Homotopical Height

Mahan Mj, RKM Vivekananda University. Joint with Indranil Biswas and Dishant Pancholi

イロン イボン イヨン イヨン

3

Question

Given f.p. group G and a class C of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class C?

Definition

G - finitely presented group;

C - class of smooth manifolds of dimension greater than zero. $ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in C.

If $\pi_2(M) \neq 0$ for all $M \in \mathbb{C}$ with $\pi_1(M) = G$, then $ht_{\mathbb{C}}(G)$ is 2. $ht_{\mathbb{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathbb{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n.

 $ht_{e}(G)$ is the maximum value of *n* such that $ht_{e}(G)$ is greater than or equal to *n*.

Question

Given f.p. group G and a class C of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class C?

Definition

G - finitely presented group;

C - class of smooth manifolds of dimension greater than zero. $ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in C.

If $\pi_2(M) \neq 0$ for all $M \in \mathbb{C}$ with $\pi_1(M) = G$, then $ht_{\mathbb{C}}(G)$ is 2. $ht_{\mathbb{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathbb{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n.

 $ht_{e}(G)$ is the maximum value of *n* such that $ht_{e}(G)$ is greater than or equal to *n*.

Question

Given f.p. group G and a class C of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class C?

Definition

G - finitely presented group;

 \mathcal{C} - class of smooth manifolds of dimension greater than zero. $ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C} .

If $\pi_2(M) \neq 0$ for all $M \in \mathbb{C}$ with $\pi_1(M) = G$, then $ht_{\mathbb{C}}(G)$ is 2. $ht_{\mathbb{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathbb{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n.

 $ht_{\mathcal{C}}(G)$ is the maximum value of *n* such that $ht_{\mathcal{C}}(G)$ is greater than or equal to *n*.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

 \mathfrak{C} - class of smooth manifolds of dimension greater than zero. $ht_{\mathfrak{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathfrak{C} .

If $\pi_2(M) \neq 0$ for all $M \in \mathbb{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2. $ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathbb{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n.

 $ht_{e}(G)$ is the maximum value of *n* such that $ht_{e}(G)$ is greater than or equal to *n*.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

 \mathcal{C} - class of smooth manifolds of dimension greater than zero. $ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C} .

If $\pi_2(M) \neq 0$ for all $M \in \mathbb{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2. $ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathbb{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n.

 $ht_{e}(G)$ is the maximum value of *n* such that $ht_{e}(G)$ is greater than or equal to *n*.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

C - class of smooth manifolds of dimension greater than zero. $ht_{\mathbb{C}}(G)$ is $-\infty$ if *G* is not the π_1 of some manifold in C. If $\pi_2(M) \neq 0$ for all $M \in \mathbb{C}$ with $\pi_1(M) = G$, then $ht_{\mathbb{C}}(G)$ is 2. $ht_{\mathbb{C}}(G)$ is greater than or equal to *n* if there exists a manifold $M \in \mathbb{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n. $ht_{\mathbb{C}}(G)$ is the maximum value of *n* such that $ht_{\mathbb{C}}(G)$ is greater than or equal to *n*.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

C - class of smooth manifolds of dimension greater than zero. $ht_{\mathbb{C}}(G)$ is $-\infty$ if *G* is not the π_1 of some manifold in C. If $\pi_2(M) \neq 0$ for all $M \in \mathbb{C}$ with $\pi_1(M) = G$, then $ht_{\mathbb{C}}(G)$ is 2. $ht_{\mathbb{C}}(G)$ is greater than or equal to *n* if there exists a manifold $M \in \mathbb{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n. $ht_{\mathbb{C}}(G)$ is the maximum value of *n* such that $ht_{\mathbb{C}}(G)$ is greater than or equal to *n*.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

 $\ensuremath{\mathbb{C}}$ - class of smooth manifolds of dimension greater than zero.

 $ht_{\mathbb{C}}(G)$ is $-\infty$ if *G* is not the π_1 of some manifold in \mathbb{C} . If $\pi_2(M) \neq 0$ for all $M \in \mathbb{C}$ with $\pi_1(M) = G$, then $ht_{\mathbb{C}}(G)$ is 2. $ht_{\mathbb{C}}(G)$ is greater than or equal to *n* if there exists a manifold $M \in \mathbb{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n. $ht_{\mathbb{C}}(G)$ is the maximum value of *n* such that $ht_{\mathbb{C}}(G)$ is greater than or equal to *n*.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

C - class of smooth manifolds of dimension greater than zero. $ht_{c}(G)$ is $-\infty$ if *G* is not the π_{1} of some manifold in C. If $\pi_{2}(M) \neq 0$ for all $M \in C$ with $\pi_{1}(M) = G$, then $ht_{c}(G)$ is 2. $ht_{c}(G)$ is greater than or equal to *n* if there exists a manifold $M \in C$ such that $\pi_{1}(M) = G$ and $\pi_{i}(M) = 0$ for every 1 < i < n. $ht_{c}(G)$ is the maximum value of *n* such that $ht_{c}(G)$ is greater than or equal to *n*.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

 \mathcal{C} - class of smooth manifolds of dimension greater than zero. $ht_{\mathcal{C}}(G)$ is $-\infty$ if *G* is not the π_1 of some manifold in \mathcal{C} .

If $\pi_2(M) \neq 0$ for all $M \in \mathbb{C}$ with $\pi_1(M) = G$, then $ht_{\mathbb{C}}(G)$ is 2. $ht_{\mathbb{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathbb{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n. $ht_{\mathbb{C}}(G)$ is the maximum value of n such that $ht_{\mathbb{C}}(G)$ is greater

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

 \mathcal{C} - class of smooth manifolds of dimension greater than zero. $ht_{\mathcal{C}}(G)$ is $-\infty$ if *G* is not the π_1 of some manifold in \mathcal{C} . If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2. $ht_{\mathcal{C}}(G)$ is greater than or equal to *n* if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n. $ht_{\mathcal{C}}(G)$ is the maximum value of *n* such that $ht_{\mathcal{C}}(G)$ is greater than or equal to *n*.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

 \mathcal{C} - class of smooth manifolds of dimension greater than zero. $ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C} . If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2. $ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n. $ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

 \mathcal{C} - class of smooth manifolds of dimension greater than zero. $ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C} . If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2. $ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n. $ht_{\mathcal{C}}(G)$ is the maximum value of n such that $ht_{\mathcal{C}}(G)$ is greater than or equal to n.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

 \mathcal{C} - class of smooth manifolds of dimension greater than zero. $ht_{\mathcal{C}}(G)$ is $-\infty$ if G is not the π_1 of some manifold in \mathcal{C} . If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2. $ht_{\mathcal{C}}(G)$ is greater than or equal to n if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n.

 $ht_{\mathbb{C}}(G)$ is the maximum value of *n* such that $ht_{\mathbb{C}}(G)$ is greater than or equal to *n*.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

 \mathcal{C} - class of smooth manifolds of dimension greater than zero. $ht_{\mathcal{C}}(G)$ is $-\infty$ if *G* is not the π_1 of some manifold in \mathcal{C} . If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2. $ht_{\mathcal{C}}(G)$ is greater than or equal to *n* if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n. $ht_{\mathcal{C}}(G)$ is the maximum value of *n* such that $ht_{\mathcal{C}}(G)$ is greater

than or equal to n.

