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Question
Given f.p. group G and a class C of smooth manifolds (e.g.
symplectic, contact, Kähler etc), what is the obstruction to
constructing a K (G,1) manifold within the class C?

Definition

G - finitely presented group;
C - class of smooth manifolds of dimension greater than zero.
htC(G) is −∞ if G is not the π1 of some manifold in C.
If π2(M) 6= 0 for all M ∈ C with π1(M) = G, then htC(G) is 2.
htC(G) is greater than or equal to n if there exists a manifold
M ∈ C such that π1(M) = G and πi(M) = 0 for every
1 < i < n.
htC(G) is the maximum value of n such that htC(G) is greater
than or equal to n.
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G is of type FP if it admits a finite K (G,1) space.
Hardness or softness (à la Gromov): Class C is of

Type 1: htC(G) = ∞ for all groups of type FP;
Type 2: if htC({1}) = ∞ for the trivial group;
Type 3: if htC(G) ≥ 0 for all groups of type FP;
Type 4: if htC(G) = −∞ for some group of type FP.

Type 1 – softest; Type 4 – hardest
Type 2 and Type 3 are classes that exhibit intermediate
behavior of different (and not quite comparable) kinds.
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Examples relevant to this talk:

Type 1: Closed Almost Complex Manifolds: AC, htAC(G) = ∞ for
all groups of type FP

Type 2: Closed Complex Analytic Manifolds: htCA({1}) = ∞ for
the trivial group (Calabi-Eckmann)

Type 3: Closed Complex Analytic Manifolds: htCA(G) ≥ 0 for all
groups of type FP (Gompf-Taubes);

Type 4: Smooth Complex Projective Manifolds: htP(G) = −∞ for
some group of type FP.
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First, we show that the class AC of Closed Almost Complex
Manifolds is soft of Type I.
Proof Idea:
Step 1: X is a finite K(G,1). Embed X in RN for large N. Take
regular neighborhood of X and let M be its boundary.
Then M has higher homotopy groups vanishing till as far as one
likes (taking N larger and larger).
Also M is of codimension one in RN . Hence TM is stably trivial.
Therefore M × Rm has trivial tangent bundle for all large
enough m. Hence M × Rm is almost complex for all large
enough m whenever m + dim(M) is even.
i.e. Class ACO of Open Almost Complex Manifolds is soft
of Type 1.
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Step 2: Hence the smooth real hypersurface H = M × Sm−1

has a codimension one distribution carrying a complex
structure. i.e. Class ACR of Closed Almost CR Manifolds is
soft of Type 1.
Step 3: Finally, H × S2m−1 is almost complex (by combining the
almost CR structures of H and S2m−1).
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Complex Manifolds
Calabi–Eckmann manifolds are complex with underlying real
manifold S2m+1 × S2n+1.Cn is the Calabi–Eckmann manifold
with underlying manifold S2n+1 × S2n+1.
G – finite group. H – subgroup of G. M a complex manifold on
which H acts freely by holomorphic automorphisms.
[G : H] = N. MN is the space of maps from G/H to M.Then MN

can be naturally identified with the space of all H–equivariant
maps from G to M. Diagonal action of H on MN naturally
extends to a G–action on MN using the left–translation action of
G on G/H.
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For any m, Z/mZ acts freely by complex automorphisms on Cn.
Hence for any non-trivial element g ∈ G, the cyclic group
〈g〉 ⊂ G acts freely by complex automorphisms on Cn.
ig = [G : 〈g〉] = index of 〈g〉 in G. There is an action of G on the
Cartesian product C ig

n by holomorphic automorphisms, such
that the action of the subgroup 〈g〉 is free. Hence diagonal
action of G on the product

Wn :=
∏

g∈G,g 6=1

C ig
n

is free and by holomorphic automorphisms. Let Vn = Wn/G
denote the quotient manifold. Then π1(Vn) = G, and
πi(Vn) = 0 for 1 < i ≤ 2n.
Hence htCA(G) = ∞ for any finite group G.
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Question (Kollar)

Is a projective group G1 commensurable to a group G,
admitting a K (G,1) space which is a smooth quasi-projective
variety?

