaces
which admits a CT map. Then the Cannon-Thurston lamination (or CT lamination
for short) for this map is given by

LX(Y ) = {(ξ1, ξ2) ∈ ∂Y × ∂Y : ξ1 6= ξ2, ∂f(ξ1) = ∂f(ξ2)}.

If α is a (quasi)geodesic line in Y such that (α(−∞), α(∞)) ∈ LX(Y ) then we
say that α is a leaf of the CT lamination LX(Y ).

Let f : Y → X be a map between hyperbolic metric spaces admitting a CT map.
Let Z ⊂ Y be a qi-embedded subset, so that Z is hyperbolic and ∂Z embeds in ∂Y
(Lemma 2.6).
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Definition 3.15. We say that a leaf α ⊂ Y of LX(Y ) is carried by Z if α lies in a
bounded neighborhood of Z. Equivalently (by quasiconvexity of Z), α(±∞) ∈ ∂Z(⊂
∂Y ).

A consequence of Proposition 2.8 is the following.

Corollary 3.16. Suppose G1 < G is a hyperbolic subgroup of a hyperbolic group
such that the inclusion G1 → G admits a CT map. Further let H,K be hyperbolic
subgroups of G1 with the following properties:
(i) The inclusion K → G1 admits a CT map.
(ii) ΛG1

(K) = ∂G1.
(iii) H is a qi embedded subgroup of G1 with [G1 : H] =∞.
(iv) H is not qi embedded in G.
Then a CT map for the pair (H,G) exists and for any leaf α of the CT lamination
LG(H) which is contained in a finite neighborhood of K there exists a finitely gen-
erated subgroup K1 of H ∩K, such that the following hold:
(1) α is contained in a finite neighborhood of K1 (in a Cayley graph of G).
(2) ΛK(K1) 6= ∂K. In particular, [K : K1] =∞.
Hence,
(3) K1 is not qi embedded in G, i.e. K1 is distorted in G; and
(4) if K1 is qi embedded in K then K1 supports a leaf of the CT lamination LG(K).

Proof. We first note that since the inclusion G1 → G admits a CT map and H is qi
embedded in G1, the inclusion H → G admits a CT map. Hence, by Lemma 3.12,
LG(H) is non-empty. We now apply Proposition 2.8. Since G1 is hyperbolic it is
finitely presented. See for instance [Gro85, Corollary 2.2A]. Using Proposition 2.8
with G1 in place of G and α in place of A we have a finitely generated subgroup
K1 of H ∩K such that conclusion (1) of the Corollary holds.

To prove (2), suppose ΛK(K1) = ∂K. Since the inclusion i : K → G1 admits
a CT map ∂i : ∂K → ∂G1, it follows that ΛG1

(K1) = ∂i(ΛK(K1)) = ∂i(∂K).
However, by Lemma 3.12(4) ΛG1

(K) = ∂i(∂K) = ∂G1. Hence, ΛG1
(K1) = ∂G1.

On the other hand ΛG1
(K1) ⊂ ΛG1

(H). Hence, ΛG1
(H) = ∂G1, contradicting

hypothesis (iii). Hence, ΛK(K1) 6= ∂K, forcing [K : K1] =∞ and proving (2).
To prove (3), we again argue by contradiction. Suppose K1 is qi embedded in G.

Then LG(K1) is empty by Lemma 3.12. Further, K1 is qi embedded in H as well.
Thus α is a leaf of the CT lamination LG(H) supported by K1, forcing LG(K1) to
be non-empty. This contradiction proves (3).

The inclusions K → G1 and G1 → G admit CT maps. Hence, the inclusion
K → G admits a CT map by Lemma 3.12(1). Now suppose K1 is qi embedded in
K. Since α is contained in a finite neighborhood of K1 then there is a (bi-infinite)
quasigeodesic line β of K contained in K1 with Hd(α, β) <∞. To see this, suppose
α ⊂ ND(K1) where the neighborhood is taken in a Cayley graph of G. Then for all
t ∈ [0,∞) one may choose β(t) to be a point of K1 such that d(α(t), β(t)) ≤ D+ 1.
Thus, β is a quasigeodesic in (a Cayley graph of) K by Lemma 2.3. Therefore,
β is a leaf of the CT lamination LG(K) carried by K1. This finishes the proof of
(4). �

We now recall some existence theorems for CT maps:

Theorem 3.17. ( [Mit98b, Theorem 3.10, Corollary 3.11]) Suppose π : X → T is
a tree of uniformly hyperbolic metric spaces with qi embedded condition. If the total
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space X is hyperbolic then for all v ∈ V (T ) the inclusion map Xv → X admits CT
map.