Question

Given f.p. group G and a class \mathcal{C} of smooth manifolds (e.g. symplectic, contact, Kähler etc), what is the obstruction to constructing a K(G, 1) manifold within the class \mathcal{C} ?

Definition

G - finitely presented group;

 \mathcal{C} - class of smooth manifolds of dimension greater than zero. $ht_{\mathcal{C}}(G)$ is $-\infty$ if *G* is not the π_1 of some manifold in \mathcal{C} . If $\pi_2(M) \neq 0$ for all $M \in \mathcal{C}$ with $\pi_1(M) = G$, then $ht_{\mathcal{C}}(G)$ is 2. $ht_{\mathcal{C}}(G)$ is greater than or equal to *n* if there exists a manifold $M \in \mathcal{C}$ such that $\pi_1(M) = G$ and $\pi_i(M) = 0$ for every 1 < i < n. $ht_{\mathcal{C}}(G)$ is the maximum value of *n* such that $ht_{\mathcal{C}}(G)$ is greater

than or equal to n.

G is of type *FP* if it admits a finite K(G, 1) space. Hardness or softness (à la Gromov): Class C is of

Type 1: $ht_{e}(G) = \infty$ for all groups of type *FP*; Type 2: if $ht_{e}(\{1\}) = \infty$ for the trivial group; Type 3: if $ht_{e}(G) \ge 0$ for all groups of type *FP*; Type 4: if $ht_{e}(G) = -\infty$ for some group of type *FP*.

Type 1 – softest; Type 4 – hardest Type 2 and Type 3 are classes that exhibit intermediate behavior of different (and not quite comparable) kinds.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

G is of type FP if it admits a finite K(G, 1) space. Hardness or softness (à la Gromov): Class C is of Type 1: $ht_{\mathcal{C}}(G) = \infty$ for all groups of type *FP*;

イロト イポト イヨト イヨト 一臣

G is of type FP if it admits a finite K(G, 1) space. Hardness or softness (à la Gromov): Class C is of Type 1: $ht_{\mathcal{C}}(G) = \infty$ for all groups of type *FP*; Type 2: if $ht_{\mathcal{C}}(\{1\}) = \infty$ for the trivial group;

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

G is of type FP if it admits a finite K(G, 1) space. Hardness or softness (à la Gromov): Class C is of Type 1: $ht_{\mathcal{C}}(G) = \infty$ for all groups of type *FP*; Type 2: if $ht_{\mathcal{C}}(\{1\}) = \infty$ for the trivial group; Type 3: if $ht_{\mathcal{C}}(G) \ge 0$ for all groups of type *FP*;

<ロ> (四) (四) (三) (三) (三)

G is of type *FP* if it admits a finite K(G, 1) space. Hardness or softness (à la Gromov): Class C is of Type 1: $ht_{C}(G) = \infty$ for all groups of type *FP*; Type 2: if $ht_{C}(\{1\}) = \infty$ for the trivial group; Type 3: if $ht_{C}(G) \ge 0$ for all groups of type *FP*; Type 4: if $ht_{C}(G) = -\infty$ for some group of type *FP*. Type 1 - softest; Type 4 - hardest Type 2 and Type 3 are classes that exhibit intermediat behavior of different (and not quite comparable) kinds.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

G is of type *FP* if it admits a finite K(G, 1) space. Hardness or softness (à la Gromov): Class C is of Type 1: $ht_{C}(G) = \infty$ for all groups of type *FP*; Type 2: if $ht_{C}(\{1\}) = \infty$ for the trivial group; Type 3: if $ht_{C}(G) \ge 0$ for all groups of type *FP*; Type 4: if $ht_{C}(G) = -\infty$ for some group of type *FP*. Type 1 - softest; Type 4 - hardest Type 2 and Type 3 are classes that exhibit intermediat behavior of different (and not quite comparable) kinds.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

G is of type *FP* if it admits a finite K(G, 1) space. Hardness or softness (à la Gromov): Class \mathcal{C} is of Type 1: $ht_{\mathcal{C}}(G) = \infty$ for all groups of type *FP*; Type 2: if $ht_{\mathcal{C}}(\{1\}) = \infty$ for the trivial group;

Type 3: if $ht_{\mathcal{C}}(G) \ge 0$ for all groups of type *FP*;

Type 4: if $ht_{\mathcal{C}}(G) = -\infty$ for some group of type *FP*.

Type 1 – softest; Type 4 – hardest

Type 2 and Type 3 are classes that exhibit intermediate behavior of different (and not quite comparable) kinds.

<ロ> (四) (四) (三) (三) (三)

G is of type *FP* if it admits a finite K(G, 1) space. Hardness or softness (à la Gromov): Class \mathcal{C} is of Type 1: $ht_{\mathcal{C}}(G) = \infty$ for all groups of type *FP*; Type 2: if $ht_{\mathcal{C}}(\{1\}) = \infty$ for the trivial group; Type 3: if $ht_{\mathcal{C}}(G) \ge 0$ for all groups of type *FP*; Type 4: if $ht_{\mathcal{C}}(G) = -\infty$ for some group of type *FP*. Type 1 – softest; Type 4 – hardest Type 2 and Type 3 are classes that exhibit intermediate behavior of different (and not quite comparable) kinds.

- Type 1: Closed Almost Complex Manifolds: AC, $ht_{AC}(G) = \infty$ for all groups of type FP
- Type 2: Closed Complex Analytic Manifolds: $ht_{CA}(\{1\}) = \infty$ for the trivial group (Calabi-Eckmann)
- Type 3: Closed Complex Analytic Manifolds: $ht_{eA}(G) \ge 0$ for all groups of type *FP* (Gompf-Taubes);
- Type 4: Smooth Complex Projective Manifolds: $ht_{\mathcal{P}}(G) = -\infty$ for some group of type *FP*.

ヘロト 人間 とくほとくほとう

- Type 1: Closed Almost Complex Manifolds: AC, $ht_{AC}(G) = \infty$ for all groups of type *FP*
- Type 2: Closed Complex Analytic Manifolds: $ht_{CA}(\{1\}) = \infty$ for the trivial group (Calabi-Eckmann)
- Type 3: Closed Complex Analytic Manifolds: $ht_{CA}(G) \ge 0$ for all groups of type *FP* (Gompf-Taubes);
- Type 4: Smooth Complex Projective Manifolds: $ht_{\mathbb{P}}(G) = -\infty$ for some group of type *FP*.

<ロト <回 > < 注 > < 注 > 、

- Type 1: Closed Almost Complex Manifolds: AC, $ht_{AC}(G) = \infty$ for all groups of type *FP*
- Type 2: Closed Complex Analytic Manifolds: $ht_{CA}(\{1\}) = \infty$ for the trivial group (Calabi-Eckmann)
- Type 3: Closed Complex Analytic Manifolds: $ht_{CA}(G) \ge 0$ for all groups of type *FP* (Gompf-Taubes);
- Type 4: Smooth Complex Projective Manifolds: $ht_{\mathbb{P}}(G) = -\infty$ for some group of type *FP*.