Dimca, Papadima and Suciu have furnished examples of finitely
presented groups giving a negative answer to this Question.
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Ingredient 1: Bieri’s Theorem on Poincaré Duality Groups:

Theorem
(Bieri) Let 1 −→ N −→ G −→ Q −→ 1 be a short exact
sequence of groups, with both G,Q PD groups. Further
suppose that N is not a PD group of finite cohomology
dimension cd(G)− cd(Q). Then N is not of type FP. Hence, N
cannot have a K(G,1) space homotopy equivalent to a finite CW
complex. In particular, N cannot have a quasiprojective K(G,1)
space.
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Ingredient 2: Hochschild-Serre spectral sequence:

Theorem

Suppose
a) M is a closed orientable 2n–dimensional manifold,
b) M̃ is homotopy equivalent to a wedge of n−spheres.
(e.g. any smooth complex projective variety M realizing htS(G)
or a hyperplane section of M ) Then

1 Hp(G, ZG) = 0 for 0 < p < n,
2 there is an exact sequence of G-modules,

0 −→ Hn(G, ZG) −→ Hn(M, ZG) −→

(Hn(M̃, ZG))G −→ Hn+1(G, ZG) −→ 0 ,
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Ingredient 3: Topological Lefschetz fibration:

Definition
A topological Lefschetz fibration on a smooth, closed, oriented
2n−manifold M consists of the following data:

1 a closed orientable 2-manifold S,
2 a finite set of points K = {bi} ⊂ M called the critical set,
3 a smooth map f : M −→ S whose differential df is

surjective outside K ,
4 for each critical point x of f , there are orientation

preserving coordinate charts about x and f (x) (into Cn and
C, respectively) in which f is given by
f (z1, · · · , zn) =

∑
i=1···n z2

i , and
5 f is injective on the critical set K ⊂ X.
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Ingredient 4: (Complex) Morse Theory gives the follwoing
topological generalization of a Theorem of
Dimca-Papadima-Suciu:

Theorem
Let f : M −→ S be an irrational topological Lefschetz fibration
that is not a Kodaira fibration, with dim M = 2n + 2, n ≥ 2. Let
K be the finite critical set of f . Further suppose that M̃ is
contractible. Let F denote the regular fiber and N = π1(F ).
Then
a) πk (F ) = 0 for 1 < k < n,
b) πn(F ) is a free ZN-module,
with generators in one-to-one correspondence with K × π1(S),
c) F̃ is homotopy equivalent to a wedge of n–spheres.
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Theorem
d) N cannot be of type FP; in particular, there does not exist a
quasiprojective K (N,1) space.

Sketch of Proof:
Note that π1(M) and π1(S) are PD groups of dimension
(2n + 2) and 2 respectively.
To show that N cannot be of type FP, it suffices (by Theorem 4)
to show that N cannot be a PD(2n) group.
Spectral Sequence Proposition gives

0 −→ Hn(N, ZN) −→ Hn(F , ZN) −→ Hn(F̃ , ZN)N

−→ Hn+1(N, ZN) −→ · · ·
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If N is PD(2n) group, then Hn(N, ZN) = Hn+1(N, ZN) = 0
because n ≥ 2.
Hence Hn(F , ZN) = Hn(F̃ , ZN)N .
Now, by Poincaré Duality and the Hurewicz’ Theorem, we have,

Hn(F , ZN) = Hn
c (F̃ ) = Hn(F̃ ) = πn(F̃ ) =

⊕
I

Z ,

.

Hn(F̃ , ZN)N = (HomZ(Hn(F̃ ), ZN))N = (HomZ(πn(F̃ ), ZN))N =

HomZN(πn(F̃ ), ZN) = HomZN

(⊕
I

Z, ZN

)
=
∏

I

ZN ,

where
∏

I ZN denotes direct product of a collection of copies of
ZN indexed by I.
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Hence ⊕
I

Z =
∏

I

ZN .

Since f : M −→ S is irrational, I is countably infinite.
Therefore,

⊕
I Z is countable and

∏
I ZN is uncountable and the

two cannot be equal.
A contradiction.
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