In particular given a finite graph of hyperbolic groups (G,Y) with qi embedded
condition, if G = π1(G,Y) is hyperbolic then for all v ∈ V (Y), the inclusion map
Gv → G admits a CT map.

Theorem 3.18. ([Mit98a]) Suppose we have a short exact sequence of hyperbolic
groups

1→ K
i→ G

π→ H → 1.

Then a CT map exists for the inclusion K → G.

Theorem 3.19. ([MS12, Theorem 3.2]) Suppose π : X → B is a metric graph
bundle where X , B and all the fibers are uniformly hyperbolic. Also we assume
that the fibers are non-elementary. Then for any fiber Fb, b ∈ V (B), the inclusion
Fb → X admits a CT map.

We note that hyperbolicity of B is not an assumption for Theorem 3.19 since it
follows from the hypotheses ([Mos96] and [MS12, Proposition 2.10]). We have the
following corollary.

Corollary 3.20. Suppose G(Y) is a developable complex of non-elementary hy-
perbolic groups with qi condition over a finite connected simplicial complex Y and
suppose G = π1(G(Y)) is also hyperbolic. Then for all y ∈ V (Y), g ∈ G the
inclusion gGyg

−1 → G admits a CT map.

Proof. By Proposition 3.7 there is a metric graph bundle π : X → B along with
simplicial actions of G on X and B such that π is G-equivariant. Further, all the
fibers are uniformly hyperbolic and X is hyperbolic. Also, there is an isomorphism
of graphs p : B/G→ Y(1) such that for all y ∈ Y(0), {Gv : v ∈ p−1(y)}, is the set of
all conjugates of Gy. Moreover, each subgroup Gv acts properly and cocompactly
on Fv. By Theorem 3.19 inclusion of each fiber in X admits a CT map. Therefore,
we are done by Corollary 3.13. �

The next two theorems [KS, KS20] extend the above theorems to trees of metric
spaces and metric graph bundles. For trees of metric spaces, we have the following.

Theorem 3.21. (CT maps for subtrees of spaces [KS]) Suppose π : X → T is a
tree of hyperbolic metric spaces with qi embedded condition and such that the total
space X is hyperbolic. Suppose T1 ⊂ T is a subtree and X1 = π−1(T1). Then X1 is
hyperbolic and the inclusion X1 → X admits a CT map.

One then immediately obtains:

Corollary 3.22. (CT maps for subgraph of groups, [KS]) Given a finite graph
of hyperbolic groups (G,Y) with qi embedded condition, and a connected subgraph
Y1 ⊂ Y, if G = π1(G,Y) is hyperbolic then so is G1 = π1(G,Y1) and the inclusion
map G1 → G admits a CT map.

For a metric graph bundle, we have:

Theorem 3.23. (CT maps for restriction bundles [KS20]) Suppose π : X → B is a
metric graph bundle where X , B and all the fibers are uniformly hyperbolic. Also we
assume that the fibers are non-elementary. Suppose B1 ⊂ B is a connected subgraph
such that the inclusion map B1 → B is a qi embedding. Let X1 = π−1(B1). Then
X1 is hyperbolic and the inclusion map X1 → X admits a CT map.
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We note that the conclusion about hyperbolicity of X1 in the above theorem
was a consequence of [MS12, Remark 4.4]. The theorem immediately implies the
following.

Corollary 3.24. (1) Suppose we have a developable complex of non-elementary
hyperbolic groups G(Y) with qi condition over a finite connected simplicial complex
Y, such that G = π1(G(Y)) is hyperbolic. Suppose Y1 ⊂ Y is a connected subcom-
plex such that the induced homomorphism G1 = π1(G(Y1)) → G = π1(G(Y)) is
injective. Further assume that, with the notation of Proposition 3.7, B1 is qi em-
bedded in B. Then G1 is hyperbolic and the inclusion G1 → G admits a CT map.
(2) Given an exact sequence of infinite hyperbolic groups

1→ K
i→ G

π→ H → 1

if H1 < H is qi embedded then G1 = π−1(H1) is hyperbolic and the inclusion
G1 → G admits a CT map.

We also have the following analogous statements for the leaves of the CT lami-
nation. The CT lamination for a subtree of spaces satisfies the following.