ヘロト 人間 とくほとくほとう

- Type 1: Closed Almost Complex Manifolds: AC, $ht_{AC}(G) = \infty$ for all groups of type *FP*
- Type 2: Closed Complex Analytic Manifolds: $ht_{CA}(\{1\}) = \infty$ for the trivial group (Calabi-Eckmann)
- Type 3: Closed Complex Analytic Manifolds: $ht_{CA}(G) \ge 0$ for all groups of type *FP* (Gompf-Taubes);
- Type 4: Smooth Complex Projective Manifolds: $ht_{\mathcal{P}}(G) = -\infty$ for some group of type *FP*.

ヘロト 人間 とくほとく ほとう

- Type 1: Closed Almost Complex Manifolds: AC, $ht_{AC}(G) = \infty$ for all groups of type *FP*
- Type 2: Closed Complex Analytic Manifolds: $ht_{CA}(\{1\}) = \infty$ for the trivial group (Calabi-Eckmann)
- Type 3: Closed Complex Analytic Manifolds: $ht_{\mathcal{CA}}(G) \ge 0$ for all groups of type *FP* (Gompf-Taubes);
- Type 4: Smooth Complex Projective Manifolds: $ht_{\mathbb{P}}(G) = -\infty$ for some group of type *FP*.

ヘロン 人間 とくほ とくほ とう

First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:

Step 1: X is a finite K(G,1). Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as on

Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

イロト イロト イヨト イヨト

First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I. Proof Idea:

Step 1: *X* is a finite K(G,1). Embed *X* in \mathbb{R}^N for large *N*. Take regular neighborhood of *X* and let *M* be its boundary. Then *M* has higher homotopy groups vanishing till as far as one likes (taking *N* larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

・ロト ・回ト ・ヨト ・ヨト

First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I. Proof Idea:

Step 1: *X* is a finite K(G,1). Embed *X* in \mathbb{R}^N for large *N*. Take regular neighborhood of *X* and let *M* be its boundary. Then *M* has higher homotopy groups vanishing till as far as one likes (taking *N* larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

・ロト ・回ト ・ヨト ・ヨト

First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I. Proof Idea:

Step 1: X is a finite K(G,1). Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

イロト イロト イヨト イヨト

First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:

Step 1: X is a finite K(G,1). Embed X in \mathbb{R}^N for large N. Take

regular neighborhood of X and let M be its boundary.

Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

イロン イロン イヨン イヨン

First, we show that the class \mathcal{AC} of Closed Almost Complex Manifolds is soft of Type I.

Proof Idea:

- Step 1: X is a finite K(G,1). Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary.
- Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).
- Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.
- i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

イロト イポト イヨト イヨト
Proof Idea:

Step 1: X is a finite K(G,1). Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary.

Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

Proof Idea:

Step 1: X is a finite K(G,1). Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary. Then M has higher homotopy groups vanishing till as far as one

likes (taking N larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

Proof Idea:

Step 1: X is a finite K(G,1). Embed X in \mathbb{R}^N for large N. Take regular neighborhood of X and let M be its boundary.

Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

Proof Idea:

Step 1: *X* is a finite K(G,1). Embed *X* in \mathbb{R}^N for large *N*. Take regular neighborhood of *X* and let *M* be its boundary.

Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial.

Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

Proof Idea:

Step 1: *X* is a finite K(G,1). Embed *X* in \mathbb{R}^N for large *N*. Take regular neighborhood of *X* and let *M* be its boundary.

Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large

enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

Proof Idea:

Step 1: *X* is a finite K(G,1). Embed *X* in \mathbb{R}^N for large *N*. Take regular neighborhood of *X* and let *M* be its boundary.

Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

ヘロト ヘワト ヘビト ヘビト

Proof Idea:

Step 1: *X* is a finite K(G,1). Embed *X* in \mathbb{R}^N for large *N*. Take regular neighborhood of *X* and let *M* be its boundary.

Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

・ロト ・回ト ・ヨト ・ヨト

Proof Idea:

Step 1: *X* is a finite K(G,1). Embed *X* in \mathbb{R}^N for large *N*. Take regular neighborhood of *X* and let *M* be its boundary.

Then M has higher homotopy groups vanishing till as far as one likes (taking N larger and larger).

Also *M* is of codimension one in \mathbb{R}^N . Hence *TM* is stably trivial. Therefore $M \times \mathbb{R}^m$ has trivial tangent bundle for all large enough *m*. Hence $M \times \mathbb{R}^m$ is almost complex for all large enough *m* whenever $m + \dim(M)$ is even.

i.e. Class ACO of Open Almost Complex Manifolds is soft of Type 1.

・ロト ・回ト ・ヨト ・ヨト

Step 2: Hence the smooth real hypersurface $H = M \times S^{m-1}$ has a codimension one distribution carrying a complex structure. i.e. Class ACR of Closed Almost CR Manifolds is soft of Type 1. Step 3: Finally, $H \times S^{2m-1}$ is almost complex (by combining the almost CR structures of H and S^{2m-1}).

ヘロト 人間 ト ヘヨト ヘヨト

Step 2: Hence the smooth real hypersurface $H = M \times S^{m-1}$ has a codimension one distribution carrying a complex structure. i.e. Class *ACR* of Closed Almost CR Manifolds is soft of Type 1. Step 3: Finally, $H \times S^{2m-1}$ is almost complex (by combining the almost CR structures of *H* and S^{2m-1}).

イロト イポト イヨト イヨト

Step 2: Hence the smooth real hypersurface $H = M \times S^{m-1}$ has a codimension one distribution carrying a complex structure. i.e. Class *ACR* of Closed Almost CR Manifolds is soft of Type 1.

Step 3: Finally, $H \times S^{2m-1}$ is almost complex (by combining the almost CR structures of H and S^{2m-1}).

ヘロン 人間 とくほ とくほ とう

Step 2: Hence the smooth real hypersurface $H = M \times S^{m-1}$ has a codimension one distribution carrying a complex structure. i.e. **Class** *ACR* **of Closed Almost CR Manifolds is soft of Type 1.** Step 3: Finally, $H \times S^{2m-1}$ is almost complex (by combining the

almost CR structures of H and S^{2m-1}).

ヘロン 人間 とくほ とくほ とう

э.

Step 2: Hence the smooth real hypersurface $H = M \times S^{m-1}$ has a codimension one distribution carrying a complex structure. i.e. **Class** *ACR* **of Closed Almost CR Manifolds is soft of Type 1.**

Step 3: Finally, $H \times S^{2m-1}$ is almost complex (by combining the almost CR structures of *H* and S^{2m-1}).

ヘロン 人間 とくほ とくほ とう

э.

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}.C_n$ is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms. $[G: H] = N. M^N$ is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

・ロト ・回ト ・ヨト ・ヨト

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms. [G: H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

ヘロト ヘワト ヘビト ヘビト

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms. [G:H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H-equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G-action on M^N using the left-translation action of G on G/H.

◆□ > ◆□ > ◆豆 > ◆豆 > -

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms. [G:H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

◆□ > ◆□ > ◆豆 > ◆豆 > -

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms. [G:H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

◆□ > ◆□ > ◆豆 > ◆豆 > -

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$.

G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms.

[G: H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H-equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G-action on M^N using the left-translation action of G on G/H.

ヘロト 人間 とくほとくほとう

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms. [G:H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

ヘロト 人間 とくほとくほとう

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms. [G:H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Calabi-Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which *H* acts freely by holomorphic automorphisms. [G:H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H-equivariant maps from G to M. Diagonal action of H on M^N naturally

・ロト ・ 理 ト ・ ヨ ト ・

Calabi-Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms. [G:H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H-equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G-action on M^N using the left-translation action of

・ロト ・ 理 ト ・ ヨ ト ・

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms. [G:H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

・ロト ・ 理 ト ・ ヨ ト ・

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms. [G:H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

ヘロン 人間 とくほとく ほとう

Calabi–Eckmann manifolds are complex with underlying real manifold $S^{2m+1} \times S^{2n+1}$. C_n is the Calabi–Eckmann manifold with underlying manifold $S^{2n+1} \times S^{2n+1}$. G – finite group. H – subgroup of G. M a complex manifold on which H acts freely by holomorphic automorphisms. [G:H] = N. M^N is the space of maps from G/H to M. Then M^N can be naturally identified with the space of all H–equivariant maps from G to M. Diagonal action of H on M^N naturally extends to a G–action on M^N using the left–translation action of G on G/H.

ヘロン 人間 とくほとく ほとう

$$W_n := \prod_{g \in G, g
eq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

・ロット (雪) () () () ()

$$W_n := \prod_{g \in G, g
eq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

・ロト ・ 理 ト ・ ヨ ト ・

$$W_n := \prod_{g \in G, g
eq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

$$W_n := \prod_{g \in G, g
eq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$$W_n := \prod_{g \in G, g
eq 1} C_n^{l_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

<ロ> (四) (四) (三) (三) (三) (三)

$$W_n := \prod_{g \in G, g \neq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

$$W_n := \prod_{g \in G, g \neq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

$$W_n := \prod_{g \in G, g
eq 1} C_n^{i_g}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

$$W_n := \prod_{g \in G, g
eq 1} C_n^{i_{g}}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$$W_n := \prod_{g \in G, g
eq 1} C_n^{i_{g}}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ
For any m, $\mathbb{Z}/m\mathbb{Z}$ acts freely by complex automorphisms on C_n . Hence for any non-trivial element $g \in G$, the cyclic group $\langle g \rangle \subset G$ acts freely by complex automorphisms on C_n . $i_g = [G : \langle g \rangle] =$ index of $\langle g \rangle$ in G. There is an action of G on the Cartesian product $C_n^{i_g}$ by holomorphic automorphisms, such that the action of the subgroup $\langle g \rangle$ is free. Hence diagonal action of G on the product

$$W_n := \prod_{g \in G, g
eq 1} C_n^{i_{g}}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

For any m, $\mathbb{Z}/m\mathbb{Z}$ acts freely by complex automorphisms on C_n . Hence for any non-trivial element $g \in G$, the cyclic group $\langle g \rangle \subset G$ acts freely by complex automorphisms on C_n . $i_g = [G : \langle g \rangle] =$ index of $\langle g \rangle$ in G. There is an action of G on the Cartesian product $C_n^{i_g}$ by holomorphic automorphisms, such that the action of the subgroup $\langle g \rangle$ is free. Hence diagonal action of G on the product

$$W_n := \prod_{g \in G, g
eq 1} C_n^{i_{g}}$$

is free and by holomorphic automorphisms. Let $V_n = W_n/G$ denote the quotient manifold. Then $\pi_1(V_n) = G$, and $\pi_i(V_n) = 0$ for $1 < i \le 2n$. Hence $ht_{CA}(G) = \infty$ for any finite group *G*.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Motivation Almost Complex Manifolds Complex Manifolds Complex Projective Manifolds

Complex Projective Manifolds

Question (Kollar)

Is a projective group G1 commensurable to a group G, admitting a K(G,1) space which is a smooth quasi-projective variety?

Dimca, Papadima and Suciu have furnished examples of finitely presented groups giving a negative answer to this Question.

イロト イポト イヨト イヨト

Complex Projective Manifolds

Question (Kollar)

Is a projective group G_1 commensurable to a group G, admitting a K(G, 1) space which is a smooth quasi-projective variety?

Dimca, Papadima and Suciu have furnished examples of finitely presented groups giving a negative answer to this Question.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Complex Projective Manifolds

Question (Kollar)

Is a projective group G_1 commensurable to a group G, admitting a K(G, 1) space which is a smooth quasi-projective variety?

Dimca, Papadima and Suciu have furnished examples of finitely presented groups giving a negative answer to this Question.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Complex Projective Manifolds

Question (Kollar)

Is a projective group G_1 commensurable to a group G, admitting a K(G, 1) space which is a smooth quasi-projective variety?

Dimca, Papadima and Suciu have furnished examples of finitely presented groups giving a negative answer to this Question.

ヘロト ヘアト ヘビト ヘビト

æ

Tools:

- Group cohomology of PD groups,
- Hochschild-Serre spectral sequence,
- Topological Lefschetz Fibrations
- (Complex) Morse Theory.

- Group cohomology of PD groups,
- Hochschild-Serre spectral sequence,
- Topological Lefschetz Fibrations
- (Complex) Morse Theory.

- Group cohomology of PD groups,
- a Hochschild-Serre spectral sequence,
- Topological Lefschetz Fibrations
- (Complex) Morse Theory.

ヘロト ヘアト ヘビト ヘビト

- Group cohomology of PD groups,
- e Hochschild-Serre spectral sequence,
- Topological Lefschetz Fibrations
- (Complex) Morse Theory.

ヘロト ヘアト ヘビト ヘビト

- Group cohomology of PD groups,
- e Hochschild-Serre spectral sequence,
- Topological Lefschetz Fibrations
- (Complex) Morse Theory.

ヘロン 人間 とくほ とくほ とう

- Group cohomology of PD groups,
- e Hochschild-Serre spectral sequence,
- Topological Lefschetz Fibrations
- (Complex) Morse Theory.

ヘロト ヘアト ヘビト ヘビト

э.

Theorem

(Bieri) Let $1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension cd(G) – cd(Q). Then N is not of type FP. Hence, N cannot have a K(G,1) space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective K(G,1) space.

イロト イポト イヨト イヨト

Theorem

(Bieri) Let $1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension cd(G) - cd(Q). Then N is not of type FP. Here

cannot have a K(G,1) space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective K(G,1) space.

・ロト ・回ト ・ヨト ・ヨト

Theorem

(Bieri) Let $1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension cd(G) - cd(Q). Then N is not of type FP. Here

cannot have a K(G,1) space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective K(G,1) space.

・ロト ・回ト ・ヨト ・ヨト

Theorem

(Bieri) Let $1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further

suppose that N is not a PD group of finite cohomology dimension cd(G) - cd(Q). Then N is not of type FP. Hence, N cannot have a K(G,1) space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective K(G,1) space.

イロン イロン イヨン イヨン

Theorem

(Bieri) Let $1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension cd(G) - cd(Q). Then N is not of type FP. Hence, N cannot have a K(G,1) space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective K(G,1)space.