Theorem 3.25. (CT lamination for subtree of spaces, [KS]) Assume the hypotheses
of Theorem 3.21. Suppose that α is a leaf of LX (X1). There exist v ∈ V (T1) and a
geodesic line β ⊂ Xv such that β is also a quasi-geodesic in X1 and Hd(α, β) <∞.
Moreover, there is a point ξ ∈ ∂T \ ∂T1 and a quasi-isometric lift γ of the geodesic
in T joining v to ξ such that limn→∞ α(n) = γ(∞).

One then immediately obtains:

Corollary 3.26. (CT lamination for subgraph of groups, [KS]) Assume the hy-
potheses of Corollary 3.22. Given a leaf α of the CT lamination LG(G1), there
exist v ∈ V (Y1) and g ∈ G1 such that α is contained in a finite neighborhood of
gGvg

−1. More precisely there is a geodesic β in gGvg
−1 which is also a quasi-

geodesic in G1 and Hd(α, β) <∞.

Similar statements hold also for the restriction bundle of a metric graph bundle:

Theorem 3.27. (CT lamination for restriction bundle, [KS20]) Assume the hy-
potheses of Theorem 3.23. Suppose that α is a leaf of LX (X1). Then for all
v ∈ V (B1) there is a geodesic line β ⊂ Xv such that β is also a quasi-geodesic
in X1 and Hd(α, β) < ∞. Moreover, there exists ξ ∈ ∂B \ ∂B1 and a qi section γ
over a geodesic in B converging to ξ such that limn→∞ α(n) = γ(∞).

This immediately gives:

Corollary 3.28. (CT lamination for subcomplexes of groups, [KS20])
(1) Assume the hypotheses of Corollary 3.24(1). Then for any v ∈ V (Y1) and

g ∈ G, any leaf α of the CT lamination LG1(G) is contained in a finite neighborhood
of gGvg

−1.
(2) Assume the hypotheses of Corollary 3.24(2). Then given any leaf α of the CT

lamination LG(G1) there is a geodesic line β in K such that it is a quasi-geodesic
of G1 and Hd(α, β) <∞.

4. From fibers to subbundles

In this section, we prove the main theorems of this paper and provide precise
statements in support of Scholium 1.1.
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4.1. Exact sequences of hyperbolic groups. Let

1→ K → G
π→ Q→ 1 (∗)

be an exact sequence of infinite hyperbolic groups and Q1 < Q be a qi embedded
subgroup. Let G1 = π−1(Q1). Then G1 is a hyperbolic group by [MS12, Remark
4.4]. Suppose H is a qi embedded, infinite index subgroup of G1. The following
theorem asserts that if H is distorted in G (cf. Definition 2.2; [Gro93, Chapter 4]),
then this is due to the presence of a finitely generated subgroup K1 < K ∩H such
that K1 is distorted in G. In other words, the cause of distortion lies in finitely
generated subgroups of the fiber group K.

Theorem 4.1. With the above assumptions and notation, suppose H is not qi
embedded in G. Then there is a finitely generated, infinite subgroup K1 of K ∩H
such that ΛK(K1) 6= ∂K, [K : K1] =∞ and K1 is distorted in G.

Proof. The inclusion G1 → G admits a CT map by the last part of Corollary
3.24(1). Since H is qi embedded in G1, there is a CT map for the inclusion H → G1

by Lemma 3.12(2). By Lemma 3.12(1) the inclusion iH,G : H → G also admits a
CT map ∂iH,G : ∂H → ∂G. Since H is not qi embedded in G, by Lemma 3.12(3)
there is a geodesic line γ in H whose end points are identified by the CT map ∂iH,G.
By Corollary 3.28(2) there exists a geodesic line α ⊂ K within a finite Hausdorff
distance (in G1, and hence in G) of γ such that

(1) α is a quasigeodesic in G1 and hence in H;
(2) α is a leaf of the CT lamination LG(H).

Recall that ΛG(K) = ∂G by Lemma 2.6(2)(i). Also the inclusion K → G1

admits a CT map by Theorem 3.18. The theorem now follows immediately from
Corollary 3.16. �

Surface group fibers: We specialize the exact sequence (∗) above to the case
where K = π1(Σ), with Σ a closed orientable surface of genus at least 2. It follows
[Ham05, KL08, MS12] that Q is an infinite convex cocompact subgroup of the
mapping class group MCG(Σ). We shall need the following Theorem by Dowdall,
Kent and Leininger [DKL14, Theorem 1.3] (see also [MR18, Theorem 4.7] for a
different proof).