イロン イロン イヨン イヨン

Theorem

(Bieri) Let $1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension cd(G) - cd(Q). Then N is not of type FP. Hence, N cannot have a K(G,1) space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective K(G,1)space.

イロン イロン イヨン イヨン

Theorem

(Bieri) Let $1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension cd(G) - cd(Q). Then N is not of type FP. Hence, N cannot have a K(G,1) space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective K(G,1)space.

<ロト <回 > < 注 > < 注 > 、

Theorem

(Bieri) Let $1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension cd(G) - cd(Q). Then N is not of type FP. Hence, N cannot have a K(G,1) space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective K(G,1) space.

イロト イポト イヨト イヨト

Theorem

(Bieri) Let $1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$ be a short exact sequence of groups, with both G, Q PD groups. Further suppose that N is not a PD group of finite cohomology dimension cd(G) - cd(Q). Then N is not of type FP. Hence, N cannot have a K(G,1) space homotopy equivalent to a finite CW complex. In particular, N cannot have a quasiprojective K(G,1)space.

イロト イポト イヨト イヨト

Theorem

- Suppose
- a) M is a closed orientable 2n-dimensional manifold,
- b) M is homotopy equivalent to a wedge of n-spheres.
- (e.g. any smooth complex projective variety M realizing $ht_8(G)$ or a hyperplane section of M) Then
- $H^{p}(G, \mathbb{Z}G) = 0$ for 0 ,
- there is an exact sequence of G-modules,
 - $0 \longrightarrow H^{n}(G, \mathbb{Z}G) \longrightarrow H^{n}(M, \mathbb{Z}G) \longrightarrow$
 - $(H^{n}(\widetilde{M},\mathbb{Z}G))^{G}\longrightarrow H^{n+1}(G,\mathbb{Z}G)\longrightarrow 0$

Theorem

Suppose

a) M is a closed orientable 2n-dimensional manifold, b) \widetilde{M} is homotopy equivalent to a wedge of n-spheres. (e.g. any smooth complex projective variety M realizing ht_s(G) or a hyperplane section of M) Then

- $H^{p}(G, \mathbb{Z}G) = 0$ for 0 ,
- Ithere is an exact sequence of G-modules,
 - $0 \, \longrightarrow \, H^n(G, \mathbb{Z}G) \, \longrightarrow \, H^n(M, \mathbb{Z}G) \, \longrightarrow \,$

 $(H^n(\widetilde{M},\mathbb{Z}G))^G \longrightarrow H^{n+1}(G,\mathbb{Z}G) \longrightarrow 0$

Theorem

Suppose

a) M is a closed orientable 2n-dimensional manifold, b) \widetilde{M} is homotopy equivalent to a wedge of n-spheres. (e.g. any smooth complex projective variety M realizing ht_s(G) or a hyperplane section of M) Then

- $H^{p}(G, \mathbb{Z}G) = 0$ for 0 ,
- Ithere is an exact sequence of G-modules,
 - $0 \, \longrightarrow \, H^n(G, \mathbb{Z}G) \, \longrightarrow \, H^n(M, \mathbb{Z}G) \, \longrightarrow \,$

 $(H^n(\widetilde{M},\mathbb{Z}G))^G \longrightarrow H^{n+1}(G,\mathbb{Z}G) \longrightarrow 0$

Theorem

Suppose a) M is a closed orientable 2n-dimensional manifold,

Theorem

Suppose a) M is a closed orientable 2n-dimensional manifold, b) M is homotopy equivalent to a wedge of n-spheres.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem

Suppose a) M is a closed orientable 2n-dimensional manifold, b) M is homotopy equivalent to a wedge of n-spheres. (e.g. any smooth complex projective variety M realizing $ht_{s}(G)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem

Suppose a) M is a closed orientable 2n–dimensional manifold, b) \widetilde{M} is homotopy equivalent to a wedge of n–spheres. (e.g. any smooth complex projective variety M realizing ht_S(G) or a hyperplane section of M) Then

) there is an exact sequence of G-modules,

 $0 \, \longrightarrow \, H^n(G, \, \mathbb{Z}G) \, \longrightarrow \, H^n(M, \, \mathbb{Z}G) \, \longrightarrow \,$

 $(H^n(\widetilde{M}, \mathbb{Z}G))^G \longrightarrow H^{n+1}(G, \mathbb{Z}G) \longrightarrow 0$

Theorem

Suppose a) M is a closed orientable 2n-dimensional manifold, b) \widetilde{M} is homotopy equivalent to a wedge of n-spheres. (e.g. any smooth complex projective variety M realizing $ht_{\mathbb{S}}(G)$ or a hyperplane section of M) Then

) there is an exact sequence of G-modules,

 $0 \, \longrightarrow \, H^n(G, \, \mathbb{Z}G) \, \longrightarrow \, H^n(M, \, \mathbb{Z}G) \, \longrightarrow \,$

 $(H^n(\widetilde{M}, \mathbb{Z}G))^G \longrightarrow H^{n+1}(G, \mathbb{Z}G) \longrightarrow 0$

Theorem

Suppose a) *M* is a closed orientable 2*n*–dimensional manifold, b) \widetilde{M} is homotopy equivalent to a wedge of *n*–spheres. (e.g. any smooth complex projective variety *M* realizing ht_S(*G*) or a hyperplane section of *M*) Then

•
$$H^{p}(G, \mathbb{Z}G) = 0$$
 for $0 ,$

) there is an exact sequence of G-modules,

 $0 \, \longrightarrow \, H^n(G, \mathbb{Z}G) \, \longrightarrow \, H^n(M, \mathbb{Z}G) \, \longrightarrow \,$

 $(H^{n}(\widetilde{M},\mathbb{Z}G))^{G}\longrightarrow H^{n+1}(G,\mathbb{Z}G)\longrightarrow 0$

Theorem

Suppose a) *M* is a closed orientable 2*n*–dimensional manifold, b) \widetilde{M} is homotopy equivalent to a wedge of *n*–spheres. (e.g. any smooth complex projective variety *M* realizing ht_S(*G*) or a hyperplane section of *M*) Then

•
$$H^{p}(G, \mathbb{Z}G) = 0$$
 for $0 ,$

) there is an exact sequence of G-modules,

 $0 \, \longrightarrow \, H^n(G, \mathbb{Z}G) \, \longrightarrow \, H^n(M, \mathbb{Z}G) \, \longrightarrow \,$

 $(H^{n}(\widetilde{M},\mathbb{Z}G))^{G}\longrightarrow H^{n+1}(G,\mathbb{Z}G)\longrightarrow 0$

Theorem

Suppose

a) \widetilde{M} is a closed orientable 2n–dimensional manifold, b) \widetilde{M} is homotopy equivalent to a wedge of n–spheres. (e.g. any smooth complex projective variety M realizing $ht_{\mathbb{S}}(G)$ or a hyperplane section of M) Then

•
$$H^{p}(G, \mathbb{Z}G) = 0$$
 for $0 ,$

there is an exact sequence of G-modules,

 $0 \longrightarrow H^n(G, \mathbb{Z}G) \longrightarrow H^n(M, \mathbb{Z}G) \longrightarrow$

 $(H^n(\widetilde{M},\mathbb{Z}G))^G \longrightarrow H^{n+1}(G,\mathbb{Z}G) \longrightarrow 0$

Theorem

Suppose

a) \widetilde{M} is a closed orientable 2n–dimensional manifold, b) \widetilde{M} is homotopy equivalent to a wedge of n–spheres. (e.g. any smooth complex projective variety M realizing $ht_{\mathbb{S}}(G)$ or a hyperplane section of M) Then

•
$$H^{p}(G, \mathbb{Z}G) = 0$$
 for $0 ,$

there is an exact sequence of G-modules,

 $0 \longrightarrow H^n(G, \mathbb{Z}G) \longrightarrow H^n(M, \mathbb{Z}G) \longrightarrow$

 $(H^n(\widetilde{M},\mathbb{Z}G))^G \longrightarrow H^{n+1}(G,\mathbb{Z}G) \longrightarrow 0$

Theorem

Suppose

a) M is a closed orientable 2n–dimensional manifold, b) \widetilde{M} is homotopy equivalent to a wedge of n–spheres. (e.g. any smooth complex projective variety M realizing $ht_{\mathbb{S}}(G)$ or a hyperplane section of M) Then

•
$$H^{p}(G, \mathbb{Z}G) = 0$$
 for $0 ,$

there is an exact sequence of G-modules,

$$0 \longrightarrow H^n(G, \mathbb{Z}G) \longrightarrow H^n(M, \mathbb{Z}G) \longrightarrow$$

$$(H^n(\widetilde{M}, \mathbb{Z}G))^G \longrightarrow H^{n+1}(G, \mathbb{Z}G) \longrightarrow 0$$

ヘロト 人間 ト ヘヨト ヘヨト

Ingredient 3: Topological Lefschetz fibration:

Definition

A topological Lefschetz fibration on a smooth, closed, oriented 2n-manifold M consists of the following data:

- a closed orientable 2-manifold S,
- a finite set of points $K = \{b_i\} \subset M$ called the critical set,
- a smooth map f : M → S whose differential df is surjective outside K,

If or each critical point x of f, there are orientation preserving coordinate charts about x and f(x) (into Cⁿ and C, respectively) in which f is given by f(z₁, ..., z_n) = ∑_{i=1,...n} z_i², and

f is injective on the critical set K
 X.

Ingredient 3: Topological Lefschetz fibration:

Definition

A topological Lefschetz fibration on a smooth, closed, oriented 2n-manifold M consists of the following data:

- a closed orientable 2-manifold S,
- If a finite set of points $K = \{b_i\} \subset M$ called the critical set,
- a smooth map f : M → S whose differential df is surjective outside K,
- If or each critical point x of f, there are orientation preserving coordinate charts about x and f(x) (into Cⁿ and C, respectively) in which f is given by f(z₁,..., z_n) = ∑_{i=1} = z_i², and
- If is injective on the critical set $K \subset X$.

ヘロト 人間 とくほとく ほとう

ъ
Definition

A topological Lefschetz fibration on a smooth, closed, oriented 2n-manifold M consists of the following data:

- a closed orientable 2-manifold S,
- If a finite set of points $K = \{b_i\} \subset M$ called the critical set,
- a smooth map f : M → S whose differential df is surjective outside K,
- If or each critical point x of f, there are orientation preserving coordinate charts about x and f(x) (into Cⁿ and C, respectively) in which f is given by f(z₁,..., z_n) = ∑_{i=1} = z_i², and
- If is injective on the critical set $K \subset X$.

◆□ > ◆□ > ◆豆 > ◆豆 > -

Definition

A topological Lefschetz fibration on a smooth, closed, oriented 2n-manifold M consists of the following data:

- a closed orientable 2-manifold S,
- 2) a finite set of points $K = \{b_i\} \subset M$ called the critical set,
- I a smooth map f : M → S whose differential df is surjective outside K,

for each critical point x of f, there are orientation preserving coordinate charts about x and f(x) (into Cⁿ and C, respectively) in which f is given by f(z₁,..., z_n) = ∑_{i=1...n} z_i², and

6 f is injective on the critical set $K \subset X$.

イロト イポト イヨト イヨト

Definition

A topological Lefschetz fibration on a smooth, closed, oriented 2n-manifold M consists of the following data:

- a closed orientable 2-manifold S,
- 2 a finite set of points $K = \{b_i\} \subset M$ called the critical set,
- I a smooth map f : M → S whose differential df is surjective outside K,

for each critical point x of f, there are orientation preserving coordinate charts about x and f(x) (into Cⁿ and C, respectively) in which f is given by f(z₁,..., z_n) = ∑_{i=1...n} z_i², and

6 f is injective on the critical set $K \subset X$.

イロト イポト イヨト イヨト

Definition

A topological Lefschetz fibration on a smooth, closed, oriented 2n-manifold M consists of the following data:

- a closed orientable 2-manifold S,
- **2** a finite set of points $K = \{b_i\} \subset M$ called the critical set,
- I a smooth map f : M → S whose differential df is surjective outside K,

for each critical point x of f, there are orientation preserving coordinate charts about x and f(x) (into Cⁿ and C, respectively) in which f is given by f(z₁, ..., z_n) = ∑_{i=1…n} z_i², and

● f is injective on the critical set $K \subset X$.

イロト イポト イヨト イヨト

Definition

A topological Lefschetz fibration on a smooth, closed, oriented 2n-manifold M consists of the following data:

- a closed orientable 2-manifold S,
- **2** a finite set of points $K = \{b_i\} \subset M$ called the critical set,
- **3** a smooth map $f : M \longrightarrow S$ whose differential df is surjective outside K,

for each critical point x of f, there are orientation preserving coordinate charts about x and f(x) (into Cⁿ and C, respectively) in which f is given by f(z₁,..., z_n) = ∑_{i=1...n} z_i², and

f is injective on the critical set *K* ⊂ *X*.

イロト イポト イヨト イヨト

Definition

A topological Lefschetz fibration on a smooth, closed, oriented 2n-manifold M consists of the following data:

- a closed orientable 2-manifold S,
- **2** a finite set of points $K = \{b_i\} \subset M$ called the critical set,
- **3** a smooth map $f : M \longrightarrow S$ whose differential df is surjective outside K,

for each critical point x of f, there are orientation preserving coordinate charts about x and f(x) (into Cⁿ and C, respectively) in which f is given by f(z₁,..., z_n) = ∑_{i=1...n} z_i², and

• f is injective on the critical set $K \subset X$.

イロト イポト イヨト イヨト

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for 1 < k < n,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$ -module,

with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n–spheres.

ヘロト 人間 ト ヘヨト ヘヨト

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then a) $\pi_k(F) = 0$ for 1 < k < n, b) $\pi_n(F)$ is a free $\mathbb{Z}N$ -module, with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n-spheres.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then a) $\pi_k(F) = 0$ for 1 < k < n, b) $\pi_n(F)$ is a free $\mathbb{Z}N$ -module, with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n-spheres.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then a) $\pi_k(F) = 0$ for 1 < k < n, b) $\pi_n(F)$ is a free $\mathbb{Z}N$ -module, with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n-spheres.