Theorem 4.2. Consider the exact sequence (∗) with K = π1(Σ) (Σ closed) and
Q convex cocompact. Let K1 be a finitely generated infinite index subgroup of K.
Then K1 is quasi-convex in G.

Suppose Q1 < Q is a qi embedded subgroup and G1 = π−1(Q1). Then Q1 is
also convex cocompact [Ham05, KL08]. Further, by Corollary 3.24(2), G1 is also
hyperbolic. We continue using the notation before Theorem 4.1.

Theorem 4.3. Suppose H < G1 is an infinite index, quasiconvex subgroup. Then
H is quasiconvex in G.

Proof. Suppose not. Then, by Theorem 4.1, there exists a finitely generated, infinite
subgroup K1 of K ∩H such that

(1) [K : K1] =∞.
(2) K1 is not quasiconvex in G.

This contradicts Theorem 4.2. �
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Free group fibers: Next, instead of specializing to K = π1(Σ), we specialize
the exact sequence (∗) to the case where K = Fn, the free group on n generators
(n > 2), and continue with the rest of the notation before Theorem 4.1. We recall
from [DT17, HH18] that a subgroup Q < Out(Fn) is said to be convex cocompact
if some (and hence any) orbit of Q in the free factor complex Fn is qi embedded.
Also, Q < Out(Fn) is purely atoroidal if every element of Q is hyperbolic. We shall
need the following:

Theorem 4.4. [DT17, Theorem 7.9][MR18, Theorem 5.14] Consider the exact
sequence (∗) with K = Fn, (n > 1) and Q purely atoroidal and convex cocompact
in Out(Fn). Let K1 be a finitely generated infinite index subgroup of K. Then K1

is quasi-convex in G.

Next, suppose Q1 < Q is a qi embedded subgroup and G1 = π−1(Q1). Then Q1

is purely atoroidal convex cocompact [DT17, DT18, HH18]. By Corollary 3.24(2),
G1 is also hyperbolic. We continue with the notation before Theorem 4.1.

Theorem 4.5. Under the hypotheses of Theorem 4.4, let Q1 < Q be qi embedded
and G1 = π−1(Q1). Suppose H < G1 is an infinite index, qi embedded subgroup.
Then H is qi embedded in G.

Proof. The proof is an exact replica of the proof of Theorem 4.3 with the use of
Theorem 4.2 replaced by Theorem 4.4. �

A counter-example: We give an example to show that the conclusion of Theorem
4.5 fails if Q is not assumed to be convex cocompact even if G is hyperbolic. It
follows from Theorem 4.1 that the failure is due to the existence of an infinite
index quasiconvex subgroup K1 of the normal free subgroup K such that K1 is
distorted in G. In fact, the examples below show that the corresponding results of
[DT17, MR18] fail without the convex cocompactness assumption. We start with
the following construction due to Uyanik [Uya19, Corollary 1.5] and Ghosh [Gho18,
Theorem 5.6].

Definition 4.6. Two automorphisms φ, ψ ∈ Out(Fn) are said to be commensurable
if there exist m, l 6= 0 such that φm = ψl.

Theorem 4.7. [Uya19, Gho18] Let φ ∈ Out(Fn) be a fully irreducible and atoroidal
outer automorphism. Then, for any (not necessarily fully irreducible) atoroidal
outer automorphism ψ ∈ Out(Fn) which is not commensurable with φ, there exists
N ∈ N such that, for all m, l ≥ N , the subgroup Q = 〈φm, ψl〉 < Out(Fn) is purely
atoroidal and the corresponding extension G of Fn by Q is hyperbolic.

Now, let Fn = A ∗ B be the product of two free factors, each of rank 3 or
more. Let ψA and ψB be fully irreducible purely atoroidal automorphisms of A,B
respectively, and let ψ = ψA ∗ ψB . Let φ be a fully irreducible purely atoroidal
automorphism of Fn. Theorem 4.7 furnishes a family of purely atoroidal subgroups
Q = 〈φm, ψl〉 < Out(Fn) for all m, l large enough such that the corresponding
extension G of Fn by Q is hyperbolic. Now, let Q1 = 〈φm〉 < Q and G1 < G
be given by π−1(Q1), where π : G → Q is the natural quotient map. Similarly,
let Q2 = 〈ψl〉 < Q and G2 < G be given by π−1(Q2). Then A < Fn < G1 is
quasiconvex by Theorem 4.4. But A < Fn < G2 is not quasiconvex, since A is
distorted in (Aoψl

A
Z) < G2. Hence A is not quasiconvex in G.
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In fact A (or B) can be used for building more complicated examples as well.
Pick any element γ ∈ G1 \A. Then by the usual ping-pong argument A2 = 〈A, γm〉
is quasiconvex in G1 for all large enough m. But A2 is not quasiconvex in G since
it contains the distorted subgroup A. Thus, the example above can be refined to
prove the following.