ヘロト ヘアト ヘビト ヘビト

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then a) $\pi_k(F) = 0$ for 1 < k < n, b) $\pi_n(F)$ is a free ZN-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n-spheres.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then a) $\pi_k(F) = 0$ for 1 < k < n, b) $\pi_n(F)$ is a free ZN-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n-spheres.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then a) $\pi_k(F) = 0$ for 1 < k < n, b) $\pi_n(F)$ is a free ZN-module, with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n-spheres.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for 1 < k < n,

D) $\pi_n(F)$ is a free ZN-module,

with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n–spheres.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for 1 < k < n,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$ -module,

with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n–spheres.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for 1 < k < n, b) $\pi_n(F)$ is a free $\mathbb{Z}N$ -module,

with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n-spheres.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for 1 < k < n,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$ -module,

with generators in one-to-one correspondence with $K \times \pi_1(S)$,

c) F is homotopy equivalent to a wedge of n-spheres.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for 1 < k < n,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$ -module,

with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n-spheres.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $f : M \longrightarrow S$ be an irrational topological Lefschetz fibration that is not a Kodaira fibration, with dim M = 2n + 2, $n \ge 2$. Let K be the finite critical set of f. Further suppose that \widetilde{M} is contractible. Let F denote the regular fiber and $N = \pi_1(F)$. Then

a) $\pi_k(F) = 0$ for 1 < k < n,

b) $\pi_n(F)$ is a free $\mathbb{Z}N$ -module,

with generators in one-to-one correspondence with $K \times \pi_1(S)$, c) \widetilde{F} is homotopy equivalent to a wedge of n-spheres.

ヘロン 人間 とくほ とくほ とう

Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective K(N, 1) space.

Sketch of Proof: Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension (2n + 2) and 2 respectively. To show that *N* cannot be of type FP, it suffices (by Theorem 4) to show that *N* cannot be a PD(2n) group. Spectral Sequence Proposition gives

$$0 \longrightarrow H^{n}(N, \mathbb{Z}N) \longrightarrow H^{n}(F, \mathbb{Z}N) \longrightarrow H^{n}(\widetilde{F}, \mathbb{Z}N)^{N}$$
$$\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots$$

イロン 不得 とくほ とくほとう

Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective K(N, 1) space.

Sketch of Proof: Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension (2n + 2) and 2 respectively. To show that *N* cannot be of type FP, it suffices (by Theorem 4) to show that *N* cannot be a PD(2n) group. Spectral Sequence Proposition gives

$$0 \longrightarrow H^{n}(N, \mathbb{Z}N) \longrightarrow H^{n}(F, \mathbb{Z}N) \longrightarrow H^{n}(\widetilde{F}, \mathbb{Z}N)^{N}$$
$$\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots$$

イロン 不得 とくほ とくほとう

Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective K(N, 1) space.

Sketch of Proof: Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension (2n + 2) and 2 respectively. To show that *N* cannot be of type FP, it suffices (by Theorem 4) to show that *N* cannot be a PD(2n) group. Spectral Sequence Proposition gives

$$0 \longrightarrow H^{n}(N, \mathbb{Z}N) \longrightarrow H^{n}(F, \mathbb{Z}N) \longrightarrow H^{n}(\widetilde{F}, \mathbb{Z}N)^{N}$$
$$\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots$$

イロン 不得 とくほ とくほとう

Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective K(N, 1) space.

Sketch of Proof:

Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension

(2n+2) and 2 respectively.

To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.

Spectral Sequence Proposition gives

$$0 \longrightarrow H^{n}(N, \mathbb{Z}N) \longrightarrow H^{n}(F, \mathbb{Z}N) \longrightarrow H^{n}(\widetilde{F}, \mathbb{Z}N)^{N}$$
$$\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots$$

イロト イポト イヨト イヨト

Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective K(N, 1) space.

Sketch of Proof:

Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension (2n+2) and 2 respectively.

To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group. Spectral Sequence Proposition gives

Spectral Sequence Proposition gives

$$0 \longrightarrow H^{n}(N, \mathbb{Z}N) \longrightarrow H^{n}(F, \mathbb{Z}N) \longrightarrow H^{n}(\widetilde{F}, \mathbb{Z}N)^{N}$$
$$\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots$$

ヘロト ヘアト ヘビト ヘビト

æ

Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective K(N, 1) space.

Sketch of Proof:

Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension

(2n+2) and 2 respectively.

To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.

Spectral Sequence Proposition gives

$$0 \longrightarrow H^{n}(N, \mathbb{Z}N) \longrightarrow H^{n}(F, \mathbb{Z}N) \longrightarrow H^{n}(\widetilde{F}, \mathbb{Z}N)^{N}$$
$$\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots$$

ヘロト 人間 ト ヘヨト ヘヨト

æ

Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective K(N, 1) space.

Sketch of Proof:

Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension

(2n+2) and 2 respectively.

To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.

Spectral Sequence Proposition gives

 $0 \longrightarrow H^{n}(N, \mathbb{Z}N) \longrightarrow H^{n}(F, \mathbb{Z}N) \longrightarrow H^{n}(\widetilde{F}, \mathbb{Z}N)^{N}$ $\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots$

<ロ> (四) (四) (三) (三) (三)

Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective K(N, 1) space.

Sketch of Proof:

Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension

(2n+2) and 2 respectively.

To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.

Spectral Sequence Proposition gives

$$0 \longrightarrow H^{n}(N, \mathbb{Z}N) \longrightarrow H^{n}(F, \mathbb{Z}N) \longrightarrow H^{n}(\widetilde{F}, \mathbb{Z}N)^{N}$$
$$\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots$$

ヘロト 人間 ト ヘヨト ヘヨト

æ

Theorem

d) N cannot be of type FP; in particular, there does not exist a quasiprojective K(N, 1) space.

Sketch of Proof:

Note that $\pi_1(M)$ and $\pi_1(S)$ are PD groups of dimension

(2n+2) and 2 respectively.

To show that N cannot be of type FP, it suffices (by Theorem 4) to show that N cannot be a PD(2n) group.

Spectral Sequence Proposition gives

$$0 \longrightarrow H^{n}(N, \mathbb{Z}N) \longrightarrow H^{n}(F, \mathbb{Z}N) \longrightarrow H^{n}(\widetilde{F}, \mathbb{Z}N)^{N}$$
$$\longrightarrow H^{n+1}(N, \mathbb{Z}N) \longrightarrow \cdots$$

ヘロト 人間 ト ヘヨト ヘヨト

æ

If N is PD(2n) group, then $H^n(N, \mathbb{Z}N) = H^{n+1}(N, \mathbb{Z}N) = 0$ because $n \ge 2$.