Proposition 4.8. Let Fn, φ,G1 be as above. Let H < G1 be an infinite quasiconvex
subgroup of infinite index such that H is not virtually cyclic. Then there exists a
finite index subgroup G′1 < G1, so that

(1) G′1 = FmoZ, where the semi-direct product is given by a positive power φ1
of a lift of φ to a finite index subgroup Fm of Fn,

(2) a purely atoroidal automorphism ψ of Fm such that Q = 〈ψ, φ1〉 < Out(Fm)
is free, and G = Fm oQ is hyperbolic.

(3) G′1 ∩H is of finite index in H and is not quasiconvex in G.

Proof. Since H < G1 is an infinite quasiconvex subgroup of infinite index that is not
virtually cyclic, H ∩ Fn is infinite, free of rank greater than one. Let K1 < H ∩ Fn
be a free subgroup of finite rank greater than 2. Note that K1 is quasiconvex in G1

by Theorem 4.5. Now, by Hall’s theorem, there exists a finite index subgroup Fk of
Fn, containing K1, such that K1 is a free factor of Fk (this is essentially the LERF
property for free groups [Sco78]). By passing to a further finite index subgroup Fm
of Fn, we can assume that

(1) φ lifts to an automorphism φ′ of Fm.
(2) K1 ∩ Fm = K2 is a free factor of Fm.

Let Fm = K2 ∗ B be a free factor decomposition. Let ψA, ψB be fully irreducible
purely hyperbolic automorphisms of K2, B respectively as in the construction of the
counterexample preceding Proposition 4.8. (Note that we can assume, without loss
of generality that B has rank greater than 2 by passing to finite index subgroups if
necessary.) Let ψ0 = ψA ∗ ψB as before.

By work of Reynolds [Rey11] summarized in [MR18, Theorem 4.10], a lift of a
fully irreducible automorphism is fully irreducible. Then Theorem 4.7 furnishes a
positive integer N such that Q = 〈(φ′)l, ψm0 〉 is a purely atoroidal free subgroup
of Out(Fm), and G = Fm o Q is hyperbolic. Choosing ψ = ψm0 , φ1 = (φ′)l and
G′1 = Fm o φ1, it follows that K2 is distorted in G as in the construction of the
counterexample described before the present proposition. Since H contains K2,
and K2 (being a finite index subgroup of K1) is quasiconvex in G′, it follows that
G′1 ∩H is not quasiconvex in G. We note in conclusion that since [G1 : G′1] < ∞,
therefore, [H : G′1 ∩H] <∞. �

4.2. Complexes of hyperbolic groups with qi condition. Suppose Y is a finite
connected simiplicial complex and G(Y) is a developable complex of hyperbolic
groups with qi condition over Y. Suppose Y1 ⊂ Y is a connected subcomplex,
G = π1(G(Y)) and G1 = π1(G(Y1)). Finally suppose that we have the hypotheses
of Corollary 3.24(1). Then we have the following.

Theorem 4.9. Suppose H is an infinite index, qi embedded subgroup of G1 which
is distorted in G. Then the inclusion H → G admits a CT map. Further, for any
g ∈ G1 and any v ∈ V (Y1), and any leaf α of the CT lamination LG(H), α is
contained in a finite neighborhood of gGvg

−1.
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Moreover, given a leaf α of LG(H), g ∈ G1 and v ∈ V (Y) there is a finitely
generated subgroup K1 < H ∩ gGvg−1 such that the following hold:
(1) α is contained in a finite neighborhood of K1.
(2) ΛgGvg−1(K1) 6= ∂(gGvg

−1). In particular, [gGvg
−1 : K1] =∞.

(3) K1 is a distorted subgroup of G.
(4) If K1 is qi embedded in gGvg

−1 then it supports a leaf of the CT lamination
LG(gGvg

−1).

Proof. By Corollary 3.24(1) the inclusion G1 → G admits a CT map. By Lemma
3.12(1) the inclusion H → G1 admits a CT map since H is a qi embedded subgroup
of G1. Hence, the inclusion H → G admits a CT map too. Also by lemma 3.12(4)
LG(H) 6= ∅ since H is distorted in G. Next, we note that α is a quasigeodesic in G1

too since H is qi embedded in G1. Thus it is a leaf of the CT lamination LG(G1).
Hence, by Corollary 3.28(1) it follows that for all g ∈ G1 and v ∈ Y, α is contained
in a finite neighborhood of gGvg

−1.
The remaining parts of the theorem follow immediately from Corollary 3.16. We

quickly check the various hypotheses of Corollary 3.16. We have already noted that
the inclusion G1 → G admits a CT map. Let K = gGvg

−1. Clearly, H,K are
hyperbolic groups. By Corollary 3.20 the inclusion K → G1 admits a CT map.
By Corollary 3.9 ΛG1

(K) = ∂G1. Lastly H is given to be qi embedded in G1 with
[G1 : H] =∞. Thus, the hypotheses of Corollary 3.16 are satisfied, completing the
proof of this theorem. �

To conclude this subsection, we mention a construction due to Min [Min11,
Theorem 1.1] of a graph of groups where

(1) Each edge and vertex group is a closed hyperbolic surface group.
(2) The inclusion map of an edge group into a vertex group takes the edge

group injectively onto a subgroup of finite index in the vertex group.
(3) The resulting graph of groups is hyperbolic.

By choosing the maps in the above construction carefully, Min furnishes examples
[Min11, Section 5] that are not abstractly commensurable to a surface-by-free group.
In particular, the resulting groups are not commensurable to those occurring in the
exact sequence (∗) in Section 4.1.

4.3. Graphs of groups. Finally we look at graphs of hyperbolic groups. We note
that in this case the homomorphisms Ge → Gv from the respective edge groups
into the vertex groups are only qi-embeddings, and not necessarily quasi-isometries.
Thus the corresponding tree of metric spaces is not a metric bundle. Consequently
Theorem 4.10 below is not a consequence of any of the results proved so far.

Now, suppose (G,Y) is a finite graph of groups and suppose (G,Y1) is a subgraph
of groups satisfying the hypotheses of Corollary 3.26 As before, let G = π1(G,Y),
and G1 = π1(G,Y1).

Theorem 4.10. Suppose H is a qi-embedded, infinite index subgroup of G1 such
that H is not qi embedded in G. Then there exists a CT map for the pair (H,G).
Let α be a leaf of the CT lamination for the inclusion H → G. Then there exists
y ∈ V (Y1), g ∈ G1 and a finitely generated subgroup K1 < gGyg

−1 ∩H such that
the following hold:
(1) α is contained in a finite neighborhood of K1.
(2) K1 is distorted in G.
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(3) If K1 is qi embedded in gGyg
−1 then it supports a leaf of the CT lamination

LG(gGyg
−1).

Proof. The proof runs along the line of the proof of Corollary 3.16 using Proposition
2.8. By Corollary 3.22 the group G1 is hyperbolic and the inclusion G1 → G admits
a CT map. Also since H is qi embedded in G the inclusion H → G1 admits a CT
map. Hence, by Lemma 3.12(1) the inclusion H → G admits a CT map. Since H
is not qi-embedded in G (by hypothesis), LG(H) is non-empty by Lemma 3.12.

Since H is qi embedded in G1, α is a quasigeodesic in G1 and therefore it is a
leaf of the CT lamination LG(G1). Hence, by Corollary 3.26 there is y ∈ V (Y1),
g ∈ G1 and a geodesic line β in gGyg

−1 such that Hd(β, α) < ∞ and β is also a
quasigeodesic in G1.

We can now apply Proposition 2.8 withA = α. The triple of groups (G1, H, gGyg
−1)

plays the role of (G,H,K) in Proposition 2.8. It follows that there is a finitely
generated infinite group K1 < gGyg

−1 ∩ H such that α is contained in a finite
neighborhood of K1. This verifies (1).

Conclusion (2), (3) follow from (1) as in the proof of Corollary 3.16. We include
the argument for the sake of completeness. We argue by contradiction by assuming
K1 is qi embedded in G. Then K1 is qi embedded in H as well. Hence α is a
leaf of LG(H) supported by K1. Hence K1 is distorted in G, contradicting our
assumption.

Finally, if K1 is qi embedded in K then it is hyperbolic. Then K1 supports β,
which is a leaf of the CT lamination LG(gGyg

−1). This completes the proof of the
theorem. �
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