Hence $H^n(F, \mathbb{Z}N) = H^n(F, \mathbb{Z}N)^N$. Now, by Poincaré Duality and the Hurewicz' Theorem, we have

$$H^n(F, \mathbb{Z}N) = H^n_c(\widetilde{F}) = H_n(\widetilde{F}) = \pi_n(\widetilde{F}) = \bigoplus_I \mathbb{Z},$$

$$H^{n}(\widetilde{F}, \mathbb{Z}N)^{N} = (Hom_{\mathbb{Z}}(H_{n}(\widetilde{F}), \mathbb{Z}N))^{N} = (Hom_{\mathbb{Z}}(\pi_{n}(\widetilde{F}), \mathbb{Z}N))^{N} =$$

$$Hom_{\mathbb{Z}N}(\pi_n(\widetilde{F}),\mathbb{Z}N) = Hom_{\mathbb{Z}N}\left(\bigoplus_I \mathbb{Z},\mathbb{Z}N\right) = \prod_I \mathbb{Z}N,$$

If *N* is PD(2n) group, then $H^n(N, \mathbb{Z}N) = H^{n+1}(N, \mathbb{Z}N) = 0$ because $n \ge 2$. Hence $H^n(F, \mathbb{Z}N) = H^n(\tilde{F}, \mathbb{Z}N)^N$. Now, by Poincaré Duality and the Hurewicz' Theorem, we have

$$H^n(F, \mathbb{Z}N) = H^n_c(\widetilde{F}) = H_n(\widetilde{F}) = \pi_n(\widetilde{F}) = \bigoplus_I \mathbb{Z},$$

$$H^{n}(\widetilde{F},\mathbb{Z}N)^{N} = (Hom_{\mathbb{Z}}(H_{n}(\widetilde{F}),\mathbb{Z}N))^{N} = (Hom_{\mathbb{Z}}(\pi_{n}(\widetilde{F}),\mathbb{Z}N))^{N} =$$

$$Hom_{\mathbb{Z}N}(\pi_n(\widetilde{F}),\mathbb{Z}N) = Hom_{\mathbb{Z}N}\left(\bigoplus_I \mathbb{Z},\mathbb{Z}N\right) = \prod_I \mathbb{Z}N,$$

If *N* is PD(2n) group, then $H^n(N, \mathbb{Z}N) = H^{n+1}(N, \mathbb{Z}N) = 0$ because $n \ge 2$. Hence $H^n(F, \mathbb{Z}N) = H^n(\tilde{F}, \mathbb{Z}N)^N$. Now, by Poincaré Duality and the Hurewicz' Theorem, we have,

$$H^n(F,\mathbb{Z}N) = H^n_c(\widetilde{F}) = H_n(\widetilde{F}) = \pi_n(\widetilde{F}) = \bigoplus_I \mathbb{Z},$$

 $H^{n}(\widetilde{F},\mathbb{Z}N)^{N} = (Hom_{\mathbb{Z}}(H_{n}(\widetilde{F}),\mathbb{Z}N))^{N} = (Hom_{\mathbb{Z}}(\pi_{n}(\widetilde{F}),\mathbb{Z}N))^{N} =$

$$Hom_{\mathbb{Z}N}(\pi_n(\widetilde{F}),\mathbb{Z}N) = Hom_{\mathbb{Z}N}\left(\bigoplus_I \mathbb{Z},\mathbb{Z}N\right) = \prod_I \mathbb{Z}N$$

.

If *N* is PD(2n) group, then $H^n(N, \mathbb{Z}N) = H^{n+1}(N, \mathbb{Z}N) = 0$ because $n \ge 2$. Hence $H^n(F, \mathbb{Z}N) = H^n(\tilde{F}, \mathbb{Z}N)^N$. Now, by Poincaré Duality and the Hurewicz' Theorem, we have,

$$H^n(F,\mathbb{Z}N) = H^n_c(\widetilde{F}) = H_n(\widetilde{F}) = \pi_n(\widetilde{F}) = \bigoplus_I \mathbb{Z},$$

$$H^{n}(\widetilde{F}, \mathbb{Z}N)^{N} = (Hom_{\mathbb{Z}}(H_{n}(\widetilde{F}), \mathbb{Z}N))^{N} = (Hom_{\mathbb{Z}}(\pi_{n}(\widetilde{F}), \mathbb{Z}N))^{N} = Hom_{\mathbb{Z}N}(\pi_{n}(\widetilde{F}), \mathbb{Z}N) = Hom_{\mathbb{Z}N}\left(\bigoplus_{I} \mathbb{Z}, \mathbb{Z}N\right) = \prod_{I} \mathbb{Z}N,$$

.

If *N* is PD(2n) group, then $H^n(N, \mathbb{Z}N) = H^{n+1}(N, \mathbb{Z}N) = 0$ because $n \ge 2$. Hence $H^n(F, \mathbb{Z}N) = H^n(\tilde{F}, \mathbb{Z}N)^N$. Now, by Poincaré Duality and the Hurewicz' Theorem, we have,

$$H^n(F,\mathbb{Z}N) = H^n_c(\widetilde{F}) = H_n(\widetilde{F}) = \pi_n(\widetilde{F}) = \bigoplus_I \mathbb{Z},$$

$$H^{n}(\widetilde{F}, \mathbb{Z}N)^{N} = (Hom_{\mathbb{Z}}(H_{n}(\widetilde{F}), \mathbb{Z}N))^{N} = (Hom_{\mathbb{Z}}(\pi_{n}(\widetilde{F}), \mathbb{Z}N))^{N} = Hom_{\mathbb{Z}N}(\pi_{n}(\widetilde{F}), \mathbb{Z}N) = Hom_{\mathbb{Z}N}\left(\bigoplus_{I} \mathbb{Z}, \mathbb{Z}N\right) = \prod_{I} \mathbb{Z}N,$$

Hence

$$\bigoplus_{I} \mathbb{Z} = \prod_{I} \mathbb{Z} N.$$

Since $f: M \longrightarrow S$ is irrational, *I* is countably infinite. Therefore, $\bigoplus_I \mathbb{Z}$ is countable and $\prod_I \mathbb{Z} N$ is uncountable and the two cannot be equal. A contradiction.

・ロト ・ 理 ト ・ ヨ ト ・

Hence

$$\bigoplus_{I}\mathbb{Z}=\prod_{I}\mathbb{Z}N.$$

Since $f: M \longrightarrow S$ is irrational, *I* is countably infinite.

Therefore, $\bigoplus_I \mathbb{Z}$ is countable and $\prod_I \mathbb{Z}N$ is uncountable and the two cannot be equal. A contradiction

ヘロト ヘアト ヘビト ヘビト

Hence

$$\bigoplus_{I} \mathbb{Z} = \prod_{I} \mathbb{Z} N.$$

Since $f: M \longrightarrow S$ is irrational, *I* is countably infinite. Therefore, $\bigoplus_I \mathbb{Z}$ is countable and $\prod_I \mathbb{Z}N$ is uncountable and the two cannot be equal.

A contradiction.

ヘロト ヘアト ヘビト ヘビト
Motivation Almost Complex Manifolds Complex Manifolds Complex Projective Manifolds

Hence

$$\bigoplus_{I} \mathbb{Z} = \prod_{I} \mathbb{Z} N.$$

Since $f: M \longrightarrow S$ is irrational, *I* is countably infinite. Therefore, $\bigoplus_I \mathbb{Z}$ is countable and $\prod_I \mathbb{Z}N$ is uncountable and the two cannot be equal. A contradiction.

・ロン・西方・ ・ ヨン・ ヨン・

3